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FOREWORD

A statistical methodology is presented for the analysis of explosives

performance data associated with the shock waves of underwater explosions. The

model should increase both the accuracy and amount of'useful information now

being extracted from the data. In addition, it should serve as a basic tool for

the development of statistical tests for the comparisons of explosives and for

*. the study of more efficient experimental designs. The work was funded through

the Explosives Development, Effects and Safety Block of the Naval Sea Systems

Command (Task Area SF-33-354-391) as a part of the MADAM program.
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CHAPTER 1

INTRODUCTION

In this report we develop a general statistical model for the analysis of

explosives performance data. The data of interest consist of observations of an

arbitrary measure of performance that can be derived from the transient

pressure-induced responses of piezo-electric gages located in the vicinities of

underwater explosions. Applications of the model concern the variations of

performance within broadly defined classes of explosive charges and the

predictions. and comparisons, at specified ranges, of the performances of charges

belonging to these classes. The observations are complicated by the presence of

gage calibration errors and various errors that arise from the measurement and

data processing techniques employed.

The traditional and current method for analyzing data of this kind (see

Cole, Reference 1, p. 240) is to express the relationship between the scaled

performance variable and the scaled distance from the charge as a power law

whose parameters are determined from an ordinary least squares fit of a

straight line to the logarithmically transformed data. Relationships obtained

* in this manner are popularly called "similitude equations" from the principle of.

similarity that underlies the scaling of explosion shock wave phenomena. The

lCole, R. H., Underwater Explosions (New Jersey: Princeton Univ. Press, 1948).
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usual method of scaling is called Hopkinson or cube-root scaling (see e.g.

Snay, Reference 2), which refers to the fact that the time and length scale

factors are proportional to the cube root of the charge weight (or

any other proportional measure of the explosion energy). Recently Goertner

(Reference 3) has extended this scaling method to include variations with

ambient water sound speeds and densities. It is now customary to compile

similitude equations for a large variety of explosive classes for the following

*measures of performance: the peak pressure, a characteristic time constant, and

the impulses and energies per unit area delivered to a given location by the

shock wave within various multiples of the time constant.

The application of more sophisticated statistical techniques to this area

has been blocked, perhaps primarily, by complicated dependencies within the

data. Correlations exist among the observations obtained from a single test, as

pointed out by Brown (Reference 4), and among observations obtained with the

same gages and gage calibration constants. The mixed linear models necessary

for an adequate statistical treatment of such data constitute an active area of

current research.

The model that we develop below generalizes the current approach by

accepting arbitrary measures of performance and allowing regression functions of

arbitrary form that are linear in their coefficients (such as higher degree

2Snay, H. G., "Model Testsand Scaling," NOLTR 63-257, 1 Dec 1964.

3Goertner, J. F., "Scaling Underwater Explosion Shock Waves for Differences in
Ambient Sound Speed and Density," NSWC TR 80-91, 18 Dec 1980.

4Brown, R. H., "Analysis of Data When Several Sources of Variation are
Present," Explosives Research Memorandum 22, Navy Dept. Bureau of Ordnance,
I Dec 1944.

* 1-2

........................................

%%'% . . h . . . . . . . . .

, :,.". -: ,' ,.,- " '., . -. .4 , -* 4 .;.,. - ..-... -.-. .. -. ,..... .... • .. ."....... • . .



* ISWC TR 82-74

*polynomials). As the principle of shock vave similarity is still adhered to we

continue to refer to the equation of the regression mean as the similitude

equation for the particular explosive class--a term that we will use to

emphasize the fact that explosive charges are more properly viewed as members of

a class of objects that in many respects are alike but which differ in ways that

affect the observed measures of performance.

The model extends the presently used approach by explicitly including

sources of random variation in its formulation. In the interest of model

simplicity our philosophy has been to include only those sources that are

thought to produce significantly large effects and are unavoidable.

* Complicating effects that are avoidable. or correctible will be presumed to have

* been eliminated either by an appropriate reprocessing of the data or by

modifications of the experimental techniques.

A possible model deficiency is that no explicit treatment of so called

batch effects is included. This refers to well recognized performance

* variations among charges taken from different batches or preparations of the

same explosive material. It was felt that batch effects did not justify the

further complication of an already complex model and that they could be handled

in another manner such as by treating different batches as different explosive

classes, by increasing the number of batches and randomizing the charge

selection, and by improving the explosive preparation quality control. In any

- case the use of the model should be made with the possibility of batch effects

* borne in mind, and a thorough examination of the model residuals for the

presence of these and any other systematic effects is recommended (see Section

1-3
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The report is divided into five chapters. Chapter 2 discusses the

development of the model in detail. The model may be described as an

intra-class regression model with an additive error term consisting of a gage

class calibration error, a within-class performance variation, and a general

experimental error. Under a suitable transformation of the performance

variable, multivariate normality of the errors is assumed. Chapter 3 discusses

*the estimation of the model parameters by the methods of maximum likelihood and

restricted maximum likelihood. The derivation of derivatives needed for an

iterative solution of the likelihood equations follows the approach of Harville

(Reference 5). In Chapter 4 we find a brief description of both unconstrained

and constrained Newton-Raphson and method of scoring optimization techniques and

related topics. And finally in Chapter 5 we give some practical applications of

the model.

5l arville, D. A., ..a imt Likelihood Approaches to Variance Component
Estimation and to &-,ated Problems," Journal of the American Statistical
Assoc., Vol. 72, No 358, 1977, p. 320.

1.*. 1-4
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CHAPTER 2

MODEL DEVELOPMENT

We will denote the response and regressor variables of the model as y and x

respectively, often with subscripts to specify a particular observation.

Vectors in the model will be indicated by use of the underbar notation; hence, a

7. sample of response variables will appear as y. No notational distinction will

be made between realized and random samples, but this difference should be

apparent from the context.

In the theory of linear models it is common to deal with transformed

response and regressor variables to promote variance homogeneity, model

simplicity, and other desirable model properties. Thus, we define y as a

possibly transformed value of a scaled measure of performance, as discussed

earlier, and x as a possibly transformed scaled distance taken to be zero at the

charge center. This is in accord with past derivations of shock wave similitude

equations in which straight lines are fitted to the logarithms of the scaled

data. Hence, the present model will be compatible with these forms.

Development of the model will be based upon a number of reasonable

assumptions which will appear throughout this section. To these and the

*assumption of shock wave similarity already made we add that the water between

the charge and gages is assumed t, be homogeneous so that disturbances are

propaged through the water in a regular manner, and we assume the values of x

2-1
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to be accurately known. Recent tests of the last assumption have verified its

accuracy when distances are determined from the measured times of arrival

(Reference 6).

2-1 BASIC MODEL FOR A SINGLE OBSERVATION

In the sample of y values let yij km be the observation made in the jth

shot of the ith explosive class with a gage of the kth gage class having

calibration index m. The gage is located at the (transformed, scaled) distance

x .j *.The gage class index refers to one of several broad classes of gages

such as 1/4 inch tourmaline, 3/8 inch tourmaline, 1/2 inch tourmaline etc. In a

typical test it is conon to employ a string of perhaps 10 to 12 gages placed so

"" that smaller diameter gages are grouped closer to the charge and larger diameter

gages grouped farther from the charge. Typically gages from 3 to 4 gage classes

are used. A gage is usually recalibrated prior to each test program and

assigned a gage constant (units of picocoulombs/psi) which is used to calculate

all pressures measured by the gage until it is recalibrated. From this it is

clear that measures of performance derived from the various pressure-time

records of a particular gage could be correlated, i.e., all affected in the same

manner. During the lifetime of a gage, lasting only a single shot to perhaps

several years, it might be recalibrated as many as 5 to 10 times.

The system by which observations will be indexed is described as follows.

Let C and K be the total numbers of explosive classes and gage classes of

6Gaspin, J. B., "Validation of a Gage Location Method for Underwater Explosion
Tests," NSWC TR in preparation.

2-2
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interest, respectively, and let J. be the total number of shots of the ith1

explosive class. Then index i will simply run from I to C, index j will run

from I to Ji, and index k will run from 1 to K. The numbering assigned to

particular classes or shots is arbitrary. In the same sense the gage

calibration index m is also arbitrarily assigned, but it will require a somewhat

lengthier explanation. Basically, we wish to identify those observations

* •obtained from the same gage and one of its particular gage calibration constants

and assign to these observations the same value of m. We will establish

separate sets of m values for the observations associated with each gage class

of interest. For the kth gage class, the total number Mk of such m values is

equal to the total number of unique ordered pairs (n,d) among the observations

associated with the kth gage class, where n is a unique identifying number of

the gage and d is the date on which the calibration session was conducted.

hence, for the kth gage class the calibration index m will run from 1 to Mk

Note that, although several measurements can have the same indices k and m, an

observation is uniquely labeled by the set of indices (i,j,k,m), since only a

single observation can be obtained from a particular gage on a particular shot.

Consider, now, the jth test of the ith explosive class. We assume that the

passage of the shock wave through the water induces a particular unknown

. functional relationship between the quantity we are seeking to measure and the

N travel distance x. We will denote a representation of this function as f. (x)
13

for the jth test of the ith explosive class. We can write the observation

obtained with a gage having indices k and m as

Yijkm - fij(xijkm) + eijkm, (2-1)

2-3
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where e jkm is the deviation of the measured value from the true value as

indicated in Figure 1. Values of y measured by other gages and at other values

of x will be scattered about f. .(x) in some manner that we will now consider..- ij

fii
• . Yijkm

Oijk.

Figure 1. Response y versus distance x for jth shot

We will assume the error e to be a random variable with a mean of

zero. This requires that any bias in e introduced, for example, by an
ijkm

incorrect gage size correction or other systematic measurement effect, be

removed prior to the statistical analysis. Current thinking by experimentalists

is that this is not an unreasonable assumption. Furthermore, there are two

compelling reasons for it from theoretical grounds. First, it keeps the model

4from becoming unmanageably complex. Second, and most importantly, the presence

of bias terms would make the usual similitude equations unestimable. That is,

they would have no unique solutions. An explanation for this is given below in

Section 3-1. Thus, in the model we require

2-4
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E(eikm) 0. (2-2)

We will assume that e jkm can, however, be separated into two additive

random parts as

eij' a + C* (2-3)

each with zero mean. The first of these, akm, will denote that part that

is due to gage calibration error. We will assume that all gages of a particular

gage class have the same distribution of calibration errors. For this reason a

previously used but recalibrated gage will be treated in the same manner as a

new gage--the calibration errors of both are drawn from the same distribution.

The remaining component in (2-3), , is regarded as a general error

term arising from the measurement and data handling processes but from no source

in particular. This decomposition of eijkm is illustrated in Figure 2.

Substitution of (2-3) into (2-1) yields

Yijkm = fij(Xijkm) + akm + ijkm. (2-4)

Ik'eiikm ACijkm

i ,i

DENSITY FUNCTIONS OF
RANDOM ERROR COMPONENTS

SII

Xijkm x

Figure 2. Decomposition of eijkm for jth shot

2-5
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It is convenient and consistent with past practices to represent the

functional relationship fijCx) by a polynomial in x. This can be written in a

somewhat more general fashion for the jth shot of the ith explosive class as

f (x ) +-' + (2-5)
ij ijkm ijkin .ij

where .jkm is a vector function of the regressor variable xijkm (prime

denotes the transpose), and + is a vector of unknown parameter values that

is conformable with 0!k . In the traditional case of similitude equations we-i jkm

have x = (i, Xijkm). For the case of a (p-l)th degree polynomial we have,
of course, 0' (1, X x2  ,... XP1 ). Generally, for underwater

--Ijkm ijkm' i~jkms ijlcm

explosions a low degree polynomial with p - 2 or 3 will be adequate. For other

applications where the choice of p > 6 may seem more appropriate it may be

preferable to define 9 in terms of Chebyshev or orthogonal polynomials to
-ijkm

avoid problems of ill conditioning (see Seber, Reference 7, p. 214). The

generality of expression (2-5) should be fully appreciated. In addition to

functions of a single dimension it will admit the use of multidimensional

functions (that are linear in their coefficients) as well. In the subsequent

development we wil1 assume lijkm to consist of p elements which could be any

of these types.

The relationship between y and x will vary from one explosive class to

another and also between shots within a particular explosive class. Within-

class variations are considered to be caused by charge fabrication and

preparation methods that are difficult or impossible to control precisely, and

7Seber, G. A. F., Linear Regression Analysis (New York: John Wiley & Sons,

Inc., 1977).

2-6
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also by naturally occurring chemical and physical inhomogeneities randomly

located within the explosive mixtures. Mathematical models for these

relationships must, consequently, be of a random nature. We can view the

" . relationships between y and x generated by the shots of a particular explosive

class as a family of curves each of which is similar to the one illustrated in

- Figure 1. This idea is illustrated in Figure 3.

, Y

...

X

Figure 3. Response versus distance curves for an explosive class

A mathematical model for the behavior of an explosive class can be

constructed by allowing the parameters + of equation (2-5) to be random

variables. Mean values, variances, and covariances of the parameters will then

be constants of the explosive class. If we denote the mean of + as

•., we can then write

J. - Y-. + (2-6)

which decomposes _ij into the sum of a vector of fixed effects Y. and

a vector of random effects with zero means .ij. Inserting equations (2-6)

into (2-5) we obtain

2-7
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f (x --' " + ' (2-7)
iikm -ijkm 7i 7ijkm ij

Note that f ij(x) is now regarded as a random function consisting of a mean

curve and a random variation about that mean.

By inserting (2-7) into equation (2-4) we obtain the basic model for the

analysis of explosion test data. It is convenient to write this as

Yi k0'" 0'
ijkm -ijkm i

+* * (2-8)

km ijk -ij ijkm

where the second line is the random "error" term with zero mean. The basic

model is recognized as a linear-regression model with a complicated error

structure. It may also be referred to as a mixed model or mixed regression

model.

Equation (2-8) expresses the contention that a single observation may be

viewed as a realization of a random variation about the mean response of the ith

explosive class. Furthermore, it holds that the random part consists of the sum

of (1) a random gage calibration term, (2) the random performance variations of

("identical") charges within the explosive class, and (3) a random exper'imental

error term. And finally, it indicates that the mean (or expected value) of the

observations of the ith explosive class, that corresponds to what is

traditionally called the explosive similitude equation (expressed in terms of

the transformed variable y) is given by

2-8
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E(y ) = " j. I (2-9)
ijkm -ijkm i

at distance x.

2-2 THE MODEL FOR A VECTOR OF OBSERVATIONS

We now express the model in matrix form in three steps by first writing

the model for the measurements of a particular shot (i.e., for fixed values of

i and j), then combining these to form the model for the ith explosive class,

and finally combining several single explosive class models to obtain a model

for multiple explosive classes.

To reiterate our previous discussion concerning indices we are interested

in a total of C explosive classes and K gage classes. Also we let the number

of shots in the ith explosive class be Ji and the number of gage calibrations

in the kth gage class be Mk. Hence, the indices take on the values i -

1,2,...,C; j - 1,2,...,Ji; k - 1,2,...,K; and m - 1,2,..., M. In addition

we will denote the number of observations in the jth shot of the ith explosive

class by nij and the total number of observations as N.

For fixed values of i and j, let yij be the vector of ni. observations

for the jth shot of the ith explosive class. The model for this vector of

observations can be expressed as

e.aa* Xj + a + (2-10)

where X is the matrix of regressor variables (whose rows consist of the *'

2-9
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row vectors) and e.tj is the vector of €[jkm values corresponding to yij. Here

the vector a* denotes the complete set of * values of interest in the full

model, ordered according to gage class. That is
.o~ *- * l *, * **)'

I *2l- M lM1 ,. Gl, •...,a --2 P.

The matrix Uij, however, is specific to the jth shot of the ith explosive

class and consists of O's and l's. Since only a single gage is associaL64 with

a particular observation, U.. will have only one 1 per row. An example

showing the elements of equation (2-10) explicitly appears in Figure 4.

To assemble the model for the complete set of observations of the ith

explosive class we define the observation vector of interest as z - (zi,

2,.., ji ,the corresponding error vector as !!)

and the corresponding vector of random performance effects as b -,

I 2,'Furthermore we define the following matrices: Xi  (X!

X!j...,XJ.)' Ui - (UjiUi2 ,...,Uij ), and Wi = Block Diag (Xil,Xi2,...,XiJ.)

With these the model for Yi can be written as

Y. X u + U a* + W b* + e*. (2-11)

Finally, we form the full matrix model by defining in analogy with the

above y - ) e* (e ',e ',..,ee')', U - (UUan..." ~~~ ~ 1 oilv y (1,2,"Y 2 Y . U), and W

Block Diag (Wl,W2,...,WC). Also we introduce . = , .,...,I)'and X - Block

Diag (XI,X 2 .. oxc). In terms of these quantities the full matrix model can

X,be represented ar

.
S2-10
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z x' + ua* + * e--. (2-12)

As before, an example showing the full matrix model in more explicit form is

found in Figure 5.

Equation (2.12) is the matrix counterpart of equation (2.8). The notations

employed to describe the various kinds of terms are similar in both cases. In

words, (2.12) states that the sample of observations y can be viewed as a

realization of a random vector in an N-dimensional sample space that deviates

from the mean point Xy by a vector sum composed of a vector of gage

calibration errors Ua*, a vector of performance variations Wb*, and a general

experimental error vector e*. Here, of course, X and W depend upon the

transformed reduced distances associated with the sample of observations and U

is a matrix of O's and l's that links the observations with the random gage

effects a*.

Viewing '_ as a variable, Xj defines a hyperplane in the N dimensional

sample space with.n which the unknown true mean is, by construction of the

model, postulated to lie. In Chapter 3-we will be concerned with estimating the

position of the true mean on this hyperplane by means of various statistical

criteria of choice. For example, the ordinary least squares method selects the

orthogonal projection of y on the hyperplane as the estimated value of Xy.

The more precise maximum likelihood and restricted maximum likelihood methods of

estimation, that are developed in this report, require explicit representations

of the distributions of the random effects in the model. These we now consider.

2-12Ki
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2-3 DISTRIBUTIONAL ASSUMPTIONS AND THE DATA VARIANCE COVARIANCE MATRIX

It is reasonable to assume that the sample of observations y will have a

multivariate normal distribution. Hence, we write

y - N(Xa, V) , (2-13)

where Xy is the mean vector of the distribution and V is the N x N variance

covariance matrix whose structure we will consider below. As noted earlier the

adequacy of this assumption may require a transformation of the measurements.

For the usual quantities of interest (peak pressure, decay constant, impulse per

unit area, and energy per unit area) experience suggests the logarithm as the

appropriate transformation. Use of a logarithmic transformation also supports

the assumption of error component additivity as represented in equation (2-3)

since calibration effects are essewtielly multiplicative on the pressure (see

Reference i, p. 183). As in the case of standard regression theory it will be

possible to critically examine this and other model assumptions through an

analysis of the model residuals.

Implicit in the normality assumption for y is the assumption that all

random effects of the model are individually normally distributed. Because

a , b , and e are affected by unrelated error sources, they are taken to

be mutually independent. We will assume the random effects to have the

following multivariate normal distriblitions,

a N(o, r a2  (2-14)

1 See footnote I on page 1-1
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b* N(O,T a2) (2-15)

e N(OI a2) (2-16)

where F Diag ( (2-17)

M1  M2  MK

Yk = a-2 Var(am), m - 1,2, ... ,Mk, (2-18)

and T -Block Diag (ez,...,ez,e2,...,e2,...,ec,...,ec) (2-19)

J1 J2 Jc

e i  a-2 Var(.O), j = 1,2,...,J i . (2-20)

Hence, r is the matrix of gage calibration error variances divided by a2

and T is the matrix of the variances and covariances of the random performance
2

variation parameters divided by a . Correlations between the calibration

errors of gages with different gage class and calibration indices k and m are

assumed to be zero, as are the performance variation parameters of different

shots. The use of variance covariance ratios is for later mathematical

convenience.

As mentioned earlier, relations (2-17) and (2-18) indicate that the gage

calibration error variances are taken to depend on the gage class index k only

and not on other factors upon which they might reasonably depend such as reduced

range, charge weight, peak pressure, the shock wave decay constant, or

individual details of the gages. This is a simplifying assumption that is

thought to be reasonably accurate and of practical value.

2-15
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* Using these distributional assumptions and the independence of a , b

and e we can specify the data variance covariance matrix V. From (2-12) and

the rule for forming the variance covariance matrix of a linear function of

random variables we obtain

V = H' a2 (2-21)

I I

where H I + uru + WTW (2-22)

It is noted from the block diagonal structures of W and T that WTW is

also block diagonal with blocks X ic.. of size n. x nij. The number

of observations per shot is usually around 10. The relatively simple structure

of H will be exploited below in the task of computing functions of H

a

* *If Y Ax with E(x) = and Var(x) - E, it is easily shown that E(y) = Au

and Var(Q) E(- (y))(y- E(y))'] - AA'.

2-16
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CHAPTER 3

ESTIMATION OF THE MODEL PARAMETERS

We require a general estimation method that will produce efficient

estimates of the model parameters, and provide a means for drawing statistical

* "inferences concerning the constants which characterize the larger populations

from which the sample is drawn. Of the approaches most suited to mixed models,

the maximum likelihood method is the more conceptually and theoretically

*attractive.* In the past, choice of this method has been often avoided because

.of the relatively heavy computational burden it involves; but interest has been

stimulated in recent years by the development of faster computers, more rapid

computational techniques, and vcrious theoretical advances (see Ref'rtixces 10

* through 16 and the survey paper by Harville, Reference 5). Of the latter, the

*See Searle (Reference 8 and Reference 9, p. 458) for discussions of the

suitability of different approach to mixed model estimation.

8Searle, S. R., "Topics in Variance Component Estimation," Biometrics, Vol. 27,
1971, p. 1.

9 Searle, S. R., Linear Models (New York: John Wiley & Sons, Inc., 1971).

1OHartley, H. 0., and Rao, J. N. K., "Maximum-Likelihood Estimation for the
4( Mixed Analysis of Variance Model," Biometrika, Vol. 54. 1 and 2, 1967, p. 93.

llHemmerle, W. J., and Hartley, H. 0., "Computing Maximum Likelihood Estimates
for the Mixed A. 0. V. Model Using the W Transformation," Technometrics,
Vol. 15. No. 4, 1973, p. 819.

1 2Hemmerle, W. J., and Lorens, J. A., "Improved Algorithm for the W-Transform

in Variance Component Estimation," Technometrics, Vol. 18, No. 2, 1976,
p. 207.
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concept of restricted maximum likelihood (REML) estimators will be of interest

in the present effort. The REML method, which was extended to the general mixed

model by Patterson and Thompson (Reference 17), effectively corrects the ML

estimators of variance components for losses in degrees of freedom due to

estimation of the fixed effects. In this report we will develop formulae useful

for the calculation of both ML and REML estimates. In this effort we will adapt

and follow closely the results obtained by Harville (Reference 5).

3-1 MAXIMUM LIKELIHOOD AND OTHER ESTIMATORS OF THE SIMILITUDE EOUATION

PARAMETERS N.

Statistical estimators of the fixed effects in linear models are all

closely related. Hence, we will use a discussion of the maximum likelihood

estimator of u to motivate a brief discussion of other estimators of the fixed

effects. In this manner some of the advantages of ML or REML estimators over

the ordinary least squares (OLS) estimators, currently used to obtain estimates

of explosive similitude equation parameters, can be highlighted.

13jennrich, R. I., and Sampson, P. F., "Newton-Raphson and Related Algorithms
for Maximum Likelihood Variance Component Estimation," Technometrics, Vol. 18,

No. 1, 1976, p. 11.

14Harville, D. A., "Some Useful Representations for Constrained Mixed-Model
Estimation," Journal of the American Statistical Assoc., Vol. 74, No. 365,

. -- 1979, p. 200.

p -

15Corbeil, R. R., and Searle, S. R., "Restricted Maximum Likelihood (REML)
Estimation of Variance Components in the Mixed Model," Technometrics, Vol. 18,

No. 1, 1976, p. 31.

1 6Corbeil, R. R., and Searle, S. R., "A Comparison of Variance Component
Estimators," Biometrics, Vol. 32, 1976, p. 779.

5 See footnote 5 on page 1-4.

1 7Patterson, H. D., and Thompson, R., "Recovery of Inter-Block Information
When Block Sizes are Unequal," Biometrika, Vol. 58, Fo. 3, 1971, p. 545.
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The likelihood function L is defined as the probability of the observed

sample y under the assumption that its random behavior is governed by some

particular, specified family of distributions. In the present case we have

" assumed that y has a multivariate normal distribution with unknown mean XYand

variance covariance matrix V. Hence,

L (2) - N/ 2  -1/2 exp[-( XU) 'V (Z-Xp_)/21, (3-I)IV

where y denotes the realized sample. L is regarded as a function of the

variance and covariance parameters in V (given above in equations (2-17) through

(2.20)) and the similitude equation parameters U.

Maximum likelihood estimates are those values of the parameters that

maximize L in such a way that L is guaranteed positive not only for the observed

values of y but for all possible realizations of the sample. In our case this

means that the maximization of L is subject to the constraints that 2 > 0

and ? and T be positive definite. In our notation the circumflex (^) will be

- used to denote the maximum likelihood estimator.

Rather than maximizing L directly one usually works with the log-likelihood

2function A = log L, which, upon inserting Ha for V, is found to be

= - ! log(2w) - log a2 - 1 log IHI - 1 (y-x.)'H-i(-xu). (3-2)
2 2 2 2a2

Parameters that maximize X also maximize L.

3

h" - 3-3
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For the present we will use e to denote the unknown variance and

covariance ratios in H. The functional dependence of x may then be summarized

2-
':"as A(1,O,c7). Following Harville (Reference 5), we will obtain the

maximum likelihood estimates j, a and in three steps:

(1) obtain the function (_) by maximizing x with respect to u_ for

2an arbitrary fixed value ofa (U(9) does not involve a

(2) obtain the ML estimates !and a by the constrained
maximization of X*(,a 2 ) -((e2),,a

(3) obtain the ML estimate of u from

The same approach will be taken to obtain REML estimators .,8, and a

except for the use of a restricted log-likelihood function #(a2

As X is continuous and differentiable it can be maximized with respect to

E for fixed values of 0 and a2 by solving the system of equations

0ay- - 0. Using well known rules* for differentiation with respect to

vectors, we obtain the function j(9) as a solution of the "normal equations"

(X'H-lX)= X'H-ly. (3-4)

5 See footnote 5 on page 1-4.I. *We use z'a/az - a and az'Gz/8z - (G + G')z, where a and z are

arbitrary vectors and G is a square matrix.

3-4
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Since X is the N x Cp matrix of regressor values it is assumed to have full

column rank and the matrix X'H-X is consequently nonsingular. The normal

equations then have the unique solution

- (X'H-lX)-lX'H-l. (3-5)

Note here that had we included systematic gage bias terms in the model the

matrix X'H 1X would have been singular. In that event no unique solution of

the full set of similitude equation parameters would have been possible.

The close relationship between least squares estimators of and the

maximum likelihood estimator (assuming normality as expressed by (3-1)) is seen

by observing that the same function that maximizes L for fixed e and a
2

also minimizes the weighted sum of squared residuals given by the quadratic form

(z-X )'V -1 -Xj). It follows from this that equation (3-5) may be used to

represent a number of different statistical estimators of Yobtained by least

squares and other methods. Some of these are listed in Table 1 and depend upon

the nature of H. When H is formed from the ML or REML estimates of e one

obtains, as stated above, the ML or REML estimates of U respectively. The

other estimators listed depend upon H having known or prescribed forms.

At present, similitude equation parameters are estimated by means of the

OLS (ordinary least squares) estimator, which does not involve the data variance

covariance matrix H at all. It can be shown that all of the other estimators

listed in Table 1 are more accurate (in the sense of smaller variances or mean

squarederrors) than the OLS estimator when correlations exist among the data and

H # I.

3-5
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3-2 THE EXTENDED NORMAL EQUATIONS

In practice it is usually computationally more attractive to find

formulations for 7 which do not explicitly require the inversion of the N x N

variance covariance ratio matrix H (or equivalently V) as does equation (3-5).

There are several ways by which this can be achieved that require the inversion

of matrices smaller in size. All of these involve about the same computational

effort. A particularly useful formulation was published by Henderson et al.

(Reference 18) and was investigated extensively by Harville (see References 5,

14, and 19). In addition to giving estimates of the fixed effects u., this

formulation also gives estimates of the means of the random effects a and b

that are conditional upon y. These can be regarded as estimates of the unknown
"-* *

values, a and b, that are actually realized by a and b in the sample. We

will.find important uses for these in the applications below. Furthermore,

Harville (Reference 5) has shown how ML and REML estimates of the variance
: 2

covariance components 6 and a can be obtained from these results with

little additional effort.

In order that we might make direct use of these results, we rewrite the

model equation (2-12) as

18Henderson, C. R., Kempthorne, 0., Searle, S. R., and Von Krasigk, C. N.,
"Estimation of Environmental and Genetic Trends from Records Subject to
Culling," Biometrics, Vol. 15, 1959, p. 192.

5See footnote 5 on page 1-4.

14See footnote 14 on page 3-2.

4 19Harville, D. A., "Extension of the Gauss-Markov Theorem to Include the

Estimation of Random Effects," The Annals of Statistics, Vol. 4, No. 2, 1976,
p. 384.
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Z x, + Zv* e*, (3-6)

and the variance covariance ratio matrix H given in (2-22) as

H - I + ZDZ'. (3-7)

Here, quite obviously, we have defined

v* _(a*',b*')', (3-8)

Z B 1U,WJ, (3-9)

and D [r . (3-10)

The work of Henderson et al. (from Searle, Reference 9, p. 461) is based

* upon the joint likelihood of z and v which can be expressed as

g(Y-,M) - gl(Y-X)g2 (v )

c o exp[- - (y-Xj -Zv)'(y-XJ -Zv)] expf- 1 v'D-lvj, (3-11)

2a.2  2ar2  - _

where co is a constant (function of e and 2). Note that although Y is

indiscriminantly used in this report to denote either the random variable or

sample value of the observation vector depending on the context, our notation

with regard to v* and v is more explicit. In (3-11) v indicates the

unobservable realized value of v . As it is unknown, it may be regarded as a

parameter of the model in the same sense as u. For fixed values of e and
':" 2a , maximization of (3-11) with respect to U and v leads to the system of

equations

9See footnote 9 on page 3-1.
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A(] -,(3-12)

where

A CI L:X D-l+Z'z * (3-13)

Equations (3-12) are referred to as the "extended normal equations" or also

as the "mixed model equations." The solution to (3-12) gives the maximum

likelihood estimates of I and v for fixed, arbitrary values of e and

2
a . It can be shown (e.g., see Serle, Reference 9, pp. 459-462) that the

estimator of v from (3-12) is identical to that given by (3-5) and that the

estimator of v is equivalently the ML estimator of E(v ly). Hence, we can

denote solutions of (3-12) as and V, and as ^ and if the ML estimates of

6 and a 2 have been used.

Solution of (3-12) requires the inversion of the nonsingular coefficient

matrix A of size Cp+ZMk+pJi, which equals the number of fixed and

k i

random levels in the model. This will be substantially smaller than N. A

-1
convenient way of determining A is by successively inverting partitioned

matrices. We define

A-1 [ , (3-14)
IA12 A221

9 See footnote 9 on page 3-1.

I
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Then by substitution of (3-13) and (3-14) into AA I A 1A (see, e.g.,

Searle, Reference 20, p. 210 or Westlake, Reference 21, p. 26) one finds

A = [X X-(X ZB )ZX]-  (3-15)

A 1 A ll(XZ B - ) (3-16)

A =Q (3-17)

where B D + Z Z (3-18)

and Q !B - (X'ZB- ) A12  (3-19)

Since B and Q will be used extensively in the sections below they have been

given special notations.

This method of inversion, thus, requires the inversion of B, the inversion

of D, and the inversion indicated in (3-15). The inversion of B will be

discussed below. The inversion of D is easily obtained since it is composed of

a diagonal matrix and a block diagonal matrix consisting of repeated p x p

blocks. In practice, p will have a value of 2 or 3 so that the inversion of D
* -l

is trivial. The matrix X- X ZB Z X in (3-15) is symmetric and relatively

small in size (Cp x Cp). Hence, it should be possible to obtain All rather

20Searle, S. R., Matrix Algebra fnr the Biological Sciences (New York: John
Wiley & Sons, Inc., 1966).

*. 2 1Westlake, J. R., A Handbook of Numerical Matrix Inversion and Solution of
Linear Equations (Huntington, NY: Robert E. Krieger Publisbing Co., 1975).

3-10
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rapidly using an approach such as the symetric Cholesky method (see Westlake,

Reference 21, p. 13). Furthermore, the storage of All and A22  Q is aided

by the symetry of both matrices.

The inverse of B can also be procured by inverting a partitioned matrix.

Using (3-9) and Q-10) we find

r I'u~r-1 u'Iw (-0
B f . (3-20)

W U W W+T-L'

And since B is symmetric we can write its inverse as

rBil B.12 1
B-1 - (3-21)

L 2 B22

Now, depending upon the relative values of kZlMk and PiZli; (i.e., them -

relative sizes of U U and W W), B can be found most efficiently by one

of the following methods. If ZMk > P Ji, we use

-1 ' -- 1'I -

B 22 -,[WW+T -w u(U U+r ) U W (3-22a)

'-1

B12 -(U u+r )-UWE22 (3-23a)

B 11 = (I-T 12 W u)(uu+r)-. (3-24a)

But if ZMk < p Ji, we use
k

*Q 2lSee footnote 21 on page 3-10.

3-11
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B1 - [UU~r -u'W(W W T-1) W U1 -1 (3-24b)

'B2 U W(W W+T (3-23b)

* -7 (3-22b)
B 22 I-B12U W)(W W+T-)

One sees that the only difficulties involve equations (3-22a) and (3-24b);

the other inverse matrices required are either diagonal (r
- I and (U U+r -)-

-1 ' -1)-1
or block diagonal with p x p blocks (T and (W W+T ) Note also

that r- 1 and T-  are readily obtained from (or may be used to obtain)

D- . The inversion indicated in (3-22a) or (3-24b) will be the most time

consuming step in the calculation of A - . Hence, it will probably be

important to. choose the faster of the two methods indicated above. Since both

(3-22a) and (3-24b) are symmetric, the symmetric Cholesky approach is again a

good choice of method.

3-3 MAXIMUM LIKELIHOOD ESTIMATORS OF THE VARIANCE COMPONENTS

2
We obtain the ML estimates of 8 and a by maximizing the function

*(OO2 which from (3-2) is written

-N log (27) -'N log a2 - I logjH I - 1 (y-Xj)'H- -X1 )• (3-25)
22 2 2a2

Here j is given by (3-5) or obtained from the solution of (3-12). The

maximization of (3-25), however, must be carried out subject to constraints that

ensure the positive definite property of the estimated variance covariance

matrices F, T, and a. Discussion of these constraints is given below in

Section 4-2.
3-12
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Using established rules* for the differentiation of matrices, we can list

the derivatives of A with respect to a2 and an arbitrary component

of e as

3A =1 (ZX7)'H-I(XX) _ N (3-26)
3072 2a4 - - 2a2

1= 1 (X-XZ)'H-I aH H-1 (y-XT) - I tr(H-1 a!). (3-27)
38t 2a2  - et  - 2 3et

Here, (3-27) can be most easily obtained by noting that

A*/aet = (ax/a)'(a,,_/aet) + 3/aet = aA/aet

which is evaluated at _i j . This follows from the requirement that

_ = 0.

-.2
The maximum likelihood estimates _ and a satisfy, subject to the

* 2*
constraints, the "likelihood equations" 3x /a a- 0 and ax /ae t 

= 0

(for all t's), where the derivatives are given by (3-26) and (3-27). Generally,

these equations are nonlinear and must be solved iteratively. Recent numerical

schemes for computing ML estimates of the parameters in general mixed ANOVA

*We make use of aloglGI/as - tr(G-18C/as) and 3G- 1 /Bs -G-1 G/8s G- 1 ,
where the matrix G depends on the scalar s and its trace tr(G) is the sum of
its diagonal elements. Proofs can be obtained from Nering (Reference 22).

22Nering, E. D., Linear Algebra and Matrix Theory (New York: John Wiley &
Sons, 2nd Ed. 1970).
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models have employed the Newton-Raphson (N-R) procedure (see References 11 and

15) or a combination of the N-R procedure and Fisher's method of scoring

(Jenrich and Sampson, Reference 13). The method of scoring is a modification of

the N-R algorithm which uses the matrix of expected values of the second

derivatives in place of the matrix of second derivatives (the Hessian). The N-R

method is the more efficient approach and the method of choice when the

log-likelihood function X is approximately quadratic, but Jennrich and

Sampson suggest that it be backed up by the method of scoring under poor

starting conditions or if the N-R iterates begin to diverge. We discuss these

techniques more fully in Chapter 4.

Employment of these iterative schemes, thus, requires the availability of

second derivatives of X* and the expected values of second derivatives.

Methods for computing these quantities have been developed by several

researchers (References 10, 11, 12, and 14), but the most useful results have

S-i been obtained by Harville (Reference 5) who has shown how they may be extracted

from the results of the previous section. Hence, the development below is based

largely upon Harville's work.

llSee footnote 11 on page 3-1.

15 See footnote 15 on page 3-2.

13 See footnote 13 on page 3-2.

10See footnote 10 on page 3-1.

12 See footnote 12 on page 3-1.

14 See footnote 14 on page 3-2.

5 See footnote 5 on page 1-4.
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The second derivatives of X can be obtained from (3-26) and(3-27) and

listed as follows:

- _1 (Z-X-)'H-l(-x) + N (3-28)aa 02 =2 6 2-- 2c4

2 6 2a

2a4 (y-X-_)'H - 1 r"" I- 2PH) H-1 (y-X_) (3-29)

0s
2  2 (4  L2s

_2 _ = 1 (..X.-)'1- "1 r 2 "  - 2 2..P i - 1 (y-XUw)

aesaet 2a2  Laesa aes 38t]-

41 1 tr ~H .l 2 H LH H-1 _I (-30)

-l -1 - ( 3

where P_ H- H X(X H IX) I H 1. (3-31)

In deriving these expressions use is made of the result 3P/ae fS

-P(H/ae s)P , which can be shown by differentiating (3-31) and performing

some simple algebra. It should also be noted that Py - H- (X-X-_) and that P

is symmetric.

To obtain the expected values of these derivatives one requires the

expression for the mean of a quadratic form (see Searle, Reference 9, p. 55)

E(Z'Gy) - tr(Gv) + u'X'CXu, (3-32)

which is true for a general matrix G. Employing (3-32) and the facts that

9 See footnote 9 on page 3-1.
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2
(PH) = PH, (3-33)

PX = 0, (3-34)

and tr(FG) a tr(GF) (3-34)

for arbitrary matrices F and G, one finds that

E I(LL..... ..2  1 (N-Cp) + N2 (3-36)
qa2aa2 /42a

1 tr p H) (3-.37)
\9aes as/ 2a a2

E -LA 1.tr P [asHe -2 .LPa&"H'
\aesaetj 2ea~ ae5  Ot

tr Hl M - ~ H 1  (3-8
2 7 Lesaet ae get]

The derivatives in equations (3-26) through (3-30) and the expectations

given by (3-36), (3-37), and (3-38) can be simplified by using certain results

that we now indicate (see Harville, Reference 5). Many of these results derive

from the use of the matrix identity

(E+FG)-1 E- -E -F(I+GE 1F) -GE -I  (3-39)

4 5 See footnote 5 on page 1-4.
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* (obtained by representing (I+FGE-I) - by a geometric series, see Bartlett,

Reference 23). Using (3-7) we find

H -(I Z ZD)-Z (3-40)

Z P - (I Z SZD) 1Z S, (3-41)

where S B I-X(X'X)-X . (3-42)

From (3-42) it follows that SX 0. Next we find several expressions for

D v, (3-43)

which is a quantity introduced by Harville to facilitate the development of the

A* derivatives. Using the above relations with the result from (3-12) and

(3-14) that V ( 2x  + 2 2Z )y one can determine that

Z= (I Z'ZD) -Z (7-x ) (3-44)

Z H -1 (-X) (3-45)

(I+Z SZD)- Z Sy (3-46)

2 3Bartlett, M. S., "An Inverse Matrix Adjustment Arising in Discriminant
Analysis," Annals of Mathematical Statistics, Vol. 22, 1951, p. 107.

.
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Finally, from (3-39) and (3-44) we obtain the useful result

H-xl ) ~l~z (3-47)

which is the estimated error vector or vector of residuals, and from (3-5),

(3-31), and (3-34) we find

(-)'H 1 Q-X7 ) Y-py (3-48)

With these results and remembering that H depends on e by way of D, we

can list the sought after derivatives as

11 y N (3-49)
aa2  30 3a

aet 2a2 - et 2 aet

3a2 ac2 q6 Y- 2a

2*
3a x' D- (3-52)-Z'Z D--

aeaet 2 - sae

+ I. tr [I+Z'ZDV4l Z'Z !D2. [I+z'zDV 1l Z'Z .2... (3-53)
2 'e 39tae
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E 821*) 1 (N-Cp) + N (3-54)

12X*
E. tr[I+Z'SZDI 1 Z'SZ 3D- (3-.55)

\ao 2 / 2o 2 ata

E [~.~\ -r{I+Z'SZDV4lZ'SZ .2.. [I.Z'SZDIPIZ'SZ 3D

+I tr [I+Z'ZDI-Iz'z D (I+Z'ZDI Z'Z 2D . (3-56)2 ass

It remains to express these derivatives in terms of quantities derived in the

previous section. Those derivatives that appear complicated depend upon

matrices of the forms. [I+Z'SZDI-IZ'SZ 2D and [I+Z'ZD]-Iz'Z D_. The3et -laet

latter of these .is readily seen to depend on the matrix B- , a calcula-

tional scheme for which was indicated in equations (3-22) through• (3-24). Hence,

from (3-18) we can write

I [I+Z'ZD]-lz'z 2D_-. D-IB-Iz' Z 2D_- (3-57)

aet aet

The former of these matrices has been shown by Harville (Reference 5, p. 326) to

depend upon the matrix Q given by equation (3-19). It can be shown by expansion

of (3-19) and the use of (3-39) and (3-42) that

[I+zSZDI 1= D-Q, (3-58)

5 See footnote 5 on page 1-4.
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and, therefore, that

[I+Z'SZD]Iz'sz 3D D 10Z'SZ 3D (3-59)
et B

Now, by means of the identities

BZ'Z -[B D -II] (3-60)

and QZ'SZ E--(QD -1] , (3-61)

obtained from I [D +z SZI Q-  and I [D- +z ZI B, it is

possible to put (3-57) and (3-59) into very similar forms. We find

[I+Z'ZD]-Z'Z ADD - _[D-B-1-I]D-1 3D (3-62)Be t Bet

and ti+Z'SZD]-IZ 'SZ D = -D-IQI)D- 1 
.D . (363)

aet aet

As a consequence of this similarity of form we now need only continue the

development of (3-62), say, and apply the results to (3-63) by substituting Q

for B 1

Equation (3-62) can be simplified by examining the structural details of

its matrices and partitioning them according to both gage classes and explosive

classes. For D u Block Diag (r,T) we define

rk 5--Diag (yk,...,yk y= I (3-64)
k k Ik

k
Mk
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and Ti =Block Diag (0i,...,.i). (3-65)
! Ji

Hence, from (2-17) and (2-19) the stated partitioning of D may be expressed by

r = Block Diag (rl,r 2 ,...,r,) (3-66)

and T z Block Diag (TiT 2 , ....,Tc) (3-67)

In a like manner we now partition B-1. From (3-20) and 3-21) we have
r.['u+r- 1  u'w 1]-l 1 -9n 12]

B-1 T221 (3-68)
w U WW+T- LB21 B2 2

where it is convenient to write B21 for B12. Then the above partitioning

may be indicated by writing

I E 1(2, 1) Ti1(2,2) Il. 11 (2, K) (3-69)
............................... I

B2 2 -rX 2 2 (21) X22(2,2) ... T22 (1,c) (3-70)
B22  22 (2,:) 22 (2,2) ".22(2,C) , (3-71)

..I ............. ............

L12(Kl) B12( ,2) ".12 (K,C)1

-. with a similar structure for B2Ntht rmtesymtyo
B-I we have Bll(k 1,k2 ) 1 (Bll(k2 ,k1 )) B22(i1,i2 ) 

f (122(i2 ,iI)) and
wit a simi stutr o 1'B1'Nt htfo h ymtyo

B1 2 (k,i) ( 2 1(ik))

3-21
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At this point it is useful to distinguish between the different parameters

in e. These were indicated previously in equations (2-18) and (2-20) as the

gage class calibration error variance ratios yk k = 1,...,K and the

r}. explosive class performance variance covariance ratios in e.,i = l,...,C. Let

us now indicate the tth unknown element of i (and also T.) as -i,..

Here, the actual assignment plan is arbitrary. There will be p! of these

parameters for each explosive class.

Choosing S t the derivative 3D/aet aD/3Ti. in

(3-62) is given by

3D [__ it , (3-72)a it 0 T/ai
T

where 3T Block Diag (0,...,0, 9T ,0,...,0) . (3-73)
3'tit a'it

Consequently,

3T.
AD-1 D. - Block Diag (0,...,O,T-1  I ,0,...,0) • (3-74)
ant i aTit

Also, the matrix [D-IB-1 - I] in (3-62) consists of the rows of the

partitioned B matrix premultiplied in succession by the diagonal blocks of

D-1 with identity matrices of the forms IMk and Iji subtracted along the

diagonal. Postmultiplication of this by (3-74), then, gives a matrix consisting

of a single column of submatrices as shown in (3-75). And by a similar argument

one obtains (3-76). In these the dashed lines indicate the partitions between

3-22
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explosive classes and gage classes. As stated above, these equations apply to

equation (3-63) by replacing B -I or B matrices by similar Q terms.

These results can now be used to simplify the derivatives in (3-49) through

(3-56). In doing so we use the definition

V -(3-77)

where corresponds to the gage class elements and " to the explosive class

elements. Furthermore, we choose -and " to be partitioned in the manner

discussed above so that _ _= , , .... and S q,. .., , where

and n~ correspond to the kth gage class and the ith explosive class

respectively. The derivatives then become

i*
ax. 1 y e - N (3-78)

3a2  2a4  - 2a2

* =. +1 1 tr{Yl(kk)} - Mk (3-79)
ayk 7,2  2 21"

ax_ - I + tr T Ii 1T-1 )Ti (3-80)
ait 2 2 2 3Tit 7i 2 2J i 3'it

S2 - g ___ (3-81)
ao2 ac2  a6  2a 4

:22

2 2 '(3-82)
a7k a 2

2
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a 2 A 1 LT (3-83)

3-rt aCF2 2 -i 8Tjt 1

2*
- ri (kk) -Il ]

3 'yk3 'yk C2 'ak -k n ii kj

+ -.L tr L B(k,k) 1 (3-84)

32 cQ____t

ayk ayj a 2 y y -k 11
k I

+ .1. tr {(tk) (kZ)} k - 9 (3-85)
2yjy2

2__ Q (k,i) T-.1 IT j
3 -yk9Tit a2 Yk 12 i3i

+ tr T71 X(i,k) I(k,i) T-1 ___ (3-86)

axj 1 21 1

2* ITaT. Ii
=~ -T- i T 1 Q (ii I 3Tt

+tr ~[1i 2 (~)-IiJT.1lT
22 i aTis

IT
I m- iT1 i- (3-87)
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32* aT 9T

a3 rhs a-it a2 -h aThs h 22 i3r 1

+ .1 tr T-1 B(i,h) T-1 'h T-1B (h,i) T-1 I....A h i (3-88)
2 i 22 h 3'r1hs h 22 i aTft~

E I(a2X* \ 1 (N-Cp) +_N (3-89)
V302 302 I a24

I (a::- - 1a [tr {Q (k,k)} -m (3-90)

E 2* 1 tr I[- m-iij1 3T1(-)

E tr J[.L Ql(k,k) -~ ]23Tyk3yk Y

+ 1 r ([~1 k~k) - 1?I 2  (3-92)

\3Tc L yi Iyj (11Mk

E I......L.. tr Q (t,k) Q (kl) I kt(-3

+ ~ )- L tr ~T (i,k) Q(k,) k t-3

+ 1 ~. tr T-1 T(i,k) 11(k,i) T-1 aTL. (3-94)

2y 1 1
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E (3 \ = - tr (T- I Q (i,i) - Ij.) T- I

\aisaTit/ ~ ~ * "22' i rS

(TI 02 (ii) - ') T-1 a
i 22 B T i T

+ I tr (Tl -(i,i) - - T )
2' i 22 22 i T it

IT
i 22 i i3 iti

E 2X* sa it/ - tr T Q (ih) T 1 aT
-. 22 h ahs

T-1 ihi) T-1 I T 1
h 22 i aTit

+! 1 tr T-1 "(i,'h) T-1 ?T h2 i 22- h aThs

i,:;-;T - 1 B1 (i)T I T i

(h,i) T, h * i (3-96)
h 22 i ait

The final simplification of the derivatives is achieved by exploiting the

repetition of 0. within T.. As indicated in (2-20) and (3-65) 0. is a-. 1 1 1

p x p matrix which is entered along the diagonal of T. for each of the Ji

shots of the explosive class. To take advantage of this structure, then, we

further partition V and the matrices B and 0 according to individual

shots. We will denote this by subscripting the explosive class index or indices

0 of the particular submatrices. For example, B1 2(k,i u ) will refer to the p

columns of B 12(k,i) that pertain to the uth shot, and B 2(h u,i v) will

denote the p x p submatrix of B (h,i) that pertains to the uth shot of the
22

* hth explosive class and the vth shot of the ith explosive class.

3-28
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Employing this notation we can express the derivatives in forms highly

suited for computations as follows.

_N 1 i - N (3-97)
a 2  2a4  - 2a2

+ = 1 1 +  tr (k k)- Mk (3-98)
ayk 2a2  k 2yj 1 Yk

80..

+1 u  tr 9 22(i ) - I (399)

2*a.= - _ W + N (3-109)
( 2 a j2  a6  - 2a4

ar 2 = (3-101)

2* .-

= -- (3-102)
aTitaa 2  2 " u 9tit " u

8Yk@yk 2a2 Yk iYk J

+ 1 .tr [2B(k,k) -IM]2 (3-103)
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aykayt 2a2y y
k Z

2*a
a X = 1~ ~Q (k,i ) -1

a~k ~~22y uk 12 U aTit l

41 F tr0- i ,k) -9 (kji .. (3-105)
2yj u i 21 u' 12 u I a~rjt

ax r~ -1Q( -1le

2-iS3 * aio 1 22 u' ,i at
- at~8 tj 2a2 u v u P~L 2u ~t 1

+tr B i ,i I
2 u LOi 22 u u p1ai

L 22 u u PIi a~ t

a xa@h -1 Q (h Wi)e'-1
a'ha u Th2  Ths h 22 u' v 1 3i

+.I tr e-l g(i h )e- 1 'o
2 u i 22 u u h aihs

6 (h i ) -1 ~Lh i (3-107)
i. 22 u u i a~i

E (ax) - L (N-Cp) + N (3-108)

1 II32X* tr ~0 11Ck,k) -Mk] (3-109)
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E ~ -2X tr )[- i i - 310

E (~ tr { Q (kk) Mkl}

+ - tr f (L- k i (k, t) k 9 (3-12
'y Lk11 11]

E (a2X* tr ltk Q(,)lQ(~

+ak~t -112)12 i

E 2*tr41Q(i k) Q (k,-113)
21 12 u i aTt

E _______ = - ~ r ~[ 1 u I

a ~ e~ QTii -rt i] *1 ~

2~: 2u )[e 22I u'i (3-114)~
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E_ = _ tr 1 Q2 2 (i h

I Deh @1 10i,
. .- I DON O71Q22(hupi)- -

_t h 2 (hit , h i (3-115)

h Ths h 2 3Tit)

In these expressions the sums on u and v range from 1 to the number of shots in

the explosive class (Ji for the ith class).

3-4 RESTRICTED MAXIMUM LIKELIHOOD ESTIMATORS OF THE VARIANCE COMPONENTS

It is well known that maximum likelihood estimators of variance components,

^2 A -2 2symbolized above by a and 8, are biased, i.e., E(a ) " a and E(e) e.

Hence, the distributions of the estimators are not centered, in the sense of the

means, about the true values of the quantities being estimated. For small data

samples the bias can lead to substantial errors in estimation. Corbeil and

Searle (Reference 15), for example, show for a sample of size 16 that ML

estimators can underpredict estimators that are known to be unbiased by a factor

of two. The restricted maximum likelihood (REML) method is an attempt to

overcome this problem of bias. It has been demonstrated to produce unbiased

estimates when applied to a number of different linear models (see Harville,

Reference 5), and the property of unbiasedness is believed by some to be a

S 15 See footnote 15 on page 3-2.

5 See footnote 5 on page 1-4.
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general property of the method. Corbeil and Searle (Reference 16), however,

have shown that this may come at the expense of estimator efficiency. Because

- of the unbiasedness property of the REML variance components estimators and

* their close association with the ML estimators, we include them in this report.

* The REML estimators of a2 and e are based upon the likelihood

function associated with certain linearly independent combinations of the data

which possess zero expectations. Such sums of the observations, of which there

is a total of N-Cp in the present case, are known as the error contrasts. it is

argued (Patterson and Thompson, Reference 17) that they may be thought of as

containing all of the variance component information and should, therefore, form

- the basis of estimation.

If we let Ry denote a particular set of the error contrasts, it has been

- indicated by Harville (Reference 5) that to within an additive constant the

*: log-likelihood function for Ry may be written as

(N-Cp) log a2 - I logjHj - I loglX'H-lX (zxv)'H1 CyxjE) (3-116)
2 2 2 2a2

16See footnote 16 on page 3-2.

17 See footnote 17 on page 3-2.

*" *Harville cites his 1974 paper (Reference 24) for this derivation, but it is
derived in a Bayesian context. However, the author has been able to verify
this expression in a classical setting using rather straightforward variable
transformation theory along with several matrix relations published by Harville
in his 1974 paper.

2 4 Harville, D. A., "Bayesian Inference for Variance Components Using Only
Error Contrasts," Biometrika, Vol. 61, 1974, p. 38.

1 5See footnote 5 on page 1-4.
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The REML estimates of 0 and a are those values that maximize (3-116). We

now show how the derivatives required for the maximization of x# by the N-R

and Fisher scoring optimization schemes may be obtained from the derivatives of

In the same manner that we obtained the x derivatives given by (3-26)

-. through (3-30), and (3-36) through (3-38) we can write

1 1 (y-xu)'H-l(-x) 1 (N-cp) (3-117)

3a2 2a4 2a2

= 1 (xIj)'H-1 3H H-l(y-Xg) _ tr (P 2-) (3-118)*

aet  2a2  -et 2 aet

.2x I (y_X)'i-l(-XW) + _ (N-Cp) (3-119). aa2 O2 = C6 -- 2a4

a 2 - 1 (y-Xir)'H - I  aH (I-2PH H-l(z-Xu) (3-120)

a6e8 02  204  --

r2 1

a A 1 (yXX)H- H 2 3HL P _;_ LH F(-7XT:)308306s~ t 2 2 a aset es et

a2~Ir H~ 1H p 311 (-121)

aesaet ee t]~1

E (ML~I--~(-Cp) +~ (N-Ct,) - (N-Cp) (3-122)
S2. a2a2/ a4  2a4  2 4

*Note that if x# = g#(o2, e, "E(e)) and g - g#(o 2, 0, u), that is a

solution to ag/au - 0. Hence,-XS/t = ag/a t evaluated at - "j.
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I' r 2 1
z \asaet/ 2"ta"t

r [78211 2H I1
-. _- - - tr P !H P !H (3-124)

2 eat ass aet] 2 a*s aet

It is observed that equations (3-117) through (3-124) differ only slightly

from equations (3-26) through (3-30) and (3-36) through (3-38). The

expectations of derivatives are shown above both in a way that emphasizes this

similarity and also in their algebraically simplified forms. Close inspection

of these results reveals that we can immediately write down the REML equivalents

" to equations (3-97) through (3-115) by simply using the submatrices of Q where

-1those of B appear and by employing (N-Cp) in certain places where only N

appears. By proceeding in this manner and simplifying the results we obtain the

computational forms of the derivatives asi#
- ax - 1 i 1 (N-Cp) (3-125)

*o2  2G4  - 2a2

+ a 1 .trQ (k,k) -Mk (3-126)

*ari 2ay2 uk2 1  111u 2Yk

+ r 0O(i i) I ,7 "9i (3-127)
2 , 22u u PJ I
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y 'r + ...L.(N-Cp) (3-128)

ax =1-'-(3-129)

a~a2  2 Ul T~l

E ..L r r ~~ - iK1 (3-131)

ac L 1Q (k,)
aykayk 2a2y Yk k k 11 k k

-L1 tr [- (k,k) (kt' (3-132)
2~yj 11;1

x# I Q~- (k,)e-

- - kk

- - ~2 # 1a. - ~ ,

ax ~ r ae.
34jSTj 2j u'i 21 Lu' 22 u v a~i t~

1
2~~ # r~o 1

a A (L [ - II

aia t 2a ) - -j a~i ao (3-134)a~t ai

1i Tia L1 22 u u PI . a
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2 #, . e -

3 ths 3'Tt 2a u v 4u 3 h. h 22 U V

2 u 11 22 u u h aThs

-1 ae 3-35

e- Q (h , . -
315

h 22 u u

E ;2 )X#.. (N-Cp) (3-136)

2,# 1I..t Qkk~ M (3-137)(2yk3a2  2ca2yk Y 1*

*E 32X# 30Qi~i (3-138)
\atrc2  2 2 22 iu iu iT Str

E 2L X# - _L tr [-Q1(k,k) -M2 (3-139)
3 Tk 5Yk 2yj LYk<IlM]

\a~kYL / 2y~yj 1

E 32X# 1 -: tr 71Q ( k)Q (ki ) i (3-141)

Z2Tk X#/ 2

E (t~tt - r Q -i 1

8 * Qe -22 ae - 1~i (3-142)
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E (a~ \ -1~ tr Q(i h) - Q(hj)*1 I

kasa'Tit) 222 uu eh 83ms h 22 U U I~j

h i (3-1.43)

As before, the sums on u and v range from 1 to the number of shots in the

explosive class.
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CHAPTER 4

NUMERICAL METHODS

Following Jennrich and Sampson (Reference 13) we propose the use of the

combined Newton-Raphson and Fisher scoring procedures to obtain the ML or REML

estimates of the variance compo-ents. Satisfaction of the constraints on the

iterated variance covariance matrices will be handled by the interior penalty'

function technique. While the expressions below may be used interchangeably to

obtain either ML or REML estimates, they will, for the sake of brevity, be given

in most cases in terms of the ML notation only.

4-i UNCONSTRAINED OPTIMIZATION

Concise descriptions of the Newton-Raphson and Fisher scoring algorithms

may be stated in terms of the parameter vector

=- 2, Y1, • .. ,Yk,'rll, • 1r .., "j , . TC , • I •,TCT) (4-1)
(41

where r 5 p!. The N-R method is an iterative procedure that corrects an

initial guess w , or the value of the iterate after i steps, w.' by an

amount

- ~ ,(4-2)

1 3See footnote 13 on page 3-2.
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where W w-il -wi, VX* is the gradient vector

* ff ... , .x , . . ,. . , (4-3)

\2a2 ay 3-YK 3TIl a lJ 3TC1 9 CJ

and X is the Hessian matrix defined by equation (4-4) shown on the opposite page.

Note that in (4-2) VX* and Jeare evaluated at w.. The method of scoring is

identical to the N-R algorithm except that EGO is used in place of ,e.

Both the N-R procedure and the method of scoring approximate the X

function at each step of the iteration by a quadratic function. In the case of

the N-R method this is

MW + (a A_ + I (aw Je Aw (4-5)

which is recognized as the Taylor expansion of X* about the point wi up to

the second order term. Upon taking the gradient of X*(i+l) we get*-

V~t*(_ )L 4- &w.~~ (4-6)
i+l 1

which must be zero at a maximum. Hence, equating (h-6) to zero and solving for

Aw. gives (4-2). In order for (4-5) to approximate X near a maximum,

as opposed to a minimum or saddle point, the Hessian X must be negative1.

definite, i.e., zjez < 0 for any vector z 0 (in particular nw.), since

any excursion away from the maximum must result in a decrease in x

*Use footnote on page 3-4 and symmetry of Je.
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The fact that away from the maximum Je need not be negative definite can

cause the N-R interate to diverge from the maximum if the starting conditions

are poor. It is for this reason that Jennrich and Sampson (Reference 13) employ

the method of scoring in the initial step of the iteration and whenever the

process appears to diverge. Since E( is nonpositive definite (<O) and in

our case will most likely be negative definite (<0), the scoring step Aw. =

-[EGO]-I1 will at least locally always be in the direction of

increasing X . To show this we examine the component of Aw. in the

direction of Vi. Using Figure 6, this is

J w oj COS (_AW VX _AX -(VX (EGO -1 VX*/ V 0. (4-7)
Si

Hence, cos * > 0 and - i has a component in the direction of increasing x

X*,MAXIMUM / / / I
• t' / / / /

\- I /7

.- _ / /

\ - i+1

__ Wi

Figure 6. X* contours and parameter vectors associated with the Newton-Raphson

and method of scoring optimization schemes

1 3See footnote 13 on page 3-2.
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To prevent the step __i from overshooting the local region of.*
increasing X the step is often written in the modified form

.- = -0i[E'#I (4-8)

where 0 < p < I. The value of p. can be chosen in various ways (e.g.

see Fox, Reference 25) but Jennrich and Sampson (Reference 13) simply halve the

preceeding step until an increased value of X is obtained.

4-2 CONSTRAINED OPTIMIZATION

It is expected that for most sets of data the unconstrained N-R and Fisher

scoring algorithms will produce estimates of w that lie in the feasible region

of w space -- that is, the region corresponding to positive definite variance

covariance matrices. When such is not the case, however, we need a method by

which the maximum of X within or at the boundary of the feasible region can

be found. A popular and general method for effecting such a solution is

referred to as the interior penalty function technique (see e.g. Reference 25

and 26). We will use a version of this method proposed by Carroll (Reference

27) that maximizes the function A (w) instead of x , where A is

defined as

25Fox, R. L., Optimization Methods for Engineering Design (Reading, YA:
Addison-Wesley Publishing Co., 1973).

13 See footnote 13 on page 3-2.

2 6Aoki, M., Introduction to Optimization Techniques (New York: The Macmillan

Co., 1971).

d 2 7Carroll, C. W., "The Created Response Surface Technique for Optimizing

Nonlinear, Restrained Systems," Operations Research, Vol. 9, 169.
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*() = *() - (W) (4-9)

and ;(W) I/rt(w) . (4-10)

Here = K} is a set of positive constants and we assume that the set of

constraint relationships can be expressed as r L()>01. For a given

starting point !o within the feasible region the iteration process is

conducted in the same manner as in the unconstrained problem. However, the

iterate is now deflected away from the constraint boundaries by the penalty term

.(w). When the process has converged to the maximum of A (within the

feasible region) the process is restarted from the point of convergence using a

smaller set of r values in the objective function A This sequence of

operations is repeated until there is no appreciable change in the final A

values. It should be noted that only those constraints in danger of being

violated need be included in (4-10). That is, we might set a number of the K

coefficients to zero throughout the course of the computations.

In the present problem we require that the variance covariance matrices r

2
and T be positive definite and a >0. As r, given by (2-17), is diagonal

it will be positive definite if and only if its elements are positive. And T,

given by (2-19), will be positive definite if and only if the diagonal blocks

l., i= 1,2,...,C are positive definite. It is convenient to specify the

constraints on the {ei in terms of their discriminants. The mth

discriminant of o, denoted as 6im, is defined as the determinant of the

upper left hand submatrix of size m. (This could also be called the upper left

4-6
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hand principal minor of order m.) It can be shown (see Hildebrand, Reference

28, p. 51) that the p x p matrix 0. is positive definite if and only if

6 im > 0, m - 1, 2,...,p. Consequently, we may now specify the required

constraints in a manner that is consistent with the r notation used in (4-10).

These are

22 > O, (4-11)

. k  0 0, k = 1,2,...,K (4-12)

im > 0; i i,2,...,C, m - 1,2,...,p (4-13)

In order to use the unconstrained techniques developed earlier in this

section for the purpose of maximizing A we need first and second partial

derivatives of c(w). These are then subtracted from the corresponding
* #A*

derivatives of X (or ) to form the derivatives of A (or A#).

Making a self-explanatory change in the K notation and defining citm as the

cofactor of the element Tit in the matrix with determinant aim' we can

write the derivatives as

.4

- K(0 2 )/0 4  (4-14)
a2

ac K=- Y )/ 2  (4-15)
ayk k k

2 8 Hildebrand, F. B., Methods of Applied Mathematics (Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1952).
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P
-=- " ( ) c /2 (4-16)*aTit M21 im itm im

= 2(4-17)

aa2

_-. 2
=2 K(y )/y (4-18)

a mykYk k k

a2 (S ) c 2  /63 (4-19)
aTitTit m= im itm im

2 r cP
a = L I(s) [2c c /53 - aCitm /62  (4-20)a" Tis 3Tit ml im itm ism im aTi--- im

2 2 2 2 2
= ..L..=...L.. . =2L...=0(-21)

aykaa 2  aTitaa 2  9YkaYt 3yk9Tit ahs aTit

In (4-21) k Z £ and h # i. For a value of p equal to 2 or 3 the value of

acitm/aTis in (4-20) is 0 or +1 respectively with the signs of the

- latter depending on the detailed descriptions of the discriminant functions. We

define a cofactor cit as zero if the 6i discriminant function does not

* contain Tit.

*Derivatives of a determinant IAI may be obtained from its expansion in
. terms of cofactorsIA ai  cij, where cij is the cofactor ofr - temsof ofctos I- i 'J j
. aij in A. Hence, i Al/aaij cij (see Searle, Reference 20, p. 86).

20 See footnote 20 on page 3-10.
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4-3 OTHER COMPUTATIONAL CONSIDERATIONS

Monitoring the progress of the iteration process in either the

unconstrained or constrained settings will require the evaluation of X or

X For this purpose we write them as

V= - N log (2wa2 ) - 1 log (IHj) - 1 '(yX--Z7) (4-22)
2 2 2a2 _ --

= (N-Cp) log a2 I i log (I HI .Ix'-xl) - .L y'(y-X5r-ZV), (4-23)
2 2T2 2

which, with the exception of the determinants, involve quantities that are

easily computed from previous results.

We can obtain the determinants f N and IX'- 1 XI in forms more suitable

for computations by using the identities (see Searle, Reference 20, p. 96)

G11 1 2] -1(4-24)
1 = jGll1 IG22 -G21 Gll G12 4-)

[G2 1  G22

-i11 G121 -1
- IG221 " G -1 G12 G22 G2 1 1 (4-25)

LG21 G22J

which respectively assume the nonsingularity of G and 022. By applying

these identities to expand the determinant

20 See footnote 20 on page 3-10.

I
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(D-1 + z'Z)

z I

we find, as shown by Hemmerle and Hartley (Reference 11), that

IHj ---ID-l+Z'Z! - 1DI =- BI - jD . (4-26)

Now, using the partitioned form of B given in (3-20) and the above

identities we can write BI in two forms

U'u+r-1  u w
IBI = iu'u+r-l1.Iw'w+T-I-w'u(u'u+r-l)-iu'wI (4-27)%. W U W'W+T-

and

u'u+r-1  u'w
.B! - I I w - -IW'W+T- 11 .lu'u+r- -u'w (W'W+T-)-lw'u I . (4-28)

It is observed that the right most determinants in these equations involve

matrices that are inverted to give B22 and BII in (3-22a) and (3-2b).

Since the determinant of a matrix can in many cases be obtained as a by-product

of the inversion algorithm, e.g., a Cholesky decomposition (Reference 11), we

can easily compute JBI by either (4-27) or (4-28), depending upon which set of

equations (3-22a) through (3-24a) or (3-22b) through (3-24b) are used to invert

B. The other determinants needed to compute H are also easily obtained;

ju u+r is the product of diagonal elements and IDi and IW'W+T- are

given by the products of the determinants of the diagonal blocks. To obtain

Ix H- xI we note that A given by (3-15) may be expressed as
11

llSee footnote 11 on page 3-1.
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1-1

I1 x ' [ I - ZD ( I + Z ' z D ) - l z ' ]X I- ' [X'H-X] l  (4-29)

from (3-7), (3-18), and (3-39). Hence, IX H XI may be formed as a

by-product of the inversion process by which we obtain A11 .

As a final note concerning the numerical methods it is observed that many

of the matrix operations required to-invert matrices A and B and to calculate

the derivatives can be done once and reused in the subsequent iterations. For

example the products X'X, X'U, X'W, U'U, U'W, W'W, y X, y U, y W, and y y all

involve known fixed constants. Furthermore, since the various equations used in

the calculations depend on the larger (N rows) matrices X, U, W, and y through

these products only, storage can be economized by computing the product matrices

in advance and not saving X, U, W, and y. It is also pointed out that in

computing the trace of a matrix product, an operation that frequently appears in

the expressions for the derivatives, it is only necessary to compute the

diagonal elements of the product. For this reason and because the matrices

appearing in these traces are generally of modest sizes, the computation of the

derivatives should be rapid in comparison with the inversion times for matrices

A and B.

4-11
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CHAPTER 5

APPLICATIONS OF THE MODEL

In this section we indicate som'e of the applications for which the model

may be used. No attempt is made to be exhaustive in this effort; rather, we

will attempt to show by a few useful examples that the applications are wide

ranging.

5-1 DIRECT RESULTS

Results obtained directly from the model computations are the ML or REML

estimates of the following quantities (again we show just the ML estimates):

2the general experimental error variance a ; the gage calibration error

variances for different gage classes given by

,: Var(-_ 2 k 1,2,..., K; (5-1),^2 k (5-1)
k km k

the variances and covariances of the performance variations of different

explosive classes given by

Var ($ ) , i 1,2,..., C ;(5-2)

i ij i

the similitude equation coefficients for different explosive classes given by

- + z'l ; (5-3)

11 12
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the sample values of the gage class calibration errors a and explosive

*performance variations b given by

[<i - [ *' X' + * z']Z ; (5-4)
12 22

and the error vector or vector of residuals given by

_ - x^- U9 - W9 (5-5)

In these expressions and below the submatrices of A- I are computed using the

ML or REML estimates of the variance covariance matrices.

It is common in ordinary regression models to examine the model residuals

" for systematic trends that would indicate inconsistencies between the data and

the model. Various techniques in this regard are discussed by Draper and Smith

(Reference 29) and by Seber (Reference 7). In the present mixed model such

examinations can be extended to include the estimates of all the random

effects. Tests of the distributional assumptions can be made directly on the

* . values of a, , and e using, for example, the methods summarized in Mehrotra and

" Michalek (Reference 30). The identification of faulty gages or of anomalously

performing explosive charges should be immediately evident upon examination of

and b.

29Draper, N. R., and Smith, H., Applied Regression Analysis (New York: John
Wiley & Sons, 1966).

7See footnote 7 on page 2-6.

30Mehrotra, K. G., and Michalek, J. E., "Tests for Univariate and Multivariate
Normality," RADC-TR-76-140, May 1976.

5-2
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5-2 VARIANCE COVARIANCE MATRIX FOR j, a, AND @

From (3-12) i, and v (a',b')' may be written as
_ mymb wrtte a

Li [R 2

where

Il [KIAX I9i J (5-7)
LR 2  Zi 1, -+ Z

12 22

Here the components of A are evaluated from the ML or REML estimates of the

2 -l I
variance covariance component ratios e and a2 . Since A and [RI,R 2]

are complicated functions of y there is no known exact expression for the

variance covariance matrix of ), a, and S. Nevertheless, it is a common

practice in this situation (e.g., see References 14, p. 205 and 15, p. 35) to

obtain an approximate variance covariance matrix by treating A- I as though it

were calculated from the true fixed values of e. Equivalently, this presumes

knowledge of. the true value of H. Equation (5-6) then becomes a linear function

of y and the variance covariance matrix is easily written down as (see footnote

on page 2-6).

Var I (I+ZDZ') [R' R'] a2R2  1 R2

R1 (I ZDZ')R I  R1 (I+ZDZ')R 2

,~a2. (5-8)r R2(I+ZDZ )RI R2 (I+ZDZ')R'2

1. 
14 See footnote 14 on page 3-2.

15 See footnote 15 on page 3-2.
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Following Henderson (Reference 31, Appendix A) this can be simplified by use of

the relation

C[R2 1l1 112 -- -- 'X D-1 D -

t 12 22] I['

= [ - (5-9)
0! 1 ro A22 D-1

Hence, RIX - I

RlZ - 12  (5-10)

R2X = 0

R2 Z - I - A22 D- 1

By substituting (5-7) and (5-10) into (5-8) one -readily obtains

Var [ a
2  (5-11)Var" D-A22]

An estimate of (5-1I) can be obtained by substituting the ML or REML estimates

- -2 -2of D, All, A1 2, and a
2 . The result Var(u) 2 A1 1 a could have also been

derived as done by Corbeil and Searle (Reference 15) from (3-5) and (4-29).

In Reference 14 (p. 205) Harville has pointed out that (5-11), because H is

assumed to be known, will tend to underpredict the dispersions of 7i and

3 1Henderson, C. R., "Best Liner Unbiased Estimation and Prediction Under a
Selection Model," Biometrics, Vol. 31, p. 423.

* 15See footnote 15 on page 3-2.

14 See footnote 14 on page 3-2.
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(a ,b ) but suggests also that "the downward bias may, at least in some

instances, be so small as to be unimportant." Ouantification of the accuracy of

* this result (as well as of other results derived below in a similar manner) is

possible by means of Monte Carlo simulation studies. Such studies will be

pursued upon completion of the model coding and published in a subsequent report.

5-3 LARGE SAMPLE VARIANCE COVARIANCE MATRICES FOR ESTIMATORS OF COMPONENTS OF

VARIANCE AND COMPONENTS OF VARIANCE RATIOS

A well known result from the theory of maximum likelihood (e.g., see

Kendall and Stuart, Reference 32.) is that the asymptotic (N-*-) variance

covariance matrix of the vector of parameter estimates is given by the inverse

of the information matrix 3, which is the'negative of the matrix of expected

values of the second derivatives of the log-likelihood. In our case with (4-1)

as the vector of parameters we have

5 -EGO, (5-12)

where X is given by (4-4). Hence, denoting the vector of ML estimates as

(^2 AK(o'aYl', ,YKT l, ,.,TCI,..,TC ) (5-13)

we can write

Var(.) > J-1 , (5-14)

3 2Kendall, M. G., and Stuart, A., The Advanced Theory of Statistics (London:
Charles Griffin & Co., Ltd., 1973), Vol. 2.
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where equality is achieved in the limit as N---. This lower bound is, however,

often used as an approximation for Var(A). An estimate of Var(^) may thus

be obtained from the final iterated value of EGO.

Often it may be of more interest to know the variance covariance matrix of

the estimators of the components of variance rather than of the components of

variance ratios. Suppose this is denoted as

( - a ,...,;2 (5

I K 11 1i Cl Cr

where as in (5-1) y2 a 2, k = 1...,K and - . = 1,...,C, j =
a k ij i

I...,-,. Corbeil and Searle (Reference 15) have shown that the relationship

between Var(4p) and Var(s) is given by

Var( ) n Var(^) n , (5-16)

where a is the Jacobian matrix for the transformation from _P to w. This

is easily shown to be

1 0C2] 
(5-17)

'0 a2
where (- is defined by _ - (a ,-) Hence, the large sample value of

Var(0P) can be obtained by substituting - for VarCQ) in (5-16).
0

1 5 See footnote 15 on page 3-2.
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5-4 PREDICTION OF THE PERFORMANCE IN A PAST TEST

In our discussion of the basic model for a single observation, Section 2-1,

we let fij(x) denote the value of the principal quantity of interest in the

shot of the ith explosive class at some reduced travel distance x from the

charge. We assume f..(x) is any 1 to I transformation, such as the logarithm,

of a possibly reduced performcance index or effectiveness factor that has

physical meaning and significance. In the light of past discussions we will now

use a somewhat more explicit notation and let f.. (x) denote the realization of

the random variable f. .(x) that in accord with (2-7) may be expressed as
fti

fj(x) = Oi + § * ij• (5-18)

*Here 0 denotes some vector function of the arbitrary distance x analogous to

(Pijkm described earlier. Following suit, we write the unknown realization

of f. .(x), that is the sought after quantity, as
1J

f ij(x ' ) = + 0 ,ij (5-19)

and the ML estimator of f.(x) as
I-i

i(x) 0 . + * -. (5-20)

ere- 3i and 03.. are the subvectors of the vectors _ and b that correspond

_'i. jth shot of the ith explosive class.

5-7
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Confidence limits for f .(x) may be obtained under the assumption of a

known variance covariance ratios matrix H. The limits so obtained may be

reasonably accurate when sample sizes aze large, but when samples are only

modestly sized the confidence interval will correspond to a confidence

coefficient that is smaller than the one specified. Nevertheless, it may be

possible to attach a more realistic confidence coefficient to the interval by a

Monte Carlo simulation procedure. Hence, we include the theory in this report.

Dropping the argument indicating the explicit dependency on x, we can

define a vector T such that

fij •(5-21)

Comparing this with (5-19) it is obvious that T consists of a column of zeros

, imbeded with two * vectors located in such a way as to extract the and

* isubvectors from u and v. Similarly we can write

fij = 'F ,J (5-22)

*and

A

fij =  •(5-23)

The development of confidence limits for fij can proceed in a manner

similar to that found in a more general study due to Parville (Reference 33).

Under the assumption of known vaLiance covariance ratios, is unbiased and it

33Harville, D. A., "Confidence Intervals and Sets for Linear Combination of
Fixed and Random Effects," Biometrics, Vol. 32, 1976, p. 403.
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can be shown (see Henderson, Reference 31 for an explicit derivation) that the

random variable fij-f..j is normally distributed with a zero mean and

-1 2variance V A-V 2 ; hence

(fij-fij)/(2'A-IF.2 )1/2 ,N(0,1) (5-24)

Furthermore,

.62 = y' /(N-Cp) (5-25)

S2 2

is an unbiased estimator of a and it can be shown that (N-CP)2 /a2

is X2 distributed with (N-Cp) degrees of freedom and is independent of

(5-23). From these results it follows that
i-4

f.- f *
ij ~j t ,(5-26)

(T'A-I ) I/27" N-Cp

i.e., has a t distribution with N-Cp degrees of freedom. Then, from the

symmetry of the t distribution, we have

Pr[ If^ -f*j I < (!.'A-l?) 1 / 2 t/2,N - - , (5-27)

4 where t /2,N-Cp is the 1005/2 percentile of the tNCp distribution.

Hence, for a particular realization we find that

fij ± (1'A-I_) 1 / 2 - tS/2,N-Cp (5-28)

d

31 See footnote 31 on page 5-4.
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are 1-6 confidence limits for fij (termed "unconditional" confidence limits

by Harville in Reference 33). These, of course, are valid for any values of the

regressor variable x.

For computation purposes it is useful to express T A -1 in the

following manner

?'A-1 7 = 0'lli) + 20'!12(Ui,9ij) 4 + A--22 (Cij ) 1. (5-29)

Here 1l(ui
) and A-22(i j ) denote the p x n submatrices of A having

rows and columns corresponding to ai and ij respectively and the

submatrix 112 (uiij) corresponds to the i rows and the Oij

columns.

If a logarithmic transformation of the response variable has been employed

it may be of interest to estimate and obtain confidence limits for the antilog

of fij" Suppose the common logarithm was used. Then the ML estimator of the

(possibly reduced) performance index T.. in the jth shot of the ith

explosive class would be

tij
Tij 10 (5-30)

and from (5-27) confidence limits for Tij would be given by

4 [ ij ± (v'A-1)l/2 3 t6/2,Np] (5-31)

10

6 33See footnote 33 on page 5-8.
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5-5 PREDICTION OF THE PERFORMANCE IN A FUTURE TEST

Continuing the notation of the previous section, we now consider the

prediction of the performance index in a future test at an arbitrary distance x

from the charge. We assume the charge is of the ith explosive class where

1 < i < C. To avoid confusion with past quantities we will indicate the

future value by fi*' i.e., an asterick in place of the subscript denoting a

particular shot.

In analogy with (5-18) we let f be the realization of the random

variable

fi* U + 0 Oi* ,(5-32/

where is independent of past quantities and therefore of Z and _.

Under the assumption of a known H, an unbiased estimator of f is given by

- I p " (5-33)

To obtain confidence limits for fi* under the same assumption consider

the random variable fi*- fi*" We have

E (fi*-fi.) P ai 0 ai 0 (5-34)

| and Var(i*-fi*) = * (A11 (Ui) + (i) 4D (5

A *2
so that f.,-f.--N(O, 4 (Al( i) 0 2). (5-36)

1- 5-11
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-2*

Now, since aof (5-24) is also independent of f-*, we have

[s'All~i)+ Eo.)O]l/2, N-Cp

This allows us to make the probability statement

Pr l j * tI a ~ ( 1 ( ~ ) + e ) ) / tS/2,N..Cpl 1 (5-38)

Hence, 1-iS confidence limits for a particular future realizationfi

are given by*

fi* t [0 (All.pi) + e@.*jl/2 tS12,N...Cp (5-39)

As emphasized in the previous section, these limits will tend to underpredict

the size of the confidence interval because we have assumed the estimated value

of H to be the true value.

if a common logarithmic transformation of the data has been used, the ML

estimate of Ti* =10 1* can be obtained from

Ti 1 (5-40)

and approximate confidence limits for Ti* from

(f~*± [(ll(~i) + ei)oJl/2 atiS/2,N..Cpl 5-1
10 (-1
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