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FOREWORD

A statistical methodology is presented for the analysis of explosives
performance data associated with the shock waves of underwater explosions. The
model should increase both the accuracy and amount of ‘useful information now
being éxtracted from the data. 1In addition, it should serve as a basic tool for

the development of statistical tests for the comparisons of explosives and for

the study of more efficient experimental designs. The work was funded through

the Explosives ‘Development, Effects and Safety Block of the Naval Sea Systems

. Command (Task Area SF-33-354-391) as a part of the MADAM program.
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CHAPTER 1

INTRODUCTION

In this report we develop a general statistical model for the analysis of
explosives performance data. The data of interest consist of observations of an
arbitrary measure of performance that can be derived from the transient
pressure~induced responses of piezo-electric gages located in the vicinities of
underwater explosions. Applications of the model concern the variationms of
performance within broadly defined classes pf explosive charges and the
predictions and comparisons, at specified ranges, of the performances of charges
belonging to the;e classes. The observations are complicated by'the presence of
gage caligration errors and various errors that arise from the measurement and

data processing techniques employed.

The traditional and current method for analyzing data of this kind (see
Cole, Reference 1, p. 240) is to express the relationship between the scaled
performance variable and the scaled distance from the charge as a power law
whose parameters are determined from an ordinary least squares fit of a
straight line to the logarithmically transformed data. Relationships obtained
in this manner are popularly called "similitude equations" from the principle of.

similarity that underlies the scaling of explosion shock wave phenomena. The

lcole, R. H., Underwater Explosions (New Jersey: Princeton Univ. Press, 1948).

1-1
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usual method of scaling is called Hopkinson or cube-root scaling (see e.g.

Snay, Reference 2), which refers to the fact that the time and length scale

Uit aeit)
o
RN

Y
.

factors are proportional to the cube root of the charge weight (or

any other proportional measure of the explosion energy). Recently Goertner

(Reference 3) has extended this scaling method to include variations with

73 ambient water sound speeds and densities. It is now customary to compile

?E similitude equations for a large variety of explosive classes for the following

;\ ‘measures of performance: the peak pressure, a characteristic time constant, and
the impulses and energies per unit area delivered to a given location by the

;; shock wave within various multiples of the time constant.

N

Ef The application of more sophisticated statistical techniques to this area

5: has been blocked,.perhaps primarily, by complicated dependencies wﬁthin the

A d;ta. Correlations exist among the observations obtained from a single test, as

i% pointed out by Brown (Reference 4), and among observations obtained with the

tg séme gages and gage calibration constants. The mixed linear models necessary

: for an adequate statistical treatment of such data constitute an active area of

?: current research.

‘2

A ‘ The model that we develop below generalizes the current approach by

32 accepting arbitrary measures of performance and allowing regression functions of

i; arbitrary form that are linear in their coefficients (such as higher degree

,: 25nay, H. G., "™odel Testsand Scaling," NOLTR 63-257, 1 Dec 1964.

é 3Goertner, J. F., "Scaling Underwater Explosion Shock Waves for Differences in

3 Ambient Sound Speed and Density," NSWC TR 80-491, 18 Dec 1980.

4Brown, R. H., "Analysis of Data When Several Sources of Variation are
- Present," Explosives Research Memorandum 22, Navy Dept. Bureau of Ordnance,
9 1 Dec 1944,
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polynomials). As the principle of shock wave similarity is still adhered to we
continue to refer to the equation of the regression mean as the similitude
equation for the particular explosive class~-a term that we will use to
emphasize the fact that explosive charges are more properly viewed as members of
a class of objects that in many respects are alike but which differ in ways that

affect the observed measures of performance.

The model extends the presently used approach by explicitly including
sources of random variation in its formulation. In the interest of model
simplicity our philosophy has been to include only those sources that are
thought to produce significantly large effects and are unavoidable.
Complicating effects that are avoidable or correctible will be presumed to have
been eliminated either by an appropriate reprocessing of the data or by

modifications of the experimental techniques.

A possible model deficiency is that no explicit treatment of so called
batch effects is included. This refers to well recognized performance
variations among charges taken from different batches or preparations of the
same explosive material. It was felt that batch effects did not justify the
further complication of an already complex model and that they could be handled

.

in another manner such as by treating different batches as different explosive

classes, by increasing the number of batches and randomizing the charge

selection, and by improving the explosive preparation quality control. In any

.1—!'2". Ut gl

case the use of the model should be made with the possibility of batch effects

. borne in mind, and a thorough examination of the model residuals for the
* ) presence of these and any other systematic effects is recommended (see Section
-

5-1)0
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The report is divided into five chapters. Chapter 2 discusses the
dev;lopment of the model in detail. The model may be described as an
intra-class regression model with an additive error term consisting of a gage
class calibration error, a within-class performance variation, and a general
experimental error. Under a suitgble transformation of the performance
variable, multivariate normality of the errors is assumed. Chapter 3 discusses
the estimation of the model parameters by the methods of maximum likelihood and
restricted maximum likelihood. The derivation of derivatives needed for an
iterative solution of the 1ike1£hood equations follows the approach of Harville
(Reference 5). In Chapter 4 we find a brief description of both unconstrained
and constrained Newton-Raphson and method of scoring optimization techniques and

related topics. And finally in Chapter 5 we give some ﬁractical applications of

_the model.

5Harville, D. A., ..a im Likelihood Approaches to Variance Component
Estimation and to x..ated Problems," Journal of the American Statistical
Assoc., Vol. 72, No 358, 1977, p. 320.
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CHAPTER 2

MODEL DEVELOPMENT

We will denote the response and regressor variables of the model as y and x
respectively, often with subscripts to specify a particular observation.
Vectors in the model will be indicated by use of the underbar notation; hence, a
sample of response variables will appear as y. No notational distinction will

be made between realized and random samples, but this difference should be

apparent from the context.

LN
AR

D

In the theory of liﬁear models it is common to deal with transformed

3 v
- pe

response and regressor variables to promote variance homogeneity, model

simplicity, and other desirable model properties. Thus, we define y as a

possibly transformed value of a scaled measure of performance, as discussed
earlier, and x as a posgsibly transformed scaled distance taken to be zero at the
charge center. This is in accord with past derivations of shock wave similitude
- equations in which straight lines are fitted to the logarithms of the scaled

data. Hence, the present model will be compatible with these forms.

RN

Development of the model will be based upon a number of reasonable
assumptions which will appear throughout this section. To these and the
, assumption of shock wave similarity already made we add that the water between
. the charge and gages is assumed t- be homogeneous so that disturbances are

propaged through the water in a regular manner, and we assume the values of x

:: 2-1
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to be accurately known. Recent tests of the last assumption have verified its
accuracy when distances are determined from the measured times of arrival

(Reference 6).

2-1 BASIC MODEL FOR A SINGLE OBSERVATION

In the sample of y values let yijkm be the observation made in the jth
shot of the ith explosive class with a gage of the kth gage class having
calibration index m. The gage is located at the (transformed, scaled) distance

X The gage class index refers to one of several broad classes of gages

ijkm’
such as 1/4 inch tourmaline, 3/8 inch tourmaline, 1/2 inch tourmaline etc. In a
typical test it is common to employ a string of perhaps 10 to 12 gages placed so
that smaller diameter gages are grouped closer to the charge and larger diameter
gages groﬁped farther from tye charge. Typically ga;es from 3 to 4 gage classes
are used. A gage is usually recalibrated prior to each test program and
assigned a gage constant (units of picocoulombs/psi) which is used to calculate
all pressures measured by the gage until it is recalibrated. From this it is
clear that measures of performance derived from the various pressure-time
records of a particular gage could be correlated, i.e., all affected in the same

manner. During the lifetime of a gage, lasting only a single shot to perhaps

several years, it might be recalibrated as many as 5 to 10 times.

The system by which observations will be indexed is described as follows.

Let C and K be the total numbers of explosive classes and gage classes of

6Gaspin, J. B., "validation of a Gage Location Method for Underwater Explosion
Tests," NSWC TR in preparation.

2-2
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interest, respectively, and let I be the total number of shots of the ith
explosive class. Then index i will simply run from 1 to C, index j will run
from 1 to Ji’ and index k will run from 1 to K. The numbering assigned to

particular classes or shots is arbitrary. In the same sense the gage

calibration index m is also arbitrarily assigned, but it will require a somewhat

>

lengthier explanation. Basically, we wish to identify those observations

L )

1

obtained from the same gage and one of its particular gage calibration constants

v,

f! and assign to these observations the same value of m. We will establish

separate sets of m values for the observations associated with each gage class
of interest. For the kth gage class, the total number Mk of such m values is
éi equal to the total number of unique ordered pairs (n,d) among the observations
| associated with the kth gage class, where n is a unique identifying number of

the gage and d is the date on which the calibration session was conducted.

hence, for the kth gage class the calibration index m will run from 1 to Mk'

Note that, although several measurements can have the same indices k and m, an
observation is uniquely labeled by the set of indices (i,j,k,m), since only a

single observation can be obtained from a particular gage on a particular shot,

Consider, now, the jth test of the ith explosive class. We assume that the
passage of the shock wave through the water induces a particular unknown
functional relationship between the‘quantity we are seeking to measure and the
travel distance x. We will denote a representation of this function as fij(x)
for the jth test of the ith explosive class. We can write the observation

obtained with a gage having indices k and m as

Yijkm * £ij(Xijkm) * €ijkms (2-1)

2-3
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where e; is the deviation of the measured value from the true value as

jkm
indicated in Figure 1. Values of y measured by other gages and at other values

of x will be scattered about fij(x) in some manner that we will now consider.

. Xijkm - X

Figure 1. Response y versus distance x for jth shot

We will assume the error eijkm to be a random variable with a mean of

zero. This requires that any bias in eijkm

incorrect gage size correction or other systematic measurement effect, be

introduced, for example, by an

removed prior to the statistical analysis. Current thinking by experimentalists

is that this is not an unreasonable assumption. Furthermore, there are two
compelling reasons for it from theoretical grounds. First, it keeps the model
from becoming unmanageably complex. Second, and most importantl&, the presence
of bias terms would make the usual similitude equations unestimable. That is,
they would have no unique solutions. An explanation for this is given below in

Section 3-1. Thus, in the model we require
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E(eijkm) = 0. (2"2)

We will assume that e; can, however, be separated into two additive

jkm

random parts as
ijkm * %m * €ljkm , (2-3)

each with zero mean. The first of these, “;m’ will denote that part that

is due to gage calibration error. We will assume that all gages of a particular
gage class have the same distribution of calibration errors. For this reason a
previously used but recalibrated gage will be treated in the same manner as a
new gage-~-the calibration errors of both are drawn from the same distributionm.
The remaining component in (2-3), e:jkm’ is regarded as a general error

term arising from the measurement and data handling processes but from no source

~in particular. This decomposition of e, is illustrated in Figure 2.

ijkm
Substitution of (2-3) into (2-1) yields

% -
Yijkm = £ii(Xijim) *+ okm *+ €I jkm- (2-4)

we.
L~

DENSITY FUNCTIONS OF
RANDOM ERROR COMPONENTS

Xijkm x
Figure 2. Decomposition of ejjkm for jth shot

2-5
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It is convenient and consistent with past practices to represent the
functional relationship fij(x) by a polynomial in x. This can be written in a
somewhat more general fashion for the jth shot of the ith explosive class as

£ ) =el b, (2-5)
1j 1ijkm 1jkm T1ij

'-j where L'.jkm is a vector function of the regressor\ variable x,. . (prime

1 jkm

- + .
denotes the transpose), and u 1is a vector of unknown parameter values that

is conformable with 2ijkm' In the traditional case of similitude equations we

have #jkm = (1, Xjjikm). For the case of a (p-1)th degree polynomial we have,

Rixsid

e

N ! = 2 LY -1 .
2z of course, 2ijkm (1, xijkm’ xijkm" ’xgjkm) Generally, for underwater
y explosions a low degree polynomial with p = 2 or 3 will be adequate. For other

appliéacions where the choice of p > 6 may seem more appropriate it may be

preferable to Qefine 2ijkm in terms of Chebyshev or orthogonal polynomials to
avoid problems of ill conditioning (see Seber, Reference 7, p. 214). The
generality of expression (2-5) shouldvbe fully appreciated. 1In addition to
functions of a single dimension it will admit the use of multidimensional
functions (that are linear in their coefficients) as well. In the subsequent

* development we will assume zijkm to consist of p elements which could be any

of these types.

The relatiénship between y and x will vary from one explosive class to
another and also between shots within a particular explosive class. Within-
class variations are considered to be caused by charge fabrication and

preparation methods that are difficult or impossible to control precisely, and

7Seber, G. A. F., Linear Regression Analysis (New York: John Wiley & Sons,
Inc., 1977).
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also by naturally occurring chemical and physical inhomogeneities randomly
located within the explosive mixtures. Mathematical models for these
relationships must, consequently, be of a random nature. We can view the
relationships between y and x generated by the shots of a particular explosive
class as a family of curves each of which is similar to the one illustrated in

Figure 1. This idea is illustrated in Figure 3.

Figure 3. Response versus distance curves for an explosive class

A mathematical model for the behavior of an explosive class can be
cons;ructed by allowing the parameters 225 of equation (2-5) to be random
variables. Mean values, variances, and covariances of the parameters will then
be constants of the explosive class. If we denote the mean of !;j as
L;, We can then write

‘g o+t (2-6)
B Ty By

which decomposes E;j into the sum of a vector of fixed effects ¥ and

*
s a vector of random effects with zero means Qij' Inserting equations (2-6)
& into (2-5) we obtain

2-7
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£ (x  d=o po+e g¥. (2-7)
ij ijkm Tijkm i Tijkm %~ij

Note that fij(x) is now regarded as a random function consisting of a mean

curve and a random variation about that mean.

By inserting (2-7) into equation (2-4) we obtain the basic model for the
analysis of explosion test data. It is convenient to write this as

= ¢'
Yijkem  —ijkm

]
+a* + o * o, ¥

.. Bl.tel ' (2-8)
km 1jkm =1j ijkm

where the second line is the random "error'" term with zero mean. The basic
model is recognized as a linear-regression model with a complicated error

structure. It may also be referred to as a mixed model or mixed regression

model.

Equation (2-5) expresses the contention that a single observation may be
viewed as a realization of a random variation about the mean response of the ith
explosive class. Furthermore, it holds that the random part consists of the sum
of (1) a random gage calibration term, (2) the random performance variations of
("identical’) charges within the explosive class, and (3) a random experimental
error term. And finally, it indicates that the mean (or expected value) of the
observations of the ith explosive class, that corresponds to what is
traditionally called the explosive similitude equation (expressed in terms of

the transformed variable y) is given by
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Ey )= g_' u. (2-9)
at distance x.

ijkm*

2-2 THE MODEL FOR A VECTOR OF OBSERVATIONS

We now express the model in matrix form in three steps by first writing
the model for the measurements of a particular shot (i.e., for fixed values of
i and j), then combining these to form the model for the ith explosive class,

and finally combining several single explosive class models to obtain a model

- for multiple explosive classes.

To reiterate our previous discussion concerning indices we are interested
in a total of C explosive classes and K gage classes. Also we let the number
of shots in the ith explosive class be Ji and the number of gage calibrations
in the kth gage class be Mk. Hence, the indices take on the values i =
1,2,000,C; ] = 1,2;...,Ji; k=1,2,...,K; and m = 1,2,...,Mk. In addition
we will denote the number of observations in the jth shot of the ith explosive

class by nij and the total number of observations as N.

For fixed values of i and j, let zij be the vector of nij observations
for the jth shot of the ith explosive class. The model for this vector of

observations can be expressed as

*

- X + U *+x 2-10)
zi.j 1._1}'1. a 1311 ¢

where xij is the matrix of regressor variables (whose rows consist of the ¢'

2-9
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row vectors) and e¥: is the vector of e¥; . values corresponding to y:;. Here
&j 1ijkm Lij

the vector a* denotes the complete set of a¥ values of interest in the full

model, ordered according to gage class. That is

* = (Gfl,o-.,G‘ful,a;l,-..,u;nz,.-.,ail,-..,cﬁqx)'.

The matrix Uij’ however, is specific to the jth shot of the ith explosive
class and consists of 0's and 1's. Since only a single gage is associaies with
a particular observation, Uij will have only one 1 per row. An example

showing the elements of equation (2-10) explicitly appears in Figure 4.

To assemble the model for the complete set of observations of the ith

explosive class we define the observation vector of interest as y= (Zil’
2;2,...,xiJi)', the corresponding error vector as gI = (5Ii,gfé,..,gfji)'.
and the corresponding vector of random performance effects as b} = fi,
12,...,§1J . Furthermore we define the follbwing matrices: X; = (Xil,
xiz,...,xiJi), Uj = (U{i,ui'z,...,u{Ji)', and W; = Block Diag (Xj],Xjz,..- iy ) -
With these the model for y. can be written as

Y. =X u +U a*+Wb*+ e, (2-11)
i i1 i~ iYi i :

Finally, we form the full matrix model by defining in analogy with the

_above y = (y],¥25+0,30) , €* = (e’ &5 .,e8"), U= (U1,Upse+«sU2) ', and W =
Block Diag (Wy,Wz,...,Wg). Also we introduce p = (Ei,gé,...,gé)'and X = Block
Diag (xl,xz,...,xc). In terms of these quantities the full matrix model can

be represented ac
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g = Xp + Ua* + Wb* + e*, (2-12)
As before, an example showing the full matrix model in more explicit form is )
found in Figure 5.
Equation (2.12) is the matrix counterpart of equation (2.8). The notations
employed to describe the various kinds of terms are similar in both cases. In
words, (2.12) states that the sample of observations y can be viewed as a
. realization of a random vector in an N dimensional sample space that deviates
55 from the mean point Xy by a vector sum composed of a vector of gage
:? calibration errors Ua*, a vector of performance variations Wb*, and a general
i’ experimental error vector e*. Here, of course, X and W depend upon the
2 trans formed reduced distances associated with the sample of observations and U

is a matrix of 0's and 1's that links the observations with the random gage

effects a*.

Viewing u as a vgriable, Xﬂ.definés a hyperplane in the N dimensional

sample space with.n which the unknown true mean is, by construction of the

AN

model, postulated to lie. 1In Chapter 3.we will be concerned with estimating the

).
'ﬁ position of the true mean on this hyperplane by means of various statistical
criteria of choice. For examble, the ordinary least squares method selects the

D |

orthogonal projection of y on the hyperplane as the estimated value of Xy.

The more precise maximum likelihood and restricted maximum likelihood methods of

estimation, that are developed in this report, require explicit representations

of the distributions of the random effects in the model. These we now consider.

Y ianady
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2-3 DISTRIBUTIONAL ASSUMPTIONS AND THE DATA VARIANCE COVARIANCE MATRIX

It is reasonable to assume that the sample of observations y will have a

multivariate normal distribution. Hence, we write
y ~ N(Xy, V) , (2-13)

where Xy is the mean vector of the distribution and V is the N x N variance
covariance matrix whose structure we will consider below. As noted earlier the
adequacy of this assumption may require a transformation of the measurements.
For the usual quantities of interest (peak pressure, decay constant, impulse per
unit area, and energy per unit area) experience suggests the logarithm as the
appropriate transformation. Use of a logarithmic transformation also supports
the assumption of error component additivity as represented in equation (2-3)
since cglibration effects are essentielly multiplicative on the pressure (see
Reference 1, p. 183). As in the case of standard regression theory it will be .
possible to critically examine this and other model assumptions through an

analysis of the model residuals.

Implicit in the normality assumption for y is the assumption that all
random effects of the model are individually normally distributed. Because
* _* *
a,b, and e are affected by unrelated error sources, they are taken to

be mutually independent. We will assume the random effects to have the

following multivariate normal distributions,

2"~ N0, 6% (2-14)

lgsee footnote 1 on page 1-1.
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*
b" ~ N(0,T o°) (2-15)
*
e ~ N0,I o) (2-16)
Where r's= Diag (Y DI 4 Y. ses s06yYygeee ‘() (2-17)
I:M’l»z, 972’ s Yy ' Y/
1 ¥ Mg
Yk = 0~2 Var(ajm), m = 1,2,...,M, (2-18)
and T = Block Diag (61,...,91,65,...,65,...,eb,...,eb) ‘ (2-19)
) 71 I2 e
y Oi = 0-2 Var(é?:j), j = 1,2,-..,Ji. (2-20)
- Hence, T is the matrix of gage calibration error variances divided by 02
- '
P' ) and T is the matrix of the variances and covariances of the random performance
é: variation parameters divided by az. Correlations between the calibration
o
N .
g; errors of gages with different gage class and calibration indices k and m are

assumed to be zero, as are the performance variation parameters of different
shots. The use of variance covariance ratios is for later mathematical

convenience.

As mentioned earlier, relations (2-17) and (2-18) indicate that the gage
calibration error variances are taken to depend on the gage class index k only
gi and not on other factors upon which they might reasonably depend such as reduced

- range, charge weight, peak pressure, the shock wave decay constant, or

Dl
L

individual details of the gages. This is a simplifying assumption that is

v~
-

thought to be reasonably accurate and of practical value.

2-15
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. . . . . . * *
Using these distributional assumptions and the independence of a , b,

*
and e we can specify the data variance covariance matrix V. From (2-12) and

the rule for forming the variance covariance matrix of a linear function of

*
random variables we obtain

MR AR
AR R ]
ala

V=H o2 (2-21)
!
] '

where H=I+UMU +WIW . (2-22)
- '
- It is noted from the block diagonal structures of W and T that WIW 1is
= . s ' .
~;: also block diagonal with blocks xijeixij of size n,.x nij' The number

of observations per shot is usually around 10. The relatively simple structure

of H will be exploited below in the task of computing functions of H-l.

.

-

:i *If y = Ax with E(x) = p and Var(x) = I, it is easily shown that E(y) = Ap
- and Var(y) = E[(y - E(y))(y - E(y))'] = AzA’.

2-16
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CHAPTER 3

ESTIMATION OF THE MODEL PARAMETERS

We require a general estimation method that will produce efficient
estimates of the model parameters, and provide a means for drawing statistical
inferences concerning the constants which characterize the larger populations
from which the sample is drawn. Of the approaches most suited to mixed models,
the maximum likelihood method is the more conceptually and theoretically
attractive.* 1In the past, choice of this method has been often avoided because

.of the relatively heavy computatiogal burden it involves; but interest has been
stimulated in recent years by the development of faster computers, more vapid
computational techﬁiques, and vorious theoretical advances (see Refsr:unces 10

through 16 and the survey paper by Harville, Reference 5). Of‘the latter, the

*See Searle (Reference 8 and Reference 9, p. 458) for discussions of the
suitability of different approach to mixed model estimation.

v, B
PRI

zv o
ST N
L e e

8Searle, S. R., "Topics in Variance Component Estimation," Biometrics, Vol. 27,
1971, p. 1. .

v,
- 4

9Searle, S. R., Linear Models (New York: John Wiley & Sons, Inc., 1971).

L o

10Hart1ey, H. 0., and Rao, J. N. K., "Maximum-Likelihood Estimation for the
Mixed Analysis of Variance Model," Biometrika, Vol. 54. 1 and 2, 1967, p. 93.

AR
| - .

-

lljermerle, W. J., and Hartley, H. O., "Computing Maximum Likelihood Estimates
for the Mixed A. 0. V. Model Using the W Transformaticn," Technometrics,
Vol. 15, No. 4, 1973, p. 819.

12Hemmerle, W. J., and Lorens, J. A., "Improved Algorithm for the W-Transform

had Pty
-k s

; in Variance Component Estimation," Technometrics, Vol. 18, No. 2, 1976,
:“: p . 20 7 (]
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concept of restricted maximum likelihood (REML) estimators will be of interest

in the present effort. The REML method, which was extended to the general mixed

model by Patterson and Thompson (Reference 17), effectively corrects the ML
estimators of variance components for losses in degrees of freedom due to
estimation of the fixed effects. In this report we will develop formulae useful
for the calculation of both ML and REML estimates. In this effort we will adapt

and follow closely the results obtained by Harville (Reference 5).

3-1 MAXIMUM LIKELIHOOD AND OTHER ESTIMATORS OF THE SIMILITUDE EQUATION

PARAMETERS u.

Statistical estimators of the.fixed effects in linear models are all
closely related. Hence, we will use a discussion of the maximum likelihood
estimator of u to motivate a brief discussion of other estimators of the fixed
effects. In this manner some of the advantages of ML or REML esfimators over
the ordinary least squares (OLS) estimatoré, currently used to obtain estimates

of explosive similitude equation parameters, can be highlighted.

13jennrich, R. I., and Sampson, P. F., "Newton-Raphson and Related Algorithms
for Maximum Likelihood Variance Component Estimation,' Technometrics, Vol. 18,
No. 1, 1976, p. 1l.

14Harville, D. A., "Some Useful Representations for Constrained Mixed-Model
Estimation," Journal of the American Statistical Assoc., Vol. 74, No. 365,
1979, p. 200.

15Corbeil, R. R., and Searle, S. R., "Restricted Maximum Likelihood (REML)
Estimation of Variance Components in the Mixed Model," Technometrics, Vol. 18,
No. 1, 1976, p. 31.

16corbeil, R. R., and Searle, S. R., "A Comparison of Variance Component
Estimators," Biometrics, Vol. 32, 1976, p. 779.

5see footnote 5 on page 1-4.

17Patterson, H. D., and Thompson, R., "Recovery of Inter-Block Information
When Block Sizes are Unequal," Biowetrika, Vol. 58, Mo. 3, 1971, p. 545.
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The likelihood function L is defined as the probability of the observed
sample y under the assumption that its random behavier is governed by some
particular, specified family of distributions. In the present case we have
assumed that y has a multivariate normal distribution with unknown mean Xy and
variance covariance matrix V. Hence,

-1/2

L= (2#)-N/2|

v "2 exp[-(g-xw) 'V (g-xw/2], (3-1)
where y denotes the realized sample. L is regarded as a function of the
variance and covariance parameters in V (given above in equations (2-17) through

(2.20)) and the similitude equation parameters y.

Maximum likelihood estimates are those values of the parameters that
maximize L in such a way that L is éuaranteed positive not only for the observed
values of y but for all possible realizations of the sample. In our case this

2

means that the maximization of L is subject to the constraints that 5~ > 0

and T and T be positive definite. In our notation the circumflex (~) will be

used to denote the maximum likelihood estimator.

Rather than maximizing L directly one usually works with the log-likelihood

function A = log L, which, upon inserting Haz for Vv, is found to be

» = - Nlog(2m) - ¥Nlog o2 - 1 log |H - L (y-xp)'s~l(y-xw). (3-2)
2 2 2 242 -

Parameters that maximize ) also maximize L.

3-3

LA PSS S AP SR TR S L P TS G G G U UL PGP [ At s N




NSWC TR 82-74

For the present we will use 9§ to denote the unknown variance and
covariance ratios in H. The functional dependence of \ may then be summarized
as x(_g,_o;,oz). Following Harville (Reference 5), we will obtain the

. . . . A A2 .
maximum likelihood estimates u, ¢ , and E in three steps:

(1) obtain the function [(8) by maximizing A with respect to y for

an arbitrary fixed value of @ (E(i) does not involve 02),

(2) obtain the ML estimates § and 32 by the constrained

maximization of x*(_O_,az) E X(l(g),g,oz).

(3) obtain the ML estimate of y from

b
h =5 | (3-3)
.- The same approach will be taken to obtain REML estimators E,E, and 32

except for the use of a restricted log~likelihood function Af#(g, 02).

As ) is continuous and differentiable it can be maximized with respect to
:;fj. b for fixed values of § and 02 by solving the system of equations
o 3)331 = 0. Using well known rules* for differentiation with respect to

vectors, we obtain the function F(8) as a solution of the "normal equations"

(x'g=lx)y = x'w-ly. (3-4)
r?><
b
’ A ———
; 5see footnote 5 on page 1-4.
E _ *We use 32'a/3z = a and 32'Gz/3z = (G + G')z, where a and z are
rt arbitrary vectors and G is a square matrix.
3 3"'
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Since X is the N x Cp matrix of regressor values it is assumed to have full
column rank and the matrix x'H-IX is consequently nonsingular. The normal

equations then have the unique solution
= x'alx)-1x'e-ly. (3-5)

Note here that had we included systematic gage bias terms in the model the
matrix x'a'lx would have been singular. In that event no unique solution of

the full set of similitude equation parameters would have been possible.

The close relationship between least squares estimators of y and the
maximum likelihood estimator (assuming normality as expressed by (3-1)) is seen
by observing that the same function that maximizes L for fixed ¢ and 02
also minimizes the weighted sum of squared residuals given by the quadratic form
(fo1Q'V-1(er£). It follows from this that equation (3-5) may be used to
represent a number of different statistical estimators of b obtained by least
squares and other methods. Some of these are listed in Table 1 and depend upon
the nature of H. When H is formed from the ML or REML estimates of § one

obtains, as stated above, the ML or REML estimates of E.respectively. The

other estimators listed depend upon H ﬁaving known or prescribed forms.

At present, similitude equation parameters are estimated by means of the
OLS (ordinary least squares) estimator, which does not involve the data variance
covariance matrix H at all. It can be shown that all of the other estimators
listed in Table 1! are more accurate (in the sense of smaller variances or mean
squarelerrors) than thé OLS estimator when correlations exist among the data and

H#* I.

3-5
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3-2 THE EXTENDED NORMAL EQUATIONS

In practice it is usually computationally more attractive to find
formulations for 7 which do not explicitly require the inversion of the N x N.
variance covariance ratio matrix H (or equivalently V) as does equation (3-5).
There are several ways by which this can be achieved that require the inversion
of matrices smaller in size. All of these involve about the same computational
effort. A particularly useful formulation was published by Henderson et al.
(Reference 18) and was investigated extensively by Harville (see References 5{
14, and 19). 1In addition to giving estimates of the fixed effects u, this
formulation also gives estimates of the means of the random effects gf and Ef
that are conditional upon y. These can be regarded as estimates of the unknown
values, a and b, that are actually realized by gf and Ef in the sample. We
will. find important uses for these in the applicagions below. Furthermore,
Harville (Reference 5) has shown how ML and REMLlestimates of the variance

covariance components 6 and 02 can be obtained from these results with

little additional effort.

In order that we might make direct use of these results, we rewrite the

model equation (2-12) as

18Henderson, C. R., Kempthorne, O., Seafle, S. R., and Von Krasigk, C. N.,
"Estimation of Environmental and Genetic Trends from Records Subject to
Culling," Biometrics, Vol. 15, 1959, p. 192.

.'.‘ : ™Y

5See footnote 5 on page 1-4,

légee footnote 14 on page 3-2.

CNENE)
3

Tah:!

19Harville, D. A., "Extension of the Gauss-Markov Theorem to Include the
T Estimation of Random Effects,' The Annals of Statistics, Vol. 4, No. 2, 1976,
p. 384.

v
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L= Xyt et (3-6)
and the variance covariance ratio matrix H given in (2-22) as

H=1+2DZ'. (3-7)

Here, quite obviously, we have defined

v* = (a*',b*')', (3-8)
Z = [U,W], (3-9)

and D

ro
. (3-10)
0T :

The work of Henderson et al. (from Searle, Reference 9, p. 461) is based

*
.upon the joint likelihood of y and v , which can be expressed as

g(y,v) = g1(y|vez(¥)

= ¢, expl~ L (y-Xp-Zv)'(y-Xp-2v)] exp[- _L_ v'D-ly], (3-11)
202 202 -
where ¢ is a constant (function of § and o?). Note that although y is
indiscriminantly used in this report to denote either the random variable or
sample value of the observation vector depending on the context, our notatiom
with regard to v* and v is more explicit. 1In (3-11) v indicates the
unobservable realized value of gf. As it is unknown, it may be regarded as a
parameter of the model in the same sense as p. For fixed values of 6 and

02, maxinization of (3-11) with respect to u and v leads to the system of

equations

98ee footnote 9 on page 3-1,
3-8
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B x'y
A = , , , (3-12)
v Zy

X'x x'z
A = . . . (3-13)
Z'x p-l4z'z

Equations (3-12) are referred to as the "extended normal equations" or also

where

as the "mixed model equations." The solution to (3-12) gives the maximum
likelihood estimates of y and v for fixed, arbitrary values of @ and

02. It can be shown (e.g., see Serle, Reference 9, pp. 459-462) that the
estimator of y from (3-12) is identical to that given by (3-5) and that the
estimator of v is equivalently the ML estimator of E(gf|z). Hence, we can
denote solutions of (3-12) as § and ¥, and as i and _\z if the ML estimates of

g_an& 02 have been'used.

Solution of (3-12) requires the inversion of the nonsingular coefficient
matrix A of size CptEMk+p§Ji, which equals the number of fixed and

random levels in the model. This will be substantially smaller than N. A
convenient way of determining A-1 is by successively invetting partitioned
matrices. We define

! a1;  Ap
A" . . (3-14)
A12 Az2

9See footnote 9 on page 3-]1,

B e e e
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1

Then by substitution of (3-13) and (3-14) into AA =1 = ala (see, e.g.,

Searle, Reference 20, p. 210 or Westlake, Reference 21, p. 26) one finds

A, = xx-x'zzhz'x™ _ (3-15)
A, - Ku(x'zn'l) (3-16)
Ay, = Q (3-17)
vhere Bzpl+zz (3-18)
and Q= B;l - (x'zs’l)'K12 (3-19)

Since B and Q will be used extensively in the sections below they have been

given special notations.

This method of inversion, thus, requires the inversion of B, the inversion
of D, and the inversion indicated in (3-15). The inversion of B will be
discussed below. The inversion of D is easily obtainea since it is composed of
a diagonal matrix and a block diagonal matrix consisting of repeated p x p
blocks. In practice, p will have a value of 2 or 3 so that the inversion of D

1

. ' t 1t
is trivial. The matrix X - X ZB "Z X in (3-15) is symmetric and relatively

small in size (Cp x Cp). Hence, it should be possible to obtain Kil rather

20gegrle, S. R., Matrix Algebra for the Biological Sciences (New York: John

Wiley & Sons, Inc., 1966).
— 2lyestlake, J. R., A Handbook of Numerical Matrix Inversion and Solution of
t:} Linear Equations (Huntington, NY: Robert E. Krieger Publishing Co., 1975).
i~ 3-10
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Reference 21, p. 13). Furthermore, the storage of A

by the symmetry of both matrices.

Using (3-9) and 3-10) we find

v'usr-l u'w
B = , , .
w'u ww+TL

And since B is symmetric we can write its inverse as

—_— ['B'u | E12]
B- = L]
- -
' B12 By2

Now, depending upon the relative values of k§1Mk and piEIJi (i.e., the

' ' -
relative sizes of U U and W W), B 1 can be found most efficiently by one

of the following methods. 1f EMk > Pfhi’ we use

- [} - [ ] L - - 1 -
B,, = [W W1 Ly'vew verhlyw?

B "ver~ )1y 'vE
12 =(U U+ U 29

1y-1,

— ' ' -
By, = (I-Elzw U)(U U+r

But if {Mk < pZJi, we use
i

S

P

2lgee footnote 21 on page 3-10.

-

P ]

3-11

A 2B am B ad an

g
ettt
O .I-J..-_..._

rapidly using an approach such as the symmetric Cholesky method (see Westlake,

11 and Kéz = Q is aided

The inverse of B can also be procured by inverting a partitioned matrix.

(3-20)

(3-21)

(3-22a)

(3-23a)

(3-24a)

DU WRF DU SRSV SR S D
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1

- ] - ' 1 _1 _1 ] _1
311 = [g U+r "=U W(W W+T ~) "W U] (3-24b)

L NS NS |
312 Buu W(W W+T ) (3-23b)

3., = (I-5.. 0 W)W wer~ 1)1

22 12 * (3-22b)

One sees that the only difficulties involve equations (3-22a) and (3-24b);

1,-1

) )

- t -
the other inverse matrices required are either diagonal (T 1 and (U U+T

1)-1

- ' -
or block diagonal with p x p blocks (T 1 and (W W+T ). Note also

1

that I' = and T-l are readily obtained from (or may be used to obtain)

D-l. The inversion indicated in (3-22a) or (3-24b) will be the most time
consuming step in the calculation of A-l. Hence, it will probably be
important to. choose the faster of the two methods indicated above. Since both

(3-22a) and (3-24b) are symmetric, the symmetric Cholesky approach is again a

good choice of method.

3-3 MAXIMUM LIKELIHOOD ESTIMATORS OF THE VARIANCE COMPONENTS

We obtain the ML estimates of § and 02 by maximizing the function
x*(g,oz), which from (3-2) is written

A* = - Nlog (2n) - N1log 62 - 1 log|H| - L (y=Xi) ‘B~ -X@). (3-25)

2 2 2 242 = =

Here §i is given by (3-5) or obtained from the solution of (3-12). The
maximization of (3-25), however, must be carried out subject to constraints that
ensure the positive definite property of the estimated variance covariance
matrices F, f, and 32. Discussion of these constraints is given below in

Section 4-2.

3-12
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Using established rules* for the differentiation of matrices, we can list

. . * . .
the derivatives of A with respect to 02 and an arbitrary component

et of ¢ as
* ]
A_=_1 (yxp'rlyxp - L (3-26)
302 244 202
*
A= 1 (yxpre-l 3B gl (y-xp) - 1 er(ul 3R, (3-27)
38 242 = T = 2 36

Here, (3-27) can be most easily obtained by noting that
33%/30, = (33/3u)'(3u/36¢) + 32/30¢ = 31/30¢
which is evaluated at u = §. This follows from the requirement that

ax/a3u = 0.

The maximum likelihood estimateslg and 32 satisfy, subject to the
* *
constraints, the "likelihood equations' ax /302 = (0 and 3) /aet =0

(for all t's), where the derivatives are given by (3-26) and (3-27). Generally,

these equations are nonlinear and must be solved iteratively. Recent numerical

e

AN
.
4.1 8

schemwes for computing ML estimates of the parameters in general mixed ANOVA

Y

RN
el

o S e
[T

v
A

i i

*We make use of alog|G|/as = tr(G-lac/3s) and 3G~l/3s = -g~lac/3s G-I,
where the matrix G depends on the scalar s and its trace tr(G) is the sum of
its diagonal elements. Proofs can be obtained from Nering (Reference 22).

0 A4 b A28 L AR 20 MR 23

22Nering, E. D., Linear Algebra and Matrix Theory (New York: John Wiley &
Sons, 2nd Ed. 1970).

B T-'.
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models have employed the Newton-Raphson (N-R) procedure (see References ll and

15) or a combination of the N-R procedure and Fisher's method of scoring

(Jenrich and Sampson, Reference 13). The method of scoring is a modification of

the N~R algorithm which uses the matrix of expected values of the second
derivatives in place of the matrix of second derivatives (the Hessian). The N-R
method is the more efficient approach and the method of choice when the
log-likelihood function x* is approximately quadratic, but Jennrich and

Sampson suggest that it be backed up by the method of scoring under poor
starting conditions or if the N-R iterates begin to diverge. We discuss these

techniques more fully in Chapter 4.

Employment of these iterative schemes, thus, requires the availability of
second derivatives of A* and the expected values of second derivatives.
Methods for computing these quantities have been developed by several
researchers (References 10, 11, 12, and 14), but the most useful results have
been obtained by Harville (Reference 5) who has shown how they may be extracted
from the results of the previous section. Hence, the development below is based

largely upon Harville's work.

TTE;;-;;;:;;te 11 on page 3-1.
155ee footnote 15 on page 3-2,
13gee footnote 13 on page 3-2.
10gee footnote 10 on page 3-1.
125¢¢ footnote 12 on page 3-1.

ldgee footnote 14 on page 3-2.

5see footnote 5 on page 1-4.,
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*
The second derivatives of A can be obtained from (3-26) and (3-27) and

listed as follows:

A=~ L (yxp 'ml(y-xp) + N (3-28)
302302 ob 254
2.* '
A =l (yxp'wl B (r-2ew)| B (y-x@) (3-29)
365302 204 36
2 * ' 2
3x_ =1 (yxm'yl (3B ___ -2 3 p 3 |yl (yxp
38530 242 - 385 36¢ 38g  30¢ =
. 2
-Ller (gl | OH - 38 -l 3H | (3-30)
2 30530 364 a6¢
- - ' o - L ’ .
vhere P = H ! - H 'x(xH ®) lxul. , (3-31)

In deriving these expressions use is made of the result aP/aes =
-P(aH/aes)P, which can be shown by differentiating (3-31) and performing
some simple algebra. It should also be noted that Py = H-l(xfxg? and that P

is symmetric.
To obtain the expected values of these derivatives one requires the
expression for the mean of a quadratic form (see Searle, Reference 9, p. 55)
E(y'Gy) = tr(Gv) + u'X'GXy, (3-32)

which is true for a general matrix G. Employing (3-32) and the facts that

9see footnote 9 on page 3-1.
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(pH)2 = py, (3-33)
PX = 0, (3-34) ”
and tr (FG) = tr(GF) A (3-34)

for arbitrary matrices F and G, one finds that

2 *
E{3 Yy |} =~ _1 (N~cp) + _N_ (3-36)
302302 ot 204
2 *
Ef_2 Y )=-_1 ¢r <P _aﬂ_) (3-37)
368352 202 385
2 * 2 !
Ef3°Y =1 ¢r p[aH -2 3H p 3H
20530p) 2 36436, 38 36
1 1 [ 82 -1
-l gl |3 H - 3H y-1 3H U (3-38)
2 3esaet 398 39t

The derivatives in equations (3-26) through (3-30) and the expectations

given by (3-36), (3-37), and (3-38) can be simplified by using certain results

ey ¥
. Pl
L PR
: PN

d
that we now indicate (see Harville, Reference 5). Many of these results derive

‘.,
from the use of the matrix identity

p.

b

&

o (g+76) ! = g7l lr(rece " E) T leE™! (3-39)

-

=

‘ 5See footnote 5 on page l-4.
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1

(obtained by representing (I+FGE )-1 by a geometric series, see Bartlett,

Reference 23). Using (3-7) we find

L | ' -1_"
ZH = (I+Z ZD) "2 (3-40)
' ' -1."
Z P = (I+Z S2ZD) Z S, (3-41)
L I _1 \j
where S = I-Xx(X X) X . (3-42)

From (3-42) it follows that SX = 0. Next we find several expressiomns for

(3-43)

i<l
1]
o
i
<

which is a quantity introduced by Harville to facilitate the development of the

A* derivatives. Using the above relations with the result from (3-12) and

t ] t
(3-14) that ¥ = (A;,X + A),Z )y one can determine that

2
- ' _1 '
3 = (1+z zZD) "2 (y-Xu) (3-44)
' 1 - .
= Z H "(y-Xp (3-45)
= (1+z'szn)'lz'sz (3-46)

23Bartlett, M. S., "An Inverse Matrix Adjustment Arising in Discriminant
Analysis," Annals of Mathematical Statistics, Vol. 22, 1951, p. 107.

3-17
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Finally, from (3-39) and (3-44) we obtain the useful result
-1 - - = . =
B “(y-Xu) = y-Xy-Z¥v = & ,

which is the estimated error vector or vector of residuals, and from (3-5),

(3-31), and (3-34) we find
' .1 '
(y-Xx@) B "(y-Xp) =y Py .

With these results and remembering that H depends on 8 by way of D, we

can list the sought after derivatives as

31* 1 iy N
A = - ye-_"
202 gt ‘302

*
A = 1 5" D g-1er {[1+z'zn]-1z'z 39_}
- t 2 30¢

i<l

2 % .

3N =-_1 ye+ X
302342 ob 204

*

32X = .l 3' SD v
36,302 2 36 T

SZA* 1 ' 3D ' =-15' D <
LA =-1_3 22 [1+2'szp)"lz'sz 3D ¥
365364 al 36g 3o —

+ 1 ¢er {[1+z'zn]-1 z'z 3D [1+z'zDp)"1 z'z 3D_
2 308 39t

(3-47)

(3-48)

(3-49)

(3-50)

(3-51)

(3-52)

(3-53)
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2 *
E{2X _}=-L1_ (Ncp)+ N
% A

o 20

2 *
E a . 1 tr{[Id-Z'SZD]'lZ'SZ .a-D-—}
30302 202 20t

2 *
E ( o0 ) = -tr {l1+z'szn1-lz'sz 3D_ [1+z'szp]-1z'sz 3D_
30¢

39336t 398

+1er {[nz'zn]-lz'z 3D [14z2'zp] z'z 2D\ .
2 3 T

85

(3-54)

(3-55)

(3-56)

It remains to express these derivatives in terms of quantities derived in the

previous section.

matrices of the forms [I+2'SzD]-1z'sz 3D_ and {1+z'zD]-1z'z 3D_.

36

latter of these . is readily seen to depend on the matrix B-l, a calcula-

tional scheme for which was indicated in equations (3-22) through (3-24).

from (3-18) we can write

(1+2'zp]-12'z 3D _ = p-lp-1z'z 3D,
90¢ 36¢

Those derivatives that appear complicated depend upon

36¢

The

Hence,

(3-57)

The former of these matrices has been shown by Harville (Reference 5, p. 326) to

depend upon the matrix Q given by equation (3-19).

of (3-19) and the use of (3-39) and (3-42) that

' - -
[1+z szp]~! = p~1q,

5See footnote S5 on page l-4,

3-19

Bstdrd el 3 - B S S

e B e e,

It can be shown by expansion

(3-58)
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and, therefore, that

[1+2'szp)-1z"'sz 3D_ = p-loz'sz 3D_ . (3-59)
90¢ a0t

Now, by means of the identities

pzzs-[lpl) (3-60)

and 9z sz = -[ep~l-1] , , (3-61)

- ' -
1 and I =z [D 1+Z Z] 1B, it is

- ' - -
obtained from I = [D 1+Z sz] 1Q

possible to put (3-57) and (3-59) into very similar forms. We find

(1+z'zp)=1z'z 3D_ = -[p-1p-1l-1)p-1 3D_ (3-62)
‘ 20 36¢

and {1+2'szp)~1z'sz 3 _ = -[p-lg-1)p-1 3D_ . (3-63)
26¢ 30p

As a consequence of this similarity of form we now need only continue the
development of (3-62), say, and apply the results to (3-63) by substituting Q

for B~1.

Equation (3-62) can be simplified by examining the structural details of
its matrices and partitioning them according to both gage classes and explosive

classes., For D = Block Diag (r,T) we define

-~
' 3-20

T
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and T, = Block Diag (ei,...,ei). (3-65)
A

Ji

Hence, from (2-~17) and (2-19) the stated partitioning of D may be expressed by

-3
m

Block Diag (rl,rz,...,rK) (3-66)

and T

Block Diag (TI,TZ,...,TC) . (3-67)

In a like manner we now partition B™l., From (3-20) and 3-21) we have

U'U'*l'-l u'w -1 f].]. §12
B‘l = , , = _ _ s (3‘68)
WU W w1l By) By2
p— _' . . .
where it is convenient to write le for 812' Then the above partitioning

may be indicated by writing

¢ -
B1(1,1)  By1(1,2) ... By;(1,K)
Bll = .3-11(2,1) 3-11(2,2) cen Fll(Z,K) s (3-69)

B11(K,1)  B11(K,2) ... B11(K,K)

Fﬁéz(l,l) Byo(1,2) ... 322(1,0)-
By, = |Byy(2,1)  Bpya(2,2) ... Fyy(2,0)| (3-70)

Bya(C,1)  Bpa(c,2) ... Bpa(c,0)

[B,(1,1) Bp(,2) ... Byp1,0)
Bip = 812(2,1) 312(2,2) cee '5'12(2,0) ’ (3-71)

§12(K’1) -’;lz(K’Z) .0 EIZ(K’C)_

2 -

;- _ _'

3 with a similar structure for By = 312. Note that from the symmetry of
.

':.' '.1 R T ! 3 : : - g . - !

F B °, we have Bll(kl’kz) ,(Bll(kZ’kl)) , 322(11,12) = (322(12,11)) , and
3 o ey

3 Bis (k,1i) (321(1,k)) .

- 3-21

FroorrmrT

DAL L S I e e . s [ - CL - . - T, . L T e a -
ARSI, AP S AR A RETE I S R R A A S-S AP PP U SL SO ST ST SR A SN S A S -~ a




LRI L A1 R )
W Beaty SRR

.
[RS

NSWC TR 82-74

At this point it is useful to distinguish between the different parameters
in 8. These-were indicated previously in equations (2-18) and (2-20) as the
gage class calibration error variance ratios yk,k =1l,...,K and the
explosive class performance va{iance covariance ratios in ei,i =1,...,C. Let
us now indicate the tth unknown element of o; (and also T;) as ;..

Here, the actual assignment plan is arbitrary. There will be p! of these

parameters for each explosive class.

Choosing 6, = Tipo the derivative aD/aet H aD/arit in

(3-62) is given by

0 0
3D _ = , ' ' (3-72)
Itie 0 AT/ 35 ¢

where 3T _ = Block Diag (0,...,0, ,0,000,0) (3-73)

Itie Itit

Consequently,

aT,
p-1 3 __ = Block Diag (0,...,0,T7! _i_ ,0,...,0) . (3-74)
3tit 1 3ti¢

1

Also, the matrix [D-IB- = I) in (3-62) consists of the rows of the

partitioned B_l matrix premultiplied in succession by the diagonal blocks of
p~l with identity matrices of the forms IMk and IJi subtracted along the
diagonal. Postmultiplication of this by (3-74), then, gives a matrix consisting

of a single column of submatrices as shown in (3-75). And by a similar argument

one obtains (3-76). 1In these the dashed lines indicate the partitions between
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explosive classes and gage classes. As stated above, these equations apply to

equation (3-63) by replacing B-l or B matrices by similar Q terms.

These results can now be used to simplify the derivatives in (3-49) through

(3-56). In doing so we use the definition

g
v;[ ] _ (3-77)

where E corresponds to the gage class elements and T to the explosive class

elements. Furthermore, we choose E:and.i to be partitioned in the manner

T

E; and ﬁ& correspond to the kth gage class and the ith explosive class

L 1 L L} ]
discussed above so that E = (EI’EZ’“”EK)' and 7 = (E-I’EZ"”’ ), where

respectively. The derivatives then become

*
A =1 y'g- N (3-78)
ag2 204 202

el T 1 M
M =1 FTF +__:r{§ (kk)}-__ (3-79)
3 242 s'ksk Ykz 1’ Yk

* aT. _ aT,
A+l f7 1§ +ler 3[1’71 B (i,i) - IJ,] 71 1 ; (3-80)
dvit 292 "1 1§ "L 2 i 22 il 1 dtie

2 *
A =-_ly's+ N (3-81)
302202 ob 204

2 -

2 _% ', (3-82)
3V 302

3-25
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%*
321 B2 - l ﬁ' a'ri W
atigda? 271 arye 1
22" . 1 (Ll q (kK - IM] £
ek oly KLwe 1 W

+ ;%Z tr 3[%; Bll(k,k) - IMk}zz

*
ZA

) = 1 T 0 (k,) E
3Yk372 OZYkY x 11 A
L

3-26

Ttl 1
1 3Tit
Ti

ITig

PR

JROP S S U G

(3-83)

(3-84)

(3-85)

(3-86)

(3-87)
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2 *

aT.
X =15 T-1 Q, (h,i) -l 1§
aThsaTit 02 Th h 1 3rtie "1
aT - 3T,
+ '1 B (i,h) 1 _h 11 B (h i)l 10, =i (3-88)
h 3Ths h i 3T1t
2 *
E{3A )=-1 (N-cp) + N (3-89)
3023¢g2 04 . 204

2 %*
E{_32 =_1 1l er {o (k,k)} - M] (3-90)
vy 302 262y, | YK 11 k

2 * ) . oT. ‘
E (32X =_1 ¢r 3[Tfl Q (i,i) - IJ,] 7l 1 § (3-91)
2 * i 2
E( 2y )=-L er [l_ Q. (k,k) - er]
ATk vk Y8 {Lne 11

- 2
+ 1 er [l. B (k,k) - I (3-92)
2v¢ e 11 "

2 %
Ef( 22 J=-_1_ ¢ jo (2,k) Q (k,z)$
© \3vkdvy YﬁY{ A 11 - 11

- + L er 2'13 (2,k) B (k,z)i , ko= (3-93)
: 2vgv3 11 11

;1 .

3 T,

X E [2) Loer il o (i,k) 0 (k,i) 171 _1

& 3vkatit Y8 i 21 12 i 3tye

L

- - 1 Lx s oy ooe1 0T

: + 2 tr {T7* B (i,k) B (k,i) T 1 (3-94)
s 27% i 21 12 1 3tit

{

3

P‘

5 3-27
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2 * 1 ) , T,
E(2A__})=-¢tr (T71 Q0 (i,i) - 15 17 1
3TigdTi¢ 1 22 1 1 31ig

. 3T,
(t7l o (i,i) -1y ) 7l L
1 22 i 1 3tie

- 3T,
+Ler (7 B L) - 1p) T A
2 i 22 i

1 a‘fis
15 /. 1 9T;
(r7t B (i,i) - 15 ) T7" Ao (3-95)
1 22 i 1 3ti¢

aT
-t 17l (G,m)y Tl _h
i 22 h  3ths

*
E _EEA____
3Ths ITit

T Q (h,i) T
h 22 i dtie

- aT
+Ler il E (in) Tl B
2 1 22~ h a't'hs

-1 3 oy o1 9Ty .
T*B (h,i) T 1 , h =1 (3-96)
ho 22 i 9rtqe

The final simplification of the derivatives is achieved by exploiting the
repetition of o, within T,. As indicated in (2-20) and (3-65) o, is a
P X p matrix which is entered along the diagonal of Ti for each of the Ji
shots of the explosive class. To take advantage of this structure, then, we
further partition V and the matrices B-l and Q according to individual

shots. We will denote this by subscripting the explosive class index or indices

of the particular submatrices. For example, flz(k,iu) will refer to the p
columns of Blz(k,l) that pertain to the uth shot, and B?z(hu,lv) will
denote the p x p submatrix of Ezz(h,i) that pertains to the uth shot of the

hth explosive class and the vth shot of the ith explosive class.
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Employing this notation we can express the derivatives in forms highly

suited for computations as follows.

*
A_=_1 y'g- N (3-97)
302 204 202
*
g A= Lpr . Loeff ao)- e (3-98)
3 e 202 Kk 2 11 &
i! *
’ 3 =_1_Eﬁ' 3913
d 3Tit 202 w " Llu 3Ti¢ Iy
30.
+1 2: tr [9'1 B (1.,i)-1lel_1 ? (3-99)
2 g 1 u u P|] 1 aritg
2 [
32 _=-_ly'g+ N (3-109)
302342 b 204
3 2. % -z
{ 3y =-1 E'Ek (3-101)
P 3
20,
8 r  =-ls g7 iy ‘ (3-102)
> dtip302 2 g iy i iy '
?
3 2
37X =1 T MLl o (kk)-1y]E
3 RO 202y, A [Yk 11 Mk] 2
E‘ 1 - 2
& + 1 er [_1 B (k,k) - IM] (3-103)
j e w 11 k
5
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(

" 1l T o ,0E
3K vy 202‘{ Y s'k 1
k 2
+ L1 _tr {i (2,k) B (k,z)} , k#e
2vRy 11
2. * 30,
3 A = __1 Z ‘E" Q (k,i )971 i3
dvkdtie ZUZYk u K u 1 dri¢ Tiy

a2

*
A =

%
azx
3022302

27% i u u i 3ri¢
20, 0.
_l_zzn' i lelg (G,i)-1|el 1L 7
202 u v "ludtig |1 u v P| 1 37tie 1y
1 %@
+lz tr 9?13 (i ,i)-1 |e" 1
2 4 i u u pl 1 3tig
20
ol (i,i)-1]el 1
1 u u P 1 9Ti¢
90.
1 =' h g-1 ~1 i =
—_— el q (h,i)e .
292 E: ; “hy 3Tpe h 22 u’ i Btip iy
+ 13 e ol8 (i ,h)e’l *h
29 i u u h 3mg
3.
ol® (h,i)el _L1.},n=i
1 u u 1 3tit

= -1 (n-cp) + N
ot 20

'

%*
32A
3y 902

=_1 | lerdo (k,k)p =M
202y [Yk r{ll } k]

3-30

(.~104)

(3-105)

(3-106)
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2% . ae.)
E [ 22 = LY ¢r [ejlo(i,i)-IJ971 i
aritaaz 262 u 1 22 u u P] 1 aTit(

E-3_2L*_=-.1_tr 1 qQ (k,k) -1 2
dvk vk % vk 11 Mk
— 2
Loer LB (k,k) - Iy
ZY% ye 11 k
*
g% Yacl e {Q (2,k) Q (k,z)}
33 Yg ) 11 11

+ 1 ¢r {E (2,k) B (k,z)} , k=g
11 11

2 Y%

+
-

2.* 30,
g |32 =-L > trielq (i,k)q (ki)el 1.
IYRATit Y u 1 21 u 12 u 1 3¢

1 3Tit

[ ]

- - 20,
+ L Y trleld (1 ,k)E (k,i)e’l L
v l u 12 u

Yﬁ i 2 i

20,
+1 > erflel B (1,i)-1 el 2
2 4 22 u u P

i i dryg

230,
elF (i,i)-1]|el 14 $
1 22 u u ] 1 3tit )
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(3-110)

(3-111)

(3-112)

(3-113)

(3-114)
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2 %
E{ 22 __})=-3F etrlelq (i,h)
aThsaTit u 1 22 u u

e 2O,
h1 3rh e‘n1 QZé(hu’iu) 611 arl %
hs it
1 -1 =
+ 3 }:_;, tr {©; BZZ(iu’hu)
ol oh o1 B..(h ,i) &' e h# 1 (3-115)
h aths h 22 a’Tu i aTit ’

In these expressions the sums on u and v range from 1 to the number of shots in

the explosive class (Ji for the ith class).

3-4 RESTRICTED MAXIMUM LIKELIHOOD ESTIMATORS OF THE VARIANCE COMPONENTS

It is well known that maximum likelihood estimators of variance components,
symbolized above by 32 and.é, are biased, i.e., E(E?) # 02 and E(ED # fb
Hence, the distributions of the estimators are not centered, in the sense of the
means, about the true values of the quantities being estimated. For smail data
samples the bias can lead to substantial errors in estimation. Corbeil and
Searle (Reference 15), for example, show for a sample of size 16 that ML
estima;ors can underpredict estimators that are known to be unbiased by a factor
of two. The restricted maximum likelihood (REML) method is an attempt to
overcome this problem of bias. It has been demonstrated to produce unbiased
estimates when applied to a number of different linear models (see Harville,

Reference 5), and the property of unbiasedness is believed by some to be a

15gee footnote 15 on page 3-2.

5See footnote 5 on page l-4.
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general property of the method. Corbeil and Searle (Reference 16), however,
have shown that this may come at.the expense of estimator efficiency. Because
of the unbiasedness property of the REML variance components estimators and
their close association with the ML estimators, we.include them in this report.

The REML estimators of 02

and ¢ are based upon the likelihood

function associated with certain linearly independent combinations of the data
which possess zero expectations. Such sums of the observations, of which there
is a total of N-Cp in the present case, are known as the errof contrasts. It is
argued (Patterson and Thompson, Reference 17) that they may be thought of as

containing all of the variance component information and should, therefore, form

the basis of estimation.

1f we let'Rx denote a particular set of the error contrasts, it has been
. s . * o e s P e
indicated by Harville (Reference 5) that to within an additive constant the

log-likelihood function for Ry may be written as

PLAE I S!:gBl log o2 - % log|H| - % log|x'm-1x| - -li (zfxg?'ﬂ'l(fo]p. (3-116)
20

16see footnote 16 on page 3-2.

17gee footnote 17 on page 3-2.

AR AMEAse A oo
L Ul dae e

*Harville cites his 1974 paper (Reference 24) for this derivation, but it is
derived in a Bayesian context. However, the author has been able to verify

r‘ this expression in a classical setting using rather straightforward variable
- transformation theory along with several matrix relations published by Harville
- in his 1974 paper.

A

B 24ygrville, D. A., "Bayesian Inference for Variance Comnonents Using Only

3 Error Contrasts,'" Biometrika, Vol. 61, 1974, p. 38.

1

. 5see footnote 5 on page l-4,

L -
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g

2 are those values that maximize (3-116). We

The REML estimates of ¢ and o
now show how the derivatives required for the maximization of x# by the N-R
and Fisher scoring optimization schemes may be obtained from the derivatives of

*
X .

*
In the same manner that we obtained the A derivatives given by (3-26)

through (3-30), and (3-36) through (3-38) we can write

#
A =1 (yxp 5 l(gxm - L (§-cp) (3-117)
302 204 202
# -
A = 1 (yxp et B pl(yxp - Ler (2 2R (3-118)*
98¢ 202 30 2 de¢
ol 1 el 1 ¢
A__ = - L (y-Xm) HH(g-Xm + - (§-Cp) (3-119)
2342 6 = 4
30430 o 20
Lt el -1
22 =l (yexp Bl [2R (1-2pw)| HTl(y-x@) (3~120)
30g302 204 38g '
2. # 2
A= 1 (yxp'-l | 3B _ -2 30 p 3H | g-l(y-xp)
30530 242 36g36¢ dog 36t
- 2
) -ler)p | 3H - 3H paH (3-121)
-
i
- 22, * 1 (N=Cp) 1
& E{22A _\=-Ll (n-cp) + {N=Cp) = . (N-Cp) (3-122)
2 302342 o 204 204
»'..'_ —
Fi *Note that if ¥ = g#(az, 8, F(g)) and g = g#(az, 8, u), that T is a
— solution to 3g/3u = 0. Hence, aat/30, = 2g/30, evaluated at u =T
-
. 3-34
{
-
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2.4
o 1\ N ;p .a_rz_g (3-123)
384302 242 38g
Y s P P I
360g36¢ ) 2 36g36¢ 30g  38¢
2
~lerlp | 2H -3 g1 3H {la-1p¢r ’p 3 p M (3-124)
2 906g30¢ 38g 38t 2 d8g 30¢

It is observed that equations (3-117) through (3~124) differ only slightly
from equations (3-26) through (3-30) and (3-36) through (3-38). The
expectations of derivatives are shown above both in a way that emphasizes this
similarity and also in their algebraically simplified forms. Close inspection
of these results reveals that we can immediately write down the REML equivalents
to equations (3-97) through (3-115) by simply using the submatrices of Q where
those of B.1 appear and by empléying (N-Cp) in certain places where only N
appears. By proceeding in this manner and simplifying the results we obtain the

computational forms of the derivatives as

A =1 y'g-_1_ (5-cp) - (3-125)
302 244 202
#

% A = _1 ;;gi + .1 ¢er {Q (k,k)} - EE (3-126)
R Mk 202 2v¢ 11 2k
E‘ BX# = _1_ Z W' ae1 7.
- atit 202 ‘u iy At iy
-
b
. 3.
= sl erdlolo (1,i)-1]e1 4 (3-127)
.. 2 3 i 22 u u p|] L 3tie
i
2
.
- 3-35
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2. #
32 _=-1 y'z+ L (n-cp) (3-128)
202302 ob 244
2. #
) A B - l —'E'k (3-129)
a'rkaoz 2 -
2 # 30,
IR = -1 T L7 (3-130)
3tjpao02 2 u iy drig iy
2. #
dA _=_1 T'|l q (k,k) - Iy |
M3k 202y Kk [k
1 1 -
+ tr /|2~ q (k,k) - I (3-131)
24 {[m L J }
2. #
A= L T q (k) F
3vkaYy 2027 Yg, k 11
+ 1 ¢tr {Q (2,k)Q (k,z)} , k=g (3-132)
ZY'EY{ 11 11
2. # ' 90,
. 37 = 1 Z T Q (k,i) 971 i g
= Ik dTtie 202.{1: n 12 u 1 3rye Tiy
- ' ) ) 20,
= + 1 Z tr ge‘.'l Q (i ,k)Q (kx,i) e'.'l 1 % (3-133)
g - 2v¢ @ i 21 wu 12 u i 3¢
g 2. # ) 30,
{. 315537t 262 T F iy 7yg i 22 u v pl 1 dtjr iy
0
- 1 1o (1.i)
- + 21 tr /|e7 i,i)-1
E:, 2 ? {[ i Q U u p]
- 2© 3
4 ol i leglo (i,i)-1]e’l 4 (3-134)
& 1 3rig 1 u u p 1 dtie
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30,
= ¥ gl i) el DL
“hy, 3Thg 22 u v i :

3Ths

L 2O,
22(hu,iu) o} ...L.% , h#i

1 3Tit

~1 . .
t Lk (k,
r iei 021(1u ) le lu)

tr 3[9710 (i ,i) -1]
1 22 u u P

_1 o -1 %
eltq (i,i)-1]e " —
i 22 uw u Pl 1 37tit¢

3-37

(3-135)

(3-136)

(3-137)

(3-138)

(3-139)

(3-140)

(3-141)

(3-142)
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2. # 30, ‘
Ef( 22 ’-thr QTIO(i,h)e'l_ﬁh olq (h,i)egl % {, 1
IThsdTit 2 5 1 22 u u h 3mg h 22 u u 1 3tit
4
h =i (3-143)
As before, the sums on u and v range from 1 to the number of shots in the 1
explosive class.
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=
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CHAPTER 4

NUMERICAL METHODS

Following Jennrich and Sampson (Reference 13) we propose the use of the
combined Newton-Raphson and Fisher scoring procedures to obtain the ML or REML
estimates of the variance compo ents, Satisfaction of the constraints on the
iterated variance covariance matrices will be handled by the interior penalty:*

function technique. While the expressions below may be used interchangeably to

obtain either ML or REML estimates, they will, for the sake of brevity, be given

in most cases in terms of the ML notation only.

4-1 UNCONSTRAINED OPTIMIZATION

. . Concise descriptions of the Newton-Raphson and Fisher scoring algorithms

may be stated in terms of the parameter vector

(02’71""’Yk’711’"”le""’TCI"‘f’TCw) s (4-1)

L
I

!. The N-R method is an iterative procedure that corrects an

where m = p
initial guess &, oOr the value of the iterate after i steps, [ by an

amount

fui = -%y wy o, (4-2)

13see footnote 13 on page 3-2.
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TR

whe . =, -,
re 591 241 7L

ws, FA* is the gradient vector

. * * * * * * \! .
m* o[, 3 80 A e L), (4-3)
P 202 371 Iyk 97111 3Tl ¢ 3tcl arct

and X is the Hessian matrix defined by equation (4-4) shown on the opposite page.

Note that in (4-2) YA* and J are evaluated at w;- The method of scoring is

T

identical to the N-R algorithm except that EQO is used in place of XK.

4~ I

*
Both the N-R procedure and the method of scoring approximate the i

function at each step of the iteration by a quadratic function. In the case of

¥! the N-R method this is
A ) =A%)+ (D ae + L (dw ) R M, (4-5)
.- i+l i -1 Ti 2 —i iT1
which is recognized as the Taylor expansion of A* about the point @; up to
the second order term. Upon taking the gradient of x*(2i+l) we get¥ .
D, )= DY 2K, (4-6)
i+l -1 17 1

which must be zero at a maximum. Hence, equating (L4-6) to zero and solving for

*
S, gives (4-2). 1In order for (4-5) to approximate A near a maximum,

as opposed to a minimum or saddle point, the Hessian.ﬁ% must be negative

'
o definite, i.e., 2J8z < 0 for any vector z # 0 (in particular aAw.), since

*
- any excursion away from the maximum must result in a decrease in ) .

*Use footnote on page 3.4 and symmetry of JC.
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The fact that away from the maximum JC need not be negative definite can
cause the N-R interate to diverge from the maximum if the starting conditions
are poor. It is for this reason that Jennrich and Sampson (Reference 13) employ
the method of scoring in the initial step of the iteration and whenever the
process appears to diverge. Since E(®) is nonpositive definite (<0) and in
our case will most likely be negative definite (<0), the scoring step Aﬂi =
-[ECKD]-IXAI will at least locally always be in the direction of
increasing A*. To show this we examine the component of bw, in the

*
direction of ;. Using Figure 6, this is

|dw | cose = (aw ) Wa¥/|ar¥| = ~(1a¥) ' [EGO]7L ¥/ n¥| > 0. (4-7)
1 i Ti T1 i =i i

. : . *
Hence, cos ¢ > 0 and Sw, has a component in the direction of increasing i .

Figure 6. X* contours and parameter vectors associated with the Newton-Raphson

and method of scoring optimization schemes

135ee footnote 13 on page 3-2.
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To prevent the step Agi from overshooting the local region of

*
increasing A the step is often written in the modified form
Mwj = -p;[EQO]IL mf (4-8)

where 0 §.°i < 1. The value of p; can be chosen in various ways (e.g.
see Fox, Reference 25) but Jennrich and Sampson (Reference 13) simply halve the

*
preceeding step until an increased value of A 1is obtained.

4-2 CONSTRAINED OPTIMIZATION

It is expected that for most sets of data the unconstrained N-R and Fisher
scoring algorithms will produce estimates of w that lie in the feasible region
of w space -- that is, the region corresponding to positive definite variance
covariance matrices. When such is not the case, however, we need a method by
which the maximum of x* within or at the boundary of the feasible region can
be found. A popular and general method for effecting such a solution is
referred to as the interior penalty function technique (see e.g. Reference 25
and 26). We will use a version of this method proposed by Carroll (Reference
27) that maximizes the function A*(g) instead of A*, where A* is

defined as

25Fox, R. L., Optimization Methods for Engineering Design (Readiag, MA:
Addison~-Wesley Publishing Co., 1973).

13gee footnote 13 on page 3-2.

26p0ki, M., Introduction to Optimization Techniques (New York: The Macmillan
co., 1971).

27carroll, C. W., "The Created Response Surface Technique for Optimizing
Nonlinear, Restrained Systems,'" Operations Research, Vol. 9, 169.

4-5
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A*(w) = 2*(w) - g(w) (4-9)
and 2(w) = 2 ky/rylw) . (4-10)
2

Here x = {Kz} is a set of positive constants and we assume that the set of
constraint relationships can be expressed as {r£(2)>0}. For a given

starting point w, within the feasible region the iteration process is

conducted in the same manner as in the unconstrained problem. However, the
iterate is now deflected away from the constraint boundaries by the penalty term
g(w). When the process has converged to the maximum of A* (within the

feasible region) the process is restarted from the point of convergence using a
smaller set of « values in the objective function A*. This sequence of
operations is repeated until there is no appreciable change in the final A*
values. It should be noted that only those constraints in danger of being
violated need be included in (4-10). That is, we might set a number of the «x

coefficients to zero throughout the course of the computations.

In the present problem we require that the variance covariance matrices T

and T be positive definite and 02>O. As T, given by (2-17), is diagonal

it will be positive definite if and only if its elements are positive. And T,
given by (2-19), will be positive definite if and only if the diagomal blocks
ei, i=1,2,...,C are positive definite. It is convenient to specify the
constraints on the {ei} in terms of their discriminants. The mth
discriminant of ei, denoted as sim’ is defined as the determinant of the

upper left hand submatrix of size m, (This could also be called the upper left

4-6
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hand principal minor of order m.) It can be shown (see Hildebrand, Reference

28, p. 51) that the p x p matrix ei is positive definite if and only if

v B AR S et * .
£~ ROSNDIENS: i
. L I IN R FE

2 e

Gim >0, m=1, 2,...,p. Consequently, we may now specify the required

Pp—
ADAOAMD

constraints in a manner that is consistent with the r notation used in (4-10).

These are
o >0, (4-11)
E? v, >0, k=1,2,...,K (4-12)
: §ip >0; 1=1,2,..0,C,m=1,2,..0,p . (4-13)

In order to use the unconstrained techniques developed earlier in this

. *
section for the purpose of maximizing A we need first and second partial

derivatives of z(w). These are then subtracted from the corresponding

* . ) *
derivatives of A (or x#) to form the derivatives of A (or A#).

Fl Making a self-explanatory change in the « notation and defining em 28 the

cofactor of the element T in the matrix with determinant 8;qm» We can

t

write the derivatives as

AR Al f i P M S )
S

1
3 = - (02)/* (4-14)
302

E“ .

- 32 = - k(y )/y2 (4-15)
vk k k

b 2 i Nt
- s e

T T TS

28yi1debrand, F. B., Methods of Applied Mathematics (Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1952).
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3L =- 2% (s ) c /82
Itit n= 1m 1tm 1im
2 6
28 =2 «(o?)/0
302302
2
3t =2 k(y)/y3
3YK YK k k
2 P 3
2 =2 3 k(s )2 /4
ITitdTit m=1 im itm 1m
2 P ac,
5 = k(s ) |2¢, o, /83 - _itm /42
3Tig9Tit m=1 im itm 1ism 1m 3Tis im
2’ 2 2 2 2 ‘
8;_ :a; = 3z = 9T =3; = (0

Ingd02 3ty d02  3TkIYy  INkATit  3IThsdTit

In (4-21) k # 2 and h # i. For a value of p equal to 2 or 3 the value of

3¢, /3755 in (4-20) is 0 or +1 respectively with the signs of the

(4-16)*

(4-17)

(4-18)

(4-19)

(4-20)

(4-21)

latter depending on the detailed descriptions of the discriminant functions. We

define a cofactor Cem 35 2Zero if the Gim discriminant function does not

contain Tit.

*Derivatives of a determinant |A| may be obtained from its expansion in

terms of cofactors

AI =2, ajj cij, where cjj is the cofactor of
ajj in A. Hence, 23

A|/2ajj = cjj (see Searle, Reference 20, p. 86).

20gee footnote 20 on page 3-10.
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4-3 OTHER COMPUTATIONAL CONSIDERATIONS

Monitoring the progress of the iteration process in either the
* . 3 I3 3 K3 *
unconstralned or constrained settings will require the evaluation of x» or

A#. For this purpose we write them as

which, with the exception of the determinants, involve quantities that are

easily computed from previous results.

! -
We can obtain the determinants |H| and |X W 1x| in forms more suitable

for computations by using the identities (see Searle, Reference 20, p. 96)

611 G127 . -1

= el ¢ [eg2 - 621 611 Gp2f (4-24)
G211 G2 ]
G11 G127 -1

= |G ¢ 611 - G1p G2 61| (4~25)
621 G22| ‘

which respectively assume the nonsingularity of G,, and G,,. By applying
11 22

these identities to expand the determinant

20see footnote 20 on page 3-10.

4-9

A* = - Nog (2702) - L 1og (|H]) - L y'(z-Xg-2¥) (4-22)
2 2 2462 =

i = - LH%ERl log o2 - % log (|H|<[x'u"1lx|) - —lf ¥ (y=XE~2%), (4-23)
20
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(p-1 + 2'2) z'
z 1

we find, as shown by Hemmerle and Hartley (Reference 11), that

|| = |p-l+z'z| « [D| = |B]  |D]| . (4-26)

Now, using the partitioned form of B given in (3-20) and the above

identities we can write |B| in two forms

U'U+r-1 U'w 1] ] ] ] !
|8| = ' ' z |U'ver~L]o|w'wer-l-w'ucu e -lu'w | (4-27)
W W ow+Tl
and
U'uer-l u'w , , L, \
|B| = . ' = Wwerl ojuvert - v'w wwerD7Iwy L (4-28)
W'y W w+rl '

It is observed that the right most determinants in these equations involve
matrices that are inverted to give féz and 311 in (3-22a) and (3-24b).
Since the determinant of a matrix can in many cases be obtained as a by-product

of the inversion algorithm, e.g., a Cholesky decomposition (Reference 11), we

‘can easily compute |B| by either (4-27) or (4-28), depending upon which set of

equations (3-22a) through (3-24a) or (3-22b) through (3-24b) are used to invert

B. The other determinants needed to compute H are also easily obtained;

[ - ' -
|u u+r ll is the product of diagonal elements and |Dj and |W W+T 1, are
given by the products of the determinants of the diagonal blocks. To obtain

' -
|x H 1X| we note that ALy given by (3-15) may be expressed as

llgee footnote 11 on page 3-l1.

4-10
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ry I S R S i (4-29)

" {x' [1-zp(1+z zD)712 1%

from (3-7), (3-18), and (3-39). Hence, |X'H_1X| may be formed as a
by-pro&uct of the inversion process by which we obtain Xil'
As a final note concerning the numerical methods it is observed that many
of the matrix operations required to'inverg matrices A and B and to calculate
the derivatives can be done once and reused in the subsequent iterations. For
example the products X'X, X'U, X'W, U'U, U'W, W'W, X'X, X'U, X'W, and Z'Z all
involve known fixed constants. Furthermore, since the various equations used in
the calculations depend on.the larger (N rows) matrices X, U, W, and y through
these products only, storage can be economized by computing the product matrices
in advance and not saving X, U, W, and y. It is also pointed out that in
computing the trace of a matrix product, an operation that frequently appears in
the expressions for the derivativeQ, it is onl} necessary to compute the
diagdnal elements of the product. For this reason and because the matrices
appearing in these traces are generally of modest sizes, the computation of the

derivatives should be rapid in comparison with the inversion times for matrices

A and B.

L g

.rrr]vwvvv_"“,",‘x v ~: "
i . B ettt AR AR,

4~11

P I, R D S S W WO W S Aol Ty P UL YA U S WP W SRR LN ST | NI P A R P U L







R P WD

TURON

NSWC TR 82-74

CHAPTER 5

APPLICATIONS OF THE MODEL

In this section we indicate some of the applications for which the model
may be used. W¥o attempt is made to be exhaustive in this effort; rather, we
will attempt to show by a few useful examples that the applications are wide

ranging.

5-1 DIRECT RESULTS

Results obtained directly from the model computations are the ML or REML
estimates of the following quantities (again we show just the ML estimates):
the general experimental error variance az; the gage calibration error -

variances for different gage classes given by

~ —_— A A
02 =z Var(a®* ) =502 , k=1,2,..., K; (5-1)
k km k

the variances and covariances of the performance variations of different

explosive classes given by

A A A A )
£ =var (*) = & &2 , 1 =1,2,00., C (5-2)
i 1] 1

the similitude equation coefficients for different explosive classes given by

= [Z\‘ux' + Kuz']x ; (5-3)

NS WA SU VL T Y Py PO Dol
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the sample values of the gage class calibration errors a and explosive

performance variations b given by

[%] = (a2 ' x' +2a Z']X ; (5-4)
12 22

and the error vector or vector of residuals given by

=y-xi-ug-wh . (5-5)

jo>

In these expressions and below the submatrices of A.1 are computed using the

ML or REML estimates of the variance covariance matrices.

It is common in ordinary regression models to examine the model residuals
for systematic trends that would indicafe inconsistencies between thé data and
the model. Various téchniques in this regard are discussed by Draper and Smith
(Reference 29) and by Seber (Reference 7). In the present mixed model such
examinations can be extended to include the estimates of all the random
effects. Tests of the distributional assumptions can be made directly on the
values of é, E, and § using, for example, the methods summarized in Mehrotra and
Michalek (Reference 30). The identification of faulty gages or of anomalously
per forming ;xplosive charges should be immediately evident upon examination of &

and E.

29Dtaper, N. R., and Smith, H., Applied Regression Analysis (New York: John
Wiley & Sons, 1966).

7see footnote 7 on page 2-6.

30Mehrotra, K. G., and Michalek, J. E., "Tests for Univariate and Multivariate
Normality,'" RADC-TR-76-140, May 1976.

5-2
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5-2 VARIANCE COVARIANCE MATRIX FOR y, &, AND 6

From (3-12) u, and v = (a ,b )' may be written as
u R)
v R2

where

Ry X' Kilx'+Kizz'
= A-l t = -t P ' * (5'7)
Ry z K X'+ z
12 22
Here the components of A—1 are evaluated from the ML or REML estimates of the
- ] 1 T

variance covariance component ratios § and az. Since A 1 and [Rl’R2]
are complicated functions of y there is no known exact expression for the
variance covariance .matrix of §i, 4, and B. Nevertheless, it is a common
practice in this situation (e.g., see References 14, p. 205 and 15, p. 35) to
obtain dn approximate variance covariance matrix by treating A-1 as though it
were calculated from the true fixed values of 8. Equivalently, this presumes
knowledge of the true value of H. Equation (5-6) then becomes a linear function

of y and the variance covariance matrix is easily written down as (see footnote

on page 2-6).

: .E Rl . ] t ]
Var - = (1+2DZ ) [R ,R] 0?2
v Ry 1 2

Ry (1+2DZ' )R} Ry (1+2DZ )R 5

= | ' ' ' [} 02' (5-8)
Ro(I+ZDZ )R} Ro(1+2DZ IR

l4see footnote 14 on page 3-2.

155ee footnote 15 on page 3-2.

5-3
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Following Henderson (Reference 31, Appendix A) this can be simplified by use of

the relation

Ry A;; A X'x X'z 0o 0
[X’Z] = —t _ ' 1 [ -
Ry A A Z X p-lez'z 0 D™
12 22
1 0 ro A p-l
= . - 12 . (5=9)
) 1 o) a2 p-l
8 22
Hence, RiX = I
R1Z = - 4] (5-10)

RyX =0

RyZ =1 - KzzD'l .

By substituting (5-7) and (5~10) into (5-8) one readily obtains

iy A1l 0
Var = 2 . (5-11)
0 D457

An estimate of (5-11) can be obtained by substituting the ML or REML estimates

2
11°

derived as done by Corbeil and Searle (Reference 15) from (3-5) and (4-29).

of D, Kil’ Xlz’ and 02. The result Var(y) = A could have also been

In Reference 14 (p. 205) Harville has pointed out that (5-11), because H is

assumed toc be known, will tend to underpredict the dispersions of E_and

31Henderson, C. R., "Best Liner Unbiased Estimation and Prediction Under a
Selection Model," Biometrics, Vol. 31, p. 423.

15see footnote 15 on page 3-2.

l4gee footnote 14 on page 3-2.
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(g',ﬁ'). but suggests also that "the downward bias may, at least in some
instances, be so small as to be unimportant.'" Quantification of the accuracy of
this result (as well as of other results derived below in a similar manner) is
possible by means of Monte Carlo simulation studies. Such studies will be

pursued upon completion of the model coding and published in a subsequent report.

5-3 LARGE SAMPLE VARIANCE COVARIANCE MATRICES FOR ESTIMATORS OF COMPONENTS OF

VARIANCE AND COMPONENTS OF VARIANCE RATIOS

A well known result from the theory of maximum likelihood (e.g., see
Kendall and Stuart, Reference 32) is that the asymptotic (N+=) variance
covariance matrix of the vector of parameter estimates is given by the inverse
of thé information matrix J, which is the negative of the matrix of expected
values of the second derivatives of the log-likelihood. In our case with (4-1)

as the vector of parameters we have
J=-E00), (5-12)

where J€ is given by (4-4). Hence, denoting the vector of ML estimates as
é = (32’?1"“’?K’?ll""?l‘ﬂ”“"?Cl"""?Cﬂ)' (5‘13)

we can write

var(g) > 371, (5-14)

32gendall, M. G., and Stuart, A., The Advanced Theory of Statistics (London:
Charles Griffin & Co., Ltd., 1973), Vol. 2.

5=5
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where equality is achieved in the limit as N+», This lower bound is, however,
often used as an approximation for Var(g). An estimate of Var(é) may thus

be obtained from the final iterated value of E(E).

" Often it may be of more interest to know the variance covariance matrix of

the estimators of the components of variance rather than of the components of

variance ratios. Suppose this is denoted as

“' ¢ = (52,52
- 1

;. ,000’82,‘3 ,oooG ,ono,\’; ,0-0,6 )' y (5-15)
b K 11 1x cl Cr
b .
.
: where as in (5-1) g2 = y 02, k = 1,...,Kand § =7, 62,i =1,...,C, j =
: k k 1] ij

l,...,m. Corbeil and Searle (Reference 15) lL.ave shown that the relationship

between Var(é) and Var(é) is given by

Var(i) = Q Var(é_) ﬂ' , " (5-16)

where Q is the Jacobian matrix for the transformation from @ to w. This

is easily shown to be

Q = s (5-17)

where w- is defined by w = (02,3_) . Hence, the large sample value of

Var(_@) can be obtained by substituting J-l for var(@) in (5-16).

» l5see footnote 15 on page 3-2.
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5-4 PREDICTION OF THE PERFORMANCE IN A PAST TEST

In our discussion of the basic model for a single observation, Section 2-1,
we let fij(X) denote the value of the principal quantity of interest in the
shot of the ith explosive class at some reduced travel distance x from the
charge. We assume fij(X) is any 1 to 1 transformation, such as the logarithm,
of a possibly reduced performance index or effectiveness factor that has
physical meaning and significance. In the light of past discussions we will now
use a somewhat more explicit notation and let fij(x) denote the realization of

*
the random variable fij(X) that in accord with (2-7) may be expressed as

£ = o'y + 8'8%;5 . (5-18)

‘Here ¢ denotes some vector function of the arbitrary distance x analogous to

Qijkm described earlier. Following suit, we write the unknown realization
*

of fij(X)’ that is the sought after quantity, as

. ]
. _ - N\
fij(x) = 21}1 + igij ) (5 191
and the ML estimator of fij(X) as
’A
By =2 + 0

. (5-20)

A
Here Bij and gij are the subvectors of the vectors ﬁ and b that correspond

*ne jth shot of the ith explosive class.
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Confidence limits for fij(x) may be obtained under the assumption of a

known variance covariance ratios matrix H. The limits so obtained may be

reasonably accurate when sample sizes ase large, but when samples are only

modestly sized the confidence interval will correspond to a confidence

coefficient that is smaller than the one specified.

Nevertheless, it may be

possible to attach a more realistic confidence coefficient to the interval by a

Monte Carlo simulation procedure.

Hence, we include the theory in this report.

Dropping the argument indicating the explicit dependency on x, we can

define a vector ¥ such that

.

£ij = ¥ .
N4

(5-21)

Comparing this with (5-19) it is obvious that z.consists of a column of zeros

imbeded with two ¢ vectors located in such a way as to extract the Mg and

éij subvectors from M and v.

* ' FH
£i5 = ¥
1] L o
and
A ] E.
fig=2 |.]-
v

The development of confidence limits for fij
similar to that found in a more general study due
Under the assumption of known variance covariance

33Harville, D. A., "Confidence Intervals and Sets
Fixed and Random Effects,'" Biometrics, Vol. 32,

5-8

Similarly we can write

(5-22)

(5-23)

can proceed in a manner
to Barville (Reference 33).
ratios, p is unbiased and it

for Linear Combination of
1976, p. 403.
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can be shown (see Henderson, Reference 31 for an explicit derivation) that the
a *
random variable fij-fij is normally distributed with a zero mean and
. =12
variance ¥ A "¥Yo~; hence
(£F15-£F)/(2"a lyo)1/2 ~n0,1) (5-24)
Furthermore,

2 = y'e/(N-Cp) (5-25)

is an unbiased estimator of 02 and it can be shown that (N-CP)?Z/:J2
is XZ distributed with (N-Cp) degrees of freedom and is independent of

(5-23). From these results it follows that

£..- f*
ij ij -t . (5-26)
(v'a-ly)1/2% N-Cp :

i.e., has a t distribution with N-Cp degrees of freedom. Then, from the

symmetry of the t distribution, we have

prif|Ei;-£15] < A IDV2 F ey Nogpl =1 - 6, (5-27)
where t6/2,N-Cp is the 1008/2 percentile of the tN-Cp distribution.
Hence, for a particular realization we find that
.. "a=lyyl/2 ~ -
fl_] + (iA 1) [+ tG/Z,N‘CP (5-28)

3lgee footnote 31 on page 5-4.

5-9
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are 1-§ confidence limits for fij (termed '"unconditional" confidence limits
by Harville in Reference 33). These, of course, are valid for any values of the

regressor variable x.

' -
For computation purposes it is useful to express ¥ A lz.in the

following manner
YATly = 047, (ui)e + 28 Kyo(pi,B:5) &+ & App(Bi;) 2 . (5-29)

Here K&l(ﬂi) and Ké2(§ij) denote the p x » submatrices of A-l-having
rows and columns corresponding to n; and Bij respectively and the
submatrix Alz(gi’éij) corresponds to the u; rows and the éij

columns.

If a logarithmic transformation of the respounse variable has been employed
it may be of interest to estimate and obtain confidence limits for the antilog
of fij' Suppose the common logarithm was used. Then the ML estimator of the
(possibly reduced) performance index Tij in the jth shot of the ith

explosive class would be

Ii5 =10 (5-30)
and from (5-27) confidence limits for Tij would be given by

33gee footnote 33 on page 5-8.

5-10
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5-5 PREDICTION OF THE PERFORMANCE IN A FUTURE TEST

Continuing the notation of the previous section; we now congider the
prediction of the performance index in a future test at an arbitrary distance x
from the charge. We assume the charge is of the ith explosive class where
1 <i £C. To avoid confusion with past quantities we will indicate the
future value by fi*’ i.e., an as;erick in place of the subscript denoting a

particular shot.

In analogy with (5-18) we let fi* be the realization of the random

variable

3 ' ]
ffe =0 u; + 08%T% (5-323

% o
where ﬂi* is independent of past quantities and therefore of y and u.

Under the assumption of a known H, an unbiased estimator of fi;'is given by
i* = 11]1 . (5"33)

To obtain confidence limits for fi* under the same assumption consider

~ *
the random variable f. - f., . We have
i i

E (£,F,) =8y -0y =0 (5-34)
* L 2
and Var(B, ,~£,,) = & (&, (u;) +9,) 80" , (5-35)
S _* ' 2 5
so that £, -f., ~N(0, & (A}, (p;) +©;) 857). (5-36)
5-11
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. . ) *
Now, since 32 of (5-24) is also independent of fi*’ we have

£, Y d
— ik ik ~t (5-37)
(o (A11(ni) + ©;)e]1/25 — N-Cp
<
This allows us to make the probability statement
Pr{‘fi* - %] 5-[2:(A11(2i) + ei)2J1/2 a'tG/Z,N-Cp} =1=3. (5-38)
Hence, 1-¢§ confidence limits for a particular future realization £ow
aré given by’
fiv + [0 (A1 (ug) + 9812 F tg/p ngp - (5-39)

As emphasized in the previous section, these limits will tend to underpredict
the size of the confidence interval because we have assumed the estimated value

of H to be the true value.

1f a common logarithmic transformation of the data has been used, the ML

£,
estimate of Tjx = 10 1* can be obtained from

A

~ f.
Tyw = 10 ix | (5-40)
and approximate confidence limits for Ti% from

{fi* t [0'(X11(ﬁ) + ei)0]1/2 T t6/2,N‘CP}

10 . (5-41)

5-12
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