
(4/Y(~t)

TECHNICAL REPORT ARBRL-TR-02470

(Supersedes IMR No. 754)

MOMENT ON A LIQUID-FILLED SPINNING

AND NUTATING PROJECTILE:

SOLID BODY ROTATION

Nathan Gerber
Raymond Sedney

February 1983 A

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY

ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

I

~- 3 d~/g 06



Destroy this report when it is no longer needed.
Do not return it to the originator.

Additional copies of this report may be obtained
from the National Technical Information Service,
U. S. Department of Commerce, Springfield, Virginia
22161.

I;I

4 44

The findings in this report are not to be construed as
an official tepiirtment of the Arm), position, unless
so designated ',y other authorized documents.

4

I



SECURITY CLASSIFICATION OF THIS PAGE (*'hen Date Entered)

I PAGE READ INSTRUCTIONS
REPORT DOCUMENTATION PAGBEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S r.ATALOC' NtJMBEF"

"TECHNICAL REPORT ARBRL-TR-O470 i /•,A _ ___,__

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

MOMENT ON A LIQUID-FILLED SPINNING AND NUTATING Final
PROJECTILE: SOLID BODY ROTATION 6. PERFORMINGORG.REPORT'NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(a)

Nathan Gerber
Raymond Sedney

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

US Army Ballistic Research Laboratory AREA & WORK UNIT NUMBERS

ATTN: DRDAR-BLL
Aberdeen Proving Ground, Maryland 21005 RDT&E IL161102AH43

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Armament Research & Development Command February 1983
US Army Ballistic Research Laboratory (DRDAR-BL) 13. NUMBER OF PAGES

Aberdeen Proving Ground, Maryland 21005 57
14. MONITORING AGENCY NAME & ADORESS(i' di fferent from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified
15a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Appeoved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

This report supersedes IMR No. 754, dated October 1982.

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Linearized Navier-Stokes Equations Liquid Pressure Moment
LiquidrFilled Gyroscope . Viscous Shear Moment
Liquid-Filled Shell Rotating Fluid
Liquid Moment Solid Body Rotation
LiqUid Payload Spinning Nutating Cylinder

2(L. ABST-RACT rCdaohusz ca reverse. side It n~coaoary and tderuffy- by block number) (bj a)

The moment exerted on the casing by a completely spun-up liquid filling a
spinning and nutating right circular cylinder is evaluated. Among the restric-
tions of the theory are (1) assumption of small yaw angle, and (2) constant spin
and nutational frequencies and timewise exponential yaw growth. The new feature
of this work is the inclusion of viscous shear in the liquid force on the cyl-
inder walls. It is found that the vis-:..s shear contributes significantly to

FJAN 73 j, EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dets Entered)



LINOI ASSTFTFfl
SECURITY CL.ASSIFICATION OF THIlS PAGE(When Date Enfer.d)

the overturning moment in many instances. Outputs are compared with those of
the theory of Murphy, which makes the additional assumption of inviscid flow
except for boundary layers near the walls. Results of the two theories agree
well for high Reynolds numbers (>5x104) but diverge increasingly as Reynolds
number is decreased. Comparisons of calculated yaw growth rates are made with
measurements taken in gyroscope experiments for aspect-ratios of 1.0 and 3.1.
The differences between theory and experiment are greater for the 3.1 aspect-
ratio cylinder than for the 1.0 case. The present theory generally snows
better agreement with experiment at the lower Reynolds numbers than does the
Murphy theory. Both theories demonstrate a strong sensitivity of ya,.: gro:th

N rate v.variation in cylinder aspect ratio.

UNCLASS IF I ED
SECURITY CLASSIFICATION OP THIIS PAGE/g4"v, Dwot Fr-.e'ed



TABLE OF CONTENTS

Page!

LIST OF ILLUSTRATIONS ............ ................................... 5

I, INTRODUCTION ................................................... 7

II. ANGULAR MOTION OF PROJECTILE ................................... 8

Ill. COORDINATE AND VELOCITY TRANSFORMATIONS ........................ 11

IV. FLOW SOLUTION AND WALL FORCES .................................. 13

A. Flow Solution .............................................. 13

B. Shear Forces ............................................... 18

V. EVALUATION OF LIQUID MOMENT .................................... 21

A. Expression for Liquid Momernt ............................... 21

B. Sidewall -Moment .......................................... 22

C. Endwall Moment ......... ............ .............. ....... 23

Vi. NUMERICAL RESULTS: MOMENT COEFFICIENT........................ 7

A. Effect of Wall Shear ..................................... 27

B. Comparison with Results of Murphy's Method....................... 27

C. Moments on Sidewall and Endwalls.......................... 28

VII. YAW GROWTH RATES: COMPARISON OF THEORY AND EXPERIMENT......... 29

VIll. CONCLUSIONS .... .............. ........ ....... ................... 32

ACKNOWLEDGMENTS ........................................... .. 33

REFERENCES ........ .......................................... 34

LIST OF SYMBOLS .............................................. 4

DTiSTRIBUT:ON LIST ............................................ 51

SI Da

IM

3

,'-V

II



LIST OF ILLUSTRATION•S

Fi gure LLaL

1. nliagrans of Coordinates and Cylinder .......................... 35

2. Pressure Momerc Coefficients (Sidewal 1, Endwal 1, Total),
Total Viscous Shear Moment Coefficient, and Total !'bment
Coefficient vs Nutational Frequency % =A0,OOQ, c/a=4.2ol,

0.0 = ........................................ . ... 36

3. Variation of Pressure Side-Moment Coefficient and Tota,
Side-Moment Coefficient with Reynolds Number for Fixed
Nutational Frequency (c/a=4.291, e-.0O. , X=0) ............... 36

4. Total Side-Mnvment Coefficient vs Nutational Frequency:
Comparison of Results of Reference 10 Method and
Present Method (c/a=4.291, e=O.O, X=O) ..............

5. Pressure and Viscous Shear Side-Moment Coefficients vs
Nutational Frequency for Re = i03 and f105: Comparison
of Results of Reference 10 Method and Present Method
(c,/a=4.291, E OC .O, z=O) .................................... 38

6. Pressure Side-Moraent Coefficient on (a) Sidewall and
(bW Endwalls: Comparison of Results of Reference 10
Mlethod and Present Method (c/az3.126, c=O.n2, Z=O) ......... .39

,/. Vscous Snear Side-Moment Coeftici-nt :n (a) Sidewal' ana
(b) Endwalls: Comparison of Results of Reference 10
;Method and Present Method (c/a=3.126, E=0.02, Z=O) ......... 40

8. Yaw Growth Rate vs Nutational Frequency, Case 1:
Comparison of Experimental Results witn Those of
Reference iF) Method and Present Method
(Re = 5.20x10 5, c/a=3.1c)4--Fitted) .......................... l1

9. Yaw Growth Rate vs iutational Frequency, Case 2:
Comparison of Experimental Results with Those of
Reference 10 Method and Present Method
(Re = 9.0)x!0 3, c/a=3.152--Fitted) .......................... 41

10. Yaw Growth Rate vs Nutationai Frequency, Case 3:
Comparison of Experimental Results with Those of
Reference in) .Iethod and Present Method
(Re = 5.21xI0 3, c/a=3.140--Fitted, c/a:3.126--Nominal)..... 4

'I. Yav Growth Rate vs Notational Frequency, Case 4:
Coxparison of E/periviental Results ;I,itn Those of
,eferrice 40 M.•ethod ano Prppnt. Miethod

(Re = 1.01xn Oý, c,'a=3.130--Fitted) .......................... 4

65



LIST OF ILLUSTRATIONS (Continued)

Figure Page

12. Yaw Growth Rate vs Nutational Frequency, Case 5:
Comparison of Experimental Results with Those of

Reference 10 Method and Present Method
(Re = 1.24x]0 4 , c/a=1.047--Fitted, c/a1.042--Nominal) ...... 43

13. Yaw Growth Rate vs Nutational Frequency, Case 6:
Comparison of Experimental Results with Those of
Reference 10 Method and Present MethodS(Re =2.40x10 3 , c/a=1.047--Fitted) ..........................

14. Yaw Growth Rate vs Nuttional Frequency, Case 7:
Comparison of Experimental Results with Those of
Reference 10 Method and Present Method
(",e = 1.26x103, c/a=1.047--Fitted) .......................... 44

I.; 6



I. INTRODUCTION

A liquid-filled projectile can become unstable in flight when resonance

occurs between the angular motion (nutation) of the shell and certain non-

axisymmetric inertial oscillations of the spinning liquid. Theoretical deter-

minations 1 ,2,3 of frequencies of these oscillations (eigenfrequencies), to-

gether with their associated decay rates, have been made, mainly for liquids

in solid body rotation after completion of spin-up. These stem from the work

of Stewartson 4 and Wedemeyer.' 6  Reference 7 describes flow field pressure

measurements made to determine eigenfrequencies experimentally for solid body

rotation, and Reference 8 treats measurements made during spin-up from rest.

The next step is to determine the liquid moment acting on the casing and

then to predict the angular motion of the projectile. Because of a simplify-

ing approximation* the early predictions of pressure moment 1 '2 were limited to

* The sum of, a Laurent series is replaced by a single term; see, e.g., Eq.

(5.10) of Reference 4.

1. J. T. Frasier and W. E. Scott, '"Dynamics of a Liquid-Filled Shell, " BRL

Report No. 1391, February 1968. AD 667365.

2. Engineering Design Handbook, Liquid-Filled Projectile Desig AHC Pamphlet

706-165, April 1969. AD 853719.

3. C. W. Kitchens, Jr., N. Gerber, and R. Sedney, "Oscillations of a Liquid

4n a Rotating Cylinder: Part I. Solid-Body Rotation," BRL Technical

Report ARBRL-TR-02081, June 1978. AD A057759.

4. K. Stewartsor, "On the Stability of a Spinning Top Containing Liquid,"

J. Fluid Mech., Vol. 5, Part 4, September 1959, pp. 577-592.

5. E. H. Wedemeyer, "Dynamics of Liquid-Filled Shell: Theory of Viscous

Corrections to Stewaetson's Stability Problenm " BRL Report 1287, June

1965. AD 472474.

6. E. H. Wedemeyer, "Viscous Corrections to Stewartsons's Stability

Criterion, " BRL Rpport No. 1325, June 1966. AD 489687.

7. R. D. Whiting, "An Experimental Study of Forced Asymmetric Oscillations in

a Rotating Liquid-Filled Cylinder, " BRL Technical Report ARBRL-TR-02376,

October 1981. ADA 107948.

8. S. Stergiopoulos, "An Experimental Study of Inertial Waves in a Fluid

Contained in a Rotating Cylindrical Cavity During Spin-Up From Rest,"

PhD. Thesis, York Univeristy, Toronto, Ontario, February 1982.

7



nutational frequencies lying close to liquid eigenfrequencies. Two recent
studies 9 ,10 have produced liquid moment calculations valid for all angular
frequencies. Reference 9 treats only the pressure moment on completely-filled
projectiles using viscous perturbation equations. Reference 10 treats both
presssure and viscous shear moments for partially and totally filled projec-
tiles, with and without central rod; this work is an extension of the
Stewartson-Wedemeyer theory which employs the inviscid perturbation equations.
In this report we extend the analysis of Reference 9, which uses the viscous
perturbation equations, to include the shear moment; again, we treat only the
filled shell.

There are four basic assumptions in all the studies, including the present
one: (1) The angle of yaw is very small, permitting linearization of Navier-
Stokes equations and boundary conditions. (2) 1he projectile is traveling in
a straight trajectory, is nutating at a constant rate about a point on its
axis, and experiencing exponential yaw growth with time. (3) The initial
state of the liquid is solid body rotation at a spin rate that remains un-
changed even after the perturbation is applied. (4) The timewise variation
of the flow variables is the same as that of the motion of the shell.

Gyroscope experimentsl'" 12 have provided simultaneous measurements of
(1) nutational frequency* T and (2) yaw growth rate r, the two param-
eters that describe the angular motion. Theoretical outputs will be compared
with these results.

II. ANGULAR MOTION OF PROJECTILE

Here we summarize Chapters II and VI of Reference 9. Two coordinate sys-
tems are considered. The first is an inertial, earth-fixed system of axes x,
y, z. The x-axis coincides with the projectile velocity vector, and the z-
axis lies in the vertical plane; then the y-axis is directed so as to form a
right-handed system. The second system is the aeroballistic x, y', z non-

* Definitions of terms are given in LIST OF SYMBOLS Section.

9. N. Gerber, R. Sedney, and J.M. Bartos, "Pressure Moment on a -iquid-Filled
Projectile: Solid Body Rotation," ARBRL-TR-02422, October 1982. (ADA 120567).'

10. C.H. Murphy, "Angular Motion of a Spinning Prcjectile With a Viscous
Liquid Payload," BRL Memorandum Report ARBRL-MR-3194, July 1982'
AD A118676.

11. W.P. D'Amico, Jr., and T.H. Rogers, "Yaw Instabilities Produced by

Hapidly Rotating, Highly Viscous Li"uids AIAA Paper 81-0224, AIAA 19th

Aero.-pace Sciences Meeting, St. Louis, Missouri, 12-15 January 1981.

12. R. Whiting and N. Gerber, "Dynamics of a Liquid-Filled Gyroscope: Update
of Theory and Experiment, "' ERL Technical Report ARBRL-TR-02221, March
1980. AD A083886.
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rolling system which has the i--axis along the projectile axis of symmetry, and
the z-axis initially in the vertical plane. These systems are shown in
Figure 1; the - and zi axes are omitted for clarity.

The x = 0 and x = 0 values are located at the midplanes of the unyawed and
yawed cylinders, respectively. The x-axis is nutating about the x-axis at the
angle K1 = K1 (t). The components of the projection in the y, z plane of a

unit vector lying on the X'-axis are denoted by nyE and n

The yawing motion is characterized by two variables, a and a. The angle
of attack, a, in the aeroballistic system is the angle in the vertical plane
measured from the x-axis to the velocity vector; the angle of sideslip, B,
is the angle in the horizontal plane measured also from the x-axis to the
velocity vector. For the small yaw angles considered, -nZE and -n YE'

It is convenient to combine - and ' into a single complex variable:

+ i • - (nyE + i nZ) (2.1)

The fluid pressure and viscous forces on the cavity surfaces produced by
the motion give rise to a moment on the projectile. The spin-decelerating
component, MLZ , is zero to the approximation considered here; the other com-

ponents can be represented in complex form, M . + iML• . We shall consider

only the liquid moment acting on the projectile; the liqutd moment can be
added to the other moments acting on shell or gyroscope as required. The
differential equation of yawing motion is*

I d2Z/dt 2 - i$ I dZ/dt + I M - = i (MJ + iML7 ). (2.2)y x y L

The quantity Ix is the moment of inertia of the empty axisymmetricshell -about

its longitudinal axis. I is the transverse moment of inertia of the empty

shell about its center of gravity. The spin rate of the shell is $, which is

taken to be positive in this work, and t is time. The term I M Z is an aero-
y

dynamic moment for a projectile. For a gyroscope this term is a gravitational
moment arising from the separation of center of gravity and pivot point, and
in most experiments is zero.

,1 hic, is Eq. (2.4) of Refernc 10 with okly the liquid moment on the

n,ight-hapd side.

9



In general there is an interaction between the motion 'of the projectile
and the liquid motion. Here we shall specify the motion of the projectile.
In particular the cylinder is nutating with constant frequency and exponen-
tially-growing yaw:

~=$(Ke tt i( Tt) if$t (2.3)

where

£ TtKI Koe -$t, f (1-i£).r. (2.4)

Here K is the magnitude of the yaw at time t = 0, T is the nutational
0

frequency divided by ;, and e is a yaw growth rate or decay per nutational
cycle. Also K1 is the yaw amplitude, and ¢I is the angular orientation* of

the Z-axis in the x, y, z system as shown in Figure 1.

The motion of the projectile enters the flow problem via the boundary
conditions. Under the assumption that the flow is in phase with the motion of
the shell, the pressure disturbance will have the time dependence of Eq.
(2.3), and consequently the liquid moment will also have this form. A
nondimensional liquid moment coefficient, CLM, is now defined:**

" ~~2.2 i
MLy+ i MLZ MIL a CLM Kl e 1, (2.5)

where mL is the mass of the liquid and a is the radius of the cylinder cross-

section. CLM is a complex quantity whose real part represents a moment that

changes the yaw angle, and whose imaginary part r'epresents a moment that
changes the nutation rate. Thus:

C C CLM -LSM + L (2.6)

where CLSM and CLIM represent the "liquid side moment" and "liquid in-plane

moment," respectively. As in Reference 9, we shall concentrate our attention
on CLSM, the liquid side moment.

P Fo•' simp!ieity the angqc of attack ic acz;ci1'uw.d to be initialLy zero and the
.1 J. , .f o o afre..nee 20 is
P-ePO.

* o See E. (2.7) in lieference 10.
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When the forcing momnit in Eq. (2.5), produced by the motion specified in
Eq. (2.3), is inserted into the yaw equation, 7q. (2.2), it is seen that the

of Eq. (2.3) is a solution to Eq. (2.2) for a restricted set of f's, na,,ely
those satisfying the functional equation

2 2

Iyf2 - I xf - IM/¢ -i (2 pa c) _: CLLM (f; Re, c/a). (2.7)

Here c is the half-height of the cylinder, p is the density of the liquid, a d
Re is Reynolds number defined by

2

Re = a I/v, (2.'

where ,J is kinematic viscosity of the liquid.

According to the Stewartson-Wedemneyer theory4 '6, CL Mf Eq. (2.7) is

regligibly small except near resonance. f resonance condition will generally

occur when -n ' CR, where rn ý is the nutational frequency of the empty shell

ana CR $ is a natural inertial frequency of the rotating liquid.

21 .2 +, 12 1
n + (Ix + 4 !y M'1 2, ]( y). (2.9)

For T CR, CLM can be approximated by the first term of the Laurent series of

a function with a simple pole4, 6

CLM - D/(f - CR),

where the residue, 0, depends on the parameters of the problem.

III. COORDINATE AND VELOCITY TRANSFORMATIONS

The flow problem is stated and solved in terms of the inertial cylindrical
coordinates x, r, a (where y = r cos 9, z = r sin a). However, the pressure
and viscous forces are integrated over constant i and ý surfaces to obtain
.ioments (where y = cos 8, z r sin 9). Also, the original statement of
bonJa,-y conditions is made in terms of x, r, o coordinates. ThuS, it 1 -
ful to have the tranformations between the two coordinate systems. From Eq.
(9) of Reference 9, applicable for small K0 ,

01r = KI '~ ) " -os + 0ý (Ko

" "K sin + 0 (K ) (3.1

2
x:: x + K r-cos ( C;-)+0(K ),

11



where X is the x (and x') coordinate of the pivot point. "All the above terms
are nondimensional; lengths and distances are nondimensionalized by a., The.
transformation may also be expressed as

y r ros 8 + (KI cos ri) (x - 2) )
z = r sin 0 + (K1  sin ýi) (x - .) (3.2)

x = x - K1 r cos (i " e).

We define Lhe flow to be a small disturbance to a basic flow, which is
taken to be solid-body rotation in an unyawed cylinder. The Navier-Stokes
equations are linearized to produce the perturbation equations.* The flow
variables are the radial, azimuthal, and axial velocity components,-and pres-
sure, given here in nondimensional form:

uS U - Kou, vN= V - KoV, wN= W -KoW N P K oP' (3.3)
NS 0 NS 0 NS o" PNS 0 . 33

The symbols uNS, vNS, wNS, and PS represent the total values, solutions of

the linearized Navier-Stokes equations. U, V, W, and P are the basic un-.
disturbed variables; and u, v, w, and p are perturbation variablos** of order
one.*** For solid-body rotation,the basic flow is

U = 0, V = r, W= 0, P = (1/2)r 2 + const. (3.4)

The velocity components are nondimensionalized by a$, and pressure by pa22$2.

In the aeroballistic system,the radial, azimuthal, and axial v.elocity

perturbation components are denoted by U, v, and w. The velocity transfor-
mation, from Eq. (A.2) of Reference 9, is given by

* •. P Eq. . (;) in Reference 3.
" The n!cgative signs in Eq. (3.3) were employed to comply with the

ý7oMnenoat7.,ti of Reference 10.

* ",;? .,3/r?7bOZP •, v,,, vpS p eolace the symbols z4 v, w, p in

,. (10) of Reference .9.

12



U - (Z-)eCtt[ET COS (i-•) + (1-t) sin (I-•)] + 0(Ko)

v - (Z.)eEt[-(l) cos - + CT sin (l- + O(Ko) (3.5)

S= w - r" e t [-CT cos (el-e) - (1-t) sin (€-0)] + 0(Ko).e0)

The tilde superscripts can be dropped from the second terms of the ri(lht-hand
sides of Eq. (3.1) and (3.5) without changing the order of error.

IV. FLOW SOLUTION AN) WALL FORCES

A. Flow Solution

Chapter III of Reference 9 treats the flow problem in detail; we extract
from it what is needed here. The flow variables are shown in E(Is. (3.3) and
(3.4); the perturtecd flow solution is

u = Real [u(r,x) exp ii(f~t-o) ]

v = Real jv(rx) exp ji(f~t-O)J]

* (4.1)

w = Real [w(r,x) exp) ji(f~t-O) 1]

p = Real [p(r,x) exp (i(fbt-O)}]

where u, v, w., and • are complex functions. These are expressed as the sunis

of two solutions:

u = U + i U u + U v v + i v v + v
"R I "p "H R I p H (4.?)

wS l' I + i w w +w, - + L +P

k I p H R I p I

where

u = -i(1-f)I/(1+f) Jx + i(1-f), v I -(1-f) 2/(1+f) ]x + (I-f)f
p "p

w i(l-f)r, p 1 -(-f) 2rx + (1-f ) r
p P

13



is a particular solution. The sub-H quantities are solutions of the following
equations, where subscripts denote partial differentiation and the sub-H is
omitted for clarity:

ru + u -iv + rw =0
r x

i(f-1)u - 2v -2 + (1/Re) u + u /r - 2u/r 2 + U + 2iv/r 2]
r rr r xx

(4.4)

i(f-1)v + 2u ip/r + (I/Re)[v + v /r - 2v/r 2 + v - 2iu/r 2 ]
rr r xx

i (f-i)' =-p + (I/Re)[w + w /r - w/r2 + w

-x rr r xx

These quantities further satisfy the boundary conditions at the sidewall

u (r=1) = -i[2f(1-f)!(l+f) ]x
H

H (r=1) : -. 2f(1-f)/(l+f)]x (4.5)
Hm

w (r=l) = 0,
HB

and at the endwall (where c= c/a)

u (x=c) = --i 2f(lmf)/(1+f)uj, U (x=-:) = -u (x=C) (4.6a)
"H LH

v (x=E) [ v (X=-•) =-v (x=c) (4.6b)
"H H H

V1 (x=-) w (x=-) = 0, (4.6c)
H H

plus boundary conditions at r 0.

14



As explained in Reference 9, a modal solution (separation of variables) is
required, but it cannot satisfy Eqs. (4.6a) and (4.6b). The need to drop two
of the three endwall conditions implies that we have a singular perturbation
problem; i.e., we must insert a boundary-layer or "inner" solution to satisfy
these. The technique of matched asymptotic expansions is used to treat this
problem. The solution u , v , etc., is decomposed into an outer solution,

H H
valid away from the endwall, and an inner solution, valid neat, the endwall.
lhe expansions for each are determined to certain orders in the small parame-

ter Re' and a composite solution is formed. The velocity gradients at t6;,
endwall needed for the shear force are obtained from the composite solution.

In Reference 10 the viscous correction of Wedemeyer,b originally used to
correct eigenvalues, is applied to correct velocities and pressure. Although
the formalism of matched asymptotic expansions is not used there, the basic
idea of obtaining a corrected flow is carried out. It is called the "invis-
cid flow" in Reference 10 even though it depends on Re; it would correspond to
what is called outer flow here.

The outer solution, designated by u, v, w, p, satisfies Eqs. (4.4), (4.5),
and (4.6c). The modal form of the outer solution is

U Z u (r) sin xXk, V V ~ (r) sin k
k k k k=

(4.7)

w - wk (r) cos \kx, p = i p (r) sin kx,
k z 1 k=I

* AA

where Uk, V0k, W, and Pk are complex functions of r; they are solutions to the

ordinary differential equations, Eqs. (33), with boundary conditions, Eqs.
(37) and (41), of Reference 9. This is the usual normal mode solution with

oX= kr/2E, where k is an odd integer. In Reference 9 it is shown that the
er solution is determined by the single condition of no flow through the

endwall, Eq. (4.6c), to the order 0 (Re-1/2); Eqs. (4.6a) and (4.6b) are not
used or satisfied. The accuracy of the solution to this order is unaccepta-
ble. To improve it, the second term of the outer solution must be obtained,
which, in turn, requires the first term of the inner solution and approoriate
matching of the outer and inner solutions. As shown in Reference 9,this pro.-
cess yields the one boundary condition

w 6c w 0 atx=± (4.x)

15



to the order 0 (Re_). (It has since been shown that this boundary condition

is correct to 0 (Re 3/2 The form of the solution is still Eq. (4.7), but
the are complex, determined from the eigenvalue relation

cos k + 6 c sin \k• 0 (4.,S(4.9)

where 6c is given by the following sequence:

a 2- 1/2Re 1/2( 1/2

2- 2 Re I/ Z(+i, ) (i+f) /2 (4.10)

.T1

The complex square roots are chosen to be the ones that make the real parts of

oiand a positive. When 6c /I<<I, ,k can be approximated by

Z (k ),[2(E - 6c)]. (k odd)

The first term of the inner solution is determined by the boundary layer
equations, the no-slip conditions on the endwall, and boundary conditions at
the boundary-layer edge derived by matchP-g. These are given in Reference 9,
pages 53 and 54.

The theory of matched asymptotic expansions, MAE, is the proper technique
for dealing with these problems; in order to explain the results for shear
force given in this report the discussion of MAE in Reference 9 must be
augmented. Usually MAE are used to obtain an analytic solution to a problem
with, possibly, some numerical integration required; this can be done for the
present problem, at least in principle. Of course, it becomes increasingly
tedious to obtain higher order terms. Since the problem of Eqs. (4.4) - (4.6)
is linear, application of MAE here is simpler than for many other cases to
which It is applied. Advantages of MAE are the systematized approach to the
terms in the expansions, the clear distinction between inner and outer
solutions and the matching of these.

Here the formalism of MAE is used to (1) distinguish the outer solution,
determined as above, (2) rationalize the use of only one boundary condition,
Eq. (4,6c), rather than three at the endwall, and (3) derive Eq. (4.8). Thp
solution, Eq. (4.7), with appropriate 1k would be the exact outer solution

(requiring only ordinary differential equations to be integrated numerically),
except that Eq. (4.8) is not exact. In the final form of the solution, the
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analytically determined outer flow is replaced by the solution of Eqs. (4.7)
and (4.9). This step leads to more accurate results at low Re though,
strictly speaking, it is not part of the theory.

The first term of the inner solution is given, in the notation of
Appendix D, Reference 9, by

i (y r) = u (E, r) + (i/2) fAe"' - Be 3 yji 0 J

v(yr) = vo (c, r) - (1/2) [Ae-ay + Be-By] •4.1)

2

wi (y,r) : Re' N(w/ a x c - y + [(1+f)/2a(l-f)1 exp (-ay) -

L[(3-f)/2B(1-f) exp (-By)

where y c - x

and

A(r) = v° + iu0
0 0

at x c. (4.12)

*00B(r) = v -iu + 4f [(l-f)/(l+f)j c

The functions u o, v0, and w are defined in Reference 9, page 53. The expres-

sions for ui and vi in Eq. (4.11) would be the same as the boundary-layer

solutions of Wederneyer6 if the inviscid terms in the latter were evaluated at
the endwall.

From the inner and outer expansions a single expansion, uniformly valid in
the inner and outer regions, can be constructed; it is called the composite
expansion. Using a 1-term inner and a 2-term outer expansion, the comaposite
expansions are:

U 0 1 U(c-y,r) + Re- Uol (c-yr) + (i/2) [Ae- .Y Be - V i

= V / 2 0vO

SVc = Vo (c-y,r) + Re- ol (c-y,r) - (1/2) [Ae RCBe-y, (4.13)

112 r0

w0 (c-y,r) + Re '10, ( r-y,r ,Wc 0
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0 0 0 O
where the functions Uol, Woi ol are defined in Reference 9, page 53. The
gradients of uC and VC, (a/3y)yO = - (3/ax)x=c, are required to obtain the
endwall shear. The matching process shows that (ý/aX) of u 0 0o'

V are all zero. Therefore,

(~'c~Y =~ -- (/)~A-~ 1 (.4

(aUc 3Y)y=O (0/2) LrA -eB' (4.14)

(3VC/'Y)y=O (1/2) [-A + BB]

Thus,these gradients at the endwall could be computed from just the inner
solution.

At the sidewall, the no-slip boundary conditions are satisfied by the solu-
tion to Eqs. (4.4) and (4.5). The necessary gradients at the sidewall are
obtained directly from. the modal solution.

B. Shear Forces

Forces on the sjrface of the cylinder are obtained from the 3x3 stress
tensor, which gives the force on the fluid. (See, e.g., Reference 13, paqe 53,
where z is axial coordinate.) Since we want the force on the cylinder, the
sign of the stress tensor is changed from that of Reference 13. The elements
of the tensor are

Trr P Ko LP - (2/Re)au/ ar] (4.15a)

0P- K [ - 2 (u + /vi3e)/(Re r)] (4.15b)

T = P- K0 "p - (2/Re) (aw/•x) (4.15c)

T re ror = (K0/Re) [r 3 (v/r)/ar 4 !5'•e)/r] (4.15d)

trx Txr (K/Re) [)u/ax + )w/3r] (4.15e)

TeX TX = (Ko/Re) 'av/ax + (1/r, aw/ae] (4.15f)
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The nondimensional force -in an element of the cylinder surface with non-
dimensional area dA will be denoted by

dF = (dFr, dF 6 , dFx), (4.16)

where dFr, dF, dF are the force components in the radial, azimuthal, andr ' x
axial directions, respectively, in the earth-fixed frame. Force i) non-

dimensionalized by pa ;, where p is density of the liquid, and area is non-

dimensionalized by a-. Then

dFr = (Trr g r + Tr ga + rgx ) dA (4.17a)dIr (Trr grg 0  r

dF a (To r + T6g+ tel gx) dA (4.17b)

dF = (Txr +r Txe ae + XX X) dA, (4.17c)

where gr' ge' gx are the radial, azimuthal, and axial components in the
inertial frame of a unit vector (directed outward from the container; i.e.,
away from the fluid)-normal to the element of wall surface. If the surface is
given in the form G(r, e, x) = const, then

DG/ )r = i/G//ax lgr 177 kL? / gx ' (4.18)

where IvGI + [(aG/ar) 2 + (1/r 2 ) (aG/3e) 2 + (aG/3x)2]1/2

At the sidewall, P'(r, e, x) = 1, and at the endwalls, Z(r, , x) t C.
From Eqs. (3.1) and (3.2) we obtain unit normals, N = (gr' go' gx to sidewall
and endwall, accurate to order K :

0

Nside (1, K1 [(x-t)/r] sin •-e], K1 cos [ye-0]) (4.19a)

Ntop (-KI Cos [i-0], -K1 sin [(-e], 1) 4.19b)

Nbottom = -Ntop

The nondimensional surface element areas are

dAI- :d dZ, dA- = d= d•. (4.20)r=1 x =±

Combining Eqs. (4.15), (4.17), (4.19), and (4.20), we obtain the surface
forces correct to order K .

0
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At the sidewall (t : 1)

dFr/(dý dZ)= P- Ko p" (2/Re) au/•r

dF Ko a K (4.21)
- r-- - + KP • in (ýl-e) (4.21)

d• d" Re ar r r a8 r

dF/(dý dx) = (Ko/Re) [au/ax aw/ar] + KIP cos (€i-e).

At the top wall (r

dFr/ di: d .: -K P cos (ý 1-e) + (Ko/Re) [au//ax + w/arl

dF dý dý) = -K P sin + (KL/Re [3v' Ox + (aw/aO)/r] (4.22)

dF d d) = P - K (2/Re) aw/ax!.

At this point we introduce the boundary-layer assumptions, namely, that
the tangential gradients of the velocity components at a surface are negli-

gible, and that the normal gradient of the normal component is also negligi-
ble. The orders of inagnitude of the velocity gradients at x = c in Eq. (4.22)
can be determined explicitly from the MAE results, Eq. (4.13), and results of
the matching:

1 /2 1/2
au/ = 0 (Re 1 ) az/ar = 0 (Re"- )

. 1/2) -1/2•
av/3x 0 (Re aw/loe 0 (Re" ,

aw/ax 0 (1).

This aprroximnation is not necessary for the further development of the
theory; it is made here for convenience. It does restrict the applicability
of the moment calculations to high (as yet undefined) Reynolds numbers. How-
ever, all the terms in the stress t-nsor are avaihablP from the solution to
the flow problem; their contribution to the moment may be significant at low
Reynolds numbers. Actually, a restriction to hiqh Reynolds numbers has
already neer, introduced by the boundary condition, Eq. (4.8).
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Equations (4.21) and (4.22) reduce to

dF r/(d9 dZ) =P -K OP (4.23a)

dF /(dý dx) = (K /Re) [r ;(*/r)/ar!+ KIP [(x-z)/rl sin (•i-0) (4.23b)
01

dF /(dX dZ) = (Ko/Re) aw/ar + K1P cos (ýi-9) (4.21,.
X 0 1

at the sidewall, and

dF r,(rP dF dý) -K P Cos (V-) + (Ko/Re) au/ax (4.2%)

dF,,(r dý d3) = -K P sin + (K /Re) (v4•x JT;1,24

dF '(F dr dg) = P -K p (4.24c)
x'0

alat the top wall. The expressions for force components on the bottom wall are

the negatives of those for the components at the top wall, and -c replaces

C.

V. EVALUATION OF LIQUID MOMENT

A. Expression for Liquid Moment

WP wish to determine the moment produced by the liquid on the spinning and
nutating shell, namely, MLY + i MLZ of Eq. (2.5). We shall evaluate the

moment about the center of gravity of the projectile in the x, y, z system.
netails need be shown for only one component, say 4LzV since the form of Eq.

(2.5) indicates that both MLy and MLZ are determined by CLSM and CLI? of Eq.

(2.6). In rectangular coordinates,the moment on an element of wall surface is
the vector product of (1) the radius vector relative to pivot point (Z-Z,
y, •) and (2) the force dF = (dFZ, dF-, dFz). The particular component that
we treat is i 1Lz:

dM d;Fa dFZ], (.1

wnere dF- and dF~ are the components of dF in the x and y directions, respec-
x y

tively. Unit vectors in the Z and y directions are found by taking the
normalized gradients of x const. and 7 = const. of Eq. (3.2) in the :!)anner
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of Eq. (4.18); the scalar products of these unit vectors with dF of Eq. (4.16)
yield the two force components

dF- dF cos e - dF sir! 0 dF K1 cos + 0 l(K 2 ) (5.2a)
y r e 0

dFZ- -dF K1 cos (Q1-0) dFe K1 sin 0- dF+ (Ko 2) (5.2b%d

B. Sidewall Moment

The element of moment, dMLl, in Eq. (5.1) is evaluated at 1 1, and will

be denoted by dM[7L. By Eqs. (3.4) and (3.1),
I

P (ý=I) = const. -K1 (Z-t) cos (.i-3) \ 0 (K 2) (53)

Application of Eqs. (4.23) and (5.2), yields

dF- [K*1
d ,P co s v P r - z KP) sin sin 0 '0 (K 2 )~ =(PKP) Cos 0- r KI x ÷ 0

SdO dx

(5.4)
7.2 dFZ./(dýx dZ) = (K0 /Re) Dw/lar + 0 (K'2)

We apply Eqs. (5.3) and (5.4) and integrate Eq. (5.1) at • = 1, noting
that the constant part of P makes no contribution to the integral, leaving

. only first order terns in K0 . Thus,the variables r, 0, x may be replaced by

r, 0, x and the integral evaluated at r 1 without changing the first order
*- accuracy. Integration yields

I

-! L2L/(Koa5) = D Laz) {p ecTt (x-ý) cos ($.1-) +

34w,/r)/Re c, o dd - (5.5)

(I/Re) (x-Z) 3v/3r - v sin e de dx + 0 (K 2)
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I'IFurther manipulations lead to the following formula, with application of Eqs.
(2.5), (2.6), (4.1), and (4.2), plus the boundary condition v(r=l) = -(I-f) x
(X- X)

MLZL/( 2 Tpac•2 K1 ) C(LSM)PL sin i + C (LIMJ2L cos (.

C(LSM)VL s'in + C(LIM)VL Cos -ýI

where integrals are evaluated at r=1, and

I C = (2 T) -i (x-x) p dx (5.7a)

SC(LIM)Pk = -(2r'C) (x-p) ,p + (x-£)] dx (5.7b)

1c 1R
""--[R + (1-T) (-) d 57

C(LSM)VL 2c C Re I +x3,R+ dx (5 .7c

~2 -rI!)V 2c Re a-c 3rLE

-(I Tr + (x-) -E + CT (x Z dx. (5.7d

In tne labeling of the moment coefficients of Eqs. (5.5) and (5.7), the LSX1
and LIM designations are defined in Chapter II (Eq. (2.5) et seq.), P
indicates pressure, V indicates viscous wall shear, and the final L (lateral)
designates sidewall.

C. Endwall Moment

The element of moment, d'."L2, in Eq. (5.1), evaluated at x c and

= -c, will be denoted by dVL2-T and dML 2B, respectively. The element of

total endwall .moment is

= d*L- - dM.
LZE LZT LZR'
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Application of Eqs. (4.24) and (5.2) yields

dFý/(r dý dý) = (Ko/Re) [(au/ax) cos - (vl/x) sin + 0 (Ko2)

(5.9)'K 2),

dF•/(r dr d') I P - Ko p 4 0 (K

By Eqs. (3.4) and (3.1)

P (Z=Ec) = fn(ý) - K1 c•(E-4) cos (-e) + 0 (K0 2 )

P• (x -8) fn(r) - K1 ? (-•-2) cos ( 4-•) 0 (Ko 2 ).

'ie obtain dLT and dML- separately using Eqs. (5.1) (5.9) arid (5.10).

The equations for the flow solution in Chapter IV show that 3u/ax and 3v/3x
are even functions of x, leading to some cancellations when the top and bottom
wall momer.ts are added to produce

1 2a

-r - c2I e 'r cos (•l-e) p (c) -p (-c): r 2 cos e d3 dr +
K 0 0

1 2 (2.11)

(2 =/Re) [(u/ ax) cos e - (av/6x) sin el 2 dý dý.

0  0  c c

The r, O, x may be replaced by r, O, x in Eq. (5.11) and integrals evaluated
* at x = A •ithout affecting the first order approximation in K

0

Moment coefficients analogous to those for the sidewall will now be
defined for the endwalls:

;1LE /(2Tpa" 2 T K) (LSM)PE sin C C(LIt)pE cos

(5.12)

C(LSM)VE sin (LIM)V cos

where
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-(LS)PF C)1/(2" c)] p (C) - p (-c) r2 dr (5.13a)C SMP~ I0 -1 -1

LIM)PE ['/(2 T c= (c/2) + p (c) - r (-c) 2 dr ,3,(LM Pr0 -R -R

C(LSM)VE = -1/(- Re) 1 Real a(v-iu)/ax_ r dr (5.13c)

(LSM.)V = -£1 ( Re) Ia I v- u / x r ri5 1
0 -c

The total side i'ment coefficients due to pressure and shear stress,

respectively, are

C(LSM)P = (LSM)PL + C(LSM)PE (5.14

C(LSM)V C (LSM)VL + C(LSM)VE'

and finally, the total side moment ccefficient is

CLSM C (LSM)P C(LSM)V. (5.15

The term 'a (v - iu)/x] in Eq. (5.13) is ^valuated from the complete
X=C

4 solution, Eq. (4.2), u = u + u and v = v + v . According to the ,nethod of
- p "H - p -H

solution described in Chapter IV, u and v are determined by the composite
H H

solutions uC and vC. Therefore, to the order of approximation in Eq. (1.13',

v - iu V - iu + VC - iuc (5.1)
p p

I2 0 0 , re

-2x(I-f) 2 /(1+f) + 2z(I-f) t Vo iuo + Re (v0 1 - iuo1 -
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making use of Eqs. (4.3) and (4.13) and the definition of B in Eq. (4.10).
The terms from the outer solution, including those in B, see Eq. (4.12), are
not evaluated analytically; they are obtained from Eqs. (4.7) and (4.9), as
explained in Chapter IV. Thus v-iu cdn be written

v - iu - v - iu + v -iu
p p (5.17)

[(v -iu) + 4f(1-f)/(1+f)} E ] .X c

Another useful form is obtained by expressing this in terms of
v + v p- i(u+u p):

v - ii . (v+vp) - i(u+up) " (v+Vp i(u+u + +
- p -p -=cP =

(5.18)_

2(1-f) (c-i)j e"'y.

The gradient term in Eqs. (5.13c) and (5.13d) is then

[a(v - iu)/x= a[(V+v) - i(u+u
x -p =c

0[(v+v ) _-i(u+u +) C-[V+p - iu+ p + 2(1-f) (c-;L)].P x C x c

Empirically it is tfund that the first term on the right-hand side of Eq.
(5.19) is small compared to the second term and is neglected when the gradient

is evalua' d; recall that a = O(Rel/2). A strict estimate of the order of
magnitude of these two terms in Eq. (5.19) is not straightforward because we
have used u and v, obtained from Eq. (4.7), rather than the outer solutions.
If the gradient is obtained from Eq 5.16), the result is

[a (v-iu)/ýx] -2('1-f) 2/(l+f) " ' [vO - iu0 + 4f(l-f)/(1+f)] (5.20)
0 0xzc x =c

in which it is clear that the first term is 0(1) and the second is O(Re:/2ý

This result is reflected in the conclusion about the terms in Eq. (5.19)
stated above.
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VI. NUMERICAL RESULTS: MOMENT COEFFICIENT

A. Effect of Wall Shear

In Reference 10 it was shown that viscous shear could have a significant
effect on the liquid moment at moderately high Reynolds numbers (-40,000).
The pressure moments on sidewall and endwalls were d to each other in
all computations performed (C(LSM)P > 0 and C(LSM)V <0),while the shear

moments on side and end walls were frequently of the same sign. Thus,the
partial cancellation of the pressure moments and the reinforcement of the
shear moments at times brought the two within the same order of magnitude.

Figures 2 and 3 illustrate the effect of viscous shear. At T = 0.19 and
Re = 4x10, e.g., the magnitude of shear moment is greater than 25% of pres-
sure moment, certainly a nonnegligible contribution. The difference between
C(LSM)P and CLSM increases markedly as Re decreases. The qualitative behavior

of side moment can also be affected by shear. Thus, at T = 0.10 in Figure 3,
the pressure moment coefficient increases monotonically as Re decreases to
10 3,while the total moment coefficient peaks at Re-6300 and changes sign at
Re 2500.

In Figure 2, C(LSM)P has a maximum near the eigenfrequency of the 2nd

radial, 4th axial inertial mode (n:1, k=7) of the liquid as predicted by
theory2 The magnitude of shear moment, 1CLSM)VI also appears to have a

maximum, though not as pronounced, in this region.

B. Comparison with Results of Murphy's Method

In Reference 10 Murphy solves the inviscid perturbation equations of
Stewartson together with the viscous-corrected boundary conditions of
Wedemeyer at sidewall and endwalls, and integrates the wall forces to obtain
moments without assuming that the coning motion is nearly in resonance with
inertial oscillations of the liquid. Comparisons between pressure moments
obtained by Murphy's method and our method are given in Reference 9, where it
is shown that agreement is good at very high Reynolds numbers but deteriorates
with decreasing Reynolds number.

1A Figure 4 shows a comparison of the total moment coefficients for the case
c/a = 4.291, c = 0. For clarity the curves for Re = 105 and 106 have been
omitted; the curves from the two methods are practically coincident on the
scale of this figure. For Re = 104 agreement is still fairly good; but for
Re = 10ý the discrepancies are large, and fo, Re = 102 the two methods give
CLSM's of opposite sign. There is no discernable peak in CLSM for Re ý

103 and 102 over the range of T considered. The separate pressure and viscous
moment coefficients for ,'e = i0 and 103 are shown plotted against T in Figure
5. At Re = 105 the pairs of curves of the two theories are practically
coincident; at Re = 10 and r = 0.10, the C(LSM)p's differ by 30% and tne

C SM)V s by a factor of 2.
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C, Moments on Sidewall and Endwalls

Figures 6 and 7 Illustrate the behavior of the separate components of the
side moment coefficient for a cylinder of c/a = 3.126, executing motions of

S= 0.02 and T - 0.020, 0.045. When Reynolds number is varied by changing
only v, as in the experiments of Reference 14, the moment varies directly as
the moment coefficient. It is seen then that pressure moments of both
Murphy's and present theory vary nonmonotonically with Reynolds number, both
on the sidewall and the endwalls. A major source of the difference between the
results of the two theories lies in the methods of obtaining the outer flow,
or, as designated in Reference 10, the "inviscid" flow (see p. 15, paragraph
before Eq. (4.7)). The results in Figure 6 indicate that this difference is
small; the location of the peak is a function of the nutational frequency.

In Figure 7 the variations of shear moments on the sidewall and endwalls
are presented; they are not monotonic functions of Re and are negative in many
instances so that they tend to damp yaw. From the natures of tLe present
theory and that of Reference 10 the results from the two should approach each
other for large Re. The results in Figure 7, and those for other values of t,
show that this occurs for 2x104 - Re 4 3.2xi0s over the range .02 < T 4 .045.
These are surprisingly large values of Re for an asymptotic approach of the
results of the two theories. The differences in moment on the endwall, Figure
7b, are relatively small. The gradients there are obtained in the same way in
both theories; however, the outer flows are different. The differences in
moments on the sidevwall, Figure 7a, are large for Re4104 . The methods of
obtaining the gradients on the sidewall are quite different in the.two
theories. The only significant difference in the results from the two
theories is found in Figure 7a. For the same Re and c/a, the yaw growth rate
(shown in Figure 11) computed from the present theory agrees better with
experimental data than that computed from Reference 10.

The variation of shear moment with Re on either the sidewall or endwall is

not a simple power law. On the endwall, the shear moment would vary as Re-
if the analytically determined outer flow were used to obtain the gradient in
Eq. (5.19), as explained in the discussion on Eqs. (5.19) and (5.20). The
nonmonotonic variation shown in Figure 7b precludes such a variation; a power
law variation would plot as negative exponential in Figure 7b. The same con-
clusion holds for the sidewall, Figure 7a, except. that for T = 0.020 (and
0.030, not shown) the shear moment is monotonic with Re. However, if a power

law fit, Re-n, to the sidewall shear moment is tried, 0.55 < n < 0.81 is
obtained for 5x0O3 < Re _< 5x1O5. Note that in Reference 10, p. 34, it is_i2
stated that all shear moment coefficients vary as Re-. The results of
Figure 7 show that this cannot be the case.

Ii
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VII. YAW GROWTH RATES: COMPARISON OF THEORY AND EXPERIMENT

Ultimately, the validity of the theory must be gauged by comparison of
theoretical and experimental results. Measurements of nutational frequencies
and yaw growth rates can be made in gyroscope experiments. The apparatus,
operations, and accuracy of these experiments are discussed in References 11
and 12; they are thus far the only type of experiments available for compari-
son with the theory. The gyroscope can be used because the equation
describing its oscillatory motion is analogous to that describing Che yavin,
motion of a projectile. The relationship between gyroscope and projectile
motions is discussed in Chapter 2 of Reference 2. The moments of inertia
I and Iy in Eqs. (2.2) and (2.7) necessarily include parts of the appa-

ratus. The term Iy M k in Eq. (2.2) is a gravitational moment arising from

the separation of center of mass and pivot point. It will be zero here since
these two positions are essentially coincident; thus ' will be zero. The
theoretical quantities, -L and £_, are obtained by solving Eq. (2.7) for
f (1-ic)-r. The imaginary part of Eq. (2.7) can be written

eln (I + {T- Tn)/ Tn)}ý [I + {T-T)/ ' 2Wpa4C) CLS/Iy(71

It was found that IT-•Tn1/T ;0.06 for the experimental cases; in fact,

T -T n/r,.03 in most instances. Thus c varied roughly as (CLsM/Ix).

In the experime.its circular cylinders were filled with liquid. Table 1
(page 30) shows the seven cases for which measurements were taken. The first
two cases are the ones shown in Figure 8 of Reference 12: Ix was varied by

adding flat metal rings around the cylinder, and corr-cspondlng changes in IY
were made by moving a counterweight to adjust the position of the center of
gravity of the gyroscope. Neither Iy nor -n was recorded; it was necessary to

estimate I y by a process which involved application of the Stewartson-
Wedemeyer theory (p. 19 of Reference 12). In the last five cases, I was keptx
constant and Iy was varied by moving a weight along a threaded shaft coin-

ciding with the longitudinal axis of the cylinder 1 l. The values of I and

Iy used in the runs were chosen -;o that the empty-shell nutational frequen-
cIes, tn (= I x/1 y),lay in a range of values covering the eigenfrequencies

CR shown in the table. Reynolds number 4as varied by changing thL liquias,

which were silicon oils of differing viscosities. The estimated nominal
values of I are 4.14x106 g cm 2 for Case 1 and 4.33xi0 6 g cm2 for Case 2.

The n and k identify the inertial mode whose nondimensional frequency is
C, (-frequency/!:.).

In Table I the nominal c/a is that value quoted in the appropriate
referenceý'',; In Reference 10 the term "fitted" c/a was introduced. As
used here, fitted c/a is determined in the following way. Uncertainties in the
measurement of cylinder dimensions give rise to experimental errors in c/a
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TABLE 1. LIST OF EXPERIMENTAL CASES

Fitted Nominal
Re c/a c/a n, k Ref.

1 5.20-105 3.154 3.148 1, 3 12

2 9.0Ox103 3.152 3.148 1, 3 12

3 5.21xi03 3.140 3.126 1, 3 *

4 1.01X1O, 3.130 3.126 1, 3

5 1.24Y10" 1.047 1.042 1, 1 11

6 2 .40 1 0 3 1.047 1.042 1, 1 11

7 1.26x10' 1.047 1.042 1, 1

(Fitted c/a)
CR p(g/cm3 ) Kx(g cm2 ) a (cm)

1 0.0486 0.818 Variable 3.153

2 0.0515 0.960 Variable 3.153

3 0.0495 0.972 8.2340' 4.121

4 0.0532 0.972 1.08406 4.121

5 0.0437 0.966 7.94Y1O• 6.359

6 0.0425 0.972 1.05Xl06 6.359

7 0.0415 0.974 1.05xi06 6.359
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which may be as large as ±1%.* Values of c/a lying within the error bound
about the nominal value can therefore be used in the calculation. The fitted
value is that which gives the best agreement with the data, judged sub-
jectively. It will be seen that the cT vs -r relationship is extremely
sensitive to c/a.

Results are presented in Figures 8-14 in the form of plots of yaw growth
rate versus nutational frequency. In all cases theoretical curves are drawn
for fitted values of c/a, and in two cases (Figures 10 and 12) also for the
nominal c/a. It is evident from the seven cases that agreement between theory
and experiment is better for the c/a = 1.0 than for the c/a = 3.1 cases. It
is not understood why this is so- it may be related to the fact that resonance
is excited for a simpler axial mode (k=1) for c/a 1 !.0 than for c/a t- 3.1,
where the k=3 mode resonates.**

In Case 1, Figure 8, the two theories agree with each otler at the high
Reynolds number, as expected. However, the agreement with experiment is not
as good as anticipated. The uncertainty in Iy previously mentioned is partly

responsible. Comparison of peak locations is not possible because of lack of
sufficient experimental points to delineate the maximum clearly and because
of scatter in the data. In Case 2, Figure 9, discrepancies between theory and
experiment are small, although percentage errors are large. In Case 3, Figure
10, the agreement is poor for the lower range of nutation rates. Overall,
present theory results show better agreemnent with experimental data for Cases
2, 3, and 4 (Figures 9, 10, 11) than do results of the theory of Reference 10;
it is expected that the two theories would disagree at lower Re.

We consider the three cases for the c/a= 1.0 cylinder. For Re = 12,400,
Figure 12, the data and the two theories agree quite well. For Re = 2400,
Figure 13, the present theory agrees somewhat better with experiment than does
the theory of Reference 10 in the prediction of T [(cT) max] = m; for Re

1260, Figure 14, it gives the better overall fit to the measurements. The
results in Figures 12-14 for Re = 12,400, 2400, and 1260 show that Tm for

nominal c/a exceeds CR by 21%, 42%, and 58% (referred to rm), respectively, a

monotonic increase with decreasing Re. These differences are all greater than
the corresponding differences for the c/a- 3.1 results. The magnitude of
(_tmCR) provides a measure of the departure of the Stewartson-WJedemeyer

appro' imat ion from our theory. The present theory and that of Reference 10,
which is an improvement on the Stewartson-Wedemeyer theory, yield essentially
the same results for the c/a -1.0 cases. Evidently, both c/a and Re determine
the differences in the results of the two theories.

=,;e mode nv'uner, k, occurs in th;e fZow aoZutiov; see Fos .... ,
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The calculated yaw growth rate is quite sensitive to small changes In
c/a. This can be seen in Figure 10, Case 3. The nominal value of c/a gives a
Tm which is 13% less than that for the data, whereas the fitted value gives a

Tm 3% less. The calculated (ET)max are 31% and 11% greater than the experi-

mental maximum for thie nominal and fitted values of c/a, respectively. For
3.126 < c/a < 3.140, the calculated Tm and (CT)max would lie between the two

curves shown in Figure 10. Thus, no choice of c/a will give a clearly superior
result.

Sensitivity of the er vs T curves to changes in aspect ratio is further
illustrated in Table 2 for the parameters of Case 3. The results show that a
0.8% change in c/a produces a 32% change in (eT)max and a 13% change in Tm'

Even over this small range of c/a,both quantities depart noticeably from a
linear variation. This sensitivity has important implications for the theory
vis-a-vis results from laboratory experiments and field firings. With some
care it is feasible to control c/a to within tolerances of, say, 0.5%, or even
less, in labcratory experiments. Deformations of the cylinder would have to
be accounted for; some possimle causes are clamping of cylinder, compression
of the liquid upon installation of the top, and temperature changes. In the
experiments quoted here, it appears that c/a was known to an accuracy of
±0.5%. It is probably not feasible to control c/a to that accuracy in field
firings. Typical manufacturing processes allow the internal dimensions of tne
cylinder to vary by much more than that. The application of the theory to
such cases is then questionable.

TABLE 2. MAGNITUDE AND LOCATION OF (er)
max

c/a (ET) max Tm E I [(E)rlax]

3.126 1.358 . 10-4 0.046

3.140 1.600 x 10"4 0.050

3.150 1.788 x 10. 0.052

VIII. CONCLUSIONS

We have developed a method of computing the moment exerted by the spun-up
liquid on the casing of a filled shell that is spinning and nutating. In
addition, we are able to predict the nutational and yaw growth rates of the
projectile's angular motion.

The output yielos, separately and in combination, pressure and viscous
shear moments on sidewall and endwalls. The applicability of the method is
restricted to small angles of attack because of linearization of the Navier-
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Stokes equations and to late times in the flight history because of the as-
sumption of initially unperturbed solid-body rotation. There is, in addition,
a Reynolds number limitation resulting from the presence of an error of

order 0 (Re ). The permissible smallness of Reynolds number has not been
definitely determined; there is an indication that it depends on the oscilla-
tion mode primarily being excited.

Limited parameter studies of moment coefficients indicated that sideviall
and endwall pressure moments opposed each other and that viscous shear moment
was often not negligible. Otherwise, no simple trends were discerned relating
the relative contributions (sidewall, endwall, pressure, shear) to the side
moment with the various parameters of the problem (Re, c/a, t,

Comparison of side moment coefficients with those of Murphyl° showed good
agreement for high Reynolds numbers, but increasiig divergence with decreasing
Reynolds number. For the sidewall viscous shear moment the relative discrep-
ancies were large for Re < 1,000 (Figure 7a). However, the corresponding
discrepancies in yaw growth rate were not necessarily large also. For
example, the parameters of Case I (Figure 8), substituted into Eq. (7.1), led
to the following relation between the discrepancies a ( n) and A (CLSM):A(ET n) 0.0012 A (C LsM).

Yaw growth rate outputs from this theory were compared with results of
Murphy's theory and with measurements from gyroscope experiments. At high Re
the differences between the two theories were small but increased with de-
creasing Re. Further experiments covering the parameter space in more detail
are needed to provide a better assessment of the theory. All the experiments
treated here have Re < 12,400 except for Case I, which has an uncertainty
in I y. Thus, the most obvious need is for experimental results for Re >

50,000. In projectile firings values of Re,up to several million are common-
place.

The sensitivity of yaw growth rate to small changes in c/a, discussed at
the end of Section VII, is a signirica,,t result. This effect has been known
for some time; the theories of Reference 10 and the present paper have pro-
vided a definitive demonstration of it.
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LIST OF SYMBOLS

a cross-sectional radius of cylinder [cm]

A, B functions of r defined in Eq. (4.12)

c half-height of cylinder [cm]

c -c/a, aspect ratio

CR natural oscillation frequency of rotating liquid/$

CLM liquid moment coefficient = CLSM + i CLIM, Eq. (2.5)

CLIM liquid in-plane moment coefficient = C(LIM)P + C(LIM)VIEq. (2.6)

CLSM liquid side moment coefficient, Eqs. (2.6) and (5.15)

C(LIM)P pressure in-plane moment coefficient = C(LIM)PL + C(L!M)PE

C(LSM)P pressure side moment coefficient, Eq. (5.14)

C (IIM)v viscous shear in-plane moment coefficient =
C (LIM)VL + C(LIM)VE

C(LSM)V viscous shear side moment coefficient, Eq. (5.14)
C(LIM)PE endwall pressure in-plane moment coefficient, Eq. (5.13b)

C(LSM)PE endwall pressure side moment coefficient, Eq. (5.13a)

C sidewall pressure in-plane moment coefficient, Eq. (5.7b)
K (LIMIPL

C sidewall pressure side moment coefficient, Eq. (5.7a)
(LSM)PL

endwall viscous shear in-plane moment coefficient,
L(LIN1)VE Eq. (5.13d)

C(LSM)VE endwall viscous shear side moment coefficient, Eq. (5.13c)

C(LIM)VL sidewall viscous shear in-plane moment coefficient,
Eq. (5.7d)

C(LSM)VL sidewall viscous shear side moment coefficient, Eq. (5.7c)

dA nondimensional wall surface area element, Eq. (4.20)
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d F nondimensional stress force exerted by liquid on dA
4.2

[Force/(pa•)

dFr' dF 8, dFx radial, azimuthal, and axial components, respectively, of

dF [Force/(pa $

dF;, dF- components of dF in y and x directions, respectively
x

f (1-i ) T, complex representation of angular motion,

Eq. (2.4)

Ix moment of inertia of empty shell about its longitudinal

axis Cg cm 2]

ly transverse moment of inertia of empty shell about its
Y center of gravity [g cm 2 ]

k index of axial eigenfunction and eigenvalue, Eqs. (4.7)
and (4.9)

K yaw amplitude at time t = 0
0

K E Koe , yaw amplitude at time t, Eqs. (2.3) and (2.4)

Z nondimensional x (and Z) coordinate of pivot point

mL mass of liquid in cylinder = 2npakc [g]

* M aerodynamic (or gravity) moment parameter, Eq. (2.2)

LML MLZ 7 and z" components, respectively, of liquid moment
[g cm 2 /S 2]

MLZB MLT bottom and top wall contributions, respectively, to
MLZ [g cr,. 2 /s 2 ]

MLZE' LL endwall and sidewall contributions, respectively, to
XLZ [g cm2 /s 2]

n index of radial mode for eigenfrequency, CR

rYE, nZE components in the y, z plane of a unit vector lying on the

x-axi S

N side unit vector normal to sidewall; similar definition for
ietop, Eq. (4.19)
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' p p + i p nondimensional r, x variation of perturbation pressure,
- -R -I Eq. (4.1) [pressure/(K pa2; 2 )]

0

p series solution contribution to p in Eq. (4.4)
-H

PNS total pressure/(pa 2$ 2 ), Eq. (3.3), solution to Navier-
Stokes equations

p particular solution contribution to p, Eq. (4.3)
-p

p perturbation pressure/(K pa2; 2), Eqs. (3.3) and (4.1)
0

Pk(r) coefficient of sin Xkx in p series, Eq. (4.7)

P unperturbed pressure/(pa 2 $2 ), Eqs. (3.3) and (3.4)

r radial coordinate in inertial system/a

" r •radial coordinate in nonrotating aeroballistic system/a

Re Reynolds number = a 2ý/v

t time [s]

u, V, w, p nondimensional r, x variation of outer solution of flow
problem

u, v, w nondimensional r, x variation of perturbation velocity
components, Eq. (4.1) [velocity/(K0 $a)]

u, v, w nondimensional perturbation velocity components in
inertial system, Eqs. (3.3) and (4.1) [velocity/(K Oa)]

U, V, w nondimensional radial, azimuthal, and axial perturbation
velocity components in aeroballistic system, Fq. (3.5)
[velocity/(K $a)]

y 0

UC' Vc' WC' PC composite solution contribution to r, x variation inflow
problem, Eq. (5.16)

u , v , w series solution contribution to u, v, w, Eqs. (4.2)
H H H and (4.4)

a ui, vi' Wit Pi first term of inner solution, Eq. (05) of Reference 9
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uk v w coefficients of sin Xkx and cos XkX in u, v, w series,Eq. (4.7)

u nondimensional radial, azimuthal, and axial velocity
components, respectively, in inertial system (Eq.

(3.3)), solution to linearized Navier-Stokes
equations [velocity/($a)]

u-, V0, Wo' PO first term of expansion of outer solution in Eq. (D3)
of Reference 9

0 0 0uo, vo, w0  first term of expansion of uo, vo, wo in Eq. (N7) of
Reference 9

U1 01 01 oR r second term of expansion of outer solution in Eq. (03)
of Reference 9

o 0 0uo1 ' V0oi W0o first term of expansion of uol, Vol' o in Eq. (D8)
of Reference 9

Up, V, w particular solution contribution to u, v, w, Eqs.
(4.2) and (4.3) " - "

UR U real and imaginary parts, respectively, of u(similar definitions for v and w, w,

Eq. (4.2)) RR

U, V, W nondimensional radial, azimuthal, and axial velocity
components of unperturbed flow, Eq. (3.4) [velocity/
$~a)J

x, y, z nondimensional rectangular coordinates in inertial
system (x-axis along trajectory) [length/a]

nondimensional rectangular coordinates in
aeroballistic system (Z-axis along cylinder axis)
[length/a]

0y=- - x in Chapter IV (Eq. (4.11) et seq.)

•, a functions of f and Re defined in Eq. (4.10)

a angle in vertical plane measured from the x-axis to
the velocity vector

6 angle ir horizontal plane measured frow the x-axis to
the velocity vector

r 6 c correction term in endwall boundary condition, Eq.
(4.10)
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C - (i/t) x yaw growth per radian of nutation

e, a polar angles (azimuthal coordinates) in inertial and aerj-
ballistic systems, respectively

eigenvalue in the axial problem, Eqs. (4.7) and (4.9)

* vkinematic viscosity of liquid [cm2/s] I
Svector describing angular motion of cylinder, Fq. (2.1)

p density of liquid [g/cm3 ]

* nutational frequency of cylinder!$

nutational frequency of empty shell/i, Eq. (2.9)

nondimensional components of stress tensor, Eq. (4.15)

[stress/( pa 2 $ 2 )]

= T$t, angular orientation of Z-axis in the x, y, z system

spin rate of cylinder [rad/s], taken to be positive
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Please take a few minutes to answer the questions below; tear out
this sheet, fold as indicated, staple or tape closed, and place
in the mail. Your comments will provide us witL information for
improving future reports.

1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related
project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information
source, design data or procedure, management procedure, source of
ideas, etc.)

4. Has the information in this report led to any quantitative
savings as far as man-hours/contract dollars saved, operating costs
avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to
make this report and future renorts of this type more responsive
to your needs, more usable, improve readability, etc.)______

II.44

6. If you would like to be contacted by the personnel who prepared
this report to raise specific questions or discuss the topic,
please fill in the following information.

Name:

Telephone Number:

Organization Address: _


