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ABSTRACT

A random translation of a marked point process is considered.

The random translation is assumed to be dependent upon the

mark through a certain function@ h(.) . The main concern is

to study the form of the function h(.) for different types

of data. Complete identification is not generally possible

but some interesting particular solutions are presented.



1. INTRODUCTION

1.1 Some Essential Definitions

Definition 1:

A point process, I , is a stochastic process {I(t);t > 0) defined

over a fixed probability space (0,F,P) so that, for almost all w c a

the mapping t - I(w,t) is non-decreasing, right continuous, nonnegative,

finite, integer valued, and has I(w,O) - 1(0) - 0

Such a process increases by jumps only, and the times of jumps will be

called the "points" of I . In particular, a point process, I , with

"points" iO,il, ... is called a renewal process if i0,i1 - i2, ... are

independent and identically distributed (i.i.d.) random variables. A

sequence {ik ; k = 0,1, ...) is usually called a realization of the point

process (ik £ R , the positive real numbers with zero included). A point

process can be operated on and changed into another point process in several

ways. Examples of operations on point processes are "superposition", "ran-

dom deletion" and "random translation".

Definition 2:

A randomly translated point process D , derived from an initial point

process I , is a point process with realizations { + Yk ; k - 0,1, ... }

where the sequence {Yk ; k - 0,1, ...) is a family of i.i.d. random var-

iables and independent of the realization {i ; k - 0,1, ... } of 2

For more details about point processes, see Lewis [9].

A more general type of point process is the marked point process.

MI
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Definition 3:

A marked point process is a point process with an auxiliary variable,

called the mark, associated with each point.

The mark can be a random variable, a random vector, or even a random

process. The mark is used to identify random quantities associated with

the point process it accompanies. An example of a mark is the velocity

and acceleration of a vehicle passing an observer at a given instant. These

processes were introduced by Konig and Matthes [7].

1.2 The Model

Let ({I'.lI'Yk ; k - 0,1, ...} be three sequences of nonnegative

continuous random variables. The first two random variables define the so

called "input process", which in this case consists of the "arrival process"

and "the marks" associated with it. The input process is assumed to be a

marked point process and the arrival process is the corresponding point

process. (The sequence (Ik ; k - 0,1, ... } represents the inter-arrival

times, that is to say the length of time between two consecutive jumps in

the process [I(t);t > 01 , and Ik = ik+l - 'k for k - 0,1, ... where

i 0  is assumed to be zero.) The sequence {Lk ; k - 0,1, ... ; L0 . 01

represents the marks associated with the arrivals (Lk represents the mark

of the k-th arrival). This sequence is a sequence of mutually i.i.d. ran-

dom variables which are also independent of the instants of arrivals tk's

The distribution function of the marks is denoted by P(x) . The random

variables, YkIs , define the random translations (Y k represents the ran-

dom translation of the k-th arrival which has occurred at the instant k

with the mark Lk). The sequence ( ; k = 0,1, ... ; 0 01 is assumed
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to be a sequence of i.i.d. random variables which are independent of the

instants of arrival. In this paper, we assume the existence of a certain

function h(') such that the random variables Yk'S depend on the marks

in the following way:

1 - e-h()x ,x > 0

P[Yk <-x Lk - - <0 for k- 1,2, ..... (1)

The h(-) is a function relating the mark of the arrival to the parameter

of the exponential distribution which define the conditional distribution

function of the random variable Yk * Let dk be the point of the trans-

lated point process V , corresponding to the point ik of the point proc-

ess I . By Definition 2,we have:

dk " ik + Yk for k- 0,1, (2)

The sequence {Dk - dk+ - dk ; k - 0,1, ... represents the time between

two consecutive points of the translated point process D .

The mathematical model. defined above is a random translation of a

marked point process.

1.3 Principal Results

Several questions of a probabilistic and statistical kind can be asked

in relation to this model. In this paper, our main concern is to study the

form of the function h(.) for different types of data.

Complete identification is not generally possible, but it will be

shown, for example, that maximum likelihood estimators (m.l.e) can be found

for some interesting particular situations. In Section 2, a formal solution
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is presented where the study of the form of h(-) is related to the prob-

lm of identifiability and estimation of the service time distribution

function of the GIG/- system. For uniformly distributed marks, a solu-

tion is given. In Section 3, the input process is restricted to a marked

non-homogeneous Poisson process and it is proved that the total number of

transitions (arrivals and departures from the H/G/- system, regardless

of their marks) during a fixed time interval (O,t] is a Hermite random

variable. This result is of independent interest and holds for any in-

finite server system with non-homogeneous Poisson arrival process and

general service time distribution. The form of the function h(.) is

assumed to be known, apart from a certain number of unknown parameters,

and m.l.e. can be found for these parameters and the basic parameters of

the arrival process when working with not more than two unknown parameters.

Moreover, the data required by these estimators is just the total number

of indistinguishable arrivals and departures from the system during a

fixed time interval. A discussion will be found in Sections 4 and 5 con-

cerning other types of data, namely, observations just of the instants

of departures during time interval (O,t] and direct observations of the

service times.

1.4 The Corresponding G/G/- System

If we don't know the marks of the arrivals, our model can be regarded

as a G/G/ system where the arrival process is the same but the distribu-

tion function of the service time, G(x) , is given by:
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G(x) - P[Y x]

4-

1-7 f eI IxPI > 0
0 o(3)

0 x < 0

This service time distribution function depends heavily on the partic-

ular type of the distribution function of the marks, P(.) , and on the

form of the function h(-) . For instance, if h(-) is a step function,

for any distribution function of the marks, G(-) will be the distribution

function of a mixture of exponentials. Or, if the function h(-) and the

random variable L are such that the random variable h(L) is normally
2

1-e-X >0

distributed with mean zero and variance 1/2, then G(x) - 0 <
z <0

and the service time, Y , will be a Weibull random variable.

We call this G/G/- system the "corresponding GIG/ system" and

denote by r4/G/- the "corresponding G/G/ system" with a non-homogeneous

Poisson arrival process.

0

I7
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2. FORMAL SOLUTION FOR THE IDENTIFICATION-ESTIMATION PROBLEM

We have seen that regardless of the marks our model is equivalent to a

G/G/- system with service time distribution function given by (3), i.e.,

the "corresponding G/G/- system". On the other hand,

6(x) - 1 - G(x) - P[Yj > x]

.Ie -h(L)x] x > 0(4)
•X < 0,

assuming that h(.) is such that h(L) is a random variable.

Theorem 1:

If the random variable h(L) is positive and absolutely continuous,

i.e., dFh(L)(y) fh(L)(y)dy , if fh(L)(y) e C1  for y > 0 and if

.(a)
G(x) C C in a neighborhood (however small) of + . Then,

fh(L)-(y )  lim Lk,y[Z(x)] , y > 0 , (5)

k k+l (b)
where Lky[G(x)] =) a(k)() is an operator defined for any

positive real number y and any large integer k

Proof:

By (4) and by the assumption that h(L) is an absolutely continuous

positive random variable, we get:

aw~ ~ -feYXf h(L) (y)dy ,x > 0(6
=~) (6)

, X<0

x, <. 10
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i.e., G(.) is the Laplace transform of f h(L) The result thus

follows by a direct use of a result in Widder [16, real inversion of the

* Laplace transform; pp. 140 and 141].

Furthermore, if we assume that P(.) is also known, then at least

theoretically we can evaluate h(.) . For example, if the marks, L , are

assumed to be uniform random variables in [0,1] and if h(.) is assumed

to be a non-decreasing function defined on [0,1] , then

h(y) Fh(L) (Y)

- (x the smallest value of x so that Fh(L)(x) < y}

0 <y < 1. (7)

Remark 1:

If h(L) is a discrete random variable, then its distribution function

Fh(L)(-) is a step function and f e-YXdFh(L)(y) - G(x) reduces to a
0

Dirichelet series; see Widder (16, pp. 93 and 94].

Remark 2:

By Theorem 3.3 in Widder (16, p. 203] with a - 1 ,we get the following

result:

If (x) A 0+

x

then lim ftlfh(L) (t)dt E[{h(L) -I 

0

where 8 2,3,....
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Remark 3:

There are several ways of estimating the service time distribution

function, G(-) , according to the data available. For example, if the

data consist of random observations of the service times, Y1 9 ".., Yn *

then the empirical distribution function, Gn(YI , ... , yn) , is a consistent

estimator of G(x) . Brillinger [2] obtained an estimator of the service

time density function, g(x) -L G(x) , based on a stretch of arrival and

departure times (arrival-departure records) for the stationary G/G/-

system (having independent service times with a common finite mean value)

and Ross (14] shows that, for the GI/G/k system with k > ® , G(x) is

identifiable from a single sample path of the process {X(t),t > O}



3. THE HERMITE DISTRIBUTION APPROACH

Let the point process (A(t);t > 01 have the following properties:

(i) E[A(t)) I e(t) <-a , t > 0,

(ii) dm(t) = (t) > 0 and bounded on finite intervals for t > 0
dt

Definition 4:

A point process (A(t);t > 01 has the order statistics property if

and only if, given that n jump times (points) occur in (0,t] , the con-

ditional distribution of il, ..., in is the same as the distribution of

the order statistics of a random sample of size n from the distribution

with density function,

ftW 0 < x<t (8)t m(t)

The Poisson process is the most familiar example of a process with this
1

property, in which ft(x) - for x e [0,t] (i.e., uniform distribution
t t

in [0,1]). However, this does not characterize the Poisson process since,

for example, the number of births in a linear birth process with parameter

Ae~x

X> 0 also has the order statistics property with f(x) eX for

x e [0,t] , see Neuts and Resnick [12]. It can be shown as well, that the

non-homogeneous Poisson process also has the order statistics property; see,

for example, Snyder (15, p. 651. Let m(t) , the mean value function of the

non-homogeneous Poisson process, be an absolutely continuous function of t

and d *~t) X(t) its intensity function. Then,
dt

f W (t) 0 <x t (9)
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(For more details on point processes with the order statistics property, see

also Feigin [5].)

In our general model, let I(t) represent the number of arrivals,

regardless of the marks, during time interval (0,t] and D(t) the number

of departures during time interval (0,t] , regardless of the marks, among

the ones arriving during (0,t] .

Also let X(t) represent the number of arrivals, regardless of the

marks, still present in the system at time t , among the ones arriving

during time interval (O,t] and let N(t) represent the number of transi-

tions, arrivals and departures regardless of their marks, during a fixed

time interval (0,t]

Theorem 2:

For the R/G/- system and for each fixed time interval (O,t] , the

random variable N(t) is a Hermite variable with probability function

given by:

P[N(t) - n] - e-m(t) pi] [a(t)]n-2 [(2 t)]1 (10)
0 (n - 2j)!

for n 0 ,1, ... ; where [b] means the integer part of b ; al(t) 

m(t)(l - p) ; a2 (t) - m(t)p and p - p(t,h(.),P(.),m(.)) =

1 t r e-h(t) (tu)dP(4 ]cm(u)

Proof:

For each fixed time interval (O,t] , we have for any G/G/- system

N(t) - I(t) + D(t)

..... " 0 .... y.. . . , . . . .. .. . , ,.;, - ., -. 7 ' : 7 ':
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and,

N(t) - X(t) + 2D(t) (12)

We shall first prove that the random variables X(t) and D(t) are two

independent Poisson random variables and then use this result and the prob-

ability generating function of N(t) , E[zN(t)l , to complete the proof of

the theorem.

For each fixed time interval (O,t] , given that I(t) arrivals had

occurred, the order statistics property of the input process and the assump-

tion that the random variable Y associated with each arrival is independ-

ent of everything else in the system (apart from the mark carried out by

this arrival) allow us to write X(t) in the following way:

X(t) - Wl1t) + ... + W I(t)(t).

Where the W (t)'s are a sequence of independent Bernoulli random variables

defined as follows:

1 , if the J-th arrival which has occurred at time

i C [O,t] , is still in the system at time t

W (t) (13)

0 , if the J-th arrival which has occurred at time

£ e [O,t] , is no longer in the system at time

t

for j - 1, ... , I(t) The parameter of the Bernoulli distribution is

given by:

I l
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t

P (Wi (t) - 1 .fP(Y i > t Ul u~t(u) du

0

t

1 tf [1 - G(t - u)]X(u)du

0

1 i i -h(t)(tu) dP(j X()du

which is independent of j .For the sake of simplicity, e shall use "p"1

instead of p(t,h(.),P(.),m(-)) .Therefore, the sequence {W (t)

j -1 .. ,I(t)} is a sequence of i.i.d. Bernoulli random variables of

parameter p . Then, for each fixed t > , the probability function of

the random variable X(t) is given by:

P[X(t) -k] - i P(X(t) - k I I(t) - n]P(I(t) - n]
n-k

n-k pkl Pn-PIt).n

nk k

n--k

In the case of a non-homogeneous Poisson process input, the expression (15)

reduces to:

k

P(X(t) - ki -pmt 1 [mt)1 for k - 0,1, (16)

What we have done is to associate a Bernoulli random variable with each

arrival that occurred during the time interval (0,t] If we now inter-
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change the role of "0" and 1"(success, failure) in the Bernoulli variables,

W (t) ,and follow exactly the same steps as above,ve obtain the probability

0 function of the random variable DWt , which is the same as the probability

function of X(t) with p replaced by (1 - p) and (1 -p) replaced by

P[D(t) -k] - P[D(t) -k I I(t) - n]P[I(t) -n]

n-k

I (n - Pp-p' [I(t) - n]
n-k

U )k 00n-k
k! I:n! (n W P[I(t) - n] for k - 0,1.....(17)

n-k

In the case of a non-homogeneous Poisson input, expression (17) reduces to:

P[D(t) = k] = eU-W ki )F(1 for k - 0,1,.....(18)

In the case of non-homogeneous Poisson input, the independence of the random

variables X(t) and D(t) is well known and easy to prove. Therefore,

E~z N(t)] - E(zX(t)]E(z 2DWt~

M (t)p(z-l) x m(t)(l-p)(z -_1)

[m(t0p(z-l)+0(t)(l-p)(z 2-1)] 19

This probability generating function is known to be the probability gener-

ating function of a Herlzdte random variable. In this case with parameters,

a(t W m(t)(l - p) and a 2tW - m(t)p where by (14) p -p(t,h(-),P(-),

2 7

'71.
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1 -..L j[ h()(tu)1()]dm(u) .Therefore, the result follows,

i.e., the probability function of N(t) is:

P[N(t) - ni - e3(t) [] [alt)]n-2J [a2(t)]10)

J.0 ('n -
(2j))

n -0,,...

We notice that this theorem provides us with two results of independent

interest concerning infinite server systems:

- the theorem is valid for any infinite server system of non-homogeneous

Poisson arrival process and general service time distribution function.

- in the case of an infinite server system of general service time dis-

tribution and a "point process with the order statistics property" as

the arrival process, the random variable N(t) does not seem to be

Hermite. Nevertheless, the distributions of X(t) and D(t) still

show a very similar structure between themselves. The only difference

is the interchange role of p and (1 - p) ; see formulae (15) and (17).

The Hermite distribution is a well studied random variable with two

parameters a1(t) and a2(t) ; m.l.e. for these parameters can be found

in Kemp and Kemp [6, pp. 386 to 388]. We can now establish the following

result:

Corollary:

If the form of the function h(.) is assumed to be known apart from

a certain number of unknown parameters, then the m.l.e. a1(t) and a2(t)

-. - ~ ~ ..M
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of the Hermite distribution, together with the two equations obtained in

Theorem 2, i.e., for each fixed t > 0

.a2(t) t F [ e-h(I)t-vdP(L d(v)(

(a1() -m(t) - a 2t

allow us to obtain m.l.e. for the unknown parameters of the function h(-)

and for the unknown parameters of the mean value function, m(t) , of the

arrival process, when working with not more than two unknown parameters.

We note that the data required is just the total number of indistin-

guishable arrivals and departures from the system during a fixed time

interval.

To illustrate the method suggested by this corollary, we present the

following example of an application:

Example 1:

Let m(t) - At and h(.) be a Heaviside function, i.e.,

h(l) IV, 0 < 9 < to 21
-1: :(21)

M2 0 > 0

where "l' U2 are known positive real numbers. Let L be a random

variable with known and invertible distribution function P(x) . The m.i.e.

A , 10 of the unknown parameters A and t0 are given in terms of the

m.l.e. a1 (t) and a2(t) in the following way:

2 I- .Z1 <,-i- I - I -
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a I(t) + a 2(t)

t

-~ J 1 112 t

Lo a -
I

a1()+ a 2(t) ' 2 t])(2

Solution:

By Theorem 2, for each fixed t > 0

1~[ e-h(t)(tu) dP( dm(u)

-p'2(t-u)di(3[~ poetlt + *(I-pO)e Ju(3
0

where P0  P(LO0) -PEL < t 1-And a 1(t) - At - a 2 (t) Therefore, if

a 1(t) and a2(t) represent the m.1.e. of a 1(t) and a 2(t) respectively,

then

Y 1 t) - 2 (t)
t

p , 2 le ;A-1 (1 e 2) 1(t) + a (t) I 2 ]
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(Because p0  represents a probability, p0  P(L < to we have to have

o < P0  1I; therefore, pa ,. ia and the m.l.e. a (t) and a Wt have

to be such that the random variable p 0  will take values between zero and

one.)

On the other handif the distribution function of L ,PWx is invertible,

then p0  P(L < t] - p(t0) and P0 - , ioe.,

4 1(t) +. a2(t)

0 0Po

where Z 0 represents the m.l.e. of the parameter 9,
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4. DIRECT OBSERVATIONS ON THE DEPARTURE PROCESS

Let the data consist of observations on the departure process, namely

the number of departures, D(t) , from the system and the instants of de-

parture dl. ... d D(t) , during a fixed time interval [O,t] Let the

input process be a marked non-homogeneous Poisson process, of known mean

value function m(t) . The following remarks in the context of infinite

server queues will lead us to the evaluation of some particular solutions

of the parametric and non-parametric type. First, by a well known result

in the general M/G/- system, due to Mirasol [11], the corresponding de-

parture process, regardless of the marks, is a non-homogeneous Poisson

process of mean value function mD(t) (in the stationary case mD(t) - m(t)),

Secondly, the result (18) permits us to express mD(t) in terms of m(-)

h(.) and P(-)

mD(t) - tact) (l - P)

Sm(t) - f G(t - u)dm(u)

0

= m(t) - fIO e-h(Z)(t-u)dp(Z)dm(u)

=f El - e-h(L)(tU)dm(u) (24)

0

The following examples illustrate the type of parametric solution that

we can get from (24).

4
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Let the input process be a marked Poisson process, the random variables

kt be i.i.d. and uniform in [0,1] and let the function h(-) be

h(l) r-b log t . The mean value function mD(t) is given by:

t

UDt At -A 5 ( o bt -u d ( d

0

tA

fo (1t + ) - -
3Dt (6

b

is a m.l.e. of the parameter b

The result (18) tell us that, for each fixed time interval [0,tJ the

random variable number of departures from the system, D(t) , is a Poisson

random variable of mean value aD(t) and then that the number of departures

during 10,t] is a m.l.e. of YO(t

Example 2:

If in the above example the mark L is assumed to be a random vector,

i.e., L -(Lip ... ,I L) v ith the components L i for i a 1, ... , c

random variables i.i.d. and uniformly distributed in [0,11 . And if h(-)
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is assumed to be of a similar form as in the Example 1 above, i.e., h(L)

-b log (11 Li) , then we get in a similar manner a m.l.e. for the unknown

parameter b

tDt *t- f(e(log Z)b(t-u)dPMY) x x 1 fe (log tOb(t-u) dP(t)]du

0 0

W Xt -Af du c c 2,3, .. (27)

0 Wbt -u) + 1)'C

anid

1-C

b(l - c)

(where as before mD(t) is the random variable, number of departure sampled

during the fixed time interval (0,t]).

Some Commnents on the Non-parametric Case

As before let the input be a marked non-homogeneous Poisson process of

known intensity function X(t) and let w~(t) be the intensity function of

the departure process, p.(t) W .~t

P - X(t) -dz f J ehL udPZ)]X(u)du .(29)

0 L

If P(-) is assumed to be known and the integrals involved exist and are

finite, then p.(t) - H(t,h(-)) where the function H is known and given

by (29). Therefore, if the function p(t) or an estimator of it is known,
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at least theoretically, we should be able to detect the structure of h(.)

from (29). Similarly, if h(.) and P(t) are assumed to be known, then

4F we can evaluate exact or approximately the function P(-) from (29).

There are several approaches to the problem of estimating the intensity

function U(t) , of a non-homogeneous Poisson process (departure process of

the M/G/- system) from the number of occurrences in a fixed time interval,

D(t) , and their corresponding occurrence times, tl, ..., t D(t). (For a

completely non-parametric approach see Cleverson and Zidek [31, where P(t)

is only required to be positive and integrable on [-T,T] for 0 < T < ,

and Leonard [8, pp. 121 to 123]. Both authors make use of the order

statistics property, defined on page 9, of the non-homogeneous Poisson

process to relate the problem of estimating Poisson intensity functions to

the problem of estimating probability density functions. See also Cox [4]

and Snyder [151.)

_1
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5. DIRECT OBSERVATIONS ON THE LENGTH OF THE SERVICE TIMES

5.1 Direct Observations of the Length of the Service Times Regardless of
Their Corresponding Marks

Let the data available consist of direct observations of the length of

the service times during a fixed time interval (O,t] The expression (3)

d(x) - 1 - G(x)

f eh(O')xdp(L) , x > 0

X < 0

is valid for an input process which is any general marked point process and

allows us to solve the following two types of estimation problems.

Parametric Estimation of h(.) and P(.)

If h(.) and P(.) belong to a certain known family of functions with

some unknown parameters, the expression (3) provides a method to obtain m.l.e.

for these unknown parameters.

Theorem 3:

Let the arrival process of the "corresponding G/G/- system" be any

general point process. Let h(.) and P(.) be known functions except for

a certain number of unknown parameters. Let the data available consist of

direct observations of the length of the service times. Then the expression

Se-h()xdp() , x > 0

(3), G(x) - 0 allows us to obtain m.l.e. for the
1~ x < 0

unknown parameters of h(') and P(.) . '

I " ____________ ._--___. _____________' ___,_-.,_ OW " -. ! " " NNW_-_i__"___,._,_,,,________...,_ _-
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Proof:

By hypothesis, h(.) and P(.) are known functions of the parameters

a1 , ...' am  and n1, ... V n  respectively. And the density function ofd Cx)

the service times, g(.) , is g(x) - - d for x > 0 . Therefore, the

likelihood function of any random sample of observed service times

(YIS "'.' Yk)  is given by:

kL(al ,  ... ,9 a M;Ol ,  ... , I n;y l ,  ... ,P yk)  R g(yi )

iml

k f -h(L) Yidp
i f h(X)e dP(9) (30)

0

The maximum likelihood method can be applied, in a very straightforward way,

to get m.l.e. for al. ..., Q and 81, ...,m n

Example 1:

Let h(.) be the Heaviside function defined in (21) with to ' Pi

and P 2 unknown parameters. By replacing h(*) by this Heaviside function

in (3), we get:

x) - O e -1 + (1- Po)e ; x >0
G =) (31)

1 x<0

where Po - P[L < Z - P(X 0) and the density function of the service time,

g(x) , is

g(x) Ulpo•  + 2 2(l - po)e 2 x > 0 . (32)I

* ~ ~
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Let (yl, "'' Yn) be a realization of a random sample of the length of the

service time. A direct application of the maximum likelihood estimation

method 3"L(x) -L(x) 0; 3L(x) -(x) n log lpoe -Pl y i +
0- i-

-112Yi

P2(l - Po)e will provide us with the m.l.e. U1'2 and p0 * If

the distribution function of L , P(') , is known and invertible, then

i0 - (p O)>

More complicated forms of h(.) could be envisaged and the possibility

of parametrically estimating h(.) and also P(.) exist; whether this is

possible depends on our identifiability problem (chosen shape of h(.)) and

on the nature of the known distribution function P(.) (convergence of the

improper integrals). But the m.l.e. of the parameters involved may be dif-

ficult or impossible to evaluate analytically, and then they have to be

obtained numerically.

In comparison with the method presented in Section 3, the present

method is much less restrictive, because the input can be any general marked

point process and more than two parameters can be estimated from the data.

In fact, we can obtain m.l.e. for as many parameters as we wish provided

that the improper integrals involved will converge and that "l - G(r

actually defines a distribution function. However a more complex type

of data is required and nothing can be learned about the arrival process.

Non-Parametric Estimation of P(')

Let h(.) be a completely known function. Can we get a density esti-

mator for the distribution function of the marks from the direct observa-

tions of the length of the service time? The expression (3) converts this

-)

-7-"FMAb



problem to a typical empirical Bayesian estimation problem; see, for instance,

Robbins [13].

As a matter of fact, the expression (3) can be rewritten as follows:

G(x) "PY <x] f p [ < " x I L - t]dP(k)

0

f Gh( () (x)dP(l) , x > 0. (33)

0

In the terminology of the empirical Bayesian theory, G(x) is the "mixed"

distribution, P(-) is a "mixing" distribution, and Gh( (-) is the

known kernel. This theory provides us with a method to obtain a consistent

estimator of the distribution function of the marks, Pn()

n

By using the empirical distribution function, Gn()
n

no. of terms YlY 2, n''9 Yn which are < x
G (x) - (34)
n n

(which converges uniformly to G(.) with probability 1 as n - -) and the

functional equation (33) it is possible, at least formally, to obtain a

distribution function P (-) which will converge as n - +- to the unknown

distribution function P(.) . The degree of difficulty in getting this

estimator P n ( .) is very much related to the nature of the known kernel,

-h( Z)x
which here we denoted by Gh( )() . In our case, Gh()(x) 1 1 - e

Our problem can be generalized by considering that the conditional distribu-

tion function of the service time of each arrival is any other specified

distribution (with the basic parameters to be known functions of the marks)

("W- NW Wn
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rather than the exponential distribution as assumed before. For more details

on empirical Bayesian methods, see Ilaritz (10].

Non-Parametric Estimation of h(-)

If P(.) is completely known, an estimator of h(.) can be obtained

by using the results in Section 2.

5.2 Direct Observations on the Length of the Service Times and Their
Corresponding Marks

Let us now assume that a direct observation of the marks as well as of

the length of the service times can be obtained. In medical and reliability

data very often this type of data is available. The data now consist of n

pairs of positive real numbers ((yl,tl),(y 2 ,t2), ..., (yntn)) where the

first number in the pair represents the length of time of the service and

the second represents the corresponding mark. The likelihood function is

then given by:

n -h(Z )y i ,,
L(Yl,'2;y2,2; ...; Yntn) H n h(I i)e (42)

and

n n
log L(ylL 1 ;Y2, 2 ; ...; ynn) 9 n log h(ti) - I h(L )yi • (43)

i-l i-l

Let ZiI, ..., zik for <n be the k distinct values of Z

among the n observed. Let yl,ij ... ' Yr (j),i for r(j) I n and

J -1,..., k and I r(j) n be the values of the observed service
J-1

* J'.'. *... i
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r (j)

I ys,i
times, y's, of mark L Let - l  be its sample average

i j r(j)

service time. In our model given the value of the mark, for instance

the corresponding length of the service time is an exponential random var-

iable of parameter 1j . h(L) The m.l.e. of the parameter u is the
j

inverse sample average Therefore, if in our sample we plot the

values Iij for j - 1, ... , k against the corresponding inverse sample)-I
averages (Y? , we get some empirical information about the form of the

function h() Thus to estimate h() with this type of data we suggest

to use data in two stages: first, to learn about the form of the function

in the way presented above and to choose a suitable parametric representa-

tion for h() and secondly to obtain through (43) m.l.e. for the parame-

ters of h(.)

We note that if in our model the marks are Li -1 - 1,2 and if they

are interpreted as denoting respectively "failure" and "censoring" or

"withdrawn" in the context of reliability theory then the Bayesian statis-

tical results presented in Barlow and Proschan (l can be used (in their

paper the underlying probabilistic model is of the G/G/- type; the observed

individuals enter into the system, stay there for a certain time (lifetime)

and then leave without interacting among themselves).

I ," 7
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FINAL REMARKS

The conditional distribution of the service time, P[Y< x L k ]

do not need to be exponential, except for Theorem 1.

No attempt has been made to study the performance of the various types

of estimators presented and suggested in this paper. The reason is that the

problem is too complicated and we are just beginning to understand it.

Hkwever, its close relationship with areas traditionally considered to be

unrelated has been noted in this paper. To our mind, these relationships

deserve further attention.

A

I

I



29

Footnotes

(a) CI - means the class of the continuous functions with all derivatives.

(b) -(k) . means the k-th derivative of G

4

Ti
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