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ABSTRACT
4

A random translation of a marked point process is considered.
The random translation is assumed to be dependent upon the
mark through a certain function:’;zt;N?\‘The main concern is
to study the form of the function h(+) for different types
of data. Complete identification is not generally possible

but some interesting particular solutions are presented.




1. INTRODUCTION

1.1 Some Essential Definitions

Definition 1:

A point process, I , is a stochastic process {I(t);t > 0} defined

over a fixed probability space (2,F,P) so that, for almost all we 2 ,

v NN

the mapping t + I(w,t) is non-decreasing, right continuous, nonnegative,

finite, integer valued, and has I(w,0) = I(0) =0 .

Such a process increases by jumps only, and the times of jumps will be
called the "points"” of I . In particular, a point process, I , with
"points" 1ys1;s ... 1s called a renewal process if 10,11 - 12, ... are

independent and identically distributed (i.i.d.) random variables. A

sequence {ik ; k=0,1, ...} is usually called a realization of the point
. process (1k € R; » the positive real numbers with zero included). A point

process can be operated on and changed into another point process in several

ways. Examples of operations on point processes are "superposition", "ran-

dom deletion”" and "random translation".

Definition 2: N

A randomly translated point process 0 , derived from an initial point

process I , is a point process with realizations {ik +Y 5 k=0,1, cesl

AR

where the sequence {Yk ; k=0,1, ...} is a family of i.i.d. random var-

iables and independent of the realization {ik ; k=0,1, ...} of 1.

For more details about point processes, see Lewis [9].

A more general type of point process is the marked point process.
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Definition 3:

A marked point process is a point process with an auxiliary variable,

called the mark, associated with each point.

The mark can be a random variable, a random vector, or even a random
process. The mark is used to identify random quantities associated with
the point process it accompanies. An example of a mark is the velocity
and acceleration of a vehicle passing an obsezrver at a given instant. These

processes were introduced by Konig and Matthes [(7].

1.2 The Model

Let {Ik,Lk,Yk ; k=0,1, ...} be three sequences of nonnegative
continuous random variables. The first two random variables define the so
called "input process", which in this case consists of the "arrival process"
and "the marks" associated with it. The input process is assumed to be a
marked point process and the arrival process is the corresponding point
process. (The sequence {Ik ; k=0,1, ...} represents the inter-arrival
times, that is to say the length of time between two comsecutive jumps in
the process {I(t);t > 0} , and L= dpeg — 14 for k =0,1, ... where

i, is assumed to be zero.) The sequence {Lk s k=0,1, ... 3 = 0} ,

Lo
represeuts the marks associated with the arrivals (Lk represents the mark
of the k-th arrival). This sequence is a sequence of mutually i.i.d. ran-
dom variables which are also independent of the instants of arrivals ik‘s .
The distribution function of the marks is denoted by P(x) . The random
varisbles, Yk's , define the random translations (Yk represents the ran-

dom translation of the k-th arrival which has occurred at the instant ik

with the mark Lk)' The sequence {Yk ; k=0,1, ... ; Y, = 0} 1s assumed

"‘l;%y!?“#' T !:r;'«g.:i‘:g.zgt&:{“f\‘ ER TR S IR R R et R T A
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to be a sequence of i.i.d. random variables which are independent of the
instants of arrival. In this paper, we assume the existence of a certain
function h(*) such that the random variables Yk's depend on the marks

in the following way:

| 1 , x>0
P(Y, < x = 2] = for k=1,2, ... . (1)
k “ 0 , x<0

The h(°*) 1is a function relating the mark of the arrival to the parameter
of the exponential distribution which define the conditional distribution

function of the random variable Yk . Let dk be the point of the trans-
lated point process 0 , corresponding to the point ik of the point proc-

ess I . By Definition 2, we have:

d =4 +Y for k=0,1, ... . (2)

The sequence {Dk - dk+1 -d 5 k=0,1, ...} represents the time between
two consecutive points of the translated point process 0 .
The mathematical model defined above is a random translation of a

marked point process.

1.3 Principal Results

Several questions of a probabilistic and statistical kind can be asked
in relation to this model. In this paper, our main concern is to study the
form of the function h(:) for different types of data.

Complete identification is not generally possible, but it will be
shown, for example, that maximum likelihood estimators (m.l.e) can be found

for some interesting particular situations. In Section 2, a formal solutiomn

AR Ry N0 5l R NPT
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is presented where the study of the form of h(-) 1is related to the prob~-
lem of identifiability and estimation of the service time distribution
function of the G/G/» system. For uniformly distributed marks, a solu-
tion is given. In Section 3, the input process i{s restricted to a marked
non-homogeneous Poisson process and it is proved that the total number of
transitions (arrivals and departures from the M/G/~ system, regardless
of their marks) during a fixed time interval (0,t] 4is a Hermite random
variable. This result is of independent interest and holds for any in-
finite server system with non-homogeneous Poisson arrival process and
general service time distribution. The form of the function h(-) is
assumed to be known, apart from a certain number of unknown parameters,
and m.l.e. can be found for these parameters and the basic parameters of
the arrival process when working with not more than two unknown parameters.
Moreover, the data required by these estimators is just the total number
of indistinguishable arrivals and departures from the system during a
fixed time interval. A discussion will be found in Sections 4 and 5 con-
cerning other types of data, namely, observations just of the instants

of departures during time interval (0,t] and direct observations of the

service times.

1.4 The Corresponding G/G/= System

If we don't know the marks of the arrivals, our model can be regarded

as a G/G/» system where the arrival process is the same but the distribu-

tion function of the service time, G(x) , is given by:

e e e o —— . e o < onr oot




‘ S
3
3 G(x) = P[Yj < x]
: [ ]
i & - I P[Yj < x| zj = 2]dP(2)
0
" | o
2 1- I B Wy x>0
é i = 0 3)
; 0 s X<0.

- This service time distribution function depends heavily on the partic-
?, ular type of the distribution function of the marks, P(¢) , and on the
g
: form of the function h(+) . For instance, if h(:) 1is a step function, ,
F i
; for any distribution function of the marks, G(°) will be the distribution 1
b - :

function of a mixture of exponentials. Or, if the function h(*) and the %

random variable L are such that the random variable h(L) is normally

-
- 2

‘1-{" , x>0
distributed with mean zero and variance 1/2, then G(x) = I
0

s, X <0
and the service time, Y , will be a Weibull random variable.

We call this G/G/» system the "corresponding G/G/» system" and

denote by M/G/= the "corresponding G/G/» system" with a non-homogeneous

Poisson arrival process.
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2. FORMAL SOLUTION FOR THE IDENTIFICATION-ESTIMATION PROBLEM

We have seen that regardless of the marks our model is equivalent to a
G/G/» system with service time distribution function given by (3), i.e.,

the "corresponding G/G/» system”". On the other hand,

G(x) =1~ G(x) = P[Yj > x]

e—h(L)x]

E[ » X220

1 s x<0,
assuming that h(-) is such that h(L) 1is a random variable.

Theorem 1:

If the random variable h(L) is positive and absolutely continuous,

Le., dfy o () = £ (dy , 4 £ () € ¢! for y >0 and if

- (@)
G(x) € C in a neighborhood (however small) of += . Then,
fh(L) (y) = l]‘-:: Lk,y[c(x)] » Y>>0, (5)
k k+l (b)
where Lk’y[ﬁ(x)] = Sﬁﬁl- (%) E(k)(%) is an operator defined for any

positive real number y and any large integer k .

Proof:

By (4) and by the assumption that h(L) 1s an absolutely continuous

positive random variable, we get:

o
e T¥¢ (y)dy , x>0
G(x) = '!,' h(L) - (6)
1 », X <0
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7
i.e., G(+) 1is the Laplace transform of fh(L)(') . The result thus
follows by a direct use of a result in Widder [16, real inversion of the
Laplace transform; pp. 140 and 141].

Furthermore, if we assume that P(<) 1is also known, then at least
theoretically we can evaluate h(+) . For example, if the marks, L , are
assumed to be uniform random variables in [0,1] and if h(+) is assumed
to be a non-decreasing function defined on ({0,1], then

h(y) = F g0y (y)
h(L)
= {x : the smallest value of x so that Fh(L)(x) <y},
0O<y<1l. (7N

Remark 1:
If h(L) 1s a discrete random variable, then its distribution function
e X
. 4 = G
Fh(L)( ) 1is a step function and g e th(L)(y) G(x) reduces to a

Dirichelet series; see Widder [16, pp. 93 and 94]).

Remark 2:

By Theorem 3.3 in Widder [16, p. 203] with o = 1, we get the following

result:

If E(x)~% as x*0+,

g8
B-1 8-1 Ax™
then 1lim | t fh(L)(t)dt = E[{h(L)}" "]~ 7

X+

O S ¢

where g8 = 2,3, ... .

N i

LR R

o ¥ mw»w\



et s b

Remark 3:

There are several ways of estimating the service time distribution
function, G(*) , according to the data available. For example, if the
data consist of random observations of the service times, Yys covs Vg oo
then the empirical distribution function, Gn(yl, caey yn) , 18 a consistent
estimator of G(x) . Brillinger [2] obtained an estimator of the service
time density function, g(x) = - é% G(x) , based on a stretch of arrival and
departure times (arrival-departure records) for the stationary G/G/=
system (having independent service times with a common finite mean value)
and Ross [14] shows that, for the GI/G/k system with k > » , G(x) is

identifiable from a single sample path of the process {X(t),t > 0} .
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3. THE HERMITE DISTRIBUTION APPROACH

Let the point process {A(t);t > 0} have the following properties:

(1) E{A(t)} =m(t) <=, >0,

(ii) E%§§l = (t) > 0 and bounded on finite intervals for t > 0 .

Definition 4:

A point process {A(t);t > 0} has the order statistics property if
and only 1f, given that n jump times (points) occur in (0,t] , the con-

ditional distribution of il’ ¢eey 1 18 the same as the distribution of

n
the order statistics of a random sample of size n from the distribution

with density function,
0<xc<t., (8)

The Poisson process is the most familiar example of a process with this

property, in which ft(x) = %‘ for x e [0,t] (i.e., uniform distribution

in [0,1]). However, this does not characterize the Poisson process since,

for example, the number of births in a linear birth process with parameter
Ax

A > 0 also has the order statistics property with ft(x) -de for

ext -1
x ¢ [0,t] , see Neuts and Resnick [12]. It can be shown as well, that the
non-homogeneous Poisson process also has the order statistics property; see,
for example, Snyder {15, p. 65]. Let m(t) , the mean value function of the
non-homogeneous Poisson process, be an absolutely continuous function of ¢t ,

and Q%éfl = A(t) 1its intensity function. Then,

ft(x)-%%)l , 0<x<t. (9

i A e tx g 0
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(For more details on point processes with the order statistics property, see
also Feigin [5].)

In our general model, let I(t) represent the number of arrivals,
regardless of the marks, during time interval (0,t] and D(t) the number
of departures during time interval (0,t], regardless of the marks, among
the ones arriving during (0,t] .

Also let X(t) represent the number of arrivals, regardless of the
marks, still present in the system at time t , among the ones arriving
during time interval (0,t] and let N(t) represent the number of transi-
tions, arrivals and departures regardless of their marks, during a fixed

time interval (0,t] .

Theorem 2:

For the M/G/» system and for each fixed time interval (0,t], the
random variable N(t) 1is a Hermite variable with probability function -

given by:

] 12, 01" fa,(0)))

- [
PINCE) = n] = & ™F) 3? (a - 2§)! it

i=0

(10)

for n=0,1, ... ; where [b] means the integer part of b ; al(t) =

o(t)(1l - p) ; az(t) = m(t)p and p = p(t,h(*),P(+),m(*)) =

t [+
1 =h(2) (t=u)
n(t) g [-g e dP(ﬂ)]dm(u) .
Proof:

For each fixed time interval (0,t] , we have for any G/G/> system

s AR e <L RN, ©

N(t) = I(t) + D(t) , (11) '

oy SRS SRR VL
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N(t) = X(t) + 2D(t) . (12)

We shall first prove that the random variables X(t) and D(t) are two

independent Poisson random variables and then use this result and the prob-
ability generating fumction of N(t) , E[zN(C)l s to complete the proof of

the theorem.

For each fixed time interval (0,t] , given that I(t) arrivals had

occurred, the order gstatistics property of the input process and the assump-
tion that the random variable Y associated with each arrival is independ-
ent of everything else in the system (apart from the mark carried out by

this arrival) allow us to write X(t) 1in the following way:

X(t) = Wl(t) + ... + WI(t)(t) .

Where the wj(t)'s are a sequence of independent Bernoulli random variables

defined as follows:

1 , 1if the j-th arrival which has occurred at time

ij e [0,t] , is still in the system at time ¢t

(13)
3 0 , 1f the j-th arrival which has occurred at time

ij e [0,t] , is no longer in the system at time

t

for j =1, ..., I(t) . The parameter of the Bernoulli distribution {is

given by:




- R By ieg”

e

Y ]

t
P[Wj(t) = 1] -IP[Y.‘I >t - u]ft(u)du
0

t
- E'(IT)I [1 - G(t - u)]A(u)du
0

t [
- ;(-15] I B (=W 4p005 13 (w) du
olo
= p(t,h(*),P(*),m(*)) for j =1, ..., I(t) (14)

which is independent of j . For the sake of simplicity, we shall use "p"

instead of p(t,h(*),P(*),m(*)) . Therefore, the sequence {W_(t) ;

h|
=1, ..., I(t)} 1is a sequence of i.i.d. Bernoulli random variables of
parameter p . Then, for each fixed t > 0 , the probability function of

the random variable X(t) 1is given by:

P[X(t) = k] = ] P[X(t) =k | I(t) = n]P[I(t) = n]
n=k

Bt - " ¥eir(e) = ]

(]
3 &~
~
—

n
k =« n~k
=B ] w BB R = a] for k=01, ... . (5)

In the case of a non-homogeneous Poisson process input, the expression (15)

reduces to:

k
P(X(t) = k] = e PR(E) -[22%11- for k = 0,1, ... . (16)

What we have done is to associate a Bernoulli random variable with each

arrival that occurred during the time interval (0,t] . If we now inter-
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change the role of "0" and "1" (success, failure) in the Bernoulli variables,
wj(:) , and follow exactly the same steps as above,we obtain the probability
function of the random variable D(t) , which 18 the same as the probability
function of X(t) with p replaced by (1 - p) and (1 - p) replaced by

p

P[D(t) = k]l = J P[D(t) = k | I(t) = n]P[I(t) = n]
n=k

- 1 (3)a - 2% i1 = n)

n=k

n-k

P[I(t) = n] for k =0,1, ... . (17)

-_(1_'_22_‘.‘.‘.2,“!._2___
ko LV @-w!

In the case of a non-homogeneous Poisson input, expression (17) reduces to:

K
P[D(t) = k] = ¢~ 1-P)m(E) -[—(—1—'—%'5511— for k=0,1, ... . (18)

In the case of non-homogeneous Poisson input, the independence of the random

variables X(t) and D(t) is well known and easy to prove. Therefore,
E[zN(C)] - E[Zx(t) ]E[zzn(t) l

L2(B)p(z-1) | em(t)(l--p)(zz-l)

- [B(O)p(z=DHm(e) (1-p) 22-1)] (19)

This probability generating function is known to be the probability gener-
ating function of a Hermite random variable. In this case with parameters,

al(t) = m(t)(1 - p) and az(t) = m(t)p where by (14) p = p(t,h(+),P(+),

ot 2 S C G KA
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t (4=
u(*)) = —]"—'I ) e R(D) (t-u)dp(sl.) dm(u) . Therefore, the result follows,
=) 5 Lo

i.e., the probability function of N(t) is:

_ .\ Bl [a,(0)1% 2 [a,(0))3
PINGE) = n] = O G T (10)

3=0

ns=0,1, ... .

We notice that this theorem provides us with two results of independent

interest concerning infinite server systems:

the theorem is valid for any infinite server system of non-homogeneous

Poisson arrival process and general service time distribution functionm.

in the case of an infinite server system of general service time dis-
tribution and a "point process with the order statistics property” as
the arrival process, the random variable N(t) does not seem to be
Hermite. Nevertheless, the distributions of X(t) and D(t) still
show a very similar structure between themselves. The only difference
is the interchange role of p and (1 - p) ; see formulae (15) and (17).

The Hermite distribution is a well studied random variable with two
parameters al(t) and az(t) ; m.l.e. for these parameters can be found

in Kemp and Kemp (6, pp. 386 to 388). We can now establish the following

resulc:

Corollary:

If the form of the function h(¢) 1is assumed to be known apart from

a certain number of unknown parameters, then the m.l.e. ;l(t) and az(t)
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of the Hermite distribution, together with the two equations obtained in

Theorem 2, i.e., for each fixed t >0,

t [4=
a,(t) -I I LIS LS FPYTTY v
o Lo (20)

al(t) = m(t) - az(t)

allow us to obtain m.l.e. for the unknown parameters of the function h(*)
and for the unknown parameters of the mean value function, m(t) , of the

arrival process, when working with not more than two unknown parameters.

We note that the data required is just the total number of indistin-
guishable arrivals and departures from the system during a fixed time
interval.

To illustrate the method suggested by this corollary, we present the

following example of an application:

Example 1:

Let m(t) = At and h(+) be a Heaviside function, i.e.,

u »y 0<2 <
h(e) =] 1 0 (21)
uz ’ 9’ > 20

where By Uy are known positive real numbers. Let L be a random
variable with known and invertible distribution function P(x) . The m.l.e.

A, Eo of the unknown parameters )\ and 20 are given in terms of the

m.1l.e. ;l(c) and ;2(:) in the following way:
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s ;1(:) + ;z(t)
t
TIRTIN 4
3 - 172
=P -ut -u,t X
2(1 -e ) - ul(l - e )
- -ut
t 2
- 33572 -1 = ) (22)
ll(t) + az(t) 2
Solution:
By Theorem 2, for each fixed t > 0 ,
a,(t) = m(t)p
t 4=
-I I e P (=9 4p (03 dm(u)
0 Lo
‘ =k, (t-u) —uy(t=u)
= ) Pye + Q1 - po)e du (23)
[

where Py = P(zo) = P[L 5-20] . And al(t) =\t - az(t) . Therefore, if

gl(t) and ;z(t) represent the m.l.e. of al(t) and az(t) respectively,

then
L - al(t) - az(t)
t
- -u,t
b = MMt 3,0 1-e 2
9 -y, t ~u,t - - u,t
+
uz(l - 1 ) - ul(l - e 2 ) al(t) az(t) 2

o e e ———




e I U i e ee e m raeemady SRR L e O e o an a2 eyt = e L e -
- - PR = toee P . e e b 4 o e % et g R T b —

17

< Sty

(Because P, Tepresents a probability, Py = P(L < Qo] » we have to have

0 <Py < 1 ; therefore, My s M, and the m.l.e. al(t) and az(t) have
to be such that the random variable po will take values between zero and

one.)

On the other hand, if the distribution function of L , P(x) , is invertible,

then p, = P[L < 4] = p(%y) and Py = P-l(po) , 1.e.,

;l(g) + ;z(t)
t

A=

a

_1.° 3.

R

~

where 20 represents the m.l.e. of the parameter o -
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4. DIRECT OBSERVATIONS ON THE DEPARTURE PROCESS

Let the data consist of observations on the departure process, namely
the number of departures, D(t) , from the system and the instants of de-
parture dl’ cens dD(t) » during a fixed time interval [0,t] . Let the
input process be a marked non-homogeneous Poisson process, of known mean
value function m(t) . The following remarks in the context of infinite
server queues will lead us to the evaluation of some particular solutions

of the parametric and non-parametric type. First, by a well known result

in the general M/G/» system, due to Mirasol [11], the corresponding de-

parture process, regardless of the marks, is a non-homogeneous Poisson

process of mean value function mD(t) (in the stationary case mD(t) = m(t)). i
Secondly, the result (18) permits us to express mD(t) in terms of m(-) , Q

h(*) and P(-) .

mD(t) m(t) (1 - p) -

t
m(t) - I G(t ~ u)dm(u)
0

t [+

= m(t) -j I e PV (=9 4p 1) | am(u)
0 LO
t
- I E[1 - e DLI(E=0)y iy (24)
0

The following examples illustrate the type of parametric solution that

we can get from (24).
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Example 1:

Let the input process be a marked Poisson process, the random variables
Lk's be 1.1.d. and uniform in [0,1] , and let the function h(*) be

. h(2) = -b log ¢ . The mean value function mb(t) is given by:

t(l
lo(t) = )\t - AI Ieuos j?')b(t-“)clp(lf-) du
[V ]

t
= At - A 1 du
(1 + bt) - bu
0

_At_xlo bbt‘.’l (25)
- 1f ;D(t) is a m.l.e. of mD(t), the random variable Q defined by:
- log (bt +1) _ M~ ®p¢e) (26)
Y A

b

is a m.l.e. of the parameter b .

The result (18) tell us that, for each fixed time interval [0,t] , the
random variable number of departures from the system, D{(t) , is a Poisson

random variable of mean value nD(t) and then that the number of departures

during [0,t] 4s a m.l.e. of nD(t) .

Example 2:

If in the above example the mark L is assumed to be a random vector,
i.e., L = (Ll, cees Lc) with the components L, for 1 =1, ..., ¢

random variables {.1i.d. and uniformly distributed in [0,1] . And if h(°)

LR I g (R R TN T e



is assumed to be of a similar form as in the Example 1 above, i.e., h(L) =

c

-b log ( n Li) » then we get in a similar manner a m.l.e. for the unknown
i=1

parameter b .

|1l . 1
n () = At - AI Ie(“g DLW apeyy « ... xje(“g Dbt 4p ) au
0 Lo 0
t
-M:-AI 1 cdu ; c= 2.3, ... 27)
(b(t - u) +1)
0
and
N iy 1-¢
mD(t) = )\t - AL t £) = 1) s ¢ =23, ... (28)

b(l - ¢)

(where as before mD(t) is the random variable, number of departure sampled

during the fixed time interval ([0,t]).

Some Comments on the Non-parametric Case

As before let the input be a marked non-~homogeneous Poisson process of
known intensity function A(t) and let u(t) be the intensity function of

the departure process, u(t) = i% mD(t) H

t [
w(e) = A(L) - ?14:',[ I e B (-9 5p 0y 1y () du . (29)
o Lo

If P(¢) 1is assumed to be known and the integrals involved exist and are

finite, then u(t) = H(t,h(*)) where the function H is known and given

by (29). Therefore, if the function u(t) or an estimator of it is known,
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at least theoretically, we should be able to detect the structure of h(*)
from (29). Similarly, if h(-) and u(t) are assumed to be known, then

we can evaluate exact or approximately the function P(°) from (29).

| There are several approaches to the problem of estimating the intensity
i function u(t) , of a non-homogeneous Poisson process (departure process of

the ﬁ/G/w system) from the number of occurrences in a fixed time interval,

D(t) , and their corresponding occurrence times, Eis cees tD(c)' (For a

completely non-parametric approach see Cleverson and Zidek [3], where u(t)

is only required to be positive and integrable on [-T,T] for 0 < T < += ,
and Leonard {8, pp. 121 to 123]. Both authors make use of the order
statistics property, defined on page 9, of the non-homogeneous Poisson
process to relate the problem of estimating Poisson intensity functions to
the problem of estimating probability density functions. See also Cox [4]

and Snyder [15]).)
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5. DIRECT OBSERVATIONS ON THE LENGTH OF THE SERVICE TIMES

5.1 Direct Observations of the Length of the Service Times Regardless of

Their Corresponding Marks

Let the data available cousist of direct observations of the length of

the service times during a fixed time interval (0,t] . The expression (3)

G(x) = 1 - G(x)

o
J. e-h(z)xdp(l) , x>0
BRY)
1 ,x <0, é

is valid for an input process which is any general marked point process and

allows us to solve the following two types of estimation problems. §

Parametric Estimation of h(*) and P(°) e

If h(*) and P(*) belong to a certain known family of functioms with
some unknown parameters, the expression (3) provides a method to obtain m.l.e.

for these unknown parameters.

Theorem 3:

Let the arrival process of the "corresponding G/G/= system" be any
general point process. Let h(*) and P(*) be known functions except for
a certain number of unknown parameters. Let the data available consist of
direct observations of the length of the service times. Then the expression

o0
f e-h(z)xdp(l) » X >0

0

3), G(x) = , allows us to obtain m.l.e. for the

1 y X <0

unknown parameters of h(+) and P(*)
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Proof:

By hypothesis, h(*) and P(+) are known functions of the parameters
Gps cees and Bl, ooy Bn respectively. And the density function of

2%%?1 for x > 0 . Therefore, the

the service times, g(°) , is g(x) = -
likelihood function of any random sample of observed service times

(yys ++v» y,) 1is given by:

k
L(Gl, seey Gm;Bl’ ccey Bn;ylo seey Yk) - 121 8(}'1)

kK T -h(Vy,
- I Ih(z)e dP(1) . (30)
1=1

The maximum likelihood method can be applied, in a very straightforward way,
to get m.l.e. for al, ooy am and Bl, ceny Bn .

Example 1:

Let h(+) be the Heaviside function defined in (21) with 20 » Uy

and Hy unknown parameters. By replacing h(+) by this Heaviside function
in (3), we get:
“upx “H,X
Po® + (1 - po)e ;3 x>0

G(x) = (31)
1 s x<0

where Py = P(L 5_20] = P(zo) and the density function of the service time,

g(x) , is

H.X =M, X
8(x) = u pse +u,Q - Poe




;
|

Let (yl, censy yn) be a realization of a random sample of the length of the

gservice time. A direct application of the maximum likelihood estimation

n -u.y
method L) 0 ;3L(§) =0 ;35&51 = 0 where L(x) = Z log |u{Ppe 171
aul 3u2 apo =1 10

+

~u,y R R R
uz(l - po)e 2 f]) will provide us with the m.l.e. My s ¥y, and p, . if

the distribution function of L , P(¢) , is known and invertible, then

- -~

29 = P (py) -

More complicated forms of h(¢) could be envisaged and the possibility
of parametrically estimating h(+) and also P(-) exist; whether this is
possible depends on our identifiability problem (chosen shape of h(-+)) and
on the nature of the known distribution function P(+) (convergence of the
improper integrals). But the m.l.e. of the parameters involved may be dif-
ficult or impossible to evaluate analytically, and then they have to be
obtained numerically.

In comparison with the method presented in Section 3, the present
method is much less restrictive, because the input can be any general marked
point process and more than two parameters can be estimated from the data.
In fact, we can obtain m.l.e. for as many parameters as we wish provided
that the improper integrals involved will converge and that "1 - G(+)"
actually defines a distribution function. However, a more complex type

of data is required and nothing can be learned about the arrival process.

Non-Parametric Estimation of P(-)

Let h(+) be a completely known function. Can we get a density esti-
mator for the distribution function of the marks from the direct observa-

tions of the length of the service time? The expression (3) converts this

.
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problem to a typical empirical Bayesian estimation problem; see, for instance,
Robbins [13].

As a matter of fact, the expression (3) can be rewritten as follows:

G(x) = P[Y <x] = | PIY <x| L =2)dP(r)

O"—\t

+o
= I Gh(“(x)dp(l) , x2>0. (33)
0

In the terminology of the empirical Bayesian theory, G(x) is the "mixed"
distribution, P(°) is a "mixing" distribution, and Gh(z)(') is the
known kernel. This theory provides us with a method to obtain a consistent

estimator of the distribution function of the marks, Pn(') .
By using the empirical distribution function, Gn(') :

no. of terms yl,yz, ETIS which are < x

Gn(x) = (34)

n

(which converges uniformly to G(°) with probability 1 as n -+ +) and the
functional equation (33) it is possible, at least formally, to obtain a
distribution function Pn(-) which will converge as n + +» to the unknown
distribution function P(¢) . The degree of difficulty in getting this
estimator Pn(-) is very much related to the nature of the known kernel,
which here we denoted by Gh(n)(') . In our case, Gh(z)(x) =1 - e-h(l)x .

Our problem can be generalized by considering that the conditional distribu-

tion function of the service time of each arrival is any other specified

distribution (with the basic parameters to be known functions of the marks)




26

rather than the exponential distribution as assumed before. For more details

on empirical Bayesian methods, see Maritz [10].

Non-Parametric Estimation of h(-)

If P(-) 1is completely known, an estimator of h(*) can be obtained

by using the results in Section 2.

5.2 Direct Observations on the Length of the Service Times and Their
Corresponding Marks

Let us now assume that a direct observation of the marks as well as of
the length of the service times can be obtained. In medical and reliability
data very often this type of data is available. The data now consist of n
pairs of positive real numbers ((yl,ll),(yz,lz), cees (yn,ln)) where the
first number in the pair represents the length of time of the service and
the second represents the corresponding mark. The likelihood function is

then given by:

n -h(ﬂ.i)yi
L(ys293Fs8p5 «oe5 Y 00 = 121 h(L,))e (42)
and
n n
log L(yl,zl;yz,zzg ceeld yn,ln) = Z log h(zi) - Z h(zi)yi . (43)
i=1 i=]
Let 21 s coes 21 for ik < n be the k distinct values of ¢
1 k
among the n observed. Let Yy g > sees Y 1 for r <n and
5 ’ } r(j)‘ 3 (j)
j=1, ..., k and 2 r(j) = n be the values of the observed service
i=1

e m ae o
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{¢))
- szl 78,1
times, y's , of mark li . Let yJ = -——;r————l be its sample average
b &)
service time. In our model given the value of the mark, for instance 21 ’

3

the corresponding length of the service time is an exponential random var-

iable of parameter u,6 = h(l1 ) . The m.l.e. of the parameter u is the

b 1 b
inverse sample average (;j)-l . Therefore, if in our sample we plot the
values li for §j =1, ..., k against the corresponding inverse sample

3

averages (3-7:))-1 » we get some empirical information about the form of the
function h(+) . Thus to estimate h(°) with this type of data we suggest
to use data in two stages: first, to learn about the form of the function
in the way presented above and to choose a suitable parametric representa-
tion for h(°) and secondly to obtain through (43) m.l.e. for the parame-
ters of h(-) .

We note that if in our model the marks are li » 1 =1,2 and if they
are interpreted as denoting respectively "failure" and "censoring” or
"withdrawn" in the context of reliability theory then the Bayesian statis-

tical results presented in Barlow and Proschan [l] can be used (in their

paper the underlying probabilistic model is of the G/G/» type; the observed

individuals enter into the system, stay there for a certain time (lifetime)

and then leave without interacting among themselves).

TR g g i

b



FINAL REMARKS

The conditional distribution of the service time, P[Yk <x | L =,

do not need to be exponential, except for Theorem 1.

No attempt has been made to study the performance of the various types
of estimators presented and suggested in this paper. The reason is that the
problem is too complicated and we are just beginning to understand it.
However, its close relationship with areas traditionally comsidered to be

unrelated has been noted in this paper. To our mind, these relationships

deserve further attention.
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Footnotes

(a) ¢

k)

®) &t

~ means the class of the continuous functions with all derivatives.

- means the k-th derivative of G .
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