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ABSTRACT

We consider boundary value problems for the biharmonic equation in the open
rectangle x > 0, -1 < y < 1, with homogeneous boundary conditions on the free
edges y -nl, and data on the end x - 0 of a type arising both in elasticity and
in Stokes flow of a viscous fluid, in which either two stresses or two displacements
are prescribed. For such "non-canonical" data, coefficients in the eigenfunction
expansion can be found only from the solution of infinite sets of linear equations,
for which a variety of methods of formulation have been proposed.

A drawback of existing methods has been that the resulting equations are
unstable with respect to the order of truncation. It is clear from an examination
of the spectrum of a typical matrix that ill-conditioning is to be expected.
However, a search among a wider class of possible trial functions than hitherto for
use in a Galerkin method based on the actual eigenfunctions has led to the choice of
a unique set, here termed optimal weighting functions, for which the resulting
infinite matrix is diagonally-dominated. This ensures the existence of an inverse,
which can be approximated by solving a finite subset of the equations..-

Computations for a number of representative cases, presented in full in an
internal report (Spence 1978) are sumarized here, with emphasis on the rates of
decay of the coefficients {c ) in the eigenfunction expansion. Knowledge of these
decay rates is essential for a discussion of convergence, parallel to ;nat given by
Joseph (1977a,b) and his co-workers for canonical problems.

Asymptotic estimates of the decay rates have also been obtained by use of the
solution of the biharmonic equation in a quarter plane. It is found that (i) for
smooth continuous data satisfying compatibility conditions at the corners, the decay
rates guarantee pointwise convergence. Also examined are (ii) cases of data
violating compatibility (iii) discontinuous data and (iv) discontinuities in
derivatives of the data. In these cases sharp estimates of convergence rates are
obtained, which guarantee that integrals of the series converge to integrals of the
data. The computations show striking confirmation of the theoretical estimates.
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A CLASS OF BIHARNOIC END-STRIP PROBLEMS ARISING
IN ELASTICITY AND STOKES FLOW

D. A. Spence

1. Introduction

The solution of the biharmonic equation

2 - o(1.1)

in a semi-infinite strip n: ( x > 0, jyI< 1) 'with homogeneous boundary

conditions on the edges y - + 1 can be expressed formally as

T (x,y) - c n(y)e-nx (1.2)

where 4n(y) B * (y,An) are eigenfunctions associated with the names

of Papkovitch (1940) and Fad'le (19.41), An are eigenvalues, and {c n } are

coefficients that depend on the data on. the edge F: (x - o, IyI< 1).

In the case of solutions even in y, and such that T -0 0 as x #, with edge

conditions

T0,Yn y t +1, (1.3)

the eigenvalues are the zeros with positive real parts of the function

C(A) - A + sin X cos A (1.4)

and the eisenfunctions* may be taken as

*(y,A) - (A Cos2A) '(sin cosAy - y cosA sin .y)
(1.5)

- (A CosAx) * (yA) say

Mathematics Department, Imperial College, London SW7 2BZ, England.

These satisfy the equatio( D 2 ) 2 0 (D - ) with boundary conditions
*(1) = D (1) - 0, D#(O) - D #(0) 0 0. They are also discussed by Lure (1964)

Buchwald and Doran (1964) and many other authors in addition to those cited.
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The present paper is concerned only with data that can be expanded in

terms of these even eigenfunctions. However there is also a set of

eigenfunctions that are odd with respect to y, the eigenvalues in that case

being zeros of

C ( A - sinx cosa (1.6)

and the eigenfunctions multiples of

cosX sin~y - y sinA cos Ay (1.7)

In general, an expansion such as (1.2) would involve eigenfunctions of both

sets.

Footnote: Different authors have used different normalising factors

from the present (Xcos2 ) -1 when defining coefficients in the expansion

(1.2 ) in terms of the basic eigenfunctions 0. Smith (1952), who is followed

Sy Joseph (1977 et seq) writes the expansion as ' = i( e-nX *(y,An),

while Gregory (1980 a,b) writes Y [ (-2)cnen aI (ynn) (so that his

A n's are twice those defined by (1.4), i.e. they are the roots of X + sinA - 0).

Thus the coefficients cn obtained in the present paper are cos 2 An times those

of Joseph, and - IN cos2An times those of Gregory. For n ) 1, these ratios

are O(n) and 0(n2)respectively.

The reason for the present choice of normalizing factor is that it

leads to the particularly simple biorthogonality relations (2.9), (2.10).

-2-
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C(A) has a simple zero at A 0 0, and in addition a conjugate pair of

zeros A *A in each interval (n-)r < ReX < (n-I/4)wr. -Xn- are

also zeros. Since we are concerned in this paper only with those

zeros with positive real parts, we shall adopt the numbering convention

that A 1 A 2 ..... are the zeros in the first quadrant, and

A * n = 1, 2, 3, (1.8)
-n n

The sum (1.2) is then to be understood as

ca c ny e no n (1.9)

(no) n-

the zero eigenfunction being excluded.

The asymptotic location of the roots is given by

X - (n - 1/4)r + 'Y ln 4nir +o (1.10)

This expression shows that as n 40

II- n',, I.cosA, Isinn I (nw)1

while tan A U -i(I-lA 2(1.11)

Likewise tan A X - i

-n

The first 10 eigenvalues, together with a much closer asymptotic expression,

are listed in Table 1.

The zero eigenfunction satisfying the edge conditions in the form

Y - Yy - 0 is identically zero. However if the edge conditions are
taken as xx - O, 4xy - 0, which correspond in elastostatics to

vanishing tractions, a term y2 corresponding to A0 could be included

in (1.9).

-3-
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Table 1. First 10 s9ros of 2A + sin 2A

Re A

1 2.10619617 1.12536430
2 5.35626888 1.55157435

3 8.53668213 1.77554369
4 11.69917774 1.92940450
5 14.85406017 2.04685259
6 18.00493240 2.14189076
7 21.15341377 2.22172284
8 24.30034256 2.29055238
9 27.44620323 2.35104823

10 30.59129524 2.40501261

The asymptotic expression gives 6 figure agreement vith

Re % at n- =4. and In C. + [(In C )2-21n 1]/c 2 agrees with Im X2

to 4 x 1075 at n 9 (Cn (4n-)).

-4-
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2 Boundary value problems

The determination of the coefficients (c I in the expansion
n

(1.2) requires knowledge of two sets of boundary data on the edge

r: x - o, jyjl.. For this purpose following a numerical classification

scheme of the type introduced by Johnson & Little to treat a range of mixed

boundary value problems we may define the following quantities:

Y (O,y) - f(l)(y), y (O,y).- f(2 )(y) (2.1)

Q (Oy) - f(3)(y), P(O,y) - f(4)(y)

Here P (x,y) is the Laplacian T and Q the harmonic conjugate function

defined so that P + iQ is analytic in x + iy, with Q(O,0) -0. An

alternative notation used by Smith (1952) and followed by Joseph 0977)

and Gregory (1980) -is to vrite

YIz (O,y) - f(y), Y (O,y) - g(Y) (2.2)

To this it would be convenient to add

' - h, P - p, Q - q on x 0 (2.3)xy

Then f f(4) _ f(2), £ . f(2), h . f(l) P - f(4), q . f(3). (2.4)

-5-



Formally, the derived functions possess expansions of the for.

KY n

-Ic~ ne;*of+A2o a n (2.5)

n n n

and with x - 0, following the notation of the author's earlier paper,

the expansions can be written

f~l 1
*n

f (2) (2)

f 3 Cn 2sinXy/cosX ncn() 26

f (4) -2cos~y/cosX (4)

Alternatively one can write expressions for f, g and h as

n n

9 c IC" (2) (2.7)

h AMA)
n n

nn

-6-



Canonical problems

The determination of the constants (c } in the expansion (1.2) requires
U.

knowledge of two of the functions f(a) (or, more generally, of two linear

combinations of the f(a)). In general the (C n  must then be found from an

infinite set of linear equations, but there are two problems for which they can

be found explicitly, by use of certain biorthogonality relationships among the

4.~) }, namely

( ( )- (1) + (l) -(3)> (2.9

(4)((2) (2) (4) (4

and A fn(2) + 6 Ua (2.10

Here < denotes (-) dy.
0

Thus (1) for the problem in which the prescribed data is the boundary values

of f(l) and f(3), the scalar product of (2.6 ) with ( ( 3 ) , 0, 0( 1 ) , 0) gives

cm M \ 3 )f (1) + /. 3 (2.11)

as noted in Appendix A,
In the context of plane elasticity/ wita T as the Airy stress function, this

corresponds to a case in which the shear stress - xy and the normal

displacement u are prescribed over r.

(2) Likewise the product with ( , - 0 ,  - ) gives

Cm ( A _(4)f(2)+ ((2) (4)) (4 (2.12)

In the same way, this corresponds to the normal stress Tyy and shear

displacement v being prescribed over r.

-7-



* In term of the classif icatica ( 2.7-8), the last two expressions

* are

-(1/2) <((2siAY/COS)X) h - (AI) q>x-x (2.13)

n

adCu (1/2) (2cds~y/co5).Y S - (X2t.)p (2.14a)

-(1/2) < -X'*f +* 0 (2.14b)

respectively.



3 Mixed problems

Three non-canonical problems of fundamental importance can be

identified, as noted in Appendix A.

1. The elastic end-stress problem: Txy' Yyy prescribed on r

2. The elastic end-displacement problem: Ixy + (I-v)Q, Tyy -(l-v)P,

(V - Poisson's ratio) prescribed.

3. The end-stress problem in Stokes flow.: 'xyIQ' 'yy-ip

prescribed on r

All three of these problems fall into the same framework if the data

is prescribed in the form of values of the two functions

(1) .. f(l) + ca f(3), 9(2) . f( 2) _ af(4) (3.1)

with a - 0, 1- V, j in cases 1, 2, 3 respectively.

For these problems, the biorthogonality relations cannot be used to

provide explicit expressions for the {cn}, and it is necessary to

resort to the formulation of an infinite set of linear equations from

which (c ) can be found by truncation.
n

For instance in the case a 0 0, the {c must be such that the
n

equationsi~~ euins(1) . [ct (1 (3.2a)

n
f(2) . c *(2) (3.2b)

n n

are simultaneously satisfied pointwiseon 0 9 y ; 1. This will only be

possible for sufficiently smooth data (f(1), f(2)), and in particular

-9-1



if the conditions

f(l)(o) - 0, f(1)(l) - 0, t1 f (2)(y)dy - 0 (3.3)0 (1) (2)

are satisfied (since each of the *( ,*; satisfy the corresponding

conditions). Comparison with the known results for the canonical problems

suggests that a sufficient condition, for data satisfying (3.3 ), is that

(f(1), f(2) belongs to the Sobolev space H2(O,1), i.e. that (f(1)", f(2)'"

E L2 (0,I). However a meaning can be assigned to the distribution of cn

obtainable from (3.2) under considerably more general conditions.

-10-
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Formulation of infinite sets of equations for the (C }

Three essentially different methods for formulating equations occur

in the literature:

(A) Direct collocation: In which a truncated set of the equations 0.2 ab)

are identically satisfied at a suitable set of points {ym} of the interval

(0,1).

(B) Galerkin methods Here, sets of weighting functions W(1 ) , W(2 ) are
m a

introduced and mean equations

(W(1) f(1)) - ( 1 ) (1) )c n (W(2) f (2)) n(W(2)f(2))c (3.4a,b,(m m n n- a -n n

are obtained and solved simultaneously. The simplest such equations are

provided by the set

W( 1 ) = sin airx, W( 2 )  . cosunix.m

These were proposed by Benthem (1963), and are equivalent to those used by

Gaydon & Shepherd. With our notation the matrix elements are given by

2
-(2Xr rtan n (3.5)

in mrry(Ann)< miry n(-1)2<si airyX -

(C) Use of biorthogonal functions

Johnson & Little in effect add equations (2.1)and (2.1bto obtain

2 cm ) (( 4)f(2 ) (()f(3) (2) (

2 f + f + ( 2 fOJf + m Om 2 (3.6)

On the right hand side, f(l) and f (2) are known, while f(3) and f(4)

are calculated as I Cnn' cn -( (4) From known quadratures we find

the resulting bracket as

(1) (3)\ (2) ()()2 (A T tanXA n tanX n)
f ; n ( 0; - ; )1 n F mn(m n

(\ A n)2(lm+An) ("7 -

n m n

say, while its value is I for m = n.

-1i- 4
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This gives the set of equations

Cm " I imc dm1

whered> (3.8)

t .(3) (1). (4)f(2d -m f +m J(

It is to be noted however that this set of equations can also be

obtained directly by a Galerkin method from 0.4a. and b), using the

weights V( 1) " } (3) V(2) I ,(4) and adding.
h 2 m 2 m

For an infinite set of equations of the form ( 3.8), Kantorovich & Krylov (1958)

show that the solution (c ) is stable in the sense of approaching a limit asn

the number N of equations become large if the % norm liLII SUPu1o an lis < I-sE>o.

However this condition is not satisfied by the coefficients (3.7); in fact the

sm I jIl tends to infinity with m
n

To show this the equations may be vritten

cml (F c +F c)+d
n- mn n an n m
n-1 m n

where (3.9)

F - 2A (A tan m -4n tan! )I(A m-n) 2 (X +X )
=1

The sunnation now extends over X in the first quadrant only, and we needn

only consider A in the first quadrant since the conjugate equation holds for

A . The asymptotic expressions (1.11) show that

X, A X ' mwr, while tanAX, tan A - i.

Therefore

2 2 2. -2IFa IF l - (m-n) (m I n)=% 1 IF, im2.n21 - (31o

-12-
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*2) *
(For m - n, F 0, F N 2imfr/(Ln4mr) ). The imaginary part of F does

not appear in the diagonal when the equations (3.8 ) are formulated in real

and imaginary form. Then

I IFI " 4_ in 2m, IF* I > a(1+ 1 (3.11)
a W n2 2 3

Similar behaviour is exhibited by the elements (3.5) of the matrix

formed by sine and cosine weighting functions, and we might expect this to

be reflected in instability of the solution of truncated sets of these

equations. In fact this was shown in numerical experiments described in [1].

It is evident that the difficulties arise from the factor (Xm-An)2 inan

the denominator of F .

Some light is thrown on the behaviour of the inverse matrix (I - F 1

by the distribution of eigenvalues of I - F. For N - 4, i.e. the 8 x 8

matrix, the eigenvalues are

I - F (Johnson-Little): I 1 1.3749, 1 1 .8337, 1 1 .9901, 1 ± 1.0005

Thus the last 2 eigenvalues are extremely close to zero, and the matrix

ill-conditioned (det '. 5 x 10-6 ).

By contrast, for the matrix I - G derived in the next section by use

of optimal weighting functions, the eigenvalues are

I - G: 1 ± .3920, 1 1 .0828, 1 ± .0060, 1 ± .0001

and it appears that the eigenvalues rapidly approach 1 for larger matrices,

with det(I - C) of order 1.

i
-13- j



Optimal weighting functions

As noted in the last section, the matrices resulting from the

Galerkin methods B and C are not diagonally dominated, and this fact

is reflected in the computations described in[ 1 ], where it

was found that the coefficients obtained from these methods varied with

the order of truncation.

However, an extra degree of freedom not exploited by previous

authors is available in the choice of weighting functions. In the hope

of producing a diagonally-dominated matrix, consider weighting functions

of the general form

(1) (3) *X - A fm +1, (3.12)

()(2) (4)(

This is a natural extension of the biorthogonal weighting functions (3.7),

and contains sufficient disposable constants to ensure the suppression of the

factor (Xm - Xn )2 in the denominator of the matrix elements.

If we write
f(1) + 0 f(3) . ,(1), f(2) _ a f(4) . (2) (3.1 bis)

then the stress (a - 0) and displacement (a - 1 - v) problems may be treated

together as cases in which the functions g(1), g(2) are known on Olyll. We

shall therefore seek optimal weighting functions in the above sense for g(l)

and g (2), and expect the result to depend on the parameter a. Thus from the

equations
9(l) . VCn ((1) + (3) ;

(3.13)

S(2) . 4n  (2) _04(4))

-14-



we obtain the equations

Amn ca. do

lA n ad,

a ~ (1) + 92 5(2)>

Quadratures of the eienfunctions appendix of (1) show 
that for m n

( 2 2 x 2 2 2 2

(A2 +2  [ 'a I(-C 2 -E~+ ~ Bj C

wher .\/ox ISY OSA y. '/ tan As -X, tanA.X2
* n n

(3.15)

and T a (tanA n +tan XU) / (A ))

while

A JA+2C+-I X tanAX (A + C) + B + D
- 2 3 U

+ tan Am\

To suppress the factor ( n )3 in the denouinator of Am  it is necessary to

set Aa - C. The choice C a 1, A a -1 reduces the expression to

4f . 2(Beu)AA + X2  D +X2Q 3 CLoT
4 Un mn - - , + Q(B-D) Ca -4 BTm

2I 2

-15-
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If now we set 3 - j - a, D - - - a, the remaining factors of (Am-An)

in the denominator are suppressed leaving

A SIR -2a(1-2aL)T mTn

say, where G -a2n A ( tan a - x tan A 0 + ' 3

(3.16)

while

A - (1-4ea ) - 2a (l-2a ,T tan)

Hence if the weighting functions are chosen as

) (1) ( -) 3)
"m "a 1;3.1.7)

(2) - *(2) _(+a) 31)4)

the equations (3.14) are of the form

(1-4a) c - + ( * 2a (1-2a) T c + d (3.18)

In particular, for the traction problem (a 0) they reduce to

c G C. + de (3.19)

Likevise for the Stokes problem (a = 4) the system is

G d (3.20)

-16-



Diagonal dominance of the matrix A BI -G

We now confirm that the infinite matrix I-G is strictly diagonally

dominated, i.e. that

I< I~a C (3.21)

An estimate of the absolute row sums of G ma may be obtained by use of

the asymptotic values

Ae *eA ~(Jul -1) w
Is m 4

A Istoa 2nI 4 ";) % I t ia (m < 0)

Hence in the numerator of 1G l,

ItA taA - XAtanX I 'I(m )IV n

accordingly as m. n have the same or opposite signs.

Likewise the denominator of IG anl namely

jAm + Al13 > (ReA + ReA) 3  V~2 (ImI+lnI- 1)3

Hence for m, n > 0,

JGItGmi I4~ (m-~ g ,i say (3.22)

This leads to an estimate of the m thabsolute row sum of the truncated matrix

of order 2N as

N N j
I ~il ~'~ g(m~n) g(m,n) dn (3.23)

n--N n-i J

(the inequality holds since g is decreasing and concave as n increases).

-17-



If m < N, the integral equals a R (N say,

with S [2 (1- a2 _ [ N +( ) = (3.24)

The estimate for the infinite matrix is thus ' IGmI % S* a -  (3.25)
Km-rn

For a large finite matrix, the estimate

N.

is well borne out by computed values of the absolute row sun, as shown in

Table 2 for the cases N - 30 and N - 99.

The fact that I IGI <. i < 1 is sufficient to ensure that for
n W -t

bounded Id 31. the equations (3.19) possess a unique bounded inverse (c }.

In principle this can be constructed from the sequence

c - (I + G + G2 + ... ) d (3.27)

A theorem of Kantorovitch & Krylov shows that the inverse c( I)to the truncated

set of equations

~ ~ (U d; (3.28)
n

m

N -N

converges to a unique limit fc U  as Il-m.

These remarks also apply to (3.20), the inverse in that case being

c - - (I - G 4 02 - ... ) d (3.29)

In particular, in either case d -0 -P c 0 (3.30)

-18-



Table 2

30 S R(30)99R()
IIGinI I 1%'I So ano-99

n--30

1 .63515 .64598 .65744 .66690

2 .74430 .73800 .79091 .78385

3 .75863 .75157 .82716 .81938

4 .75142 .74515 .83923 .83233

5 .73713 .73179 .84194 .83603

6 .72040 .71586 .84021 .83517

7 .70306 .69918 .83610 .83177

8 .68593 .68257 .83063 .82688

9 .66937 .66644 .82436 .82108

10 .65355 .65097 .81759 .81470

15 .58494 .58646 .78152 .77980

20 .53652 .53551 .74648 .74534

25 .49894 .49822 .71432 .71349

30 .47011 .46956 .68522 .68459

40 .63535 .63495

50 .59471 .59443

60 .56128 .56107

70 .53350 .53334

8o .51019 .51006

90 .49044 .49034

99 .47515 .47506

The first and second columns are the tvo sides of (3.26) for N = 30,

the third and fourth for N - 99.

-19-



4. Asymptotic estimates of convergence rates

In this section asymptotic estimates viii be made of the rate of

convergence of the coefficients {c n } for the mixed problem in which

f(I) f(2) are prescribed functions of y on the interval [0,1].

Four types of data will be considered

(i) Smooth continuous data satisfying the compatability

condition f(I)(1) - 0.

(ii) Data for which the above compatability condition is

violated.

(iii) Data containing a discontinuity at an internal point

c C (0,I).

(iv) Data containing a discontinuity in slope at an internal point c.

In each case it will be assumed that the data satisfies the additional

requirements at y - 0 for expansion in terms of the even eigenfunctions.

These are

flI)(o) - f )"(o) - 0, f(2)(0) - f(2 "(0) - 0. (4.1)

The technique in cases (i) and (ii) will be to estimate the behaviour of

the functions f(3)and f(4), which is not known in advance, by solving the

bihanmonic equation in a quarter plane with boundary conditions on the two

sides that are asymptotically the same as those in the neighbourhood of the

corner z - 0, y 1 - in the strip problem. In cases ii) and (iv),in which

the governing singularity in the data is at an interior point, the relevant

asymptotic solution of the biharmonic equation is in a half-plane. Having

obtained estimates of f(3) and f(4), we can then estimate cn from (.11) or

(2.12), using in addition the known values of f() or f

-20-



Case (i) : Smooth data satisfying the compatability conditions

Since in this case f() (-1) - 0, we may assume the data can be expanded

near y - - I in the form

f(l)(y) h(Y) _ a1 y - a 2  - ... (4.2a)

f(2)(y) g(Y) bo + b Y + b y2 + . (4.2b)

where Y - + y.

The solution of the biharmonic equation in the quarter plane X, Y 0 0,

subject to the boundary conditions

Y - 0. Y - 0 on Y - O, (4.3a)

T = h(Y), Tyy- S(Y)on X - 0 (4.3b)

is found in Appendix C as a Mellin integral

C + i@M

2 11 f r - T (s,O) do (4.4)

with- 1 <c<O, r m(l2, 2)e, 6- tan 1 Y, Y being expressed in terms

of Mellin transforms of the data on the boundary 6 -

Y Y (4.5)

-21-



The values of the Laplacian P - AT and its harmonic conjugate Q on the

boundary 0 - w12 are obtained as the inverse Wellin transforms

P(Y) ( p(s) -.
I ~ sl(4.6)"2i Y 'ds

q(T[) miTJ . q(s)

where 29( (
(s~sin snL-co 47

with M(s) )
sin - co - (s - s5-sn I

2 2 2

md-et- 2- sn 2  irS

A has real zeros at 0, 0. + 1, and a doubly-infinite set of complex zeros + 2

+ Y29 t Y4 9 -i 4.... which are spaced so that 
n2n Ry 2n < 2n + 1

The first of these is

Y2 a 2.739593 + i (1.119025) 
(4.8)

The Mellin transforms of g and h must be of the form

a1 I a 2
h (s) - ;2 - 3 function regular in - 3 R es <0 .9)

0 1 ! + function regular in -3 < Res<

WIs + s W s2 + s+3-

since on inversion in accordance with ( 4.5), these produce the stated

expansions. Then from (4.7),

p (S) (- s+sin2!!\ g . h
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On inversion using (4.6) we obtain

p(M) - b b+ CYY21 + YY 2 1 + O(¥) (4.11)

where C is a (complex) constant.

Since f(2), f(4) are symmetrical with respect to y, they can now be expressed on the

interval 0 < y I 1 by writing 1-y for Y in (4.2b) and (4.11) respectively, as

f(2) +b bI (l-y) + 0 (I-y)2  (4.12a)

f(4) b + b1 (I-y) + C (1-y)Y2 -
1  (1 ) -I + (4.12b)

c can now be evaluated from (2.12) as

"- K I2cosxW 2) _ f(4)) + f(4

Two integrations by parts give

C2cosAny (2) + Ncsn Y4(.3
n 2A n2 K coa '> -n 2c~ CO(.1)A

For f(2), f(4) l lH2 (0,1), bounds on these terms are provided by the

Cauchy-Schwarz inequality, since from (1] we have the L2 norms

2Ios n~I " const /(In n)' (4. 14a'
n

I! ,, II "' const /n (in n) 3/2  (4.14b'

At this stage therefore our best estimate is

Icn 0 - (1/n (In nV 2 ) (4.15),

since f(4) cannot be expected to have stronger differentiability properties

than the primary data.
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However for smoother data such tha (2) 4 (0,I), we may write

f(2)1 u(y) (4.16)

(4)" v-1 -
f (K (l-y) - + K (1-y) + v(y)

where K (y-1)(y -2)C. v = Y - 2, and u(y), v(y) are such that u", v" E L2 (0,1)

Then

an 1 -

a nan

We we focsittenion onl tes ecn rce.Tepr utpidb

(2Lc0s 2A) - 1  sinAi (2+v) c sA cosA (1-t) ) tv -  +(2L2cs) 4.9

The integral can be estimated for large n, by use of asymptotic formulae derived

in Appendix D for A £ A +, i.e. the set of A for which C(A)- 0, ReA > 0, and

0 < Rev < 1: K -IV oA> = AVU~cos !L) r(v) -/2 (4.2a)

Kv qX X (Csn ) r(v) + A + 0(), (4.20a)
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When these are substituted in (4.19) the contrib~utions from the second

tems on the right cancel perfectly with the torn 1/2A 2 cosA, and we

&r left with

since v a my 2- 2, where 2s such that Y2 @in 0ji-O,

this expression can be written in the form

twa2(A + I taro) + 0 (A 7/2)

(4.21)
with V I

A n

Then since X R iw * 0 (iL;), while tanx a it the estimate of

1c M is

Icnt "(const)n -2.74 + 0(n-) (4.22)

This estimate is veil supported by computations using the method of

optimal weighting functions, for two cases for which the coefficients n

were tabulated in (1). In the nomenclature of that report, they are

Case lI f(l) 0, f(2) l-3y' [d.- - 2t - - -

L (1 /(4.23)

case 31 f(l) *1 y - ' (2) 0 [d. 6 (tn, (1 5 is,...,.~~~( Fm,,,,,, o0 ). (,
The values of n2 '74 c , with N - 40, are listed in Table 3 , and it is

seen that in both cases, they vary only slowly with n, the maximum variation

between n a 12 and n - 40 being of order + 8 per cent.
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Table 3 Decay of coefficients for the smooth continuous data listed in (4.23)

Case 1 Case 3 Case I Case 3

n n2 .741cnI n2.74Icni n U2.74 cnI 2.74 cnI

1 .8676 .3704 21 .4555 .4854

2 .4735 .6337 22 .4566 .4945

3 .6175 .6465 23 .4586 .5030

4 .6774 .6012 24 .4615 .5108

5 .6912 .5473 25 .4656 .5179

6 .6820 .4978 26 .4697 .5243

7 .6616 .4586 27 .4742 .5301

8 .6362 .4291 28 .4790 .5352

9 .6093 .4096 9 .4839 .5398

10 .5830 .3988 30 .4886 .5438

11 .5583 .3951 31 .4940 .5473

12 .5361 .3969 32 .4986 .5503

13 .5167 .4027 33 .5034 .5529

14 .5t. .4111 34 .5078 .5550

15 .4865 .4211 35 .5120 .5567

16 .4756 .4320 36 .5164 .5580

17 .4675 .4432 37 .5202 .5590

18 .4615 .4544 38 .5233 .5597

19 .4578 .4652 39 .5270 .5600

20 .4560 .4756 40 .5295 .5601

Note: The calculation for Case 3 was also repeated with N a 99, and values of

In2cn Ishowed similar behaviour, e.g.

n 20 30 40 50 60 70 80 90 99

Y2 -2
I)n c nxlO 2  .10192 .12137 .12899 .13002 .12777 .12407 .11998 .11611 .11308

with smooth variation between these values. The values differ from those in the table

ty the iactor INnt I/n2 "l4 which -274 23.0245 as n *
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(ii) Data not satisfying the edge condition f() (1) 0

To investigate the effect of data that violate the compatability

condition Txy (0,I -0 , it is sufficient to consider the case

f(1)(y) - Y, f(2)(y) . 0 (4.24)

since smooth data of the type already considered can be superposed on

this to produce a general distribution. Referred to the corner (0,-I),

f(l) 1 + Y so that

3(1)=. 1 + 1_ .

sl s+2

In this case from (4.7) with h - f , =g 0, we have

fi
P =- mi. 1

which has a simple pole at s - -1 with residue and is regular at s -2,

the next poles being those at -Y 2 -y2

Therefore

p + 0+
( (Y(

and leading term in cn is obtained by writing f(4) f (2) 0 in (2.12).This gives

n 2

1 ~ 2 \ (tan~n
.n -2- -2 n-n (4.25)

the next terms being 0(An - Y2).
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II-
Since tan A - i 0 ( ), this result shows that

Ic A Ih as n - G (4.26)

which is well borne out by a calculation using the method of optimal

weighting functions, as shown in table 4. Except for n - 1, the computed

IF

value of Ancn I lies within 2 percent of 1.5708, and the coefficients

in fact approach the pure imaginary frm cn  -r implied by (4.25)

A n
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Table 4 Data aLolating the co "atibility condition

f Yl myf duu - .+

The coefficients were cosPUted With ii-99.

n an bn X n cnt

1 0.243966,+00 0.777206,+00 0.194527,+01

2 0.376416,01l 0.277808,+00 0.156334,401

3 0.213641,-01 0.174970,+00 0.153696,+01

4 0.142829,-al 0.129271,+00 0.154212,+01

5 0.101696,-Ol 0.102807,+00 0.154905,+01

6 0.755116,-02 0.853834,-01 0.155421,401

7 0.57849S,-02 0.730035,-Ol 0.155763,401

8 0.453904,-02 0.637432,01l 0.155979,401

9 0.362747,-02 0.565529,-al 0.156105,401

10 0.294002,-02 0.508079,-01 0.156168,401

11 0.240608,-02 0.461126,01O 0.156188,401

12 0.198738,-02 0.422037,-Ol 0.156176,+01

13 0.164834,-02 0.388992,-al 0.156142,+01

14 0.137055,-02 0.360694,-al 0.156091,+01

15 0.113968,-02 0.336189,-Ol 00156027,401

16 0.945324,-03 0.314764,-Ol 0.155954,401

17 0.779674,-03 0.295875,-Ol 0.155874,+01

18 0.637593,-03 0.279097,01l 0.155789,401

19 0.514141,-03 0.264095,-Ol 0.155700,401

20 0.406145,-03 0.250602,-Ol 0.155608,+01

21 0.310976,-03 0.238402,-Ol 0.155514,101

22 0.226564,-03 0.227318,-Ol 0.155418,+01

23 0.151235,-03 0.217204,-01 0.155320,+01

24 0.836376,-04 0.207937,-Ol 0.15S223,401

25 0.226639,-04 0.199417.-Ol 0.155124,+01

26 -0.325382,-04 0.191555.-0l 0.155025,401

27 -0.827604,-04 0,184280 -0l 0.154927,401

28 -0.128630,-03 0.177527:-Ol 0.154828,401

29 -0.170660,-03 0.171243,-01 0.154730,401 I

30 -0.209291,-03 0.165381,-O1 0.154633,401

31 -0.244919,-03 0.159899,-Ol 0.154536,401

32 -0.277862,-03 0.154762,-al 0.154439,+01

33 -0.308389,-03 0.149938,-al 0.154344,+01

34 -0.336752,-03 0.145400,-O1 0.154249,401

35 -0.363157,-03 0.141122,-Ol 0.154155,401

f36 -0.387793,-03 0.137084,-0l 0.154062,401

37 -0.410818,-03 0.133266,-a1 0.153970,+01

38 -0.432371,-03 0.129649,-Ol 0.153879,401

39 -0.452562,-03 0.126220,-a1 0.153788,+01

40 -0.471558,-03 0.122963,-al 0.153699,401
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(iii) Data containing discontinuities

We next consider the case when one of the data functions f(1), f(
2)

has a finite discontinuity at an internal point y - c of (0,1), and is

elsewhere continuously differentiable. In this case the solution

sufficiently close to the point c is in the limit the same as in a

half space x > 0. For the half space, the following singular integral

relation exists between the second derivatives at the surface x - 0 of a

function T satisfying the biharmuonic equation (appendix E )

2 T x (O t)dt (4.27)Yu(o,y) - 'V (o,y) - , (.7
XXyy 7r 1"tj-. t-y

the integral on the right being a Cauchy principal value. The integral

is continuous at a point of continuity of XY (0,t), and is continuously

differentiable if T y(O,t) is so. Therefore a point of continuity of the

boundary value of Vxy is also a point of continuity of TXX - Vyy, and if

V has a jump discontinuity at a point y - c of the boundary, I has anyy xx

equal jump at the same point, and AT a jump of twice the amount.

Thus for the strip, if f(1) is continuous at c while f(2) has a

discontinuity of amount

f(2)(c+) _ f(2)(c-) _ (2)] say (4.28a)

there will also be a discontinuity in f(4)of amount

f(4)(-+) f(4)(c-) - 2 [f (2) (4.28b)
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The contribution to c is therefore given by (2.12) asn

1 I(2) (4) (4) (2)_ dy
o ((4.29)

21 j ( ) (4 (2)

The dominant contribution is that from *(2) S *n and is
nadi

-- n

(-1,. (1)-4))

[f(2) n(-c) ( 0

]1-Since In A n  In 4nW. we obtain from this expression the estimate

Icl I. (I-c) I1f(2) ]c(4nw) (y (4.30)

In [1), the coefficients generated by the distribution

f(1). 0, f(2) a (4.31)

I- I I< y i

vere calculated using the method of optimal veighting functions. This

falls into the pattern just discussed, with c - 1, [f( 2)]c= - 2. The

estimate for this case is therefore

1/4 -1/4
n icn -* (4) = 0.5311 (4.32)

This is borne out very well by the calculated values, as shown in Table 5

Alternate values are above and below .5311, the means of successive pairs of

values showing rapid convergence towards this value.
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-- 
............

(21 Y E (0.'~Case 2: f(l) - 0, f(2) 1
-1 Y E ('ll,)

tan sinFor this case d + 2. Q + 2 2

(The last tvo terms can be combined as

the form given in 
2).

The coefficients c U a + ib computed vith N - 40 are listed on page 40reference 1. n n

S1/41/1 . - Mean of successive

values1 .86252 21 .60434

2 .49262 22 .47357 .5389
.5380

3 .73997 23 .60258

4 .46516 24 .47255 .5376

5 .70536 25 .59771
.53766 .43944 26 .47743

7 .56952 27 .59695 .5372

8 .45011 28 .47812 .5365

9 .65088 29 .59260 .5354

10 .45364 30 .48059 .5366

11 .63447 31 .59243 .5365

12 .45633 32 .47912 .5358

13 .62715 33 .58852 .5338

14 .46245 34 .48325 .5359

15 .61982 35 .58870 .5360

16 .46286 36 .48168 .5352

17 .61347 37 .58516 .5334

.535318 .46875 38 .48552 .5355

19 .60988 39 .58556

20 .46821 40 .48389 .5347

(07 1/4 " 0.531126
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(iv) Discontinuity in a derivative

Continuing the study of discontinuous data, suppose next that 
f(2)

is continuous, but has a jump in first derivative, of amount

f(2) ic) - f(2) ic-) - [f(2)'l (4.33a)

at a point c c (0,1). Then from the last section it follows that provided

f(l) is continuously diffqrentiable at c, there is a corresponding jump in

f(4) 'of aunt

f (c+)(4) f(4) c) 2 f(2)' ]c (4.33b)

The expression (2.12) for c after one integration by parts, gives

(where we have al'so used the fact that, for compatible data,

f (41),_ f(211))

The dominant term is the last in the bracket, which contributes

co  j ) f()c) - f( c,-).(c) (4.34)

As before, asymptotic results show that

ix (1-c)
*n (c) 'U (l-c)e n ," nir + In 4nlr

whence

1.1 1-, (nwi,) jIf( 2)'] l (4.35)
nw c
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The coefficients generated by the distribution

1 0oiy <

f(l) . 0, f (2) ,(4.36)

I - 8(y-|) i < y ..

have also been calculated by the method of optimal weighting

functions, and are listed in Table 6. For this case c -

[f ( 2 ) - 8 so our estimate is

2312 -5/4
(nw)5/4 .67625n (4.37)

and this is borne out by the computations, again with oscillations above and

below in successive terms.

The right hand side, calculated from (4.36), is

dmI Cos'Y f(>) (since f(l) un0)

3tan"m sin x 2

-- A (4.38)
m

The second term here equals - 8*(J), and has precisely the same asymptotic

behaviour as (4.37).

-34-

A.' *~~:



Table 6 Computations made using the method of optimal weighting functions

RUB in (0, 1l0 <Y <0.51 5-8By 0.5 <Y(<1)

Number of equations is 50

Mean of

an bn t15/ 1 %I suiccessive valuies

*C 1 0.85217905,400 0.82889897,+00 10*18889

C 2 0.15110750,+00 0.31273898,+00 .82610
*C 3 -0.23383817,+00 -0.92803374,-0l .99330

C 4 -0.11630692,+00 -0.17379686,+00 1.18298
*C 5 0.81507437,-01 -0.16184736,-Cl .62131

C 6 0.53842954,-Cl 0.69301344,-Cl .82411
C 7 -0.52680854,-Cl -0.26550267,-02 .60059
C 8 -0.33598252,-Cl -0.57684090,-al .89815
C 9 0.39962947,-al -0.71828929,-02 .63294
C 10 0.26417607,-al 0.38246136,-Cl .82660
C 11 -0.28607324,-al 0.36837519,-02 .57782
C 12 -0.18216213,-al -0.31931769,-Cl .82107
C 13 0.24928523,-al -0.48384923,-02 .62684
C 14 0.16112214,-Ol 0.25319424,-al .81273
C 15 -0.19434066,-al 0.40120482,-02 .58579
C 16 -0.12109066,-Cl -0.21474948,-01 .78892
C 17 0.17645042,-Ol -0.37712050,-02 .62285
C 18 0.11117389,-Cl 0.18456077,-al .79883
C 19 -0.14567490,-al 0.35850678,-02 .59511
C 20 -0.88840248,-02 -0.15939817,-Cl .77181
C 21 0.13460482,-Cl -0.31213155,-02 .62117 .69649
C 22 0.82831224,-02 0.14294083,-Ol .78714 .70416
C 23 -0.11554256,-al 0.31138903,-02 .60274 .69494
C 24 -0.69142859,-02 -0.12550230,-Cl .76116 .68195
C 25 0.10782529,-Cl -0.26671130,-02 .62093 .69105
C 26 0.64976760,-02 0.11540997,-Ol .77759 .69926
C 27 -0.95120892,-02 0.27102167,-02 .60874 .69317
C 28 -0.55983579,-02 -0.10276338,-al .75374 .68124
C 29 0.89361062,-02 -0.23263043,-02 .62142 .68758
C 30 0.52875285,-02 0.96042473,-02 .76976 .69559
C 31 -0.80422256,-02 0.23802368,-02 .61350 .69163
C 32 -0.46653040,-02 -0.86527597,-02 .74818 .68084
C 33 0.75939475,-02 -0.20592124,-02 .62232 .68525
C 34 0.44224351,-02 0.81778625,-02 .76330 .69281
C 35 -0.69375644,-02 0.21117078,-02 .61735 .69033
C 36 -0.39725085,-02 -0.74400338,-02 .74374 .68055
C 37 0.65785572,-02 -0.18437055,-02 .62345 .68360
C 38 0.37777461,-02 0.70893951,-02 .75790 .69068
C 39 -0.60795518,-02 0.18915114,-02 .62053 .68922
C 40 -0.34414227,-02 -0.65025212,-02 .74008 .68031
C 41 0.57856459,-02 -0.16661447,-02 .62464 .68236
C 42 0.32814420,-02 0.62349685,-02 .75334 .68899
C 43 -0.53957403,-02 0.17088882,-02 .62322 .68828
C 44 -0.30225881,-02 -0.57580215,-02 .73695 .68009
C 45 0.51511093,-02 -0.15172823,-02 .62587 .68141
C 46 0.28890434,-02 0.55486970,-02 .74942 .68765
C 47 -0.48390226,-02 0.15556802,-02 .62551 .68747
C 48 -0.26852842,-02 -0.51537342,-02 .73422 .67987
C 49 0.46326793,-02 -0-13908531,-02 .62707 .68065
C 50 0.25724987,-02 0.49868710,-02 .74606 .68657

3/2 -5/4

(2 7r = 67625)
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5. Conversence of the derived expansions

The estimates obtained in section 4 for rates of convergence of the

{cn) throw light on the convergence of the series

I c non(1) W.• I cno(2)(y) (5.1)

for the same four types of data:

(i) Smooth data satisfying the compatability conditions

We recall from Appendix B that the L norms
2

(1) (2)n lnn3/2

(2n ) II II are of order n/(in n) (5.2)

while the La norms are

supy *(1)(Y) I• 10( 2)(y), % 0 (n/in n) (5.3)
Intiscse y n42) Cnn 2 7

In this case, by (4.22), IcU110 n 2 .74, so the series (5.1) are absolutely

and uniformly convergent. The fact that they converge to the prescribed data

functions f(l). f(2) is proved by the author in another paper [ ]

Gregory (1980) has given a proof of completeness of the functions {01), 1(2)}
n n

for twice differentiable f(), f(2), with f(1)", f2)" of bounded variation

on [0,1].

(ii) Data violating compatability

In this case, from (4.26). Ic I 0(;), and it is not possible to guarantee

that the series (5.1) are convergent. It is in any case impossible for

c o (1)(y) to converge at y = 1 to a sum different from zero, since eachn-n

0(1) , whereas for the distribution examined in section 4(ii), f(1)(1) - 1,
n
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and convergence of the series near y - I could not be expected, In fact the

partial sums were found to be oscillatory for fixed y, but the work of

Joseph & Sturges (1978) suggests that the series should be Cesaro summable to

the data as all points except y - 1. This was confirmed in calculations by

Mayes (1982) for the corresponding problem for a cylinder.

However the individual terms of the series can be integrated to give

oy n (1)(tW dt - -X (n (y) - n(O ) )  (5.4)

0

S (2) - - ,(l)y)/x (5.5)

0

The norms of these integrals are asymptotically of order - times then

corresponding norms (5.2), (5.3).

Therefore for IcnI of order the series

I n  nn

c y (1) jcj (2) ()d 56
n fj n (t) t, nc ()d 56

are certainly summable in L norm, and computations in Table 7a show that

with good accuracy these series sum pointvise to

y2 I'y (~2~)df 1  t(t)dt jy ), Jdt (- 0) (5.7)

respectively. The quantity a quoted in the table is the least squares error given

in each case by

CF.' i,1 f(tOdt - S(yi)J (5.8)

i
where S is the relevant sum (5.6 ) evaluated at yi = 

- (k = 10).
k



(iii) Discontinuity in f(
2)

From (4.30) in this case lcn o~n 120 j
Therefore lni I I l*(2) f are of order rf 2 (In n) - 3 / 2, and the

series is not suinable. However termwise integration twice with respect to y
-2

introduces a factor n , so that the series

cro dt f (0)(u) du, -1, 2 (5.9)n fn  dt n

0 0

are absolutely and uniformly sumnable. For the case computed, with c = j, the

calculations summerised in table 7b show that the sums agree with the

twice-integrated data with error of order 10- 3 .

(iv) Discontinuity in f(
2)'

Similar remarks apply in this case, but since ICni = 0 n 2 C] , it is

only necessary to integrate once. The case c j gives rise to the figures in

table 7c showing comparable agreement with the once-integrated data.
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Table 7 Convergence of series of integrated terms

f denotes fdy in all cases

7a: Data violating compatability condition 
0

f (1) . yo f (2) =0 cn  n

n 2 T- 2n

y If (1) c f 1  jo f(2)In f n
O 0 0 0

.1 .005 .00377 -.00008

.2 .020 .02004 .00016

.3 .045 .04370 -.00027

.4 .080 .08016 .00038

.5 .125 .12356 -.00057

.6 .180 .18035 .00078

.7 .245 .24340 -.00112

.8 .320 .32055 .00153

.9 .405 .40336 -.00218

1.0 .500 .49934 0

-.00102 a = .00093

7b: Discontinuity in function

f(l). o, f (2) IC 1v - /

£f(2) (cf*2 ) .

0 0 0 0
•.1 .005 .00510 .00037!

.2 .02 .01999 .00076

.3 .045 .04511 .00111

.4 .08 .07997 .00153

.5 .125 .12514 .00186

.6 .170 .16995 .00229

.7 .205 .20517 .00260

.8 .230 .22993 .00304

.9 .245 .24515 .00336

1.0 .250 .25007 .00377

(0- .00010) ( = .00223)
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7c: Discontinuity in first derivative

f() . 0 f(2) 1 - 8 [Y- ] n! - 5 / 4

y f(2) I n(2) f(2) I (2)

0 1 -4.463 0 0

.1 1 -4.726 .1 .09994 Ic *(1)

.2 1 -5.464 .2 .20013 differs

.3 1 -6.807 .3 .29980 from zero

.4 1 -8.310 .4 .40027 with

.5 1 -5.999 .5 .49963 a- .00062

.6 .2 -. 996 .56 .56046

.7 -.6 -1.023 .54 .53947

.8 -1.4 -2.638 .44 .44055

.9 -2.2 -5.283 .26 .25956

1.0 -3 -3.742 0 0

(a - .00034)
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Appendix A

I. Stresses and displacements in terms of Airy stress function

With standard suffix notation the stresses are

11 =.'22' 012 -121 22 11 (Al)

The displacement gradients in plane strain are given by

21u l,1 - (1V)a11 - VC22, 2pu 2 , 2  - ll+ (l'v)a 2 2 '

(A2)

P(u 1,2 + U2.1 12

To treat boundary value problems it is convenient to introduce P a

together vith its harmonic conjugate Q linked through the Cauchy-Riemann

equations P I - Q,2' P,2 - -Q,1 and defined so Q (0.0) - 0.

The direct strains are then

211 u - v P, 2U u T VP -T + (l-v)P (A)
1.1 .22 2,2 '11 ,22

while the shear strains are

211 U1 2  - T 12 - (1-v)Q *)
(A4)

21j u2, 1 = - *12 + (1-v)Q

Thus if boundary values are defined on x, 0 as

f(l) ql T,2

f( 2) 2f ,22
.. (A5)

f(3) 
Q

f(4) P x1  0

-43-



the boundary values of the tractions and of the displacement gradients

with respect to x2 are respectively

a12 _f(l) y11 = f(2), (A6)

20 - f(2) +(3) (A7)2 u u2 -f()+ (1-Of)f

Therefore

(i) if uI (Ox2) and a12 (Ox2) are prescribed, f(l) and f(3)

are known

(ii) if u2 (O,x2) and a11(0,x2) are prescribed, f(
2) and f(4) are known.

(iii) (the stress problem) : if a12 (0,x2) and o11(0,x2) are prescribed,

f(l) and f(2) are known

(iv) (the displacement problem) : if ul(0, x2) and u2 (0,x2) are

prescribed, the combinations

g(1) f(1) + (1-0 f(3) *(

and (2) = f(2) _ ( -V) f(
4) 

J
are known.

(i) and (ii) are canonical problems, (iii) and (iv) are -non-canonical..

2. Steady Stokes flow

Neglecting inertia terms, the equation of motion is taken as

Vp - (A)

where p is pressure and q a (u, u2)is the velocity, expressible in terms of
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the stream function as u I  ,2' u 2  -,1 "

Then with P,Q defined as in the previous subsection, (A9) may be integrated

to

p -Q + constant (AlO)

The stresses are

a.. - 1(u. .+ u .)pij i j  j i  13

whence
I y11 T,12 + IQ - P/2V

2* - (All2 °a12 T,22 -I

Hence corresponding to the boundary value problems for the elastic strip,

those for Stokes flow in a semi-infinite trench are

(i) u2 and a11 prescribed on x= 0 =-D f(l), f(3) given

(ii) u1 and a12 prescribed on x, - 0 " -0 (2), f(4) given

(iii) u 1 and u2  prescribed " f(l), f(2) given

of _ (1) (2)(iv) o11and a12 prescribed " " r g(, g given,

where g(1) . f(1) + I f(3), g(2) = f(2) i f(4 ) (A12)

This is the same combination of data as arises in the case of the elastic

displacement problem (AS) with v .
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Appendix B Quadratures and Norm s of eigenfunctions

The quadratures quoted in section 3 are derived from the following

results, all of which are obtained by integration by parts and use of the

equation and boundary conditions satisfied by the *k [i.e. (D + Y2 k 0,

- D k(1) - 0, D*V(O) - D3 k(O) - Otogether with the characteristick(k

equation 2 Xk + sin 2 k - 0].

1 Quadratures

(a) a n All results expressible in terms of

C (coax coanx l coax y >Ca (X tanA X tank 1 / 2- 2

We find (more details are given in Appendix A of [I])

-4, A +A 2/ ( 2A2 2.

<4 m n -mn a( a a~ ) ( tn )

,<),,() X A2.A _ X2 ,

/ 4( ) - - 4 on  - n

) () .A C (X2  _A 2IM n n nn i

(b) (22n
1n 4 A A 2

(b ) 4cos2 A 0

The biorthogonality relations (2.9) and (2.10) follow at once from these results
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2. Norms

The norms are found from the preceding expressions by writing n -,

to X n- a *(l n ( etc. The details are given in appendix B of 11,

and only the asymptotic expressions f or large m are quoted here (in fact they

are close approximations for m > 2).

II* ~ 2mv U f 1 ln4uz) 3

I (1) ~ ~ (2)11 jmrI( ln4ar)3/

1(3) (4)1 112

II *~ 1i ~ m~ "'2/ (ln4mr)
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Appendix C Solution of the biharmonic equation I2 'i- 0 in the

quarter-plane 0Z0< j , with boundary conditions

0 :T 0. T 0 (Cl)
XYxx

(1) (2)

e T + (1-v)Q - g ().) Tv (1-V)P= g (y) (C2)

(g(1) g(2) prescribed).

The biharmonic equation is automatically satisfied when T

has the form of a Mellin integral

S ls (C3)

with T - Acos(s-l)6 + Bsin(s-l)e + Ccos(s+l)8 + Dsin(s+l)e

From (C3 ) we have

P A 1  r-l-s' (c4)
2tri f

with conjugate

r -' frl ds ICS)Q" 21ri f

where - (-4s) -sin(s+l) cos(s+)e D

A

The boundary conditions CZ 1) are applied in the form T _O, L 0 on

o 0, giving

A + C -0 (7

(C7)

(9-I)B+(s+l) D = 0
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The derivatives on 8 = - that occur in the boundary condition (C2 ),
2

namely

,,,I- r . (C8)

xO e xWO

are also expressible as Mellin integrals derived from (C3 ). When these

results are combined, and A and B eliminated using (C7 ), the boundary

data on 6 = are expressible in terms of the remaining constants C and D

in the form

gIy) 2wi fy ds, 1, 2 (C9)

9 (1) 
c

with (;(2 - (S) ) (do)

(s-2(l-V)) cos - (s-+2v) sin W

where H is the matrix 
sos s 2

((s+l-2v) sin 2 (s+2(1-v)) cos

-l A

The inverse matrix H gives C and in terms of the g s,and the values
A A 7r

of P, Q on e = - are therefore

sin-- Cos s +T s AM _s -222

W Cos is WS 2 21
si -W ao s+sin 2  -2(1-v) 9(l

( 2 Cos -2 /2
__. rS its ^-(2))

-sin 2 7r + 2 (1-v) sin 9 os-
2si T cosT2

(C11)
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where A -det N K + (3j-4v) (sin~ 4 (1-v) 2  (C12)

The solution quoted in section 4 of the present paper is obtained by

setting V I in these results. Then

(1)(2) (C13)s -Y I *XY X-0 yy x , j

and A i 2 -si 2 Ws (C14)
2
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Appendix D: Asymptotic expressions for the integrals

eI t _I  e dt (Dl)

for 0 < Re V < 1, A c A +.

Here A+ is the set of zeros of 2A + sin 2A lying in the right hand half plane

so that, by (1.10), arg X - 0 kIx).

In each case the integrals are evaluated as the difference between two

infinite integrals

V- itim, ioo

f t e dt - f-f
0 0 1

These integrals both exist since Im X > 0. The first is

X-V e iVw/2 r(v), while integration by parts gives

f V- leixtdt en - + 0 J

Since (as. e i  -0 (A-), the last term is of order X-52 and altogether

1 Vl it- ix (5/2
t e dt - Ve i / 2 r(v) + + O(X 5 2 ) (D2)

0

-1 -i -(ii) Likewise t e dt I -f

0 o 1

and in the same manner we obtain

fl v- e- ixtdt - X-V e- ivW2 r(v) - e'i + -3 /2) (3)

0ix

The results quoted in (.20) are obtained by addition and subtraction of

(D2 ) and (D3).
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AppendixE.: Derivation of equation (4.27)

A direct derivation is provided by writing the solution of the biharmonic

equation in the half plane x > 0 as a Fourier integral

fe - '&y T (x,E)dE

where

(d ) 2  -o

The solution bounded as x is I - (A+Bx)e- l J

Then on x = 0,

Txx - yy 2 f 2Ijl(J]IA-B)e-iEYd&

while y(Ot) f i+(-f AB)e-td&

Now the Cauchy integral f e-itdt -i e-iY(sgn&)
t-y

Hence on reversing the order of integration,

2£ T t)dt 1lfo
'xY (Ot _ - , (sgnE) (IlIA-B)e-icYd

S xx (O,y) - yy (O,y)
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