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L ABSTRACT
\:_\A
We consider boundary value problems for the biharmonic equation in the open
rectangle x > 0, =1 < y < 1, with homogeneous boundary conditions on the free
edges y =(§1, and data on the end x = 0 of a type arising both in elasticity and
in Stokes flow of a viscous fluid, in which either two stresses or two displacements
are prescribed. For such "non-canonical” data, coefficients in the eigenfunction
expansion can be found only from the solution of infinite sets of linear equations,

for which a variety of methods of formulation have been proposed.

A drawback of existing methods has been that the resulting equations are
unstable with respect to the order of truncation. It is clear from an examination
of the spectrum of a typical matrix that ill-conditioning is to be expected.
However, a search among a wider class of possible trial functions than hitherto for
use in a Galerkin method based on the actual eigenfunctions has led to the choice of
a unique set, here termed optimal weighting functions, for which the resulting
infinite matrix is diagonally-dominated. This ensures the existence of an inverse,
which can be approximated by solving a finite subset of the equations.

Computations for a number of representative cases, presented in full in an
internal report (Spence 1978) are summarized here, with emphasis on the rates of
decay of the coefficients {c_} in the eigenfunction expansion. Knowledge of these
decay rates is essential for 2 aiscussion of convergence, parallel to .nat given by
Joseph (1977a,b) and his co-workers for canonical problems.

Asymptotic estimates of the decay rates have also been obtained by use of the
solution of the biharmonic egquation in a quarter plane. It is found that (i) for
smooth continuous data satisfying compatibility conditions at the corners, the decay
rates guarantee pointwise convergence. Also examined are (ii) cases of data
violating compatibility (iii) discontinuous data and (iv) discontinuities in
derivatives of the data. 1In these cases sharp estimates of convergence rates are
obtained, which guarantee that integrals of the series converge to integrals of the
data. The computations show striking confirmation of the theoretical estimates.

AMS (MOS) Subject Classifications: 31A30, 65F35, 73C35, 76D99

Key Words: Biharmonic, Eigenfunction expansion, Elasticity, Stokes flow,
Galerkin, Optimal weighting functions, Asymptotics
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A CLASS OF BIHARMONIC END-STRIP PROBLEMS ARISING
IN ELASTICITY AND STOKES FLOW

*
D. A. Spence

1. Introduction

The solution of the biharmonic equation

in a semi-infinite strip Q: { x > 0, |y|< 1} with homogeneous boundary
conditions on the edges y = + 1 can be expressed formally as
-A x
Y (xy) =1 ey Y (yen (1.2)

vhere wn(y) =y (y,ln) are eigenfunctions associated with the names
of Papkovitch (1940) and Fad'le (1941), An are eigenvalues, and {cn} are

coefficients that depend on the data on. the edge I': {x = 0, |y|< 1}.

In the case of solutions even in y, and such that ¥ - O as x + , with edge

conditions
¥=o0,¥ =0 omy=4+1, - ' (1.3)
the eigenvalues are the zeros with positive real parts of the function

C(A) A + sin A cos A (1.4)

and the eigenfunctions*' may be taken as

v(y,7) 0} coa’k)-l(sink cosly - y cos) sin \y)
(1.5)

Q coo’l)-l ¢ (y,2) say

. o e xihd »

'Hatbematics Department, Imperial College, London SW7 2BZ, England.

'.These satisfy the equatiog (02+X2)2w =0 (D = é;) with boundary conditions
V(1) = DY(1) = 0, DVY(0) = D'y(0) = O. They are also discussed by Lure (1964)
Buchwald and Doran (1964) and many other authors in addition to those cited.

Sponsored by the United States Army under Contract No. DAAG29~-80-C-0041.
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The present paper is concerned only with data that can be expanded in

terms of these even eigenfunctions. However there is also a set of

eigenfunctions that are odd with respect to y, the eigenvalues in that case

being zeros of
C () = A - sin) cos) (1.6)
and the eigenfunctions multiples of

¢ = cosA sinly - y sin) cos Ay (1.7)

In general, an expansion such as (1.2) would involve eigenfunctions of both

sets.

Footnote: Different authors have used different normalising factors
from the present (Acoszl)-1 when defining coefficients in the expansion
(1.2 ) in terms of the basic eigenfunctions ¢. Smith (1952), who is followed

: c
Sy Joseph (1977 et seq) writes the expansion as V¥ = Z(%E) e-)‘nx ¢(y,An),
n

vhile Gregory (1980 a,b) writes ¥ = Z (-2)cne“nx O(y,ikn) (so that his

Xn's are twice those defined by (1.4), i.e. they are the roots of A + sinl = 0).
Thus the coefficients c, obtained in the present paper are coszxn times those
of Joseph, and - }Xn cos’kn times those of Gregory. For mn » 1, these ratios
are O(n) and O(n?)respectively.

The reason for the present choice of normalizing factor is that it

'leads to the particularly simple biorthogonality relations (2.9 ), (2.10).
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C()) has a simple zero at A = 0, and in addition a conjugate pair of
zeros An' Xn in each interval (n-i)m < Rel < (n-1/4)n. -An, JXn are
also zeros. Since we are concerned in this baper only with those

zeros with positive real parts, we shall adopt the numbering convention

that X‘, Az «eess are the zeros in the first quadrant, and
A = ) n=1,2, 3, ceo. . (1.8)

The sum (1.2) is then to be understood as

nzd” LI ¢)) e ® z2Re )) <, ¢ne-xnx, (1.9)
(a0) n=1

the zero eigenfunction being excluded.

The asymptotic location of the roots is given by

Ay = (a = 18T+ -21- In 4nw + o (1) (1.10)

This expression shows that as n + o

\
[A,| ~ o, lcosln|, |sinln| ~ (am?
vhile tan A =i (1- 1/4An’)i + i. > 1.11)
Likewise tan A +-1i
- J

The first 10 eigenvalues, together with a much closer asymptotic expression,

are listed in Table 1.

The zero eigenfunction satisfying the edge conditions in the form
Y = Vy = 0 is identically zero. However if the edge conditions are
taken as Y;x = 0, ka = 0, which correspond in elastostatics to

vanishing tractions, a term !ﬁ) y? corresponding to Xo could be included

in (1.9 ).
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Table 1. First 10 seros of 2\ + gin 2)\

n ukn Im)

o
i
1 2.10619617 1.12536430

2 5.35626888 1.55157435"

3 8.53668213 1.77554369

3 11.69917774 1.92940450

S 14.85406017 2.04685259

6 18.00493240 2.14189076

7 21.15341377 2.22172284

8 24.30034256 2.29055238

9 27.44620323 2.35104823

10 30.59129524 2.40501261

The asymptotic expression % ‘n -1n zn gives 6 figure agreement with
| " | :
) Re Xn at n = 4, and % 1n 8y * [(ln ;n)’-ZIn L.~ 1]/cuz agrees with Im Xn ,
to 4x10° atn=9 ({_ = (4n - Lm).
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Boundary value problems

The determination of the coefficients {cn} in the expansion
(1.2) requires knowledge of two sets of boundary data on the edge
r's x=0, Iylgl. For this purpose following a numerical classification
scheme of the type introduced by Johnson & Little to treat a range of mixed

boundary value problems we may define the following quantities:

(1) (2)
Y _(0,y) = £7°(y), ¥ _(0,y) = £°(y)
xy yy : (2.1)
Q 0,y =Dy, P(0,y) = £ (y)
Here P (x,y) is the Laplacian AY and Q the harmonic conjugate function
defined so that P + iQ is analytic in x + iy, with Q(0,0) =0. An
alternative notation used by Smith (1952) and followed by Joseph (977)
and Gregory (1980) is to write
Yo (Os7) = £(3), ‘l’yy(o.y) = g(y) (2.2)
To this it would be convenient to add
q’xy-h. Pap,Q=q onxs=0 (2.3)
Then £ 3 €9 6@ gl @ oW LB D) (2.4)

o
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Pormally, the derived functions possess expansions of the form

’xy A

v w"

4 - Je, " e X (2.5)

Q At CUn e A Y ;
P Ay !

and with x = 0, following the notation of the author's earlier paper,

the expaﬂsions can be written

A

£(2) o 0:2)
£ L 2sin)y/cos) Y o =
\ £® ) ~2cos)y/cos) - \ ¢f‘“) /
Altcmtive}y one can vrite expressions for £, g and h as
f Nty NG E
8 = Ie, v = le, ¢g2) 2.7)
b R BTN o)
while [ p ~cos) y °;(.4)
= J2(c_/cos) ) = Ie, (2.8)
q sin) y ()




Canonical problems

The determination cf the constants {cn} in the expansion (1.2) requires
knowledge of two of the functions f(a) (or, more generally, of two linear
combinations of the f(a)). In general the {cn} must then be found from an

infinite set of linear equations, but there are two problems for which they can

be found explicitly, by use of certain biorthogonality relationships among the

{Oga) }, namely

A ¢;3) ¢,(‘1) + ¢;1)¢§3)> -8 (2.9
S N R CSESIRTOS RIS TR I (2.10

Here <-> denotes f () dy.

Thus (1) for the problem in which the prescribed data is the boundary values

of £1 and £¢3, the scalar product of (2.6 ) with (¢£3). o, 0:1): 0) gives

c =4 <¢£3)£(1) R ¢;1)f<3)> 2.11)

as noted in Appendix A,
In the context of plane elasticity/ withi ¥ as the Airy stress function, this

AT e

corresponds to a8 case in which the shear stress - ny and the normal

displacement u are prescribed over T,

(2) Likewise the product with (0,¢;4), o, o;Z) - ¢;6)) gives-

c - l@ﬁnf(z) TACION f(4> (2.12)

In the same way, this corresponds to the normal stress ?yy and shear

displacement v being prescribed over T.




In terms of the classificaticn (2.7-8), the last two expressions

én = (1/2) <(Zlinkylcosk) h - ‘“""‘>A-x (2.13)
3 n
] ad e, = (1/2) <(-2co‘sly/cosk)' 8- (12¢)P> A= - :
= (1/2) “A%E + yg), (2.14b) "
SN
respectively.
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3 Mixed problems

Three non-canonical problems of fundamental importance can be
identified, as noted in Appendix A.
1. The elastic end-stress problem: W:y, vyy prescribed on T
2. The elastic end-displacement problem: ?xy+ (1-v)qQ, wyy -(1-v)P,
(v = Poisson's ratio) prescribed.
The end-stress problem in Stokes flow : ?xjtiQ, Wyy-iP
preacribe@ onT

All three of these problems fall into the same framework if the data

is prescribed in the form of values of the two functions

(GO TP ¢ ) IURRPY € N ¢ S R €O RN {0

witha =0, 1 -v, | in cases 1, 2, 3 respectively.

For these problems, the biorthogonality relations cannot be used to
provide explicit expressions for the {cn}, and it is necessary to
resort to the formulation of an infinite set of linear equations from

which {cn} can be found by truncation.

For instance in the case a = 0, the {cn} must be such that the

equations

AR <, ¢§1)

£ . e, ¢§2)

are simultaneously satisfied pointwiseon O $y £ 1. This will only be

possible for sufficiently smooth data (f(l), f(z)), and in particular

Y TN RTIB? U ST NN S DI S g+
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if the conditions

£V =0, V) =0, f £ Pyay=o

°
ave satisfied (since each of the ¢:1). ﬁz) satisfy the corresponding

conditions). Comparison with the known results for the canonical problems

suggests that a sufficient condition, for data satisfying (3.3 ), is that

f(l)", f(z)"

(f(l). £(2) belongs to the Sobolev space Hz(o,l), i.e. that ( )

€ Lz (0,1). However a meaning can be assigned to the distribution of <

obtainable from (3.2 ) under considerably more general conditions.

(3.3)




Formulation of infinite sets of equations for the (Cn}

Three essentially different methods for formulating equations occur
in the literature:

(A) Direct collocation: In which a truncated set of the equations (.2 a,b)

are identically satisfied at a suitable set of points {ym} of the interval

(o. 1) .
(1), "(2) are
m

(B) Galerkin methods Here, sets of weighting functions Wm

introduced and mean equations

M Dy | peD HD () (@) _ 7Dy
G ) = Tt e e, (5T £ = TS0 " De

are obtained and solved simultaneously. The simplest such equations are

provided by the set

ey (2)
m

= gin mmx, Wm = cosmmX.

These were proposed by Benthem (1963), and are equivalent to those used by

Gaydon & Shepherd. With our notation the matrix elements are given by

(3.4a,b,

Zmﬂl tanl
<sm mmy ¢<1>. - (_) <,s amy ¢<?>. (x " 2)2 (3.5)
. -nT

(C) Use of biorthogonal functions

Johnson & Little in effect add equations (2.1Dand (2.12 to obtain

- 1 3.1 4
2¢5 % 3) <¢; Y1) 4 o ’f‘2’> v b M@, (. ¢;"’f“"> (3.6)

(D

On the right hand side, and f(z) are known, while f(3) and f(a)

are calculated as Z n ¢:3). Z n ¢§6). From known quadratures we find

the resulting bracket as

=2Xx_(A_tan)_~)X_tan)
(OoPuia®- ooy o el
2
(Xm—kn) (Am+kn)

N

say, while its value is 1 for m = n,

-11-
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This gives the set of equations

‘n -zrmcn*d

<¢:3) (0, ¢ISlc.)f(2)>

It is to be noted however that this set of equations can also be

vhere (3.8

obtained directly by a Galerkin method from (3.4a and b), using the

weights HS') ¢(3) (2) ¢(‘°) and adding.

For an infinite set of equations of the form ( 3.8), Rantorovich & Krylov (1958)
show that the solution {cn} is stable in the sense of approaching a limit as

the number N of equations become large if the L, norm HF|Im3 supminltmﬁs £ 1-€,€>0.

However this condition is not satisfied by the coefficients (3.7 ); in fact the

sum ] |F_| tends to infinity with m .
g m

To show this the eguations may be written

nzl (F <, + an cn) + dm

where L > (&) '.9)

] - - - 2 -
Fm = - 2lm(lmtanlm -lntan)‘n)/(lm'%n) (Am'*ln) . )

The summation now extends over An in the first quadrant only, and we need
only consider Am in the first quadrant since the conjugate equation holds for

A_. The asymptotic expressions (1.11) show that

n
A, A Nom, wvhile tand , tan A_ =+ i,
m' ‘o m n
Therefore
2 -2 ’
7| .\,% ___| o | wml VT @n @ (3.10)
n -n

«]l2-

oo

9 o T o Pe—yT [
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® *
(For m = n, Fun = 0, an ~ Zimﬂ/(lnkmﬂ)z). The imaginary part of me does

not appear in the diagonal when the equations (3.8 ) are formulated in real y

and imaginary form. Then 5
4 * m 1 on
z |Pm| 4" ; n 2ﬂ. Z |Fm' > ;'- {1+ -2—2- +..} - -3—- o (3.11)

Similar behaviour. is exhibited by the elements (3.5) of the matrix

formed by sine and cosine weighting functions, and we might expect this to
be reflected in instability of the solution of truncated sets of these

equations. In fact this was shown in numerical experiments described in f1].

It is evident that the difficulties arise from the factor (A‘-Xn)z in
the denominator of F .
mn . X
Some 1ight is thrown on the behaviour of the inverse matrix (I - F)
by the distribution of eigenvalues of I - F. For N =4, {.e. the 8 x 8
matrix, the eigenvalues are |
I - F (Johnson-Little): 1 % 1.3749, 1 ¢ .8337, 1 ¢+ .9901, 1 £ 1.0005 .
Thus the last 2 eigenvalues are extremely close to zero, and the matrix

111-conditioned (det & 5 x 107%),

By contrast, for the matrix I -~ G derived in the next section by use

of optimal weighting functions, the eigenvalues are

I-G: 1% .3920, 1+ .0828, 1 ¢ .0060, 1 ¢ .0001

and it appears that the eigenvalues rapidly approach 1 for larger matrices,

with det(I - G) of order 1.

TN - o

-13-




Optimal weighting functions

As noted in the last section, the natrices resulting from the
Galerkin methods B and C are not diagonally dominated, and this fact
is reflected in the computations described in{ 1 ], wvhere it
wvas found that the coefficients obtained from these methods varied with
the order of truncation.

However, an extra degree of freedom not exploited by previous

authors is available in the choice of weighting functions. In the hope

of producing a diagonally-dominated matrix, consider weighting functions
of the general form

(1) (1) 3)
- A ¢ + B ¢
*n b o (3.12)

xP-CfND#)

This is a natural extension of the biorthogonal weighting functiens (3.7 ),
and contains sufficient disposable constants to ensure the suppression of the
factor (Xn - An)z in the denominator of the matrix elements.

If we write

PLEMIPL € S ¢ BENPY ) RPN O U ¢ (3.1 bis)

then the stress (a = 0) and displacement (@ = 1 - v) problems may be treated

together as cases in which the functions g(l), 3(2) are known on 0<y<l. We
shall therefore seek optimal weighting functions in the above sense for g(l)
and 3(2), and expect the result to depend on the parameter a. Thus from the

equations

sV - e @{D + ap{?)

€ - 3 ¢, (¢:2) - c¢§6))




m

we obtain the equations

; 3
) Am €a. " dn
wn ag = (O ) P68 - o) > ? (3.1
. = <x:1) MU ‘(2)>
J
Quadratures of the eigenfunctions appendix of (1) show that form$n
. 2 2 2 2
A, - :Am);n } A ; Xn; + 200 A . B- aas A, D+ ak C c_
(An-kn) Xn - An Amln
+ 4 a[(B-D) cun -B Tm]
vhere C, _ /cosdy cosA.y \ . (Xn tan A_ - A, tan Xn)/(l: - X: )
coskﬂcoskn
(3.15)

and = (tan Xm + tan An) ]/ (kn + Xn)

-§A+%C+%(Ant¢nkm) (A+C) +B+D

‘a [A-c - m:.)]

To suppress the factor ()\m - An)3 in the denominator of Am it is necessary to

set A= - C. The choice C = 1, A = -1 reduces the expression to

2 2
Amxn (B+a) Amx“ + J\ﬂ D+ Ana

+
2 2 2
o’ndn) )‘m A n

+ a(B-D) ] c‘|In ~4aBTg,

4




Ifnovwwe set B=} ~a, D=~} - a, the remsining factors of (A-An)

in the denominator are suppressed leaving
An--c_n-zau-za)'rm m¢n

' 3
say, where G-n = ZX- (X- tan)‘u - Au tan)«n) / (Am dn)

. F’ (3.16)
while

c::lm) |

< A0 SR AP W 1T

a (1l- - -2a} T =
AL = (=) - 20(1-203T ,(_

Bence if the weighting functions are chosen as

/) (L (3
- - ¢ + (1) ¢
%= n n (3.17)
xXP = 4 - ey o
the equations (3.14) are of the form
(~4a) ¢, =] {6 +20 (20T} ¢ + d |
i
In particular, for the traction problem (a = 0) they reduce to %
i
- 3.19 ]
‘m Z Gm €2 * dm ( ) §
Likewise for the Stokes problem (a = §) the system is :
-¢c =1 G _c + d (3.20)
m mn n m
~-16-
. o - . . |

14
Y
v,




R P 22

Diagonal dominance of the matrix A I -G

We now confirm that the infinite matrix I-G is strictly diagonally

dominated, i.e. that

Iolegl <1 v | (3.21)

ne=n

An estimate of the absolute row sums of (:‘m may be obtained by use of

the asymptotic values
A % Red ~ (|| - D«
m m 4
1, 124 . . >
Aﬂ tanAn 3 + (z AIII) ~ } * ﬂm (m < 0)
Hence in the numerator of |G ml’
(A tanh_ - A tamr | M@ -1)F (@ -1y
m m n n X 4 4

accordingly as m, n have the same or opposite signs.

Likewise the denominator of |Gm| namely
A, + An|3 2 (Red  + Rexn)3 n e (|m|+|n|- 3

Hence for m, n > O,

l6 g 1416, ! ”[%] (- § [ nle (g ’] = g(m,n) say (3.22)

th

This leads to an estimate of the m absolute row sum of the truncated matrix

of order 2N as

N N : N+§
I olegl ~ I smm S.J g(m,n) dn (3.23)
n=-N n=1 . } :

(the inequality holds since g is decreasing and concave as n increases).

-17-
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(N)

If m < N, the integral equals s, " Rn say,
viths = 2|20 -1)% 41 R® 2] [Weg (3.26)
m ] Qa T4m ’ ] N m ‘
. [
The estimate for the infinite matrix is thus [ 'cml"’ | Sa ¢ 3 (3.25)
"

. ne-®
For a large finite matrix, the estimate

N. ‘

I le s -r™

e - § DO m m

is well borne out by' computed values of the absolute rowv sum, as shown in

Table 2 for the cases N = 30 and N = 99,

o
The fact that ] |G| < n < 1is sufficient to ensure that for
ns -0

bounded |d nl’ the equations (3.19 possess s unique bounded inverse {c.}.
In principle this can be constructed from the sequence

¢ -'(1+c+c’+...)¢_1 (3.27)

A theorem of Kantorovitch & Krylov shows that the inverse vc:“) to the truncated
set of equations
M -I)_! 6y ™ 4 a® (3.28)
N=-N ’
converges to a unique limit {c n) as N+,
These remarks also apply to (3.20), the inverse in that case being

S-—(I-c*cz-ooo)g (3.29)

In particular, in either cased =0 == ¢ = 0 (3.30)

-




Table 2
4
| P g (30) 7 g (99
H n n.§3lc'nl SR, n.zgglc_nl S, - Ry
1 .63515 .64598 65744 -66690
2 .74430 - 73800 . 79091 .78385
3 .75863 .75157 .82716 -81938
4 .75142 . 74515 .83923 .83233
5 .73713 73179 -84194 .83603
6 .72040 .71586 .84021 .83517
7 .70306 .69918 -83610 .83177
8 .68593 -68257 .83063 .82688
9 66937 66644 .82436 .82108
10 .65355 .65097 .81759 -81470
15 .58494 .58646 .78152 +77980
20 .53652 .53851 74648 -74534
25 -49894 -49822 - 71432 71349
30 .47011 46956 .68522 -68459
40 .63535 .63495
50 59471 .59443
60 .56128 .56107
70 .53350 .53334
80 .51019 .51006
90 -49044 -49034 l
99 47515 -47506

R s D0

The first and second columns are the two sides of (3.26) for N = 30,

the third and fourth for N = 99,

e,

-19-




4. Asymptotic estimates of convergence rates

In this section asymptotic estimates will be made of the rate of
counvergence of the coefficients {cn} for the mixea problem in which
t(l), f(z) are prescribed functions of y on the interval [0,1].
Four types of data will be considered

(i) Smooth continuous data satisfying the compatability

condition £ (1) = o.

A RTI ne PRBT  ~

(ii) Data for which the above compatability condition is
violated.

(iii) Data containing a discontinuity at an internal point
c € (0,1).

(iv) Data containing a discontinuity in slope at an internal point c.

In each case it will be assumed that the data satisfies the additional

requirements at y = O for expansion in terms of the even eigenfunctions.

ey s

These are
Doy = eM"0) =0, D) « £@D"(0) = 0. (%.1)

The technique in cases (i) and (ii) will be to estimate the behaviour of
f(3) f(é)

T e ——

the functions and

, which is not known in advance, by solving the
biharmonic equation in a quarter plane with boundary conditions on the two
sides that are asymptotically the same as those in the neighbourhood of the
corner x = 0, y = -~ 1 in the strip problem. In cases (ii) and (iv),in which
the governing singularity in the data is at an interior point, the relevant ;
asymptotic solution of the biharmonic equation is in a half-plane. Having

obtained estimates of £ and f("), we can then estimate c from (.11) or

(2.12), using in addition the known values of f(l) or f(z).
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Case (i) : Smooth data satisfying the compatability conditions

Since in this case f(l) (1) = 0, we may assume the data can be expanded

near y = = 1 in the form

AL Y- ... (4.2a)

h(Y) =-a, Y-a

1 2

fm(y) g(Y) = b, + b, Y+, 2 e (4.2b)

1

vhere Y= 1 ¢+ y,

The solution of the biharmonic equation in the quarter plane X, Y > O,

subject to the boundary conditions
¥Y=0, Y!-O on Y=0, (4.3a)

‘l'n = h(Y), ‘l’,n- g(Y)on X = 0 (4.3b)

is found in AppendixC as a Mellin integral

4 = 3 9 ¥ (s 0) ds (4.4)
14
z"i e

-1

with - 1 <¢<0, r = (x2 + Yz)i. 0 » tan i-. Y being expressed in terms

of Mellin transforms of the data on the boundary 6 = % 3

; (s) g (Y)

A - Y*ay (4.5)
h (s) h (Y)




e s A ke

The values of the Laplacian P = AY and its harmonic conjugate Q on the

boundary € = "/z are obtained as the inverse Mellin transforms

c 4 i‘ ~
Y) p(s)
P - z_li_ J " s-1 (4.6)
n a ds
q(Y) - je q(s)
vhere ; 2 ;
e — |- M(s)
q h
(s+sin? 12'-! ) sin '2'—'- cos 12! .7
vith M(s) -
sin :—' cos -'2!1 (s - nin’%’-)

and A = det M = g2 - gin? %'—

A has real zeros at O, O, + 1, and s doubly-infinite set of complex zeros ¢ Yz'

Yoo 2 Y 2 "y'l.,... which sre spaced so that 2m < h’yh <2n+1

i+

The first of these is

Y, = 2.739593 + i (1.119025) (4.8)

The Mellin transforms of g and h must be of the form

P ‘1 ‘2
h(s) ==-70 ~ 3:3 ° function regular in - 3 < Res <0
4.9)
~ bo bl b2 _
g(s) = R I T function regular in -3 < Res< O

since on inversion in accordance with ( 4.5), these produce the stated

expansions. Then from (4.7),

; (s) = (- %) (sninz "2—') ; - ('iz "') ; (4.10)
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.On inversion using (4.6) we obtain

p(Y) = b +bY +cr’;Th 4 T ¥V, 0(vh) (4.11)

vhere C is a (complex) constant.

Since t(z), f(a) are symmetrical with respect to y, they can now be expressed on the

interval 0 £y < 1 by writing 1=y for Y in (4.2b) and (4.11) respectively, as
€@y 4+ b -y +0 a-p? | (4.12a)

1 (4.12b)

“litayp¥r-l, ..

£ b, + b, (1-y) +C A-n"

¢, can now be evaluated from (2.12) as

. -1 < (233 (f(z) O N f(a)>m
n

Two integrations by parts give
2co8) )" 2cosA » "
¢ = 2 it A +3 @ )“) (4.13)
n 2) coskn cosk

For f(z), f(a) € H2 (0,1), bounds on these terms are provided by the

Cauchy~-Schwarz inequality, since from (1] we have the L2 norms
2cos) y
l ._c_;sTn_ N const /_(ln n)! (4.14a°
n
| ¥ ~ const / n (In t\):'/2 (4.14b°
n

At this stage therefore our best estimate is

|a | -0 (1/:\ (1n nglz) .

cannot be expected to have stronger differentiability properties

(8

since

than the primary data.
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However for smoother data such that f(z) € H“ (0,1), we may write

D" o uy (4.16)

f(b)" = K (l‘y)\’-l + E (l_y)\’-l + V(y)

vhere K = (yz'l)(Yz -2)C, v = Yz -2, and'u(y), v(y) are such that u", v" € L, (0,1)

Then
2cosA_y
1 n
c = Sl (u=-v) +¢ v
s 2 Azcosk n
n n
. " 2cosX y . -
1 - - -
v (4 =[x an R a7 (4.17)
Anceskn

Further integration by parts shows that the first term is O(n—3).
We now focus attention on the second bracket. The part multiplied by ' :

K when written in full is

(ch:osz)‘)-1 <:'{sink(l-y) + (1-y) cosAsinly - %-coskcosky}(l-y)v-£> A=) (4.18)
n

After integration of the middle term by parts, and on writing y = 1-t, this

becomes

(2Acoszk)-1 {sinAt - (2+v) cos) cos) (1-t) } V), (ZAzccs)‘)-1 (4.19)
A

The integral can be estimated for large n, by use of asymptotic formulae derived

in Appendix D for A € A +, i.e. the set of A for which C(A\)= O, ReX > 0, and

: 0 < Rev < 1

! v-1 -v vn ‘sin) -3/2

’ t " cosht ) = A (cos 5 ) TV) + ==+ 00T (4.20a)
<"'1 .m:> = A V(sin Py Tvy - 22 on 2’2 (4.20b)
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When these are substituted in (4.19) the contridbutions from the second
terms on the right cancel perfectly with the term l/‘“2 cosA, and wve
are left with

1 - =1/2
(" '{)Xw 2 T(v) [(bv) cos ? * (3 ¢+ V) (sin -\‘;l )tmk] + 002 ! )

Since v o 72- 2, vhere yzh such that vzo sin !}a- 0,

this expression can be written {n the fore

-7
AY2(p e 3 eend) s 0 02
(6.21)
vith 3 - i
A cos %b
Then since Xn ~v an ¢ 0 (L“—“-&). vhile mxu v ¢ i, the estimate of
leg| 1o
|°n' ~(conet) n *2.76 , o(n7Yy (6.22)
This estimate {s well supported by computations using the method of
optimal weighting functions, for two cases for which the coefficients ¢
were tabulated in (1]. In the nomenclature of that report, they are
1) (2) 2 |4 tan) 9 []
Case 1: =0, ¢ = l=dy a =2 m 1 - -
(4.23)
(1) L) d tan) 3 18
Case 31 ¢ sye-y', t =0 » =@ n 1 - -
- [ —* ) ( 7!) FJ
" (] ]

The values of “2.74 € o vith N = 40, are listed in Table 3, and it is

seen that in doth cases, they vary only slovly with n, the maximum variation

betwveen n = 12 and n = 4O being of order ¢ 8 per cent.

SEES
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Table 3 Decay of coefficients for the smooth continuous data listed in (4.23)
Case 1 Cage 3 Case 1 Case 3
2.74 2.74 2.74 2.74 f
.n n ‘cnl a |cn| a n Icnl n lcnl C
1 .8676 .3704 21 .4555 .4854
2 4735 .6337 22 .4566 .4945 f
3 .6175 .6465 23 .4586 .5030
4 6774 .6012 ) 24 4615 .5108
5 .6912 5473 25 4656 .5179
. .6616 .4586 27 4742 .5301
5 8 6362 4291 28 4790 .5352
9 .6093 .4096 9 .4839 .5398
10 .5830 .3988 30 .4886 , +5438
11 .5583 3951 31 4940 + 5473
12 .5361 .3969 32 - .4986 .5503
13 . 5167 4027 33 .5034 .5529
14 «50L 4111 34 . 5078 .5550
1 15 .4865 4211 35 .5120 .5567
} 16 .4756 .4320 36 .5164 .5580
t 17 4675 . 4432 37 5202 5590
18 .4615 4544 38 .5233 .5597
4
19 4578 4652 39 .5270 .5600
20 .4560 4756 40 .5295 .5601
; Note: The calculation for Case 3 was also repeated with N = 99, and values of
Y
Ikn %cnl showed similar behaviour, e.g. A
] i
' n 20 30 40 50 60 70 80 90 99 E
B Yzc |x1072 10197 .12137 .12899 .13002 .12777 .12407 .11998 .11611 .11308
n on
3 with smooth variation between these values. The values differ from those in the table
Y
by the factor lkn 2|/n2'74 which ﬂ2'76- 23.0245 as n +» o,
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(ii) Data not satisfying the edge condition f(l)(l) =0 4
|

)

|

|

To investigate the effect of data that violate the compatability {

condition ‘l’xy (0,1) = 0, it is sufficient to consider the case

fV =y, P =0 | (4.24) |

since smooth data of the type already considered can be superposed on
this to produce a genmeral distribution. Referred to the corner (0,-1),

f(l) = -1+ Y so that

vy . 1, L
£ s’l + a+2 + L N ]

In this case from (4.7) with h = £1)

; - - (uixAﬂu) ¢ (D

which has a simple pole at s = -1 with residue % and is regular at s = -2,

» 8 = 0, we have

the next poles being those at ‘-Yz’ -y

Y-
P'lzt""o(Yz )’

and leading term in <, is obtained by writing ,f(“ = %, f(z) = 0 in (2.12).This gives

1 b 42 tanl
™2 -2'< *n ¥a > - 12'- ( L (4.25) !
A .

4
the next terms being O(An ). ;

Therefore
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Since tan An & i -

-2
+0 (An ), this result shows that

P

ag n + ®

which is well borne out by a calculation using the method of optimal

weighting functions, as shown in table 4. Except for n = 1, the computed

value of |A c | lies within 2 percent of 12'- = 1,5708, and the coefficients
o n

. . i . .
in fact approach the pure imaginary form n ~ % implied by (4.25)

(4.26)

% ‘
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Table 4

M) ey 2 o

1
d.--T-+-——-—
)

The coefficients were computed with N = 99.

VO~NOMDP OV~ -]

PWWWWWWWWwWWEWNNNNNDN NNNN = @b b oo
CVO~NOMBUN=-OYRNOAVAWN - COVWPNAOANMELEWN=2O

'n
0.2439686,+00
0 «376416 '-01
0.213641,-01
0.142829,-01
0.101696,-01
0.755116,-02
0.578495,-02
0.453904,-02
0.362747,~02
0.294002,-02
0.240808,-02
0.198738,-02
0. 16‘33‘ ,-02
0.137055,-02
0. 1 13968 1-02
0.945324,-03
0.779874,-03
01637593 p"°3
0.514141,-03
0.406145,-03
0.310976,-03
0.226564,-03
0.151235,-03
0.836376,-04
0.226839,-04

-0.325382,-04
-0.827604,-04
-~0.128630,-03
~0,170660,-03
«0.209291,-03
-0,244919,-03
~0,277862,-03
~0.308389,-03
=-0.336752,-03
«0.363157,-03
~0.387793,-03
-0.410818,-03
-0.432371,-03
=-0.452582,-03
«0.471558,-03

bn
0.777206,+00
0.277808,+00
0.174970,+00
0.129271,+00
0.102807,+00
0.853834,~01
0.730035,~01
0.637432,~01
0.565529,~01
0.508079,~01
0.461126,~01
0.422037,~01
0.388992,~01
0.360694,-01
0.336189,-01
0.314764,~01
0.295875,-01
0.279097,-01
0.264095,~01
0.250602,-01
0.238402,-01
0.227318,-01
0.217204,-01
0.207937,-01
0.199417,-01
0.191555,-01
0.184280,-01
0.177527,-01
0.171243,-01
0.165381,-01
0.159899,-01
0.154762,-01
0.149938,-01
0.145400,-01
0.141122,-01
0.137084,-01
0.133266,-01
0.129649,-01
0.126220,-01
0.122963,-01

Data violating the compatibility condition

3tanl
m

22

|chnl

0,194527,+01
0.156334,+01
0.153696,+01
0.154212,+01
0.154905,+01
0.155421,+01
0.,155763,+01
0.155979,+01
0.156105,+01
0.156168,+01
0.156188,+01
0.156176,+01
0.156142,+01
0.156091,+01
0.156027,+01
0.155954,+01
0.155874,+01
0.155789,+01
0.155700,+01
0.155608,+01
0.155514,+01
0.155418,+01
0.155320,+01
0.155223,+01
0.155124,+01
0.155025,+01
0.154927,+01
0.154828,+01
0.154730,+01
0.154633,+01
0.154536,+01
0.154439,+01
0.154344,+01
0.154249,+01
0.154155,+01
0.154062,+01
0.153970,+01
0.153878,401
0.153788,+01
0.,153699,+01




(iii) Data containing discontinuities

(D (@

We next consider the case when one of the data functions

has a finite discontinuity at an internal point y = ¢ of (0,1), and is
elsevhere continuously differentiable. In this case the solution
sufficiently close to the point ¢ is in the limit the laic as in a

half space x > 0. For the half space, the following singular integral
relation exists between the second derivatives at the surface x = 0 of a
function Y satisfying the biharmonic equation (appendix E )

(-}
X Y (o,t)dt
Xy
- =y

2
’n(O:Y) - v” (0,y) = ;

the integral on the right being a Cauchy principal value. The integral

is continuous at a point of continuity of v:y(o.:). and is continuously

differentiable if ny(o,t) is so. Therefore a point of continuity of the

boundary value °f.wxy is also a point of continuity of vxx~- Vyy. and if
¥ _ has a jump discontinuity at a point y = ¢ of the boundary, vxx has an

y

equal jump at the same point, and AY a jump of twice the amount.

Thus for the strip, if f(l) is continuous at ¢ while f(z) has a
discontinuity of amount
f(z‘(c+) - f(z)(c-) H [f(z)]c say

£(4)

there will also be a discontinuity in of amount

£ (en) - @y g (1D
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(4.28a)

(4.28b)
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The contribution to n is therefore given by (2.12) as

N

jF {’f(zkc-)Gﬁ‘) o £@cyo{D- oﬁ“’{} dy

o (4.29)

1
[ e o9 gt O o
[

wn"' and is

The dominant contribution is that from 0:2)

("-;-) [f“)(c+)- f.“),(c-i w;(c)

cosl ¢

; (2) sind ¢
| oo (e oo 2o

v gD e a1

Since Im An W | 1n 4nn, we obtain from this expression the estimate

1-c

leg! ~ a-o 11£®) Jeamy 2 (4.30)

In [1], the coefficients generated by the distribution
1 0<y<|{
£(2) (4.31)

-1 <y

PR e

were calculated using the method of optimal weighting functions. This

falls into the pattern just discussed, with ¢ = |, [f(z)]c- = 2. The

estimate for this case is therefore

1/4 ~1/4
o e |+ (4m = 0.5311 (4.32)

B T T B A T

This is borne out very well by the calculated values, as shown in Table 5 .
Alternate values are above and below ,5311, the means of successive pairs of

values showing rapid convergence towards this value,
-31-
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TP T o . <~ - - ) .o ww . cWene

%
lye (0,%)
Case 2: f(l) =0, f(Z) -
~1 ye (’fnl)
A
tan sin(-—=

- - ] ' (1 2) -
For this case d i Y () +2 A cosX

(The last two terms can be combined as

tani n A
2| s ef3 2 el
the form given in [1]).

The coefficients ¢ =a + ibn computed with N = 40 are listed on page 40
reference 1. n n

n n}/élcnl n nllblcul Mean of successive
values

1 .86252 21 60434
.5389

2 49262 22 47357
.5380

3 «73997 23 .60258
.5376

4 46516 24 47255
. 5351

5 .70536 25 - W.89TN
.5376

6 43944 26 47743
«5372

7 56952 27 +59695
: +5365

8 45011 28 47812
<5354

9 .65088 29 .59260
.5366

10 .45364 30 .48059
«5365

11 .63447 31 59243
5358

12 45633 32 47912
.5338

13 .62715 33 . 58852
«5359

14 46245 34 .48325
<5360

15 .61982 35 .58870
' <5352

16 46286 36 .48168
t <5334

17 +61347 37 .58516
+5353

18 46875 38 48552
+5355

19 .60988 k{} .58556
5347

20 46821 40 .48389

r @ril/ o g 531126
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(iv) Discontinuity in a derivative

e

Continuing the study of discontinuous data, suppose next that

is continuous, but has s jump in first derivative, of amount

(D er) - P (emy - 1P (4.332)

at a point ¢ € (0,1). Then from the last section it follows that provided
f(l) is continuously differentiable at c, there is a corresponding jump in

]
t“) » of amount

£9 (enr- £® (e 2 [f(z)']c (4.33b)

The expression (2.12) for < after one integration by parts, gives

1) < ((z)' YN (- 28indn L a)! ! >
c =({-7 £ (y)- £ {y) ﬁ%*f Y (y)
n ( 2 )( Acos A-An
(vhere we have also used the fact that, for compatible data,

£}y = £@hyy)

The dominant term is the last in the bracket, which contributes

L ]
¢ N,(_;_) (f(lo)(c,,,)_ FOFIEN V(0 .36)
As before, asymptotic results show that J
id (1-¢) .

V(e ~ (%n) (1-c)e " s A vaom+ % In 4nn i

wvhence ;
1-c ;

r

i

nw

- "(_) '
le,| ~ (—3) womy 20| e@® 1.l (4.35)




The coefficients generated by the distribution

1  o0<y«<}
£V oo, £ . (4.36)
1-8(y-) {<ygl

have also been calculated by the method of optimal weighting

functions, and are listed in Table 6. For this case ¢ = |,
1 ]
[£(2) ]c = - 8 80 our estimate is
3/2 -5/4 .
legl ~ _ —,, = -67625n (4.37)
(aw)

and this is bornme out by the computations, agsin with oscillations above and

below in successive terms.

The right hand side, calculated from (4.36), is

cosi Y
d. -<[: cosk ] f(> (since £ ., 0)
3tan) _g
- - 2

A cosA III

__g__) (4.38)

dastiioeuniuifiiadakal

>:JD

The second term here equals - 8y(}), and has precisely the same asymptotic
behaviour as (4.37).




RHS is

Number of equations is 50
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Table 6

VOGO UVEWN -

S b DL LEELEBDWWWWWWWWWWNNNMNMNNNNNNN = = oo o w oo
8 SNV AEAWNLOYVONOONNDWN=200D0NOANEDWN200000YAMANLBWN=0O

49
50

(0, 10<Y<CO0.5 5~8y 0.,5¢<¥Y<1)

ln

0.85217905,+00
0.15110750,+00
-0.23383817,+00
-0.11630692,+00
0.81507437,-01
0.53842954,-01
-0.52680854,-01
-0.33598252,-01
0.39962947,-01
0.26417607,-01
-0.28607324,-01
-0.18216213,~-01
0.24928523,-01
0.16112214,-01
«0.19434066,-01
-0.12109066,-01
0.17645042,-01
0.11117389,-01
-0.14567490,-01
-0.88840248,~-02
0.13460482,-01
0.82831224,-02
-0.11554256,-01
-0.69142859,-02
0.10782529,-01
0.64976760 ,-02
-0.95120892,~02
-0.55983579,-02
0.89361062,-02
0.52875285,-02
-0.80422256,-02
=0.46653040,-02
0.75939475,-02
0.44224351,-02
=0.69375644,~02
-0.39725085,-02
0.65785572,-02
0.37777461,-02
~0.60795518,-02
"003441‘227 ,‘02
0.57856459,-02
0.32814420,-02
-0.53957403,-02
-0.30225881,-02
0.51511093,-02
0.28890434,-02
-0.48390226,-02
-0.26852842,~02
0.46326793,-02
0.25724987,-02

bn
0.82889897,400
0.31273898,+00
-0.92803374,-01
«0.17379686,+00
-0.16184736,-01
0.69301344,-01
-0.26550267,-02
-0.57684090,~01
~-0.71828929,-02
0.38246136,-01
0.36837519,~-02
-0.31931769,~-01
~0.48384923,-02
0.25319424,-01
0.40120482,-02
-0.21474948,-01
-0.37712050,-02
0.18456077 ,-01
0.35850678,-02
~-0.15939817 ,-01
-0.31213155,-02
0.14294083,-01
0.31138903,-02
-0.12550230,-01
-0.26671130,-02
0.11540997 ,-01
0.27102167,-02
-0.10276338,-01
-0.23263043,~02
0.96042473,-02
0.23802368,-02
-0.86527597,-02
-0.20592124,-02
0.81778625,~02
0.21117078,~02
~-0.74400338,-02
-0.18437055,-02
0.70893951,-02
0.18915114,-02
-0.65025212,-02
-0.16661447,~02
0.62349685,-02
0.17088882,-02
-0.57580215,-02
-0.15172823,-02
0.55486970,-02
0.15556802,~02
-0.51537342,-02
-0.13908531,-02
0.49868710,-02

(23/2,75/4 _

~-35-~

5/4
n |°n|

1.18889
.82610
«99330

1.18298
62131
82411
60059
«89815
63294
«82660
«57782
82107
62684
«81273
58579
«78892
62285
«79883
59511
«77181
62117
78714
60274
76116
«62093
«77759
+60874
«75374
62142
«76976
«61350
.74818
62232
«76330
61735
«74374
«62345
«75790
«62053
«74008
+62464
«75334
62322
+73695
62587
74942
62551
«73422
62707
+74606

.67625)

Computations made using the method of optimal weighting functions

Mean of
successive values

69649
«70416
+69494
68195
+69105
«69926
+69317
68124
.68758
«69559
69163
68084
.68525
«69281
.69033
+68055
68360
69068
+68922
«68031
68236
.68899
68828
+68009
68141
68765
+68747
+67987
+68065
68657
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S. Convergence of the derived expansions

The estimates obtained in section &4 for rates of convergence of the

(cu} throw light on the convergence of the series
(61 (2)
Ieo P, Ieo P (5.1)
for the same four types of data:

(i) Smooth data satisfying the compatability conditions

We recall from Appendix B that the L2 norms
I 0,(11) il 1l ¢‘(\2) | are of order n/ (ln “)3/2 (5.2)
while the L_ norms are
supylofll) »l, I¢§2)(y)| ~ 0 @/ln n) (5.3)
In this case, by (4.22), (cnlw n-2'74, so the series (5.1) are absolutely

and uniformly convergent. The fact that they converge to the prescribed data

MW (@

functions f is proved by the author in another paper [ ].

Gregory (1980) has given a proof of completeness of the functions {¢é1), ¢§2)}

1) (@) m" @

for twice differentiable £ , with £ of bounded variation

on [0,1].

(ii) Data violating compatability

In this case, from (4.26), |cn| = 0(%), and it is not possible to guarantee

that the series (5.1) are convergent. It is in any case impossible for

z cn¢§1)(y) to converge at y = 1 to a sum different from zerv, since each

¢:1)(1) = 0, whereas for the distribution examined in section 4(ii), f(l)(l) =1,




and convergence of the series near y = 1 could not be expected. In fact the
V- partial sums were found to be oscillatory for fixed y, but the work of

Joseph & Sturges (1978) suggests that the series should be Césaro summable to

the data as all points except y = 1. This was confirmed in calculations by

Mayes (1982) for the corresponding problem for a cylinder.

However the individual terms of the series can be integrated to give

y
J 0. Pey de = 2 W -y () (5.4)
0
7 1
f 0.P® - - sPmn, (5.5)
o .

The norms of these integrals are asymptotically of order %- times the

J ' corresponding norms (5.2), (5.3).

Therefore for lcn| of order %-, the series

y y
) cnf o (o) e, chl o2 (v ac (5.6)
0

are certainly summable in L2 norm, and computations in Table 7a show that

with good accuracy these series sum pointwise to

Y y
‘[ £ (eyae (= 4 ¥P), j £2 (¢)ae (= 0) (5.7)
(0]

respectively. The quantity ¢ quoted in the table is the least squares error given

in each case by
k

Y; '
o?- 21 J‘ £(e)de - sty | 2 (5.8)
i=1

where S is the relevant sum (5.6 ) evaluated at y; = % (k = 10).
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(2)

(iii) Discontinuity in f

From (4.30) in this case Icnl = 0[n

)

l+c

2 ] (1n n)~3/2 y

: l
Therefore Icn[||¢§1)||, |cn|||¢§ )" are of order , and the

series is not summable. However termwise integration twice with respect to y

introduces a factor n-z, so that the series

y t
J e ac | 6 ) au, a=1,2 (5.9)
n 0 0 n

are absolutely and uniformly summable. For the case computed, with ¢ = §, the
calculations summerised in table 7b show that the sums agree with the

twice-integrated data with error of order 10-3.

(2)?

(iv) Discontinuity in £

3-c
Similar remarks apply in this case, but since |cn| =0 [n 2 ] » it is

only necessary to integrate once. The case ¢ = } gives rise to the figures in

table 7c showing comparable agreement with the once~integrated data.
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Table 7 Convergence of series of integrated terms
y
{ denotesf dy in all cases )
7a: Data violating compatability condition 0
1y _ ) _ T tan) RS
£ ¥ £ 0 <. ~ 3 . n vy
(.1
(1) _ ;.2 (1) (2)
y J.f iy e, f¢n De fo,
0 0 0 0
.1 .005 .00377 -.00008
-2 .020 .02004 .00016
.3 .045 .04370 -.00027
A .080 .08016 .00038
S5 .125 .12356 -.00057
.6 .180 .18035 .00078
o7 <245 .24340 -.00112
.8 .320 32055 .00153
.9 .405 .40336 -.00218
1.0 . 500 .49934 .0
q =.00102 o = .00093
7b: Discontinuity in function
-1/4
(Moo, P =(;i le_fvn /
(2) ﬂ(z) 1)
y it /N e oY
(4] o . 0 0
.1 .005 .00510 .00037
2 .02 .01999 .00076
<3 045 04511 .00111
.4 .08 .07997 .00153
.5 .125 .12514 .00186
.6 .170 .16995 .00229
o7 .205 .20517 .00260
.8 .230 .22993 .00304
.9 245 .24515 .00336
1.0 «250 25007 .00377

(0 = .00010)
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1.0

Discontinuity in first derivative

AR

£

el

=1-8{y-{]

2)
ch¢n

-4.463
-4.726
~5.464
-6.807
-8.310
=5.999
-..996
-1.023
-2.638
-5.283
=3.742

+56
.54
244
.26

.09994
.20013
.29980
.40027
.49963
. 56046
.53947
.44055
.25956
0

(0 = .00034)

Jeg 05"
differs
from zero
with

g= .00062

ey
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Appendix A

1. Stresses and displacements in terms of Airy stress function !
With standard suffix notation the stresses are

g,, =¥

n-"Y2 % = Yi» %92 ¥ 1 (A1)

The displacement gradients in plane strain are given by

2wy 4 = (Vo) = Vo, Zpu, , = SV, ¢ (15V)0,,,

(A2)
Wy 2 4 ¥2,0) = %
To treat boundary value problems it ia convenient to introduce P = AY,
together with its harmonic conjugate Q linked through the Cauchy-Riemann
equations P ., = Q,, P _ = -Q . and defined so Q (0,0) = 0.
b1 »2 »2 1
The direct strains are then
uuy =¥ g " VE, 2w, =¥, = VR ==Y 4 (1-V)P ( }
while the shear strains are ' r
i
2u Ug " V.lz = (1-v)Q |
(A4) |
2y % S V.lz + (1-v)Q
Thus if boundary values are defined on X - O as :
¢ (1)1 r W
f V.lz
(2)
£ V.zz s
- AS
) Q
4 i
L f( )J AP Jxl = 0 E
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the boundary values of the tractions and of the displacement gradients

with respect to x, are respectively

. -

e
12 on= £ (46)

c

- D e

™ |y, -£@ 4 q-ne®

Therefore

(i) if Y (O,xz) and 012 (O,xz) are prescribed, f(l) and f(3)

are known

(2)

(i1) if uz(o,xz) and oll(o,xz) are prescribed, f and f(b) are known.

(iii) (the stress problem) : if olz(o,xz)'and oll(o,xz) are prescribed,

2)

f(l) and f( are known

(iv) (the displacement problem) : if u, (0, xz) and u, (O,xz) are
prescribed, the combinations

(1)

JSSIISY

+ (-v) £

(A8)
and 8(2) - g2 _ (1-v) £

are known.

(i) and (ii) are canonical problems, (iii) and (iv) are mnon-canonical..

2., Steady Stokes flow

Neglecting inertia terms, the equation of motion is taken as

Vp = uiq , (49)

where p is pressure and q = (u1 uz)is the velocity, expressible in terms of
~ ]

o I




the stream function as v, - W’z, u2 - -W’l-

to

P = - UQ + constant
The stresses are

g.. = u(ui’j +u, .)-pé,.

1) sl 1)
whence
. %1 Y, * e-p /2
3 -z_ll L J _
%2 ¥ 2 i

Hence corresponding to the boundary value problems for the

those for Stokes flow in a semi-infinite trench are

(i) u, and O 1 prescribed on x, = 0 ==> f(n, f(a)

1 1

(ii) uy and 99 prescribed on x, = 0 = f(z), f(l')

(iii) u, and u, prescribed " e f(l), £(2)
. . " 1 2
(iv) onand %12 prescribed . " - g( ), g( )
'é where 8(1) - f(1) + 4 f(3)’ 8(2) - £(2) -3 f(lo)
3 This is the same combination of data as arises in the case

displacement problem (A8) with v = |{.

~45-

Then with P,Q defined as in the previous subsection, ( A9 ) may be integrated

(Al10)
(All)
elastic strip,
given
given
given
given,
(Al12)

of the elastic

woots W,

o
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Appendix B Quadratures and Norus of eigenfunctions

The quadratures quoted in section 3 are derived from the following
results, all of which are obtained by integration by parts and use of the

equation and boundary conditions satisfied by the wk [i.e. (D2 + X:)zwk =0,

‘lik(l) = Dwk(l) = 0, Dwk(O) = D3wk(0) = 0,together with the characteristic

equation 2Xk + sin 2Xk = 0].

1 Quadratures

(a) m#n All results expressible in terms of
C__ = (cosA coel )-1 /cos)‘ y cosA y = (A tand_ - X tan) /(A2 -2
mn m n’ \ m n S A )

We find (more details are given in Appendix A of [1]) :

)y , © a2, 42 - a2 y2
<¢m ¢n > = _ldmxn (An * A1.1 ) C /(A X
<’£2) ¢§2)>
Q(l) ¢(3)> - caa ¢ [ 0F - a2

o n mn on m n
GEORETRCENE -

<¢f” ¢f‘3’> = 4C_ -4 (tamd ¢+ tamd) / O+ A)

GOy - e |

(b) m=n \
2
(1) Q) 1 2) ,(2) -1 m
<¢m % > 7" Gm ¢m> - =13 [coskm]
<(3) °(:4)> - wleos <b(a)°(4)> .o
<(1) (3)> <(z) ¢<4)>

The biorthogonality relations (2.9) and (2.10) follow at once from these results.

2,2 2
-8Amkn Con /(Xm - A

+

N

2 e S A Y
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2. Norms

The norms are found from the preceding expressions by writing n = -m,

) 3
n

so An - Am ¢ on etc. The details are given in appendix B of [1],
]

and only the asymptotic expressions for large m are quoted here (in fact they

are close approximations for m > 2).

e e et e e e e e

Ho, I ~ 2am™ (1neam /2

/2

; 1eSP1, 1620 ~ jam/( 104am®

HogP1 s Mol ~ 2/ (nkamy'/?

g A

A s s

. .
o s
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Appendix C

quarter-plane 028< 5

m
2

Solution of the biharmonic equation A%Y = 0 in the

» with boundary conditions

6=0:Y =0, Y =0 (c1)
xy XX
. 1
ecfiv +avae=sPm, v - ave =) (c2) |

xy

(8(1). (2)

g prescribed).

The biharmonic equation is automatically satisfied when Y

has the form of a Mellin integral

1 1-s ° ' (C3)
¥ T .J‘t Y ds
with Y = Acos(s-1)0 + Bsin(s-1)8 + Ccos(s+1)0 + Dsin(s+1)0

From (C3 ) we have

8 = _1_. -l_s‘ids (ca)
P & AY 21Ti r |

with conjugate

1 -1- 1cs)
Q-m r sﬁds

P cos(s+1)6 sin(s+1)0 C (C6)
vhere =  (=4s8)

Q -sin(s+1)0 cos(s+1)6/ \p
The boundary conditions € 1) are applied in the form Y =0, gg = 0 on

6 = 0, giving

A+C=0
: )
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The derivatives on 6 = -1,‘:- that occur in the boundary condition (Cc2 ),
namely

S_3 (L2
‘l’yyl. ‘l’trl . s ‘l’xy|- 3t (r 30 I . (Cc8)
x=0 0= 7 x=0 0= 2

are also expressible as Mellin integrals derived from (C3 ). When these
results are combined, and A and B eliminated using (C7 ), the boundary

data on 6 = Jit' are expressible in terms of the remaining constants C and D

in the form

M - [y @ar, ae2 ()
o § |
with - = M(s (c10
g® D
(s-2(1-V)) cos "73 (s-1+2Vv) sin lzi

! where M is the matrix

(s+1-2v) sin “—28- - (s+2(1-V)) cos "—23-

The inverse matrix M-l gives C and in terms of the g 's,and the values

of P, Qon O = % are therefore

; P lsin _1r2_s - cos 1'23 -1 ;(1)
] = 4s | M
g = T cos 11’_28. sin %’- 3(2)
2
sin 12 cos 2 s + sin2 T2 - 2(1-v) g(l)
2 2 2
- (-2
‘ s - sin? 22+ 2 (1-v) gin 12 Is ~(2)
5 n 5 cos 3 g
(Cl1)




2

vhere A= - det M= s’ + (3-4v) (sin? 32) - 4 (1-v)?

The solution quoted in section &4 of the present paper is obtained by

setting v = 1 in these results. Then

a _ ) _
8 Yoylamo * 8 ¥l =o,
and A-sz-sinzlz‘-.
~50-
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(C13)

(Cl4)
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Appendix D : Asymptotic expressions for the integrals
) R + iAt
{ eV 1 e de (pl)
. t
for O<Re v<l, AeA-+,
Here A+ is the set of zeros of 2X + sin 2A lying in the right hand half plane
so that, by (1.10), arg A = O G“n—“)

In each case the integrals are evaluated as tﬁe difference between two

infinite integrals

1 _ . io i
(i) Foevl e e o p -
0 0 1

These integrals both exist since Inm A > O. The first is

) N e ivn/2 F'(v), while integration by parts gives

ico . en‘ 1
j tv-lelxtdt = - > 1+0 (x)
1

Since (as (i} . 0 (A-i), the last term is of order X-S’? and altogether .

) S oy 3 iA _
£t e o AVe Y2ry) + S0 40 5/2, (02) l
o .
1 1 i =100 -jo
(ii) Likewise S tVletqe e s .7 |
o o 1 :
; and in the same manner we obtain 3
1 v-1 -iXt -v - ivw2 e iA =32 |
St e dt = )\ " e T(v) - %) +0 (A ) (D3) !

o

The results quoted in &.20) are obtained by addition and subtraction of

(D2 ) and (D3 ),




AppendixE.: Derivation of equation %.27)

A direct derivation is provided by writing the solution of the

equation in the half plane x > O as a Fourier integral

-~

v = 31"— _[° e Yy (x,6)de

where

The solution bounded as x + ® is ¥ = (A+Bx)e—x,El

Then on x = O,

Yo = Yy " 1;'. L 2]g] (Jg|a-B)e EVug

-]
. 1 . -ift
while ¥ (0,t) ﬁ.fw iE(|E]|a-Bye 4
1 o 3 3
Now the Cauchy integral ;-.[ e lgtdt =~ e 1Ey(sgng)

-0 t—y

Hence on reversing the order of integration,

%f wxz(o’t)dt = ;lr-f E(sgn&) (|£lA-B)e_i€yd§

-0 t—y

= ‘l’xx(o.)') = \yyy (0,y)
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