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ABSTRACT
The boundary collocation method is used to solve some 2-d interface
problems of microwave heating. The choice of subspace of particular
solutions, and the selection of collocation points are discussed. Numerical
examples are presented.
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SIGNIFPICANCE AND EXPLANATION
The boundary collocation method is a numerical method for solving
boundary and interface problems for linear partial differential equations, for
which a complete set of particular solutions is explicitly known. The method
consists of the following steps:

1) Select a subspace of particular solutions.

2) Select a basis of the subspace.

3) S8elect a finite number of points on the boundary (or interface). The
points are called collocation points. We require a finite linear
combination of the basis functions to satisfy the boundary (or
interface) conditions at the collocation points. We select
sufficiently many points to uniquely determine the linear combination
of basis functions.

How the selections 1) - 3) are done is important for the performance of the
¥ boundary collocation method. Guided by experience from solving a model
intexrface problem for the Laplace operator, see (3], we describe a strategy

for selecting subspace, basis and collocation points when applying the

—
L

boundary collocation method to the numerical solution of 2-dimensional

electromagnetic field problems of microwave heating. We present computed

21

-
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examples.
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ON THE NUMERICAL SOLUTION OF SOME 2-D ELECTROMAGNETIC
INTERFACE PROBLEMS BY THE BOUNDARY COLLCCATION METHOD

- Lothar Reichel
1. INTRODUCTION

In the present paper we describe how the boundary collocation method (BCM) can be
applied to solve 2-dimensional electromagnetic field problems. We pay special attention to
the selection of suitable subspaces of particular solutions, and to the allocation of
collocation points. Our interest in the BCM stems from a recent comparison of integral
equation methods and expansion methods for electromagnetic field computations reported by
Bates (1]. He calls the boundary collocation method straightforward point matching (SPM),
and states, {(1], p. 619, "SPM is by far the most economical method from the points of view
of programming effort and computer time.” Bates goes on "But it (SPM] can only be used
with confidence when C [the boundary curvel is such that the (external or internal)
Rayleigh hypothesis is valid®". The external Rayleigh hypothesis is the assumption that the
Teradiated field can be represented by a single expansion everywhere outside the object
scattering the incident field. We, however, take a different view on the importance of the
Rayleigh hypothesis. By allowing more general expansions than those in the comparison of
Bates [1), and by letting the allocation of collocation points depend on the choice of
(finite) expansion, the Rayleigh hypothesis seems to be of minor importance for the
performance of the BCM.

Our approach is an experimental one. We generalize a strategy for selecting subspaces
and collocation points, which has been found appropriate for 2-d interface probleams for the
Laplace and Poisson equations, see Reichel [3]. We apply this method to compute solutions
to some interface problems of microwave heating. Section 2 contains the formulation of the

interface problem, in section 3 we describe the BCM, and in the 4th section we present some

computed examples.

4 Sponsored by the United States Army under Contract No. DAAG29-80-C~0041.
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2. FORMULATION OF THE INTERFACE PROBLEM
Let @ Dbe the cross section in the x,y-plane of a cylinder parallel to the g-axis.

Denote the smooth boundary curve of 8§ by C, and let nc be the exterior of C in the

x,y~plane.
Et,l-!t
o .
- 4
zi .- ,/ LemmTTE~
- , ¢ Q
t -1 , J——) b4
- “/ \___e) x
l’ nr
,
R e gy
'x"y"z) incident electric field
ll1 - (H:,n;,!:) incident magnetic field

= (l',lr,l:) reflected electric field

xy

= (n:,n;,n: )  reflected magnetic field

lt = (l:,l;,l:) transmitted electric field
gt - (u:,n;,n:) transmitted magnetic field

Pigure 2.1

We assume that the cylinder is homogensous and surrounded by free space. Let the incident

electric field be a plane wave with only the s-component nonvanishing. Then the problem is
2-dimensional, and can be expressed as an interface problem in the plane for the Helmholts

operator, see Figure 2.2




R ] '.n - -" -
o VUL Y LY

ER MR o At (X 0 gL 20"t 3 PP v d ol el ond —
T AT AT AT T AT .1._ ST AT AT e oS S e M I i iy Bt~ e i fun e Sy

- - -t -t et W -4v_’-"_\.'-“"-'s..-'“\~’.-‘Q—“_
Au, + c3u, = 0 b, + clu, =0
1% % 2 * %%
. 2 ae

01102 constants, 01 e, cz eR.

Pigure 2.2

We will refer to this figure later. MNext we give expansions, which satisfy Maxwell's

egquation, for the electric and magnetic field. The time dependsnce enters as factors

01*. wvhich can be cancelled. ¥We may assume l" is of amplitude 1. The components of
l" then are
is =
2 1
(2.1) ': =9 ¢ ': - ‘; =0, ‘2 - (tz“z) /2. P
1 -9 =7
mcz--ﬁom r/-uauz-u-u /A are the dielectric constant and

permeability of free space. The components of e are, see Wait (4],

PR

(2.2)
ﬂz ]

The interface condition that the tangential components of the electric and magnetic fields
should be continuous across the interface immediately gives us

4 3 4 t ) 5 t
(2.3) 'x..l.o‘ .y'ly.oy l‘-.‘-ot

We assume the origin belongs to 0 and seek l: as a linear ocombination of finitely many

terms Jn(l,r)o'“.. where (r,0) are polar coordinates in the plane, J, is the nth

order Bessel function, and .‘ - (ciu‘)'no. L is the permeability of the cylinder, and

€, = k¢, is the complex valued dielectric constant for the cylinder with
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(2.4) x‘n-/%(x'+lx§+::)+1/%(-&,+/K§+K§). d

Kye K, Teal > 0. In the numerical examples of section 4, the cylinder is assumed to be

of meat. Then we let u1 = “2' and from Ohlsson and Risman [2], we obtain

(2,5) Ky = 36, Ky = 16 .

This corresponds to coefficients Cq = 0.33 + 10.07 and Gy = 0.05 in Pigure 2.2. Thus,

we seek !: in the form

N
(2.6) gt -} a3 (8,r)e”in¢, a ec,

b n==N

and for A" one obtains, see Wait (4],

(2.7)

(2.8)

J"‘(c) denotes

1]
ut.-z
y P

da

n=-N

Jn(c).

= N -in® o -in8 cos®
au(w1 J)(8,r)Be " sind + y 3 (8,x)e =)

45 108 0s8 - B -in0 sin
'n(uu, J:(8,r)Be " cosd o J (Bx)e =) .

We now turn to the reflected field.

et H, (r)

be the Hankel function

lln(r) = Jn(r) - I.Yn(r), with derivative II".- Let (xj.yj), J= 1(1)p, be a finite

nusber of distinct points in the interior of 2,

and let

(r

3

voj)

be polar coordinates

with respect to (xj,yj), see Figure 2.3.

Pigure 2.3
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In section 3 we describe how to select the (xj,yj)- Given the (xj,yj) we seek !: in

the form

-in6

b
(2.9) E, 321 (-2:“ by, (B, e ). byec-

For the reflected magnetic field, we get, see Wait (4],

in0 -in® e:_-e’))

N
3
(2.10) Il: =- § [-Z“ 3( i B'(Bzr)ﬂ sin® -0-—l-ln(32 rle

3=1

(2.11) n f ( 2 nj(_‘:; ":'a"z"’z‘d“““"t“n“g”'-mo %ne))

§=1 Lan
We have already stated and made use of the interface condition. For later reference, we
give the equations obtained from the interface condition for the nonvanishing components of

the electric and magnetic fields. Om the boundary curve C, the interface conditions are

(2.12) gt +afaxt
2 z
i ' 4 i ) 4 : 4 t,
(2.13) g+ HDe, + () ¢ BD)e =HE ¢ HE

wvhere t = (tx.t’) is a unit tangential vector to the curve C.




3. THE BOUWDARY COLLOCATION METHOD

; We require the interface oconditions (2.12) and (2.13) to be satisfied in a finite r
number of points, ocollocation points, distributed on C. This gives a system of linear

equations for the coefficients a,, hnj of the expansions (2.6)-(2.11). Numerical

experiments indicate that

.

’

1) the selection of subspace for the reflected field, i.e. the selection of

)
-
va -

C
AR

(xj,y’), J = 1(1)p, see Pigure 2.3, is important for the performance of the

method.
2) the subspace and collocation points should not be selected independently.

3) the expansion (2.6)=(2.8) for the transmitted field is generally adequate for

30, Teatyatii
SRt

-8

P

cylinders which are not pronouncedly nonconvex. If a large approximation error is

Y

obtained, the addition of few extra basis functions with a singularity in the

é.' finite plane may reduce the approximation error substantially, as is demonstrated

'f-: in ex. 4.4, section 4.

.'E The following scheme for choice of subspace and collocation points is an adaption of the
method described in Reichel [3] for the numerical solution of an interface problem for the
Laplace and Poisson equations.

a) Let zy s-x’+1yj. Select the ) in 0}, not too close to the boundary, such

! that l-l1 Iz - ,’l"/p is near constant for £ traversing the boundary curve C. We
o.tthor’ms appropriate sj or use a msthod described in (3] for their allocation. A

comparison with approximation problems for harmonic polynomials and harmonic rational
functions leads us to the following choice of N and llj. Por a givem N, 1let

N f M, +p satisfy N =N + 1. Select the M, so that max M, - min N, is as

g 3= 3 ) 1 7y 3

<. small as possible. We assume throughout the remainder of this paper that W >p - 1. Then

I’ >0 v 3°

b) The density function for the collocation points o is obtained by solving the

integral equation
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q + [ inls - glo(z)|ag) = -;-’7 s iniz - :jl, gCccC
c 3=t
(3.1)
[ stp)lagl = 1
c

for {o0,q}), where q is a constant. Determins M + N +1—-;—2 collocation points tj' by

solving

T
n - py= -
(3.2) / ag)lagl = (m e+ '1—2-2) L= anmens '—;‘ ~ 1), 1, arbitrary.

)

If p is even, replace u+u+'—%—2 by u+l-§.

Integration in (3.2) is understood to be along C in the positive sense. (3.1) and
(3.2) are conveniently solved as described in (3]. We note that ¢ dJdoes not have to be
determined to very high accuracy.

¢) At each ocollocation point 'j' we vYequire both (2.12) and (2.13) to be
satisfied. Por p o044, this gives 24 + 2§ + 1 - p complex linear equations for the same
numer of coefficients a,, bju' Incagse p is even, we only get 24 + 2% - p ocomplex
linear equations, and require now also ...-o. Since the basis functions might not fora
a Chebyshev system on the set of collocation points, we solve the linear system by singular
value decomposition, and have the option to discard singular values of the same order of

magnitude as round-off errors.
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4. NUMERICAL EXAMPLES

Por a few cylinders we have computed the power density lllz generated by an incident
plane transverse magnetic waves of 2450 MHz. The power density is of interest when
studying microwave heating, see [2]. The cylinders have the dielectric properties of meat,
see (2.4), and can be thought of as meat loaves or sausages. Symmetry properties of the
cylinders below have not been used in the numerical computations. We measure the error in

the interface condition of the computed solution with the norm

1£0 := max{ max |Re £(x,y)|, max |Im £(x,9)1} ,
(x,y)ec (x,y)ec

All computations were carried out on a DEC~10 computer in single precision, i.e. with 8

significant digits.

Ex. 4.1. Let C be the ellipse {(x,y) : (%o—)2 + (§6)2 =1}, with x,y in sm. Let

P =5, and select the points (rp.yp) as the zeros of the 5th degree Chebeysbev
polynomial of the 1lst kind for the interval between the foci at £10/12 of the ellipse.
Let M= 16 and N = 15. This gives 58 coefficients to determine, and we use the
collocation points (40 cos(2v 551), 20 sin(2v &51)), k = 1(1)29. oOne can show that these
points are very close to those obtained from (3.1), (3.2). Pigure 4.1 shows Q with level
cuﬁron of the power density. The level curves show levels k * 0.05, k= 1,2,... . The
value of Ill2 is shown at some points along the major axis of the ellipse. (The points

in the figure are dscimal points, and do not indicate location.)

‘incident Plane wave .

-8~
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Por the computed reflected and transmitted electric field we measure the maximum

discrepancy in the interface condition over C. We obtain Izi +E° - ntl - 1-10-3. In

this and all the following examples the real and imaginary part of gl + BF - E® are of
the same order of magnitude. The magnetic fields are of much smaller magnitude than the
electric ones, and in all examples the relative error in the interface condition for the

magnetic field is of the same order of magnitude as the relative error for the electric

field.

Ex. 4.2

)) “incident plane wave

We change the direction of the incident field, and increase the number of terms in the

expansions, compared to ex. 4.1. Now N = 23, M = 24. This gives

izl + BF - £%1 = 20107%. The level curves display levels k + 0.03, k = 1,2,... .

Ex. 4.3. Let C be the curve {z(t) = 6ei% + 0.66723%, 0 ¢t < 29}, ¢ = x + iy in mn.

Let p=3 and (Xq90¥q) = (5.26,0), (xz,yz) = (-2.63, 4.50), (xa,y3) = (=2.63, =4.50).

Select N = 15, M = 16. Then l!" + 'r - xtl - 4010-‘. Figure 4.3 gshows level curves for

levels k ° 0.05, k= ',2'.00 .

-9-
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incident plane wave

Ex. 4.4. Let C be the superellipse {(x,y) : e y‘ =9), x,y inmm. let p=35

and (x,,y,) be the points (0,0), (2 2, * 3 « Select N = 22, M = 23 and augment the
373 ; s
expansion for the transmitted field by 4 functions !o(Bipj), j = 1(1)4, where pj in

the distance between (x,y) and 9 81/401 /2 j. These augmented basis functions are

singular exterior to C at points where the Schwarz function for C is singular, see

{3]. We allocate 48 collocation points with (3.1), (3.2). Tne computed solution satisfies
iz + 2F - %1 = 301070

The inclusion of the extra basis functions decreases the error by a factor S0. Figure 4.4

shows level curves for levels k * 0.05, k = 1,2,...

-10~
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incident plane wave
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