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ABSTRACT

The boundary collocation method is used to solve some 2-d interface

problems of microwave heating. The choice of subspace of particular

solutions, and the selection of collocation points are discussed. Numerical

examples are presented.
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SIGMIIICANCE AND EXPLANATION

The boundary collocation method in a numerical method for solving

boundary and interface problems for linear partial differential equations, for

which a complete set of particular solutions is explicitly known. The method

consists of the following steps:

1) Select a subspace of particular solutions.

2) Select a basis of the subspace.

3) Select a finite number of points on the boundary (or interface). The

points are called collocation points. We require a finite linear

combination of the basis functions to satisfy the boundary (or

interface) conditions at the collocation points. We select

sufficiently many points to uniquely determine the linear combination

of basis functions.

How the selections 1) - 3) are done is important for the performance of the

boundary collocation method. Guided by experience from solving a model

interface problem for the Laplace operator, see [31, we describe a strategy

for selecting subspace, basis and collocation points when applying the

boundary collocation method to the numerical solution of 2-dimensional

electromagnetic field problem of microwave heating. We present computed

examples.

U

The responsibility for the wording and views expressed in this descriptive
sumary lies with NUC, and not with the author of this report.
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ON THE NUNECAL SOLUTION OF SOME 2-D ELECTROMAGNETIC
INTERPACZ PBROULDS BY THI BOUNDARY COLLOCATIO NETHOD

Lothar Reichel

1. INTRODUCTION

In the present paper we describe how the boundary collocation method (BCM) can be

applied to solve 2-dimensional electromagnetic field problems. We pay special attention to

the selection of suitable subspaces of particular solutions, and to the allocation of

collocation points. Our interest in the 304 stems from a recent comparison of integral

equation methods and expansion methods for electromagnetic field computations reported by

Bates 111. me calls the boundary collocation method straightforward point matching (81M),

and states, (1], p. 619, "1 is by far the most economical method from the points of view

of programming effort and computer time.0 Bates goes on aBut it (51.] can only be used

with confidence when C [the boundary curve] is such that the (external or internal)

Rayleigh hypothesis In valid*. The external Rayleigh hypothesis is the assumption that the

retraiated field can be represented by a single expansion everywhere outside the object

scattering the incident field. We, however, take a different view on the importance of the

Rayleigh hypothesis. By allowing mre general expansions than those in the comparison of

Bates [11, and by letting the allocation of collocation points depend on the choice of

(finite) expansion, the Rayleigh hypothesis seems to be of minor importance for the

performance of the SCM.

Our approach is an experimental one. We generalize a strategy for selecting subspaces

and collocation points, which has been found appropriate for 2-d interface problems for the

Laplace and Poisson equations, see Richl 13). We apply this method to compute solutions

to some Interface problems of microwave heating. Section 2 contains the formulation of the

Interface problem, in section 3 we describe the BMG, and in the 4th section we present some

computed examples.

Sponsored by the United States Army under Contract No. DA029-8-C-0041.
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2. iOIwOaTXOM OF !HM Z1N3VAC3 PuOtmX

Let 0 be the cros section in the x,y-plane of a cylinder parallel to the z-axis.

Denote the smooth boundary curve of 0 by C, and let A be the exterior of C in the
•4 n x,y-plana.
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electric field be a plane wave with only the f-a nent nonvaniLshdng. Thn the problem

." ~2-dimensiona1, anid can be exprssed an an int=erface prob]lem :in the plans for thte Relmholts

~operamtor, a"e Figure 2.2
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Am+ a Am2 + c~a 0
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01.02 oofstant. 0e Ce c 2 e a3.

Figure 2.2

We will refer to this figure later. Wat we give expansions, which satisfy Maxwells

equation, for the electric and manLetic field. The time dependence enters as factors

i ,t-7!~ whiuch can be cancelled. we may "Sum Viis of amplitude 1.* The components of

a' then are

I i 2 1 /2(2.1) a 2 a y - " m-(,=a) 0 S

-9 -7
where 62 " 3 6 10 r/n and 2 4W * In X/ are the dielectric constant and

permebility of ftm space. The compaents of 31 are, see Wait (41.

N (2.2) - . ,

The interface condition that the tangential camponents of the electric and magnetic fields

should be continmuos acrose the Interface Immediately gives us

(2.3) *r t 2 ay Y , u St 0

tlie asm the origin belengs to 0 and seek It as a linear combination of finitely many

term n(0 1 where (rO) ae polar coordinates In the plane, in  is the nth

order Demel function, and 0, 0 (C 1 /2 0 1 is the permeability of the cylinder, and

-i:

6' 1 " C z 2 Is the com le x value d d i~elec tric o nt nt for the cylin der with

.- 3-
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1 /2

- (2.4) (I" + +

S' 2 real ) 0. In the numerical example, of section 4, the cylinder is assumed to be
of meat. Then we let -1 U2' and from Ohlason and Tduman 121, we obtain

(2.5) Ki36, '2 " 16

This corresponds to coefficients c1  0.33 + 10.07 and c 2 - 0.05 in Figure 2.2. Thus,
we seek 3t  in the form

a

(2.6) t I a ( r)e n a ec,

and for Ut one obtains, se Wait (4],

(27) Ht -,n-Msn + W49 _ ((LJ1Or0e-n ~ - oe

(2.8) at  - - n j r).-n sine
y n-uN Ip n1 mpo nut U7-)

JI(s) denotes - (a).n do n
"e now turn to the reflected field. TAt Un(r) be the Dankel function

Hn(r) Jn(r) - iy n(r), with derivative Hn . Let (xj,yj), J 0 l(1)p, be a finite

' number of distinct points in the interior of 01, and let (rj,.) be polar coordinates

- with respect to (z jYj), see Figure 2.3.

Figure 2.3
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In section 3 we describe how to select the txhyj). Given t (x,y) we seek

the fors

I jn0 nj

";j I wn -jO

* For the reflected magnetic field, we get, se Wait 141,

(2.10) N 1  bj(Q-.H*(02r)02einsine+...H..l(Sr n EL2)r
,: N

, x 2-

~ -- ( b iE.( )~inS 3 I~ .ilS sine
.y . 2  n 2 2 Lcome - n(2r)e'

We have already stated and made use of the interface condition. For later reference, we

give the equations obtained from the interface condition for the nonvanishing components of

the electric and magnetic fielde. On the boundary curve C, the interface conditions are

(2.12) 3£ + 2r t

.N, .3• 3 a .;
(2.13) (H +H)t +(H H )t - att + t

S xX y y y x x y y

where t - (txAty) is a unit tangential vector to the curve C.
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3. 3= BOUNDARY COLLOCAIZOM IU!II0D

We requir, the interface conditions (2.12) and (2.13) to be satisfied in a finite

Ine of points, collocation points, distributed o C. This gives a system of linear

equations for the coefficients an , bnj of the expansions (2.6)-(2.11). Nverical

experiments indicate that

1) the selection of subspace for the teflected field, i.e. the selection of

(xj,yjlo j - l111p, soe Figure 2.3, is important for the performance of the

method.

2) the subspace and collocation points should not be selected independently.

3) the expansion (2. )-(2.8) for the tranitted field is generally adequate for

*cylinders which are not pronouncedly nonoonvex. If a large approximation error is

obtained, the addition of few extra basis functions vith a singularity in the
4.,.

finite plane may reduce the approximation error substantially, as is demonstrated

in exo. 4.4, section 4.

The following scheme for choice of subepace and collocation points is an adaption of the

method described in eichel (31 for the numerical solution of an interface problem for the

Laplace and Poisson equations.*4
a) Lot s. s- xj + Lyj. Select the in 11, not too close to the boundary, such

.4. p -- j

that I I, - sI Is near constant for z traversing the boundary curve C. We

either guess appropriate sj or use a method described in (3] for their allocation. A

comparison with approximation problems for harmonic polynomials and harmonic rational

functions leads us to the following choice of U and K . For a given N, lot

N ga N + p satisfy N - N + 1. Ielect the Nj so that sax N -sinNj is as

small as possible. we assume throughout the remainder of this paper that ) p - 1. Then

X JN• 0 T}

b) The density function for the collocation points a is obtained by solving the

integral equation

%i%

.o,

. . ... . . . -. .. .. . . . .: .4 . '. , . . . ' . - . . ' ' . , .... . ., ,.. . . . . . . . . .. . - . - . - , ..- - . - ' " - - ... . . .,.. . . .-.. . . . . . . . . . . . . . ...
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q n, IO-)Ir1 nxs 1 z C C

(3.1)

': f o(;)1d€1 - 1

C

for (c,q), where q is a constant. Determine K + U + collocation points T by

solving

(3.2).1, 11)(N I 1), T, arbitrary.
i ~~ ~ +3s 2 {:l~l"XW + + 2 " 3

If p la even, replace a+ N + by a + - .2 2

Integration in (3.2) Is uaderstood to be along C in the positive mse. (3.1) and

(3.2) are conveniently solved a described In (31- lwe note that a does not have to be

determined to very high accuracy.

0) At each collocation point Tiewe require both (2.12) and (2.13) to be

satisfied. For p odd, this gives 2K + 23 + 1 - p complex linear equations for the am

anome of coefficients an, bin* In as p is even, we only get 23 + 20 - p complex

linear equations, and require ucv also al - 0. since the basis functions night not ftam

* a Chebyshev system on the set of collocation points, e solve the linear system by singular

value decomposition, and have the option to discard singular values of the same order of

magnitude as round-off errors.

-7-
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4. UIUICAL ZXhNMSN

For a few cylinders we have computed the power density IZ,2 generated by an incident

plane transverse magnetic waves of 2450 MHz. The power density is of interest when

* studying microwave heating, see (2!. The cylinders have the dielectric properties of meat,

see (2.*4), and can be thought of an meet loaves or sausages. Symmetry properties of the

cylinders below have not been used in the numerical computations. We measure the error in

the interface condition of the computed solution with the norm

fIV s- mai max IRe f(s,y)I, max Jim f(x,y)lI
(x'y)GC (x'y)SC

*All computations were carried out on a DmC-10 computer in single precision, i.e. with 8

* significant digits.

xx. 4.1. Let C be the ellipse 40~y 20~2* -i) ihxy n- e

p -5, and select the points (xp.,) as the seros of the 5th degree Chebeysbev

*polynomial of the let kind for the interval between the foci at *1i@/i1 of the ellipse.

Let M - 16 and V - 15. This gives SO coefficients to determine, and we use the

collocation Points (40 coe(2w j) 20 sin(2w 1) k - 1(1)29. one can show that these

points are very close to those obtained from (3.1), (3.2). Figure 4.1 shows 0 with level

curves of the power density. The level curves show levels k * 0.05, k -1,2,......The

value of 1312 is shown at som points along the major axis of the ellipse. (The poitst

in the figure are decimal points, and do not indicate location.)

®.0 2 incident plane wave

Figure 4.1



For the computed reflected and transmitted electric field we measure the maximumFor~~ ~ th tope -e3ete

discrepancy in the interface condition over C. We obtain IsK + Er - Et I - 1.10 - 3  In

this and all the following examples the real and imaginary part of Zt + Er _ are of

the same order of magnitude. The magnetic fields are of much smaller magnitude than the

electric ones, and in all examples the relative error in the interface condition for the

magnetic field is of the same order of magnitude as the relative error for the electric

field.

Ex. 4.2

r 0

incident plane wave

We change the direction of the incident field, and increase the number of terms in the

expansions, compared to ex. 4.1. Now N - 23, K - 24. This gives

i -4"9 + -- l - 2.10 - 4  The level curves display levels k * 0.03, k - 1,2,...

it -2it

Ex. 4.3. Let C be the curve ({(t) o6e + 0.6e 0 C t < 2w}, x+ iy in m.

Let p - 3 and (xl*y 1 ) = (5.26,0), (x2 'y2 ) - (-2.63, 4.50), (x3 ,y3 ) - (-2.63, -4.50).

Select N - 15, N - 16. Then II + ar 
- Ill - 4.10 - . Figure 4.3 shows level curves for

'"* levels k* 0.05, k - 1,2,...

1-9-
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incident plane wave

Zx. 4.4. Lot C be the superellipse ((x,y) t2x + 4 9), x,y inmis Let p 5

and (xj.yj) be the points (0,0), ( ,*).Select V 22, N - 23 and augment the

expansion for the transmitted field by 4 functions 8 0 (0 1 P ), j - 1(14, where Pin

1/4 i 1/2 j
the distance between Cx, y) and 9 0 a e Those augmented basis functions are

* singular exterior to C at points where the Schwarz function for C in singular, see

* [3). We allocate 48 collocation points with (3.1), (3.2). Tne computed solution satisfies
i + S

33 n e -w3*10-3

The inclusion of the extra basis functions decrease* the error by a factor 50. Figure 4 4

*shows level curves for levels k 0.05, k 1,2,.

-10-



(III)incident plan. wave

Figure 4.4
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