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ABSTRACT

In an earlier work, Sivashinsky derived a nonlinear integro-differentisl
squation for spontanecus hydrodynamic instability of a plane flame front. The
sinplified form of that equation which describes a steady progressive wave of
long period ie reconsidered here. It is shown to represent a wrinkled flame
front whose slope has & logarithaic singularity at each wrinkle. We have
conputed the flame profile and its speed of propagation wore scourately than
done previously by Michelson and Sivashinseky, and find that the increase in
propagation speed due to wrinkling is in surprisingly ¢ood agreament with

recent experimental findings.
4
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SIGNIFICANCE AND EXPLANATION

Spontaneous instability of laminar flames has been observed in many

experiments. A primary destabilizing effect is known to be thermal expansion

of the gas passing through the flame front and causing hydrodynamic

instability of the flame. This is manifested by a wrinkling of the flame and

the resulting corrugated flame front may be seen to propagate at a constant

velocity with its wrinkled shape well preserved. The speed of propagation of

the wrinkled flame is markedly greater than that of the undisturbed flame.
This paper demonstrates the above-described phenomenon through

theoretical means. The nonlinear integro-differential evolution equation

derived by Sivashingky for spontaneous hydrodynamic instability of a laminar

flame is considered. A steady progressive long-wave solution of that equation

is shown to produce a wrinkled flame front with a logarithmic singularity in

slope at the cusp of each wrinkle. The calculated increase in propagation

speed is found to agree well with experimental observation.

(D

The responsibility for the wording and views expressed in this descriptive
sumary lies with MRC, and not with the authors of this report.




A CALCULATION OF WRINKLED FLAMES

He V. McConnaughey, G. S. S. Ludford and G. I. Sivashinsky

Introduction
A nonlinear flame stability analysis carried out by Sivashinsky (1977)

considers instability of a laminar plane flame to disturbances in the hydro-

dynamic field. In that work, a nonlinear integro-differential equation
describing the evolution of the perturbed flame front is derived. The present
study seeks a solution of that equation which represents the experimentally
observed phenomenon of a steadily propagating flame with corrugated or
*wrinkled” profile (Markstein, 1970; Lind and Whitson, 1977; Ivashchenko and
Rumyantsev, 1978; Groff, 1982). Attention is accordingly focused on the

simplified equation

b ¥ _(n
1 =2 on -
oM+ Y, ——dn=v , (1)
~n

which will be motivated presently. The function Fo( n) is the shape of the
disturbed flame front which has been assumed to be a steady progressive wave
of long (but arbitrary) period; V is the constant speed of propagation of

k the front; n is the space coordinate. These quantities are all dimension-

less. The parameter Y is proportional to

o° |e®
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where pb/Du is the ratio of the density of the burned gas to that of the
unburned gas (the thermal expansion coefficient).

It is found that equation (1) does indeed describe a wrinkled flame
front. The purpose of this work is to show that the slope of the flame
profile has a logarithmic singularity at the cusp of each wrinkle and to give
an accurate calculation of the profile.

Development and Discussion of Equations

Equation (1) is obtained from the more general equation

F_(n,7
1 1.2 on - .
'or*"onnnn*zﬁ’o:m"z'n" yj:. = an=0 ., (2)

Here, Fo(n.t) is the perturbed flame front; N and T are the space and
time variables; ls is a poaitive O(1) constant which plays an unimportant
role in the present discussion. For a derivation of (2), the reader is
referred to Buckmaster and Ludford (1982). Equation (2) is seen to be

equivalent to the aforementioned equation derived by Sivashinsky (1977) by

recognizing the identity

F_(n,1
I, |k|exp[1k(n-T\)]ro(T\.t)dTuk =29, 0:"._'_‘ an

(Buckmaster and Ludford, 1982).

The limit Y + 0 and the slow scales yn and yzt are now considered.
Consequently, the fourth derivative term drops out of (2). Singling out the

negative coefficient of '0nn then yields

r_(n1
- 1.2 L I
Por = 1 +3%n* YV = dn=0 ., (3)

Michelson and Bivashinsky (1977) approximate the solution of this equation

using a finite difference scheme. Their numerical work shows that an imposed
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initial disturbance of large characteristic dimension gives rise to a steady
progressive wrinkled flame front of the same characteristic length.

Information about the steady state can be extracted from (3) by

analytical considerations. If ro(n.t) is taken to be a steady progressive
wave, it may be written
Folm,®) ~ VI+ B () ,

where V is a constant. 1In addition, for a wave of long period, the second

derivative term may be neglected. The omission of rohn is expected to be

invalid, however, in the neighborhood of anticipated cusps in the flame

profile where the curvature must be comparatively large in order to effect the

sudden change in slope.

These modifications of (3) yield egquation (1). Next, the origin is fixed

at a point where ;bn vanishes, consequently V may be expressed as

¥ _(m

veyyf, 22—an . (a)

n

Substituting (4) into (1) gives the integral equation

2m el (- Lydn-o (s)
n-n n
where

yim =y (n) .

Fon
A periodic solution of this equation is sought and, without loss of
generality, the period is taken to be 2%. (A solution with arbitrary

period 2p can then be obtained by changing the argument from n to pww

the integral in (4) shows that V 4is unaltered. Hence, all periodic profiles
propagate at the same speed and have the same amplitude; only their wavelenths

é are different.)
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Equation (5) may be rewritten as

@
1.2 (2ne1)® 1 1y ==
Y m==-1 §o ), == y(ndn ;
2 A

when y(n) has period 2%, this is equivalent to

1.2 T 4w 1 1
gy ()=~ ) j—'l‘ (£+2nt-n + E+2n‘]y(€)di

=
1y £n, £
= -3 §_, loot( 7)) = cot _fly(ﬁ)d{ . (6)

The principal-value integral in (6) has singularities at n = tw, where
ym ~ 7 cotShy(na . (M
The singular behavior there is found to be
y(n) ~ 2 agn{n¥7) In|"¥¥| near n= v . (8)

To see this at n = ¥, first note that
j:' cot(-gz—")y(i)dﬁ = f:' cot(';;—"’y(i)dﬁ

o 27 _2

o E_ny(E)dE near N == w ,

It is easily found that

fg' 1—'92%;—)&‘5_—'1 at ~ 4 1n2|n-l| near N = ¥

hence relation (8) satisfies relation (7) for n= % the result for n= -«

follows similarly. The function y(n) is thus seen to have a logarithmic
singularity at odd factors of ¥, i.e., at the cusps of the flame front.

The singular nature at the cusps of the flame profile is reflected by the
pertinent numerical results of Michelson and Sivashinsky (1977). They took

the term P (see equation (3)) into consideration in their calculations y

onn
and found the curvature of the flame to be surprisingly high at the

wrinkles. The singularity there creates a stagnation zone near each cusp in
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the burned gas region, as occurs at the tip of a Bunsen flame (Figures

1a,b). The structure of the flame front at a wrinkle (Figure 1a), however, is

quite different from that of a Bunsen wedge flame (Figure 1b). 1

Assume now that the wrinkled flame profile is symmetric, i.e., that

y(n) is an odd function. Equation (6) may then be written -
y2m = - ) teotED + cotED - 2 cot fiyorat . (9)

This equation describes an odd and 2%-periodic solution of equation (1). It
is a simple exercise to show that equation (9) therefore represents the
solution of the problem addressed by Sivashinsky (1976) in his discussion of
corrugated flame fronts. In that analysis, the following equation for the

shape of a two-dimensional, long-wave corrugated profile is derived

A - - c3(n) = — X I G(T)sin n{ cos nng . (10)

Here, the function G(n), which is proportional to the slope of the flame
front, is also assumed to be 2w¥-periodic and odd. The constant A measures
the speed of propagation of the front. This equation is recovered from (1) by .

writing ¥ _(Nn) as the Fourier sine series
on
-
Z sin nn f
=1

1

- (Z)sin nZaz ,

-8 OC
8o that the integral in (1) may be written

% sin nn

2 !_' P, (C)sin nzac f_, dn . (1)

=1 ™n
The principal-value integral in (11) is equal to % cos nNh. Hence, equation
(10) is obtained by defining G(n) = r (n)/th and A= V/(ZIY) .

In the analysis of Sivashinsky (1976), the solution of (10) is crudely

approximated by the solution of

A--c (n) = 'I_,G(c) sin { cos Mg .
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In the present work, an accurate solution is found by a numerical calculation
of the solution of (9) in which the appropriate singular behavior at ¥ is

imposed.

Numerical Solution

From equation (9) and result (8), a system of N + 1 equations is
obtained for Y- y(xi). where x; = (i=-1 )xflﬂ. i=1,2,i0.,41 and the end
value x, is less than but close to #%. The principa;-valuc integrals in (9)
are approximated near their singularities by expanding y(n) in a Taylor
series, which produces ordinary integrals. All integrals are then
approximated by simple quadrature and all derivatives by finite differences.
In this way, the following system (12) is obtained. This system of nonlinear

algebraic equations is solved numerically using the Newton-Raphson method.

y, =0

x, i=2 N (3=1)x N
2 ¥ e
el ¢ 1 ycotl N+ Iy
18 "ydy geie2 3 x ymz 3

(j-'-:l-z)xtl )
¥4 ]

(cot|

(N+4i-1)x
2N

(3=1)x
2N

(N=1+1)x
2N

Y
£) + 22 (oort £ £

2 cotl ] + cotl ] -

£ x
2 cot 3 )} + "w"’a-t”’ +

£ £
cot .m) - 2yz 0 (12)

n
(i = 2,3,00.,.'1)

Yy " -2 ln('l-x')

-t

YN-H = -2 ln(t-xf) .

The last two equations in (12) represent the logarithmic singularity at .
ror this calculation, W was taken to be 27 and xg = 3.13. Inposing
the behavior (8) at x, alone was found to yield unacceptable results; this

occurred for all three values of N that were tested (N = 9, 18, 27).
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Fixing y at the last two points according to (8) corrected this, however.
Fixing the third-to-last value as well did not appreciably change the
solution, which is shown in Figure 2. Interpolating between the points
(xi,yi) and numerically integrating from 0 to xy gives the approximate
shape of the wave front

TFm = [P yax , neto,m
as illustrated in Figure 3. A smooth curve is fitted to the points
(xi, 1-1 ;6(‘1)) and is then appropriately extended beyond the interval
[o,xf] to generate the graph in Figure 4 of a portion of the complete flame

profile.

Discussion of Results

The constant speed of propagation
V= 72 f' cot 2 y(x)dx
0 2
may be computed from the numerical results obtained for y(x). It is found
that V = 1.412. The corresponding dimensional speed of the wrinkled flame

may be shown to be

[+]
u, = o {1+ (=2 - )2 %} .
(2w)

where ~ = is the speed of the undisturbed flame front relative to the burned
gas. A typical value of the thermal expansion coefficient pb/pu is 0.2.
Thus, the speed of the steady plane flame is amplified by a multiplicative
factor of 1.6. This is in excellent agreement with recent experimental
observations of large-scale flames propagating in thin sphericai or
hemispherical shells (Ivashchenko and Rumyantsev, 1978; Lind and Whitson,
1977). 1In these investigations, it was observed that for mixtures with
markedly different burning velocities, the measured space velocity was 1.5

to 2 times the normal burning velocity measured in the laboratory. Also,

the flame became rough as it expanded, having a "pebbled"™ appearance.
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Figure 2.
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Plot of numerical solution of system (12).
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Figure 3

Approximate shape of the flame front y-l Eo(n) for
n e {o,rn).
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Numerical investigation by Michelson and Sivashinsky (1977) of equation

(3), which includes curvature effects, yielded the result

u =u {1+ (1 -&)2(-18)} .

w b D“
For Dh/pu = ,2, this produces a magnification factor of only 1.1. This is
apparently due to the narrowness of the integration interval taken. Over a
relatively short interval, the stabilizing effect of the curvature term POnn
may be significant, and so the wrinkles may be underdeveloped. Indeed, it is
known from experiments on spherically expanding flames that the speed of a
wrinkled flame stabilizes at an extremely low rate (Palm-Leis and Strehlow,
1969).

Another system to which the present findings may have some relation is
flame propagation between two parallel walls (Uberoi, 1959). 1In particular,
such a flame may be described by the curved front found here between two
consecutive cusps. ~he propagation of a flame in a channel was recently
considered by Zeldovich et al. (1980) where, however, estimates obtained both
for the flame ghape and for its propagation velocity were comparatively
coarse. In that work, stagnation zones near the channel walls were taken into

account, as shown in Figure S.
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