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in an earlier work, Sivashinsky derived a nonlinear Intepo-diferential

equation for spontaneous hydrodynamie instability of a plane flm ffont. The

simplified form of that equation which desoribes a steady progessive wve of

long period is reoonsidered here. tt is shown to represent a wrinkled flmo

front whose slope has a logarithmic singularity at eaoh wrinkle. We have

omputed the flam profile and it speed of propagation mare aoourately than

done previously by Niohelson and Sivashinsky, and find that the inorease in

propagation apee due to wrinkling is in urpLriOingly good agreeent with

reaent experimental finAinge.
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SIGNIFICANCE AND EXPLANATION

Spontaneous instability of laminar flames has been observed in many

experiments. A primary destabilizing effect is known to be thermal expansion

of the gas passing through the flame front and causing hydrodynamic

instability of the flame. This is manifested by a wrinkling of the flame and

the resulting corrugated flame front may be seen to propagate at a constant

velocity with its wrinkled shape well preserved. The speed of propagation of

the wrinkled flame is markedly greater than that of the undisturbed flame.

This paper demonstrates the above-described phenomenon through

theoretical means. The nonlinear integro-differential evolution equation

derived by Sivashineky for spontaneous hydrodynamic instability of a laminar

flame is considered. A steady progressive long-wave solution of that equation

is shown to produce a wrinkled flame front with a logarithmic singularity in

slope at the cusp of each wrinkle. The calculated increase in propagation

speed is found to agree well with experimental observation.

The responsibility for the warding and views expressed in this descriptive
summary lies with KUC, and not with the authors of this report.



A CALCULATION OF WRINKLED FLAMES

H. V. McConnaughey, G. S. S. Ludford and G. I. Sivashinsky

Introduction

A nonlinear flame stability analysis carried out by Sivashinsky (1977)

considers instability of a laminar plane flame to disturbances in the hydro-

dynamic field. In that work, a nonlinear integro-differential equation

describing the evolution of the perturbed flame front is derived. The present

study seeks a solution of that equation which represents the experimentally

observed phenomenon of a steadily propagating flame with corrugated or

"wrinkled" profile (Markstein, 1970; Lind and Whiteon, 19771 Ivashchenko and

Rtmyantsev, 1978, Groff, 1982). Attention is accordingly focused on the

simplified equation

which will be motivated presently. The function F 0(n) is the shape of the

disturbed flame front which has been assumed to be a steady progressive wave

of long (but arbitrary) period; V is the constant speed of propagation of

the front, n is the space coordinate. These quantities are all dimension-

less. The parameter Y is proportional to

OPu
Pb .

This research was supported in part by the' U. S. Army Research Office, in part
by the Alexander von Humboldt Foundation (through a Senior U.S.-Scientist
Award), and in part by the Office of Energy Research, Office of Basic Energy
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Department of Energy under Contract No. DK-AC03-768F00098. It was also
sponsored in part by the U. S. Army under Contract No. DARG29-80-C-0041 and is
based in part upon work supported by the National Science Foundation under
Grant No. 1C8-7927062, Mod. 2.
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where Pb/Pu is the ratio of the density of the burned gas to that of the

unburned gas (the thermal expansion coefficient).

It is found that equation (1) does indeed describe a wrinkled flame

front. The purpose of this work is to show that the slope of the flame

profile has a logarithmic singularity at the cusp of each wrinkle and to give

an accurate calculation of the profile.

Development and Discussion of Equations

Equation (1) is obtained from the more general equation

F +4F1 1 2 0 1 d 0 (2)
OT Owsn  t -- + O n  r

Here* F0 ( MT) is the perturbed flame frontl n and T are the space and

time variables; A is a positive 0(1) constant which plays an unimportant
a

role in the present discussion. For a derivation of (2), the reader is

referred to Buckmaster and Ludford (1982). Equation (2) is seen to be

equivalent to the aforementioned equation derived by Sivashinsky (1977) by

recognizing the identity

F, _(n, T)

1, k.exp[ik(n-n)i 0(nT) f 2 On_

(Buckmaster and Ludford, 1982).

9 The limit Y + 0 and the slow scales yn and YT are now considered.

Consequently, the fourth derivative term drops out of (2). Singling out the

negative coefficient of r0On then yields

Fe (-i, r)

- r +F + Y I- o dflm0 *(3)Onn 2 0O,-n

Michelson and sivashinsky (1977) approximate the solution of this equation

using a finite difference scheme. Their numerical work shows that an imposed
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initial disturbance of large characteristic dimension gives rise to a steady

progressive wrinkled flame front of the same characteristic length.

Information about the steady state can be extracted from (3) by

analytical considerations. If rO(01,T) is taken to be a steady progressive

wave, it may be written

r -V' + iO(n)

where V is a constant. In addition, for a wave of long period, the second

derivative term may be neglected. The omission of Fo 1 is expected to be

invalid, however, in the neighborhood of anticipated cusps in the flame

profile where the curvature must be comparatively large in order to effect the

sudden change in slope.

These modifications of (3) yield equation (1). Next, the origin is fixed

at a point where FOi vanishes, consequently V may be expressed as

v -0on d0 l (4)

Substituting (4) into (1) gives the integral equation
1 y2 1

y(in) + L. L-_- )y,) - o .(5)

where

y(") i V1

A periodic solution of this equation is sought and, without loss of

generality, the period is taken to be 21. (A solution with arbitrary

period 2p can then be obtained by changing the argument from n to p'Vwj

the integral in (4) shows that V is unaltered. Hence, all periodic profiles

propagate at the same speed and have the same amplitudel only their wavelenths

are different.)

-3-



Equation (5) may be rewritten as

1 2 €,(y) - - (n1'( ~(
(2n-1)v

n=- 0-fl n

when y(n) has period 2w, this is equivalent to

y2 1f) M I L -2 u1 + I y(g)d
f -+-2n1-l C+2nT1 Y~d

--t: Eot~~!3 -cot jfiy(&)d9 (6)

The principal-value integral in (6) has singularities at n - *w, where

yIF ) M j cot ( ( C)d . (7)

The singular behavior there is found to be

y(n) - 2 sgn(rtTv) lnj TwJ near n * (8)

To see this at n1, first note that

twx cot(&-T)y(C)dC - 42T cot(4 y C) dF

' -- y(Cldt near n - 9 T

It is easily found that

i2, 4 sqn(C-W)lnI -w dC -4 l 21iwI near - ,

hence relation (8) satisfies relation (7) for n w the result for n -1

follows similarly. The function y(1) is thus seen to have a logarithmic

singularity at odd factors of W, i.e., at the cusps of the flame front.

The singular nature at the cusps of the flame profile is reflected by the

pertinent numerical results of Nichelson and Sivashinsky (1977). They took

the term ra (see equation (3)) into consideration in their calculations

and found the curvature of the flame to be surprisingly high at the

wrinkles. The singularity there creates a stagnation zone near each cusp in

-4-
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the burned gas region, as occurs at the tip of a Bunsen flame (Figures

lab). The structure of the flame front at a wrinkle (Figure Ia), however, is

quite different from that of a Bunsen wedge flame (Figure lb).

Assume now that the wrinkled flame profile is symetric, i.e., that

y(n) is an odd function. Equation (6) may then be written
2r. 2- ( d 9

y2 (n) - " o tcot(4!-) + cot(-L -n) - 2 cot Jy(C)d . (9)

This equation describes an odd and 2w-periodic solution of equation (1). It

is a simple exercise to show that equation (9) therefore represents the

solution of the problem addressed by Sivashinsky (1976) in his discussion of

corrugated flame fronts. In that analysis, the following equation for the

shape of a two-dimensional, long-wave corrugated profile is derived

12 (n 12-21F n-1 _. G(C)sin nC cos nn . (10)

Here, the function G(,) which is proportional to the slope of the flame

front, is also assumed to be 2w-periodic and odd. The constant A measures

the speed of propagation of the front. This equation is recovered from (1) by

writing F (n) as the Fourier sine series
on

j ) sin n 1 F 0 (r)sin n~dC
n-i

so that the integral in (1) may be written

) F:, s)dN . (,,)

n-i -w0 TIT

The principal-value integral in (11) is eqoal to T cos n. Hence, equation

(10) is obtained by defining G(n) - 0 11 (0)/2wy and X - V/(2wy) 2 .

In the analysis of Sivashinsky (1976), the solution of (10) is crudely

approximated by the solution of

1. G2 M G(C) sin C cos ndC

-5-
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In the present work* an accurate solution is found by a numerical calculation

of the solution of (9) in which the appropriate singular behavior at T is

imposed.

Numerical Solution

From equation (9) and result (8), a system of N + I equations is

obtained for Yi - Y(xj). where xi - (i-I)xf/N, I - 1,2,...,N+1 and the end

value xf is less than but close to T. The principal-value integrals in (9)

are approximated near their singularities by expanding y(n) in a Taylor

series, which produces ordinary integrals. All integrals are then

approximated by simple quadrature and all derivatives by finite differences.

In this way, the following system (12) is obtained. This system of nonlinear

algebraic equations is solved numerically using the Newton-Raphson method.

-l 0

2+x -2 H(J-i)xf N(i+i-2)xf.
yi + { + [ )(yot(- 2M ]1) + I y (cott 2H

J2 :-1+2 J-2

( :-)x Y (u-+ 1 )xf (W+i-I)xf

xf Vf f

2 cot +Y-)) + Xf clo -) 2y = 0 (12)
2 ( 1 1 2,$1 ...)B-1)

y a-- 2 ln(W-x 3 )

YNo -2 ln(W-xf) .

The last two equations in (12) represent the logarithmic singularity at w.

For this calculation, 1 was taken to be 27 and xf - 3.13. Iposing

the behavior (8) at xf alone was found to yield unacceptable resultsl this

occurred for all three values of N that were tested (V 9, 18, 27).
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Fixing y at the last two points according to (8) corrected this, however.

Fixing the third-to-last value as well did not appreciably change the

solution, which is shown in Figure 2. Interpolating between the points

(xi,yi) and numerically integrating from 0 to xi gives the approximate

shape of the wave front

Fo(n) - y(x)dx , ne [0, 1)

as illustrated in Figure 3. A smooth curve is fitted to the points

(xi, -'I i0(xi)) and is then appropriately extended beyond the interval

(0,xf] to generate the graph in Figure 4 of a portion of the complete flame

profile.

Discussion of Results

The constant speed of propagation

V 2 T xV= 2o cot - y(x)dx

may be computed from the numerical results obtained for y(x). It is found

that V I- 1.4y2 . The corresponding dimensional speed of the wrirfled flame

may be shown to be

-0u 2 1.4
w b (2') 2

where , is the speed of the undisturbed flame front relative to the burned

gas. A typical value of the thermal expansion coefficient pb/pu is 0.2.

Thus, the speed of the steady plane flame is amplified by a multiplicative

factor of 1.6. This is in excellent agreement with recent experimental

observations of large-scale flames propagating in thin spherical or

hemispherical shells (Ivashchenko and Rumyantsev, 19781 Lind and Whitson,

1977). In these investigations, it was observed that for mixtures with

markedly different burning velocities, the measured space velocity was 1.5

to 2 times the normal burning velocity measured in the laboratory. Also,

the flame became rough as it expanded, having a "pebbled* appearance.

-8-
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Figure 2. Plot of numerical solution of system (12).
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Figure 3

Approximate shape of the flame front y-1 0(in)  for

n e co, i1.
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Numerical investigation by Michelson and Sivashinsky (1977) of equation

(3), which includes curvature effects, yielded the result

U -Ub{1 + - ) 2(.18) .
Pu

For Pb/Pu - .2, this produces a magnification factor of only 1.1. This is

apparently due to the narrowness of the integration interval taken. Over a

relatively short interval, the stabilizing effect of the curvature term F0 nn

may be significant, and so the wrinkles may be underdeveloped. Indeed, it is

known from experiments on spherically expanding flames that the speed of a

wrinkled flame stabilizes at an extremely low rate (Palm-Leis and Strehlow,

1969).

Another system to which the present findings may have some relation is

flame propagation between two parallel walls (Uberoi, 1959). In particular,

such a flame may be described by the curved front found here between two

consecutive cusps. rhe propagation of a flame in a channel was recently

considered by Zeldovich et al. (1980) where, however, estimates obtained both

for the flame shape and for its propagation velocity were comparatively

coarse. In that work, stagnation zones near the channel walls were taken into

account, as shown in Figure 5.

2-I
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