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ABSTRACT

-W-Econsider a one-dimensional model of the theimoelastic response to

laser heating by a pulse of very short duration. We treat the linear

equations of thermoelasticity by perturbation methods using the pulse duration

as the perturbation parameter. The perturbation analysis separates the

problem into two time regimes, the short time scale, which is of the same

order as the pulse duration, and the long time scale, whir, is much longer

than the pulse duration. Convenient analytical expressions are obtained for

the temperature change and displacement in both time regimes.
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SIGNIFICANCS AND EXPLANATION

In this paper we study the effects caused by heating a material with a

single short laser pulse.. We consider only a one-dimensional model but

consider both temperature changes and elastic changes, which are coupled

together. By use of perturbation analysis we can separate the problem into

two time regimes, the short time scale, which is on the order of the pulse

duration, and the long tine scale, which is much longer than the pulse

duration. Convenient expressions are given for evaluating the temperature

- changes and displacement.

The responsibility for the wording and views expressed in this descriptive
i~mary lies with NC, and not with the authors of this report.
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2' THEIRORLASTIC RESPONSE TO A SHORT LASER PULSZ

John C. Strikwerda and Andrew N. Scott*

* '1. INTNODUCTION.

in this paper we study the temperature change and displacements induced in a solid

material by a short laser pulse. The determination of the thermoelastic response of solids

to laser radiation is an important problem for many applications, especially an laser

pulses become increasingly powerful and of shorter duration.

We apply perturbation techniques to the equations of linear thermoolasticity using the

pulse duration as the perturbation parameter. This approach has the advantage of yielding

relatively simple expressions for the temperature change and displacement induced by a

laser pulse of short duration.

In other work on this problem Bechtel (1975) and Ready (1965) considered the heating

caused by laser pulses but did not consider displacement effects. Dunbar (1981) considered

the effects of temperature on displacements but neglected the coupling effect of

displacements on temperature. He also included the modified Fourier law of heat

conduction. (Dunbar's results are in error due to an inappropriate application of his

initial conditions.) All of the above used a Green's function approach to obtain explicit,

*' though complicated, formulae for the temperature field. The perturbation method used here

has the advantage of giving simpler expressions for the temperature and displacements.

Moreover, we treat the full equations of linear thermelasticity in one-dimension with the

modified Fourier law. The method is limited by the requirement that the pulse duration be

short. The method can be extended to two and three dimensional problems and to include

nonlinear effects, however, the resulting equations will then have to be solved by

numerical methods.

*Computer Sciences Department, University of Wisconsin-Madison, Madison, Wisconsin 53706

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Nayfeh (1977) has treated a problem similar to the one considered in this paper by the

method of perturbation expansions. He considered an instantaneous heat source distributed

on the surface of the material. We compare our results with Mayfoh' in Section 5.

The equations describing the thermoelastic response in one dimension to laser heating

are

.1) (1 ++ (3A+ 2u) - M- + ( + To

(1.2) 9  u a S

where i is the temperature change measured from the mean state T and u is the0

" displacement. The solid material occupies the region with x 0 0. The normal stress is

given by

(1.3) Z - (X + 2m) - -A3 + 2M)YZ

These equations are those derived by Lord and Shulmn (1967) with the addition of the term

involving A which represents the laser heating. (We have ignored the speed of

propagation of the laser pulse which is sufficiently fast to be regarded as infinite.) The

parameter b in a measure of the pulse width. The exponential damping of the laser

heating in space is the result of the attenuation of electromagnetic radiation ina

. conductor. The parameter T0 is the relaxation time for the modified Fourier law for

; which the heat flux Q satisfies

1.4) Q + -KgradT
0 at

where K is the thermal conductivity of the material. The other parameters in equations

(1.1), (1.2) and (1.3) are the Lrma elastic constants A and 9, the density p, the

specific heat at constant volume cv, and the coefficient of thermal expansion y. The

bars on the several variables indicate that these are dimensional quantities.

-2-
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We ties nan-dimensionaliae the equations. The natural length scale for this problem is

the attenuation length a l, so define x - ;ix where xref is -1.Ter rref Terar

everal, possible time scales and we choose the time scale of heat conduction as the

reference time,

tref v ref

The perturbation parameter is to be S which is b/tref , the non-dimensional pulse

width. The relaxtation time is non-dimensionalised as

T - T/(tmf 0) - K/b

The pulse magnitude is normalized to have a non-dimensional integral equal to unity.

Therefore we define Aref by

areftref

then

Atb A ~ t/)

and thus

(1.5) 1 s)de I

The reference temperature and displacement are chosen as

T ref _ Aref(llef)2/K

and
a YO3A + 2)t 2  /(PK
ratM O efT ref ref

The natural reference velocity is

rf ref ref

We thus obtain for the non-dimensionalized equations

(1.A) (I + Si d~(f 2 Ik) - .~ (I + OT*r/ W

C.a2 O2 O

-3-
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where
/A + 1/2p).1

- ) ref

and

(3X. + 210 o 1/2d a 3.+2) I (-A) / veae,

p c' refV

The non-dimensional stress is

(1.9) ) 2
ax 2

For many cocmon materials the non-dimensional parameters c and d are of order zero

in 0, that is,

S<< c, d < B- 1

The relaxation parameter T plays an unimportant role in the analysis and satisfies

0 OT << I

The justification of our treatment of these equations and the non-dimensionalization we

have used rests on the above observations and on the reasonableness of the results.

The boundary conditions for equations (1.6) and (1.7) are the conditions of no

radiative heat loss

(1.10) 0 at x - 0

and no stress at the wall
i"' au 1

(1.11) -L- j T - 0 at x 0
c

The initial conditions are that T(t,x) and u(t,x) and all their derivatives vanish as

t approaches negative infinity.

we will solve equations (1.6)-(1.11) using perturbation expansions with B as the

perturbation parameter. Since B is on the order of 10-10 for many problems, excellent

results can be obtained with only one term.

The paper is organized in the following manner. In section 2 we derive the

perturbation expansion for the short time scale, that is times on the order of the pulse

width, and in section 3 we consider the long time scale behavior. In section 4 we solve

for the boundary layer correction at the material surface which is needed to complete the

-4-
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solution considered in section 2. in section 5 we consider some explicit examples andK cmpere our results with those of Bechtel (1975), Peady (1965), and vayfeh (1977).

-5-
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2 * Till SOWTZOU ON Till SNORT TIME SCALE

In this section we consider the solution of equations V 1.6) and (1.7) f or times on the

order of P, the pulse width. We rascale the time variable using

Vi(2.1) t, a t/P
obtaining the equations

3T1 2 032T
(2.2) (T - + 1)( -~ - AM ,)e + d 2 .j--

aS2u a 2u BT
(* )1 2 1 1

with

ST I1 - 2r
(2.4) -O and -- T 0 at xin0

and

akT k

(2.5) 1t 1 -+ as t*- for k;00.
5t t

We seek solutions to these equations .n the form of power series in the perturbation

parameter 0 i.e.

T - T,(t 1 1 z) +. OP(t15 X) + 02T2(t l1 x) +

0 1 .2
u-(t 1 x) + Bu(t ox) +. o1 t1 x) +

Substituting these expansions into equations (2.2) and (2.3) and equating like powers of

0 given the following system of equations

3T0 2 0

(2.6) (j-+ i)(-rti - A(tl)e" + d 0

2 k 2 k k
(2*7) 1  2 S 1  S 1  0,frk;0

St Sx

and



-. 75

(2.,) C + -- 1 +- - - " ,'  k , 0.

"quation (2.6) can be integrated to

OT1, -x + 2 L1 tI/
AM -- Cl)

at I x

for some function C(s) The initial conditions (2.6) Imply that C is identically zero.

Another Integration in t and using (2.6) again gives

t u0

. (2.9) T (t 1 x) - 1 A)

Differentiating (2.9) with respect to x and subtituting in (2.7) for k - 0 gives

2 0 2 0u u1  2 d) au I1-

(2.10) (c1 S s
at 2ax 2-

With

(2.11) au1  21 2w at x 0.

"be solution to (2.10) and (2.11) satisfying the Initial condition (2.5) is

(2s12) u 0 (ti .x) s, fX j 2(coeb a(t1 - - -) A(s)ds

f i& a 2 sinh at 1 -s) Mes/)ds

•- I

'. tl

O o-a

whr" (2*4)/2 va 2.)w ba

(2.13) 2 ct a /a2  1 A(n)ds + /a f x1(t -)(ex1A(S) -A(s-x/a))ds
T , hee•, 1(t d11  /2 )r 1,1 e b's:

i-7-



Formulas (2.12) and (2.13) can be rewritten as

a20 t-at Ift-Ix/a

(2.124) fa(1 x) e A(s)ds +acoah(x)e I asA(o)ds

+ a e f Cosh a(t s) A(s)ds
ti

and

c2/a~s-x t 1 2 2-at Ift 1-x/a Ad

(2.13') T1(t15 x) = a* f A(x)dg d /a sinh(x)e 0

+ d/aea- f I cosh a(t -a) A(s)du.
t 1 -x/a

Since Aft) 0 as t ' +0 vs obtain from (2.12') and (2.13')

(2.14) i. uo1(t11x) - -a-2,-x I A(s)ds - -a -2a

by (1.5) and

(2.15) 11. T 0(t1,x) - c 2/a - 2 2 eO

t1 4+W 
c 2*+d2

We also obtain from the last two terms in (2.12') and (2.13') the limuiting form of the

compression wave induced by the laser heating. We have for large t, and x

(21)u (tiox) -~f(t 1  x /a)
2a

and

(2.17) T 0(t1,x) -jf'(t1 - /a)
12&2



*. -

where

f(r) a' O r +d + a"f a- s)de

.-- r

o- I*a-lr"l(s)e.

Note that the temperature change associated with the compression wave is first positive

then negative as the wave passes any point.

The functions T do not satisfy the boundary condition (1-10). & boundary-layer

expansion is needed to satisfy this boundary condition and this expansion is the topic of

section 4.

9
-9



3. THE SOLUTION ON THE LONG-TIME SCALE

In this section we consider the thermoelastic response on the long time scale, that is

for times much larger than the laser pulse width. The equations to be solved are (1.6) and

(1.7) which we rewrite as

( 8T 2T a2 2u (a2T 2 a3u
" (3.1) +- dx2  + OT -+ d (A(t/0) + T A'(t/0))e - x

72 axat
2  

X 
2  0

(3.2) c2 82u + 3+ 
2 u

ax 2  x at2

with the initial conditions that T and u vanish as t approaches negative infinity,

and the boundary conditions (1.10) and (1.11). We will obtain the solution as a

perturbation expansion in the variable 0. However, since the right-hand side of (3.1) has

a singularity at B - 0, the terms of the perturbation expansion will be distributions and

we mist consider the weak form of (3.1) with regard to derivatives in t.

First, let us consider equation (3.2). writing

T(t,x) $' 8T 1(t,.)
1-0

and

ult,x) 0 Ju~t'x)

1-0

we obtain

2 S
2 u_ ST

1  a
2 u 3

2

(3.3) -c 2 + - - 1 0,1,...,

where u- 2  u 1 -0.

When j is 0 and 1, we have, by integrating,

2 8 0 T
O

ax

(3.4)1

Sand -c € 2  T -0

I! -10-
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which satisfy both the no stress boundary condition (1.11) at x- 0, and the decay of

u and T as x *a. Thus to within 0(0 2 ) there is no stress on the long time scale.

The weak form of (3.1) which we consider is

# -'t (t) IL 42 #j(t) ht + O~r(t) (T + d2 OU ))ft

(3.5)

f a
1 f (*lt) - ISr'(tllAt/R)dt e-

-a

for all * C C;(). To continue we mast expand the right hand side of (3.5) as a series in

0. making the change of variable t * Os we have

j i(#(t) - 0*' (t))A(t/i)dt

! - I ($lSs) - t'(Aa))A(a)dg.

Now for any positive integer N we will obtain an expansion of the above integral with

error O(0}). First choose R so that

I f akA(,)dI C for ,k ... ,,

Then, by the Taylor series expansion of #(0@),

a U
f (O)A(s)ds = f *(Os)A()ds + f *(SlA(slds

-R Il)-R

N-I R

"~ ~Tf #L* (0)( l)JA(S)dG
R-0 -s (m)

+ ON f (sol)( - 6 )N 1 dds + # K(O)A()da

- 0 IsI>R

- ( 0 ) f , ,,Js ) d S +

JuO

* -11-



where I - sup sup J4 (s)1. For convenience define

(3.6) a" f se j ( )ds 0,1,.../-: j J -

with a_, - 0. By the normalization of A(t) we have that a0  is 1.

N Therefore,

.f-*(t)A()dt a (0o + Ot ,,

and similarly

f.*'(t)A(t/P)dt - ( al () + O()n,
-*..

Thus the right-hand side of (3.5) is

14-1 j(j
• 0 (a Ta )#l(0) + O(0)l1I,

J-0 i J-1 1

N Now expanding the left-hand side of (3.5) in powers of 0 we have for j - 0

f "-'T° - - d4- - dt- 4(o)e x

and using (3.4) we obtain

[ :: " 2, o 2T°
-#'(

1  
-+ ) dt = (0) x

" 2 cx 2

Since the right-hand side of this equation depends on #(t) only at t = 0 we have

that To  is differentiable for all t other than t 0 0. Integrating by parts then gives

Un

* d2 0 200
f 4(t)1(1 + ) L .- - 3-'.-}dt + #(0)[T°(0+,x) - T (0-,x)) *#(0)e~ x

Thus T0  is a solution to the heat equation for t > 0 and t < 0, with the homogeneous

boundary condition (1.10). Since T0  vanishes as t + - the uniqueness of the initial

boundary value problem implies that T0  is identically zero for t < 0. Therefore for

V t > 0, To  satisfies

-12-
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(3.7)T k 82TO 0

with T0 10,x-k and -- (t,0)- 0 where k - 2 /(1 2 + d2.
0

Note that the initial condition for TO  is the sam as the limit of T1  as t

beomes Infinite for the short scale (2.15). Similarly for uO, from (3.4) and the

initial value for To we have

(3.8) u0 (O~x) - -
"."" 13.8 U010,xl 2 + d2 

x ,

which agrees with (2.14). The explicit solution to (3.7) is

(3.9) T0 (t,x) t k j (xay; /st +
0

- ekt(e-(1 - erf( - x/41kt)) + e(1 - erf(V% + x/'41kt)))
2

and so

(3.10) u0 (t.x) - 2 1 (-1 + f (rf((x - y)/lfht) + .r1( + 1y)/ .t'))eydy)c2 + 62  2

From (3.4) it ie seen that u0 is determined only up to a function of t. Zn

deriving (3.10) we have used the condition that u0  vanishes as x becomes larger. rom

(3.10) we see that

uO(tx). -1/(c2 + d2 ) as t .

This non-sero, limit for the displacoement is the result of neglecting any restraining forces

on the material which would restore it to its original position. The equation for T1 ,

using (3.4), is

. (-4T 1 - #k 1 + riro)dt - *'(0)k(a - a0 ) x

ax2 1

As before T1  is zero for t < 0. T 1(tx) can be written as the sum of a distribution

and a smooth function T (tex). We have

TI(tx) - -ka 8(t)e + T i(t~x)

-13-
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where 6(t) is the usual Dirac delta function and T (tx) satisfies

3t 2  2m

with T(0,x) -k(a k + T)e - x and it It,0) - 0. The equation for ul(tx) from (3.4)

u (t,x) - 2 2 ka(t)0X .(ty)dy
c + d x

In a similar way one may derive expressione for T2  and u2 , however, for most

applications the first two terms should suffice.

.

-14
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4 . Y4 DOUM COCULMOC ON T lW STDM dCALU.

Zn this section we calculate the correction terms which are needed to satisfy the

radiation boundary condition (1.10) for the short time scale. As in section 2 the time

variable Is tie i.e. t/0, and we write the temperature function an
(4.1) T(tixB) - 11 ,(tiox,) + /2 Tl -t, 1/2, )

setting X, x 1 1 2 , we have by (1.10)

(4.2) j- (ti to ) + -7 (ti 1 0,0) - 0TI

satisfies the same initial conditions as t that is and all its

derivatives vanish as t1  tends to negative infinity.

To obtain meaningful equations for T, and u1  we gotA

(4.3) U(t,) - u 1 (tix,0) + l(tiI

and, from (2.2) and (2.3), the equations for I and u1  are

3u1 2 2 a 1  l'

(4.) , l - 2 , 1 o

Te system (4.4) and (4.4) with the boundary condition (4.2) and the initial

conditions determine a1 nd u.We again solve these equations using perturbation

expansions in . e write

(4.6)

je~ I: -lS-0 kO U NO



The equations for T and u are

20 2 0 3 ;

T S2 S 2tSU 2 T

and
2;0 ~0

Integrating this last equation, we have

3x1

which shows that there is no correction to the stress to the first order in 6.we then

have 0 0 0

32;
30 To

where, as in section 3, k c c2/'0 2 + d2). The boundary condition for T i#from (4.2)

and (2.13),

tt I-Iat I a 0
(4.8) -(t*O k As)+( k) sd a(

The solution to (4.7) and (4.8) is

0 1xI/ I -it -s)/21, (t ) x 1 2 1/2

wher cis /T ad 1 tothemodified Dessel function of order zero. The formula
for the displacement correction is

-0 0 2 t 1-xI/C I -(t -a)/2T

(I Jt# f U(t1 -, sx/023 (sd

where



U.0oC) - zo(.; (2 - 42 ) 112 )d"n

For the ceas of T 0, thee formulas are

-. , i4kw(t, - a)

and

t
a-11 i

MA 1 (2 - fft4 I - .)) s
2a-

note that the effect of the correction is to decrease the temperature at the surface by

o(p/ 2 ) and to decrease the magnitude of the displcement by 0(0). This iL as expected

sine the correction accounts for the effe ts of radiation.

°.

.', -17-
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S. EXWNIW AND COU CLIZON8

We now present some explicit results of the preceding analysis. We consider two pulse

shapes, the first pulse has the shape of a Gaussian

-1/"2":"(5.1) A() - '/e'

and the second has an exponential decay

(5.2) A (s) -

The analysis of sections 2 and 3 shows that one may take A(s) to be any function with

, unit integral satisfying

1) f skk(Gs)ds ( k - 0'1,...

2) a t easA(s)ds . 0 as t * -,
_-.a

2 2 1/2
where a - (c + d )

Graphs of T1  and ulO the short time scale temperature change and displacement, are

shown in figures 1 to 5 for several values of x as functions of t1 . The values of

and u0 are computed using equations (2.12) and (2.13) for x - 0,1,2, etc. The

values of t, run up to 10.0 in each figure.

Figures Ia and lb show the temperature change and displacement for the Gaussian pulse

(5.1) for values of c - 1.0 and d - 1.0. Figures 2a and 2b show similar results for the

exponential pulse (5.2) with c - 1.0 and d - 1.0. Comparing figures 1 and 2 one can se

the effect an the temperature and displacement of the different rat" of energy deposition

due to the different pulse shapes. The exponential pulse (5.2) deposits energy more slowly

than does the Gaussian pulse (5.1) and therefore the temperature and displacement approach

* their limiting values more slowly. Figures 3a and 3b show results for the Gaussian pulse

(5.1) for € - 0.7 and d - 1.0. Figures 4a and 4b display the temperature change and

n °Is,

*1 18
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displacement for the Gaussian pulse (5.1) with c = 0.7 and d - 0.7. Figure 5 shows the

temperature change for the Gaussian pulse (5.1) with c - 1.0 and d = 0.7. The

displacement corresponding to figure 5 is the same as figure 3b. In each case the limit of

" 2 2)-1-x
" the temperature for large t, is c (c + d ) a and the limit of the displacement is

. 2 +d)-le- x.

* - One clearly sees in these figures the beginning of the compression wave given by

(2.16) and (2.17). The negative temperatures associated with the compression wave are a

consequence of the strong thermoelastic coupling and comparative insignificance of

diffusion on the shot%. time scale. Similar behavior is not seen in Nayfeh's results

' (Nayfeh 1977) since in that work the thermoelastic coupling coefficient, i.e. d, is used

as the perturbation parameter.

The different figures also show the effect of the parameters c and d on the

relative magnitudes of temperature and displacement of the compression wave as compared to

the temperature and displacement on the surface. Further, figures 1, 2, and 4 illustrate

the decrease in speed of the compression wave as c and d are decreased. The

temperature on the surface is independent of c and d except through a multiplicative

factor, therefore because of our scaling, the temperature curves for x - 0 are identical

S'in figures 1, 2, 4 and 5.

Figure 6 shows the long term behavior of the temperature for values of c and d of

1.0, hence k is 0.5. Equation (3.9) is plotted for values of x of 0, 1.0, 2.0, etc.

and t ranges up to 40.

The results displayed in these figures agree qualitatively with the results of Bechtel

(1975) and Ready (1965). Moreover, the final results are, we believe, easier to compute

and more informative than previous results since the perturbation analysis emphasizes the

dominant effects.

The original system of equations (1.1) and (1.2) has two propagation speeds associated

with it when the relaxation time is non-zero. In our analysis these show up on two*0
different scales. On short time scale, as discussed in section 2, the effects propagate

2 2 1/2
with the non-dimensional velocity a (c + d2) / 2  and in the boundary correction for
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the short time discussed in section 4 the thermal disturbances propagate with speed

12
(= 1,/ - c(a2.ro) 1 12 ./ Moreover, the disturbances propagating with the faster speed

-1/2
-

-  die out rapidly and those propagating with the slower speed do not die out.

These results agree with those of Nayfeh (1977) and are compatible with the results of

Norwood and Warren (1969). On the long time scale of section 3, there is no propagation as

such since diffusion is the dominant phenomena.
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