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UNIVERSITY OF WISCONSIN=-MADISON
MATHEMATICS RESEARCH CENTER
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Ide’consider a one~dimensional model of the thfymoelastic response to
laser heating by a pulse of very short duration. é:éé;eat the linear
equations of thermoelasticity by perturbation methods using the pulse duration
as the perturbation parameter. The perturbation analysis separates the
problem into two time regimes, the short time scale, which is of the same
order as the pulse duration, and the long time scale, whic> is much longer

than the pulse duration. Convenient analytical expressions are obtained for

the temperature change and displacement in both time regimes.
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SIGNIFICANCE AND EXPLANATION

In this paper we study the effects caused by heating a material with a
single short laser pulse. We consider only a one-dimensional model but
consider both temperature changes and elastic changes, which are coupled
together. By use of éorturbation analysis we can separate the problem into
two time regimes, the short time scale, which is on the order of the pulse
duration, and the long time scale, which is much longer f.han the pulse
duration. Convenient expressions are given for evaluating the temperature

changes and displacement.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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THERMOELASTIC RESPONSE TO A SHORT LASER PULSE
John C. Strikwerda and Andrew M. Scott*
1. INTRODUCTION.

In this paper we study the temperature change and displacements induced in a solid
material by a short laser pulse. The determination of the thermoelastic response of solids
to laser radiation is an important problem for many applications, especially as laser
pulses become increasingly powerful and of shorter duration.

We apply perturbation techniques to the equations of linear thermoelasticity using the
pulse duration as the perturbation parameter. This approach has the advantage of yielding
relatively simple expressions for the temperature change and displacement induced by a
laser pulse of short duration.

In other work on this problem Bechtel (1975) and Ready (1965) considered the heating
caused by laser pulses but did not consider displacement effects. Dunbar (1981) considered
the effects of temperature on displacements but neglected the coupling effect of
displacements on temperature. He also included the modified Pourier law of heat
conduction. (Dunbar's results are in error due to an inappropriate application of his
initia) conditions.) All of the above used a Green's function approach to obtain explicit,
though complicated, formulae for the temperature field. The perturbation method used here
has the advantage of giving simpler expressions for the temperature and displacements.
Moreover, we treat the full equations of linear thermoelasticity in one-dimension with the
modified Pourier law. The method is limited by the requirement that the pulse duration be
short. The method can be extended to two and three dimensional problems and to include
nonlinear effects, however, the resulting equations will then have to be solved by

numerical methods.

*Computer Sciences Department, University of Wisconsin-Madison, Madison, Wisconsin 53706

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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Nayfeh (1977) has treated a problem similar to the one considered in this paper by the
method of perturbation expansions. He considered an instantaneous heat source distributed
on the surface of the material. We compare our results with Nayfeh's in Section S.

The equations describing the thermoelastic response in one dimension to laser heating

are
3 3T - % 5 3o, -ax
(1.1) (1 + vy =)ee, =+ A+ 2008 =) -x5= (1+ 5 =J(t/ble
at £ ax 3
2= 2- -
(1.2) p-a-__—;--(x+zu)-a_—:+(3x+2u)12r:-°
£ 13 ¥x x

where T is the temperature change measured from the mean state io and u is the
displacement. The solid material occupies the region with X 2 0. The normal stress is

given by

(1.3) T=+2m B rs 2w .
=

These equations are those derived by Lord and Shulman (1967) with the addition of the term
involving A which represents the laser heating. (We have ignored the speed of
propagation of the laser pulse which is sufficiently fast to be regarded as infinite.) The
parameter b is a measure of the pulse width. The exponential damping of the laser
heating in space is the result of the attenuation of electromagnetic radiation in a

conductor. The parameter T, is the relaxation time for the modified Pourier law for

0
which the heat flux Q satisfies

(1.4) Q+ 102’5--; graa T
x®

where K is the thermal conductivity of the material. The other parameters in equations
(1.1), (1.2) and (1.3) are the Lamf elastic constants A and W, the density p, the

specific heat at constant volume c and the coefficient of thermal expansion Y. The

vl

bars on the several variables indicate that these are dimensional quantities.
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We now non-dimensionalize the equations. The natural length scale for this problem is

-1 - -1
the attenuation length a , so define x = x/x rof where Xref is a . There are

several possible time scales and we choose the time scale of heat conduction as the

reference time,

2
tret © ‘wv"nf/K ¢

The perturbation parameter is to be £ which is b/t, .., the non-dimensional pulse
width. The relaxation time is non-dimensionalized as

T= '/“'tot = 'tolb .
The pulse magnitude is normalized to have a non-dimensional integral equal to unity.

Therefore we define Arer by

| Re/mrae =a

roftrot

then
A(t/b) = A"t B Alt/8)
and thus
-«
(1.5) | Ats)as = 1,
-t

The reference temperature and displacement are chosen as

£ = ArerlXpqs) /X

and
Y L NI R UL T
The natural reference velocity is
"lrot ntl(u
We thus obtain for the non-dimensionalized equations
(1.6) (et ) B, a2 i 2%y To ) L2 (1 srd) Lacme™
¢ Vo xdt 8

(1.7)

2 2
Oza—g-czuz'b%-o
i x

3=

ot T, R
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where

A+ 2uv1/2
e LAY v

and |

T 1/2
33X+ 2p) 0
d= -‘——p—u (q) / velrgf .

The non-dimensional stress is I

(1.9) t-%-—;r.

For many cosmon materials the non-dimensional parameters ¢ and d are of order zero

in B8, that is,
Be<e, acc B
The relaxation parameter T plays an unimportant role in the analysis and satisfies
0 < Br<<c 1,

The justification of our treatment of these equations and the non-dimensionalization we
have used rests on the above observations and on the reasonableness of the results.

The boundary conditions for equations (1.6) and (1.7) are the conditions of no

radiative heat loss

(1.10) %E =0 at x=0,

and no stress at the wall

(1.11) -:—x‘l--’;'r-o at x =0 .
c

The initial conditions are that T(t,x) and u(t,x) and all their derivatives vanish as
t approaches negative infinity.

We will solve equations (1.6)=(1.11) using perturbation expansions with B8 as the
perturbation parameter., Since 8 is on the order of 10'10 for many problems, excellent
results can be obtained with only one term.

The paper is organized in the following manner. 1In section 2 we derive the
perturbation expansion for the short time scale, that is times on the order of the pulse
width, and in section 3 we consider the long time scale behavior. 1In section 4 we solve

for the boundary layer correction at the material surface which is needed to complete the

-4~
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solution considered in section 2.

In section 5 we consider sowe explicit examples and

compare our results with those of Bechtel (1975), Ready (1965), and Nayfeh (1977).
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2. THE SOLUTION ON THE SHORT TIME SCALE
In this section we consider the solution of equations (1.6) and (1.7) for times on the

order of f, the pulse width., We rescale the time variable using

(2.1) t, - t/8
obtaining the equations
2 2
u a“r
9 -X 2 1
(2.2) (< at + 1)(“ Meye " + a4 o) = 8 —
: 1 x
o, , P W,
(2.3) '——2- -C 2 + ? =0
3t1 x
with
3'1‘1 3u1 -2
(2.4) W-O and ™ "¢ T, =0 at x=0
and
3)"!1 Ok\l
(2.5) — k*o as t +== for k>0 .
t at

We seek solutions to these equations .n the form of power series in the perturbation

parameter B 1i.e.

T = 2d(e, 0 + ar:(t,.x) + Brlte, 0 + ...

us= u?(t,.x) + Bu:(t1.x) + Bzu:(tvx) + see o

Substituting these expansions into equations (2.2) and (2.3) and equating like powers of

8 gives the following system of equations

(2.6) (e 5+ 1)(—31.2 - Al e + & —32“2 =0
y at, 3':1 1 axat'
32\1': 2 32“1: ?1‘,;
(2.7) -c¢ + =0, for k>0
2 2 ax
at x
1
and
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az“x a’-r""

3 1 2 1 1
(2.8) (1“'—#1)(‘—#4 —-..._).—' k>0 .
It.1 it‘ 3:3;1 a2
Equation (2.6) can be integrated to
3'1'2 - 2 32\1: -t,/t
-q - Mt..)o + 4 H = C(x)e

for some function C(x) The initial conditions (2.6) imply that C is identically zero.
Another integration in t and using (2.6) again gives

¢, )
e x) = ¢ [ atsdas - & (e 0 .

(2.9)

Differentiating (2.9) with respect to x and substituting in (2.7) for k= 0 gives

220 20 t,
(2.10) —t-Pedh—tad™ [ Awres
Ot‘ ax -l
‘uth
g . I‘v
(2.11) T e A(s)ds at x=0 .
L (c2 + az) -

The solution to (2.10) and (2.11) satisfying the initial oondition (2.5) is

t

1

(2.12) oty x) = ¢ [ " (cosh a(t, - #) = 1) Als)as
-

%

- | a%%im a(t, = 8) Als - x/a)ds

/2

where a = (c2 + a$)V2, prom (2.9) we obtain

t t‘

1
2430 2,0 = ¥/a%e™* [ Ataras + a? [ cost it ) (e M) - Ale-wa))es .

-t ~8

.7-
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-
3 Pormulas (2.12) and (2.13) can be rewritten as
.- t t -x/a
v —a - 1 - -at 1
o (2.12%) ug(t1,x) = -a2¢™ [ A(s)as + a"2cosh(x)e 'y «"®Als)as 1
" - -
br
s
i t
. -2 _~x !
V. +a ‘e f cosh a(t:1 - 8) Als)ds
e t,-x/a
and
0 2, 2% 1 2,2 -at, R as
(2.13') T (t,,x) = c/ae " [ Als)as - a°/a” sinh(x)e / e*®A(s)as
- -
t
2,2 =x 1
+ &% " | cosh a(t, - 8) A(s)ds .
t ~x/a
1
Since A(t,) +0 as t + += we obtain from (2.12') and (2,13')
0 2.-x [
(2.14) lim uf(t,,x) = -a"2e™ [ A(s)as = -a~2e”"
t o -
1
by (1.5) and
0 2,2 - 2 -
(2.15) Um Ti(t,,x) = c/a"e™ « —E—— o7,
t1¢+. c +4

We also obtain from the last two terms in (2.12°) and (2.13') the limiting form of the

compression wave induced by the laser heating. We have for large t, and x

- 0 oL

.'A. (2016) “1(t11x) 2 f‘t1 - x/‘)
s, 2a

b,

Lo and

Y 0 &

F:“ (2.17) 'l"(t1,x) ~=3 f'(t.l - x/a)
& 2a
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where
N r -
£(r) = ¢ 2T [ o*r(s)as + & [ o *"A(s)as ,
-- r
o ® alresl
= [ « T % (s)as .
-
‘o -
-:, Note that the temperature change associated with the compression wave is first positive
b then negative as the wave passes any point.

The functions '1"‘ do not satisfy the boundary condition (1.10). A boundary-layer

1
expansion is needed to satiafy this boundary condition and this expansion is the topic of

section 4.
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3. THE SOLUTION ON THE LONG-TIME SCALE
In this section we consider the thermoelastic response on the long time scale, that is
for times much larger than the laser pulse width. The equations to be solved are (1.6) and

(1.7) which we rewrite as

2 2 2 3
3T 37 2 3%u " 2 du 1 -x
(3.1) e+ d T+ BT (S + a° =) = < (A(t/B) + TA'(t/B))e ",
t axz Ixat atz 3x3t2 B
2 2
(3.2) ek, 22u,,,
x e’

with the initial conditions that T and u vanish as t approaches negative infinity,
and the boundary conditions (1.10) and (1.11). We will obtain the solution as a
perturbation expansion in the variable 8. However, since the right-hand side of (3.1) has
a singularity at 8 = 0, the terms of the perturbation expansion will be distributions and
we must consider the weak form of (3.1) with regard to derivatives in t.

First, let us consider equation (3.2). Writing

-«
rex) ~ § e,

=0
and
-
ute,x) ~ 7 eudie,x)
J=0
we obtain
23 3 2 =2
(3.3) -cza—‘z’wg—--- 3“2 J = 0,1,000,
x at
where u 2 =y ' = o,
When j is 0 and 1, we have, by integrating,
]
- c2 Ko + '1'0 =0
ox
(3.4)
1
2 3u_ L
and ¢ + 7T 0
.
3
h
. ~10=-




which satisfy both the no stress boundary condition (1.11) at x = 0, and the decay of

u and T as x + =, Thus to within (( Bz) there is no stress on the long time scale.

)
£_4

P
»

The weak form of (3.1) which we consider is

. - ¥
AR S E

)

2
E 2 du 2 %
_‘{ (-o° ()T = 9(e) el a“gr(e) 3¢ + BTr(e) (T + a° 37))ac

(3.5)

=3 | (ae) - Bt e ace/Bae o
-gh
for all ¢ € c:(l.). To continue we must expand the right hand side of (3.5) as a series in

8. Making the change of variable t = fs we have

[ (ete) = Bre*(e)IA(t/Brat

-t

Ak

= [ (o(Be) - BTy’ (Bs)IA(s)as .
-ld
Now for any positive integer M we will obtain an expansion of the above integral with
error (¢ B- ). Pirst choose R so that
| [ o*atslasl < 8% for k= 0,0..m .
IsI>R

Then, by the Taylor series expansion of ¢(fs),

d R
[ #Ba)A(s)as = [ ¢(Be)A(s)ds + | ¢(BelA(s)ds
-- =R Isi>R

F: 2 ! ¢ (0) (80)Ia(s)an
3 30 R
:E.
v
' s ! (__m[ ™ (get)s - s 'astas + [ K BeIA(s)ds
b =R |s>rR
|
" "1 (3
; -] P4l [ s oras + octhin,
' i=0 --
. -
.
‘f
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where 141 = gup sup |¢ ° (s)|. For convenience define

“M s ociem

-«
(3.6) a, =L+ [ gdatsras 3 =o0,1,...
3o _g
with a_, = 0. By the normalization of A(t) we have that a; is 1.

Therefore,

o M-1
3 1 senBle = ) s’ajo‘”(o) + o,
- =0 (]

and similarly

- M~1
[ eonema = 1o i#00 + 0t 1e

3=1 oM

Thus the right-hand gide of (3.5) is

M=1
jzo Bay = w4700 + o e,

Now expanding the .eft-hand side of (3.5) in powers of § we have for j = 0

- 20 0
{ -er? - 0-3—: - ady %:— at = §(0)e * -
- x

and using (3.4) we obtain

- 2 2.0
[ (1 +55)00 - a_:-_ at = ¢(0)e *
-- c 3x

Since the right-hand side of this equation depends on ¢(t) only at t = 0 we have

that To is differentiable for all t other than t = 0. Integrating by parts then gives

us
- 2 2 0
[ wei(+ L) g—:—'— - -3—:—}« + 80) [2%(0+,%) - T0(0-,%)) = ¢(0)e”* .
- c x

Thus To is a solution to the heat equation for t > 0 and t ¢ 0, with the homogeneous
boundary condition (1.10). Since 0 vanishes as t + ~» the uniqueness of the initial
- boundary value problem implies that ™ is identically zero for t < 0. Therefore for

t>0, To satisfies

-]2=




0 2.0
(3.7) %—-ki:—-o

0
with 10(0,x) = k¢ * and % (t,0) = 0 where X = c2/(c? + a2),

Note that the initial condition for 'l'° is the same as the limit of 'r:

becomes infinite for the short scale (2.15). 8Similarly for u°, from (3.4) and the

as t'

initial value for 'l'° we have

1 .—x
’
c” ¢ dz

(3.8) uo(o.x) - -

which agrees with (2.14). The explicit solution to (3.7) is
0 [ (* otenPae | ~(xry)/axe, -y
(3.9) ?(t,x) = ey f (e + e Yo Tdy
0

- lz‘- *E(e™X(1 - erf(/At - x//EkE)) + &*(1 - ert(/kE + x/Y&xE))) ,

(-1 + 3 [ torettx = PI/VEE) + ertiix + y)//axE)Ie Vey)
0

1

°2 * dz

(3.10) uott.x) -

Prom (3.4) it is seen that u® is determined only up to a function of t. In
deriving (3.10) we have used the condition that u® vanishes as x becomes larger. From
(3.10) we see that

uo(t.x) L4 -‘l/(cz + dz) as t *®,

This non~gero limit for the Aisplacement is the result of neglecting any restraining forces
on the material which would restore it to its original position. The equation for 'l",

using (3.4), is

. o 1 23! 0 -
3 [ t-e'2’ - o s prrdrae = ¢ (OIK(a, - Tay)e x,
Ec -l h

As before 'r’ is zero for t < 0. ‘l"(e,x) can be written as the sum of a distribution

and a smooth function 'r(t,x). We have

Ta¥ WYY

T'(t,x) - -lu‘G(e)o" + "r*(e.x)
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vhere &(t) 4is the usual Dirac delta function and 'i'" (t,x) satisfies

~
with ;‘(o,x) - 'k(l‘k + e * ana %‘;— (t,0) = 0. The equation for u'(t,x) from (3.4)
is

-
ul(e,x) = 1 ka, 8(t)e® - L / Te,yay .
2 2 1 2
c + 4 c x

In a similar way one may derive expressions for Tz and “2' however, for most

applications the first two terms should suffice.
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4. THE BOUMDARY CORRECTION OW THR SHORT TIME SCALE.
In this section we calculate the correction terms which are needed to satisfy the
radiation boundary condition (1.10) for the short time scale. As in gection 2 the time

variable is t,, i.e. t/8, and we write the temperature function as

(4.1) e 8 = 7yt ¢ 082 e 2820
Setting x, = xi.vz, we have by (1.10)
3'1'1 "‘l
(4.3) E’ (t1'°,’) + 'r‘ (e"O' ) = Q .
r' satisfies the same initial conditions as 7T,, that is ‘!' and all ite

derivatives vanish as ¢t tends to negative infinity.
To obtain meaningful equations for '1'1 and u, we set
LY
(4.3) u(t,.u.ﬂ) = u,(t,,z,‘) + hi(t‘,x‘.l)

and, from (2.2) and (2.3), the equations for ‘;1 and ;1 are

Y, ow e P
(..‘) R e e §  em—— . —- O
i % ok »?
G
(4.5) l—z—-c 3 +-h—-0.
k‘ 3:1 1

The system (4.4) and (4.3) with the boundary condition (4.2) and the initial
conditions determine 'l" and Uy We again solve these equations using perturbation

expansions in B. we write

- -«»
Tt % ,0) ~ ] 5 (e, ,x,)
1'%17% o | rth

(4.6)

- T X
w(t,,x ,0) ~ z u (e, ,x.) .
148y %y A
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The aquations for 'J.'o and uo are
32'1'2 a'r': 2 %) 2 33‘:‘: o’ry
L 4 +— 4+ a + td - =0
? t__2 ih-,1 at:1 3x1 22 ax a"2
1 171 1
and
-o Ao
32\1 T
2 1 1
" E R, T
x 1
1
Integrating this last equation, we have
~0
) -
2 1 0
-C K; + 'l' =0 ,

which shows that there is no correction to the stress to the first order in 6. We then

have - a -
az'r': au-': az.rt:
(4.7) T +o—ck———=

w2 o

1

where, as in section 3, k = ¢:""/(c2 + dz). The boundary condition for ';2 is, from (4.2)

and (2.13),
?l'(: t‘l -at, ty as 0
(4.8) 3o (g0 =k [ Als) + (1= k)e ] e™Atsias = 8(x)) .
1 - -.

The solution to (4.7) and (4.8) is

t.=x_/c
- 1 17 -(t _~s)/2% x,. 2 1/2
0 1 1 2 1 0
Ty (%) = -c, -.I. e (37 (g, - % - (q) )] )B(s)as .

where ¢, is Vk/T and I, is the modified Bessel function of order zero. The formula

for the displacement correction is

t,~x. /¢
~0 <, 2 1 1M ‘(t‘-l)/2‘t 0
“1“1'“1’ = (;—) ] e "“1 - a,x,/c)l (s)ds

where
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(]
Ulo,f) = { 1,5 (o - i) an.

Por the case of T = 0, these formulas are

t, -xf/dk(t‘ - 8)
[

/ 2°(s)as
- i‘k'(t1 - 8)

,2(" .x' )s =

€t
- 1
u?(%,:,) - —‘—2 ] - or!(x‘/hk(t‘ - l”'o(l)d. .
22" -»

Note that the effect of the correction is to decrease the temperature at the surface by
0(3‘/2) and to decrease the magnitude of the displacement by 0(8). This is as expected

since the correction acoounts for the effects of radiation.

)=

.S e e e . R et P T - ST T




5. BXAMPLES AND COMCLUSIONS

We now present some explicit results of the preceding analysis. We consider two pulse

shapes, the first pulse has the shape of a Gaussian

2
(5.1) Ale) = v /23,78
and the second has an axponential decay
0 s <0,
(5.2) . A(s) = -
se s 20 .

The analysis of sections 2 and 3 shows that one may take A(s) to be any function with

unit integral satisfying

1) I .kl(.)“ Lo ] k= o.‘;..-

at !t

-td

2) o .-..l(l)dl +0 as t + -

where a = (e2 + 62)1/2.

Graphs of '1'2 and ug,

shown in figures 1 to 5 for several values of x as functions of t,. The values of

0 0
T‘ Illdu‘

values of t, run up to 10.0 in each figure.

the short time scale temperature change and displacement, are

are cosputed using equations (2.12) and (2.,13) for x = 0,1,2, etc. The

Figures 1a and 1b show the temperature change and displacement for the Gaussian pulse
(S.1) for values of ¢ = 1,0 and 4 = 1,0. Pigures 2a and 2b show similar results for the
exponential pulse (5.2) with ¢ = 1.0 and 4 = 1.0. Comparing figures 1 and 2 one can see
the effect on the temperature and displacement of the different rates of energy deposition
due to the different pulse shapes. The exponential pulse (5.2) deposits energy more slowly
than does the Gaussian pulse (5.1) and therefore the temperature and displacement approach
their limiting values more slowly. Pigures 3a and 3b show results for the Gaussian pulse

(S.1) for ¢ = 0.7 and d = 1.0. Figures 4a and 4b display the temperature change and

-18=
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displacement for the Gaussian pulse (5.1) with c = 0.7 and 4 = 0.7, Figure 5 shows the
temperature change for the Gaussian pulse (5.1) with ¢ = 1.0 and d = 0.7. The
displacement corresponding to figure 5 is the same as figure 3b. In each case the limit of

the temperature for large t, is cz(c2 + dz)-‘le-x and the limit of the displacement is

-2+ &7,

One clearly sees in these figures the beginning of the compression wave given by
(2.16) and (2.17). The negative temperatures associated with the compression wave are a
consequence of the strong thermoelastic coupling and comparative insignificance of
diffusion on the shor. time scale. Similar behavior is not seen in Nayfeh's results
(Nayfeh 1977) since in that work the thermoelastic coupling coefficient, i.e. 4d, is used
as the perturbation parameter.

The different figures also show the effect of the parameters ¢ and d on the
relative magnitudes of temperature and displacement of the compression wave as compared to
the temperature and displacement on the surface. Further, figures 1, 2, and 4 illustrate
the decrease in speed of the compression wave as ¢ and 4 are decreased. The
temperature on the surface is independent of ¢ and d except through a multiplicative
factor, therefore because of our scaling, the temperature curves for x = 0 are identical
in figures 1, 2, 4 and 5.

Figure 6 shows the long term behavior of the temperature for values of ¢ and 4 of
1.0, hence k is 0.5. Equation (3.9) is plotted for values of x of 0, 1.0, 2.0, etc,
and t ranges up to 40.

The results displayed in these figures agree qualitatively with the results of Bechtel
(1975) and Ready (1965). Moreover, the final results are, we believe, easier to compute
and more informative than previous results since the perturbation analysis emphasizes the
dominant effects.

The original system of equations (1.1) and (1.2) has two propagation speeds associated
with it when the relaxation time is non-zero. In our analysis these show up on two
different scales. On short time scale, as discussed in section 2, the effects propagate

with the non-dimensional velocity a = (c2 + dz)'/z, and in the boundary correction for

-24-




the short time discussed in section 4 the thermal disturbances propagate with speed
c‘3.1/2 = c(a218)1/2- Moreover, the disturbances propagating with the faster speed

e13-1/2 die ocut rapidly and those propagating with the slower speed do not die out.
These results agree with those of Nayfeh (1977) and are compatible with the results of

Norwood and Warren (1969). On the long time scale of section 3, there is no propagation as

such since diffusion is the dominant phenomena.
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