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ABSTRACT

Evaluation of derivatives and Taylor coefficients of functions defined by computer

programs has many applications in scientific computation. The process of automatic

differentiation of such functions has as its goal the production of machine code for

the evaluation of derivatives and Taylor coefficients. This is in contrast to symbolic

* differentiation, where the desired output is a more or less pretty formula, and numer-

ical differentiation, which is inaccurate and unstable. Another distinction between

automatic and symbolic differentiation is that the latter usually involves considerable

computational overhead, while automatic differentiation can be carried out at compile

time by a compiler which permits user-defined data types and operators. This report

shows how PASCAL-SC, a compiler of this type, can be used to generate the real deriva-

tive types GRADIENT, HESSIAN, TAYLOR, and the corresponding interval types IGRADIENT,

IHESSIAN, ITAYLOR. Applications of these types to solution of systems of nonlinear

equations, sensitivity analysis, constrained and unconstrained optimization, and the

solution of initial-value problems for systems of ordinary differential equations are

indicated. ,
..
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SIGNIFICANCE AND EXPLANATION

Many problems in applied mathematics can be solved by the use of derivatives

and Taylor series. While such methods appear to be effective in theory, their appli-

cation in scientific computation has been limited until recently by the need to code

the required derivatives by hand, even though differentiation is a well-understood

mechanical process. Thus, the user of such methods has had the choice of resorting

* to numerical differentiation, an inaccurate and unstable process, or lately to the

use of codes for symbolic operations which'include differentiation. The latter tend

to be large, unwieldy systems, intended to produce formulas and perform a number of

* symbolic manipulations in addition to differentiation. This report, on the other

*. hand, describes the use of a modern compiler which permits user-defined data types

and operators in order to perform automatic differentiation of computed functions in

a fast, neat way. Here, the compiler itself, and not some outside system, does the

differentiation and generation of Taylor coefficients desired, and produces compact,

efficient machine code for their evaluation. The results are immediately applicable

to problems including the solution of systems of nonlinear equations, sensitivity

analysis, constrained and unconstrained optimization, the solution of initial-value

problems for systems of ordinary differential equations, anst y other problems in

scientific computation.

-. .j. .

The ruesponsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.
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DIFFERENTIATION AND GENERATION OF TAYLOR COEFFICIENTS IN PASCAL-SC

L. B. Rall

m

1. Automation of evaluation and differentiation of functions. The vuaue

f(x) of a function of n variables, x - (xl,...,xn) is obtained on a computer by

the composition f - f 1 of 2
o .... of m of a finite number of functions, each usually very

simple, such as an arithmetic operation or one of a small number of library func-

tions. Using the fact that the rule for evaluation of each f is known, it is
i

*' possible for a computer program called a compiler to produce machine code for the

- evaluation of a function f specified in some form similar to ordinary mathematical

* notation, and including the possibility of different cases depending on x and inter-

* mediate results. A key feature of such compilers is the ability to perform Jo nla

•t'IA tifn, that is, to produce machine code for the evaluation of an expc on

7. such as

(1.1) F - (X*Y + SIN(X} + 4.0)*(3*(Y**2) + 6);

which denotes the mathematical function

* (1.2) f(x,y) - (xy + sinx + 4)(3y2 + 6).

The same strategy can be applied for the machine evaluation of derivatives f' (x)

* or Taylor coefficients of f at x (61, (91, (101, [11], 1123, (13]. The chain-rule

* of calculus applied to f gives

(i 1.3) f'IxW " fl ('"''(m-(x (1))'f; W ,

where the ° in general denotes Frdchet differentiation and the • matrix multiplication

t [111, and

. Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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(1.4) xk) fk) x), f(k) fk+lO...f k = l,...,m-l.

Since the rules for calculation of derivatives and Taylor coefficients for the basic

arithmetic operations are perfectly well understood, explicit expressions are avail-

able for the functions f (13], and thus machine code can be generated easily for

the evaluation of derivatives or Taylor coefficients of f at points x for which it

is differentiable or analytic, respectively. Most existing compilers, however, do

not present this opportunity to the user. The reason is that most were developed

only to work with integers and floating-point numbers (i.e., the types INTEGER and

REAL) originally, and are quite limited in the kinds of data and operations which

can be handled.

PASCAL-SC [ 3], on the other hand, was developed with the needs of scientific

computation in mind, and thus provides complex numbers, intervals, complex intervals,

and vectors and matrices over these types, as well as the appropriate operations, in

addition to integers, and floating-point numbers, vectors, and matrices [17]. This

vast improvement over the ordinary type of compiler is achieved by allowing the in-

troduction of user-defined data types and operators. This facility, as will be ex-

plained below, permits automatic differentiation and generation of Taylor coefficients,

simply by introduction of the appropriate derivative data types and corresponding op-

erators.

2. Derivative data types. The first derivative of a function f of n variables

x = (xl,...,x n) is its g9adient vecto4

(2.1) Vf(x) - (flx) af.x)).
1 n

similarly, the second derivative of f at x is represented by its H,6ian mat&/ix

a2f(x)

(2.2) Hf(x)-(

a symmetric nxn matrix (11]. Furthermore, if f has a convergent Taylor series ex-

pansion at x - x0 , then

-2-
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(2.3) f(x) -i ) ) k

k-0

1 (0)
where, of course, (xO) . f(x ) (ll. In the scalar case, x is a single real

010

variable, and f(x) is approximated by the Tayo4 poLynomioX

* n-i o
(2.4) P n-( x -xo) ,- 1 k. ( k) (x O  (x ,

k-O

which in turn can be represented by the n-vector

(2.5) P(Xt) (f

of no'una.Uzed TaytoA% eoejjLaett6

1 (i-1) i-l
(2.6) f f (x)t I t -x 0 f

of f. Thus, in the real case, real vectors and matrices are required for the rep-

resentation of derivatives and Taylor coefficients. Similarly, interval vectors and

" matrices will be necessary to represent the same quantities for interval-valued

* functions. These types are all provided in PASCAL-SC [17]. The declaration for

vectors in the real case (RVECTOR) runs as follows:

CONST DIM =

(2.7) TYPE DIMTYPE = 1..DIM;

RVECTOR = ARRAY[DINTYPE]OF REAL;

To declare a real matrix (RMTRIX), one adds

(2.8) TYPE RMATRIX = ARRAY[DIMTYPE]OF RVECTOR;

to the above. These declarations will be basic to the following discussion.

2.1. Type GRADIENT. The basic derivative type treats the value f(x)

of f at x and its gradient vector Vf(x) at the same point as the entity (f(x),Vf(x)),

that is, the pair consisting of the real value of f at x, and its n-dimensional

gradient vector of partial derivatives. For this purpose, the REORD data structure

of PASCAL-SC is ideal. To declare this type, (2.7) is followed by

-3-



(2.9) TYPE GRADIENT * RECORD F: REAL; DF: RVECTOR END;

so that if V is a variable of type GRADIENT, then V.F will be its value, and V.DF

its gradient vector. Thus, if the function v is denoted in the computer program as

V, then V.F - v(x) and V.DF - Vv(x) at the current value x of the independent var-

iables xl,...,x n. Thus, V.DF[i] - av(x)/axi, i - 1,...,n. The ith independent var-

iable xi will be denoted by a GRADIENT variable, say XI, such that XI.F = xi, the

current value of xi, and XI.DF is the ith unit vector e. = (0,...,0,1,0,...,0)

which has its ith component equal to 1, and the others equal to zero. If it is

desired to represent a constant c as a GRADIENT variable C, then C.F - c, while

C.DF will be the zero vector (0,...,0). The user of type GRADIENT is free to name

and order the independent variables arbitrarily.

2.2. Type HESSIAN. This type can be considered to be an extension

.. of type GRADIENT. Here, operations are performed on the triple (f(x),Vf(x),Hf(x))

"- as the basic datum. Once again, the RECORD structure is appropriate, and the dec-

laration of this type consists of (2.7) followed by (2.8) and

(2.10) TYPE HESSIAN = RECORD F: REAL; DF: RVECTOR; HF: RMATRIX END;

with now V.F - v(x), V.DF = Vv(x), and V.HF - Hv(x) for a variable V of type HESSIAN

corresponding to the function v. Here, V.HF[i , J1 - a2 v(x)/axi axj, for example.

2.3. Type TAYLOR. As indicated above, the quantity to be computed with

*in this case is the vector (2.5) of normalized Taylor coefficients (2.6). It is

important in most applications to be aware of the 6awe 6acto t - x - x0 , which

will be of type REAL in the scalar case. Thus, the RECORD structure will also be

used for this derivative type, which is declared by (2.7) followed by

(2.11) TYPE TAYLOR = RECORD T: REAL; TC: RVECTOR END;
1 iv(i-l)i-

with V.T - x - x0 and V.TC[i] - - (x ) (x - x ) for i - 1,...,n. The
0i-l) 0 0 1,..n.Th

value of the Taylor polynomial (2.4) can be obtained very simply and accurately in

PASCAL-SC by use of the SUM function:

-4-



(2.12) P SUM(V.TC,O);

where P is of type REAL. In (2.12), the sum is rounded to the closest floating-

point number; upward or downward rounding can be achieved by replacing the 0 by +1

or -1, respectively [171.

2.4. Interval types IGRADIENT, IHESSIAN, ITAYLOR. Interval arith-

metic, including operations for interval vectors and matrices and standard functions,

is another convenient feature of PASCAL-SC (3 1, [17). By the use of interval

computation, inclusions of the real values of expressions such as (1.1) can be ob-

tained (9 1, (10]. The same applies to values of derivatives and Taylor coefficients,

so the derivative types introduced above can also be defined over intervals. The

standard declaration of an interval in PASCAL-SC is:

" - (2.13) TYPE INTERVAL - RECORD INF,SUP: REAL END;

and interval vectors and matrices are declared by

TYPE IVECTOR = ARRAYCOINTYPE]OF INTERVAL;
(2.14) IMATRIX - ARRAY[DINTYPE]OF IVECTOR;

corresponding to (2.7)-(2.8). The INTERVAL versions of the REAL derivative types

GRADIENT, HESSIAN, and TAYLOR are thus declared by

TYPE IGRADIENT = RECORD IF:INTERVAL; IDF:IVECTOR END;

(2.15) IHESSIAN = RECORD IF:INTERVAL; IDF:IVECTGF,; IHF:IMATRIX END;

ITAYLOR = RECORD IT:INTERVAL; ITC:IVECTOR END;

respectively.

3. Derivative operators. In order for expressions to be evaluated correctly

when derivative data types appear, the arithmetic operations and standard functions

have to be defined in such a way as to incorporate the appropriate rules for differ-

* " entiation or generation of Taylor coefficients. Furthermore, as in (1.1), provision

for variables or constants of type INTEGER or REAL must be made. The following rule

-5-. - . . ° ° . .,-... . .
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applies:

Va.A.". 6 Om elxpkOeO.u o6 type REAL 0A INTEGER wdt be tAeated a.6 constants

6oi. the pmipoae o6 dii6eentiation.

In order to simplify the following discussion, generic variables of type INTEGER

will be denoted by K, and of type REAL by R, RA, RB. The derivative types introduced

in §2 will be indicated by G, H, T, IG, IH, IT, respectively, and the general deriva-

tive type by D. Thus, if D - T, type TAYLOR is meant. Generic variables of type D

will be denoted by D, DA, DB for D E {G,H,T,IG,IH,IT}. The necessary arithmetic

operators are given below; operations between reals and types IG,IH,IT are undefined.

3.1. Addition operators.

(3.1) +D, K+D, D+K, R+D, D+R, DA+DB.

3.2. Subtraction operators.

(3.2) -D, K-D, D-K, R-D, D-R, DA-DB.

3.3. Multiplication operators.

(3.3) K*D, D'K, R*D, D*R, DA*DB.

3.4. Division operators.

. (3.4) K/D, D/K, RID, D/R, DA/DB.

There are thus 22 operators for each real type and 14 for each interval
N'

derivative data type. For example, taking D - H, the source code for the operator

symbolized by H+R (addition of a REAL to a HESSIAN) is:

OPERATOR + (H: HESSIAN;R: REAL) RES: HESSIAN;

VAR U: HESSIAN;

(3.5) BEGIN U.F:=H.F+R;U.DF:=H.DF;U.HF:=H.HF;

RES:=U

END;

since the addition of a constant alters only the value of a variable, and not its

derivatives. Rules for performing the above operations for each derivative type

, -6-
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are given in [131, for example. Source code for each of the real data types G,H,T

will be given for the operation DA*DB in the next section. A complete set of source

code for arithmetic and power operations and standard functions can be found in [143

for type GRADIENT.

3.5. Power operators. The provision of the power operator ** to

evaluate xy is not standard in PASCAL-SC. In order to implement this operator for

derivative data types, it is necessary to define it for some combinations of the

basic REAL and INTERVAL types. Thus, one needs

(3.6) R**K, RA**RB,

for type REAL, and, if I,IA,IB denote generic INTERVAL variables,

(3.7) 1**K, K**I, IA**IB

for type INTERVAL. In terms of these basic power operations, the derivative opera-

tors symbolized by

93.8) D**K, K**D, D**R, R**D, DA**DB

* can be defined. Thus, 5 operators for each of the derivative types are needed, in

addition to the 2 operators (3.6) for type REAL, and the 3 operators (3.7) for type

" INTERVAL, as well as D**K, K**D, DA**DB for D LJ {IG,IH,IT}.

The operator R**K can be implemented by repeated squaring [131, [141, or,

better yet, by the accurate algorithm described by Bbhm [2 1. RAO*RB can be cal-

culated using R**K for the integer part of RB, and the ordinary exponential func-

tion for the logarithm of the base multiplied by the fractional part of RB. For

interval variables X,Y, X Y is defined by

(3.9) X¥ - (min{xy I xAX,y Y},max{xy I xEx,yeY}],

and the operator ** is defined accordingly. Since the inclusion

* (3.10) x2  [min{x 2  2a x !5 bI max(x2  a 5 x S b} X

-7-
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can be proper for intervals X = [a,b], the standard function ISQR for interval

arithmetic [17] is used to compute 1**2, and I**K by repeated squariig.

The complete package of arithmetic operations for derivative data types thus

• consists of 27 operators for each real type, the two real operators (3.6), the three

interval operators (3.7), and the 17 arithmetic operators for the interval types.

The priorities of the operators given in this section, from highest to lowest,

are: i. Unary addition and subtraction, symbolized by +D and -D, respectively;

20. Multiplication, division, and power: *,/,**; 30. Binary addition and sub-

traction ±. Persons familiar with compilers in which * has higher priority than

*,/ should beware, and use parentheses, as in (1.1).

4. Examples of multiplication operators in PASCAL-SC. In order to give ex-

plicit examples, the source code for definition of the operator * for the real

derivative types GRADIENT, HESSIAN, and TAYLOR will be given in this section, both

in component form and compact form using the vector and matrix operators available

in PASCAL-SC. Complete source code for the 29 operators required for type GRADIENT

is given in [14].

4.1. GA*GB for type GRADIENT. In component form, the source code for

this operator is:

OPERATOR * (GA,GB: GRADIENT) RES: GRADIENT;

VAR I: DIMTYPE;U: GRADIENT;

mBEGIN U.F:=GA.F*GB.F;

*' (4.1)
FOR I=1 TO DIM DO U.DF[IJ:=GA.F*GB.DF[I]+GB.F*GA.DFI];

RES:-U

END;

however, since multiplication of vectors by real numbers and addition of vectors

are operations which are available in PASCAL-SC [17), these can be used to produce

the more compact source code

ii'i-22..-i.T-ii2T- 'i. -2 ;- i-- 2 "ii" -;" .1 ..-"- •.. "i .i - . 2. . .- ". . . .. . . i . .



OPERATOR * (GA,GB: GRADIENT) RES: GRADIENT;

VAR U: GRADIENT;

BEGIN U.F:=GA.F*GB.F;
(4.2) U.DF:=GA.F*GB.DF+GB.F*GA.DF;

RES:=U

END;

4.2. HA*HB for type HESSIAN. If XI is the ith independent variable

of type HESSIAN, then XI.DF will be the ith unit vector, as for type GRADIENT, and

XI.HF will be the zero matrix. If a constant C is declared as type HESSIAN, then

both the vector part C.DF and the matrix part C.HF of C will be zero. It is, of

* course, more economical to introduce constants as type INTEGER or REAL. Multipli-

*cation of HESSIAN variables HA,HB is accomplished by the operator

OPERATOR * (HA,HB: HESSIAN) RES: HESSIAN;

VAR I,J: DIMTYPE;U: HESSIAN;

BEGIN

U. F:=HA.F*HB. F;

FOR I:-1 TO DIM DO

U.DF[I ]:=HA.F*HB.DFEI]+HB.F*HA.DFI];

FOR I:=] TO DIM DO

(4.3) FOR J:-I TO DIM DO

BEGIN

U.HF[I ,J]:=HA.F*HB.HF[I ,J]+HA.DF[I]*HB.DF[J]+

HB.DF[I]*HA.DF[J]+HB.F*HA.HF[I J];

IF I () JTHEN U.HF[J, I]:=U.HF[I, J1

END;

RES:-U

END;

in component form, where the well-known formulas for the first and second deriva-

tive of products have been used [7 1, [13]. The calculation of U.DF here is taken

directly from (4.1). The first FOR loop could be eliminated by computing U.DF(I]

in the second. As before, (4.3) can be simplified by using the vector and matrix

* operations of PASCAL-SC, augmented by the Out.A puoduct VA**VB of vectors defined

-9-
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)y the operator

OPERATOR ** (VA,VB: RVECTOR) RES: RMATRIX;

VAR I,J: DIMTYPE;U: RMATRIX;

BEGIN

4.4) FOR I:= 1 TO DIM DO

FOR J:=l TO DIM DO U[I ,J]:=VA[I]*VB[J];

RES:=U

END;

,or example. With this operation, (4.3) becomes

OPERATOR * (HA,HB: HESSIAN) RES: HESSIAN;

VAR U: HESSIAN;

BEGIN

45) U.F:=HA.F*HB.F;

U.DF:=HA.F*HB.DF+HB.F*HA.DF;

U.HF:=HA.F*HP.HF+HA.DF**HB.DF+HB.DF**HA.DF+HB.F*HA.HF;

RES:=U

END;

hich is more compact but less efficient than (4.3)

4.3. TA*TB for type TAYLOR. Here, the well-know formula for the Taylor

oefficients of the product ( 9], [13] are used. In symbolic form, for U:=TA*TB,

ne has (113], p. 41)

J
4.6) U.TC[J] = Z TA.TC[I]*TB.TC[J-I+l], J = 1,...,DIM.

I=1

very important advantage of the use of PASCAL-SC for this calculation is that

4.6) can be computed as the scalar product of two vectors; this is done by the

tandard function SCALP to the closest floating-point number, or can be rounded up

r down if desired. This means, for example, that U.TC(l],...,U.TCjDIM] can each

: computed with only one rounding error from the components of TA.TC and TB.TC,

stead of having increasing rounding error as J increases. This helps to ameliorate

ie of the possible bugaboos of the use of Taylor series methods in scientific

- 10 -



computation. As can be seen in [13], a number of other formulas for the recursive

generation of Taylor coefficients take the form of scalar products, so that one can

take advantage of the accuracy of SCALP in their computation. Source code for the

multiplication operator * for TAYLOR variables is

OPERATOR * (TA,TB: TAYLOR) RES: TAYLOR;

VAR I,J,K: DIMTYPE;X,Y: RVECTOR;U: TAYLOR;

BEGIN

IF TA.T ()TB.T THEN

BEGIN

WRITELN('ERROR: MULTIPLICATION OF TAYLOR VARIABLES WITH

UNEQUAL SCALE FACTORS');SVR(0)

END;

(47 U.T:=TA.T;FOR I:=1 TO DIM DO
(4.7 BEGIN X[I]:=0;Y[I]:=0 END;

FOR I:=l TO DIM DO

BEGIN X[I]:=TA.TCEI];

FOR J:= TO 1 00

BEGIN

K:=I-J+I;Y[J]:=TB.TC[K]

END;

U.TC[I]:=SCALP(X,Y,0)

END;

RES:=U

END;

where an attempt to multiply TAYLOR variables with unequal scale factors results in

printing an error message and return of control to the operating system. The in-

K itialization of the vectors X,Y could be done by the assignments X:-VRNULL, Y:-VRNULL,

from aparameterless function available in PASCAL-SC to produce zero vectors (171.

The present implementation of type TAYLOR is for the scalar case, with a single

independent real variable, say x, and expansions are performed at x - x0 . In this

case, the corresponding independent variable X of type TAYLOR is defined as follows:

(4.8) X.T - x - x0 , X.TC[l] - x0 , X.TC[2] - x - x0 , X.TC[I] 0 for I > 2.

m•- 11 -
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Thus, the assignment

(4.9) X.TC[1]:=X.TC[1]+X.TC[2]; or X.TC[1 ]:=SUM(X.TC,0);

will generate a sequence xi - xi_ + h, h = x - x0 of points of expansion of the

corresponding TAYLOR variables dependent on X.

Multiplication of the interval derivative types IGRADIENT, IHESSIAN, AND ITAYLOR

follows the pattern given above for the corresponding real types.

5. Standard derivative functions. The rules for differentiation of the standard

functions ABS, SQR, SQRT, EXP, IN, SIN, COS, ARCTAN are well understood, as is the

generation of Taylor coefficients for these functions. Thus, there is no conceptual

(or practical) difficulty in providing the standard functions DABS, DSQRT, DEXP,

DLN, DSIN, DCOS, DARCTAN fol- the derivative types D E {G,H,T,IG,IH,ITI, and the

function DSQR for the interval derivative types D G {IG,IH,ITI.

Naming functions in this way mans that in an expression for the function (1.2),

Taylor coefficients are obtained automatical'y if one declares F,X,Y to be of type

TAYLOR, and writes the assignment

(5.1) F :- (X*Y + TSIN(X) + 4.0)*(3*(Y**2) + 6);

here, the minor nuisance of writing TSIN instead of SIN is offset by the fact that

the former makes it clear that the expression in (5.1) is of type TAYLOR, and that

arguments of type TAYLOR are expected.

A complete set of source code for the GRADIENT (D - G) versions of the standard

functions listed above is given in (14]. For example, for the gradient cosine,

FUNCTION GCOS(G: GRADIENT): GRADIENT;

VAR M: REAL;U: GRADIENT;

(5.2) BEGIN

M:--SIN(G. F) ;U. F:-COS(G. F) ;U.DF:=M*G.DF;GCOS:,U

END;

in vector form. With the arithmetic operations and the standard functions given, it

' is very easy for the user to introduce others. If the gradient secant is needed, one

- 12 -



can simply use the code

FUNCTION GSEC(G: GRADIENT): GRADIENT;
% (5.3)

(3 BEGIN GSEC:=1/GCOS(G) END;

for this purpose, and so on.

6. Applications of derivative types in scientific computation. Since the

operations of differentiation and series expansion are ubiquitous in mathematical

modeling, possible applications of derivative data types in scientific computation

-'. would fill a vast catalog, which would also probably never be completed. Here,

only a few applications which have been implemented in software in one form or

*i another will be mentioned. In each case, the PASCAL-SC formulation of these types and

-. their corresponding functions and operations leads to a drastic simplification of

previous efforts.

6.1. Applications of type GRADIENT and IGRADIENT. A simple application

of type GRADIENT is to 6en6itity anaLtyz.6. If F is of type GRADIENT, then F.DF(i]

8f/ax i is the rate of change of the function f symbolized by F with respect to the ith

independent variable x. Similarly, F.DF(i]/F.F is the 4e;tatve rate of change of f

with respect to xi. Furthermore, the gradient vector F.DF - Vf(x) gives the direction

of the fastest increase of f at the current values of the independent variables, a

fact which is useful in optimization and other applications.

Given several GRADIENT variables FG,H, their Jacobian matiX J will have rows

J[ll - F.DF, J(21 - G.DF, J[3] - H.DF. Knowing the values F.F, G.F, and H.F of these

* variables as well as their Jacobian matrix makes it very easy to code the solution

of systems of equations by Newton's method in terms of GRADIENT variables [ 7], (11],

(14). Furthermore, the type IGRADIENT can be used to obtain Lipschitz constants for

F functions of several variables [14].

In interval analysis ( 9], [10], it is well-known that the mean-value form

(6.1) F(X) - f(x) + F"(X)(X - x)

can give an accurate interval inclusion of a real function f on a small interval

- 13 -



X containing x. If f is a function of several variables, an interval inclusion

F' (X) of the Jacobian matrix f' (x) is needed. This can be obtained automatically

if f is coded n terms of its component- f. as variables F of type IGRADIENT._L '1

. By use of PASCAL-SC and the types GRADIENT and IGRADIENT, the program NEWTON

(7] for the solution of nonlinear systems of equations can be reduced from over

3,400 lines in FORTRAN to a few dozen.

6.2. Applications of type HESSIAN and IHESSIAN. As one might expect,

these types appear to be extremely useful in optimization. In unconstrained opti-

mization, the gradient vector Vf(x) of a function f(x) = f(xl,...,xn ) will vanish

at a maximum or minimum value of f, so one wants to solve the system of equations

Vf(x) - 0, the Jacobian matrix of which is Hf(x). If f is coded as a HESSIAN var-

iable F, that is, by an assignment of the form

(6.2) F F(Xl,...,XN);

then the components of the gradient vector are given automatically by F.DF, and

the Hessian matrix of f by F.HF, the latter being useful in solution procedures

based on Newton's method [14). Suppose that the optimization problem is con.tmined

-'.... by conditions g(xl,...,x) = 0, h(xl,...,xn ) - 0, where g,h are coded in symbolic

form by the assignments

(6.3) G G(Xl,...XN); H : H(Xl ...,XN);

as variables of type HESSIAN. Then, increasing the dimension of the problem to n+2

*and introducing two new independent variables Ll, L2 (the Laganoge muttiptie4) as

" of type HESSIAN, one makes the assignment

(6.4) W :- F + Ll*G + L2*H;

and the solution of the unconstrained problem for W is then a solution of the con-

strained problem for F [141. Once again, the Hessian matrix W.HF of W is the Jacobian

matrix of the system W.DF = 0, which gives a necessary condition for an extreme value

of W, and can be used in solution procedures based on Newton's method.

-14-
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In the program NEWTON [7 1, interval Hessian matrices were used to obtain

Lipschitz constants for Jacobian matrices and ultimately rigorous error bounds for

approximate solutions of nonlinear systems of equations. These matrices can be

obtained automatically if the type IHESSIAN is used in the computation (141.

6.3. Applications of type TAYLOR and ITAYLOR. Taylor series and

the approximation of functions by Taylor polynomials appear in many places in

scientific computation. One of the most successful areas of application of the

idea of recursive generation of Taylor coefficients is the numerical solution of

*the initial-value problem for ordinary differential equations and systems of such

. equations [ 1], (4 1, (9 1, [101. Type TAYLOR is ideally suited for production

* of software for this purpose. For example, suppose a Taylor polynomial approximation

is sought for the solution of the equation

2
(6.5) y' = (xy + sinx + 4)(3y + 6), y(xO) =0 0

say on the interval x0 < x < xT. Part of the PASCAL-SC code for this purpose,

with X, Y, YPRIME of type TAYLOR, would run as follows for a REAL step-length of

*: H:

BEGIN X.T:-HY.T:iHiX.TC:mVRNULL;X.TC(1] :-XO;X.TC (21 :-H;

WHILE X.TC[1] <= XT DO

BEGIN Y.TC:-VRNULL;Y.TC[l] j:Y0;

FOR I:=2 TO DIM DO

BEGIN

YPRIME:- (X*Y+TSIN(X)+4)*(3*(Y**2)+6); J:-I+l1,. (6.6)

Y.TC[I] :-YPRIME.TC (J]*H/J

END;

X.TC[l] :-X.TC [I+H;Y0:-SUM(Y.TC,0);

WRITELN(X.TC[1 ,YO)

, END;

END;

The same kind of coding can be expanded for systems of equations.

In the program DIFEQ [4 1, interval Taylor coefficients and polynomials are

- 15 -
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used for rigorous error and step-size control in the computation analogous to

(6.6) for the recursive generation of Taylor coefficients of y from those for y'.

In the program INTE [ 5 ], interval Taylor coefficients are used to obtain guaranteed

.., bounds for the error terms in various rules of numerical integration. In both of

" these cases, the use of the type ITAYLOR would result in the reduction of programs

with thousands of lines in FORTRAN and assembly language to PASCAL-SC programs of

a hundred lines or so.

A challenge in the extension of type TAYLOR to the vector case is that deriva-

tives are then multilinear operators [111, so that both storage requirements and

operation times increase drastically. However, some of the present and projected

1"supercomputers" may well be suitable for Taylor series methods to be applied to

partial differential equations along the lines indicated here, given compilers with

the capabilities of PASCAL-SC which can also exploit any parallelism available in

the hardware.
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ABSTRACT (continued)

automatic differentiation can be carried out at compile time by a compiler which
permits user-defined data types and operators. This report shows how PASCAL-SC,
a compiler of this type, can be used to generate the real derivative types GRADIENT,
HESSIAN, TAYLOR, and the corresponding interval types IGRADIENT, IHESSIAN, ITAYLOR.
Applications of these types to solution of systems of nonlinear equations, sensi-
tivity analysis, constrained and unconstrained optimization, and the solution of
initial-value problems for systems of ordinary differential equations are indicated.
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