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ABSTRACT

In observational studies, the distribution of treatment assignments is
unknown, and therefore randomization tests are not generally applicable.
Howmever, permutation tests that condition on sample information about the
treatment assignment mechanism can be applicable in observational studies,
providing treatment assignment is strongly ignorable. These tests use the
conditional distribution of the treatment assignments given a sufficient
statistic for the unknown parameter of the propensity score. Several tests
that are cusonly used in observational studies are particular Instances of
-this general procedure; moreover, conditional permutation tests and covariance
adjustment are closely related. A backtrack algorithm is developed to permit
,efficient calculation of the exact conditirnal significance level, and two
approximations are discussed. A clinical study of treatments for lung cancer
it used to illustrate the technique. Conditional permutation tests extend
previous large sample results on the propensity score by providing a general
basis for exact inference in small observational studies when treatment
assignmnt is strongly ignorable.
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SIGNIFZCANCE AND EXPLANATION

An observational study Is an attempt to draw inferences about the effects

of treatments from nonexperimental data. In an experiment, treatments are

assigned by the investigator, so it is possible to assure that the units which

receive each treatment are comparablee In observational studies the units

receiving the two treatments may differ markedly, since the treatment

assignments ware not under the control of the investigator* The current paper

* develops two extensions of a standard method in experiments -- Fisher's

randomization test -- that are applicable in observational studies under

explicit assumptions. An algorithm is developed for computing the required

conditional permtation distribution.

/,,

The responsibility for the wording and views expressed In this descriptive
sumary lies with NIRC, and not with the author of this reports

,," ;i-il-'2;. 12.2 ... .2.-i .2 "/ 1 ilii'-i".' :-" il2,../ i 2- '" '"i '.i~ -i.''ii"' i "..-. -i2--"i--',. '" -- l .i-2-2 "'." '" "" :'" ' - " .p



CONDITIONAL PIRMtNATION TESTS AND THE

PROPENSITY SCORE IN OBSBERVATIONAL STUDIES

Paul R. Rosenbaum*

1. ZNTODUCTaONs Definitionsi Fisher's Randomization Test

1.1. The Propensity Score in Observational Studies

The propensity score is the conditional probability of exposure to a particular

treatment given a vector of observed covariates. Properties of the propensity score, its

role in observational studies, and its relationship to various methods of bias reduction

are described by Rosenbaum and Rubin (1983a). The methods they propose are applicable in

large observational studies in which an estimate of the propensity score may substitute for

the population propensity score. The current paper shoys that, under conditions defined in

12, the propensity score can also provide a basis for exact inference in small

observational studies if a sufficient statistic exists for the unknown parameter of the

propensity score. Relevant notation and definitions from Rosenbaum and Rubin (1983a) are

briefly reviewed in 1.2 and 11.3, and related to Fisher's randomization test in 11.4.

1.2. The Structure of Studies for Tratment Iffecta

In the case of two treatments numbered I and 0, the ith of the N units under

study has, in principle, both a response r1i that would have resulted if it had received

treatment 1, and a response r0i that would have resulted if it had received treatment

0. Treatment effects are defined to be comparisons of r1 i and roi, such as

nri - r0 i. Each unit receives only one treatment, so either ri or roi is observed,

-1 but not both. Therefore, inferences about the effects of treatments on single units, as

distinct from collections or populations of units, are largely speculative: inferences

about treatment effects are inherently statistical inferences. This structure Is

tDepartments of Statistics and Human Oncology, University of Wisconsin-Madison.
The author acknowledges Donald B. Rubin for valuable conversations on the subject of this
paper, and Paul P. Carbons for permission to use the data in 13.
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consistent with that traditionally used in the literature of experimental design, for

emnplo, In the books by Fisher (1935)o mumpthorne (1952), and Cox (1958), and follows the

deelogmet for obeervational studies in Robin (1974, 1977, 1978), Hamilton (1979),

nosenbaum and Rubin (1963ab) and RoEsenbaum (1982). For further discussion of this

structure and some of Its limitations, see Cox (1958, chapter 2), Rubin (1978, J2.3, 1980)

. and Roenan um and Rubin (1903a, 11.1 ).
and-For the ith unit of Nunits in the study (i-1,...,u), let zi be the Indicator

.o treawf unit i i assigned treatment 1, and zi 0

If unit i is assigned to the tr.etment 0. Let i be a vector of observed pretreatment

mommursments or covariates for the Ith unLt all of the measurements in x were made

prior to treatment assignment, but x may not include all covariates used to make

treatment assiLgiments. The propensity score, e(), is the conditional probability of

assignment. to treatment 1 given the observed covarLates, that is,

, J e() - pr(z x)

. ,where it is assumed that
z '1 11 1- 2 L

"' p~ s1 ... s Xl, ..,Stl - I e(I.) 0 -'(Edi) •0 .1)

Although this strict Independence assumption is not essential, it simplifies notation and

discussion.

1.3 A Critical Assumption: Strongly Ignorable Treatment Assignment

Randomized and nonrandcmLzed trials differ In two ways. First, in a randomized trial,

the propensity score is a known function, whereas, In an observational study the propensity

"- score function is almost always unknown. Second, with properly collected data In a

*randomized trial, x is known to contain all covariates that are both used to assign

treatments and possibly related to the response (rl, rO). Mort formally, in a randomized

trial, treatment assignment s and response (ri g rO), are known to be conditionally

. Independent given x, or in David's (1979) notation,

(r1, r0) II I . (1.2)

This condition is usually not known to hold in a nonrandonLzed experiment. Noreover, in afl randomized experiment, every unit in the experiment has a chance of receiving each

'0 treatment. Following Rosenbaum and Rabin (1983a,b), treatment assignment will be said to

6".1 -2-
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be stronalv ignorable it (1.2) holds and 0 < pr( .lj) < i for all L. (As the term

suggests, strong ignorability is a someshat more restrictive condition than ignorability as

defined by Robin (1978).)

The assumption of strongly ignorable treatment assigument plays a critical role in

inference from observational studies (e.g., Nosenbaum and Rubin 1"3a, theorem 4, and 52

below), and therefore, the correctness and implications of this assumption will generally

* require investigation in each observational study. Zn the case of binary responses (ri,

r 0 ), osenbaus and Rubin (1963b) describe a method for &ssesing the sensitivity of

conclusions to certain departures from strong ignorabLifty. Rosenbaum (1982) reviews

methods of testing the assumption of strong ignorability. Related discussion within a

Dayesian framework is given by Rubin (1978, 14).

1.4 Fisher's (1935) Randomization Test in 1fndomised xoneriments

rishers (1935) randomization test examines the sharp null hypothesis of zero

difference in the effects of the treatments for each experimental unit, that is,

% r14 - r01 for i - 1,2,...,1 * (1.3)

Note that the sharp null hypothesis (1.3) states that the same response would have been

observed from each unit had it received the alternative treatment.

Let rai be the observed response for unit i * that is, rxi - xri + (l-zi) roi,

and denote the vector of observed responses by E - (rs erx2 e...er XV) and the vector of

treatment assignments by Ue - (s0,...0z) . Let t(.e) be a statistic chosen to

mesurs departures from the sharp null hypothesis (1.3) for example, t(e.E) might be the

difference in sample mean responses to the two treatments, that is

t~~,)- - ((()r(t)i 14

whore I Is an V dimensional vector of l's. Alternatively, t( 1.r) could be the

difference between two robust measures of the typical response in the two treatment

groups. Wisher proposed testing the sharp null hypothesis (1.3) using the tails of the

permutation distribution of t(.,r) induced by the randomisation, where E is, in a

sense, treated as a constant. Fixing E at its observed value in this way is equivalent

to conditioning on £ in a randomised experiment, but not generally in an observational

-3-
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study. As a result, randomization tests applied in randomized experiments have the correct

sine given the observed X. and therefore the correct unconditional sise regardless of the

distribution of r (e.g. Lehmann 1959, chapter 51 Robin 1960). Zn observational studies,

a different type of conditioning may be required.

in order to motivate the general discussion in 12, it is useful to briefly review,

with the current notation, the justification for conditioning on the observed response,

r, in Fisher's randomization test. Zn a completely randomized experiment, the treatment

assignment, z, has a known distribution that is independent of the response (ri , ro),

*and, moreover, 0 < pr(sol) < 1 so treatment assignment is strongly ignorable without any

covariates, that is with I equal to a null vector. The distribution of the observed

response, r., generally depends on zi however, under the sharp null hypothesis (1.3),

the observed response satisfies rz - r, - ro , so treatment assignment, x, is independent

of the observed response, r.. Therefore, under (1.3), the conditional distribution of the

treatment assignments given the observed responses, pr(iIjQ), Is equal to the marginal,

randomization distribution of the treatment assignments, pr(1). Hence, under the sharp

null hypothesis, (1.3), the conditional distribution of the test statistic, t(tK), given

the value of the observed responses, r - c say, equals the permutation distribution of

t(F,'s) induced by the randomization. Formally, for each constant

pr(tfft) IX - g) - pr(t(IL,) u - - pr(t(F,2)) (.9)

from (1.3) and (1.2) with x equal to a null vector. The conclusion that Fisher's test

has the correct conditional size given the observed E, and therefore also the correct

unconditional size, is an Imediate consequence of (1.5).

Notice that the justification for Fisher's test rests on two conditions. First, the

randomiation or permutation distribution of z, and therefore also of t( 9) for each

constant c , is known, since it is created by the experimenter. Second, treatment

assignment is strongly ignorable without covariates, so under the sharp null hypothesis,

the known permutation distribution of t(,c) equals the relevant conditional

distribution of t(,r) given the observed responses, E - Vi that is, condition (1.5)

holds. In observational studies, even if treatment assignment is strongly ignorable, the
...

r.% . - .. '. " . . . .. . - . +- . . -.° . . . . '". . . -- ' . ' _ "- . ". - .- - -.- ." - - •- . . .. - -
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distribution of treatment assignments is generally unknowm, and therefore Fisher's

randomization test is not generally applicable.

2. €anditional Permutation Tests Under a Logistic model for the Propensity Score

2.1 A Basic Theorem

This section Show* that Fisher's randomization test may be extended so that it is

applicable in observational studies providing (a) treatment assignment is strongly

ignorable, and (b) the propensity score follows a logistic model (Cox 1970), that is,
e(,) T

log - . () (2.1)

where j is an unknown vector parameter, And f(e) is a known, vector-valued function of

T", such as L(x) - (1,x)T ,  Since L(F) may include polynomial terms in x, condition

(2.1) is not particularly restrictive. Let and X be the matrices whose N rove are,T T
• respectively, the values of and i - 1,2,...,N. By a familiar argument (Cox

1970, 14.2), T Is sufficient for I in (2.1).

The proposed test in similar to a randomization test, but with a nuisance parameter,

J, describing the treatment assignment me~banlmm. To eliminate the nuisance parameter, we

use the conditional distribution of the treatment assignments z given the sufficient

statistic, IZ, for J. Unlike a randoization test, this conditional test comares the
observed test statistic, t(pL), to the value, t(b,), that would have been obtained

under the null hypothesis with a different treatment assignment, indicated by the binary

vetcr k, only if k Is Similar to the observed treament assignment in the sense that

" X. Clearly, altinative treatment assignments satisfying I - zF will

typically exist only when the values in X are fairly coarses see for example 13.

Theorem 1. Suppose the propensity score follows the logistic model (2.1).

T..' (A) Then the conditional distribution of treatment assignments L given (f V) is free

of unknown parameters and assigns the same probability to each binary vector b satisfying

k I I
(a) Under the sharp null hypothesis (1.3), if treatment assignment is strongly ignorable,

then the conditional distribution of the test statistic, t(,r) given r- 9 and

-5-



(I FEx) equals the known conditional permutation distribution of MLS2) given ,
that Is determined from part Aj) i.e.,

p , - x- pr{t(! l I x} X

for each constant g.

(C) If treatment assignment is strongly ignorable, and if, for each fixed c and t, the

t W(p) satisfies pr(t(E) e Wl(,) ,x)= - a (respectively 4 a) under the

sharp null hypothesis (1.3), then a test which rejects whenever (V1 e W(:lz TF) has

level a (respectively C a) for all values of the unknown parameter .

Proofs Part A is straightforward since JrV is sufficient for I in (2.1). To prove

part 3, note that strong ignorability and the sharp null hypothesis (1.3) imply

' Ii.L£ I x

and hence, essentially following Liee 4.2(11) of David (1979),

IL I[~. E. E

since F in a function of X. Therefore, strong ignorability and the null hypothesis

imply

pr~t~z.L I L t ' '
9r~t(1TE I E - , 1 T. 1~ 1 L _ E' z u.'!

= prlt(, ) I (N! X} (2.2)

as required for part S. Part C follows imediately from (2.2). //

If the treatment effect is constant in the sense that r1 - r0 + A, or that

r, - A rO, for some scalar A, then a confidence interval for A may be constructed by

inverting the test (Medmann 1959, 15.4). The test described by Theorem I will, however,

have the nominal level whether or not the treatment effect is constant.

2.2 An Artificial ftaMle

The following artificial example is intended to clarify the procedure described in

12.1 and to simplify discussion of the backtrack algorithm in 12.31 a practical example

appears in 13. The data in Table 1 were generated by setting

and rOi *Sxi
r 1 " x + 1

J

-6-
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YASLE 1. DMUZ FOR 2WN AMF'ZICXAL 3MMML.

obmv~

COvariate 'fratast Remponum

unit Zizi ri

A 116

C 10 5

D 10 5

3 10 5

1 10 5

0 0 0 0

H 0 0 0

K0 0 0

470 0 0

-7-
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where the treatment effect r~ 1 r 0 1  equals 1 for each unit, and the observ able response

in

r i 5 x + si

- Two units received treatment 1, and eight units received treatment 0.

The test statistic used here is the sample total in the treatment 1 group, that is,

t ) -.* it in straightforward to show that the critical region induced by this

statistic is the same as the critical region induced by the difference in sample means

(1.4). See Kempthorne (1952) for details.

Together, the two parts of Table 2 list the elements of the sample space associated
" 10
with Fisher's randomization test. There are ( 2) - 45 elements in the sample space

corresponding to the ( 1) ways of selecting the two units that will receive the treatment
2

1. Eleven of the 45 treatment reassignments produce response totals greater than or equal

to the observed response total of z Tr - 7, so Fisher's one sided significance level is

11/45 - .24.

in an obeervational study, a logistic model, (2.1), for the propensity score with

(x ) (1, x ) would lead us to restrict attention to treatment assignments, b, that

T Tare similar to the observed treatment assignment in the sense that b r- E E- (2,1),

that is, treatment assignments in which the treatment group includes one unit with xi -

I and one unit with xi - 0. This conditional sample space contains the 25 elements in

the top half of Table 2. The observed treatment total, T - 7, is the largest of the 25

treatment totals from the conditional sample space, so the cof'ditional one-sided

significance level is 1/25 = .04. In this instance, the one-sided .05 level conditional

critical region, W(X,IT ), contains only the observed treatment total. By Theorem 1,

this test would have the nominal level if treatment assignment is strongly ignorable and

model (2.1) holds.

In a completely randomized experiment, both the unconditional and the conditional

tests have the nominal level, although the conditional test performs a kind of covariance

adjustmentl see 12.5. However, in an observational study, only the conditional test can be

used because the distribution of treatment assignments generally depends on unknown

parameters.

-8-
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TABLE 2. The Conditional and Unconditional Permutational aMple Space.

31et of the Conditional § l 2c

xT LT rzTr

AB* 7 Co 5 ZN 5
AG 6 CH 5 3! 5
AN 6 CI 5 zJ 5
Al 6 Ci 5 70 5
AJ 6 DG M PH5
SC I on S PI 5
3D 1 DI 5 7.7 5
BE I D.7 S

Additional Elements of the Unconditional aMple Sna~ce

T T

AC 11 Dr 10
AD 11 Er 10
AS 11 GN 0
AF 11 G1 0
30 I GJ 0
SN 1 HI 0
SI H J 0

CD10
CE 10
CF 10

DE 10

Letter pairs indicate the units receiving treatment 1.

-9-



2.3 A Backtrack Algorithm

in general, calculation of the conditional significance level requires identification

T T
of all binary vectors b such that b - z F. For small N, this task is not as

difficult as one might suppose, providing we avoid checking most of the 2N possible

binary vectors. This section describes an efficient but easily implemented backtrack

algorithm. For a general discussion of backtrack algorithms, see Whitehead (1973, 12.3) or

Horowitz and Sahni (1978, chapter 7).

Each binary vector, b, is a path through N + 1 nodes of a binary tree; see Figure

1. We begin at the root of the tree, exploring each branch until it becomes apparent that

T T
no b in that branch will satisfy k - E. if we abandon a branch at a node at

level k, then we have eliminated 2 N-
k+ l of the 2N possible binary vectors.

without loss of generality, we may assume that F is strictly nonnegative, that is,

fi ) 0 for i - 1,2,...,N and m - 1,2-..M, where fim is the element in the ith row

and nth column of F. Suppose we are at a node at level k + I defined by

(bit b2,..., bk) where k < N. A simple rule is to abandon the branch beginning at this

node if for some a, 1 4 m 14, either

k N N
i bf + i I fie < ' zifi, (2.3)

i-1 ik+1 i-I
or

k N
i b fin > mi fi (2.4)

k
If condition (2.3) holds at a node at level k + 1, then I bi fim is already too

small, in the sense that every binary vector b whose first k coordinates correspond to

the given node of the tree will satisfy
N NI% bf< • ~i f im < 1 2 1 f i m

k
Similarly, if (2.4) holds, then } bi fim is already too large. The procedure is

illustrated in Figure 1 using the artificial data from 12.2.

-10-
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If several units have identical values of the vector f~x), then a more efficient

algorithm may be constructed. Suppose f f(x ) for some u < v. If b =

(blob2 o ... bu ...ob v .... b,) solves bY =TE , then so does b-

(blob 2 0...,bv#... buo...,bg), where b* is obtained from b by interchanging bu and

T TbV . Therefore, the solutions of k - SF may be partitioned into equivalence classes,

where b and b' are in the same equivalence class if b •  may be obtained from b by

permuting coordinates of b associated with identical values of f(x). To obtain all

solutions of bTV - jr, it is sufficient to obtain one b from each equivalence class of

solutions using a backtrack algorithm, and then to obtain the other members of the same

equivalence class by appropriate permutations of the coordinates of b. This procedure is

°: a version of isomorph rejections see Whitehead (1973, 12.4). To obtain one b from each

equivalence class, we may use a backtrack algorithm that abandons a branch at a node at

level k if (2.3) or (2.4) holds, or if

bk > b for some u<k such that E(z)- L ) (2.5)

In a backtrack algorithm, additional conditions such as (2.5) generally reduce the

number of branches that require Investigation, thereby generally increasing efficiency. In

:. special cases, more efficient methods are available see 12.4. Approximations to the null

distribution of the test statistic are given in 14, and other related large sample

procedures are described by Rosenbaum and Robin (1983a, 13).

., 2.4 Standard Tests for observational Studies Derived as Conditional Tests Given a

Sufficient Statistic for the Propensity Score

This section shows that several ccmo nly used tests can be viewed as conditional

permutation tests given a sufficient statistic for the propensity score. In these tests,

*i the response rti is a discrete random variable taking one of R possible values.

In the Mantel-Haenssael(1959) and Mantel (1963) approximate procedures and the

corresponding exact procedures given by Dirch(1964, 1965) and Cox(1966), there are N

subclasses, resulting in an Rx2xu contingency table (i.e., observed response r, by

. treatment z by subclass x). Define F so that f1 * 
= 1 if unit i falls in

subclass m, and fir - 0 otherwise, so that under the logit model (2.1), the unknown

-12-
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conditional probability of assignment to treatment I given the covariates i is constant

"'; within each subclass. if treatment assignment Is strongly ignorable, then it follows from

T
Theoren 1.3 that, under the null hypothesis 1.3), conditioning cn (r EE) restricts

the sample space to those Rx2x tables in which each of the J subtables has the same

margins as the observed table. This leads to the Birch-Cox exact distributions and the

Nantel-Naenssol and mantel approximations. If treatment assignment is strongly ignorable,

subclasstfication on the propensity score can produce subclasses with the properties

required by Theorem 1. For discussion of subclassification on the propensity score, see

Rosenbaum and Rubin (1963a, 13.3).

Mc emar's(1947) test for paired binary responses is the special case in which each

subclass has just two units, with one receiving each treatment. The pairs are typically

constructed by matched sampling (e.g., Rubin, 1973). model (2.1) implies that units have

been selected by matched sampling from a population of treated and control units in such a

way that the conditional probability of assignment to treatment I given covariates x is

constant within each pair. If treatment assignment Is strongly ignorable, then matched

sampling of treated and control units with the same value of the propensity score can

produce matched pairs with the properties required by Theorem 1. For discussion of

propensity matching, see Rosenbaum and Rubin (1983a, 13.2).

*-2.5 Condtional lernatation Tests and Covariance Adjustment,

This section examines the relationship between conditional permutation tests and

covariance adjustment. In 1.3 and 52.2, the difference in sample mean (1.4).

T
or equivalently the treatment 1 total, as, wa used as a test statistic, t(VQ. An

alternative test statistic is the difference in means after covariance adjustment for re

that is, the first coordinate of the estimated coefficient vector in the least squares

regression of E on The randamisation distributions (51.4) of these two test

Sstatistics can lead to markedly different conclusions. We nov show that the conditional

permutation tests (12.1) based on these two statistics lead to identical critical region@,

and therefore to identical tests and confidence intervals, providing the model (2.1)

includes a constant term (or, formally, providing the column rank of (tt) equals the

-13-
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column rank of t). in a sense, the conditional test performs a covariance adjustmenti

however, the test has the nominal level even if the linear regression model is incorrect.

-. . To prove the equivalence of conditional tests based on the two test statistics, it is

sufficient to show that the covariance adjusted difference, t'(bt) say, is a strictly

monotone function of bTr, for each treatment assignment, b, in the conditional sample

space, that is, for b such that b '- E , without loss of generality, assume E is

of full column rank. Familiar arguments (e.g. Seber, 1977, p. 65) show that the covariance

adjusted difference with treatment assignment b is

where T - T )' and J is the 1 x U identity matrix. Over the conditional sample

space, E is constant, and therefore b and bApk are constant. Moreover, by

assumption - f or some 4, so k k ,- b Fd is constant. Therefore,

,':-.E k.,T- k 1

2

for constants kI and k2 , so te(bL) is a strictly monotone function of bT, as

requir*d to complete the proof.

3. a Clinical 3xomles Tumor Response In mng Cancer Patients

3.1. The Conditional Permutation Test

The example In this section illustrates the use of the exact conditional test with

adjustments for several covariates in a small observational comparison. The data are

adapted from a clinical study of lung cancer in which two slight variants of the same

treatrAnt appeared to produce differing tumor response rates. Given the expectation that

this minor variation in the treatment would not alter the response rate, it is natural to

ask to what extent the observed difference in response rates is surprising, given the

characteristics of the patients involved. The data appear in Table 3.

-14-



Imble 3. Dta on 14 Lung Cancer Patients

Patient mor mespoase -treatment cell type Previous Performance Subclass
(r,,) (sj) Treatment Status ()

1 0 Squamous ne 0 1
2 0 0 Large cell None 1 2
3 0 0 lquous Radiation 1 3

4 0 0 Squemous Radiation 1 3
5 0 0 Squamous Radiation 2 4

6 1 1 squmow Radiation 1 3

7 0 1 Bqummus Radiation 1 3

8 0 1 Ademocarcinomm Radiation 1 5

9 1 1 Squmous 1

10 0 1 Large ell None 2 7

11 0 1 qumous Radiation a 2 6

CImotbaraw
12 0 1 qu OMu Cemointheraf 1 9

13 0 1 Sluamos None 0 1

14 2 1 Squamoms Noe 1 6

0 - no response I - partial responses 2 , amplet. respoase

Soned in 3.2 and 54.1.
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There are three covariatesu previous treatment (none, radiation only, chemotherapy

only, radiation plus chemotherapy) , cell type (squamous, large cell, adenocarcinoma), and

performance status (grades 0, 1, 2). in the logit model (2.1), previous treatment was

coded as three binary variables, and cell type as two binary variables. The conditional

permutation test considers all reassignments of treatments to patients such that (a) 9

patients receive treatment one, and of those 9 patients, (b) one has adenocarcinoama, (c)

one has large cell carcinoma, (d) seven have squamous cell carcinoma, (e) three have had

only previous radiation therapy, (f) one has had only previous chemotherapy, (g) one has

had previous radiation and chemotherapy, and (hi) the average performance status is

10/9 - 1.1. There are 28 such treatment reassignments, as compared to 4 ) - 2002

reassignments in the unconditional, randomization sample space.

Tumor response is defined in terme of a reduction in the size of the tumor. In Table

* 3, no tumor response has been scored as 01 a partial response as Is a complete response

as 2. All of the tumor responses were observed in patients receiving treatment 1,

T
* yielding a total score among patients receiving treatment 1 of t(Q) - - 4. The

conditional permutation distribution of this total Wder the sharp null hypothesis (1.3)

* assigns probability 8/28 - .29 to a total of 4, probability 13/28 - .46 to 3,

probability 4/28 - .14 to 2, and 3/23 - .11 to 1. The expected total score under

the null hypothesis is 2.93. If the two variations of the treatment were in fact

identical, and if treatment assignment is strongly ignorable, there would be little reason

to be surprised by the observed total response score in treatment group 1, since 29% of all

treatment assignments that are similar to the observed treatment assignment would have

"" resulted in a total of 4.

3.2. Comparison with Other Tests: The Randomization Test; A TeLBased on

sublassification

We now compare the results obtained in 13.1 with the results of two other testes

Fisher's randomization test, and an exact test of zero partial association between the

response and the treatment within each of the 4 x 3 x 3 - 36 subclasses defined by the

covariates. Fisher's test corresponds to a sample space containing (S4) - 2002 treatment

-o o , - o . o oo o o . . , ,,1, .1 * . .. . .- . . .. - ,-. . . . •.. ,. - . .
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assignments, with an expected total response score under the null hypothesis of 2.57, and

* a one-sided significance level of ("l)/(") - .23. Of course, Fisher's teat may not be

applicable since treatments were not randomly assigned.

An alternative procedure, described in 12.4, in to form 36 subclasses from the three

covariatoe and to teat for partial association within aubolaasea. There is a 3 x 2 x 36

dimensional contingency table for the 3 response scores, 2 treatments, and 36 aubelassess

each of the 36 three-by-two aubtablem has fixed margins. in this instance, only 0 of the

36 subclasses contain at least one patients ss the last colu in Tale 3. Six patients

fall in subclasses with no other patient, and two patients wAo fall in the sam subclass

had both received treatment 1.* In effect, none of the"e 8 patients contribute to the

permutation distribution, since their treatments cannot be reassigned subject to the

marginal constraints. It is disturbing to note that the one patient with a cmplete

response and one of the two patients with a partial response are among the 9 patients who

* do not contribute to the test. The conditional @a=Vie space contains (4) (2) -1
treatment reassignments, with an expected total responee score of 3.5 under the null

hypothesis. The ce-sided significance level is .5.

The conditional text described in 13.1 has the advantage of permitting adjustmet for

covariates with fewer restrictions on the conditional samle space than result from the

subclassification procedure. Both tests require the assmtion of strongly ignorable

treatment assignment with ovariates pp however, the teats ssume different logistic

models for the propensity score.

4. AseroIMaton to the Voll Distribtion

4.-1 *AB AnrK iaio 1100 SWOn miat 2ndtional Moments

This vstion develops an approximation to the mull distribution of t(bL) using its

exact conditional moments. The approximation generalises the procedures of Mantel and

Neenesel 11959) and Mantel (1963).

As noted in 92.3, we need niot generate all solutions, k, of T T' sn h

backtrack algorithm, rather, we may generate one solution from each equivalence class of

solutions using the backtrack algorithm, and then obtain the other solutions in the same

[ -17-
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equivalence class by permuting units with identical values of EIx). often, the number of

equivalence classes will be quite small, while the number of individual solutions will be

quite larges in the example in 13. there are 28 solutions, but only 3 equivalence

classes of solutions. An approximate procedure is tot (a) identify the equivalence

classes of solutions using the backtrack algorithm, (b) obtain by standard methods the

conditional expectations and variances of the test statistic, t(t r), within each

equivalence class, (a) cambine these expectations and variances in an appropriate way to

obtain i- 3{t(Ir)l£, [, !} and V - var{t(Lg)l, , .} under the null hypothesis,

and (4) test the hypothesis (1.3) by referring a suitable standardised deviate, such as

(t( 1 ,[) - 3)/f, to tables of the normal distribution.

Divide the N units into J subclasses or strata based on MEx), where there are

J distinct values of J(j). (See for example the last column in Table 3.) Let 14 be

2the number of units in the jth subclass, and let r and 82_ be the wean and variance of

the observed responses of all units in subclass J, where a is set to sero if
Ij

equals one, and a j is the am of squared deviations around divided by X- I if

V b 2. The kth equivalence class of solutions my be charac terised by a vector

(alkwa2k,....nak)T where ajk is the number of units in subclass j assigned to

treatment It s* Table 4.

The following theorem provides expressions for the null expectation 3 and variance

Vewhent 1 r - e

fterem: Suppose that treatment assignmnt Is strongly ignorable, and that (2.1) holds.

Then under the null hypothesis (1.3), the expectation and variance of the test statistic

t(,E, 1 - i I are

- 3k%' (4.,1

* k

and V k + I ( )2  (4.2)
k k

where k ak 143

- 18- 2 (4.4)
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Table 4. Calculations for the Aowvximte Toot
Saso" on Rat moments

Squivalence Class 2
Subclass co11 Type Previous Performance of Solutions Mk)arJa NJ

(1) Treatment status I '
1 2 3

1 Sajaamous None 0 1 I 2 0 0 2

2 Large cell None 1 0 1 0 0 0 1

3 equinusva Radiation I 2 1 1 .25 .25 4

4 Squamous Radiation 2 0 1 1 0 0 I

5 A4eocarcinoma Radiation I 1 1 1 0 0 1

6 Squamous Nowe 1 2 2 1 1.5 .5 2

7 Largescell None 2 1 0 1 0 0 1

a Squamous Radiation a 2 1 1 1 0 0 1
du@Motheaw

S quaou Chomotherawy I I I 1 0 0 1

a s()* olutios inthe 12 S S
ikkth equivalence class

.429 .265 .20S

Ek 3.503 .251 .M

Vk .250 .166 .436

U-2.93

V-.051

I -c .22

al"Iu!"to In sublss assigned to treatment I in the kth equivalence class of

-so



andN

Pk i(4.5)

Remarkst The probability pk is the proportion of all solutions of b F z F that fall

in the kth equivalence class. The expectation, and variance, Vk, corresponding to

the kth equivalence class of solutions, are the expectation and variance of the treatment 1

Ttotal, a r, in a stratified randomized experiment in which ajk of the NJ units in

subclass J are randomly assigned to treatment 1. In the variance, (4.4), the factor

(Nj - ajk)/Nj is a finite population correction. If there is only one equivalence class,

then i and V are the expectations and variances appearing in the Mantel-Haenssel (1959)

approximation for binary responses (see also Birch (1964, 14) and Cox (1966, 13)), and in

the Mantel (1963) approximation for scored responses (see also Birch (1965, 15)).

Proof: Let Ck  be the kth equivalence class of solutions. Clearly,

i-I ",Z( T , T .. e C )kpr, 0 C T, X,
T TT T

" 110 E e Ck)pr(E e ck !,)

for each constant 2, by (1.2) and (1.3), and the fact that TF is constant for all

solutions, and in particular is constant for all solutions in Ck. By Theorem l.A and

simple combinatorial arguments, it follow, that pr(E • CkIX. TK) - P.5 Now, all solutions

in Ck assign ajk units from subclass J to treatment 1, and moreover, all solutions

in Ck  are equally probable by Theorem 1.A, so with 9 equal to the observed response

E, the permutational expectation ( £I1, 1 e Ck ) equals 3k. We have proved (4.1).

Similarly,

va~'1 E, TN 0 'TN
u.K, a 1 C)pr(g e C.5 I ,

+ var(g(I EI, E T , 1, 2-60C T X
k k

as required. I/
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Table 4 illustrates the procedure for the example in 13. The approximate significance

level to .27, comared to the exact sagnificance level of .29.

4.2. A large s§Mle AproxWtion

This aection describes a large ample approximation to the test defined in Theorem I

when the test statistic is the total response in treatment group 1, that ic, when

T Lter) - v - log(pr(s-1,r O)/ - pr(zin1x, r ))], and lot v he the

corresponding vector for the N units under study. Consider the following logistic model

for go

v - rX+E (4.6)

where and 8 are, respectively, unknown vector and scalar parameters. Note that

(1.2), (1.3) and (2.1) Imply S - 0 In (4.6). Zndeed, the exact test defined in Theoren 1

is, under the null hypothesis (1.3), formally Identical to the exact, uniformly most

powerful similar region test, described by Cox (1970, 14.2). of the hypothesis that

o - 0. To demonatrate the equivalence, It is sufficient to note that the test statistics,

the null distributions, and hence the critical region* are the same. Since the teats are

equivalent for every finite sample, their asymptotic propertiea under the null hypothesis

are also identical, so a test of (1.3) may be based on the familiar large sample properties

of tests of 0 - 0 in (4.6) see Cox (1970, 16.4) for discussion of these tests.

* -21-
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