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: ABSTRACT

In observational studies, the distribution of treatment assignments is
unknown, and therefore randomization tests are not generally applicable.
However, permutation tests that condition on sample information about the
treatment assignment mechanism can be applicable in observational studies,
providing treatment assignment is gstrongly ignorable. These tests use the
conditional distribution of the treatment assignments given a sufficient
statistic for the unknown parameter of the propensity score. Several tests
that are commonly used in observational studies are particular instances of
this general procedure; moreover, conditional permutation tests and covariance
adjustment are closely related. A backtrack algorithm is developed to permit
efficient calculation of the exact conditir+al significance level, and two
approximations are discussed. A clinical study of treatments for lung cancer
is used to illustrate the technique. Conditional permutation tests extend
previous large sample results on the propensity score by providing a general
basis for exact inference in small observational studies when treatment
assignment is strongly ignorable.

’
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SIGNIFPICANCE AND EXPLANATION

An observational study is an attempt to draw inferences about the effects

of treatments from nonexperimental data. In an experiment, treatments are
assigned by the investigator, so it is possible to assure that the units which
receive each treatment are comparable. In observational studies the units
receiving the two treatments may differ markedly, since the treatment
assignments wers not under the control of the investigator. The current paper
develops two extensions of a standard method in experiments -- Pisher's
randomisation test -~ that are applicable in observational studies under
explicit assumptions. An algorithm is developed for computing the required

conditional permutation distribution.
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The responsibility for the wording and views expressed in this descriptive
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CONDITIONAL PERMUTATION TESTS AND THE
PROPENSITY SCORE IN OBSERVATIONAL STUDIES

Paul R. Rosenbaum*

1. INTRODUCTION: Definitions; Fisher's Randowmization Test

t.1. The Propensity Score in Observational Studies
The propensity score is the conditional probability of exposure to a particular

treatment given a vector of observed covariates. Properties of the propensity score, its
role in observational studies, and its relationship to various methods of bias reduction
are described by Rosenbaum and Rubin (1983a). The methods they propose are applicable in
large obgervational studies in which an estimate of the propensity score may substitute for
the population propensity score. The current paper shows that, under conditions defined in
§2, the propensity score can also provide & basis for exact inference in small
observational studies if a sufficient statlstic exists for the unknown parameter of the
propensity score. Relevant mﬁatlon and definitions from Rosenbaum and Rubin (1983a) are
briefly reviewed in §1.2 and §1.3, and related to Fisher's randomization test in §1.4.
1l.2. The Structure of Studies for Treatment Effects

In the case of two treatments numbered 1 and 0, the it of the N units under
study has, in principle, both a response ryqy that would have resulted if it had received
treatment 1, and a response roqy that would have resulted if it had received treatment
0. Treatment effects are defined to be cﬁrisonn of LT and Toqe such as
Ty4 = Tg4e Each unit receives only one treatment, so either ryy Or rg; Ais observed,
but not both. Therefore, inferences about the effacts of treatments on single units, as
distinct from collections or populations of units, are largely speculative: inferences

about treatment effects are inherently statistical inferences. This structure is

*Departments of Statistics and Human Oncology, University of Wisconsin-Madison.
The author acknowledges Donald B. Rubin for valuable conversations on the subject of this
paper, and Paul P. Carbone for permission to use the data in §3.
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consistent with that traditionally used in the literature of experimental design, for

example, in the books by Pisher (1935), Kempthorne (1952), and Cox (1958), and follows the

development for observational studies in Rubin (1974, 1977, 1978), Hamilton (1979), ‘

e

e
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Rosenbaum and Rubin (1983a,b) and Rogenbaum (1982). Por further discussion of this

.
ata

structure and some of its limitations, see Cox (1958, chapter 2), Rubin (1978, §2.3; 1980)
and Rosenbaum and Rubin (1983a, §1.1).

Yor the it" unit of W units in the study (i=1,...,N), let z, be the indicator
for treatment assigmment, with s; = 1 if unit i is assigned treatment 1, and g; = 0
if unit i is assigned to the treatment 0. Let 51 be a vector of observed pretreatment
measurements or covariates for the 1P unit; all of the measurements in X were made
prior to treatment assigmment, but x may not include all covariates used to make
treatment assigmments. The propensity score, e(x), is the conditional probability of
u.ignl-nt to treatment 1 given the observed covariates, that is,

e(x) = pr(z = 1 | -g)

where it is assumed that

1-31

2
{1 -0(54)} . (1.1)

Pﬂ"l"""u | 51,-..,5') = ‘E‘ .(g_:_‘)

Although this strict independence assumption is not essential, it simplifies notation and
discussion.
1.3 A Critical Ass ion: Strongly Ignorable Treatment Assignment

Randomized and nonrandomized trials differ in two ways. Pirst, in a randomized trial,
the propensity score is a known function, whereas, in an observational study the propensity
score function is almost always unknown. Second, with properly collected data in a
randomized trial, x is known to contain all covariates that are both used to assign
treatments and possibly related to the response (r,, ro). More formally, in a randomized
trial, treatment assignment z and response (r', ro). are known to be conditionally
independent given x, or in Dawid's (1979) notation,

(ryerg) Jl 21 x. (1.2)

This condition is usually not known to hold in a nonrandomized experiment. Moreover, in a
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randomized experiment, every unit in the experiment has a chance of receiving each

Y .
;,-3 treatment. Pollowing Rosenbaum and Rubin (1983a,b), treatment assignment will be said to
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be strongly ignorable if (1.2) holds and 0 < pris=1|x) < 1 for all x. (As the tera
suggests, strong ignorability is a somevhat more restrictive condition than ignorability as
defined by Rubin (1978).)

The assumption of strongly ignorable treatment assigmment plays a critical role in
inference from observational studies (e.g., Rosenbaum and Rubin 1983a, theorem 4, and §2
below), and therefore, the correctness and implications of this assumption will generally
require investigation in each observational study. In the case of binary responses (r,,
Yol Rosenbaum and Rubin (1963b) describe & wethod for assessing the sensitivity of
conclusions to certain departures from strong ignorability. Rosenbaum (1982) reviews
methods of testing the assumption of strong ignorability. Related discussion within a
Bayesian framework is given by Rubin (1978, §4).

1935 S8 Test in Randomized

Fisher's (19338) randomisation test examines the sharp null hypothesis of zero
difference in the effects of the treatments for each experimental unit, that is,

Bys ro =Ty, for i = 1:2,000,W & (1.3)
Note that the sharp null hypothesis (1.3) states that the same response would have been
observed from each unit had it received the alternative treatment.

Let r.; be the observed response for unit i , that is, Tgy ™ B4Tqy + (1-24) 74,
and denote the vector of cbserved responses by r = (x"1 ,r‘z,....rm)r, and the vector of
treatment assignments by g = “1"2""";!)?' Let t(g,r) Dbe a statistic chosen to
msasure departures from the sharp null hypothesis (1.3); for example, t(z,r) might be the
difference in sample mean responses to the two treatments, that is

tgp) = (g /8T - (Q-p /(-0 (1.4)
vhere ) is an N dimensional vector of 1's. Alternatively, t(g,r) could be the
difference betwéen two robust measures of the typical response in the two treatment
groups. TFisher proposed testing the sharp null hypothesis (1.3) using the tails of the
permutation distribution of t(g,r) induced by the randomization, where 1 is, in a
sense, treated as a constant. Fixing r at its observed value in this way is equivalent

to conditioning on r in a randomised experiment, but not generally in an observational
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study. As a result, randomization tests applied in randomized experiments have the correct
size given the cbserved ¢, and therefors the correct unconditional size regardless of the
distribution of r (e.g. Lehmann 1959, chapter 5; Rubin 1980). In observational studies,
a different type of conditioning may be required.

In order to motivate the general discussion in §2, it is useful to briefly review,
with the current notation, the justification for conditioning on the observed response,
£, in Pigher's randomization test. In a completely randomized experiment, the treatment
assignment, £, has a known distribution that is independent of the response (r,, ro)o
and, moreover, 0 < pr(ze1) < 1 gso treatment assignment is strongly ignorable without any
covariates, that is with x equal to a null vector. The distribution of the observed
response, r., generally depends on g; however, under the sharp null hypothesis ( 1.3),
the observed response satisfies r, = ry = r,, 80 treatment assignment, =, is independent
of the observed response, Tge Therefore, under (1.3), the conditional distribution of the
treatment assignments given the observed responses, pri(zir), is oquil to the marginal,
randomization distribution of the treatment assignments, pr(g). Hence, under the sharp
null hypothesis, (1.3), the conditional distribution of the test statistic, ti(sz,r), given
the value of the observed responses, r = ¢ sy, equals the permutation distribution of
t(g,¢) induced by the randomigation. Formally, for each constant ¢,

prit(z,x)Ix = ¢} = prit(g,g)ix =g} = pr{e(z,c)} (1.9)
from (1.3) and (1.2) with x equal to a null vector. The conclusion that Fisher's test
has the correct conditional size given the observed r, and therefore also the correct
unconditional size, is an immediate consequence of (1.5).

Notice that the justification for Fisher's test rests on two conditions. Pirst, the
randomization or permutation distribution of g, and therefore also of t(g,g) for each
constant ¢ , is known, since it is created by the experimenter. Second, treatment
assignment is strongly ignorable without covariates, so under the sharp null hypothesis,
the known permutation distribution of t(gz,c) equals the relevant conditional
distribution of t(g,r) given the observed responses, r = ¢; that is, condition (1.8)

holds. 1In observational studies, even if treatment assignment is strongly ignorable, the
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distribution of treatment assignments is generally unknown, and therefore Fisher's

randomisation test is not generally applicable.

2. Conditional Permutation Tests Under a logistic Model for the Propensity Score
2.1 A Basic Theores

This section shows that Fisher's randomization test may be extended so that it is
applicable in observational studies providing (a) treatment assignment is strongly

ignorable, and (b) the propensity score follows a logistic model (Cox 1970), that is,
e(x)

log 1-e(x)

wvhere § is an unknown vector parameter, and f(°) is a known, vector-valued function of

= pTE(x) (2.1)

X, such as f£(x) = ( 1,5)". 8ince f£(x) may include polynomial terms in x, condition
(2.1) is not particularly restrictive. Let F and X be the matrices whose K rows are,
respectively, the values of g(gi)" and 517, i=1,2,...,8. By a familiar argument (Cox
1970, §4.2), £'F is sufficient for B in (2.1).

The proposed test is similar to a randomization test, but with a nuisance parameter,
£+ describing the treatment assignment mechanism. 7o eliminate the nuisance paramster, we
use the conditional distribution of the treatment assignments g given the sufficient
statistic, g’g, for B. Unlike a randomization test, this conditional test compares the
observed test statistic, t(z,r), to the value, t(b,r), that would have been obtained
under the null hypothesis with a different treatment assignment, indicated by the binary
vectcr b, only if b is similar to the observed treatment assignment in the sense that

2’; - grz. Clearly, alteinative treatment assignments satisfying lfg = z"{ will

~

typically exist only when the values in P are fairly coarse; see for example §3.

Theorem 1. Suppose the propensity score follows the logistic model (2.1).

(A) Then the conditional distribution of treatment assignments g given (g_'t,!_) is free
of unknown parameters and assigns the same probability to each binary vector b satisfying
NS 2

(B) Under the sharp null hypothesis (1.3), if treatment assignment is strongly ignorable,

then the conditional distribution of the test statistic, t(g,r) given r = ¢ and

» -5e
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(g’!.;) equals the known conditional permutation distribution of t(g,g) aiven (g F,X)
that is determined from part (A); i.e.,
prit(z.g) =g, 2L X} = prit(z,@) gL, X}

for each constant ¢.
(C) If treatment assignment is strongly ignorable, and if, for each fixed ¢ and a, the
set W(c,a) satisfies pr{t(z,c) € H(g,g)lg’! = a,X) = a (respectively < ) under the
sharp null hypothesis (1.3), then a test which rejects whenever t(gz.r) € w(;.fg_) has
level a (rupoc'tivd.y < a) for all values of the unknown parameter f.
Proof: Part A is straightforward since ‘:fg is sufficient for B in (2.1). To prove
part B, note that strong ignorability and the sharp null hypothesis (1.3) imply

llrlx
and hence, essentially following Lemma 4.2(ii) of Dawid (1979),

sllr !X et
since P is a function of X. Therefore, strong ignorability and the null hypothesis
imply
prit(r.p) | £= g £% X = prittag V1= g 2L ¥

= prit(g,g) | £°2, X} (2.2)

as required for part B. Part C follows immediately from (2.2). //
If the treatment effect is constant in the sense that ro=r,* 4, or that

ry = A Toe for some scalar A, then & confidence interval for A may be constructed by
inverting the test (Lehmann 1959, §5.4). The test described by Theorem 1 will, however,
have the nominal level whether or not the treatment effect is constant.

2.2 An Artificial Example

The following artificial example is intended to clarify the procedure described in

§2.1 and to simplify discussion of the backtrack algorithm in §2.3; a practical example

appears in §3. The data in Table 1 were generated by setting

rM- S xi

ru-5x1+1

and
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TABLE 1. DATA FOR THE ARTIFICIAL EXAMPLE.
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Covariate Treatment Response
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where the treatment effect Ty © Ty i equals 1 for each unit, and the oburvgbl.o response
-:1 is
23 Ta =S5 % vz .
~.: Two units received treatment 1, and eight units received treatment 0.
‘ The test statistic used here is the sample total in the treatment 1 group, that is,
"1 ) t(z,x) = ;T{,. It is straightforward to show that the critical region induced by this
--: statistic is the same as the critical region induced by the difference in sample means
‘ (1.4). See Kempthorne (1952) for details.
: . Together, the two parts of Table 2 list the elements of the sample space associated
::'3 with Pisher’'s randomigation test. There are (12) = 45 elements in the sample space
::; corresponding to the (‘g) ways of selecting the two units that will receive the treatment
}‘ 1. Eleven of the 45 treatment reassignments produce response totals greater than or equal
to the observed response total of grz = 7, 80 Fisher's one sided significance level is
. 11745 = . 24.
' In an observational study, a logistic model, (2.1), for the propensity score with
' £(x1) = {1, xi)r would lead us to restrict attention to treatment assignments, b, that
‘ are similar to the observed treatment assignment in the sense that 2‘1‘2 - g'r!_ = (2,1),
:"-3 that is, treatment assignments in which the treatment group includes one unit with x =
.-:' 1 and one unit with Xy = 0. This conditional sample space contains the 25 elements in
- the top half of Table 2. The observed treatment total, g?z = 7, 1is the largest of the 25
. ) treatment totals from the conditional sample space, so the coiditional one-sided
",. significance level is 1/25 = ,04. In this instance, the one~sided .05 level conditional
:- critical region, w(g,grg), contains only the observed treatment total. By Theorem 1,
0 this test would have the nominal level if treatment assignment is strongly ignorable and
model (2.1) holds.
':: In a completely randomized experiment, both the unconditional and the conditional
: tests have the nominal level, although the conditional test performs a kind of covariance
:; adjustment; see $2.5. However, in an observational study, only the conditional test can be
:::' used because the distribution of treatment assignments generally depends on unknown
:":: parameters.
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TABLE 2. The Conditional and Unconditional Permutational Sample Space.

Elements of the Conditional Sample Space

2L 2L
AB* 7 G S
AG 6 CH 5
AH 6 CI 5
Al 6 CJ 5
AJ 6 DG 5
BC 1 DH 5
BD 1 DI 5
BE 1 DJ 5
BP 1 EG 5

EH
EI

FH

FJ

Additional Elements of the Unconditional Sample Space

T T
£ X zr

AC 1" DF 10
AD 1 EF 10
AB " GH 0
AF 1 GIL 0
BG 1 GJ 0
BH 1 HI 0
Bl 1 HJY 0
BJ 1 IJ 0
¢ 10
CE 10
CP 10
DE 10

* Letter pairs indicate the units receiving treatment 1.
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2.3 A Backtrack Algorithm

In general, calculation of the conditional significance level requires identification

» of all binary vectors b such that 2’1‘5 = £T~. For small N, this task is not as

j: difficult as one might suppose, providing we avoid checking most of the P possible

_ binary vectors. This section describes an efficient but easily implemented backtrack

: algorithm. For a general discussion of backtrack algorithms, see Whitehead (1973, §2.3) or
. Horowitz and Sahni (1978, chapter 7).

. Each binary vector, b, is a path through N + 1 nodes of a binary tree; see Figure
! 1. We begin at the root of the tree, exploring each branch until it becomes apparent that
N no b in that branch will satisfy 2'1'{ - grg. If we abandon a branch at a node at

._, level k, then we have eliminated K of the 2N possible binary vectors.

Without loss of generality, we may assume that P is strictly nonnegative, that is,
f!.n >0 for 4 =1,2,s0e,N an@ mn = 1,2,...,M, where Eim is the element in the ith row
and mth column of PF. Suppose we are at a node at level k + 1 defined by
(b,, b’p"" bk) where Xk < N. A simple rule is to abandon the branch beginning at this

node if for some m, 1 < m < M, either

i h i
b£, + t < 2zt (2.3)
gmg IR e B0y e
or
i 3
b £, > z, f (2.4)
Lo Prfm> L% fia

k
If condition (2.3) holds at a node at level k + 1, then 2 b!. fim is already too
i=1
small, in the sense that every binary vector b whose first k coordinates correspond to

the given node of the tree will satisfy

1 )
b, £ < z £ 0
i=1 1 im {=1 i "im

k

Similarly, if (2.4) holds, then Z b‘ fin is already too large. The procedure is
i=1

illustrated in Figure 1 using the artificial data from §2.2.
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If several units have identical values of the vector f£(x), then a more efficient
algorithm may be constructed. Suppose f£(x ) = £(x ) for some u < v. If b=
(byebysacesb seoesb sesssby) solves B'L = g'Z, then so does b* =
(b.',bz,....b',...,b“,....N). vhere b* is obtained from b by interchanging b, and
b, Therefore, the solutions of grg = 1’{ may be partitioned into equivalence classes,
where b and b* are in the same equivalence class if b* may be obtained from b by
permuting coordinates of b associated with identical values of f(x). To obtain all

T

solutions of 2’! = 2P, it is sufficient to obtain one b from each equivalence class of

solutions using a backtrack algorithm, and then to obtain the other members of the same
equivalence class by appropriate permutations of the coordinates of b. This procedure is
a version of isomorph rejection; see Whitehead (1973, §2.4). To obtain one b from each
equivalence class, we may use a backtrack algorithm that abandons a branch at a node at
level k if (2.3) or (2.4) holds, or if

b, > b,  for some u < k such that £(x) = £(x) . (2.5)

In a backtrack algorithm, additional conditions such as (2.5) generally reduce the
number of branches that require investigation, thereby generally increasing efficiency. In
special cases, more efficient methods are available; see $2.4. Approximations to the null
distribution of the test statistic are given in §4, and other related large sample
procedures are described by Rosenbaum and Rubin (1983a, §3).

2.4 Standard Tests for Observational Studies Derived as Conditional Tests Given a

Sufficient Statistic for the Propensity Score

This section shows that several commonly used tests can be viewed as conditional

permutation tests given a sufficient statistic for the propensity score. 1In these tests,
the response Tey is a discrete random variable taking one of R possible values.

In the Mantel-Haenszel(1959) and Mantel (1963) approximate procedures and the
corresponding exact procedures given by Birch(1964, 1965) and Cox(1966), there are M
subclasses, resulting in an Rx2xM contingency table (i.e., observed response r, by
treatment z by subclass x). Define F so that tim=1 if unit i falls in

subclass m, and fim = 0 otherwise, so that under the logit model (2.1), the unknown

-12-
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conditional probability of assignment to treatment 1 given the covariates x is constant
within each subclass. If treatment assignment is strongly ignorable, then it follows from
Theoren 1.B that, under the null hypothesis (1.3), conditioning on (;,;.Tg,‘x_) restricts
the sample space to those Rx2xM tables in which each of the J subtables has the same
margins as the observed table. This leads to the Birch-Cox exact distributions and the
Mantel-Haenszel and Mantel approximations. If treatment assignment is strongly ignorable,
subclassification on the propensity score can produce subclasses with the properties
required by Theorem 1. For discussion of subclassification on the propensity score, see
Rosenbaum and Rubin (1983a, §3.3).

McNemar's(1947) test for paired binary responses is the special case in which each
subclass has just two units, with one receiving each treatment. The pairs are typically
constructed by matched sampling (e.g., Rubin, 1973). Model (2.1) implies that units have
been selected by matched sampling from s population of treated and control units in such a
way that the conditional probability of assignment to treatment 1 given covariates x is
constant within each pair. If treatment assignment is strongly ignorable, then matched
sampling of treated and control units with the same value of the propensity score can
produce matched pairs with the properties required by Theorem 1. For discussion of
propensity matching, see Rosenbaum and Rubin (1983a, §3.2).

2.5 Conditional Permutation Tests and Covariance Adjustment

This section examines the relationship between conditional permutation tests and

covariance adjustment. In §1.3 and $2.2, the difference in sample means (1.4),

or equivalently the treatment 1 total, g_r;;, was used as a test statistic, t(g,r). An
alternative test statistic is the difference in means after covariance adjustment for F,
that is, the first coordinate of the estimated coefficient vector in the least squares
regression of r on (g,F). The randomization distributions (§1.4) of these two test
statistics can lead to markedly different conclusions. We now show that the conditional
permutation tests (§$2.1) based on these two statistics lead to identical critical regions,
and therefore to identical tests and confidence intervals, providing the wodel (2.1)

includes a constant term (or, formally, providing the column rank of (1,I) equals the
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column rank of F). In a sense, the conditional test performs a covariance adjustment;
however, the test has the nominal level even if the linear regression model is incorrect.
To prove the equivalence of conditional tests based on the two test statistics, it is
sufficient to show that the covariance adjusted difference, t*(h,r) say, is a strictly
monotone function of 2’;, for each treatment assignment, b, in the conditional sample

space, that is, for b such that 2‘{ - ;T!. Without loss of generality, assume r is

of full column rank. Familiar arguments (e.g. Seber, 1977, p. 65) show that the covariance
adjusted difference with treatment assignment b is

LRk

R (-p)k

vhere } = !_(g:rz)-‘!'r and 1 is the N x N identity matrix. Over the conditional sample

t'(kv{) -

space, g’; is constant, and therefore pb and grrg are constant. Moreover, by

assumption 1| = pd for some ¢, so g’g - g'r;l_ = b’rg is constant. Therefore,

~

T - X,

t*(b,x) =
2
for constants k, and k,, so t*(b,r) is a strictly monotons function of ;'g, as

required to complete the proof.

3. A Clinical Example: Tumor Response In Lung Cancer Patients
3.1, The Conditional Persutation Test

The example in this section illustrates ﬂ't‘ use of the exact conditional test with
adjustments for several covariates in a small observational comparison. The data are
adapted from a clinical study of lung cancer in which two slight variants of the same
treatment appeared to produce differing tumor response rates. Given the expectation that
this minor variation in the treatment would not alter the response rate, it is natural to

ask to what extent the observed difference in response rates is surprising, given the

characteristices of the patients involved. The data appear in Table 3.
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Table 3. Data on 14 Lung Cancer Patients
Patient Tumor Response’ Treatment  Cell type Previous  Performance Subclass’®

(1) (rgy) (sy) Treataent Status (3
1 0 0 Squamous None 0 1
2 [} (] Large cell Wone 1 2
3 0 0 Squamous Radiation 1 3
4 0 0 Squamous Radiation 1 3
L 0 0 Sgquamous Radiation 2 4
6 1 1 Squamous Radiation 1 3
? 0 1 Squamous Radiation 1 3
L 0 | Adenocarcinoma Radiation 1 S
9 1 1 Squancus None 1 6

° 10 0 1 Large cell ¥one 2 ?
1 0 1 Sguamous Radiation & 2 ]

Chemotherapy

. 12 0 1 Sguamous Chemotherapy 1
13 1 Squanous Yone 0 1
14 2 1 Squamous Mone 6

'o-mmmo' 1 = partial response; 2 = complete response
**Used in §3.2 and §4.1.




There are three covariates: previous treatment (none, radiation only, chemotherapy

only, radiation plus chemotherapy), cell type {squamous, large cell, adenocarcinoma), and
performance status (grades 0, 1, 2). In the logit model (2.1), previous treatment was
coded as three binary variables, and cell type as two binary variables. The conditional
permutation test considers all reassignments of treatments to patients such that (a) 9
patients receive treatment one, and of those 9 patients, (b) one has adenocarcinoma, (¢)
one has large cell carcinoma, (d) seven have squamous cell carcinoma, (e) three have had
only previous radiation therapy, (f) one has had only previous chemotherapy, (g) one has
had previous radiation and chemotherapy, and (h) the average performance status is
10/9 - 1.1. There are 28 such treatment reassignments, as compared to (;‘) = 2002
reassignments in the unconditional, randomization sample space.

Tumor response is defined in terms of a reduction in the sisze of the tumor. 1In Table
3, no tumor response has been scored as 0; a partial response as 1; a complete response
as 2. All of the tumor responses were observed in patients receiving treatment 1,
yielding a total score among patients receiving treatment 1 of t(g,r) = g’;- 4. The
conditional permutation distribution of this total under the sharp null hypothesis (1.3)
assigns probability B8/28 = .29 to a total of 4, probability 13/28 = .46 to 3,
probability 4/28 = .14 to 2, and 3/28 = .11 to 1. The expected total score under
the null hypothesis is 2.93. If the two variations of the treatment were in fact
identical, and if treatment assignment is strongly ignorable, there would be little reason
to be surprised by the observed total response score in treatment group 1, since 29% of all
treatment assignments that are similar to the observed treatment assignment would have
resulted in a total of 4.

3.2. Comparison with Other Tests: The Randomization Test; A Test Based on
Subclassification

We now compare the results obtained in §3.1 with the results of two other tests:
Fisher's randomization test, and an exact test of zero partial association between the
response and the treatment within each of the 4 x 3 x 3 = 36 subclasses defined by the

covariates. Fisher's test corresponds to a sample space containing (;‘) = 2002 treatment
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assignments, with an expected total response scors under the null hypothesis of 2.57, and
a one~sided significance level of (;‘)/(;‘) = .23, Of course, Fisher's test msy not be
applicable since treatments were not randomly assigned.

An alternative procedure, described in §2.4, is to form 36 subclasses from the three
covariates, and to test for partial association within subclasses. There is a 3 x 2 x 36
dimensional contingency table for the 3 response scores, 2 treatments, and 36 subclasses;
each of the 36 three-by-two subtables has fixed margins. In this instance, only 9 of the
36 subclasses contain at least one patient; ses the last column in Table 3. Six patients
fall in subclasses with no other patieant, and two patients who fall in the same subclase
had both received treatment 1. 1In effect, none of these § patients contribute to the
permutation distribution, since their treatments cannot be reassigned subject to the
sarginal constraints. It is disturbing to note that the one patient with a ocomplete
response and one of the two patients with a partial response are among the 8 patients who
do not contribute to the test. The conditionsl ssmple space contains (3) (7) = 12
treatment reassignments, with an expected total response score of 3.5 under the mull
hypothesis. The one-sided significance level is .S.

The conditional test described in §3.1 has the advantage of permitting adjustment for
covariates with fewer restrictions on the conditional sample space than result from the
subclassification procedure. Both tests require the assumption of strongly ignorable
treatment assignment with covariates x; however, the tests assume different logistic

models for the propensity acore.

4. Approximations to the MWll pistribution
4.1. An Approximation Pased on Exacgt Conditionsl Woments

This section develops an approximation to the null distribution of t(g,r) using its
exact conditional moments. The approximation generalises the procedures of Mantel and
Haenasgel (1959) and Mantel (1963),

As noted in §2.3, we need not generate all solutionms, b, of g’;- fg_ using the
backtrack algorithm; rather, we may generate one solution from each eguivalence class of

solutions using the backtrack algorithm, and then obtain the other solutions in the same
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oequivalence class by permuting units with identical values of £(x). Often, the number of
equivalence classes will be quite small, while the number of individual solutions will be
quite large: in the example in §3, there are 28 solutions, but only 3 equivalence
classes of solutions. An approximate procedure is to: (a) identify the equivalence
classes of solutions using the backtrack algorithm, (b) obtain by standard methods the
conditional expectations and variances of the test statistic, t(g,r), within each
equivalence class, (c) combine these expectations and variances in an appropriate way to
obtain T = e{el(z.0) L, g’[. X} and Ve var{t(g,p)ir, !"!‘!' X} under the null hypothesis,
and (d) test the hypothesis (1.3) by referring a suitable standardized deviate, such as
{eiz.n) - ':')//3'. to tables of the normal distribution.

Divide the N units into J subclasses or strata based on £(x), where there are
J distinct values of f(x). (Ses for example the last column in Table 3.) Let Ny be

the number of units in the jth subclass, and let T, and .2 be the mean and variance of

b 3
the observed responses of all units in subclass j, where l; is set to gero if llj
equals one, and .: is the sum of squared deviations around ;j divided by lj -1 if
%, > 2. The kth equivalence class of solutions may be characterized by a vector .

b ]
(a“,nn,...,n“)r vhere a4y is the number of units in subclass 3 assigned to

treatment 1; se¢ Tadble 4.

The following theorem provides expressions for the null expectation E and variance
V when t(g,p) = g1
Theorem: Suppose that treatsent assignment is strongly ignorable, and that (2.1) holds.
Then under the null hypothesis (1.3), the expectation and variance of the test statistic

tig.x) = g'g are

n, Kk
__{;. and Ve E v.p, * E (x, - B)°p, (4.2)
r where E - § 8Ty ¢ (4.3)
< a, (W.,~a,)

. v = e 2 (4.4)

) L] b |

e p) b)

Q
-1@=

LR R AR -
L) T et At
< .v‘ . .
= e S AT et . PN . - e e, - -
~ et et e . . Ve e e e e e s . e e e gt et et . ICIRPE N
N P XN PR Y W PN A ; PRIPEI S ST VA DT 1A S0 D R TP AP UL I RaP T S U P S S A S Sl S NGl Sl What Vil Wl Tl




¢
“ .
Table 4. Calculations for the te Test
on ct Moment.
Equivalence Class _ 2
Subclass Cell Type Previous Performance of Solutions (k) rj s 3 lj
' n Treatment Status
> 1 2 3
: 1 Squamous None 0 o 2 0 (] 2
2 Large cell Wone 1 o 1 o o o 1
3 Squamous Radiation 1 2 1 1 «25 .25 4
y 4 Squamous Radiation 2 0 1 1 ] 0 1
.. S Adenocarcinoma Radiation 1 1 1T 1 0 0 1
o 6 Squamous None 1 2 2 1.5 5 2
.: ? Large cell None 2 1 0 1 0 0 1
> 8 Squamous Radiation & 2 1 1 1 0 0 1
. Chemotherapy
2 9 Squamous Chemotherapy 1 1 1 1 0 0 1
-
3 "
. I (,) ) = ¢ solutions in the 12 8 8
’ 3 & kth equivalence class
. P «429 .285 .285
2 5 3.503 .251 .75
: \ 8 +250 .188 .438
. k J
B gx=4
:‘ B = 2.9
- Ve
(gfg - I - %)//3 - .62
3 1 = 0(.62) = .27
% .
S i Gy = # units in subclass J assigned to treatment 1 in the kth equivalence class of
A solutions.
: ) -19=
v, ; R : : '
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By W,
1n(.7)
k 3 ik

Remarks: The probability Py 1s the proportion of all solutions of lfg = ;_Tg_ that fall

in the kth equivalence class. The expectation, E,, and variance, Vs corresponding to
the kth equivalence class of solutions, are the expectation and variance of the treatment 1
total, !""!, in a stratified randomized experiment in which a5y of the llj units in
subclass Jj are randomly assigned to treatment 1. In the variance, (4.4), the factor

(lj - ljk)/.j is a finite population correction. If there is only one equivalence class,
then T and V are the expectations and variances appearing in the Mantel-Haenszel {1959)
approximation for binary responses (see also Birch (1964, §4) and Cox (1966, §3)), and in
the Mantel (1963) spproximation for scored responses (see also Birch (1965, §5)).

Proof: Let C, be the kth equivalence class of solutions. Clearly,
- T
E= E B Elre £ Lo geCrrizec,l £ X

- E B(£"gIX, £ € C,)pr(x € C, I1X,g'D)

for each constant ¢, by (1.2) and (1.3), and the fact that g! is constant for all
solutions, and in particular is constant for all solutions in Cx+ By Theorem 1.A and
simple combinatorial arquments, it follows that pr(z € cklg,f"!) * Ppe Now, all solutions
in Cx assign ‘jk units from subclass Jj to treatment !, and moreover, all solutions
in C, are equally probable by Theorem 1.A, so with ¢ equal to the observed response

~

X, the permutational expectation l(g’gl;, £ €C.) equals E.. We have proved (4.1).

8imilarly,
V- ) vur(lrgl‘r_. g’g. X, gecClprize cklg. g_'r{. X)
k
+ var{e(g'glg, 'L %o gec)ln, £'L X
- =2
va’x ’E B = Edpy o
as required. //
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Table 4 illustrates the procedure for the example in §3. The approximate significance
level is .27, compared to the exact significance level of .29.
4.2, 1 4 1 ion

This section describes a large sample approximation to the test defined in Theores 1
when the test statistic is the total response in treatment group 1, that iz, when
t(g,p) = £'7. Lot v = loglpr(s=1|g,r )/{1 = pris=1lx, r )}], and let y be the
corresponding vector for the N units under study. Consider the following logistic model
for g

g=ry+ 10 (4.6)

where Y and 0 are, respectively, unknown vector and scalar parameters. Note that
(1.2), (1.3) and (2.1) imply 6 = 0 4n (4.6). 1Indeed, the exact test defined in Theorem 1
is, under the null hypothesis (1.3), formally identical to the exact, uniformly most
powerful similar region test, described by Cox (1970, §4.2), of the hypothesis that
0 = 0. To demonstrate the equivalence, it is sufficient to note that the test statistics,
the null distributions, and hence the critical regions are the same. Since the tests are
equivalent for every finite sample, their asymptotic properties under the null hypothesis
are also identical, so a test of (1.3) may be based on the familiar large sample properties

of tests of O = 0 in (4.6)) see Cox (1970, §6.4) for discussion of these tests.
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ABSTRACT (continued)

moreover, conditional permutation tests and covariance adjustment are closely
related. A backtrack algorithm is developed to permit efficient calculation
of the exact conditional significance level, and two approximations are dis-
cussed. A clinical study of treatments for lung cancer is used to illustrate
the technique. Conditional permutation tests extend previous large sample
results on the propensity score by providing a general basis for exact
inference in small observational studies when treatment assignment is strongly
ignorable.
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