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ABSTRACT
The stability of a finite difference scheme is related explicitly to the
stability of the continuous problem being solved. At times, this gives
materially better estimates for the stability constant than those obtained by

the standard process of appealing to the stability of the numerical scheme for

the associated initial value problenm,
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SIGNIFICANCE AND EXPLANATION

A popular explanation of the stability of finite difference schemes for
two-point boundary value problems rolm:».j it to the stability of the
associated initial value problem. In effect, use is made of the simple fact
that, on a finite dimensional linear space (viz. the nullspace of the
differential operator) and in any norm, any linear map is bounded.
Numerically, the argument is equivalent to solving the problem by shooting.
But, much as multiple shooting often is necessary to overcome the large
stability constant of the initial value problem, so other means should or must
be employed. Knowledge of this constant is important for judging the
condition of the numerical scheme. Also, when solving a problem on an
infinite interval by truncation, it is important to know just how the
stability constant depends on the interval on which the problem is being
solved.

In this note, we carry out this idea for a first-order system of linear
ordinary differential equations and for one-step methods. The slightly more
complicated case of multistep methods for a system of m-th order equations is

treated in the companion paper de Boor & de Hoog [198?]. No mesh restric-

T

tions, such as uniformity or quasi-uniformity, are imposed.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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The stability of one-step schemes for first-order two-point
boundary value problems

by

C. de Boor", P. e Hoog"* and H. B. Keller''"

1. Introduction. To paraphrase the first sentence in the preface to Raudkivi
[1980], the stability of finite difference schemes for two-point boundary value
problems “"is well understood, but far from explained.” A popular explanation (see,
@.gs, Keller [1976], Keller & White [1975], and a typical use in Esser & Wiederdrenk
(1980]) or Lynch & Rice [1980]) relates it to the stability of the associated initial
value problem. In effect, use is made of the simple fact that, on a finite dimens-
ional linear space (viz. the nullgpace of the differential operator) and in any
norm, any linear map is bounded. Numerically, the argument is equivalent to solving
the problem by shooting. But, much as multiple shooting often is necessary to over—-
come the large stability constant of the initial value problem, so other seans
should or must be employed if one is actually after the precise stability constant
of the difference scheme employed. Knowledge of this constant is important for
judging the condition of the numerical scheme. Also, when solving a problem on an
infinite interval by truncation, it is important to know just how the stability

constant depends on the interval on which the problem is being solved.

Mathematics Research Center, 610 Walnut Street, Madison, WI 53705.

*e '
Division of Mathematics and Statistics, C.8.I.R.0., P. O. Box 1965,
Canberra City, 2601, Australia.
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The ocbvious source for this information is the stability constant of the con-
tinuous problem. Usually, the stability comstant of the numerical scheme approaches
that of the continuows problem as the meghsize goes to sero and hence can be
inferred from the latter. This idea is implicit in Kreiss' [1972] treatment of
finite 4ifference schemes. The Soviet literature, as exemplified by Xantorovich &
Akilov [1964), uses this idea explicitly in the abstract treatment of projection
nethods for the solution of second kind egquations. It can algo be found in the
literature vhioch follows Stummel (e.g., Grigorieff [1970]).

In this note, n osrry out this idea for a first-order system of linear ordina-
ry differential eguations and for one-step methods. The slightly more complicated
case of multistep methods for a system of m~th order equations is treated in the
companion paper ds Boor & 4 Noog [19€?), NWo mesh restrictions, such as uniformity
or quasi~uniforuity, are imposed.

We consider the problem of finding the n-vector valued function y:(0,T] —> »°
which satisfies the differeatial eguation

Wy = £ (1.1a)
with sids condition

By = b . (1.1b)
Bere, L is the first order linear differential operator

Iy = y' -y
with 21(0,7) —> 2™ comtineous, and
By 1= Byy(0) + By(T) ,

with By, By @ l”. « ™he function £:110,7) —> B® and the n-vector b are given.

It is well known [see, ®.g., Keller [1976;p.1]) that (1.1) has a solution if
and only if the matrix 3Y is nomsingular, with Y any fundamental matrix for L ,
i.00,

00,71 = &' guch that LY =0 .
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In particular, assume that Y is the fundamental matrix associated with the initial
value problem, i.e.,
nuio, — *" =0, v0) =1,
Purther assume that BY is invertible. Then, for any y € (x.:"[o,-rl )‘ .
y = ooy + [T Gle,0(2y)e) (1.2)
with

ot) = ¥(e)(sy)"! (1.3a)

) 3, 8(0) oe)”! , ocsct
G(t'., = (‘ o;b)

-He) 3 o) Ue) ™', ecace

Knowledge of Y , hence of Green'’s function G , makes it possible to calculate
stability constants. Denote by {°*| any convenient norm in BE® as well as the
corresponding matrix norm. Also, let
o = (5 IrteriPae)VP

with Iyl = npmly(t)l its limiting value as p —> ® , Then (1.2) implies

iyl

the differeatial stability relatioa
Iyl € Kinyl + e’l:.ylp v (1.4)
with interior stability constaat

o, = sup Off o oola(s)ast /il sz e (L f0,] )}

- f 160,81 %] s . VP4 iq=1, (1-se)
and side condition stability coastast
K o= 0L . (1.5b)
Of particular interest for us are the special choices p = 1, ® which give
c,= 161, , ana o = 1ff|G(,m)las0, (1.6)

and correspond to measuring the sigze of Ly, 4.e., of £ 4in (1.1), by If), and

SPaJa. S

(] ot Tespectively. 1t is worthwhile to consider both these choices, as the
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following axample illustrates. Choose

NERE

Then
s-t
[ 1 -1
et o7 =5 [_‘ 1] . 8Ct
oe) = < -7 e Glt,s) tes .
-9 e [ T 1
—2 [' '] ¢ t<s

Prom this, one calculates

-

K= 1+eT, =1, ¢, =200 -aV2,

-
If T 1is not largs, them p = 1 is a desirable choice becausse it allows £ = Ly
to have integrable singularities. On the other hand, if T is large, as would be
the case vhen a boundary value problem on a semiinfinite interval is approximated by
a problem on a finite interval, then p = @ may be wore appropriaste. For example,
if Ly =1, then Ilyi_= 1 regurdless of T , while myl'-'r,nd-o. use of
P= 1 would lead to linear growth in T in the estimate (1.4).

It is obvious that S

problea (1.1) may be well conditioned (i.e., have X and cp

while the associated initial value prodlem is badly conditioned and vice versa. In

depends on the side oconditions. In particular, the
of acceptable sise)

any case, using the initial value prodblem to estimate the stability constants for
(1.1) amounts to estimating the sise of |#{¢)| Dby 1ete) 11 (30" , and this may

well be a bad overestimate.

2. Stability of cas-step schemes. Let A ;= (t‘): be a mesh for (0,T) ,

‘...‘

.-%‘.aa<5-,o
ror such a mesh, we use the abbreviations

h’ [ L t”'"’ and h 3= m’ h’ .

LY

[ VAR oy
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with any function y:X —> B defined on some set M containing A , we
associate the step function y and the broken line ; . Both agree with y on 4,
i.0.,

yity) = y(t,) = ;(tj) e 3°0,00.,N.

The function y is piecewise constant (in each component), with breakpoints ¢, ,
eees ty o and is continuous from the right, as is Dy (to be precise about it). The
function y is plecewise linear, with breakpoints t, , ece, ty.q o and continuous.

As is customary, we denote by

Tok

the collection of all n-vector valued mesh functions y: 4 —> R® . We identify each
such function y with its step function imterpolant. In particular,

Iyt -|l-(3‘:h ly,_,|1P)V/P
¥ip = Wy = 1-11¥4-q

Yot we use
2 instead of y(t,)
for the value of y at tj e« Wo write y instead of y if we want to stress the
fact that y 4is a mesh function. Pinally, we associate with any n-vector valued
function .y on (0,7] the real valued mesh function |yl A given by
Irly,y = sup {iyte)l s 6, <t < LTV0R I L TR

We approximate the solution of (1.1) by the mesh function y which satisfies

I.Ay-g
By = D

(2.1,

with
,1!‘ - 71
(xl")j L hj - (A‘y)j » j-o,....li-‘l .
Here, A‘ is a linear map carrying mesh functions to mesh functions. We give ex-
amples later on.
In this section, we are not concerned with the details of this approximation to

(1.1). Ve only give suitable conditions on A A which allow us to connect the stab-
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ility of the coatinuous problem (1.1) with that of the discrete problea (2.1). We
begin with the following
Condition (p). There exist functions &, and 4, independent of 4 such

that
~ s
Mayy = ayl,l, < a iyl ¢+ a,(niLyl , forall ye ) . (2.2)

Proposition 1. Ist 1 < p <« , If Condition (p) holds, then the differemce
stabilicy relatiom

iyl, < Kisy| + cp(‘l + dz(h))lx.‘ylp + cpd‘(h)lyl' {2.3)
holdp for all y € (l")‘ « It d,(h) stays bounded while 4,(h) —> 0 as h - 0,
a stabil t for the discrete scheme (2.1) for all suffici

small b . If also dy(h) —> 0 as h —> 0, the resulting stability constant
approaches that of the continuous Qe

Proof. Por any mesh function y , we have
Iy = Ly + Ay-AY.
Therefore, from the differential stability relation (1.4),
Iyl, = Iyl < x|sy| + cp(l!.‘ylp + iy - Ay|‘lp) .
This together with (2.2) implies (2.3). ||}

For any 1 < p <=, condition (p) is implied by the

Local Coméition. There exist a function 4, and constants d, and r independent
of A such that

n, 4
eh"(z"yw for all y e (R)" . (2.4)

Ay = axly 4 ¢ A (h)iyl + 42“_;:|

Explicitly, this Local Condition implies Condition (p) with 4 = /) Pa‘ and

d4,(h) = (2r+1)hd, . To derive this, note that

( I nilawe P < [ njam,®?
l-3lee b [ASY -Fler 'y

-




therefore

Nagy = a7l < /P8 iyt + (t2rem P }h I onlap,P)?,

I -yle
and the observation

h I nilayPeni I n iy, i? < areinn gy
§’|1-3|<r 1 3 -fle b B &'p

finishes the argument. The local Condition also implies the following refined
stability estimate.
Propositiocs 2. If Local Condition hol then the difference stabilit:
relation
fyl, < Xizyl + o,(1+ (A+NEnI Lyl + c d (0) Iyl (2.5)

holds for all y e (®2 .

Proot. ¥ow, from (1.2),
tyl, < Kisyl + c iyl + Ufiate8)| 1Ay - A7l (o) dab_ .
Here, with (2.4), the last term is bounded by
o dy iyl + 30 L [::"m *8)| ds lt-:l ‘rhil(t.ay)‘ll.
and, in this, the last term is bounded by
7!2 max, l'n_ju1 (et inyi, . 11

Remark. From (1.6) we see that c_ < '!c‘. Thus (2.5) improves the final term

of (2.3) and makes the h-dependence of the function 4, in (2.3) explicit.

The argument for Proposition 1 is easily reversed.

Proposition 3. Let 1 < p < =, If there exist functions e, and e, indepen~

dent of A such that
1
lln‘x - Aylh'p < .1"') iyl + oz(h) It.ylp for all y e (l-; )[0,'1'1 )n (2.6)

and functions K and cp 8o that, for all 8 with h<hy,

«?e
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iyl < !(ho)lnyl + cp(ho)ll.Aylp for all y € (ln)A:

Iyl, < Kihp)isyl + o (ng)(1 + e,(h) MLyl + c (hyle,(h)lyl, (2.7)

for all y € (l-!(’”)u

for the continuous problem provided e,(h) remains bounded and ey(h) —> 0 as

and all 4 with h < hy . This provides a_stability estimate

h—>0.

Proof. Let A be any mesh with h < hy and let ye (I.;”)n . By assumption,

gl < K(ho)ISyI + cp(ho)lLAzlp R
while
Ly = w - (Ag-ay).
Theretore
iyt ¢ K(ho)lnyl + cp(ho)l!.ylp + cp(ho)lllbx- AylAlp v

and the bounds (2.6) now allow the conclusion that (2.7) holds, with y there
replaced by ; s for any sufficiently fine A . But thea it must hold for y , too.

3. Examples. A very transparent example is provided by the cemtered Buler

scheme. In this scheme,

(l:.Ay)j - (I.y)(tjﬂlz) , all 3§,
hence
+y
o . LSS
(AAy)j “y”tjﬂ/z) “tj-n/z) 3 .

Therefore, on the interval (ty,ty,q),
Ay =AY = (Ay)(ty) - Ay = (A(tj..,/z)-l)y + A(th/z)(y(ejJ/; -y).

Further,

QT
f S

Y(ti*'/z) S e = (- tgayy,

0
at ad-a 4o

Y = (eg)y+ (ar)egyy .
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IAAy-A;IA‘j < (mratyr+ (L)l + Ihl.zlyl.)hjlz .
This shows that the lLocal Condition holds with r = 0, ai(h) = h(m* i, + IAI_2 )z
and 32 = Al _/2 « Correspondingly, the stability constant for the centered Euler
scheme is within O(h) of the stability constant for the continuous problem being
solved.
It is also possible to bound 'AAz - ‘Y'A,j in terms of Ly . We have
Ag-Ay = (A(tj‘,/z) - A);(tja/z) + A(;(e”,/z) -y)

on (t,,tjﬂ) « Further,

o V(34 (31}

vitgg) - yter = V[0« [T

y' = Ly + Ay .
Therefore
t
IgrAyl, g € WIA/2 iyl s !tj“|(:.y)(-)|d- + Wihiye) .
This ehows that (2.6) holds with e,(h) = h(IA'1_+ 0. 2)/2 and e,y(h) = ntaly2 .

A slightly more involved example is given by the choice

(Ay), = I a Alt, )y .
av’y Il % 3¢K T3¢
with

Beoye =1/
“jk =0 , for k € [0,N)

uxj'k chkl

< a.

For this scheme and on (tj,tjﬁ) v

~ ~ ~
AAy Ay = : cjk“‘j"’k)yj"'k - Ay
- : ay (A (e 0 - ay)

and

ay) (e, ) -ay = (A(tj+k) -Aly - A(t3+k)(y(tj+k) -y).

I+
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Now consider y(t )-y.If u»o,emn

¥ oeee + Yltol) = ()

() - y(e) = Fleg,) - Yt ) 341

k“l

-t + |

Byrn? yom t™t) ¥y

1
- .. Bipm (240 4om *) 2F e %em, A Esemes) Yyemes) ¢

jﬂ s m>0

-t n=0
j+1 !
A similar formula holds for k < 1 . From this, we conclude that the Local Condition

with

Byim
is satisfied with r=s , 4y (h) = h rla(I'l_+ WAL 2ra) , ana 4, = ramal,

4. Melated considsrations. Certain discrete schemes are so closely related to
the continuous problem that it is natural and advantageous to exploit this interplay
directly. We consider two specific instances, multiple shooting and algorithms based
on approximating the Adifferential equation.

In Multiple Shooting applied to (1.1), we are led to the system

Yy - !(tjﬂ)r(tj)"yj = 9y . 30,ee W,
BoYp * Byyy = b
vith g, 1= [:3*1 !(tj+1)Y(l)-’!(l)dl' all j. A simple analysis of this systes
can be based 031 the fact that y, = ;(tj) , with y the solution to the problea

Lty = 9 , By=b,

and
- -1
g = Y Y(tj+1) gj/hj on (t 'tj+1 .
Therefore
- -1 .
y = ® ¢+ t‘;-o Gl oty 24y
and so

y, = #t)p ¢ :';:o Gltyt,,,)8, .
Under suitable assumptions, this leads to bounds for lyl. as, e.g., in Matthei)

[1981] .
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As an example of the second kind of method, consider the approximating problem
I.Ay - tA s By=D (4.1)

with LAy =y'=Ay , and A , £ plecewise constant approximations to A and f ,
respectively. Since "AY =Ly + (I.A-t.)y + we obtain

Wyl < cfuyf  + xiByl + c_ i - Al iyt . (4.2)
The approximating problem is therefore stable if

c A=Al <1,
Often, c_, may be quite small. For example, in many singular perturbation problems,
A = C/¢ and c, = dc,

therefore 1 - c_iA-Al_ = 1 -~ alc-gl_. In such a case, we conclude from (4.2) that

Klpy] + demyt
e <7 T dicgs .

This implies that the convergence of the solution Yy of (4.1) to the solution y
of (1.1) is uniform, since L(y-y) = -(A-A)y and B(y-y) = 0 , therefore
Iy -yt < dic - gl tyl /(1 - akc-Ql
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