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Abstract 
i 

In mis paper, preliminary considerations and some experimental results are presented in an effort to design 

Very Large Vocabulary Recognition (VLVR) systems. We will first consider the applicability of current 

recognition techniques and argue their inadequacy for VLVR. Possible alternate strategies will be explored 

and their potential usefulness statistically evaluated. Our results indicate that suprasegmental cues such as 

syllabification, stress patterns, rhythmic patterns and the voiced - unvoiced patterns in the syllables of a word 

provide powerful mechanisms for search space reduction. Suprasegmental features could thus operate in a 

complementary fashion to segmental features. 

V 



1. Introduction to the Problem 

A typical adult human being with average education can (on the average) recognize words from a 

vocabulary on the order of 40,000 words quite reliably. Current speech recognition technology is capable of 

handling vocabularies of only up to 200 words when no contextual, semantic, pragmatic or syntactic 

information is given to such a system1 and vocabularies of up to 1000 words in speech understanding systems 

when a full sentence and a rigid recognition grammar is given2. Although it is no doubt true that such 

systems can already preform satisfactorily in a number of practical applications, they are nevertheless severely 

limited in generality , extensibility and robustness and do not approach human performance. As a step in the 

direction of unrestricted speech recognition the barriers imposed by vocabulary size must be resolved. These 

limitations first have to be removed in the acoustic domain before we attempt unrestricted speech recognition. 

As a task we propose the design of a 20,000 isolated word recognition system. A vocabulary of this size is in 

the order of magnitude of the command of language of human beings. It also contains the whole spectrum of 

word recognition problems, since various levels and kinds of confusability will certainly be encountered. The 

most successful current recognition strategies have in their present usage insurmountable limitations, when 

the vocabulary size rises to the proposed dimensions. 

1.1 Dynamic Programming Template Matching 

Dynamic Programming Template Matching is out of several reasons not easily extensible to very large 

vocabularies. First, the practicality of a system that has to be trained for very large vocabularies is 

questionable. Possible extensions can therefore only be obtained if subunits (e.g., syllables, demisyllables or 

phonemes) smaller than the word are extracted from an unknown word and matched to the pertinent 

templates. A second difficulty is given by the increase in recognition difficulty. Large vocabularies contain 

phonetically very similar sounding words (BUCK-DUCK, TWO-TO) and disambiguation requires 

computationally expensive detailed phonetic analysis. In contrast, there are phonetically totally non- 

ambiguous word pairs (ANTIDISESTABLISHMENTARIANISM - IN) and inappropriate candidates should 

be discarded immediately. Thus it is important to recognize word classes to eliminate the inappropriate 

candidates before identifying the recognized word. In this fashion, DP-matching methods have been 

successfully applied to somewhat larger vocabularies than 200 words3. 

1.2 Harpy 

Efficient search of a large pronunciation network has successfully been achieved in HARPY2 for tasks 

involving larger vocabularies (~ 1,000 words). HARPY's success is due to such virtues such as the HARPY 
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network which provided a constrained search space incorporating syntactic and semantic information, and the 

efficiency of die search that yielded the overall correct recognition result in spite of errorfull phonetic 

labeling. For Very Lirge Vocabularies, in an isolated word recognition task (no syntax/semantics), however, 

straight application of the HARPY approach leads to very large branching factors that make search an 

expensive operation. Moreover, phonetic recognition errors will more readily result in high word recognition 

error rates because of the size and confusability of the vocabulary, More detailed acoustic and phonetic as 

well as prosodic information needs to be exploited. 

1.3 Search Space Reduction Techniques 

For Very Large Vocabulary Recognition (henceforth VLVR) computationally inexpensive, robust and 

powerful mechanisms for Search Space Reduction are necessary ingredients for a successful system. Zue and 

Shipman have recently demonstrated that substantial search space reduction can be achieved using 2-way 

(Consonant-Vowel) or 6-way featural segmental classification schemes. Nevertheless, large sub vocabularies 

remain, particularly when increased class sizes must be presumed in the presence of error. Furthermore, 

some class distinctions based on linguistic notions require detailed analysis and .ire by no means a robust 

trivial first pass elimination heuristic. A consonant-vowel distinction, for example, can be exceedingly 

difficult in cases like liquids, glides and nasals. Cole et al.5 have recently shown (for the alpha-digit task) how 

a systematic knowledge engineering approach can yield superior performance by applying featural knowledge 

to making fine phonetic distinctions. Yet, robust criteria to perform highly selective preclassification in all 

generality have not been demonstrated to date and await further study. One aspect of human speech is 

known to have great impact on intelligibility and naturalness of speech and yet has been largely ignored for 

speech recognition devices: prosody, or more generally, suprasegmentals. In this paper we demonstrate the 

potential impact that a set of suprasegmental features might have on Very Large Vocabulary Recognition. 

In the next chapter we will introduce several Very Large Vocabulary Databases that were compiled and 

evaluated. The properties of Very Large Vocabularies will be discussed. The remainder of the paper will 

demonstrate the potential of using a combination of suprasegmental and segmental features as filters in the 

recognition process. Experimental results using the dictionaries described will be reported. 



2. Creating a Database for VLVR 

A database as a research vehicle for the VLVR task has to be designed aecording to two major critena 

First it has to compnse a selection of words that both are commonly used in natural language/speech and 

impose the whole spect^n of recognition difficulties encountered in VLVR.   Second, it has to provide 

various kinds of information that are needed or useful in the actual recognition process.  In UK followmg 

sections we describe four corpora of very large vocabularies thai have been invest.gated. 

2,1 Four Sources for the Design of a VLV Database 

2.1.1 Webster's Dictionary 

One of ftc corpora availabl. is a machte readable form of Webner's Dierionary conuinlog .he 

onhograpbic and phonemic reprcsemaiion for 20.000 «orda .n me phonemic speiling »liable boundary 

marte are provided. Homographs ha.e separare entries with peninent separate phonemic spcllmgs. Some 

„f me problems encountcmd wift mis corpus are: t,pugraphical errors, archaic, inaccurate or mcorrccl 

phonemic transcripdons and me inclusion of words mat are not common in present-day Amencan Enghsh. 

2.1.2 The Brown Corpus • Form B 

A corpus of about 1.000.000 words selected fromvahous American tern was collected and evaluated at 

Brown University'. This particular version of me corpus contains the orihographie spelling of the words as 

well as a count of nmnber of occurrences (word ftequendes) in me various source texts. TTte stiength of th.s 

corpus is me provision of the word frequency counts and as a consequence me fact that only commonly used 

American English words are included. Its major drawbacks for our purposes are: 

. Hmowhs m collapsed due to their identical spelling, an issue that when dealing with sp»* 

recognition tasks has to be resolved. 

. The corpus is based on *rUm text and thus is biased towards common ocourences in writing 
rather L common words in speech. For example, fonnulas and punctuation -ksJ^uded 
here. Indicative of the bias is. for example, the fact that the most frequent word m wntten text 8 

the word "THE", while in spoken speech "I" occurs most often. 

. There is no provision for phonemic information or other pronunciation related cues. 

Unlike Webster's Dictionary, this corpus also includes various fonns derived from a basic root word. TMs 

for example, "USE", "USES", "USED", "USUALLY", etc. arc all listed separately. This property ,s actually 



desirable, since it reflects a real problem in VLVR because of the high phonetic similarity among some of 

these words. 

A further caveat is warranted here: the word frequencies introduce a very strong bias towards a set of about 

100 most frequent words, which occur about 50% of the time in written Hnglish text. Building a VLVR 

system optimized for words as they occur most frequently would mean building a 100-200 word recognition 

system specialized in dealing with the highly (for VLV) atypical class of the 100 most frequent words in 

English text. This class largely consists of monosyllabic function words that may or may not be useftil for 

VLVR depending on the recognition task. These properties of a large vocabulary are illustrated in figures 

2-1 and 2-2. In Fig.2-1 the average number of syllables per hundred words is shown for the 20,000 words of 

the Webster's dictionary sorted according to the word frequencies provided by the Brown Corpus. 

Fig.2-2 shows analogously the percentage of polysyllabic words per hundred for the same vocabulary. It can 

be' seen that, the distribution of syllable counts over the word frequency sorted 20,000 word vocabulary 

stabilizes after the first 300 most frequent words. The words in rank less frequent than the first 200 or 300 

might have different properties from those very frequent words. 
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Figure 2-1: Average Number of Syllables v.. A .i.d Frequency Rank 
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Figure 2-2:  Percent of Polysyllabic Words vs. Word Frequency Rank 



2.1.3 The Carterette and Freedman Corpus 

Tlic Cartcrcuc and Krccdman Corpus' is a corpus of 16.000 spoken words. The speech was recorded 

without the prior knowledge of ihc subjects. It is conversational speech ("small talk") of students in a waiting 

room. Not unlike Brown Corpus - Form B, a list of words and their word frequencies have been generated 

and are available on line. Although there is significant overlap in the overall collection of words between the 

words in this corpus and those in the corpora discussed above, new aspects arc gained from this particular 

selection of words. First, a word frequency count is obtained based on spoken language rather than written 

language. Second, a set of words more particular to spoken speech appear more noticeably: names of people 

and cities, numbere (digits, years, etc.), letters (presumably for spelling of acronyms) and finally exclamations 

(Oh, Uh, Nah, Um, etc.). Caveats and drawbacks similar to those for the Brown Corpus apply here, too. 

2.1.4 cmut • an additional source of Information 

An additional source of information available in our facilities, a PASCAL version of the MlTalk Text-To- 

Speech system8,9. can be run to obtain speech related information, such as: 

• phoneme strings 

• phoneme durations 

• F0 target values 

• various markers, such as Morph Boundary Markers, Syllable Boundary Markers, Stress Markers, 

Function or Content Word Marker, and, if so desired. Part of Speech Information 

It is therefore possible to derive various kinds of speech related information from an orthographic 

representation, without the necessity of transcribing by hand all the words in a corpus or actual speech 

measurements. Of course, this information is synthetically derived and the processes that generated it are not 

problem-free. Thus one has to use this information cautiously as an approximation to real speech 

Nevertheless, a corpus can be generated that contains useful additions to the corpora discussed above. 

2.2 Design and Realization 

In this section, we will briefly discuss two databases that we have created for two distinct research efforts 

leading towards VLVR. 

The first, a 20,000 word database, is intended to investigate and experiment with the properties of VLV's. 

The objective is to consider the effects of various recognition strategies (given certain assumptions) on 



performance. The prime goal is to develop methods that filter out a subvocabulary of preferably small size by 

means of robust detectors of features of various kinds. Since these detectors will include various aspects of 

speech, it is useful to have a database of words complemented bv phonemic, prosudic and possibly 

morphemic and syntactic information. To this end, an augmented version of the Webster's Dictionary has 

bven created. It "ontains in addition to tb" orthographic and phonemic representation, various additional 

aspects derived from running the individual v\crds from this dictionary through cmut as described above and 

adding the word frequency count from the Bro-.n Corpus. 

The second, a speech database, is intended to provide the framework for the initial stage of the actual 

implementation of a VI .VR system. The union of the 900 most frequent written words (Brown Corpus) and 

the 900 most frequent spoken words (Carterette and Freedman Corpus) was selected to provide the basis for 

this database. The union contains equal shares of aboot 450 woiw that are either unique to the first 900 

spoken words, unique to the first 900 written words, or common to both . .s. All exclamations, acronyms, 

titles and names were preserved. The special punctuation symbols, formulas, etc., contained in the written 

corpus were eliminated, as well as the somewhat arbitrary selection of numbers and isolated letters. Instead, a 

list of all the numbers from 1 through 20, the numbers 30,40 90,100 and 1000, and a list of all the letters 

in the alphabet were added to the corpus. Also to provide instances of long words, a set of 115 words was 

added that have four or more syllables. The resulting collection of words thus contains approximately 1500 

tokens. ■ • 

The speech ditabase based on this selection of words is currently being collected using four native speakers 

of American English, several reading sessions each. 
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3. Suprasegmental and Segmental Filters in VLVR 

3.1 Methodological Comments 

In this chapter resu-w of a theoretical exploration of possible sources of information will be presenu >y 

"theoretical" we mean that no actual speech database was used. Rather in order to obtain insights into the 

properties of very large corpora (20,000) the information from the dictionaries discussed in the previous 

chapter was used. More specifically, die alimented Webster's dictionary discussed in section 2.4 was used. 

This r ^rpus of 19955 (nominally 20,000) words not only has the orthographic and phonetic representation, 

but ;.lso contains entries for segmental durations, F0 targets and various markers as discussed previously. As 

was pointed out, this information has been obtained in part synthetically. Syllable boundaries, segmental 

durations, etc. have so far not been available for corpora of this size, such that synthetic data provides the best 

interim solution currently obtainable. It must be pointed out, however, that the resu'ts present he c .nust 

therefore be interpreted only as a first order approximations to die properties of 20,000 words in Webster's 

dictionary when spoken by humans. As a motivation to using this corpus, however, a few supportive 

comments are in order. 

• The phonetic transcription obtained from synthesis has been found useful for our purpose. It was 
designed to produce intelligible speech and it is believed to be closer to actual speech and contain 
finer phonetic distinctions than the description found in the regular Webster's dictionary. This 
can and has provided valuable additional information that would otherwise not be available. One 
might understand this distinction by the underlying philosophy behind the transcriptions. The 
synthetic transcription does not intend to instruct proper pronunciation, but rather attempts to be 
a close approximation to real contemporary American speech. It is thus more useful for the 
specific problem we set out to solve, to recognize contemporary American speech. 

• Synthesis was obtained (see chapter 2) using a version of Mrralk-798'9 an ambitious large scale 
effort aimed at unrestricted Text-to-Speech synthesis. MITalk-79 was undoubtably developed to a 
level that is comparable to human speech in intelligibility and naturalness. Many of the 
pronunciation rules as well as prosodic parameters (such as segmental durations) were obtained 
from measurements of spectrograms taken from one speaker. The particular sound speech quality 

might therefore reflect one speaker's peculiarities but resembles closely actual human speech. 

• Durations have been obtained from spectrogram measurements at the segmental level. Based on 
measured segmental durations and a set of 11 modification rules MITalk predicts segmental 
durations, synthetically. The synthetic segmental durations have been found to differ from 
measurements on independently collected speech by a standard deviation of 17 msec . These 

short deviations arc less than the just noticeable difference (JND) of temporal variations in 
speech. The synthetic durations could thus be considered perceptually accurate. All statistics 
collected in the following involving durations will be limited to the suprasegmental structure of 
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the words. This eliminates to some extent the possibility of a circular reasoning between synthetic 
data and the desire to find regularity in the data. More specifically, the segmental durations used 
in MITalk have been obtained without particular attention to isochrony In Fnglish or to the 
concept of rhythmic boats.1 We believe therefore that it is valid to consider syllable durations 

obtained in this fashion. 

The word frequency count (obtained from the "Brown Corpus") was added to our database. Most statistics 

reported in the following, however, will not be based on frequency weighted occurrences for the reasons 

outlined in the previous chapter, i.e., to avoid a heavy bias towards a radier limited set of function words. 

Before we turn to a statistical evaluation of possible suprasegmental filters a few methodological comments 

are in order. In the following sections, we attempt to define measures of the speech signal that are robust and 

reduce the number of remaining candidates as much as possible. In other words we seek to evaluate a 

measure's power to prune the vocabulary to preferably small remaining "cohorts". As a means of evaluation, 

average cohort size has been used in previous evaluations. This statistic has the disadvantage of not accurately 

reflecting the an .unt of pruning of a given measure if the cohort sizes are rather disperse. 

We therefore propose the usage of expected cohort size given by 

ECS[s] = 2s0*ps(s0) 

where p (Sg) is the probability of any given word to fall into a cohort of size s0. Expected cohort size would 

thus take into consideration the likelihood of any particular cohort size to occur.   The result could be 

interpreted as the size of die cohort that a given unknown utterance is expected to fall into after application of 

one or more search space reduction mechanisms (filters). 

Fig.3-1 illustrates the difference between average cohort size and expected cohort size. If for example, 

(after application of a given measure) two remaining cohorts have size 19,999 and size 1 respectively, then the 

average cohort size would be 10,000. If in turn the two cohorts both had size 10,000 their average cohort size 

would also be 10,000. The practical usefulness, however, of a measure giving rise to this latter distribution of 

words into cohorts is much greater, sin? e the likelihood of a random word to be found in either cohort is 50% 

and thus the effective pruning much greater. The expected cohort size (ECS) in contrast can be evaluated for 

the first case to be 19998 which corresponds to a pruning to only 99.99% of the original vocabulary, while in 

the second case the ECS is 10,000 which in turn corresponds to 50% pruning. 

Based on these considerations we will report in the following either expected cohort size or else whenever 

useful maximum cohort size (i.e., worst case assumption). 

Carlson ct al.. however, report partial isochrony as a result of application of the prosodic component in MITalk 
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Coh prt Size 
n  

19999 

*1 
Cohort Size 

10000 

Expected Cohort Size 
• 19,998 

Average Cohort Size 

Cohorts 

Expected Cohort Size 

Average Cohort Size 
■ 10,000 

Cohorts 

Figure 3-1: Comparison of Measures for Various Cohort Sizes 

3.2 Some Properties of a Very Large Vocabulary 

Various studies have already examined the statistical properties of phoneme distributions in large 

vocabularies. Denes10 in 1963 reports phoneme and digram distributions for 72.000 phonemes as well as the 

frequency distribution of consonantal minimal pairs. He found AX (schwa), IH, T, N, S, D the most frequent 

phonemes, thus making consonants with alveolar place of articulation the most common. These and other 

results are supported by our data. Denes also reports the most common minimal pairs in such a database, i.e., 

the discriminating phoneme pairs in word pairs that differ only by these phonemes. Most minimal pairs are 

distinguished by their manner of articulation rather than their place of articulation. 

We have found the number of such "similar"2 word pairs to be surprisingly large. In a previous study 

using the original phonetic labeling from the Webster's dictionary it has been found that a total of 28,335 

pairs of words can be found that differ by one phoneme only. A total of 6263 word pairs differ by the absence 

(deletion) of one phoneme in one word with respect to the other. 

VLVR, however, is complicated not only by the very high number phonetically similar word pairs but also 

by similarities that cannot be disambiguated on the basis of phonetic identity alone in the first place. 

Note that these pairs do not in all cases have to be similar sounding from a perceptual point of view. ANIMATION 
- ANNOTATION may for example cause less confusion to humans than MEDITATION - MliDICATION. In some of these cases, 
prosodic differences or similarities might .give rise to better or worse discriminability. Dil'lercnt stress levels might improve 
discriminability perceptually, l-inally, different phonetic categories might differ in their discriminatory power. 
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• There arc 376 word pairs (i.e., the recognition of 752 words is affected) that are indistinguishable 
by discrimination of phonemes or stress patterns or syllabic boundary location (e.g., TWO - TOO, 
Rl:.D - READ, etc.) Discrimination can he done only on the Iwsis of contextual cues, or 
likelihood of occurrence (as primed by cultural bias, experience, context or simply word 
frequency). 

• An additional 55 word pairs arc discriminable on the basis of stress only (e.g.. 'Increase 
- incr'Fase). Note that this number is derived from words having identical phonetic spelling with 
the exception of their stress location. Most words pairs, however, that differ in stress patterns also 
differ in some aspect of their phonetic realisation (FErfect - PerfEct).3 Stressed vowels when 
destressed. frequently change to reduced vowels and therefore their spectral characteristics 
change. The real number of pairs that are distinguishable mainly by stress is therefore probably 
much higher. 

• 24 word pairs differ in the presence or the location of a syllable boundary only (e.g, Unreel 
- Unreal, Dower - Dour). Again this number was computed on the basis of words that other than 
the syllable boundary have identical phonetic strings. This number is presumably much greater in 
reality also, since some word pairs differing in syllable boundary only, will nevertheless be 
represented in our corpus by differing phonetic strings. This might for example be the case for 
vowel - vowel sequences that within one syllable would be represented by diphtongs. 
Discrimination between these pairs might be possible based on accurate location of the syllable 
boundaries or by analysis of the temporal structure of the word in question. 

From the points raised above it seems clear that there is a substantial number of words that are 

discriminable from others on the basis of prosodic information. But could prosodic or more generally 

suprasegmental information be of use as preliminary filters to eliminate unlikely candidates in general ? 

3.3 Syllable Counts 

One possibility for a crude search space reduction mechanism would be to reject candidates that do not 

have the same number of syllables as the unknown utterance. It has been shown that the detection of syllabic 

boundaries can be performed with an accuracy of better than 90% correct on continuous speech. In 

Fig.3-2 the number of occurrences of words with a specific number of syllables can be seen. The broken line 

shows the distribution over the 20,000 word vocabulary discussed. The solid line indicates the distribution of 

the same vocabulary, but weighted by the frequency pf occurrence in the brown corpus6. The implicit 

assumptions in these two graphs are that in the first case all words occur with equal frequency and in the 

second case that a given word occurs as frequently as indicated by the Brown Corpus frequency. In the latter 

3 
incidentally, most of the 118 Homographs found in our corpus differ by stress only with or without corresponding phonemic 

alterations. 
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case, for example, this means that in a recognition task the word THE is assumed to have occurred 69971 

times and is coumed as such while the word ABNORMALLY is counted only once. It is clear from this 

example and from Figures 2-1 and 2-2 thai the frequency weighted distribution has a strong bias towards 

monosyllabic words: frequent words, in particular function words, tend to be shorter in number of syllables. 

In English entire paragraphs of monosyllabic words11 arc possible without any noticeable distortion in 

naturalness. Thus syllable counts could be considered as a means for classification in a large vocabulary with 

relatively limited potential for search space reduction. The ECS for the frequency weighted vocabulary is 

12,628 which corresponds to an effective reduction to 63%. Assuming that all words are equally probable the 

ECS is 5013, i.e., an effective pruning down to 25% of the corpus. 
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  Weighted by Word Frequency 
  No weighting 

7 8 
syllable count 

Figure >2:  Number of Occurrences vs. Number of Syllables 
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3.4 Stress patterns 

Stress and rhythmic patterns have been discussed by several authors12'13'14,15. Depending on the 

psycholinguistic model they develop these two linguistic concepts may not easily be separable. For this 

experimental evaluation, however, wc have chosen to explore stress and rhythm as independent entities. 

From our 20,000 word corpus patterns were extracted that were cither unstressed or carried primary stress. 

We have not considered stress levels other tha" primary stress, since the possibility of detecting them robustly 

is rather unlikely4. 

A total of only 45 unique stress patterns was identified, some of which occured very infrequently and may 

in fact due to incorrect or questionnable stress labels in the input. The three most frequent stress patterns are 

(1 = primary stress; u = unstressed): 1-u, 1, and 1-u-u. In all three cases the stressed syllabic is in word 

iniüal position. 12,252 words (more üian "half the dictionary) fall into either category. Following in frequency 

are u-1 (like in UNITE) and u-l-u, etc. If w; were to use stress patterns as a filter for VLVR, the resulting 

ECS would be 3055, which corresponds to 15.3% of the corpus. 

3.5 Rhythm and Suprasegmental Duration Patterns 

Deaf speech16 and foreign accents17 cause considerable difficulty in intelligibility to normal native speakers 

of a language. One major reason for the poor intelligibility is that the temporal structure in both cases is 

anomalous. The English language is isochronous and stress timed. In fluent speech speakers of English place 

intervals of approximately equal duration between syllables carrying primary stress. If several unstressed 

syllables are to fill this interval they are reduced in duration, in theory15 to 1/2 or 1/4 units. A consequence 

of shorter or longer syllables are the metric feet that make up the rhythmic structure of English speech . 

Other languages (for example French) are syllable timed languages, i.e., all syllables are of equal length. 

These differences in rhythmic patterns give rise to some of the difficulties foreigners encounter when learning 

a new language and of course create perceptual problems when trying to decode foreign accents . Indeed the 

lack of rhythm is one of the major difficulties in deaf speech  . 

If we assume that in normal English speech there is a co isistent rhythmic structure, and if native English 

speakers seem to be making strong use of this structure in the perceptual process, then it is reasonable to 

examine the durational patterns for VLVR. In this section, we will examine two forms of suprasegmental 

temporal patterns: 1.) syllable durations and 2.) the ratio in durations of voiced and unvoiced segments in a 

syllable. 

4In the psycholinguistic lileralure (his has been found to be a task, that is difTicult even to the human listener. Stress may in fac{ be 
partially a psychological phenomenon, thai may or may not be readily available from die signal) 
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In order to render this measure meaningful, we need to define the extent of a syllable first. The location of 

the syllabic boundaries given by our synthetic data was found radier inconsistent over the whole 20,000 word 

vocabulary. It should also be our concern here to identity a syllable boundary location thai is Identifiable in 

the speech signal. Allen19 presents a very thorough treatment of syllable boundary location by humans. He 

suggests that the apparent perception of syllable boundaries is in fact the perception of rhythmic beats and 

measures their location in a scries of click matching and tapping tasks. Syllable boundaries are found quite 

reliably (with little variability) at the onset of stressed syllables. Generally a syllable boundary is placed 

somewhat before the onset of the nuclear vowel of the syllable in question. The time interval by which the 

syllable boundary precedes the vowel nucleus is determined by ihe consonant (cluster) at the boundary. For 

sonorant syllable junctures the onset of the return from the maximum formant excursion towards the vowel 

nucleus is the boundary. 

As a first order approximation, the onset of the vowel nucleus can be considered to be the syllable 

boundary. For our database, all syllable boundary markers were adjusted to reflect this change. One of the 

disadvantageous side affects of this adjustment is that segments leading a word initial syllable stand alone and 

are not included in any syllable. From a practical point of view, however, this is a quite useful situation, since 

the duration of leading segments such as voiceless stops can not easily be measured (due to the leading silence 

interval). If one sets out to measure real speech one does have to resort to this solution18. 

3.5.1 Syllable Durations 

Syllable durations for eacl. jyllable defined in this fashion were computed by summing up the segmental 

durations. In Fig.3-3 and 3-4 we find histograms of syllable durations with the syllable being in non-word- 

final position or in word-final position for polysyllabic words and in Fig.3-5 with the syllable durations of 

monosyllabic words. As should be expected, the average syllable length in word-final position is longer than 

in non-word-final syllables. To provide a unified measure, the distributions of Fig.3-3 and 3-4 were collapsed 

by "shortening" all word-final syllables by 9 csec (i.e., left shifting the histogram of Flg.3-4 by 9 csec) and 

combining it with the histogram of 3-3, The resulting histogram is shown in Fig.3-6. Fig.3-6 shows three 

major excursions and we will define these peaks as the short, medium and long syllables assumed in the 

theory. When we place boundaries at the major dips in the histogram, i.e., at 10 and at 16 we obtain three 

groups that will be labeled L, M or H for Low, Medium, or High Syllable duration. In the case of 

monosyllabic words, only one boundary was chosen at 44 csec, resulting in only two classes. Low and High. 
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Using these labels duration and stress were first evaluated togcthe.. 75% of all syllables carrying primary 

stress fall under category High, 10% under category Medium and 15% under Low. 14% of the 15% Low 

duration primary stressed syllables, however, arc monosyllabic words. I'lu's it could be said ihut in the 

majority of polysyllabic words stressed syllables carry a High label. 

Using this classiiication scheme all words in our corpus were repiesentcd by n syllabic duration labels (H, 

M or L) where n is the number of syllables in the word. A total ot 362 unique patterns were found. Th« 

largest group consists of 2965 words with ic'jntical patterns. The ECS is 1249. i.e., after elimination of the 

inappropriate prosodic patterns a subvocabulary of only 6% die size of die original vocabulary remains if we 

assume that any word of our original corpus is equally likely to be the unknown word. 

3.5.2 Voiced/Unvoiced Ratio 

An additional measure was motivated by the possibility that die relative share of voiced or unvoiced 

segments in a syllable could provide some overall early rejection or acceptance of a word candidate. In 

spectrogram reading experiments labels such as "mainly voiced", "all voiced" or "mainly unvoiced" have 

proven to be useful methods to early rejection of unlikely word candidates . We have here evaluated this 

measure in an analogous fashion as the syllable durations. For each syllable the voiced to unvoiced ratio is 

computed. The resulting histogram is shown in Fig 3-7.6 Again three groups can be identified and will be 

labeled as Low, Medium and High, where High represents the "all voiced" syllable case. Syllables that have 

voiced to unvoiced ratio of less titan 1, i.e.. that contain more unvoiced speech (frication, silence, aspiration) 

than voiced (e.g.. SIX) are labeled L. M are all the syllables containing a smaller proportion of unvoiced than 

voiced segments. Finally, all uniquely voiced syllables are labeled H. In Fig.3-7 H syllables are indicated by 

the mangle in the upper right comer (the UV/V - ratio is infinity in this case). It should be noted here that 

we call here "unvoiced" or "voiced", respectively, what we believe can be detected in the signal as an 

aperiodic or a periodic signal. Thus, for example, we call voiced stops (B, D, G) unvoiced, since a pitchtracker 

will typically label the segment unvoiced in spite of the occasional presence of periodic low amplitude 

prevocalization pulses. Alternatively, flaps (e.g., the T in WRITING) are labeled as voiced. 

Grouping all words according to their V/UV label patterns, we obtain 352 cohorts, the largest of which 

contains 2098 words. The ECS is 909 words or 4.5% of the original corpus. i1 

Note that syllable count information is implicitly used here. 

Separate treatment of word-initial, word-final syllables or monosyllabic words has resulted in similar results.   Hence, only the 
collapsed distribution for all the syllables in the corpus is presented here. 
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3.6 Filter Combinations - Results 

A number of experiments were performed to examine the effect that a combination of the labeling schemes 

discussed in the previous sections could have on pruning the 20,000 dictionary. Once again, what we arc 

interested in is the application of filters that provide crude, first pass, robust classifications that eliminate all 

entries from consideration that do not belong to a set of near miss alternatives. The thesis of this paper is that 

for a task of this size, prosody might provide a powerful robust near miss mechanism that could potentially 

operate in parallel with scgmcntal classification schemes. In this section we will combine some of the 

suprasegmental classification schemes developed above with each other as well as with carefully selected sets 

of scgmental classifications. Above all, it has been our attempt to use classification criteria that we believe can 

robustly be derived from the speech signal. The criteria have been selected based on the experiences gained 

from a feature based recognition approach to small vocabulary word recognition . 

The results of the various experiments are displayed in Fig.3-8. In al' cases the vertical axis shows the ECS 

for the various filter combinations. In the first and second column the ECS is given for the case that words 

are classified by crude scgmental feature patterns only or by duration patterns only, respectively, as discussed 

in the previous section. The third column shows the case where primary stress markers were added into the 

duration patterns. The resulting ECS of 978 corresponds to an expected pruning of the vocabulary down to 

.4.9%. The fourth column represents the results for the duration ratios of voiced to unvoiced segments 

(V/UV-ratio) in a syllable as discussed in the previous section. In the fifth column the duration labels and the 

V/UV ratio-labels were jointly used to classify the vocabulary into 1891 cohorts the largest of which identifies 

1411 words (no stress markers were used here). The ECS is 381 (1.9% of the original vocabulary). In column 

6, like in column 5, the duration labels, V/UV ratios as pattern generaws are given with the addition of the 

primary stress markers whenever appropriate. 

Columns 7 and 8 finally illustrate the usage of the suprasegmental filters as in column G with the addition 

of segmental filters. For segmental filters, two levels of detail were chosen. The first attempts to only capture 

very crude phonetic features, e.g., the strong fricatives S, SH, Z. ZH and the voiceless stops P, T, K, CH, J. It 

is believed5 that these labels can easily be detected in most cases. The resulting ECS is only 62 words which 

corresponds to a reduction to 0.3% of the vocabi'Iary. When allowing for a slightly more detailed featural 

analysis an even more remarkable search space reduction can be achieved. Ihcluded were (see Appendix) 

subsets of the closed or open vowels (major criterium in the selection was again identifiability - here the 

guideline was whether a particular sound can be robustly classified by a low or high Fl. Ambiguous sounds 

were left "iilabclcd and hence do not appear in the patterns). Moreover voiceless stops were included as well 

as weak and strong fricatives and the liquids W and WH. 14.080 unique patterns were identified. The largest 

cohort contains 94 words. The ECS was found to be 6 words which corresponds to a reduction to 0.03% of the 

search space. 



The drop in ECS when combining scgmental and suprasegmental features is surprisingly large. This 

behavior might be hypothesized (at least in part) by the complementary nature of the two domains. It appears 

that suprasegmental information provides a powerful new perspective to analyze a given unknown utterance. 

For completeness, Fig.3-9 shows the same filter combinations for the frequency weighted vocabulary. As 

could be predicted from the previous discussion, the high frequency of the monosyllabic function words 

introduces a strong bias towards the properties typical for monosyllabic words. The most prominent effect in 

this case, the comparably small benefit o|' durational patterns is easily explained by the fact that for 

monosyllabic function words only a two way distinction had been made. In contrast, phonetic features, 

however crude they may be, provide more discriminatory information in this particular case. 
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4. Conclusions 

In tliis paper we have examined the problems and some potential solutions to very large vocabulary 

recognition. We have presented a large vocabulary database. Based on synthetic data generated for this 

vocabulary, we have shown that prosodic features as well as a set of phonetic features can provide powerful 

cues to narrow down the large search space given by a very large vocabulary recognition task. The prosodic 

features of rhythm and the ratio of unvoiced to voiced segments have been found to be largely 

complementary to phonetic features, i.e., uiey are not redundant. Stress patterns yield little additional 

reduction of the search space, given rhythmic (durational) patterns. 

Additional prosodic features, such as amplitude patterns and pitch contours have not been examined in this 

paper. Such additional, potentially useful prosodic features as well as the robustness of those discussed in this 

paper will have to be tested in a recognition system. The 1500-word speech database described above will 

serve as a starting point for our efforts in this direction. 

The present results indicate that the study of prosody might provide substantial additional information for 

a very large vocabualary (-20,000 words) isolated word recognition systc.^. Moreover, when expanding 

towards connected speech (e.g., a dictation machine), recognition of the prosodic information in speech, 

appears indispensable. 
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Appendix I  Table of Phonemes and Feature 
Labels 

In the following a table of features is given. The phonetic alphabet in the first column is the Arpabet as 

used by MITalk. The labels in the second column indicate voiced (I or 2), unvoiced (0) segments or other 

markers produced by MITalk (-1). In the third column the segmental labels are given: open vowels (o), 

closed vowels (c), weak fricatives (v), strong fricatives (f), voiceless stops (s). W-sounds (w) and nasals (n). 

The labels are in some cases unorthodox depending whether they are readily extractable in speech. The fields 

on the right are example words from our corpus. Notice that the syllable boundaries are not adjusted here, 

i.e., differ from the representation used for the prosodic measurements. 

#c -1 content word 
#F -1 function word 
• -] morph boundary 
- -: syllable boundary 
1 - j primary stress 
2 -: secondary stress 
AA 2 0 NOT .#C.N.1.AA.T.AXP , 
AE 2 0 HAVE .#C.H.1.AF.V 
AH 2 0 OTHER .#C.1.AH.DH.-.ER 
AO 2 0 LONG .#C.L.t.AO.NG 
AW 2 0 OUT .#C.1.AW.T.AXP 
AX 2 • ABOUT .#C.AX.-.B.1.AW.T.AXP 
AXP 0 « UP ./SiC.l.AH.P.AXP 
AXR 1 0 PART ,#C.P.1.AXR.T.AXP 
AY 2 0 NIGHT .#C.N.1.AY.T.AXP 
B 0 • BETTER ,#C.B.1.EH.DX.-.ER  ' 
CH c s CHURCH .#C.CH.SH.1.ER.CH.SH 
D 0 • DONE ,#Cf0.1.AH.N 
DH V THUS .#C.DH.1.AH.S 
DX • MATTER .#C.M.1.AE.DX.-.ER 
EH • THEM .#F.DH.EH.M 
EL • FINALLY .#C.F.1.AY.N.-.EL.*.-. 
EM n ISM .#C.1.IH.-.Z.EM 
EN n PERSONAL .#C.tM.ER.S.-.EN.*.-. 
ER » FIRST .#C.f;.l.ER.S.T.AXP 
EXR • THERE .#C.W.1.EXR 
EY 2 • MADE .#C.M,1.EY.D.AXP 
F 0 V FOR .#F.F.OXR 
G 0 • GOOD .#C.G.1.UH.D.AXP 
GP 0 • GET .«C.GP.l.EH.T.AXP 
H 0 V HE .#F.H.IY 
HX 0 V PERHAPS .d'C.P.ER.-.HX.l.AE.P.S 
IH 2 c IN .#F.IH.N 
IX 2 • MEXICAN .#C.M.1.EH.K.S.*.-.IX. 
IXR 1 . c HERE .#C.H.1.IXR 
IY 2 c THESE .#F.DH.2.IY.Z 

AX.LX 

,».-,AX.N 

PAOK 
flLHED 
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J 0 s JUST .#C.J.ZH.1.AH.S.T.AXP 
K 0 s MAKE .#C.M.1.EY.K.AXP 
KP 0 s CAME .#C.KP.1.EY.M 
L ♦ LEFT .//C.L.l.EH.F.T.AXP 
LX « ALWAYS .#C.l.AO.LX.-.W.EY.Z 
M n MORE .#F.M.2.0XR 
N n NO .(ÜC.N.l.OW 
NG n THINK .^C.TH.l.IH.NG.K.AXP 
OW 0 ONLY .#F.2.0W.N.-.L.IY 
OXR 0 COURSE .«C.K.I.OXR.S 
OY • POINT 

PEOPLE 
.#C.P.1.0Y.N.T.AXP 

P 0 s .#C.P.1.IY.-.P.EL 
R 1 « VERY .#C.V.1.EH.R.-.IY 
S 0 f SO .#C.S.1.0W 
SH 0 f SHOULD .#F.SH.UH.D.AXP 
T 0 s TO .«C.T.l.UW 
TH 0 V THREE .#C.TH.R.1.IY 
TQ • WRITING .#C.R.1.AY.TQ.*.-.IH.NG 
UH • COULD .«F.K.UH.D.AXP 
UW c SCHOOL .#C.S.K.1.UW.LX 
UXR « YOUR .«F.Y.UXR 
V V EVERY .#F.2.EH.V.-.R.IY 
W w WAR .#C.W.ltOXR 
WH w WHY .#C.WH.1.AY 
Y • YOUNG .#C.Y.1.AH.NG 
YU c HUMAN .#C.H.1.YU.-.M.AX.N 
I f PRESIDENT .#C.P.R.1.EH.Z.-.AX.-.T0.EN.T.AXP 
ZH f DECISION .#C.D.IH.*.-.S.1.IH.ZH.-.AX.N 
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