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IGNITION OF FLAMELETS BEHIND INCIDENT SHOCK WAVES
AND THE TRANSITION TO DETONATION

I. INTRODUCTION

Shock-induced ignition in gaseocus hydrogen-air mixtures mey occur in one
of two distinct modes, depending on the thermodynamic state in the shocked
material. At lower temperatures the ignition is weak, or mild, with the
gradual development of the gas dynamic explosion. At higher temperatures it
is strong, or sharp, with a% abrupt appearance of a secondary shock induced
by the explosive reaction. Furthermore at low temperatures the formation of
distinct flame kernels appears to be an essential precursor of ignition.
Meyer and Oppenheim (19Tla) point out that the intrinsically turbulent flow
field behind a reflected shock in a shock tube results in a nonuniform
temperature distribution which creates distinct reaction centers and leads to
weak ignition. Although the nonuniformity of temperature caused by
turbulence is one mechanism which gives rise to reaction centers, the
nonsteadiness in the velocity of the causal shock can also produce them.
This latter effect has been convincingly demonstrated by Strehlow et al.
(1967) in their studies of shock propagation in a slowly converging channel.
It has also been shown that when an incident shock in a uniform shock tube
begins to accelerate, hot spots occur before the transition to detonation
(Bazhenova and Soloukhin, 1959; Edwards et al., 1981).

In this paper the reactive flow behind an incident shock wave in a
hydrogen-air mixture is simlated using a one-dimensional, time-dependent
numerical model which combines a description of the fluid dynamics and
detailed chemical kinetics. In the simlations, the pressure ratio across

the diaphragm and the driven gas mixture are chosen so that the thermodynamic
Manuscript approved December 23, 1982,
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i" state behind the incident shock is in the weak ignition regime (Oran and

3

‘- Boris, 1981b). It is shown that a smll amount of energy released in the
;.‘\'1 shocked gas (which might occur due to density, temperature or stoichiometric
" o'

l' fluctuations) can be the origin of pressure waves which accelerate the shock
front. Once the shock is accelerated, the temperature of the gases now

bR passing through the shock is higher than the raised temperature created by
o

;’\ the original shock. In the weak ignition regime, such an increased

3 temperature can result in a significant reduction in the induction time

> (Meyer and Oppenheim. 19T1b; Oran and Boris, 198lb). The simulations

i

}:{ presented here show how this leads to the formation of reactive centers in
] the newly shocked material where reaction progresses at a more rapid rate
than in the previcusly shocked material. The formation of a hot spct due to
. energy release at one of the reactive centers and the subsequent develomment
L

o of a pair of flamelets or reaction waves from the hot spot are studied using
i the numerical simlations. The results of the similations have also been

e

‘N; compared to experimental observations (Bazhenova and Soloukhin, 1959; Urtiew
and Oppenheim, 1966, 1967; Strehlow et al., 1967; Fdwards et al., 1981).

~ II. THE NUMERICAL MODEL

j The one-dimensional reactive shock model (Oran et al., 1979; Oran and
.' Boris, 198la) used to perform the calculations described below solves the

J_ time-dependent conservation equations (Williams, 1965; Oran and Boris, 198la)
for mass, momentum and energy coupled to the equations descriding the

3 chemical kinetics. The model uses an explicit, Eulerian finite difference
-: formilation with a sliding rezone capability to provide resolution around

i moving gradients, The solutions of the equations describing the fluid
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-g dynamics and the chemistry of the problem are coupled using time-step
i splitting techniques (Oran and Boris, 198la).

The convective transport terms in the conservation equations are solved

[RRS
Py

vy

using one variant of the Flux-Corrected Transport (FCT) method (Boris and

S

Book, 1976; Boris, 1976). This is a conservative, monotonic algorithm with

.. ’ fourth-order phase accuracy and does not require artificial viscosity to

-

Ve

i

.
.

stabilize shocks. The Flux C;:rrection procedure itself ensures that the
shocks are one or two zones wide and have maximal resolution. The ordinary
differential equations describing the chemical kinetics are solved using
VSAIM, a vectorized version of the selected asymptotic integration method
employed in CHEMEQ (Young and Boris, 1977; Young, 1980). This algoritka
identifies the stiff equations for treatment with a stiffly stable method.
The remaining equations are solved with a standard classical method. The
algorithm has been specially optimized for use in conjunction with fluid
dynamic models.

The chemical kinetics rate scheme used is given in Table I. It consists
of about fifty rates relating the species Hz, Oz, H, O, OH, Hoz, HZO and nzoz
and has been extensively tested against experimental data (Oran et al., 1981,
Burks and Oran, 1980). Burks and Oran (1980) showed that the results
computed with the scheme compared very well with experimentally observed
induction times, second explosion limits and the temporal behavior of
reactive species. Oran et al. (1981) have shown that the scheme gives good
results when coupled with a fluid dynamic model in the simlation of the
conditions behind a reflected shock. Heats of formation and enthalpies have

been taken from the JANAF tables (19T1).

.................................................................
--------------------------------------------------------------




For the calculations performed in this paper, the timescales under

consideration are short and therefore the diffusive transport processes,
thermal conduction and molecular diffusion, have negligible effect. The
effects of these processes have not been considered although they are part of
the general numerical model. Although the geometry mey be either cartesian,
cylindrical, spherical or some generalized co-ordinate, the simlations
presented below are in cartesian geometry.

The detailed simlations discussed in this paper require that we model
relatively long systems (on the order of meters) while we simltaneously
maintain high accuracy around steep gradients such as the shock front and the
contact surface, The rather sophisticated adaptive gridding method developed
for this purpose is shown schematically in Figure 1. There are two finely
gridded regions: One surrounding the shock wave and the other surrounding
the contact surface. The fine-zoned region around the contact surface moves
with the contact surface at the fluid velocity, and so this part of the
calculations is essentially lagrangian. The region around the shock front
moves with the front. Hach of these finely gridded regions may have a
different minimum computational cell size. The computational cells in the
regions ahead of the shock wave and behind the contact surface change
exponentially in size from the smallest near the shock wave or the contact
surface to the largest at the walls. Care is taken that the transition in
the cell sizes is smooth. For the results presented in this paper a total of
200 computational cells are used to describe the shock tube and the cell
sizes varied from 0.1 cm around the shock to over 50 cm near the shock tube

end-walls.




III. WEAK IGNITION BEHIND AN INCIDENT SHOCK

The numerical model described in the preceding section was used to study
weak ignition behind planar incident shock waves. The system parameters, the
initial conditions and the temperature and pressure behind the incident shock
have all been summarized in Table II., The chemical induction time, for the
conditions described by the incident shock, is about 2000 *'s. However, since
the thurmodynamic state behind the shock is in the weak ignition regime,
ignition may occur much earlier than 2000 s due to temperature, pressure, or
density fluctuations.

Figure 2 is a position-time diagram of the events occurring in the shock
tube simlation. The trajectory of the shock front is labelled S and that of
the contact surface is labelled CS. Except for small variations (which are
examined in detail below) the shock travels at a nearly constant velocity,
1.4 x 105 cm/s, until the reaction wave formed between the contact surface
and the shock front reaches it. At this time the velocity rises quickly to
3.24 x 105 em/s. Tt then gradually decreases towards the Chapman-Jouguet

detonation velocity. Five different regimes have also been identified on the

diagram. They are (a) pre-ignition regime, (b) quasi-steady shock-reaction
complex, (¢) formation of reactive centers, (d) hot spot formation leading to

an overdriven detonation and (e) detonation relaxation. Similar regions have

TR

been identified by Edwards et al. (1981) in their shock tube experiments.

These regions are examined in detail below,

. As the shock travels at a nearly constant velocity into the hydrogen-air
mixture, the temperature and pressure of the mixture are raised to a near-

constant value, Reactions in the shock heated gas first occur near the

..................................
-----------------------
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contact surface since the temperature has been high for the longest time

here, as has been observed by Urtiew and Oppenheim (1967). In Figure 3, the
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spatial variation of the temperature and the OH mole fraction between the
shock and the contact.surface are shown at 135 ps after the bursting of the
diaphragm. The OH mole fraction attains a maximum value near the contact
surface and decreases across the system towards the shock front. This is
because the gas mixture at different locations has been at the higher
temperature for different durations.

Formation of Reactive Centers and Hot Spots

Small pressure disturbances occur due to the energy released in the
reactions near the contact surface. These pressure disturbances travel
forward at a velocity (in the laboratory frame of reference) of 1.8 x 105
cm/s, which is the sum of the sonic and particle velocities behind the shock.

When they reach the shock they accelerate the shock slightly resulting in a

L AN

temperature increase behind the shock. This can be observed in Figure 4
vhere the spatial distribution of the temperature between the shock and the
" contact surface is shown at four different times. The nonuniform temperature
distributions can be explained by the following sequence of events: pressure
disturbances originating at different times near the contact surface reach
the incident shock at different times and each successive pressure
disturbance meets a shock of slightly different strength because the shock
has already been accelerated slightly due to previous pressure disturbances.
We know that in the weak ignition regime, the induction time is very
sensitive to perturbations in temperature and pressure (Oran and Boris,

1981b). This sensitivity, in fact, is what produces the two peaks in OH mole

........ B T T S A

P , PO . . e ) . R A UL . . - . "L L T
B e et e e IR I FE O PR USRS SR S St S T T ~ Ve s

» + et a -
L e T e T L P S P PR L T P N TR TR N S AL S A S R RS A N
PP RGPAY A R A A T I S AP A T A TSI I S NI AT Sl LTI SR I iy, PR TR s W5 WP RSP WA T

- e
.......
L3P Y




fraction distribution (Figure 5A) at 348 us after the bursting of the
diaphragm. The first peak is due to the development of reactions near the
contact surface and occurs in the same reactive center (see Figure 2) which
was observed earlier. Now a second reactive center has formed closer to the
shock front due to the higher temperature created by the acceleration of the
shock. Again we observe that the reactive center occurs in that part of the
shock heated gas which was at the elevated temperature for the longest period
of time. Ahead of the seconu reactive center the repid decrease in the
radical mole fraction is halted by a further increase in the temperature
behind the shock and a third reactive center is forming. By 4Li5 us (Figure
SB), a third reactive center has developed and the radical mole fraction is
rising most rapidly at this center. The temperature around this reactive
center is significantly (about 40° K) greater than that behind the initial
incident shock wave. In the weak ignition regime, such changes in
temperature result in a substantial reduction in the induction time.
Therefore reaction progresses at this reactive center at a much more rapid
rate than at any other locatinn in the system« This results in a "hot spot”
in the system. The development of this hot spot can be seen in Figure 6
where the temperature distribution between the con*act surface and the shock
front has been shown for four different times. The temperature increases by
more than 200° in 30 us.

Transition to Detonation

The events occurring after the hot spot formation can be seen in Figure
7 where a segment of the position-time diagram (Figure 2) is presented in

greater detail, The hot spot (marked "A" in the figure) travels with the
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fluid and continuously releases energy into it., This results in "flamelets"

or "reaction waves" ("B") which travel with respect to the fluid. One
reaction wave moves forward with the'fluid while another moves against the
fluid towards the driver section. These reaction waves initially move
subsonically with respect to the fluid but are soon accelerated into steep
detonation type waves which move supersonically with respect to the fluid.
When the forward moving reaction wave reaches the shock front, the shock

velocity abruptly increases to a high value. The shock-reaction complex then

S~ A lAr I UL

moves as a strong overdriven detonation wave which decelerates towards the
Chapman-Jouguet detonation velocity.

The temperature, pressure and velocity distributions across the system
at a particular time after the hot spot has formed are shown in Figure 8a.
By this time the energy release has resulted in a noticeable pressure rise.
This occurs because the energy release is occurring at nearly constant volume
conditions. The energy release at the hot spot causes a series of minute
pressure pulses to propagate both forward and backward, each a little
stronger than the previous one. A series of pressure pulses are produced
since the energy release occurs over a period of time and is determined at
each time from the detailed chemical kinetic interactions among the various
species. These pressure pulses coalesce to form steepening pressure vaves
propagating into the shocked mixture as seen in Figure 8b. The time history
of these reaction waves has been shown in a series of figures (Fig, &b =
Fig. 10b) which cover the time period between €09 us and 688 us.

Let us first look at the development of the reaction wave which moves

forward into the shock-heated gas mixture. The velocity of the forward
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moving wave, the fluid velocities on both sides of the wave and the speed of

sound in the gas mixtures on both sides of the wave are given in Table III
for a series of times., At 609 us, the forward méving reaction wave is
supersonic. The velocity of the fluid with respect to the wave decreases
across the wave but is supersonic on either side. Furthermore the pressure
rise across the wave is just over a factor of two, which is moderate. Thus
the reaction wave behaves like a weak detonation wave at this time. Iater,
as seen in Figure 9a, the pressure rise across the wave has increased and the
wave is also travelling faster. The velocity of the fluid with respect to
the wave is still supersonic on both sides of the wave. The pressure rise
across the wave continues to increase and at the time corresponding to Figure
9b, the fluid velocity behind the wave is nearly sonic. The weak detonation
seems to be transitioning into a strong detonation. It does so later (FPigure
9c) when the fluid velocity changes from supersonic to subsonic across the
reaction wave. The pressure rise across the wave is also larger now. The
observed acceleration of the forward moving wave into a strong detonation is
due to the nonlinear interaction between chemical kinetics and fluid
dynamics. When the forward moving wave moves into the previously shocked
material there is a large pressure and temperature rise across it since it is
a strong compressive wave, This increase in the pressure and the temperature
reduces the induction time of the material which crossed the wave., Energr
release in this newly re—corpressed material accelerates the forward moving
wave further, and this cycle is repeated until the forward moving wave
reaches the incident shock wave (Figure 10a). By this time the pressure

spike behind the reaction wave has risen to 6.6 x 10® dynes/cm?. Because the
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reaction wave is moving towards the incident shock at a speed greater than
the local speed of sound in the shock-heated gas, there is no advance warning
of the over-pressure region until the main spike physically arrives at the
shock front. When the reaction wave does coalesce with the shock, there is a
very rapid increase in the shock speed (Figure T) and the shock-reaction wave
complex moves as an overdriven strong detonation wave. Due to the high over-
pressure that was associated with the reaction front, the detonation wave
overshoots the Chapman-Jouguet value by a substantial amount. However, the
overshoot cannot be sustained by the reaction and the overdriven detonation
gradually relaxes towards a Chapman-Jouguet wave. By 688 us (Figure 10b) the
pressure spike behind the detonation wave has decreased to 4.8 x 108
dynes/cm? and the wave is moving faster than the C-J velocity by only 36%.
In Figure 10b we also observe a small amplitude pressure wave moving into the
detonation products. This pressure wave was formed when the reaction wave
interacted with the shock front.

Let us now look at the reaction wave which moves backward towards the
driver section. From Figure T and Table IV we see that this wave moves at
nearly the sonic speed. The fluid velocity with respect to the wave is
supersonic on either side of the wave. The pressure rise and the
acceleration of the wave are slower since the wave is moving against the
fluid. The pressure increase behind the wave is broader (Figure 9c) and
smaller than that of the forward moving wave., It continues to propagate like
a weak detonation wave until it interacts with the contact surface (Figure
10a), This interaction produces a pressure pulse which travels into the
helium driver gas., In Figure 10b we see that this pressure pulse has

produced a slight temperature increase in the heliunm,

10
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IV. DISCUSSION AND CONCLUSIONS

In this paper the reactive flow behind an incident shock wave has been
studied using a time-dependent numerical model which includes both detailed
chemical kinetics and one-dimensional fluid dynamics. The numerical
simlations show that the incident shock initially travels at a steady speed
leaving behind it material in what has been called a "quasi-steady reaction
complex”. From their extensive experimental studies on detonation, lee et
al. (1976, 1977) have concluded thet such regimes are universal predetonation
phenomena. This regime has also been observed in the incident shock tube
experiments of Edwards et al. (1981).

The calculations have also shown the acceleration of the shock due to
pressure waves created by energy release in the shock heated gas mixture, a
phenomenon also observed by Edwards et al. (198l). Shock acceleration raises
the temperature of the gases passing through the shock and in the weak
ignition regime, this results in a significant reduction of the induction
time (Meyer and Oppenheim, 19T1b; Oran and Boris, 1981b). This leads to the
formation of reactive centers where reaction progresses at a more rapid rate
than in the previocusly shocked material. The development of a hot spot due
to energy release at one of the reactive centers has been shown in Figure 6.
The presence of such hot spots has been observed earlier in shock tube
experiments (Strehlow et al., 1967, Edwards et al., 198l1).

Fhergy releagse at a hot spot causes a pair of flamelets or reaction
waves, one propagating ahead into the shock heated gas mixture and the other
propagating back towards the contact surface. These flamelets initially

propagate at a subsonic speed with respect to the fluide Such flamelets have
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been observed by Bazhenova and Soloukhin (1959) in their incident shock tube

AN

experiments. Energy release behind these flamelets causes pressure waves

which accelerate the flamelets into detonation type waves. The reaction wave

moving backward against the fluid accelerates slowly and travels at nearly

L;: the sonic speed till it reaches the contact surface. However the forward

13- moving reaction wave transitions into a strong detonation wave even before it
reaches the incident shock wave. This agrees with the observetion made by

;S Bazhenova and Soloukhin (1959) that the merging of the flame front with the

incident shock wave is not a necessary condition for the detonation wave

formation. The simlations also show a large pressure overshoot when the

forward moving wave coalesces with the incident shock wave. This has been

observed earlier in the experiments of Urtiew and Oppenheim (1966).

The numerical simulations presented in this paper show that the one-
dimensional reactive flow model with detailed chemical kinetics can be used
to elucidate some of the details of weak ignition behind incident shocks and
- the subsequent transition to detonation. The predictions of the model are in
;ualitative agreement with experimental observations. However, the model
does not include multi-dimensional phenomena such as turbulence and boundary
{ layer growth which play an important part in any quantitative study of the
i{ transiton to detonation. Currently a two-dimensional reactive shock model
A exists but it uses a parameterized model for energy release (Oran et al.,
1981b; Oran et al., 1982). The model is now being extended to include a
detailed chemical kinetic scheme. Calculations with this new model would
show the effects of transverse waves and boundary layers on the transition to

detconation.
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Table I. Hz-o2 Elementary Reaction Mechanism

k, = ATB exp (~c/T)(®)

- v s 8 C -A
* . . B . .

e latatels KRR Py
'-.-'..-'A‘.. S S AL

________
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Reaction Al®) B clv) References(c)

H+H 30+ H, 1,40(~1k) 1.00 3.50(+03) [1]

3.00(-1L4) 1.00 4,48(+03) (1]

H+HO, $H, +0, h.20(~11) 0.00 3.50(+02) (11

: 9.10(=11) 0.00 2,.91(+04) (1]

H + HO, $ HO + HO 4,20(-10) 0.00 950(+02) 1]

. 2.00(=~11) 0.00 2.,02(+0k) [1}

H+ H0, $0 + Hy0 8.30(-11) 0.00 5.00( +02) (2]
‘ 1.75(=12) 0.45 2.8L(+04) k, = ke/K,

H + H,0, $ HO, + H, 2.80(-12) 0.00 1.90(+03) (1]

1.20(=-12) 0.00 9.40(+03) (1]

H + Hy0, $ HO + H,0 5.28(-10) 0.00 L.50(+03) (1]
. 3.99(-10) 0.00 4, 05( +04) k. = kp/K,

HO + H, 3 H + H0 1.83(-15) 1.30 1.84(+03) (3]

1.79(-1k) 1.20 9.61(+03) (3]

HO + HO $ H, + O 1.09(=13) 0.26 1. 4T(+0k) k, = k

2 2 2.82(-11) 0.00 2.42(+0k) f[!;1 e

HO + HO $ 0 + H,0 1.00( -16) 1.30 0.00( +00) (3]
3.20(-15) 1.16 8.77(+03) k, = ko/K,

HO + HO, ¥ H,0 + 0, 8.30(-11) 0.00 5.03(+02) (s}
2.38(-10) 0.1T7 3.69(+0k) k. = ko/K,

HO + H,0 $ HO, + H, 1.70(~11) 0.00 9.10(+02) (1]

4.70(-11) 0.00 1.65(+0k) [1]

MO + H, 3 HO + H,0 1.20(~12) 0.00 9.41(+03) (4]
1.33(-1b) 0.43 3.62( +0L) k. = ko/K,

HO, + HO, $ H,0, +0,  3.00(-11) 0.00 5.00( +02) (2]
1.57(-09) -0.38 2.20( +0L) k, = ke/K,

PR SO SN W ey



i Table I. (Continued) H,-O, Elementary Reaction Mechanism

ky = AT exp (-C/T)(")

Reaction A(®) B c(v) References ¢)

O+ HO $ H + 0, 2.72(-12) 0.28 «8.10( +01) ke = k K,
3.70(-10) 0.00 8.i45(+03) (1]

0+ HO, $ HO + 0, 8.32(-11) 0.00 5.03( +02) (5]
2.20(-11) 0.18 2.82(+0b) k. = ko/K,

0 + H,0, $ H)0 + 0, 1.40(-12) 0,00 2.12(+03) (2]

0 + H,0, $ HO + HO, 1.40(-12) 0.00 2.13(+03) (2l
2.07(=15) 0.64 8.23(+03) k., = ko/K,

HeH+MSH, + M 1.80(-30) -1.00 0.00(+00) (1]
3.70(-10) 0.00 4.83(-0k) (1]

H+HO+M3$HO+M 6.20( =26) -2,00 0.00( +00) [1]
5.80(-09) 0.00 5.29(+0k) (1]

H+O0, +M3HO, +M b.14(-33) 0.00 =5.00( +02) (1]
3.50(-09) 0.00 2.30(+04) [1]

HO + HO + M $ H)0, + M 2,50(-33) 0.00 =2.55(+03) [1]
2.00(=07) 0.00 2.29(+04) {1)

O+H+MS$SHO + M 8.28(-29) . -1.00 0.00(+00) 161
2.33(-10) 0.21 5.10( +0k) k. = k,/K,

O+HO + M3 HO, + M 2.80(-31) 0.00 0.00(+00) [€]
1.10(-0Ub) -0.43 3.22(+0k) k. = kt"c

0+0+M30, +M 5.20( ~35) 0.00 =9.00( +02) 1]
3.00(-06) -1.00 5.94(+0L) (1]

(a) Bimolecular reaction rate constants are given in units of cm’/(mlecule sec).
Termolecular reaction rate constants are given in units of cm$/(molecule? sec).
(b) Exponentials to the bage 10 are given in parenthesis; i.e., 1.00(-10) =
1.00 x 10~19,
{(¢) T™e references are: (1) Baulch et al., 1972; (2) Hampson and Garvin, 1975;
(3) Cohen and Westberg, 1979; (4) Olson and Gardiner, 1977; (5) Lloyd, 1974;
(6) &hn, 1968.
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Table II. Parameters for the Weak Ignition Study.

Rarameter Driver Section Driven Section
Length 30 e 370 em
Gas Mixture He Hy:05:N,/2:1:4
Initial Temperature 298 ¥ 298 K
Initial Pressure 9 atm 0.1 atm
Incident Shock Velocity 1.4x105 cm/s
Tesperature behind Incident Shock 918 X
Pressure behind Incident Shock 1.39 atm
Chapman-Jougnet Detonation Velocity 1.9%105 cm/s

Table III. Time History of the Forward Moving Reaction Wave.

'(nu:; v.loe%:zlg Vave nnit(lc:ﬁ?city Soum(ic :ﬁc;city
Ahead Behind Ahead Behind

609.03 2.70(+05) 1.09(+05)  1.30(+05) 7.15(+04)  1.20(+05)
618.63 2.72(+05) 1.08(+05)  1.50(+05) T.15(+0k)  1.12(+05)
626.03 2.75(+05) 1.08(+05)  1.60(+05) 7.10(+0k)  1.15(+0%5)
631.83 2.80(+05) 1.08(+05)  1.85(+05) 7.08(+0k)  1.14(+05)
663.83 3.20(+05) 1.07(+05)  2.10(+05) 7.20(+04)  1.18(+05)
688,13 2.60(+05) 0 2.10(+05) L.Ob(+04)  1.28(+05)

Note: Exponentials to the base 10 are given in parenthesis, i.e., 2,70(+05) = 2.70x10%5

Table IV. Time History of the Backward Moving Reaction Wave.

Time Velocity of Wave Fluid Velocity Sound Veloeity
(us) {cm/s) (cm/s) (cm/s)
Anead Behind Ahead Behind
609.03 «T.2(+0b) 1.08(+05) 8.3(+05) 7.2(+0L) 1.06(+05)
618.63 «T+3(+0L) 1.08(+05) T.0(+0L) T.2(+0k) 1.11(+05)
626.03 T+ 5(+0L) 1.09(+0%) 6.0(+0k) T.2(+0k) 1.13(+05)
631.83 =T.6(+0b) 1.09(+05) S.5(+04) T.2(+0k) 1.14(+05)
16
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Figure 2. A position-time diagram of the main events occurring in the shock

N tube simlation: S, incident shock; CS, contact surface; RC,

: reactive centers, RW, reaction wave; (a) pre-ignition regime, (b)
quasi-gteady shock-reaction complex, (c) formation of reactive
centers, (d) hot spot formation leading to overdriven detonation
and (e) detonation relaxation.
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Figure 6. Time history of the development of a hot spot.
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transition to detonation: A, hot spot and B, flamelets.
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