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A COMPOSITE VELOCITY PROCEDURE FOR THE INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS

S$.G. Rubin and P.K. Khosla

Department of Aerospace Engineering and Applied Machanics
University of Cincinnati
Cincinnati, Ohio 45221 U.s.A.

INTRODUCTION

One of the major differences between steady-state solution techniques for the
Navier-Stokes equations and solution procedures for either inviscid potential or
boundary layer problems is the treatment of the continuity equation. For inviscid
flow, a poténthl function is determined entirely from continuity. The pressure is
then obtained from the integrated momentum or Bernoulli equation. For boundary
layers, the axial momentum and continuity equations determine the velocities. On the
other hand, typical Navier-Stokes solvers, in effect, use continuity to obtain the 1
density (or pressure), and the velocities result solely from the momentum equations.
For large Reynolds number steady flows, it would appear that such a procedure is in
marked conflict with both the asymptotic inviscid and boundary layer theories.

In the present paper, a boundary layer-relaxation procedure based on a new
composite-velocity foi'n}ulation for the incompressible Navier-Stokes system is des-
cribed. The equations are interpreted and numerically approximated to reflect the
composite nature of the flow. The procedure has also been developed independently
for subsonic flow (l1]. Unlike typical Navier-Stokes proceduces that differ signifi-
cantly from their incompressible flow counterparts, the present developments are
essentially identical in both cases. Moreover, the extension to transonic flows

" should be direct. . '

., " The equations are written in a body-fitted orthogonal coordinate system so that

arbitraxy geometries can be treated. Application to internal and external flows are

discussed. Specific geometries include a boattail simulator, the trailing edge of a

plate, Joukowski airfoils and a curved channel.

‘ In its final form, the present formulation has some features similar to the
velocity-split technique due to Dodge [2]; however, this resemblance is only super-
ficial. In the present analysis, a composite representation of inviscid and viscous
region velocities is prescribed in the spirit of matched asymptotic expansions. The
complete Navier-Stokes equations are solved. No simplifying approximations are
required. The finite-difference form of the resulting equations are solved by a
coupled strongly implicit procedure described previously by the authors (3].

CONPOSITE FORMULATION

This formulation is designed for the calculation of large Reynolds number pro-
blems with a dominant flow direction, e.g. the £-direction. The gradients are
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largest in surface normal (n) direction. 'rhn flow outside the thin viscous region is
essentially inviscid and is represented by a potential function ¢; therefore, the
following composite representation of the velocity field to reflect the matched
asymptotic boundazy_ layer-inviscid behavior is prescribed.

U 1
us= h], (1 + ’E) u‘U R v hz ¢E (1)

Substitution of these expressions into the Navier-Stokes equations results, after
some reorganization, in the following orthogonal system for ¢, U, G:

[h3 ol + ’E”E * (h3¢n)n = Q (continuity) (2) ;
h
3u {(hh (u -U)]_ + [hhuv(U -1)] }+—l-n—uv(0-1)+u—‘ (U~-1) u
hl 234 o £ hlhz e hl ‘E
--i G, - P E' (E) + viscous terms (£-momentum) (3)
hl 3 l'x1
2 h
“o 1 2
Gn. =-(U-1) [(-2—) - q’l u’ U] + viscous terms (n-momentum) (4)

For internal ﬂm '(€) is determined from the global eonumtion of mASS.
In these equations

u2'..v2

GeBe2—-3Gw® ' ($)

and is similar to the Bernoulli or total pressure for the inviscid region. However,
G is not assumed constant, but is determined by the calculation procedure. In an
_inviscid irrotational region, U + 1 and continuity (2) reduces to the well known
potential flow equation; the momentum equations (3, 4) are identically satisfied with
G = constant and G = 0. For internal flows, G = O on one wall and G is determined
.by mass consarvation. In the viscous region, the f-momentum equation determines U,
while ¢ and, therefore, the pressure is obtained from the n-momentum equation. The
two basic regions pertinent to large Reynolds number flows are appropriately des-
cribed by this cowposite set of oquuons_. This method of defining v with a
'potential’ was first tested for the flat plate boundary-layer (U,4) equations. The
solution of the resulting 2-point boundary valus problem reproduced the results ob-
tained with standard methods based on the velocities u and v. It should be pointed
out that the present system of equations can be used for the solution of inviscia
flown provided that Re = @ and U = 1 is enforced at the solid surface. G = 0
decouples the normal momentum equation from the axial momentum and continuity equa-
tions and represents the interacting boundary-layer approximation if axial diffusion
is neglected. 1If, in addition, ’E and 0“ in equations (2) and (3) are replaced
with their respective potential flow values, the usual boundary-layer npprosmuon
is zecovered.
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For the calculations of separated flows it is essential that U and ¢ £ are
coupled in order to eliminate the pressure singularity. G which represents the

Bernoulli constant in the inviscid flow can be treated explicitly. Finally, the
n-momentum determines G. The necessary coupling between U and ¢ is attained with a
coupled strongly implicit procedure for the solution of the algebraic systen.

BOUNDARY CONDITIONS

In the present formulation, the physical boundary conditions are represented
directly by the following mathematical boundary conditions.

At a solid surface: U = 0; ¢n-o, and ags n+», $ -0, U=+>1.

Por a finite body: Qo:%-o as £+t e, UE,n) +1 as § +-o,

and Use(ﬁm)‘o as { + =,

Por bodies which are infinite in both directions, the inflow and outflow condi-
tions are somewhat ambiguous. However, these conditions must be appropriately speci-
fied in order to obtain a meaningful solution. For the boattail geometry ¢ and U
are prescribed at the inflow, while U“ <+ 0 and ‘E <+ 0 have been applied as outflow
conditions. The ‘E condition, in the context of the composite formulation, is such
as to eliminate the viscous-inviscid interaction. It should be noted that these
boundary conditions a:.. consistent with the mathematical character of the equations
governing ¢ and U. For example no slip has been satisfied through the boundary-

layer like variable U and not through ’;'

SOLUTION PROCEDURE

The governing equations have been discretized using second-order accurate
central-differencing for all ¢ derivatives. Central or boundary layer-like differ-
encing has been used for U derivatives, except for the (h:,‘tl)e term in the continuity
equation; this is backward differenced throughout. The resulting implicit algebraic
system of equations has been solved iteratively using a coupled strongly implicit
procedure (CSIP). The continuity and f-momentum equations for ¢ and U are solved
in a coupled fashion, while the n-momentum equation for G is evaluated iteratively.
In the {-momentum equation, G is treated as known during the iterations. Although G,
the "inviscid" total pressure is evaluated explicitly from the n-momentum equation,
the static pressure is unknown and depends upon the values of ‘E and .n' Since ¢
is evaluated implicitly in the coupled algorithm, this implies that the pressure is
also treated implicitly. This circumvents the separation singularity. Explicit
artificial viscosity is not required for convergence and the CSIP allows for arbi-
trarily large values of At once the effects of the inviscid initial conditions have
been sufficiently smoothed.
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COUPLED 2 x 2 SOLUTION ALGORITHM

In an earlier paper, reference (3], the present authors have developed a coupled
strongly implicit procedure for the stream function-vorticity form of the Navier-
Stokes equations. This algorithm has the distinct advantage of being implicit in
both the § and n directions, as well as allowing for the coupling of all the boundary
conditions. It is this coupling, that eliminates the pressure singularity in the
(U, ¢) formulation. Furthermore, the method is unconditionally stable, allows for
arbitrarily large At, converges faster than SOR, LSOR, ADI, etc., and is relatively
insensitive to grid aspect ratio. The discretized version of the equations for
(U, ¢) can be written as:

(A +P) vn+1 =G+ w“, where V is the (U, ¢) solution vector.

P is chosen such that (A+P) can be decomposed into a lower and upper triangular form
having a sparsity pattern similar to the original matrix A. This leads to a solution
algorithm of the following form:

n+l n n n+l n n+l
4] Gu] T, T U T T 4]
ij . 13 . lij 511 i,j=1 . zj_j 413 i-1l,3
¢ Gll2 T T 9, 4 T T 9,
| i3 13 3:I.j 711 i,j-1 sij aij i-1,3

wherc n is the iteration index. Although the coupling accalorntes the rate of con-
vergence, it also increases the storage requirement by a factor of two. Considerable
savings in storage can be realized by re-evaluating some of the coefficients (T i, j
duri.nq_ the evaluation of U'and ¢. However, this is ach?..vod_ at moderate additional
computational cost. In its present form the CSIP is slightly different from the one
given in reference (3]. In the present case the forward and backward sweeps have
been reversed in order to impart a certain degree of marching consistent with boundary
layer procedures. As detailed in reference {3], the appropriate ‘recurrence relation-
ships can easily be obtained.

RESULTS

Laminar flow solutions have been obtained for bhoattail simulator, Joukowski
airfoil, finite plate and channel geometries. Reynolds numbers based on typical
length scales ranged from 1()3 to 105. All the computations were started with arbi-
trary initial conditions. Por the first 40 iterations At = 1, afterwhich At was
increased to 106. Explicit artificial viscosity was not required for what were
effectively steady-state calculations.

(a) Boattail Simulator: A typical streamline plot for an axisymmetric boattail
geometry is shown in figure 1. The corner angle is approximately 30° and the body
radius varies between 1 and 0.5. With 1800 grid points (60 x 30, 12 on the boattail),
and Re= 7500, convergence to 10 > is achieved in about 125 iterations. This takes

arout 10 minutes on the Amdahl 470/V6 or less than 1 minute on the Cray-l computer.
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(b) Joukowski Airfoil: A variety of 'airtoil thicknesses and Reynolds numbers
have been considered. For low Reynolds numbers and small thickness ratio, the flow
is unseparated. As either is increased, separation regions appear. Typical stream-
line pattern and separation location for t/c=0.12, 0.17 and Res l.t.)3 to 104 are shown
in fig.l' 2. As expected, the separation point moves upstream with increasing Reynolds
number. This correlates well with solutions obtained with 2nd order boundary-layer
theory (4]. Small changes in thickness ratio can lead to large variations on the
recirculation region. The solutions are oscillatory for large t/c, Re.

(c) Finite Flat Plate: The flow past the trailing edge of a finite flat plate
has been extensively investigated by triple-deck interacting boundary-layer global
relaxation procedures (5]1. 1In £:L§u:o 3 the results of the present formulation are
compared with som earlier computations. A 105 x 75 grid has been adequats to

provide reasonable agreement. <
(d) Internal Flow: Two dimensional straight and curved channels have been in-
vutigitod by the present technique. The curved channel was generated by using two 1
streamlines of the boattail geometry. A variable £ and uniforme-n (60 x 30) grid !
was specified for this calculation. Uniform inflow conditions are prescribed. The |
entrance nass flow rate was 0.4066 and the Reynolds number based on the entrance
channel width was Re = 2500. Global mass conservation was insured with the para-
meter G'(£). Typical wall pressure distributions and velocity profiles are shown

in figure 4.
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Pig. 1. Streamline Contours for Boattail, ¢ = 30°, Re = 7500, 60 x 30 Grid.
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" fig. 2a. Streamline Contours for Joukowski Airfoil: Re=10,000, t/c=0.12.
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Velocity Profiles in Channel-Transformed Plane.
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