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INTRODUCTION

One of the major differences between steady-state solution techniques for the

Navier-Stokes equations and solution procedures for either inviscid potential or

boundary layer problems is the treatment of the continuity equation. For inviscid

flow, a potential function is determined entirely from continuity. The pressure is
then obtained from the integrated mmentum or Bernoulli equation. Fox boundary
layers, the axial momentum and continuity equations determine the velocities. On the
other hand, typical Navier-Stokes solvers, in effect, use continuity to obtain the

density (or pressure), and the velocities result solely from the momentum equations.

For large Reynolds number steady flows, it would appear that such a procedure is in

marked conflict with both the asymptotic inviscid and boundary layer theories.

In the present paper, a boundary layer-relaxation procedure based on a new
composite-velocity foXmlation for the incompressible Navler-Stokes system is des-

cribed. The equations are interpreted and numerically approximated to reflect the

composite nature of the flow. The procedure has also been developed independently

for subsonic flow [1]. Unlike typical Navier-Stokes proced"-es that differ signifi-

cantly from their incompressible flow counterparts, the present developments are

essentially identical in both cases. Moreover, the extension to transonic flows

should be direct.

The equations are written in a body-fitted orthogonal coordinate system so that

arbitrary geometries can be treated. Application to internal and external flows are

discussed. Specific geometries include a boattail simulator, the trailing edge of a
plate, Joukowski airfoils and a curved channel.

In its final form, the present formulation has some features similar to the

velocity-split technique due to Dodge'(21 however, this resemblance is only super-

ficial. In the present analysis, a composite representation of inviscid and viscous

* region velocities is prescribed in the spirit of matched asymptotic expansions. The

complete Savier-Stokes equations are solved. No simplifying approximations are

required. The finite-difference form of the resulting equations are solved by a

coupled strongly implicit procedure described previously by the authors (31.

CONIZ3 ONWLATIOW

This formulation is designed for the calculation of large Reynolds number pro-

blems with a dominant flow direction, e.g. the C-direction. The gradients are
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largest in surface normal (n) direction. The flow outside the thin viscous region is

essentially inviscid and is represented by a potential function #; therefore, the

following composite representation of the velocity field to reflect the matched

asymptotic boundary layer-inviscid behavior is prescribed.

U (1 (1)U

Substitution of these expressions into the Navier-Stokes equations results, after

some reorganization, in the following orthogonal system for #, U, G:

-h U(l + l + (h3*q) " 0 (continuity) (2)

au 1 2 21

'.h 1' h1

-! +l~h (th h32 (u "9)] + (h hlev (U'1)]1+ 0u v (-1)+- (U-1) u

(U-l) ( h _ + viscous terms (&-momentum) (3)

. 2 n:. -m U1- + vicu tem (-momentum)(4

Q mE L.-. (52l -

0 int ernal ot bW is determined fro the globati con of ass.

in these equations
.. 2 + v2

'G - + ad - 0. ro)

eand is ,imilar therhe ernoulli or eotl pressure fom the invscid re aion. HoTe,
G in not asumed constant , bu is deltrmned by the calculatiLon procedure. In an

'bsic region er Iat io e I eynod i .tn.y (2) re to r oiel known

"V Potential flo eqetyoni the ose of equati ons t3, 4d are identically si-sfied ith
G - constnt= and 0 - 0. For internal flown, G - 0 on one wall and 0, is de!trmined"

i by ms conservati:on. in th vism region, the C[-mentus equation determines 0,

-. whlel # and, theefore, the preewme is obtained from the n-mmntua equatiLon. The

two basic regions; petien to large Reoynolds number flow are appropriately des-

i cribed by this composite set of equaions. 2thts mthod of defining v with a

'potential' was first tested for the flat plate boundary-layer (U,#) equations. The

solution of the resulting 2-point boundazy value problem reproduced the results ob-

tained with standard methods based on the velocities u and v. Zt should be pointed

out that the present system of equations can be used for the solution of inviscid

flowm provided that Re - and U a 1 is enforced at the solid surface. G - 0

decouples the normal mmentum equation from the axial momentum and continuity equa-
tions and represents the interacting boundary-layer approximation if axial diffusion

is neglected. Z, in addition, a Cnd # 44in equations (2) and (3) are replaced

with their respective potential flow values, the usual boundary-layer approximation

is recovered.
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For the calculations of separated flows it is essential that U and are

coupled in order to eliminate the pressure singularity. G which represents the
Bernoulli onstat in th invisd flow cnbe treated explicitly. Finlly, the

~n-mamentu determines G. The necessry coupling between U and # i.s attained with a

coupled strongly implicit procedure for the solutiJon of the algebraic system.

Zn the present formulation, the physical boundary conditions are represented

diecl byth olo in tmati a ondaycndiins*.OU
! i. At a olid urface: U - 0; -0= , and " n8 -- , 0 -*O, U - 1.

For a finite body: # or #-.0 a n .t., UC(,)01 as -.-e,

mid -0 9s (.s

For bodies which are infinite in both directions, the inflow and outflow condi-

tions are somewhat ambiguous. However, these conditions must be appropriately speci-

fied in order to obtain a meaningful solution. For the boattail geometry # and U

are prescribed at the inflow, while U o 0 and#C * 0 have been applied as outflow

conditions. The # 9 condition, in the context of the composite formulation, is such

an to eliminate the vi..scous-inviscid interaction. It should be .noted that these

boundary conditions are consistent with the mathematical character of the equations

. governing € and U. For example no slip has been satisfied through the boundary-

layer like variable U and not through

SOLUTION PF1CZDURE

The governing equations have been discretized using second-order accurate

central-differencing for all # derivatives. Central or boundary layer-like differ-

encing has been used for U derivatives, except for the (h3 U) term in the continuity

equationi this is backward differenced throughout. The resulting implicit algebraic

system of equations has been solved iteratively using a coupled strongly implicit

procedure (CSIP). The continuity and 9-momentum equations for # and U are solved

in a coupled fashion, while the n-momentun equation for G is evaluated iteratively.

In the 9-momentum'equation, 0 is treated as known during the iterations. Although G,

the winviscid" total pressure is evaluated explicitly from the n-momentum equation,

the static pressure is unknown and depends upon the values of # _ and erq. Since €

is evaluated implicitly in the coupled algorithm, this implies that the pressure is

also treated implicitly. This circumvents the separation singularity. Explicit

artificial viscosity is not required for convergence and the CSIP allows for arbi-

trauily large values of At once the effects of the inviscid initial conditions have

been sufficiently moothed.
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COUPLED 2 x 2 SOLUTZON ALGORITHM

In an earlier paper, reference [3], the present authors have developed a coupled

strongly implicit procedure for the stream function-vorticity form of the Wavier-

Stokes equations. This algorithm has the distinct advantage of being implicit in

both the C and n directions, as well as allowing for the coupling of all the boundary

conditions. It is this coupling, that eliminates the pressure singularity in the

(U, #) formulation. Furthermore, the method is unconditionally stable, allows for

arbitrarily large At, converges faster than SOR, LSOR, ADI, etc., and is relatively

insensitive to grid aspect ratio. The discretized version of the equations for

(U, *) can be written as:

(A + P) n +l = G + P,,, where V is the (U, f) solution vector.

P is chosen such that (A+P) can be decomposed into a lower and upper triangular form

having a sparsity pattern similar to the original matrix A. This leads to a solution

algorithm of the following form:

n+l oz ,n [: Jnl U nnl

where n is the iteration index. Although the coupling accelerates the rate of con-

vergence, it also increases the storage requirement by a factor of two. Considerable

savings in storage can be realized by re-evaluating some of the coefficients (Tij)

durinq the evaluation of U'and *. However, this is achieved at moderate additional

computational cost. In its present form the CSIP is slightly different from the one

given in reference (3]. Zn the present case the forward and backward sweeps have

been reversed in order to impart a certain degree of marching consistent with boundary

layer procedures. As detailed in reference (3], the appropriate recurrence relation-

ships can easily be obtained.

RESULTS

Laminar flow solutions have been obtained for boattail simulator, Joukowski

airfoil, finite plate and channel geometries. Reynolds numbers based on typical

length scales ranged from 10 to 10 . All the computations were started with arbi-

trary initial conditions. For the first 40 iterations At - 1, afterwhich At was
6increased to 10 . Zxplicit artificial viscosity was not required for what were

effectively steady-state calculations.

(a) oattail Simulator: A typical streamline plot for an axisymmetric boattail

geometry is shown in figure 1. The corner angle is approximately 300 and the body

radius varies between 1 and 0.5. With 1800 grid points (60 x 30, 12 on the boattail),

and Re- 7500, convergence to 10 - 3 is achieved in about 125 iterations. This takes

a'out 10 minutes on the Amdahl 470/V6 or less than 1 minute on the Cray-I computer.

~'9v~%' % v. % V'-.- ~ %- ~ .*.%-- * *. .,.. A ... . . .



(b) Joukowuki Airfoil: A variety of airfoil thicknesses and Reynolds numbers

have been considered. For low Reynolds numbers and small thickness ratio, the flow
is unseparated. As either is increased, separation regions appear. Typical stream-

line pattern and separation location for t/c - 0.12, 0.17 and Re - 10 3 to 104 are shown

in fig. 2. As expected, the separation point moves upstream with increasing Reynolds

number. This correlates well with solutions obtained with 2nd order boundary-layer
theory (4). Small changes in thickness ratio can lead to large variations on the
recirculation region. The solutions are oscillatory for large t/c, Re.

(c) Finite Flat Plate: The flow past the trailing edge of a finite flat plate
has been extensively investigated by triple-deck interacting boundary-layer global
relaxation procedures (51. In fig=e 3 the results of the present formulation are

compared with some earlier computations. A 105 x 75 qrid has been adequate to
provide reasonable agreement.

(d) Internal Flow: Two dimensional straight and curved channels have been in-
vestigated by the present technique. The curved channel was generated by using two

streamlines of the boattail geometry. A variable 9 and uniform-n (60 x 30) grid
was specified for this calculation. Uniform inflow conditions are prescribed. The
entrance mass flow rate was 0.4066 and the Reynolds number based on the entrance

channel width was Re - 2500. Global mass conservation was insured with the para-

meter a' (9). Typical wall pressure distributions and velocity profiles are shown

in figure 4.
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Fig. 1. Streamline Contours for foattail, 0 - 30", Re - 7500, 60 x 30 Grid.
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*Fig. 2a. Streamline Contours for Joukovuki Airfoil: Re-l1,000, t/c- 0.12.

5
Re1,000 5,000 7,500 10,000 10

0.12 No Separation No Separation 0.85 0.80 Unsteady

0.17 No Separation 0.47 Unsteady Uns teady -

rig. 2b. Separation Location for Several Values of tic, Re.

* * 5-
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* 0 0 INTERACTIN6 3.1. (5)

0.2

6.4 6.6 9.8~ 1.6 1.2 1.4 1.6 1.6

Fig. 3. Pressure Distribution Near Trailing Edge of Flat Plate: Re -10
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