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SUMMIIARY

This report describes progress made in research during the final year of

a five-year study of numerical dynamical analysis of structures funded by an

AFOSR Grant. The original proposal was JPL Proposal 51-641 dated 6-29-76,

and the final year renewal was proposed on 12-18-80..

The proposed work effort in the final year's work included the following

Tasks:

Task I - Development of a higher order rectangular plane stress/strain

finite element.

Task II - Development of a solid hexahedron finite dynamic element.

Task III- Further refinement of the Associated Generalized Eigenproblem

Solution Routine.

The nature of this work is to generate analytical results for publication

in the open literature. It is coion procedure, therefore, to report the

results of contractural work by submitting preprints or reprints of articles

to be published as the result of research supported under these tasks. We

have therefore collected together the appropriate preprints and reprints and
packaged them together as the report for the final year's effort.

In addition to this work in strict adherance with the Task descriptions,

a piece of research was carried out on the application of the finite dynamic

element method to coupled fluid-structure problems. This was done at the

invitation of the Fourth International Symposium on Finite Element Methods in
Flow Problems, and represents a logical extension of developments within the

AFOSR Grant to new application areas of interest to the Air Force.

The report is therefore divided into four parts:

Task I - Higher order element

Task II - Solid hexahedron element

Task III - Refinement of the solution routine

Task IV - Application tp fluid-structure problem



REPORT O TASK I

"Development of a Higher-Order Plane Finite

Dynamic Element"

(to be published)
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NUMERICAL FORMULATION FOR A HIGHER-ORDER

PLANE FINITE DYNAMIC ELEMENT

K. K. Gupta
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SUMMhOARY

The paper is essentially concerned with the development of a 8-node plane,
rectangular finite dynamic element and presents detailed descriptions of the
associated numerical formulation involving the higher order dynamic correction

*' terms, pertainings to the related stiffness and inertia matrices.

Numerical test results of free vibration analysis are presented in detail,

for the newly developed 8-node element, as well as the corresponding 4-node

element to afford a clear comparison of the relative efficiences of the corres-

ponding finite element and the dynamic element procedures. Such results indi-

cate a superior pattern of solution convergence of the presently developed

dynamic element.
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INTRODUCTION

A discrete element idealization of a continuum, undergoing free vibration,

may be achieved by uniquely relating the displacement field within an element in

terms of its nodal values. Such a relationship is expressed as

.u - a(M) U (1)

in which the shape function matrix a is a function of the natural frequencies w,

of the structure under consideration. The associated stiffness and inertia

matrices may then be derived by standard procedures, based on variational princi-

* plea, noting that the resulting matrices are obtained as functions of the initially

unknown natural frequencies. Subsequent extraction of roots and vectors from

these matrices is extremely difficult and uneconomical in nature and to avoid

such a unwieldy formulation equation (1) is expanded in ascending powers of w,

." as below:

AM() -a + Wa +  -2 "'" (2)

resulting in the following expressions for the element stiffness and inertia

matrices

+ w4K + ... (3)

,-4
-0 2 + 4

M! _ M + . 2+ w +4 ... +C4)
4= -4(4

-These matrices when appropriately combined yields the global matrices for the

* entire continuum. The associated free vibration formulation is given by

[K0-w (0-2) - w4(Mh - - ... - 0 (5)

in which the higher order dynamic correction matrices K2, K4 ld2 and such other

terms are retained in the formulation in the dynamic element method (DE), whereas

only the initial terms K and M are included in the analysis employing the usual-o Z:O
finite element method (FEI). Furthermore, in the dynamic element procedure, the

series form of equation (5) is suitably truncated to yield a quadratic matrix
eigenvalue problem

1-4'
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7.~

(A- C) g - 0 (6)

2

with A- K0 B - 1-_ 2 , c - and X - w, whereas in the finite element method

the equivalent formulation has the form

(A- -) 0 0 (7)

where

B-H 0

A dynamic element formulation was earlier .achieved for. line elements , involv-

ing derivation of the higher order dynamic correction terms. The procedure was

further developed for continuum discretization and details of the relevant dynamic

elements pertaining to membrane2 and plane stress 3'4 problems have been published

earlier. Such results indicate that dynamic elements exhibit much superior solu-

tion convergence characteristics when compared with the usual finite element

method, resulting in substantial economy in the free vibration analysis of prac-

tical problems. Furthermore, the usual solution techniques5 for the quadratic

matrix equation involved the eigenproblem solution of an equivalent system

characterized by a single full matrix of order twice that of the original system,

requiring prohibitive computational effort for most practical problems. However,
6,7

new solution techniques for the quadratic matrix formulation of equation (6)

• ipertaining to the dynamic element method enable eigenproblem solution with

approximately the same computational effort as that required for the solution of

equation (7) associated with a finite element formulation.

The purpose of this paper is to present detailed formulation of a 8-node,

plane rectangular dynamic element. Numerical results are presented for a repre-

sentative problem, solved by both the DEN and FEM formulation. Furthermore,

similar results are presented for the corresponding 4-node element to afford a

clear comparison of convergence characteristics of the various element types.

1-5



W t
DYNAMIC ELEMENT FORMULATION FOR A PLANE

8-NODE RECTANGULAR ELEMENT

Figure 1 depicts a typical rectangular, 8-node plane element. The differen-

tial equations of free vibration of such a continuum are of the following form

a ux 2 U__ / ) 32u2.2------ + +3 (!-2) i + 2 E(1) 2 (8)

ax2  ay2  at

I where p, pt and E are the element mass per unit area, Poissonts ratio and the

Young's modulus, respectively. Appropriate solution of equations (8) and (9)

for the in-plane deformations ux, uy may be expressed ip infinite series form

as below

* 2
u - a(w)U a + + w-12 + . )U (10)

yUy= a(w)U=( + tqsl + W2y +..)U(i

which if substituted in equations (8) and (9) yields the final expressions for

the differential equations. As for example, such equations in the y-direction are

as follows

*2 2 2 2*~~ a aa a
+ + a + k - 0 (12)

a2 ay2 2 ay2 axay

2 a2 
21:-l + -L+0 (13)

ax2 ay2 2 ay2 axay

1-6
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2 2 2a a2 xL 1 -2  2-2y 2  --- (14)

1 ay2 + x2 +2 a 3y- -1Oy

in which

a 2<,,, (1u A -10l (1-2u) 2 = (1-20 and 8 =

similar expressions being also obtained in the x direction.

When solving such differential equations, it is postulated that while .a is
allowed to satisfy the appropriate boundary conditions a and a2 must all vanish

at the boundaries. Thus the solutions for x,' .oy satisfying equation (1) and

its counterpart are assumed as below

r. ".i -x=Cl + c2 x + c3 Y +c 4 x
2 + cxY + cy 2 + c x y + y2 (15)
2 2 2 22

a y c 9 + c1 0 x + c1 1y + c12x + c1 3xy + cl4y + cisx y + c1 6xy

(16)

in which the coefficients c1 - c16 are evaluated by satisfaction of the boundary

conditions

-x u Ul, Uy = U2 at x.- 0, y 0 u U3 u U at x = 2a, y 0

ux  U5  U U6 atx=2a, y 2bu = U7  uy U8 at x = 0, y - 2b

u -U - U at x a, y 0 ux  7 u U 2 at x 2a, y b

• 9 y 10il1

ux  13 u = U14 at x a, y 2 u x  Ul1, uy = 16 at x -0, y - b
y .ay.bu x 5

Expressions, similar to equations (15) and (16) are chosen as solutions for a,

/ yielding ax -.0, Aly -O; appropriate solutions for equation (14) and its counter-

part, on the other hand, are assumed as follows

1-7
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a 4 a14x2 54 2

3 2 3 4
I [ 2 1 + _ 2 + + + c2xY2 y c3Y c4 x + c x2y2

3 c 3 cx2y2 4cc3y43

12. + 12 4 ,1 +-
12a 2 4 a" 24 24 a' 12 12 a1  24

(17)

9 + d10x + d1 1 y + a1 2x + a1 3 xy + d 1 4 y 2 + e15xy + 6

[c 2 c9 2  cl 2  clO 3 ccl 3 cl1 2 c1 2 x2y2 c 1 2  4

.4a 1  +4 +4 a1  1 12 a 4 4

3 c 1 3  3 c 4 c c -23 2y3 c c16 4
213 x--i 3 3 14 +- x y+ 15 4 _6i":"+ 2- a I + 2 x y + al x4 12 a + 24xy + 24- a

16 3

16 ~3] (18):i + _f -2

when the coefficients dI - a16 of the complementary functions are determined by

* satisfying the appropriate boundary conditions, noting that the coefficients

c1 - c16 are computed earlier from equations (15) and (16). The final forms of

the shape functions are obtained after performing some routine algebraic manipu-

lations. Appropriate derivations of the higher order shape function matrix a2

is crucial in the development of the current finite dynamic element.

The shape function vectors are thus defined as

+2 a2-

a X " i + -O xx a 7 joy + w 2y (19)

in which the scalars of each vector are coupled to the appropriate nodal degrees

of freedom of the element. Associated strain-displacement relationship is given

as

1-
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e b Uo (b +w b U (20)

in which

Bax a 2e -- -- (ay+2a( )U = (box 3  + ) U"x ax x -Ox y2x -y -Zx -

The individual 3 st a yslcmn Atr e are+ kuiaby cobndt il

xy ay ax +y +x +y

-(b +w b (21Oxy 2xy

The individual strain-dis;:-acement matrices are suitably combined to yield

the b and b matrices.
-O -2

The element stiffness and inertia matrices may next be developed by standard

procedure once the various a and b matrices have been determined, as above. Thus

the stiffness matrix is obtained as

K- o + W 4 (22)

where

E. f OTxb dv (23)

Kt Tf b Tx dv (24)i J-42 - -=-2 (4

-I,

*1 and in which x is the stress-strain matrix for two dimensional elasticity, v

being volume of the element. In a similar manner the inertia matrices are given

as

2
" "Ox +w,. 2  (25)

2y
M NY +Wm2 (26)

_ A1-9
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k: a. V O..Ti2 d- + -- A_ .!O ,v (28)
V.

.5oaT 8ydv + Pf A2T dv (28)

*2 0 f ~ 6  +v vfa2 (30)

w- r 0 Is the us per uait volume of the plate element.

IM eibollc swaipulati.o program 8ACSTKa, has been utilized in processing

eqmatlems (15)-(30) for the derivation of the a, b, I and K matrices involving

, rather large amounts of algebraic manipulations. The resulting expression for

*" the matrix elemats are next transformed In FORTRAN programed form, by employing

a suitable DuAIM latruction. Due to the lengthy nature of the expressions for

j, b, , sad K mtrices, they are not reproduced here for ready reference;

however, the pro rasmed form of these Individual expressions may be supplied for

appropriate utilization. The element matrices are then combined by standard

process to yield the global stiffness, Inertia and dynamic correction matrices

for subsequent analysis of numerical examples, by solving the quadratic eigenvalue

- problem depicted by equation 6.

1-10
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NUMERICAL RESULTS

A square plate, (Figure 2) with one edge fixed and three edges free, vibrating
3,4in its own plane, is chosen as a numerical example as before3 , having the

following basic structural data: side length (1) - 10.0, thickness (t) - 1.0;

Poisson's ratio (u) - 0.3. Solution results were obtained for the model employ-

ing an increasing number of elements and such analyses were performed for both

the dynamic and the finite element idealizations. Table I presents these results

in parametric form, along with similar results obtained by utilizing 4-node
3

rectangular elements . Such a table, on the other hand, provides a clear com-

parison of the pattern of root convergence of the higher-order 8-node and the

* simple 4-node dynamic and finite elements, in a concised form.

Figure 3 depicts the pattern of convergence of two typical roots pertaining

to the four sets of results, for varying mesh sizes. Such results are also

depicted in Figure 4, as a function of total computational effort involved in the

respective eigenproblem solution. The solution results pertaining to a 20 x 20

mesh discretization is accepted as the exact solution, in the absence of an

available analytical solution.

9:
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CONCLUDING REMARKS

Numerical results presented in Table I are further depicted in Figures 3

and 4 to provide a better insight into the patterns of behavior of the newly

developed 8-node dynamic element as well as its finite element counterpart. Such

results are also presented for the simple 4-node element to afford a clear com-

parison of the relative solution efficiencies for both the elements employing

either the dynamic element or the finite element technique. It is quite apparent

from these results that significant improvement in root convergence is achieved

when dynamic elements are used in place of the usual finite elements. Furthermore,

Figure 4 indicates that a 4-node dynamic element displays convergence characteris-

tics similar to an 8-node finite element. Thus, for a required two percent

solution accuracy for w the eigenproblem solution efforts for the 8-node DEM/FEM

and 4-node DEM/FEM procedures bear the ratios 1,6,4 and 15 respectively. Also,

with increasing mesh size, errors in frequencies computed by the DEM analysis

* ?decrease much more rapidly than the FEM computations. Furthermore, for a given

solution accuracy, the DEM analysis requires considerably less data preparation

effort due to a significant reduction in mesh size.

As pointed out in the Introduction section, the development of the dynamic

elements proved to be highly beneficial only after new eigenproblem solution

techniques were formulated that enable solution of the quadratic matrix equation

(A - W2B - w2C) 0 -0. A discussion on the choice of the higher order shape
4.function, which is crucial to the current formulation, is given elsewhere

11
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Table I

Comparison of natural frequency values of a square cantilever plate (FEM and DEM

results for 8-node elements shown in upper and lower rows, corresponding values

for 4-node elements shown in parenthesis)

Eigenvalue Parameter W- w/ (E/P)

Mesh .... A

Size 1 4)2 W 3 A4 )5 W"6

lxi .07046 .1602 .1926 .3169 .3867 .3968

(.07792) (.1743) (.2908)

.07027 .1522 .1736 .2715 .3182 .3708

(.07444) (.1491) (.2444)

2x2 .06708 .1585 .1817 .2906 .3167 .3289

(.07186) (.1637) (.2090) (.3372) (.3905) (.3964)

.06706 .1579 .1797 .2801 .3058 .3077

(.07096) (.1547) (.1946) (.2960) (.3340 (.3441)

3x3 .0638 .1583 .1785 .2835 .3083 .3235

(.06913) (.1608) (.1934) (.3152) (.3500) (.3609)

.06636 .1582 .1781 .2803 .3049 .3181

(.06876) (.1565) (.1867) (.2923) (.3190) (.3288)
a,.

20x20 (.06585) (.1579) (.1769) (.2796) (.3033) (.3214)

(exact

results)

1-14
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* Figure 2. A square plate with plane S-node elements
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Figure 3. Root convergence comparisons: 8-node and 4-node plane rectangular

* dynamic and finite elements
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DEVELOPMENT OF A SOLID HEXAHEDRON FINITE DYNAMIC ELEMENT

A solid hexahedron element, with three translational degrees of freedom per

*node, is shown in Figure 1. The differential equations of free vibrations of the

associated continuum may be expressed as

23u a2u 2u a +au y au a 2 xU:~ _. + _ + x 2, _(1 + v) ,) (1) ,
2 2 az2 (1-2u~) TX- a ay aZ E 2ax ay az a

au u au 2 +__iu au au a 2

ax2 ay2 az2 Tl-1 - (- a a E t2

2 y 2 z 2a (-21j) Ty a+ E at 2 )
ax ay z

u,p,E being the parameters as defined, earlier. Solutions of Eqs. (1), (2) and (3)

are taken respectively, as

' wt (4a)
ux  arxqe

r-O

L-.i. -, wraryqe

y wa ry - (4b)
rnO

z  a rzqe (4c)

r-O

2-2
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Figure 1 A solid hexahedron element
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S.

.Retaining only the first three terms in Eqs. 4a, 4b and 4c the shape functions

have the following form

a -aOx + wa + w a +.... (5)
X x x. 2x

a -a 0y + wa + Wa +.... (6)
y ly 2

.. 7 2
a a- +wa +wa +.... (7)
z O lz 2z

which are next substituted into the equilibrium equations to yield the final

set of equations of motion by equating the coefficients of the same powers of w:

x - Direction

~a O x a( O Ox a 2 __. + z- +  0\ + +
ax 2 2 2 2 2 + a +

2 + 2 + 2 /+2( a2 a~z.

ax ay 3z ax

2 2 2 + 2 2

aa a a aaaaa
2x 2x 2x 0  9

-$a (10)
2 + 2 + 2 + a az a

2-4



y - Direction

x2 2 2 x2 22 + -/ =0(

+ +- + a (12)S+ y +xy ay

Ox + 2 Oz (1

2x aaxzay 2 a

a2 a + a a a lx + 32az (12
1y2 2 2 2D xay 2-az -8a y (13)
ax ax az a

z - Direction

2 2 2 (
- 2a~z a~z I 2az 2x 2 a~ 32ao (14)

Ox + Oz ao x+ yz +  (14)
2 2 2 2 axaz +y2z U

ax ay az az /

2 2 ax+ ayaz 2 _

-a"" z1 "+ -8 2 +  a 2 z +  y (15)

ax ay az az

'-: 2 2 2 /2a a 2 za 2 z a x +1 2Z 2 2z 2xz-az(6
axa axyaz

where

1-2) a2 = 1/(1-2i) 1B = 2(1+p)p/E
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Solutions of Equations (8), (11) and (14) are assumed in the following from

Ux = aoxU = CI + C2 x + C3 y + C4 z + C5 xy + C6yz + C7 xz + C8 xyz (17)

U aU C + Cox + C y + C z + C+ Cxyz (18)y Oy 9 10 11 12 13x + 14y 15 Clx 16

U a OzU c 1 7  C8 + C1 9 y + C 20 z + C2 1 xy + C22yz + C2 3xz + C2 4xyz (19)

where the coefficients C1 - C24 are evaluated by appropriate satisfaction of the

boundary conditions as below:

x " O, y 0 O, z " 0 u " Ul 1 'Uy UyI  2 uz " Uz U3

x - a, y - 0, z - 0 ux  Ux2 - U4 uy - Uy2 - U5 uz - Uz2 U6

x a, y - b, z -0 ux " U = U uy U - U uz - U - U
x3 7 y y3 8 z z3 9

x 0, y - b, z -0 u x  Ux4 " U1 0  Uy -Uy4 - Ull uz - Uz4 -U1 2

x 0, y -0, z -C ux  Ux5  U Uy Uy5  U14 uz  U 5  U15.. , - . U13 y y5 I "U5 I

x -a, y- O,z -C x - Ux 6 - U 16  Uy U U17 u z  Uz6 U18

x-a, y b, z -C u U 7 -U 1 9  U U 2 0  uz  U U
y20 y7Oz7 21

x -, y -b, z -C ux  U x8 22 Uy - y8 - 23 uz - z8 - 24
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Whereas solutions for equations (9), (12) and (15) are taken in the same

form as above, the solutions for equations (10), (13) and (16) are taken as

follows:

ax- A + Ax + AY + A z + A xy + Ayz + A xz + A xyz
*2 1 3y 4 5 6 7 8

F2 2 2 3 2 2 2 3 2S x  Cy C z  Cx3 C2xY C2xz C 3xy Cy C3 yz

L6 +a 6 6 +18 ct 1 +6 + 6 +6al 1

2 2 3 3 3 2 2 3
C x z C4Y z C x y cy C xyz Cx yz C6Y z

+ 4 + 6 +4 + 5 18 + 6 + 6a + 18

11 1
SC 6yz

3  C7x
3z C7xy

2z C7xz
3  C8x

3yz +C 8xy
3z +C 8xyz

3 1.8 (0

1Ja A +x £+ y +A+ + - + + (0

a2y A9 + A10x + Ally + A12z + A1 3xy + A1 4yz + Alsxz + A1 6xyz

C CloX 3  2 C1 ly
3 CllX 2y

_ y- 2  z2 - 2 C 2 C 696;- 1-9 + C -+ co XY 1  z cl T 1

6a 1 1+ y + + 9" + 1 ay 1 + 3

-C43 2 2 x z3 2z12Y z 12 1 13x x Yxy
11 l 6  6Ta- 6 18- la 18 13 18 13 6

+ + c X YZ + C yz + Cxy z + C " Z+ C x-+ c 18al
18G1  14 6 14 18 15 6a 1518 1518 1618at

3 31
+ c IYZ +c C ZL 1-8 (21)

16 18 16 18]
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a A I A.,. I -I A 20 + -

Sz 7 12 21 22 y z + A23xz + A24xyz

C17z C1x 2 XZ2 3 2 2
1 1 . _ x . + +

-a +6 17 6 618a 181 8 6 19 6a 19 6

L.i 1

3322 2 3 3

391 2 38a 30 3 06 2 11 218

22 18a 22 6 +22 18 23 18at 23 18 23 6

3 3 3
+: CXZ + Cx yz + • xy (22)

24 18a 24 18 24 18

The strain displacement relationships are given by

e =bU

!. in which

e eyz e (23)

the individual strain components being defined as

e - e -Y e -a x yy ay zz 3z

(24)

au e =.+ a.au z + xexy ay a x yz az ay ax x az
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Once the shape function matrices and the strain-displacement relations have been

derived the uass and stiffness matrices may be formulated in a manner, similar to

the preceding section. As before, the MACSYMA program has been extensively used

for all algebraic manipulations involved In the development of the various a, b,

a and k matrices.

,2-

J.

.o4

%4
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NUMERICAL EXAMPLE

A cuba of unit dimensions is chosen as a numerical example. Both finite

and dynamic element discretizations were achieved by varying mesh sizes.

Results of such analyses are given in Table I.

Table I. Natural frequencies of a cube (FPE and DEM results are

shown in upper and lover rows respectively)

Mesh
Size Eigenvalue Parameters

ixi .7928 .7930 1.0742 1.7845 2.9197 2.9417
.7361 .7361 .9883 1.3993 2.1052 2.1052

2x2 .7378 .7381 .9994 1.6947 2.1001 2.1003
.7228 .7228 .9666 1.5492 1.8761 1.8762

3x3 .7077 .7078 .9598 1.6478 1.9388 1.9389
.7015 .7015 .9411 1.5777 1.8348 1.8348

The above results indicate that the dynamic elements are significantly more

efficient than the corresponding finite elements.

J

-4
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a STARS (STructural Analysis RoutineS)

K.K.Gupta

DATA INPUT PROCEDURE
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PROGRAM DESCRIPTION

Stars is a compact, general-purpose, finite and dynamic
element computer program for static (multiple load), free
vibration and dynamic response analysis of undamped and
damped (viscous and structural) structures including
spinning ones.

The element library presently consists of line and
triangular/quadrilateral shell elements enabling solution of
truss, beam, space frame, plane, plate, shell structures, or
any combination thereof. The program allows zero, finite and
interdependent deflection boundary conditions. The dynamic
response analysis capability allows initial deformation and
velocity inputs whereas the transient excitation may be either
force of acceleration in nature.

Data input can be at random within a specific data set,
and the program offers certain automatic data generation
capabilities. Input data is formated as an optimal combination
of free and fixed formats. "-I The program, developed in modular form for easy modifications,
is written in FORTRAN for the VAX 11/780 computer and consists of
about 6000 instructions. Continued development of the program is
envisaged while keeping tight control on the size of the program.
Extensive interactive plotting capabilities form an important
feature of the program.

.

"-' 3-2
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DESCRIPTION OF MAINIB INPUT

CARD I FORMAT
JOB TITLE
13A6

CARD 2 FORMAT
NN,N,NEL,NMAT,NMECNNEPNET,NTMP,NPR,NBUN
FREE FORMAT
WHERE:

NN - NUMBER OF NODES
N - ORDER OF PROBLEM (USUALLY 6*NN)
NEL - TOTAL NUMBER OF ELEMENTS
NMAT - TOTAL NUMBER OF ELEMENT MATERIAL TYPES
NMECN - NUMBER OF MATERIAL ELASTIC CONSTANTS
NEP - TOTAL NUMBER OF ELEMENT PROPERTY TYPES (LINE ELEMENTS)
NET - TOTAL NUMBER OF ELEMENT THICKNESS TYPES (SHELL ELEMENTS)
NTMP - TOTAL NUMBER OF ELEMENT TEMPERATURE TYPES
NPR - TOTAL NUMBER OF ELEMENT PRESSURE TYPES
NBUN - NUMBER OF NODAL CONNECTIVITY CONDITIONS

3-3
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CARD 3 FORMAT
IPROB, IBAN ,NPRECNC , IDRS, IPLOT
FREE FORMAT
WHERE:

IPROB - INDEX FOR PROBLEM TYPES, TO BE SET AS FOLLOWS:
- 1, UNDAMPED FREE VIBRATION CASE FOR NON-SPINNING

STRUCTURES.
- 2, UNDAMPED FREE VIBRATION CASE FOR SPINNING STRUCTURES,

C BEING SKEW-SYMMETRIC CORIOLIS MATRIX, K-KE+KG+KC
WHERE KE,KG,KC ARE RESPECTIVELY THE ELASTIC,
GEOMETRICAL STIFFNESS AND CENTRIFUGAL FORCES MATRIX
RESPECTIVELY

- 3, QUADRATIC MATRIX EIGENPROBLEM OPTION FOR DEM ANALYSIS,
K-LAMBDA*M-LAMBDA**2*C, C IS DYNAMIC CORRECTION
MATRIX.

- 4, FOR SPINNING STRUCTURES, WHEN C-CC+CD, CC IS THE
SKEW-SYMMETRIC CORIOLIS MATRIX, CD BEING THE
DIAGONAL VISCOUS DAMPING MATRIX IN K-I*LAMBDA*C
"LAMBDA**2*M FORMULATION.

- 5, AS IN 4, WITH STRUCTURAL DAMPING, K BEING COMPLEX
- 6, FOR NON-SPINNING STRUCTURES WITH VISCOUS

DAMPING (C).
- 7, AS IN 6, WITH STRUCTURAL DAMPING
- 8, SOLVES SIMULTANEOUS EQUATIONS AX-B ONLY, WHEN

MATRIX A, REAL SYMMETRIC OR HERMITIAN, IS READ IN
LIEU OF K.

IBAN - BANDWIDTH MINIMIZATION OPTION
- 0, PERFORM MINIMIZATION
- 1, DO NOT PERFORM MINIMIZATION

NPREC - PRECISION FOR SOLVING PROBLEM
- 1, SINGLE PRECISION REAL
- 2, DOUBLE PRECISION REAL
- 3, SINGLE PRECISION COMPLEX

4 4, DOUBLE PRECISION COMPLEX
NC - NUMBER OF SETS OF CONCENTRATED NODAL LOAD/MASS DATA

(IF NONE SET TO 1)
IDRS - INDEX FOR DYNAMIC RESPONSE ANALYSIS

-0, NO RESPONSE ANALYSIS NEEDED
1 1, PERFORM RESPONSE ANALYSIS

IPLOT - INDEX FOR PLOTTING
- 0, NO PLOTS ARE REQUIRED
- 1, PLOT STRUCTURE GEOMETRY; RESTART TO CONTINUE SOLUTION
- 2, PLOT FINAL NODAL DEFORMATIONS AS FUNCTIONS OF TIME,
MODE SHAPES AND ELEMENT STRESSES

3-4

*% - .*.. . . .. *2....*.-... . ,.. ..



CARD 4 FORMAT
IMLUMP, IPLUMP, ISPIN, IPRINT
FREE FORMAT
WHERE:

IMLUMP - INDEX FOR NODAL LUMPED MASS INPUT
- 0 , NO LUMPED MASS INPUT

-1*LUMPED MASS DATA INPUT (IPROB-1 THRU 7)
IPLUMP - INDEX FOR NODAL EXTERNAL LOAD INPUT

= 0 *NO LOAD INPUT
- 1 *CONCENTRATED NODAL LOAD INPUT (IPROB-8)

ISPIN - SPIN OPTION FOR STRUCTURE
0, NO SPIN

- 1, SPINNING STRUCTURE
IPRINT - PRINT OUTPUT OPTION

-0, FOR FINAL RESULTS OUTPUT ONLY
= 1, PRINT KM,C MATRICES AND VALUES OF ROOTS AT VARIOUS
STAGES OF CONVERGENCE

NOTE: NODAL MASS MATRIX IS ADDED TO CONSISTENT MASS MATRIX WHICH
IS A FUNCTION OF DISTRIBUTED MASS DENSITY (RHO) INPUT IN
EDINPT (VMP MATRIX)

CARD 5 FORMAT (REQUIRED IF ISPIN-1)
SVl ,SV2,SV3
FREE FORMAT
WHERE:

SVI = SPIN RATE ALONG GLOBAL X-AXIS (RAD/SEC)
SV2 - SPIN RATE ALONG GLOBAL Y-AXIS (RAD/SEC)
SV3 - SPIN RATE ALONG GLOBAL Z-AXIS (RAD/SEC)

CARD 6 FORMAT (REQUIRED IF IPROB IS NOT EQUAL TO 8)
INDEX,NR, INORMPU,PL, ISOLT, INDATA
FREE FORMAT

%- WHERE:
INDEX - INDICATOR FOR NUMBER OF EIGENVALUES TO BE COMPUTED.

- 1, WHEN FIRST NR SMALLEST ROOTS ARE NEEDED.
4- 2, WHEN ALL ROOTS LYING WITHIN LIMITS OF PU AND

PL ARE TO BE COMPUTED.
NR - NUMBER OF EIGENVALUES TO BE COMPUTED.
INORM - THE PARTICULAR DEGREE OF FREEDOM AT WHICH THE VECTOR

SCALOR IS USED TO NORMALIZE THE EIGENVECTORS.
- 0, THE ROUTINE NORMALIZES THE VECTORS WITH RESPECT TO

THE ELEMENT OF Y HAVING LARGEST MODULUS.
- -1, ELEMENT Y OR YD IS USED FOR NORMALIZATION.

PU - UPPER EIGENVALUE LIMIT
PL - LOWER EIGENVALUE LIMIT
ISOLT - VERSION OF EIGSOL

- 0 OR 1, STANDARD VERSION
- 2, SECOND VERSION

INDATA - INPUT DATA OPTION FOR EIGSOL
- 0, READ DATA FROM FILE
- 1, READ DATA FROM CARDS
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CARD 7 FORMAT (REQUIRED IF IDRS = 1)
TFNTTS,IUV, DELT, IDDI
FREE FORMAT

TF - TOTAL TIME SPAN TO EVALUATE DYNAMIC RESPONSE
NTTS - TOTAL NUMBER OF SETS OF LOAD/ACCELERATION INPUT DATA
IUV - INDEX FOR INITIAL DISPLACEMENT AND VELOCITY INPUT

- 0, NO INITIAL DISPLACEMENT/VELOCITY INPUT
= 1, IF EITHER INITIAL DISPLACEMENT OR VELOCITY OR BOTH ARE

NON-ZERO
DELT - TIME INTERVAL FOR RESPONSE CALCULATION
IDDI - INDEX FOR DYNAMIC DATA INPUT

- 1, NODAL LOAD INPUT
- 2, NODAL ACCELERATION INPUT

CARD 8 FORMAT (REQUIRED IF IPROB - 5 OR 7)
G
FREE FORMAT
WHERE:

G - STRUCTURAL DAMPING PARAMETER (K=K(1+IG))

-> CARD 9 FORMAT (REQUIRED IF IPROB - 4 OR 5)
-- TO READ DIAGONAL VISCOUS DAMPING MATRIX

FORMAT (6E10.4)

CARD 10 FORMAT (REQUIRED IF IPROB = 6 OR 7)
TO READ ALPHA, BETA
FORMAT (2E10.4)

CARD 11 FORMAT (REQUIRED IF IPROB - 6 OR 7 AND ALPHA = BETA - 0.0)
o TO READ BANDED VISCOUS DAMPING MATRIX
*FORMAT (6E10.4)
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DESCRIPTION OF NODAL DATA (NODCOR) INPUT

(1) INPUT NODAL COORDINATE DATA AT RANDOM
* (2) THE FINAL DATA IS AUTOMATICALLY FORMED IN SEQUENCE

(3) IN AUTOMATIC MESH GENERATION, THE IMPOSED DISPLACEMENT
BOUNDARY CONDITIONS AND OTHER ELEMENT PROPERTIES OF

* INTERMEDIATE NODES PERTAIN TO THE LAST CARD OF THE
SEQUENCE.

(4) THE THIRD POINT NODES FOR LINE ELEMENTS LYING ON
* LOCAL X-Y PLANE OF AN ELEMENT MAY BE ANY ACTIVE NODE
* OR DUMMY ONES PLACED AT THE END OF THE LIST WITH

UX=UY=UZ=TX=TY=TZ=O.

CARD FORMAT

NODE NODAL COORDINATES NODAL BOUNDARY CONDITIONS INCR
NO. X Y Z UX UY UZ TX TY TZ IINC

* 15 E1O.4 E10.4 ElO.4 15 15 15 15 15 15 15

NOTE:
(1) FOR NODAL BOUNDARY CONDITION

SET VALUE - 0 FOR FREE,
- 1 FOR CONSTRAINED

(2) FOR INCREMENT
SET VALUE - 0 FOR NO INCREMENTATION

- N INCREMENT BY N UNTIL FULL VALUE

PARAMETERS USED IN PROGRAM
(1) IN - NODE NUMBER
(2) VN(() - NODAL COORDINATES
(3) IIN( ) - NODAL BOUNDARY CONDITIONS
(4) INC( ) - INCREMENT
(5) NN - TOTAL NUMBER OF NODES
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* EXAMPLE OF INPUT: 1--- 0 --- :--- 10 :

10. 11.- 12._

* 10

7. 8.9._

* 10

4. 5 6._

* 10

1. 2. 3._

INPUT
1 0.0 0.00.0 0 1 1 1 1 0320.0 0.0 0.0 0 0 1 1 1 1 1

40100 0.0 0 0 1 1 1 1 04 00.0 30.0 0.0 0 0 1 1 1 1 3
6 20.0 10.0 0.0 0 0 1 1 1312 20.0 30.0 1 1
5 10.0 10.0 0.0 0 0 1 1 1 1 0

11 10.0 30.0 0.0 0 0 1 1 1 1 3

* NOTE: NODES 2,7,9 AND 8 ARE GENERATED
: 1

3-8
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DESCRIPTION OF EDINPT INPUT

(1) INPUT STRUCTURAL ELEMENT DATA AT RANDOM

CARD FORMAT FOR SET (1)

: ELEM ELEM NODE NODE NODE NODE NODE NODE NODE NODE IMPP IEPP ITMPP IPRR
, TYPE NO. 1 2 3 4 5 6 7 8 /ITHTH

LINE * * * ** IEC1 IEC2 FX + * * * *

%1

*SHELL* * * * * + * *** * *
QUAD

2

SHELL* * * * + * *** * *
TRIA

3

'p

-: NOTE:
(1) ** FOR THIRD POINT (TYPE 1)
(2) * FOR ELEMENT THICKNESS TYPE (TYPE 2,3)
(3) + ELEMENT INCREMENT NUMBER FOR AUTOMATIC GENERATION OF

INTERMEDIATE ELEMENT DATA BY LINEAR INTERPOLATION,
HAVING PROPERTIES SAME AS LAST CARD IN SEQUENCE

" (4) FOR LINE ELEMENT - IEC - I FOR PIN ENDED, - 0 FOR RIGID ENDED
-' (5) FX - INITIAL FORCE IN LOCAL X PLANE (TYPE 1)

(6) IMPP - ELEMENT MATERIAL PROPERTY TYPE
(7) IEPP - ELEMENT GEOMETRY PROPERTY TYPE (TYPE 1)
(8) ITMPP - ELEMENT TEMPERATURE PROPERTY TYPE
(9) IPRR - ELEMENT PRESSURE PROPERTY TYPE
(10) ITHTH - ELEMENT THICKNESS PROPERTY TYPE (TYPE 2,3)

,. FORMAT 14(15)

3-9
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CARD FORMAT FOR SET (2), ELEMENT PROPERTY CARD FOR TYPE 1 ONLY

PROP A JX IY IZ
TYPE
15 E10.4 E10.4 E10.4 E10.4

FORMAT (15,3E10.4)

NOTE:
(1) A - AREA
(2) JX - TORSIONAL MOMENT OF INERTIA
(3) IY - MOMENT OF INERTIA
(4) IZ - MOMENT OF INERTIA

CARD FORMAT FOR SET (3), ELEMENT THICKNESS DATA CARD FOR TYPE 2,3 ONLY

THICK T
TYPE
15 E10.4

FORMAT (15,ElO.4)
NOTE:

(1) T - THICKNESS

CARD FORMAT FOR SET (4), ELEMENT MATERIAL PROPERTY CARD
[TO BE SET FOR GENERAL MATERIAL CASE]

MATL ELASTIC CONSTANTS
TYPE
FOR ISOTROPIC

" *(E) *(MU) *(ALP) *(RHO)
FOR ORTHOTROPIC

* * *(ALPX) *(ALPY) *(RHO)
FOR ANISOTROPIC

* * * * * * * *
T* * * * * * *

* * * * * * *

*(ALPX) *(ALPY) *(ALPXY) *(RHO)

FORMAT (15,7E10.4/5X,7E10.4/5X,7E10.4/5X,4E10.4)

-. NOTE: DATA INPUT IS REQUIRED FOR EACH MATERIAL CASE

3-10
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CARD FORMAT FOR SET (5), ELEMENT TEMPERATURE INCREMENT CARD

TEMP T DTDY DTDZ TEMP T DTDY DTDZ
TYPE TYPE
15 E10.4 E10.4 E10.4 15 E10.4 E10.4 E10.4

FORMAT 2(15,3E10.4)

NOTE:
(I ) T - TEMPERATURE INCREMENT
(2) DTDY - Y-TEMPERATURE GRADIENT
(3) DTDZ - Z-TEMPERATURE GRADIENT

CARD FORMAT FOR SET (6), ELEMENT PRESSURE LOAD CARD

PRESS PRESS PRESS PRESS PRESS PRESS PRESS PRESS PRESS PRESS
TYPE TYPE TYPE TYPE TYPE
15 E10.4 15 E10.4 15 E10.4 15 E10.4 15 E10.4

FORMAT 5(I5,E10.4)

NOTE:
ELEMENT TYPE 1 - UNIFORM PRESSURE ALLOWED IN

LOCAL Y-DIRECTION ONLY
ELEMENT TYPE 2,3 - UNIFORM PRESSURE ALLOWED IN

LOCAL Z-DIRECTION ONLY
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DESCRIPTION OF GCINPT INPUT
I

SET (1) INPUT NODAL FORCE (P) OR MASS (M) MATRIX AT RANDOM
(ONLY IF IPLUMP/IMLUMP NOT EQUAL TO 0)

*:. SET (2) INPUT DYNAMIC LOADING (ONLY IF IDRS - 1)
SET (3) INPUT NODAL CONNECTIVITY AT RANDOM

CARD FORMAT FOR SET (1)

NODE NUMBER DOF P OR M
• 15 15 E10.4

FORMAT (215,ElO.4)

NOTE: (1) FOR NODAL LOAD, EACH CASE IS TERMINATED BY SETTING THE
NODE NUMBER FOR THE NEXT CASE TO A NEGATIVE NUMBER, SAY -1

(2) FOR IPROB - 8, IF IPLUMP - 0 THEN TERMINATE INPUT WITH -1

CARD FORMAT FOR SET (2)

CARD 1 FORMAT (REQUIRED IF IUV - I AND IDRS - 1)
TO READ INITIAL DISPLACEMENT/VELOCITY AT RANDOM, TERMINATED BY -1
FORMAT (215,2E15.5)

CARD 2 FORMAT (REQUIRED IF IDRS 1 AND NTTS > 0)

TO READ NTTS NUMBER OF SETS OF NODAL LOAD/ACCELERATION DATA)
FORMAT (E15.5)
TZ

FORMAT (215,E15.5)
NODE NUMBER DOF LOAD/ACCELERATION

' -1

NOTE: REPEAT CARD 2 DATA AS AVOVE FOR NTTS NUMBER OF SETS
EACH TERMINATED BY -1

CARD FORMAT FOR SET (3)

4(14,I1,I4,I1,E10.4)
(NODE DOF NODE DOF CONNECTIVITY) 4 SETS PER ROW

COEFFICIENT
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FURTHER MAINI INPUT

INPUT OF VISCOUS DAMPING MATRICES

CARD 1 FORMAT (REQUIRED IF IPROB-4 OR 5)
TO READ DIAGONAL VISCOUS DAMPING MATRIX,C(N,1) IN GCS
FORMAT: (6E10.4)

CARD 2 FORMAT (REQUIRED IF IPROB-6 OR 7)
TO READ 'ALPHA' AND 'BETA'
SO THAT [C] - ALPHA*[K] + BETA*[M]
FORMAT: (2E10.4)

CARD 3 FORMAT (REQUIRED IF IPROB-6 OR 7 AND ALPHA-BETA-0.0)
TO READ BANDED VISCOUS DAMPING MATRIXC(N,Ml1) IN GCS
FORMAT: (6E10.4)

NOTE: DATA IN CARDS 1 AND 3 MUST CONFORM TO 'ZDBC,FDBC AND IDBC'
INHERENT IN PROBLEM UNDER CONSIDERATION.
WHERE:

ZDBC - ZERO DEFLECTION BOUNDARY CONDITIONS, INPUT IN NODCOR
FDBE - FINITE DEFLECTION BOUNDARY CONDITIONS,

INPUT IN SET (3) IN GCINPT
IDBE - INTERDEPENDENT DEFLECTION BOUNDARY CONDITIONS,

INPUT IN SET (3) IN GCINPT

.

°.
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PARAMETERS USED IN THE PROGRAM

(1) NEL - TOTAL NUMBER OF ELEMENTS

(2) NEP TOTAL NUMBER OF ELEMENT PROPERTY TYPES (LINE ELEMENTS)
(3) NET - TOTAL NUMBER OF ELEMENT THICKNESS TYPES (SHELL ELEMENTS)
(4) NMAT - TOTAL NUMBER OF ELEMENT MATERIAL TYPES
(5) NMECN - NUMBER OF MATERIAL ELASTIC CONSTANTS

- 4,12,25 FOR ELASTIC ISOTROPIC, ORTHOTROPIC, OR
ANISOTROPIC CASE, RESPECTIVELY

(6) NTMP - TOTAL NUMBER OF ELEMENT TEMPERATURE TYPES
(7) NPR - TOTAL NUMBER OF ELEMENT PRESSURE TYPES
(8) IEP( ) ELEMENT PROPERTY TYPE NUMBER, LINE ELEMENTS (TYPE 1)
(9) VEP( ) ELEMENT PROPERTIES
(10) IET( ) ELEMENT THICKNESS TYPE NUMBER, SHELL ELEMENTS (TYPE 2,3)
(11) VET( - ELEMENT THICKNESS
(12) IMP( - ELEMENT MATERIAL TYPE NUMBER
(13) VMP( , ) ELEMENT ELASTIC CONSTANTS
(14) ITMP( ) ELEMENT TEMPERATURE TYPE NUMBER
(15) VTMP( )- ELEMENT TEMPERATURE DATA

* (16) IPR( ) - ELEMENT PRESSURE TYPE NUMBER
* (17) VPR( ) - ELEMENT PRESSURE DATA
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DEVELOPMENT OF A UNIFIED NUMERICAL
PROCEDURE FOR FREE VIBRATION ANALYSIS

OF STRUCTURESt

L K. GUFrA$

Jet opumso Labormory, Catifo nd Istin~ of Technoogy, Pasadena, Califorl U.S.A.

SUMMARY
This paper presents the details of a unified numerical algorithm and the associated computer program
developed for the eflcient determination of natural frequencies and modes of free vibration of structures.
Both spinning and nonspinnin8 structures with or without viscous and/or structural damping may be solved
by the current procedure; in addition, the program is capable of solving static problems with multiple load
case as well as the quadratic matrix eienproblem associated with a finite dynamic element structural
discretization. A special symmetric matrix decomposition scheme has been adopted for matrix tri-
angularization, which renders the program rather efficient and economical. Also, a novel bisection scheme
is described that further accelerates the solution convergence rate, particularly for the case of repeated
roots.

The associated computer program adopts an out-of-core solution strategy, thereby enabling effective
solutions to be achieved for large, complex, practical structures. A complete listing of the program written
in FORTRAN V, for the UNIVAC 1100/82 computer, along with the source deck is available for ready
use.

INTRODUCTION

The dynamic response analysis is of primary importance in the design of a wide range of practical
structures, such as spacecraft, buildings, and rotating machineries, among others. A vital
preliminary for such an inalysis involves the determination of the natural frequencies and the
associated modes. This is achieved, first, by discretizing the continuum by a standard technique,
such as the finite element method, yielding simultaneous algebraic equations; the resulting
eigenvalue problem is then suitably solved to yield the desired roots and vectors. For most
complex practical structures, such an idealization results in a rather large number of simul-
taneous equations, which are usually of highly banded configurations. In order to effect an
economical solution, the associated eigenproblem analysis routine must be designed to fully
exploit the inherent matrix sparsity. Furthermore, due to the limited core .torage available in
present computers, it is advantageous to adopt an out-of-core solution strategy that provides
effective solutions for practical structures of almost any magnitude add complexity.

While many structures are nonrotating in nature, some are subjected to uniform rotations.
Also, such structures may exhibit viscous or structural damping or a combination of both. The
associated eigenvalue problem are characterized by distinctive matrix equations. Furthermore,
when finite dynamic elements are used for structural discretization, a quadratic matrix

t The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of
Tedmology, and was sponsored jointly by the Air Force Office of Scientific Research (AFOSR) and the Lare Space
Structures Technology (LSST) Project Office at the NASA Langley Research Center.

* Member of the Technical Staff, Applied Mechanics Technology Section.

0029-5981/81/020187-12$01.00 Received 28 September 1979
(C) 1981 by John Wiley & Sons, Ltd. Revised 26 March 1980
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eiganvalue formulation is involved. A general formulation unifying the various eigenvalue

problems may be presented as

MI +C4+Kq -0 (1)

in which M, C and K are, in general, the inertia, damping and stiffness matrices, respectively.
The individual eigenproblems are identified next.

Case L Undamped free vibration and buckling

The related matrix formulation becomes

Mq+Kq-O (2)

the solution of which is taken to be q - e"'; equation (2) then reduces to

(KB-A 2M)q -0 (2a)

where K, is the elastic stiffness matrix, and A the natural frequencies. The associated buckling
problem is characterized by

(KL,- iKo)q - 0 (2b)

in which K0 is the geometrical stiffness matrix and I the compressive buckling load. The
formulation for the associated problem of free vibration of prestressed structures is given by

[(KE- Ko)- A 2M]q _ 0 (2c)

in which the compressive load is assumed to have a positive sign. Equations (2a)-(2c) are
characterized by real roots and vectors since Ka, K, M are real, symmetric matrices, KB also
being positive definite in nature; for structures exhibiting rigid body motion, a non-negative
definite form of K, is obtained.

Case II. Undamped free vibration of spinning structures

* For undamped structures spinning at a uniform rate f, equation (1) assumes the form

M4I+C 4+Kq -0 (3)

.,where C skew-symmetric Coriolis matrix, being a function of 1; K - KB+K, +K'; K and
K' are the geometrical stiffness and centrifugal forces matrices, respectively, both being
functions of 72 The solution (3) is assumed as q - e , and the resulting eigenvalue problem
takes the form1

(K+pC, +p 2M)q _ 0 (3a)

in which p is pure imaginary, such roots and associated complex vectors occurring in conjugate
pairs. Further, K and M are assumed to be symmetric and positive definite for small vibrations.

Case DI. Quadradc marix equations

If structural discretization is achieved by finite dynamic elements (FDEs), the resulting
frequency-dependent stiffness and inertia matrices are, first, expressed in terms of ascending
powers of the frequencies A:

KKo+A4  .4 + } (4)

.~-M+ 2... .. . - .+
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resulting in the quadratic matrix eigenvalue problem

[Ko- A 2Mo - A'(M 2 - ()]q _ 0 (4a)
where K - Ke, MD - M are the usual elastic stiffness and mass matrices; M2, s are the

"* higher order dynamic corrections terms, the inclusion of which in the free vibration analysis is
known to effect a significant increase in the solution convergence rate.2 Equation (4a) is of

. similar form to equation (3a), but possesses real roots and vectors. Equation (4a) may also be
* written as

S(K_-A 2M-A t')q - 0 (4b)

*: which may be further rearranged as

a.l -o- X-1-J +1 T Ji )| J I (4c)

. with 4 -Aq and which is of the form

(E -A 2F)y - 0 (4d)

where E and F are symmetric matrices, E also being positive definite in nature.

Cases IV and V. Damped free vibration of spinning structures

The associated equations of free vibration without or with structural damping are expressed as

-M + (C. + Cd)4 + Kgq - 0 (5)
M+(Ce+Cd)4 + KE (I+ i*g)q = 0 (6)

for cases IV and V, respectively, in which Cd is the viscous damping matrix assumed to be
* diagonal, i* is the imaginary number 4-1, and g is the structural damping parameter.

Substituting q - e" in the above equations, the resulting eigenvalue problems have the following
form:

g + p(C + C,) + p 2M]q - 0 (Sa)

(Ki(I + i*g) + p(C, + Cd) +p2M]q - 0 (6a)
in which the roots p, as well as the associated vectors, are obtained as complex conjugate pairs.

Cases V1 and VII. Damped free vibration of nonspinning structures
Equation (1) assumes the following form for cases Vi and VII, respectively:

M + C4+ Kq -0 (7)

M4 + C4+ Ki (1 + i*g)q = 0 (8)

and the related eigenproblem formulations are defined as

[Kf +pC+p 2 M]q - (7a)

[Kf(1 + i'g) + pC + p2 M]q _ 0 (8a)

where the roots and vectors have forms similar to those pertaining to cases IV and V; C is the
viscous damping matrix of general banded form.

,.
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Case VIII. Simultaneous equations

Solution of simultaneous equations

Sq-b (9)

is effected, where S is either real, symmetric or Hermitian in nature, and b is a set of arbitrary
vectors. An effective solution of equation (9) is essential in the analysis of the various eigenvalue
problems.

The purpose of this paper is to present the details of a unified numerical algorithm and an
associated computer program developed for the solution of the above eigenvalue problems
defined by cases I to VII. Such a program fully exploits the banded nature of the related matrices
and enables computation of only a few desired roots lying within a specified bound without

-having to compute any other. Since the computer program employs an out-of-core solution
strategy, it enables effective solutions to be obtained for complex practical problems of rather
large magnitudes. Numerical results are also presented in detail, testifying to the relative
efficiency of the present procedure. This is followed by a summary of conclusions.

BASIC NUMERICAL SCHEMES

A solution of the general eigenvalue problem defined by equation (1) is obtained by first
rearranging the matrices as follows:

+ + 0- (10)

which may also be written as

By+Ay-O (It)

where

.. 4= (1 1a)

Substituting y - e" as its solution, equation (11) takes the form

(B+pA)y=O (12)

which may also be written as

(B-AA*)y= (13)

where A - i*p and A* - i*A.

Isolation of roots

For the particular case when A* is a Hermitian matrix and B is real, symmetric and positive or
non-negative definite in nature, the Sturm sequence property3 is valid for the formulation
depicted by equation (13), the associated roots being real in nature. Thus, for a given value of A,
the number of changes in the signs of the leading principal minors f,(A) is equal to the number of
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roots of B-A A* having algebraic values less than A. As a special case, this property is also valid
for the formulation involving a pair of real symmetric matrices. Such a property enables the
isolation of only a few desired roots lying within a specified upper and lower bound [A., A], by a
repeated bisection technique, without having to compute any other. Thus, at a particular stage of

I I .

'I )U

n' Xim  X I 1  r"" i xl.  j . , , x, ,

Figure 1. Convergence scheme for repeated roots

computation, the Sturm count determines the number of roots of B- A A*, say, x, lying within
[A.,, Al], with A,, - (A. +A,)/2, A. A, being the current upper and lower bounds, respectively.
The upper bound of the x roots and the lower bounds of the rest are then set to A.,, the latter
being implemented only if their current lower bounds are smaller than A.. The desired roots are
automatically isolated and their individual bounds determined when this process is continued.
Furthermore, if a number of roots are found within the bound [A., Al], such that the absolute
value of (A. -A)/AN, is less than the root separation parameter EPS, then they are considered as
repeated ones with a numerical value equal to A.. However, the latter process tends to be rather

*slow for extracting repeated or close roots. A novel strategy has been developed in connection
with the present work which essentially reduces the root extraction time for repeated roots to

, that of distinct ones. Thus, during the bisection process, when monitoring the bounds of a group
of roots, if the number of such roots, say, r, remain the same while their upper and lower bounds
each changes at least once, then a multiplicity test is immediately carried out. The inverse

*; iteration process described in the next section is then used, employing the respective upper and
* lower bound values to accurately locate two roots by converging from both ends. If these two

root values are found to be identical, the r roots are then asumed to be multiple ones having the
numerical value as that of the two converged roots. If, on the other hand, the two converged
roots are distinct in values, they are accepted as the true values of the respective roots and the
bisection process is continued as usual. This special procedure is depicted in Figure 1, where the
roots Ak to A, are repeated in nature. First they are isolated within bounds (A k, A .] when two

* more bisections are needed to satisfy the criterion for the present strategy. The final bounds A k
and A' are then utilized to converge from both sides. This current procedure has been found to

* be much superior than the usual repeated bisection technique for multiple roots.
For the present set of problems, the Sturm sequence count involving the number of changes in

- the signs of the leading principal minors is equivalent to counting the number of negative
diagonal elements of the decomposed matrix. Depending on the type of problem, such an
operation is performed on the following matrix formulation:

Cases , VI and VII

Matrix triangularization is performed on

K-A 2 M (14)

when all operations involve real numbers.
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Case III

Similar matrix manipulations are executed with the matrix

K-A 2M-A (15)
also involving real numbers only.

Cases II, IV and V

The decomposition of the matrix

K-iAC,-AM (16)
is implemented, when all operations are performed in complex arithmetic.

Location of roots and computation of vectors

Once the roots are isolated by the repeated bisection procedure, an inverse iteration
technique is adopted for the simultaneous determination of individual roots and vectors.3 4 In
this process the middle point of the bounds of the isolated rth root is taken as the starting root
iteration value:

A t: (A" + At )2 (17)

which is utilized to effect the triang-larization of the relevant left-hand side matrix. A starting
vector is then chosen to consist entirely of unit real scalars to start matrix iterations; for complex
operations, the imaginary parts of the scalars are assumed to be zero. At the end of each iteration
a Rayleigh quotient is used to obtain a new estimate of the root under consideration. The matrix
formulations adopted for the inverse iteration procedure for a typical iteration are summarized
next:

CaseI~~[K -(A)Ma~ ~ ~(18)

N,+j being a normalizing factor.

Case rl

Lower half of equation (13):

14 [K-i*A C. - (+ ,)2Mq 1 - ,[A'Mq+ i*M4+ i*Ccq] (19)

Upper half:i ~~~" 1Ml+ * ,q+t], -N, t i*Mq' (19a)

Case I

Lower half of equation (4d):

[K - (A M- (AM )4 C]q,+- N.,.'t,+ Mq+ (A .) 2r q] (20)

Upper half:

IN .. . . . .
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Cases IV and V

Lower halt of equation (13):
[K- i*A,C, - (A )2M]q ,1 Mq M4I+ (*.. A C. (A i+ [ +i Cqi'] (21)

' in which C - C + C.
* -. Upper half: As in case U

Cases V1 and VI

Lower half of equation (13):

[K- (A ,)2M]q i - N+[A :,Mq + i*M4+ i*Cq'l (22)

in which C is the viscous damping matrix of usual banded form.
Upper half: As in case U.

For each root, triangularization of the left-hand side of the above equations is performed only
once at the beginning of the iteration. In subsequent iteration steps, their solutions are achieved
by the simple back-substitution process.

The Rayleigh quotient is used at each iteration step to achieve a new estimate for the root;
their detailed expressions are presented below:

CaseI

(A,. )2 - (qr+I)TKq, 1/(q,+I)TMq,+i (23)

Case II
-, IT , -, , (24)

A+ 1  1 1+ A 1i+1 (24)

where

(y+ 1 )T~+ - (4r +)TM*?4, (4, I)TKqr+ 2a

i+0By h1it) i ++( , Kq, + (24a)

+i)Ty+ ,i -- (+ +t) T Ci..+t 4+i*(4i )TM4 t + *(it)TCeqi'* (24b)

Case Iff

Case//V

(A ia b(Y c)Ey /(Y,1) rFy+eb2)

where
;" ~~(y r j)Ey t= (4r I)Tlt- ,I 1+ (q,* t)TKq, (25 a)

L"(yr t)TFY, 1+ ql C1+ + + lt!q', + + 1+1~ (25b)

Case/rV

As in case 11, but C, is replaced by C, + Cd.

As in case IV, but K is replaced by K(1 + i'g).
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Case V1

As in case 11 with C replacing Cj.

Case VII

As in case VI, but K is changed to K(1 + ig).

The new estimate for A'1,, obtained by using the Rayleigh quotient, is next used to check the
pattern of root convergence. Thus, if the factor

jA +1 -

is found to be smaller than the specified root accuracy parameters EPSI, A i'+ is then accepted as
the true value of A'; otherwise, the above steps involving inverse iterations and calculation of
Rayleigh quotients are continued until adequate convergence is achieved.

Repeated real roots are determined entirely by the novel bisection process described earlier.
To achieve the associated vectors, these roots are first artificially separated relative to their

|,°2

respective values by an amount 3 x 2- , t being the number of digits after the binary point. The
inverse iteration procedure is then directly applied to yield the vectors, when, at most, two

* iterations are required for their accurate determination. Due to extreme sensitivity of eigen-
vectors to small perturbations in the vicinity of multiple roots, this procedure yields sets of
independent vectors corresponding to such roots. The standard Schmidt orthogonalization
technique may then be applied to transform the independent vectors into orthogonal ones.

Numnerical stability

The triangulazation of equations (14H-d22) has been achieved by a symmetric decomposition
scheme that omits row interchanges, which, in turn, preserves the bandwidth of the relevant
matrices. This reduces the omputation time for roots and vectors by a factor between 2 and 3,
when compared with similar routines developed earlier.3"o Since the matrix equations (14h22)
are, in general, not positive definite in nature, suitable pivoting was considered to be necessary
to preserve numerical stability. In the present work, some alternative measures have been
implemented in the program that proves to be effective in preserving numerical stability.

Thus, provided the roots are not required to be calculated to a high precision, the resulting
bisection process is remarkably stable in nature and the chances of a breakdown are rather
slight. The root accuracy parameters EPS and EPS are thus set to 0i0o1 and 0ooo1,
respectively, which will result in pigenvalues that are sufficiently accurate for problems usually
encountered in practice. Also, the program may easily be run in double precision, it desired, so
that a large number of significant figures are retained in subsequent computations. Moreover, if

* a zero pivot is encountered on any rare occasion, the matrix triangularization may be repeated
with a slightly perturbed value of the current A; however, since the bisection process has
proved to be rather weol-condtaoned, these extra precautions are deemed to be unnecessary.

During the inverse iteration procedure, if a zero pivot is encountered, the program automa-
tically replaces it by, the normal rounding error, and continues the process onward. A number
of test cae have been run using the program and their convergence characteristics carefully

. monitored. These results indicate that the program is accurate and reliable in nature.
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DEVELOPMENT OF A COMPUTER PROGRAM

A computer program EIGSOLt (ElGen problem SOLution routine), based on the numerical
formulations presented in the earlier section, has been developed to achieve efficient solutions
to structural free vibration problems. Both spinning and nonspinning structures, with or without
viscous and structural damping, as well as the quadratic matrix eigenproblem associated with a
finite dynamic element discretization, may be analysed by the program. For spinning structures
the program is limited to diagonal viscous damping matrices. An adequate number of comment
cards, included in the listing, renders the program to be self-explanatory in nature.

An important aspect of the analysis is related to the solution of simultaneous equations, either
real, symmetric or Hermitian, , using an out-of-core solution strategy, and this is effected by the
subroutine BANMAT (BANded MATrix solution). The relevant data are all stored in secon-
dary storage units, such as discs, which are brought in the core in suitable predetermined block
format. A minimum core storage requirement of (MI 1, M1 1) and Ml 1 pertaining to D and AD
matrices is required to operate the program BANMAT; MuI is the half bandwidth of K,
including the diagonal. The program is designed to run on the 260K UNIVAC 1100/82

Scomputer, which allows usage of up to about 175K core storage, that enables achieving solutions
to practical problems of rather large magnitude.

The main driver routine EIGSOL repeatedly calls subroutine INPUT to effect data input.
Thus, the upper symmetric halves of K(N, M1 1), M(N, MB), C (or C,) (N, MC) and C(N, MCD)
are read in predetermined block format; N is the order of the matrices, MB, MC, MCD being the
half-bandwidth of M, C, Cd, respectively. Figure 2 shows the arrangement of data blocks, theT I I Ml

T OCK NRAD
M11 BOCK-O RA

-1 NRADNRAD

-N I NRAD NRAAD
"NIAD NRA!

NM* ---j A N1 I I
ILN~kK1INRD L RLDK

BKCK-O MI I

(a) INPtfU DATA STORAGE (b) SOLUTION DATA OUTPUT STORAGE

Figure 2. Data block aet-up or K, M and C matticts

" number of such data blocks (NDBLK) being dependent on the available core area specified by
the parameter NAC, which is to be provided by the user. Besides the main store D of dimensions
(Mll, Mll), each block will have NRAD number of rows, the number of such rows in the last
data block being defined by NRLDBK. Once the solution has been achieved, it is then stored in

;.f the block format, as shown in Figue 2(b).

t 1he physical program EIGSOL is available from the Computer Management and Information Center (COSMIC), the
NASA agency for distribution of computer proairs.m

............................ *-

..... . . . . . . .
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Isolation of the desired roots is achieved by the repeated bisection technique effected by the
subroutine BISECN, which, in turn, repeatedly calls the subroutine EIGNV to determine the
number of roots of the present problem having algebraic values less than the current root value
under consideration. The subroutine BANMAT is used by EIGNV for the Sturm sequence
count of roots. Once the roots are isolated, they are accurately located by the subroutine
VECTOR employing the inverse iteration procedure, which also simultaneously yields the
mociated vectors. Two other subroutines, MULT and VMULT, are also used by the program
for appropriate matrix and vector multiplications.

,12

NAC

DUItAROOT LU WLU 1IIST Y YD Y1 Y2 Y3 Y4 Y3 AUX 1 0 AD I
(7) (MAX)(MAX2) (MAX2) (MAX,3) ((M1) (NS,NC) (M1,M1) (NtAO.MII)I

A I

IA ,

(M NW, M1 A 1)

i:! '--"- (N" AD.MlI

MAC

Fsure 3. Amapuens t di in o mn block mrray A (vriables defined in propam lisung)

Figure 3 depicts the schematic arrangement of data in the main common block core,
containing an array A that contains all major vectors and matrices. The starting addresses of
theses arrays relative to the array A are also shown in the figure, which are used in the arguments
of the various subroutines called by the main driver routine to effect appropriate equivalence of
these arrays with array A. This common block is designed in such a way that it occupies the last
portion of the computer data bank (DBANK). Thus, as long . A has at least a starting address in

* the first core module of the computer, it will automatically spill over to the other data banks,
enabling utilization of about 175K core memory in a 260K UNIVAC 1100/82 machine. Thus,
the program is capable of solving rather large practical problems. Depending on the nature of
the problem, the program operates either in real or complex mode.

NUMERICAL RESULTS

An extensive number of test cases have been solved by the program EIGSOL to check out the
various capabilities offered by the procedure as well a to establish the relative efficacy of the
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program in comparison tq other existing ones. Thus, the spinning cantilever beam problem,
presented earlier,3 is aW chosen as a numerical example. The basic elastic properties of the
beam, divided in 10 discrete elements of length I and expressed in the inch-pound-second unit
system, a e as follows:

Moment of inertia (Y-axis)
Moment of inertia (Z-axis)
Area of cross-section -1.0
Young's modulus - 30 x 10'
Nodal mass in transtion -1

:.- Nodal mass moment of inertia =
Scalar viscous damping - 0.628318
Structure damping parameter (g) -0.01
Element length (1) -6

where the direction of the X-axis is chosen along the length of the beam. A number of computer
run were performed corresponding to problem cases , IV and V by setting the appropriate

*input parameter IPROB to 2, 4 and 5, respectively. The beam was subjected to a uniform spin
rate fl-0.1 Hz, along the Y-axis, at the built-in end; the results of such analyses are
summarized in Table I. Each analysis, involving the first six roots and associated vectors,
required about 16 sec of CPU time using the UNIVAC 1100/82 computer, in which all relevant
matrices pertaining to the various formulations have been taken into consideration.

Table I. Spinning cantilever beam: natunral hquencies for various problem types for a spin
rate 1-0.1 Hz

Mode Structure without Structure with Structure with vucou
damping viscous damping and structural damping

(IPROB - 2) (IPROB - 4) (PROB -5)

1 2.3955 -0.3092 * 2.35481 -0-3199* 2-35061
2 3.5689 -0.3121 * 3.54141 -0-3287* 3.53641
3 15-2142 -03167 *15.207710 -0.3912*15.19640
4 21-7754 -0.3166 *21.77081* -0-4252*21-76431*
S 43-0167 -0.32021*43.01431* -0-5340*43402981

, 6 61.0008 -0-32022*60-99921' -0-6249*60-9880i*

To check out the program for cases VI and VIL, a taut string vibration problems wa analysed
using the EIGSOL program. The results were in very good agreement with that presented in
Reference 3, the relative solution time being reduced by a factor of about 2-3. A suitable

* problem pertaining to the quadratic matrix equations (case 1H) was also checked out by the
present program. A cantilever plate free vibration problem' of aspect ratio 1:2, involving
matrices of order 432, was also solved to check out problems defined by case 1. The solution time
for the first six roots and vectors was found to be about I min of CPU time, compared to that of
2-5 min using the program EASI of Reference 4.

CONCLUDING REMARKS

A unified numerical procedure has been presented for the effident solution of free vibration
Sproble. of usual and spinning structures with or without various forms of damping. Such a

.. - o , .. - . ..- . - - - - - - - - - - - - -
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formulation also includes the quadratic matrix eigenvalue problem associated with the finite
dynamic element discretization.

The program fully exploits matrix sparsity, such as bandedness, and enables computation of
only a few desired roots and vectors without having to compute any other. In general, when run
on the same computer, the present program is found to be over two times faster than the related
program DAMP,3 EASI4 and QMESSI. 2 The program adopts an out-of-core solution strategy,
and as such it is capable of solving large, complex, practical problems. Since the eigenproblem
solution time is proportional to N x M112 , it is highly desirable to adopt a suitable bandwidth
minimization scheme to achieve a minimum value for M 1I before utilizing the EIGSOL routine.
It is hoped that the present program will be developed further into a small general-purpose finite
element computer procedure in the near future. ,"
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FREE VIBRATION ANALYSIS OF COUPLED FLUID-
STRUCTURE SYSTEMS

K. K. GUTA

CaIfoR. Ifnstuse of Treenoa;..
Pete ad. Cafifornia 91109. U.&A.

This paper is concerned with the free vibration analysis of coupled
fluid-stTucture systems, discretied by the finite element method. both

compressible and Incompressible fluids are considered in the analysis, the

latter being A special case of the first one. A numerical analysis proce-
dure, based on an inverse iteration technique In conjuction with a special
bisection scheme exploiting the Sturn sequence property, Is described In
this paper that enables computation of the desired roots and vectors of
the vibrating coupled system without having to compute any other. Further,
the procedure utilizes the associated structural stiffness and mess smtri-
ces as well as the fluids counterpart matrices In their orginal banded
form, thereby effecting efficient solution of the eigenvalue problem.

NMODUCTION

A large number of practical structures are required to withstand ex-
ternally applied dynamic loadings. The vital preliminary for such a design
requires the free vibration analysis of the structures, involving, by far,
the major mount of computation time of the entire analysis effort. Many
structures exhibit coupled fluid-structure Interactions, excellent ac-
counts of which are narrated in References 1 and 2. The first category of
such a phenomenon is characterized by large fluid motion, an important
example being the flutter of aircraft wings. Some numerical solution pro-
cedures of such problems have been presented earlier 3  .

* In the second category, the fluid is assumed to umdergo only finite
displacement, the motion being limited to small amplitudes. By employing
a finite element discretization, the free vibration problem of a fluid-
structure resonant system way be writen as

a - c12 U - 0 .

"where
% K a structural stiffness matrix

• - structural inertia matrix
-- fluid matrix associated physically with the Inertia proper-

- ties of the fluid (analogous to K)
, a fluid matrix associated with Its compressible behavior (anal-

ogous to M)
C - fluid-structure coupling matrix, sparse and rectangular in

." nature
u a structural nodal deformation vector

4-3
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l- luid nodal pressure vector
" - fluid density

and in which the fluid idealization i accomplished by the standard fuler-
ian pressure formulation, the fluid being assumed to be inviscid and com-
pressible in nature. The 0 matrix formulation includes the coefficient
denoting the speed of sound in the fluid medium. Equations (1) and (2)
my be combined, a below, yielding the finite element fluld-structure
elgenvalue problem of the entire systemS

which my be solved by standard procedure involving real atrices. Now-
ever, because of the unsymetric nature of the above matrices, the solu-
tion tends to be rather inefficient and uneconomical in nature. An earli-
er effort6 succeeded in reformulating equation (3) in a symetric forms
although the entire solution process still required a considerable mount
of computational effort.

In the particular case when the fluid is assumed as incompressible,
a simplification In the elgenproblem formulation -y be achieved. Thus,
In the absense of the 0 matrix an expression for E is obtained from the
reduced equation (3), ;hich on substitution in equation (1) yields the

* corresponding elgenvalue problem

.:. [ K - 62(. + £ -C T] -_ ...(4)

which has the effect of adding an additional mass matrix to the structural
elgenproblem formulation. The final mss matrix, however, tends to possess
a rather large bandwidth if the number of degrees of freedom at the inter-
face happens to be large, which in turn proves to be expensive for the
corresponding natural frequency analysis. A solution procedure for *qua-
tins (4), based on the inverse iteration method is presented in Reference
7.

The purpose of this paper is to present an efficient numerical tech-
-ique for the eigenproblem solution of the compressible fluid-structure
interaction problem defined by equation (3). The procedure starts with
the natural frequency analysi of the structure in the absence of any
fluid. This is achieved by a combined Sturm sequence and inverse itera-
ties technique that computes only the required eigenvalues and vectors. A

special inverse iteration scheme is next developed for the coupled system

that utilizes the eLgenvalues, computed earlier, as starting iteration
values for convergence to the required roots and vectors. The solution
process cakes full advantage of the relationship in the relative frequency
values of the structure without any fluid, structure with incompressible

and compressible fluids respectively. Numerical results obtained by

* .solving a number of standard test cases clearly indicate the pattern of
root convergence cocresponding to various simplifying assumptionus, further

demonstrating the relative efficiency of the present procedure.

4-4
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5 DEVELOP1W OF NUERICAL P2ODURZ

To achieve an effective solution of the eigenvalue problem under con-
sIderation, equation (3) Is first rearranged a follows:

which my also be written as

. (7 - Vz-= 0 0.01
where

".a|w-
2 , Z" .. (5a)

Subsequent analysis procedure io based on an Implicit asedaptiou that che

roots computed for the structure (I), structure with Incompressible

fluid (1)) and structure wit'- compressIble fluidA 2
( C) bear the fol-

loving relationships 9

vhich proves to be useful in the determination of any destred roots and
vectors*

The entire solution process consists of the following major steps

Step I
Solve (I - AN)u - 0, the algenvalue problem pertaining to the

(S) (5)structure only to yield I~ and A~ * employing a combined
Sturm sequence and inverse Iteration procedurelo.

* Stop 2 (

For each root determined in step I solve (V - XI ) Z - . the

eigenvalue problem for the Incompressible fluid-structure com-
bintion by setting 2 o 0 to obtain a reduced I matrix denoted
by 2. The solution Is scl eved by an Inverse Lit:ratlon scheme
aW a bisection str:tegy, described in detail later, by employ-

Ing I I and A the starting Iteration root and vector re-

spectively. yielding sets of X )slnd ()

Step 3
Solve (1 - 1(')Z- . pertaining to the compressible fluid-

structure case by employing 4r) and 4!) a the starting Itera-

tion parameters, as In step 2, yielding the desLred root I'

4-5
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and vector .(C)

Stop 4
Triangularize (F- XA(CZ) and perform a Sturm sequence count to

determine the sequence of %;(C) in the elgenspectrum (say rth).

Then perform a bisection procedure based on the strategy an
below: (C)

() If r-i then I I .x(C) and repeat steps 2 and 3 for

the next desired root.

(U) tf r > I then repeat the inverse Iteration procedure

with A - (I + A )/2 or ( ) 2 (if step 2

has been omitted from consideration) to converge to the

required Ith root A (C ) and the corresponding vector (C)

Step s

Repeat step 4 If r ) 11 till all roots up to the ith one jnd
the corresponding vectors are recovered. Ass,,e. 7t( (C3g

Step 6

Repeat steps 2 through 5 till all required roots and vectors are
computed.

The inverse iteration scheme, Implicit in the above steps, is carried
out by utilizing equation (5). Thus the iteration at the rth step Is per-
formed on the following matrix formulation

z1.. r+1 r 000M

which may also be written as

1 r+ + r

where i+i is a normalizing factor. Solution of equation (8) is achieved

by first writing the matrix equation corresponding to the lover and upper
half, respectively, as below

(K- % M)u r -zr+1 +1 ~ r~

C!- T c+1 -r T r *..iO
,:: . c~ rl Xr ... (10)

I id 1  ,T)4.The procedure starts by solving equation (9) with the right hand vector Z
assumed to be consisting entirely of unit scalars. Equation (10) is then
solved for the p vector and the process being repeated till adequate con-
vergence is assured. The associated oot is then simply computed from the
Rayleigh quotient:

4-6
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- r+1/ ,'+1T' +1 .,,>

TrIangulariaatlon of the relevant matrix pertaining to step 2 is ob-
tained by setting 0 - 0 in equation (8). Indeed, step 2 may be entirely
omitted for compresaible fluid, thereby effecting further saving in solu-
tion time.

IUMEICAL RESULTS

A computer program has been developed for the natural frequency
analysis of fluid-structure systems, which is capable of computing the
Sdesired roots and vectors of the coupled system in an efficient manner.
The example problem of dry dock in Reference 5 was solved by the program
as a test case, and the results correlated rather well. Such solution
results were printed out at various analysis steps to verify the efficacy
of the bisection procedure adopted for the present analysis, and such
results confirm the reliable nature of the numerical algorithm.

CONCLUDING EMARKS

A numerical procedure has been presented that proves to be efficient
for the free vibration analysis of fluid-structure coupled systems. The
fluid is assumed to be compressible in nature and the incompressible
problem Is only a special case of the generalized algorithm developed in
the paper.

From the numerical formulation depicted by equations 7-11 it is ap-
parent that the current procedure employs the individual K, M, H, 0, and
C matrices In their original banded form and thus fully eploits t7he in-
terent matrix sparsity usually associated with a finite element formula-
tion. The usual procedures, such as proposed in references 6 and 9, in-
volve various matrix inversions that finally requires solution of eigen-
value problems characterized by full matrices. A similar situation is
also encountered with the approximate formulation for incompressible fluid.
The pcesent procedure also enables computation of a few roots and vectors
only without having to compute any other.
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