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SUMMARY

This report desgribes progress made in research during the final year of
a five-year study of nunerical dynamfcal analysis of structures funded by an
AFOSR Grant. The original proposal was JPL Proposal 51-641 dated 6-29-76,
and the final year renewal was proposed on 12-18-80.

The proposed work effort in the final year's work included the following
Tasks:

Tagsk I - Development of a higher order rectangular plane stress/strain

finite element.

Task II - Development of a solid hexahedron finite dynamic element.

Task ITI - Further refinement of the Associated Generalized Eigenproblem

Solution Routine.

The nature of this work is to generate analytical results for publication
in the open literature. It is common procedure, therefore, to report the
results of contractural work by submitting preprints or reprints of articles
to be published as the resul; of research supported under these tasks. We
have therefore collected together the appropriate preprints and reprints and
packaged them together as the report for the final year's effort.

In addition to this work in strict adherance with the Task descriptioms,
a piece of research was carried out on the application of the finite dynamic
element method to coupled fluid-structure problems. This was done at the
invitation of the Fourth International Symposium on Finite Element Methods in
Flow Problems, and represents a logical extemnsion of developments within the
AFOSR Grant to new application areas of interest to the Air Force.

The report is therefore divided into four parts:

Task I - Higher order element

Task II - Solid hexahedron element

Task III - Refinement of the gsolution routine

Task IV - Application to fluid-structure problems
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SUMMARY

The paper is essentially concerned with the development of a 8-node plane,
rectangular finite dynamic element and presents detailed descriptions of the
associated numerical formulation involving the higher order dynamic correction
terms, pertainings to the related stiffness and inertia matrices.

Numerical test results of free vibration analysié are presented in detail,
for the newly developed 8-node element, as well as the corresponding 4-node
{ element to afford a clear comparison of the relative efficiences of the corres-
" ponding finite element and the dynamic element procedures. Such results indi-
cate a superior pattern of solution convergence of the presently developed
- dynamic element.

......
............................




INTRODUCTION

A discrete element idealization of a continuum, undergoing free vibration,
may be achieved by uniquely relating the displacement field within an element in

terms of its nodal values. Such a relationship is expressed as
u=awy Keb

in which the shape function matrix a is a function of the natural frequencies w,

of the structure under consideration. The associated stiffness and inertia
matrices may then be derived by standard procedures, based on variational princi-
ples, noting that the resulting matrices are obtained as functions of the initially
unknown natural frequencies. Subsequent extraction of roots and vectors from
these matrices is extremely difficult and uneconomical in nature and to avoid

such a unwieldy formulation equation (1) is expanded in ascending powers of w,

as below:
a(w) = a, + wa, + mza + (2)
- =0 =1 =2 o

resulting in the following expressions for the element stiffness and inertia

matrices

K=K +ukK +uk +... (3)
M=M +uM + oM + %)
Holy+uly +olf +...

These matrices when appropriately combined yields the global matrices for the

entire continuum. The associated free vibration formulation is given by

[5_0-(0 ’K)-N(MZ_‘.)----]_Q'O (5)

in which the higher order dynamic correction matrices Kz, K, M24and such other
terms are retained in the formulation in the dynamic element method (DEM), whereas
only the initial terms K

—o
finite element method (FEM). Furthermore, in the dynamic element procedure, the

and yo are included in the analysis employing the usual

series form of equation (5) is suitably truncated to yield a quadratic matrix
eigenvalue problem

......
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(a-2g-%0) g=0 (6)

2
with A = Kp B = _1_40-52, C= M,-K, and A = w , whereas in the finite element method
the equivalent formulation has the form

(a-2B) g= 0 ¢))

where

B=N, .

A dynamic element formulation was earlier .achieved for line elementsl, involv~
ing derivation of the higher order dynamic correction terms. The procedure was
further developed for\continuum discretization and details of the relevant dynamic
elements pertaining to membranez and plane stresss’4 problems have been published
earlier. Such results indicate that dynamic elements exhibit much superior solu-
tion convergence characteristics when compared with the usual finite element
method, resulting in substantial economy in the free vibration analysis of prac-
tical problems. Furthermore, the usual solution techniques5 for the quadratic
matrix equation involved the eigenproblem solution of an equivalent system
characterized by a single full matrix of order twice that of the.original system,
requiring prohibitive computational effort for_most practical problems. However,
new solution techniqu096’7 for the quadratic matrix formulation of equation (6)
pertaining to the dynamic element method enable eigenproblem solution with ’
approximatply the same computational effort as #hat required for the solution of
equation (7) associated with a finite element formulationm.

The purpose of this paper is to present detailed formulation of a 8-node,
plane rectangular dynamic element. Numerical results are presented for a repre-
sentative problem, solved by both the DEM and FEM formulation. Furthermore,
similar results are presented for the corresponding 4-node element to afford a
clear comparison of convergence characteristics of the various element types.
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DYNAMIC ELEMENT FORMULATION FOR A PLANE
8-NODE RECTANGULAR ELEMENT

-
-

5

Figure 1 depicts a typical rectangular, 8-node plane element. The differen-

o ofa i

tial equations of free vibration of such a continuum are of the following form

9 uy ] u 1 2 aux 3u1> 0 ) u
— o — + - + = 2(1+0) © —3= (8)
3x2 a:y2 ‘1 2u) ax \ x y E 3:2
Bzul 32uy 1 3 aux du 2 azu

+ — =X +1) = 2(1+4u) —X 9
axz ay2 (1-2u) a3y \ ax 3y E atZ

where p, u and E are the element mass per unit area, Poisson's ratio and the
Young's modulus, respectively. Appropriate solution of equations (8) and (9)
for the in-plane deformations Uos uy may be expressed ir infinite series form

as below

u = AWl = (ag, +ua + wPa, +.0 (10)
5 :
uy-g(w)g- (Eoy+m_a;1y+wgzy+ o) U (11)

which if substituted in equations (8) and (9) yields the final expressions for
the differential equations. As for example, such equations in the y-direction are

as follows

2 2 2 2

35023’4-32(’2’+a232°21’ :2;’ -0 (12)
ax ay 3y xdy

2 2

? 212" + : 512” +a, 2 2121 + aail“ -0 (13)
ox 3y ay y

...........................................................
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- =2y =2y —2x _ _

{ * ay2 + 9x2 + %2 9x 3y B éOy (14)
f;_\
3 in which

3

- < 2(1-u) -1 - 20

; oy Q-2p) * % 1-2m and B £ (1+y),

¢

o

Y similar expressions being also obtained in the x directiom.

t: When solving such differential equations, it is postulated that while &, is
'ﬁ allowed to satisfy the appropriate boundary conditions a and a, must all vanish
gé at the boundaries. Thus the solutions for a5, EOy satisfying equation (1) and
-3 its counterpart are assumed as below

.

- a, =c, +c.Xx + + e, X% + Xy + Y% + coxly + coxy? (15)
) Zox T LT X T TG 5%V T Ce¥ T XY T CgXy

. a =c . +c..x+c..y+c x2 +c,.Xy +¢ y2 +c xzy + ¢ xy2

=0y 9 10 11 12 13 14 15 16
(16)
:f in which the coefficients ¢ ~ ¢ ¢ are evaluated by satisfaction of the boundary
conditions
'“ u =U,u =U,atx=0, y=0 u_= Us, u, = U, at x=2a, y=0

x 1° "y 2

O YH
PRSI

e
"
(=]

" 5 u, = U6 at x = 2a, y = 2b u, = U7, uy - U8 at x =0, y = 2b

e a
R el

u = U9 u = UlO at x = a, y=20 u = Ull’ uy = U12 at x = 2a, y= b

u, = U13 u = U14 at x = a, y = 2b u = UlS’ uy = U16 at x =0, y=5b

Expressions, similar to equations (15) and (16) are chosen as solutjons for a,

s
-
.

yielding 2. =0, Eiy = 0; appropriate solutions for equation (14) and its counter-
part, on the other hand, are assumed as follows

-
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a 2 2 . 2 2
2% 61 + éZx + é3y + 64x + ésxy + 66y + &, xy + ésxy
3 2 3 4

c 2 c C,X c,. Xy c 2 c.y c c 22
ol 2,2 27 3xy 3 L b, bxy

4 « 4 12a 4 4 4 o, 12 24 a. 4

I 1 X 1
4

c. .3 €. 3 ¢,.22 c.y c, 4 c,.2.3 ¢y 3.2 coxy
s Xy Sxy  _6xy . 6  Txy Ixy , 8x _8 ]

2 a 12 4 o 24 26 a 1 12 o 24

I 1 1 1

an
=& + 6 x+¢ e x>+ +6. 92 + e, Xy + e 2
82y " S99 T “10 129 T %12 13%Y T C147 15 7 7 C16%

c. 2 ¢ c 2 ¢ c 3 ¢ c 22 ¢
a9y 29 2, T10 xy 10 3,11 y” 11 2 12 x°y 12 4
B[4a+4x+4a+12 t ot xvY Y 5 Y.

1 1 1 1
3 ¢ c 4 ¢ c 23 ¢ c 4

13 x 13 3 14 v~ 14 2.2 15 x vy 15 4 16 xy
+120;1"12 +24a1+4 Xy +713 al*'za"y*z al
c

16 3
+12x] (18)

when the coefficients él - 616 of thg complementary functions are determined by
satisfying the appropriate boundary conditions, noting that the coefficients

¢, = ¢;¢ are computed earlier from equatioﬂs (15) and (16). The final forms of
the shape functions are obtained after performing some routine algebraic manipu-
lations. Appropriate derivations of the higher order shape function matrix 8,
is crucial in the development of the current finite dynamic element.

The shape function vectors are thus defined as

a = a + wza
2y 3

=0x 2t By T 2 ¥ m%g

34y 2y -(19)
in which the scalars of each vector are coupled to the appropriate nodal degrees
of freedom of the element. Associated strain-displacement relationship is given
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(20)
in which
¥x 3 2 2
-9-xx X = X (.on"'“’ -a-Zx) 3 (20,“"'“ -112xx) A
% _ 3 2 2
= W — +w U = (b U
Sy "y "y Goytagy) (boyy*e Byyy) L
My My Box | Boy 2(°=2x 3521
e =+ - + U+ +
xy 3y ax 3y x / — 3y x
2 (21)

= (bOxy +w bey) u

The individual strain-dis;lacement matrices are suitably combined to yield
the EO and -]22 matrices.

The element stiffness and inertia matrices may next be developed by standard
procedure once the various a and b matrices have been determined, as above. Thus

the stiffness matrix is obtained as

4

K=K, +uv K (22)
where
K =f b.Tx b.dv (23)
Ko=) 2ox2¢
K = [ b x b, dv (24)
B Z2h

and in which x is the stress-strain matrix for two dimensional elasticity, v

being volume of the element. In a similar manner the inertia matrices are given

as
m =m + wzm (25)
-=x Ox -2x
m =m, + wzm (26)
=y Oy =2y
1-9
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E:; in which
. T
Box = °y ] 3ox 20x Y @7
= p a8 ‘1'. dv + aTa dv (28)
2oy vj;-Ox—-zx pvv-Zx-Ox
T dv
-9 ja a (29)
®oy © %y , 2oy
= p l‘rl dv+pfa '1“ dv (30)
"y ° 0 , Joy %2y v/, 2y 2oy

whese o, ia the mass per uait volume of the plate element.

The syabolic asmipulation program HACSYHA‘, has been utilized in processing
equations (13)-(30) for the derivation of the a, b, m and K matrices involving
rather large amouats of algsbraic manipulations. The resulting expression for
the mstrix elemeats are next transformed in FORTRAN programmed form, by employing
s suitable MACSYMA imstruction. Due to the lengthy nature of the expressions for
8, b, 8, sad Kk matrices, they are not reproduced here for ready reference;
however, the programmed form of these individual expressions may be supplied for
.”ro'rut; utilisation. The element matrices are then combined ly standard
process to yield the global stiffness, inertia and dynamic correction matrices
for subsequeat mlyl:!.l of numerical examples, by solving the quadratic eigenvalue

problem depicted by equation 6.
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NUMERICAL RESULTS

{ A square plate, (Figure 2) with one edge fixed and three edges free, vibrating
e in its own plane, is chosen as a numerical example as before3'4, having the

N following basic structural data: side length (1) = 10.0, thickness (t) = 1.0;

- Poisson's ratio (u) = 0.3. Solution results were obtained for the model employ-
| ing an increasing number of elements and such analyses were performed for both
the dynamic and the finite element idealizations. Table I presents these results
~ in parametric form, along with similar results obtained by utilizing 4-node

3 rectangular e1ements3. Such a table, on the other hand, provides a clear com-

' parison of the pattern of root convergence of the higher-order 8-node and the

2 simple 4-node dynamic and finite elements, in a concised form.

'; Figure 3 depicts the pattern of convergence of two typical roots pertaining
- to the four sets of results, for varying mesh sizes. Such results are also

. depicted in Figure 4, as a function of total computational effort involved in the
: respective eigenproblem solution. The solution results pertaining to a 20 x 20
mesh discretization is accepted as the exact solution, in the absence of an

E-- available analytical solution.
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CONCLUDING REMARKS

Numerical results presented in Table I are further depicted in Figures 3
and 4 to provide a better insight into the patterns of behavior of the newly
developed 8-node dynamic element as well as its finite element counterpart. Such
results are also presented for the simple 4-n9de element to afford a clear com-
parison of the relative solution efficiencies for both the elements employing
either the dynamic element or the finite element technique. It is quite apparent
from these results that significant improvement in root convergence is achieved
when dynamic elements are used in place of the usual finite elements. Furthermore,
Figure 4 indicates that a 4-node dynamic element displays convergence characteris-
tics similar to an 8-node finite element. Thus, for a required two percent
solution accuracy for W the eigenproblem solution efforts for the 8-node DEM/FEM
and 4-node DEM/FEM procedures bear the ratios 1,6,4 and 15 respectively. Also,
with increasing mesh size, errors in frequencies computed by the DEM analysis
decrease much more rapidly than the FEM computations. Furthermore, for a given
solution accuracy, the DEM analysis requires considerably less data preparation
effort due to a significant reduction in mesh size.

As pointed out in the Introduction section, the development of the dynamic
elements proved to be highly beneficial only after new eigenproblem solution
techniques were formulated that enable solution of the quadratic matrix equation
(- ng - ng) 9 = 0. A discussion on the choice of the higher order shape

function, which 1is crucial to the current formulation, is given elsewhere‘l

-----------------------------------------
---------------------
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Table 1

Comparison of natural frequency values of a square cantilever plate (FEM and DEM

results for 8-node elements shown in upper and lower rows, corresponding values

for 4-node elements shown in parenthesis)

Mesh
Size

1x1

2x2

3x3

20x20
(exact
results)

'Eigenvalue Parameter o = w/ (E/P)

.07046
(.07792)
.07027
(.07444)

.06708
(.07186)
.06706
(.07096)

.0638
(.06913)

.06636
(.06876)

(.06585)

-~

W

.1602
(.1743)
.1522
(.1491)

.1585
(.1637)
.1579
(.1547)

.1583
(.1608)

.1582
(.1565)

(.1579)

~

@3

.1926

(.2908)
.1736

(.2444)

.1817
(.2090)
.1797
(.1946)

.1785
(.1934)
.1781
(.1867)

(.1769)

1-14

-

Y

.3169

.2715

.2906
(.3372)
.2801
(.2960)

.2835
(.3152)
.2803
(.2923)

(.2796)

.3867

.3182

.3167
(.3905)

.3058
(.3340

.3083
(.3500)
.3049
(.3190)

(.3033)

......
...........

.3968

.3708

.3289
(.3964)
.3077
(.3441)

.3235
(.3609)
.3181
(.3238)

(.3214)
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Figure 1.

A 8-node plane rectangular element
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REPORT ON TASK II

"Development of a Solid Hexahedron

Finite Dynamic Element"

(to be published as a full paper)
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DEVELOPMENT OF A SOLID HEXAHEDRON FINITE DYNAMIC ELEMENT

A solid hexahedron element, with three translational degrees of freedom per
node, is shown in Figure 1. The differential equations of free vibrations of the

associated continuum may be expressed as

azux aznx azux L s (Bux u, 3u2> R 82ux
+ + + + + = 2(1 + p) (1)
ax2 ayZ az2 (1-2u) 3x \ oax dy 9z E at2
azfx azux azuy 1 . <3ux du, auz> o 3%y
+ + + o - + + =21+ & —2 (2
ax2 8y2 522 (1-2p) 3y \ 3x dy oz E ,.2
2 2 2 2
3 u 3"y 9 u du 3u Ju d u
z 2z z 1 d < X, _ v z) P z
+ + + = + + = 2(1 + u) (3)
3x2 3y2 az2 (1-2u) 3z \ 3x ay 9z E 3t2

4,p,E being the parameters as defined, earlier. Solutions of Eqs. (1), (2) and (3)

are taken respectively, as

r iwt (4a)
u = E wa_gqe
x rx

T iwt
u = E w a__qe
y ry (4b)

r 1wt
u, = E wa_ _qe (4c)




Figure 1 A solid hexahedron element




Retaining only the first three terms in Eqs. 4a, 4b and 4c the shape functions

have the following form

2
a =ay + walx + w a, + seee (5)
a =a, + wa +w2a + coes (6)
y Oy ly 2y
a =a, + wa +w2a + oo (7)
z 0z 1z 2z

which are next substituted into the equilibrium equations to yield the final

set of equations of motion by equating the coefficients of the same powers of w:

X — Direction

a2a a2a 823 aza a2a 323
g" + gx + g" + a2< g" + 301 + ;z)- 0 &)
9x ?y 9z 9x x9y xoz
2 2 2 2 2 2
9 a 3"a 3 a 3"a 9" a 9 a
= + ;x + ;x + a2< ;x + 8::81J + Bxalzz>. 0 9
Ix 3y 9z ax y
2 2 2 2 2
9%a a"a 97a d"a 9" a
2X 2x 2x 2y 2z) _ _
T tT T2t °‘2<axay + Bxaz> Ba oy (10)
ax y 3z
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y — Direction
2lay,  d%a, 2% o’a 2% o%a
Oy + Oy + Oy +a 0 + 0 0z) _ 0 (11)
ax> ay> 322 2\ ax3y ay? dydz
Py Yy ey Ty Py YAy,
2 * 2 1 2t %\Gmy t 2 dyoz (12)
x 3y ? y dy y
2 2 2 2 2
al 3 agy + 9 agy + 9 a§ . az<aa :Zx aa :22) - -Bao (13)
3y ax 3z xdy yoz y
z — Direction
32802 3230 azaoz (3230 32802 azaoz>
3x2 3y2 3 2 2\ 3xdz dyadz az2
97a ] a 9 a 9 a 9 a 3°a
=gt — °‘2<axalzx ayalzy §z> = U (15)
X 3y 9z 32
2 2 2 2 2
9"a 9"a 3°a 3°a 3°a
2z 2z 22 2x 2y) _ _
i N R S °‘2<axaz + ayaz> Bag, (16)
dz ox 3y
where
- 2(1-y) - - -
al (1-2p) 0'2 1/(1-2u) ] 2(1+u)p/E

o ac
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Solutions of Equations (8), (11) and (14) are assumed in the following from

Ux = anU = C1 + sz + C3y + Caz + Csxy + c6yz + C7xz + C8xyz (17)
Uy = g0 = Cg + Cygx + €137 + Cpp2 + Cyqxy + €132 + Cy5x2 + Ciexyz (18)

Uz = aozU = C17 + C18x + Cl9y + Czoz + C21xy + szyz + Cz3xz + Czaxyz (19)

where the coefficients C1 - 024 are evaluated by appropriate satisfaction of the

boundary conditions as below:

x=0,y=0,z2=0 wu =0_=0 u =U_ =10 u =U . =10

x x1 1 y yl 2 z zl 3
Xx=a,y=0,2z=0 u =0, = U4 u, = Uy2 = U5 u, =U, = Ue
X=a, y=b, z=0 u = Ux3 = U7 “y = Uy3 = U8 u = Uz3 = U9
x=0, y=b, z2z=0 u = Ux4 = U10 uy = be - "11 u, = Uzk = 012
x=0, y=0, z=¢ u = st = Ul3 uy = Uy5 = U14 u, = Uzs = U15
XxX=a,y=0,2=2( u = Ux6 = Ul6 uy = Uy6 = U17 ou, = Uzﬁ = U18
x=a, y=b, z=2¢C u_ = Uy = Usg v, = Uy7 =Yy u, = Uz7 = 021
x=0,y=b,z=C u =U_=T0U u =U_=1U u =U_=U

x x8 22 y y8 23 z z8 24
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Whereas solutions for equations (9), (12) and (15) are taken in the same

form as above, the solutions for equations (10), (13) and (16) are taken as

follows:
a,x = A1 + A2x + A3y + Anz + Asxy + A6yz + A7xz + Aaxyz
sz Cy2 sz Cx3 ny2 sz2 szy Cy3 C,yz
A A AL 3,2 + -2 - =4 3
6a 6 6 18a 6 6 6a 18 6
1 1 1
Caxzz Cl.y z C4z3 C5x3y Csxy3 Csxyz C6x yz C6y z
+ + + + + + + +
6a 6 18 18a 18 6 6a 18
1 1 1
C yz3 C x3z c xyzz C xz3 c x3yz c xy3z c xyz3
+ -2 + + L + - + -3 + -8 + -3 - (20)
18 18al 6 18 18m1 18 18
. a2y = A9 + Alox + Auy + Alzz + Al3xy + All.yz + Alsxz + A16xyz
L
2 3 3 2
C.y 2 2 2 C,.x 2 C,,y C,.xy
9 x_ z_ Xy 10 p.+4 11 11
T[e T e T e T 06 TTas Y06 TIsa YT 6
2 3 3
2 C,,yz C..xz C.,,z C,.xy 3 2
yz 12 12 12 13 Xy Xxyz
TnTe Yo tTe TTie tTiee, T T e
c,,.3 2 3 2 3 3 3
L4y’z X yz yz_ xyz Xz xz_ z
+ 18 *C4T6 Yl tCs 6 *Cs 18 *Cs st Cie 18a,
x3 2z z3
*C6718 *C6 18 |8 (21)

..................
................................
.........................
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8y, " Ay A Xt AgY F Az + Ay XY + Ayoyz + Ajaxz + A, xy2

PR o

g
s &

2

2 2

C,,2z C,.x 2 2 3  C,.xy 2
_ 117 17 Yy Xz x~ 18 yz

6ot "6 +c176+c186a1+C1818+ 6 +"196«»1*":19

ﬁ z3 xzz Zz z2 x3 3

+C19o18*C0 T8ar Y €20 76 t %06 tCi16ar *Ci118 *Ca s
+C.,Z—+C "—21’3+c IZs:c L3+c -’ﬁz-+c i

22 18a1 22 6 22 18 23 18a1 23 18 23 6
+ C Hﬁ +C X_aLz +C .’_‘L3.2_ + B (22)

24 18a1 24 18 25 18
The strain displacement relationships are given by

e = bU
in which
e = {exx eyy e, . exy eyz ezx} (23)
the individual strain components being defined as
2)Ux L) ou
xx " Tox eyy " Jy €2z "~ oz
(24)
. . aux au . ] au auz . i} auz &
xy oy ox yz 9z 9y xz Ix 9z
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Once the shape function matrices and the strain-displacement relations have been
derived the mass and stiffness matrices may be formulated in a manner, similar to
the preceding section. As before, the MACSYMA program has been extensively used
for all algebraic manipulations involved in the development of the various a, b,

m and k matrices.




NUMERICAL EXAMPLE

A cube of unit dimensions is chosen as a numerical example.

Both finite

and dynamic element discretizations were achieved by varying mesh sizes.

Results of such analyses are given in Table I.

Table I. Natural frequencies of a cube (FEM and DEM results are
shown in upper and lower rows respectively)

Mesh

Size Eigenvalue Parameters

1x1 .7928 .7930 1.0742 1.7845 2,9197 2,9417
.7361 .7361 .9883 1.3993 2,1052 2,.1052

2x2 .7378 .7381 .9994 1.6947 2.1001 2.1003
.7228 .7228 . 9666 1.5492 1.8761 1.8762

3x3 .7077 .7078 .9598 1.6478 1.9388 1.9389
. 7015 . 7015 L9411 1.5777 1.8348 1.8348

The above results indicate that the dynamic elements are significantly more

efficient than the corresponding finite elements.

2-10
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STARS (STructural Analysis RoutineS)
K.K.Gupta

DATA INPUT PROCEDURE
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PROGRAM DESCRIPTION

Stars is a compact, general-purpose, finite and dynamic
element computer program for static (multiple load), free
vibration and dynamic response analysis of undamped and
damped (viscous and structural) structures including
spinning ones.

The element library presently consists of 1line and
triangular/quadrilateral shell elements enabling solution of
truss, beam, space frame, plane, plate, shell structures, or
any combination thereof. The program allows zero, finite and
interdependent deflection boundary conditions. The dynamic
response analysis capability allows initial deformation and
velocity inputs whereas the transient excitation may be either .
force of acceleration in nature.

Data input can be at random within a specific data set,
and the program offers certain automatic data generation
capabilities. Input data is formated as an optimal combination
of free and fixed formats. =~

The program, developed in modular form for easy modifications,
is written in FORTRAN for the VAX 11/780 computer and consists of
about 6000 instructions. Continued development of the program is
envisaged while keeping tight control on the size of the program.
Extensive interactive plotting capabilities form an important
feature of the program.




JOB TITLE

CARD 2 FORMAT

DESCRIPTION OF MAINIB INPUT

NN,N,NEL,NMAT,NMECN ,NEP ,NET,NTMP ,NPR,NBUN
FREE FORMAT

NUMBER OF NODES

ORDER OF PROBLEM (USUALLY 6*NN)

TOTAL NUMBER OF ELEMENTS

TOTAL NUMBER OF ELEMENT MATERIAL TYPES

NUMBER OF MATERIAL ELASTIC CONSTANTS

TOTAL NUMBER OF ELEMENT PROPERTY TYPES (LINE ELEMENTS)
TOTAL NUMBER OF ELEMENT THICKNESS TYPES (SHELL ELEMENTS)
TOTAL NUMBER OF ELEMENT TEMPERATURE TYPES

TOTAL NUMBER OF ELEMENT PRESSURE TYPES

NUMBER OF NODAL CONNECTIVITY CONDITIONS

.................................................
.................




CARD 3 FORMAT
1PROB, IBAN,NPREC,NC, IDRS, {PLOT
FREE FORMAT
WHERE :
IPROB = INDEX FOR PROBLEM TYPES, TO BE SET AS FOLLOWS:
= |, UNDAMPED FREE VIBRATION CASE FOR NON-SPINNING
STRUCTURES.
= 2, UNDAMPED FREE VIBRATION CASE FOR SPINNING STRUCTURES,
C BEING SKEW-SYMMETRIC CORIOLIS MATRIX, K=KE+KG+KC
WHERE KE,KG,KC ARE RESPECTIVELY THE ELALTIC,
GEOMETRICAL STIFFNESS AND CENTRIFUGAL FORCES MATRIX
RESPECTIVELY .
= 3, QUADRATIC MATRIX EIGENPROBLEM OPTION FOR DEM ANALYSIS,
K-LAMBDA*M-LAMBDA**2*C, C IS DYNAMIC CORRECTION
MATRIX.
= 4, FOR SPINNING STRUCTURES, WHEN C=CC+CD, CC 1S THE
SKEW-SYMMETRIC CORIOLIS MATRIX, CD BEING THE
DIAGONAL V1SCOUS DAMPING MATRIX IN K-I*LAMBDA*C
-LAMBDA**2*M FORMULATION.
5, AS IN 4, WITH STRUCTURAL DAMPING, K BEING COMPLEX
= 6, FOR NON-SPINNING STRUCTURES WITH VISCOUS
DAMPING (C).
7, AS IN 6, WITH STRUCTURAL DAMPING
8, SOLVES SIMULTANEOUS EQUATIONS AX=B ONLY, WHEN
MATRIX A, REAL SYMMETRIC OR HERMITIAN, 1S READ IN
LIEU OF K.
BANDWIDTH MINIMIZATION OPTION
0, PERFORM MINIMIZATION
1, DO NOT PERFORM MINIMIZATION
PRECISION FOR SOLVING PROBLEM
1, SINGLE PRECISION REAL
2, DOUBLE PRECISION REAL
3, SINGLE PRECISION COMPLEX ~
4, DOUBLE PRECISION COMPLEX
NUMBER OF SETS OF CONCENTRATED NODAL LOAD/MASS DATA
(1F NONE SET TO 1)
INDEX FOR DYNAMIC RESPONSE ANALYSIS
0, NO RESPONSE ANALYSIS NEEDED
1, PERFORM RESPONSE ANALYSI1S
INDEX FOR PLOTTING
0, NO PLOTS ARE REQUIRED
1, PLOT STRUCTURE GEOMETRY; RESTART TO CONTINUE SOLUTION
2, PLOT FINAL NODAL DEFORMATIONS AS FUNCTIONS OF TIME,
MODE SHAPES AND ELEMENT STRESSES

IBAN

NPREC

NC
IDRS

IPLOT

3-4
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CARD

CARD

....................................
..........................................
....

CARD 4 FORMAT

IMLUMP, IPLUMP, ISPIN, IPRINT

FREE FORMAT

WHERE : '

IMLUMP INDEX FOR NODAL LUMPED MASS INPUT

0 , NO LUMPED MASS INPUT

1 , LUMPED MASS DATA INPUT (IPROB=1 THRU 7)

INDEX FOR NODAL EXTERNAL LOAD INPUT

0 , NO LOAD INPUT

1 , CONCENTRATED NODAL LOAD INPUT (IPROB=8)

SPIN OPTION FOR STRUCTURE

0, NO SPIN

1, SPINNING STRUCTURE

PRINT OUTPUT OPTION

0, FOR FINAL RESULTS OUTPUT ONLY

1, PRINT K,M,C MATRICES AND VALUES OF ROOTS AT VARIOUS

STAGES OF CONVERGENCE

NOTE: NODAL MASS MATRIX IS ADDED TO CONSISTENT MASS MATRIX WHICH
IS A FUNCTION OF DISTRIBUTED MASS DENSITY (RHO) INPUT IN
EDINPT (VMP MATRIX)

IPLUMP
ISPIN

IPRINT

5 FORMAT (REQUIRED IF ISPIN=1)

SvVi,sv2,sv3

FREE FORMAT

WHERE :
svi = SPIN RATE ALONG GLOBAL X-AXIS (RAD/SEC)
sv2 = SPIN RATE ALONG GLOBAL Y-AXIS (RAD/SEC)
sv3 = SPIN RATE ALONG GLOBAL Z-AXIS (RAD/SEC)

6 FORMAT (REQUIRED IF IPROB IS NOT EQUAL TO 8)
INDEX,NR, INORM,PU,PL, ISOLT, INDATA
FREE FORMAT
WHERE:
INDEX = INDICATOR FOR NUMBER OF EIGENVALUES TO BE COMPUTED.
= 1, WHEN FIRST NR SMALLEST ROOTS ARE NEEDED.
= 2, WHEN ALL ROOTS LYING WITHIN LIMITS OF PU AND
PL ARE TO BE COMPUTED.
NR = NUMBER OF EIGENVALUES TO BE COMPUTED.
INORM = THE PARTICULAR DEGREE OF FREEDOM AT WHICH THE VECTOR
SCALOR IS USED TO NORMALIZE THE EIGENVECTORS.
0, THE ROUTINE NORMALIZES THE VECTORS WITH RESPECT TO
THE ELEMENT OF Y HAVING LARGEST MODULUS.
-1, ELEMENT Y OR YD 1S USED FOR NORMALIZATION.

0, READ DATA FROM FILE
1, READ DATA FROM CARDS

PU = UPPER EIGENVALUE LIMIT
PL = LOWER EIGENVALUE LIMIT
ISOLT = VERSION OF EIGSOL
= 0 OR 1, STANDARD VERSION
= 2, SECOND VERSION
INDATA = INPUT DATA OPTION FOR EIGSOL

3-5




CARD 7 FORMAT (REQUIRED IF IDRS = 1)
TF,NTTS,1UV,DELT, 1DDI
FREE FORMAT
TF

TOTAL TIME SPAN TO EVALUATE DYNAMIC RESPONSE

NTTS = TOTAL NUMBER OF SETS OF LOAD/ACCELERATION INPUT DATA
UV = INDEX FOR INITIAL DISPLACEMENT AND VELOCITY INPUT
= 0, NO INITIAL DISPLACEMENT/VELOCITY INPUT
= 1, IF EITHER INITIAL DISPLACEMENT OR VELOCITY OR BOTH ARE
NON-ZERO
DELT TIME INTERVAL FOR RESPONSE CALCULATION
1DDI INDEX FOR DYNAMIC DATA INPUT

1, NODAL LOAD INPUT
2, NODAL ACCELERATION INPUT

CARD 8 FORMAT (REQUIRED IF IPROB = 5 OR 7)
G
FREE FORMAT
WHERE:
G = STRUCTURAL DAMPING PARAMETER (K=K (1+1G))

k- CARD 9 FORMAT (REQUIRED IF IPROB = 4 OR 5)
TO READ DIAGONAL VISCOUS DAMPING MATRIX
FORMAT (6E10.4)

CARD 10 FORMAT (REQUIRED IF IPROB = 6 OR 7)
TO READ ALPHA,BETA
FORMAT (2E10.4)

Ei
o
r_'f

CARD 11 FORMAT (REQUIRED IF IPROB = 6 OR 7 AND ALPHA = BETA = 0.0)
TO READ BANDED VISCOUS DAMPING MATRIX
FORMAT (6E10.4)

'T‘Y ShS .




...........

DESCRIPTION OF NODAL DATA (NODCOR) INPUT

INPUT NODAL COORDINATE DATA AT RANDOM

THE FINAL DATA IS AUTOMATICALLY FORMED IN SEQUENCE

IN AUTOMATIC MESH GENERATION, THE IMPOSED DISPLACEMENT
BOUNDARY CONDITIONS AND OTHER ELEMENT PROPERTIES OF
INTERMEDIATE NODES PERTAIN TO THE LAST CARD OF THE
SEQUENCE.

(4) THE THIRD POINT NODES FOR LINE ELEMENTS LYING ON
LOCAL X-Y PLANE OF AN ELEMENT MAY BE ANY ACTIVE NODE
OR DUMMY ONES PLACED AT THE END OF THE LIST WITH
UX=UY=UZ=TX=TY=TZ=0.

A~~~
WK -
Nt N N

CARD FORMAT
NODE NODAL COORDINATES NODAL BOUNDARY CONDITIONS
NO. X Y yA UX Uy Uz TX TY TZ
15 E10.4 E10.4 E10.4 15 I5 I5 15 15 I5
NOTE:

(1) FOR NODAL BOUNDARY CONDITION
SET VALUE = 0 FOR FREE,
= 1 FOR CONSTRAINED
(2) FOR INCREMENT
SET VALUE = 0 FOR NO INCREMENTATION
= N INCREMENT BY N UNTIL FULL VALUE

PARAMETERS USED IN PROGRAM

(1) IN - NODE NUMBER

(2) VN( ) - NODAL COORDINATES

(3) IIN( ) - NODAL BOUNDARY CONDITIONS
(4) INC( ) - INCREMENT

(5) NN - TOTAL NUMBER OF NODES

N

...........

INCR
IINC
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DESCRIPTION OF EDINPT INPUT

(1) INPUT STRUCTURAL ELEMENT DATA AT RANDOM

CARD FORMAT FOR SET (1)

& ELEM ELEM NODE NODE NODE NODE NODE NODE NODE NODE IMPP IEPP ITMPP IPRR
- TYPE NO. 1 2 3 4 5 6 7 8 /1THTH
r.'_.
! LINE * * * ** JEC1 IEC2 FX + * * * *
N 1
%

SHELL * * * * * + * Hkk * *

QUAD

2

SHELL * * * * + * *kk * *
. TRIA
. 3

1) ** FOR THIRD POINT (TYPE 1)
2) *** FOR ELEMENT THICKNESS TYPE (TYPE 2,3)
3) + ELEMENT INCREMENT NUMBER FOR AUTOMATIC GENERATION OF
INTERMEDIATE ELEMENT DATA BY LINEAR INTERPOLATION,
HAVING PROPERTIES SAME AS LAST CARD IN SEQUENCE
) FOR LINE ELEMENT - IEC = | FOR PIN ENDED, = 0 FOR RIGID ENDED
) FX - INITIAL FORCE IN LOCAL X PLANE (TYPE 1)
g IMPP - ELEMENT MATERIAL PROPERTY TYPE
)
)

(4
(5
(6
(7 IEPP - ELEMENT GEOMETRY PROPERTY TYPE (TYPE 1)

(8 ITMPP - ELEMENT TEMPERATURE PROPERTY TYPE

(9 IPRR - ELEMENT PRESSURE PROPERTY TYPE

(10) ITHTH - ELEMENT THICKNESS PROPERTY TYPE (TYPE 2,3)

FORMAT 14(15)




CARD

CARD

CARD

. e
o e et
*, T e

FORMAT FOR SET (2), ELEMENT PROPERTY CARD FOR TYPE 1 ONLY
PROP A JX 1Y 12
TYPE
| §-) E10.4 E10.4 E10.4 E10.4
FORMAT (15,3E10.4)
NOTE: .
(1) A - AREA
(2) JX - TORSIONAL MOMENT OF INERTIA
(3) 1Y - MOMENT OF INERTIA
(4) 1Z - MOMENT OF INERTIA
FORMAT FOR SET (3), ELEMENT THICKNESS DATA CARD FOR TYPE 2,3 ONLY
THICK T
TYPE
I5 E10.4
FORMAT (15,E10.4)
NOTE:

(1) T - THICKNESS

FORMAT FOR SET (4), ELEMENT MATERIAL PROPERTY CARD
[TO BE SET FOR GENERAL MATERIAL CASE]
MATL ELASTIC CONSTANTS
TYPE
FOR ISOTROPIC
* *(E) *(MU) *(ALP) *(RHO)
FOR ORTHOTROPIC ’
* * * * * * * *
* * *(ALPX) *(ALPY) *(RHO)
FOR ANISOTROPIC
* * * * * * * *
* * * * * * *
* * * * * * *
*

*(ALPX) *(ALPY) (ALPXY) *(RHO).
FORMAT (15,7E10.4/5X,7E10.4/5X,7E10.4/5X,4E10.4)
NOTE: DATA INPUT 1S REQUIRED FOR EACH MATERIAL CASE

3-10
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CARD

FORMAT FOR SET (5), ELEMENT TEMPERATURE INCREMENT CARD
TEMP T DTDY DTDZ TEMP T DTDY DTDZ
TYPE TYPE

15 E10.4 E10.4 E10.4 15 E10.4 E10.4 E10.4
FORMAT 2(15,3E10.4)

NOTE '

(1) - TEMPERATURE INCREMENT
EZ; DTDY - Y-TEMPERATURE GRADIENT
3) D

-3

TDZ - Z-TEMPERATURE GRADIENT

FORMAT FOR SET (6), ELEMENT PRESSURE LOAD CARD
PRESS PRESS PRESS PRESS PRESS PRESS PRESS PRESS PRESS
TYPE TYPE TYPE TYPE TYPE
I5 E10.4 I5 E10.4 I5 E10.4 I5 E10.4 I5
FORMAT 5(15,E10.4)
NOTE:

ELEMENT TYPE 1 - UNIFORM PRESSURE ALLOWED IN

LOCAL Y-DIRECTION ONLY
ELEMENT TYPE 2,3 - UNIFORM PRESSURE ALLOWED IN
LOCAL Z-DIRECTION ONLY

3-11
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DESCRIPTION OF GCINPT INPUT

SET (1) INPUT NODAL FORCE (P) OR MASS (M) MATRIX AT RANDOM

(ONLY IF IPLUMP/IMLUMP NOT EQUAL TO 0)

ﬁ SET (2) INPUT DYNAMIC LOADING (ONLY IF IDRS = 1)
-+ SET (3) INPUT NODAL CONNECTIVITY AT RANDOM

CARD FORMAT FOR SET (1)

CARD
CARD

CARD

CARD

NODE NUMBER DOF PORM
15 15 E10.4
FORMAT (215,E10.4)

NOTE: (1) FOR NODAL LOAD, EACH CASE 1S TERMINATED BY SETTING THE
NODE NUMBER FOR THE NEXT CASE TO A NEGATIVE NUMBER, SAY -1
(2) FOR IPROB = 8, IF IPLUMP = 0 THEN TERMINATE INPUT WITH -1

FORMAT FOR SET (2)

1 FORMAT (REQUIRED IF IUV = 1 AND IDRS = 1)

TO READ INITIAL DISPLACEMENT/VELOCITY AT RANDOM, TERMINATED BY -1
FORMAT (215,2E15.5)

NODE EUMBER DgF Uil) Vil)

o o o
e o o
e o o
e o o

-1

2 FORMAT (REQUIRED IF IDRS = 1 AND NTTS > 0)

TO READ NTTS NUMBER OF SETS OF NODAL LOAD/ACCELERATION DATA)
FORMAT (E15.5)

EZ

FORMAT (215,E15.5)
NODE EUMBER DOF  LOAD/ACCELERATION
* *

e o o
e o o

*
-1

NOTE: REPEAT CARD 2 DATA AS AVOVE FOR NTTS NUMBER OF SETS
EACH TERMINATED BY -1

FORMAT FOR SET (3)

4(14,11,14,11,E10.4)
(NODE DOF NODE DOF CONNECTIVITY) 4 SETS PER ROW
COEFFICIENT




FURTHER MAINI INPUT

INPUT OF VISCOUS DAMPING MATRICES

CARD 1 FORMAT (REQUIRED IF IPROB=4 OR 5)
TO READ DIAGONAL VISCOUS DAMPING MATRIX,C(N,1) IN GCS
FORMAT: (6E10.4)

CARD 2 FORMAT (REQUIRED IF IPROB=6 OR 7)
TO READ 'ALPHA' AND 'BETA'
SO THAT [C] = ALPHA*[K] + BETA*[M]
FORMAT: (2E10.4)

CARD 3 FORMAT (REQUIRED IF IPROB=6 OR 7 AND ALPHA=BETA=(0.0)
TO READ BANDED VISCOUS DAMPING MATRIX,C(N,M11) IN GCS
FORMAT: (6E10.4)

NOTE: DATA IN CARDS 1 AND 3 MUST CONFORM TO 'ZDBC,FDBC AND IDBC'
INHERENT IN PROBLEM UNDER CONSIDERATION.

WHERE :
ZDBC = ZERO DEFLECTION BOUNDARY CONDITIONS, INPUT IN NODCOR

FDBE = FINITE DEFLECTION BOUNDARY CONDITIONS,
INPUT IN SET (3) IN GCINPT

IDBE = INTERDEPENDENT DEFLECTION BOUNDARY CONDITIONS,
INPUT IN SET (3) IN GCINPT

3-13
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PARAMETERS USED IN THE PROGRAM

TOTAL NUMBER OF ELEMENTS

TOTAL NUMBER OF ELEMENT PROPERTY TYPES (LINE ELEMENTS)
TOTAL NUMBER OF ELEMENT THICKNESS TYPES (SHELL ELEMENTS)
TOTAL NUMBER OF ELEMENT MATERIAL TYPES

NUMBER OF MATERIAL ELASTIC CONSTANTS

4,12,25

ANISOTROPIC CASE, RESPECTIVELY
TOTAL NUMBER OF ELEMENT TEMPERATURE TYPES
TOTAL NUMBER OF ELEMENT PRESSURE TYPES

ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT
ELEMENT

...........
PSSR

FOR ELASTIC ISOTROPIC, ORTHOTROPIC, OR

PROPERTY TYPE NUMBER, LINE ELEMENTS (TYPE 1)
PROPERTIES

THICKNESS TYPE NUMBER, SHELL ELEMENTS (TYPE 2,3)
THICRNESS

MATERIAL TYPE NUMBER

ELASTIC CONSTANTS

TEMPERATURE TYPE NUMBER

TEMPERATURE DATA

PRESSURE TYPE NUMBER

PRESSURE DATA
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DEVELOPMENT OF A UNIFIED NUMERICAL
PROCEDURE FOR FREE VIBRATION ANALYSIS
OF STRUCTUREST |

K. K. GUPTA¢$
Jet Propulision Laboratory, California Institute of Technology, Pasadena, California, U.S.A.

SUMMARY

This paper presents the details of a unified numerical algorithm and the associated computer program
developed for the efficient determination of natural frequenciuandmodeso(freevibntionoﬁtmctum.
Bothspmnmnndnonspmmngmuaummthormthout viscous and/or structural damping may be solved
by the current procedure; in addition, the program is capable of solving static problems with multiple load
cases as well as the quadratic matrix e:genproblem associated with a finite dynamic element structural
discretization. A special symmetric matrix decomposition scheme has been adopted for matrix tri-
angularization, which renders the program rather efficient and economical. Also, a novel bisection scheme
is described that further accelerates the solution convergence rate, particularly for the case of repeated
roots.

The associated computer program adopts an out-of-core solution strategy, thereby enabling effective
solutions to be achieved for large, complex, practical structures. A complete listing of the program written
in FORTRAN V, for the UNIVAC 1100/82 computer, along with the source deck is available for ready
use.

INTRODUCTION

The dynamic response analysis is of primary importance in the design of a wide range of practical
structures, such as spacecraft, buildings, and rotating machineries, among others. A vital
preliminary for such an analysis involves the determination of the natural frequencies and the
associated modes. This is achieved, first, by discretizing the continuum by a standard technique,
such as the finite element method, yielding simultaneous algebraic equations; the resulting
eigenvalue probiem is then suitably solved to yield the desired roots and vectors. For most
complex practical structures, such an idealization results in a rather large number of simui-
taneous equations, which are usually of highly banded configurations. In order to effect an
economical solution, the associated cigenproblem analysis routine must be designed to fully
exploit the inherent matrix sparsity. Furthermore, due to the limited core .torage available in
present computers, it is advantageous to adopt an out-of-core solution strategy that provides
effective solutions for practical structures of almost any magnitude arid complexity.

While many structures are nonrotating in nature, some are subjected to uniform rotations.
Also, such structures may exhibit viscous or structural damping or a combination of both. The
associated eigenvaiue problems are characterized by distinctive matrix equations. Furthermore,
when finite dynamic elements are used for structural discretization, a quadratic matrix

+ The research described in this paper was carried out by the Jet Propuision Laboratory, California [nstitute of
Technology, and was sponsored jointly by the Air Force Office of Scientific Research (AFOSR) and the Large Space
Structures Technology (LSST) Project Office at the NASA Langiey Research Center.

$ Member of the Technical Staff, Applied Mechanics Technology Section.

0029-5981/81/020187-12301.00 Received 28 September 1979
© 1981 by John Wiley & Sons, Ltd. Revised 26 March 1980
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188 K. K. GUPTA
cigenvalue formulation is involved. A general formulation unifying the various eigenvalue
problems may be presented as

Mi+Ci+Kq=0 (1)
in which M, C and K are, in general, the inertia, damping and stiffness matrices, respectively.
The individual eigenproblems are identified next.
Case I. Undamped free vibration and buckling

The related matrix formulation becomes _
M§+Kq=0 (2)

the solution of which is taken to be q =¢™’; equation (2) then reduces to

(Ke—A’M)q=0 (2a)

where Kz is the elastic stiffness matrix, and A the natural frequencies. The associated buckling
b problem is characterized by

(Kg-AKg)q=0 (2b)

- in which Kg is the geometrical stiffness matrix and A the compressive buckling load. The

N formulation for the associated problem of {ree vibration of prestressed structures is given by

[(Ke -Kg)-A’Mlq=0 (2¢)

in which the compressive load is assumed to have a positive sign. Equations (2a)-(2c) are
characterized by real roots and vectors since Kg, Kg, M are real, symmetric matrices, Kg aiso
being positive definite in naiure; for structures exhibiting rigid body motion, a non-negative
definite form of Kz is obtained.

Case II. Umfamped [ree vibration of spinning structures
For undamped structures spinning at a uniform rate (), equation (1) assumes the form
M§+C.q+Kq=0 3)

where C, = skew-symmetric Coriolis matrix, being a function of (); K=Kz +Ks +K'; Kg and
K' are the geometrical stiffness and centrifugal forces matrices, respectively, both being
functions of Q2. The solution (3) is assumed as q=¢”, and the resulting eigenvalue problem
takes the form'

(K+pC.+p*M)q=0 (3a)
in which p is pure imaginary, such roots and associated complex vectors occurring in conjugate
pairs. Further, K and M are assumed to be symmetric and positive definite for small vibrations.
Case III. Quadratic matrix equations -

If structural discretization is achieved by finite dynamic elements (FDEs), the resulting
frequency-dependent stiffness and inertia matrices are, first, expressed in terms of ascending
powers of the frequencies A :

‘ . 00
K=K)y+ 2K+ } @

M=M,+2 My + - -
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resulting in the quadratic matrix eigenvalue problem
[Ko—A’Mo—2*(M; - KJ)lg=0 (4a)

where Ko=Kg, Mo=M are the usual clastic stifiness and mass matrices; M,, K, are the
higher order dynamic corrections terms, the inclusion of which in the free vibration analysis is
known to effect a significant increase in the solution convergence rate.” Equation (4a) is of
similar form to equation (3a), but possesses real roots and vectors. Equation (4a) may also be
written as

(K-AM~-A*C)q=0 (4b)
which may be further rearranged as '

] ]
(52l & -o w
with 4= A *q and which is of the form
(E-A’Fly=0 (4d)
where E and F are symmetric matrices, E also being positive definite in nature.

Cases IV and V. Damped free vibration of spinning structures
The associated equations of free vibration without or with structural damping are expressed as
M§+(C.+Ca)q+Kgq=0 (5)
Mg+(C.+C,.)q+Kg (1+i*g)q=0 (6)

for cases IV and V, respectively, in which C, is the viscous damping matrix assumed to be
diagonal, i* is the imaginary number V-1, and g is the structural damping parameter.
Substituting q = ¢™ in the above equations, the resulting eigenvalue problems have the following
form:

[Ke+p(C.+C)+p*Mlq=0 (5a)
(Ks(1+i*g)+p(C. +C.)+p’Mlq=0 (62)
in which the roots p, as well as the associated vectors, are obtained as complex conjugate pairs.

Cases VI and VII. Damped free vibration of nonspinning structures
Equation (1) assumes the following form for cases VI and VII, respectively:

M§g+Cq+Keq=0 v
Mg+ Cq+Kg(1+i*g)q=0 €]
and the related eigenproblem formulations are defined as
(Ke+pC+p’Mlq=0 (7a)
(Ke(1+i*g)+pC+p*Mlq=0 (8a)

where the roots and vectors have forms similar to those pertaining to cases [V and V; C is the
viscous damping matrix of general banded form.
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Case VIII. Simultaneous equations
Solution of simultaneous equations

Sq=b ®

is effected, where § is either real, symmetric or Hermitian in nature, and b is a set of arbitrary
vectors. An effective solution of equation (9) is essential in the analysis of the various eigenvalue
probiems.

The purpose of this paper is to present the details of a unified numerical algorithm and an
associated computer program developed for the solution of the above eigenvalue problems
defined by cases I to VII. Such a program fully exploits the banded nature of the related matrices
and enables computation of only a few desired roots lying within a specified bound without
having to compute any other. Since the computer program employs an out-of-core solution
strategy, it enables effective solutions to be obtained for complex practical problems of rather
large magnitudes. Numerical results are also presented in detail, testifying to the relative
efficiency of the present procedure. This is followed by a summary of conclusions.

BASIC NUMERICAL SCHEMES

A solution of the general eigenvalue problem defined by equation (1) is obtained by first
rearranging the matrices as follows:

{ -
AR -
which may also be written as
By+Ay=0 ay

,={-:.} (11a)

Substituting y = ¢™ as its solution, equation (11) takes the form

where

_ (B+pA)y=0 (12)
which may also be written as

(B=AA")y=0 (13)
where A = i*p and A* = i*A.

Isolation of roots

For the particular case when A* is a Hermitian matrix and B is real, symmetric and positive or
non-negative definite in nature, the Sturm sequence property’ is valid for the formulation
depicted by equation (13), the associated roots being real in nature. Thus, for a given value of A,
the number of changes in the signs of the leading principal minors f,(A ) is equal to the number of
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roots of B—A A* having algebraic values less than A. As a special case, this property is also valid
for the formulation involving a pair of real symmetric matrices. Such a property enabies the
isolation of only a few desired roots lying within a specified upper and lower bound [A,, A;], by a
repeated bisection technique, without having to compute any other. Thus, at a particular stage of

%k Xn b:
A | I
4 % Xi‘ L_I‘ A >‘u
e e e
RNV IV VA L T
kf i Rl j xk k;-o-' n °l p q r

Figure 1. Convergence scheme for repested roots

computation, the Sturm count determines the number of roots of B~ A A*, say, x, lying within
[Ame A, With A = (A, +A1)/2, A, A, being the current upper and lower bounds, respectively.
The upper bound of the x roots and the lower bounds of the rest are then set to A, the latter
being implemented only if their current lower bounds are smaller than A,,. The desired roots are
automatically isolated and their individual bounds determined when this process is continued.
Furthermore, if a number of roots are found within the bound [A.., A;], such that the absolute
value of (A, —A;)/A; is less than the root separation parameter EPS, then they are considered as
repeated ones with a numerical value equal to A,,. However, the latter process tends to be rather
slow for extracting repeated or close roots. A novel strategy has been developed in connection
with the present work which essentially reduces the root extraction time for repeated roots to
that of distinct ones. Thus, during the bisection process, when monitoring the bounds of a group
of roots, if the number of such roots, say, 7, remain the same while their upper and lower bounds
each changes at least once, then a multiplicity test is immediately carried out. The inverse
iteration process described in the next section is then used, employing the respective upper and
lower bound values to accurately locate two roots by converging from both ends. If these two
root values are found to be identical, the r roots are then asumed to be multiple ones having the
numerical value as that of the two converged roots. If, on the other hand, the two converged
roots are distinct in values, they are accepted as the true values of the respective roots and the
bisection process is continued as usual. This special procedure is depicted in Figure 1, where the
roots A, to A, are repeated in nature. First they are isolated within bounds [A }, A ] when two
more bisections are needed to satisfy the criterion for the present strategy. The final bounds A ;
and A, are then utilized to converge from both sides. This current procedure has been found to
be much superior than the usual repeated bisection technique for multiple roots.

For the present set of problems, the Sturm sequence count involving the number of changes in
the signs of the leading principal minors is equivalent to counting the number of negative
diagonal elements of the decomposed matrix. Depending on the type of problem, such an
operation is performed on the following matrix formulation:

" Cases 1, VIand VII

Matrix triangularization is performed on
K-AM (14)

when all operations involve real numbers.
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Case IIT _
Similar matrix manipulations are eiecuted with the matrix
K-AM-A‘C (15)
also involving real numbers only.
CasesIl, IVand V
The decomposition of the matrix
K-i*AC.-A’M (16)

is implemented, when all operations are performed in complex arithmetic.

Location of roots and computation of vectors

Once the roots are isolated by the repeated bisection procedure, an inverse iteration
technique is adopted for the simuitaneous determination of individual roots and vectors.>* In
this process the middle point of the bounds of the isolated rth root is taken as the starting root
iteration value:

Am=(AL+A1)/2 (17

which is utilized to effect the triangalarization of the relevant left-hand side matrix. A starting
vector is then chosen to consist entirely of unit real scalars to start matrix iterations; for complex
operations, the imaginary parts of the scalars are assumed to be zero. At the end of each iteration
a Rayleigh quotient is used to obtain a new estimate of the root under consideration. The matrix
formulations adopted for the inverse iteration procedure for a typical iteration are summarized
next:

CaseI
(K- (A%)*Mlqis = NiouMqi (18)
Ni.+1 being a normalizing factor.
Case ll
Lower halif of equation (13):
[K-i*AWCe —(An)’Mlqis, = Niwi[A Mqi +i*M§;+i*C.q(] (19)
Upper half:
[(M4i.1+i*AMqi. ] = =N, i*Mq; (19a) i
Case II1
Lower half of equation (4d):
(K-(A0)"M=(47)'Clale1 = Nioi[C4i+Mq + (A1) *Ca;] (20)
Upper half:

ol = (A ) Cqlet = NisiCq; (20a)
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CasesIVand V

Lower half of equation (13):
(K= i*AmCe ~—(Af)*MIqi+1 = Nisa[A Mg+ i*Mq; +i*Cqi] @
in which C=C_+C,.
Upper half: As in case II
Cases VI and VII
Lower half of equation (13):
[K—(A0)*M]Qie1 = Nisi[A M +i*Mg; + i*Cqi] (22)

in which C is the viscous damping matrix of usual banded form.
Upper half: As in case IL

For each root, triangularization of the left-hand side of the above equations is performed only
once at the beginning of the iteration. In subsequent iteration steps, their solutions are achieved
by the simple back-substitution process.

The Rayleigh quotient is used at each iteration step to achieve a new estimate for the root;
their detailed expressions are presented below:

Case I
(Af+1)? = (7+1) Kqle1/(Q7s1) Maisy (23)
Case I
Afrr = (Fie1) BYlt/(Fra) Ay (24)
where
(Fre) By ler = @70 ) 'MGLa1 + (@001) Kain (24a)
Fret) APy 1 = = (@) M0t + i *(@7e1) MEL 0 + %) Ceqln (24b)
Case IIT
(Afe1)* = (¥ie) "Eyjar/(¥ie) "Fyin (25)
where
@i+1)TEyier = (§701)"Cal01 + (@1+1) "Kqint (25a)
(¥ie1) "PYier = (qFa) "Cllet + (@01) " Calur + (11) Mqi (25b)
Case IV

As in case II, but C, is replaced by C. +C,.

Case V
As in case IV, but K is replaced by K(1 +i*g).
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Case VI
As in case II with C replacing C,.

Case VII
As in case VI, but K is changed to K(1+i*g).

The new estimate for A}, ;, obtained by using the Rayleigh quotient, is next used to check the
pattern of root convergence. Thus, if the factor

IAJ’M-! "Alrl

ACC= -
IA:+1|

(26)

is found to be smaller than the specified root accuracy parameters EPS1, A {.., is then accepted as
the true value of A”; otherwise, the above steps involving inverse iterations and calculation of
Rayleigh quotients are continued until adequate convergence is achieved.

Repeated real roots are determined entirely by the novel bisection process described earlier.
To achieve the associated vectors, these roots are first artificially separated relative to their
respective values by an amount 3 x 27Y2, ¢ being the number of digits after the binary point. The
inverse iteration procedure is then directly applied to yield the vectors, when, at most, two
iterations are required for their accurate determination. Due to extreme sensitivity of eigen-
vectors to small perturbations in the vicinity of multiple roots, this procedure yields sets of
independent vectors corresponding to such roots. The standard Schmidt orthogonalization
technique may then be applied to transform the independent vectors into orthogonal ones.

Numerical stability

The triangularization of equations (14)~(22) has been achieved by a symmetric decomposition
scheme that omits row interchanges, which, in turn, preserves the bandwidth of the relevant
matrices. This reduces the ~omputation time for roots and vectors by a factor between 2 and 3,
when compared with similar routines developed earlier.>* Since the matrix equations (14)~(22)
are, in general, not positive definite in nature, suitable pivoting was considered to be necessary
to preserve numerical stability. In the present work, some alternative measures have been
implemented in the program that proves to be effective in preserving numerical stability.

Thus, provided the roots are not required to be calculated to a high precision, the resulting
bisection process is remarkably stable in nature and the chances of a breakdown are rather
slight.’ The root accuracy parameters EPS and EPS1 are thus set to 0-0001 and 0-001,
respectively, which will result in eigenvalues that are sufficiently accurate for problems usually
encountered in practice. Also, the program may easily be run in double precision, if desired, so
that a large number of significant figures are retained in subsequent computations. Moreover, if
a zero pivot is encountered on any rare occasion, the matrix triangularization may be repeated
with a slightly perturbed value of the current A; however, since the bisection process has
proved to be rather well-conditioned, these extra precautions are deemed to be unnecessary.

During the inverse iteration procedure, if a zero pivot is encountered, the program automa-
tically replaces it by ¢, the normal rounding error, and continues the process onward. A number
of test cases have been run using the program and their convergence characteristics carefully
monitored. These results indicate that the program is accurate and reliable in nature.

........
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DEVELOPMENT OF A COMPUTER PROGRAM

A computer program EIGSOL* (EIGen problem SOLution routine), based on the numerical
formulations presented in the earlier section, has been developed to achieve efficient solutions
to structural free vibration problems. Both spinning and nonspinning structures, with or without
viscous and structural damping, as well as the quadratic matrix eigenproblem associated with a
finite dynamic element discretization, may be analysed by the program. For spinning structures
the program is limited to diagonal viscous damping matrices. An adequate number of comment
cards, included in the listing, renders the program to be self-explanatory in nature.

An important aspect of the analysis is related to the solution of simuitaneous equations, either
real, symmetric or Hermitian, , using an out-of-core solution strategy, and this is effected by the
subroutine BANMAT (BANded MATrix solution). The relevant data are all stored in secon-
dary storage units, such as discs, which are brought in the core in suitable predetermined block
format. A minimum core storage requirement of (M11, M11) and M11 pertaining to D and AD
- matrices is required to operate the program BANMAT; M11 is the half bandwidth of K,

- including the diagonal. The program is designed to run on the 260K UNIVAC 1100/82
- computer, which allows usage of up to about 175K core storage, that enables achieving solutions
.. to practical problems of rather large magnitude.
e The main driver routine EIGSOL repeatedly calls subroutine INPUT to effect data input.
Thus, the upper symmetric halves of K(N, M11), M(N, MB), C (or C.) (N, MC) and C(N, MCD)
are read in predetermined block format; N is the order of the matrices, MB, MC, MCD being the
half-bandwidth of M, C, C,, respectively. Figure 2 shows the arrangement of data blocks, the

L -

T T T [sock NRAD
y M | sLock-o 72| oo
4 o - - - -
. -1 NRAD -3| ! neap
S e o oo -, ] e eeee -
- NRAD ;
N | ___.22 N E
mn}.---f. NRAD b e
| l [ -ND8LK | _J NRLDBK
! ]
N BLOCK-0 MmN
4 b Sibmx | Tmom 4
(a) INPUT DATA STORAGE (b) SOLUTION DATA OUTPUT STORAGE

Figure 2. Data block set-up for K, M and C matrices

number of such data blocks (NDBLK) being dependent on the available core area specified by
the parameter NAC, which is to be provided by the user. Besides the main store D of dimensions
(M11, M11), each block will have NRAD number of rows, the number of such rows in the last
. data biock being defined by NRLDBK. Once the solution has been achieved, it is then stored in
. the block format, as shown in Figure 2(b).

+ The physical program EIGSOL is available from the Computer Management and Information Center (COSMIC), the
NASA agency for distribution of computer programs.
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Isolation of the desired roots is achieved by the repeated bisection technique effected by the
subroutine BISECN, which, in turn, repeatedly calls the subroutine EIGNV to determine the
number of roots of the present problem having algebraic values less than the current root value
under consideration. The subroutine BANMAT is used by EIGNV for the Sturm sequence
count of roots. Once the roots are isolated, they are accurately located by the subroutine
VECTOR employing the inverse iteration procedure, which also simultaneously yields the
associated vectors. Two other subroutines, MULT and VMULT, are also used by the program
for appropriate matrix and vector multiplications.

T .98 2 5 ,s520s8s288 o g 8
53§ 3 § § s$sss§8¢83¢3 3 3 3
S T T SR R T T R T T I R } —

¢

ROOT WU WU ST Y YD Y! Y2 Y3 v4 YS AUX ] D AD |

(MAX) (MAX2) (MAX2) (MAX,3) \/(;z;)v (MT1) (NB,NC) (M11,MmI11) (NlAD,MIl):
w

|

J

g 3
L L

?! ADV |
(MIT,MIT) (NRAD,MIT)

e i T — - = —— — - —— —— — ——t— —

NAC

1

Figure 3. Arrangment of data in common block array A (variables defined in program listing)

Figure 3 depicts the schematic arrangement of data in the main common block core,
containing an array A that contains all major vectors and matrices. The starting addresses of
theses arrays relative to the array A are also shown in the figure, which are used in the arguments
of the various subroutines called by the main driver routine to effect appropriate equivalence of
these arrays with array A. This common block is designed in such a way that it occupies the last
portion of the computer data bank (DBANK). Thus, as long as A has at least a starting address in
the first core module of the computer, it will automatically spill over to the other data banks,
enabling utilization of about 175K core memory in a 260K UNIVAC 1100/82 machine. Thus,
the program is capable of solving rather large practical problems. Depending on the nature of
the probiem, the program operates either in real or compiex mode.

NUMERICAL RESULTS

An extensive number of test cases have been solved by the program EIGSOL to check out the
various capabilities offered by the procedure as well as to establish the relative efficacy of the

...................................
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program in comparison tq other existing ones. Thus, the spinning cantilever beam problem,
presented earlier,’ is again chosen as a numerical example. The basic elastic properties of the
beam, divided in 10 discrete clements of length / and expressed in the inch-pound-second unit
system, are as follows: '

Moment of inertia (Y-axis§ =t
Moment of inertia (Z-axis) =gk

Area of cross-section =1-0
Young's modulus =30x10°
Nodal mass in translation =]

Nodal mass moment of inertia =y

Scalar viscous damping - =(-628318
Structure damping parameter (g) =0-01
Element length (/) =6

where the direction of the X -axis is chosen along the length of the beam. A number of computer
runs were performed corresponding to problem cases II, IV and V by setting the appropriate

input parameter IPROB to 2, 4 and 5, respectively. The beam was subjected to a uniform spin

rate {1=0-1 Hz, along the Y-axis, at the built-in end; the results of such analyses are
summarized in Table I. Each analysis, involving the first six roots and associated vectors,
required about 16 sec of CPU time using the UNIVAC 1100/82 computer, in which all relevant
matrices pertaining to the various formulations have been taken into consideration.

T&hl.ngwm:mmmmwmmwp«fmuﬁn

rate (1=0-1 Hz

Mode Structure without Structure with Structure with viscous

damping viscous damping and structural damping
(IPROB=2) (IPROB =4) (PROB=3$)

1 2-3955 =0-3092 £+ 2:3548i* =0-3199+ 2-3506i*

2 3-5689 =0-3121 = 3-5414i* -0-3287x 3-5364i°

3 15-2142 -0-3167 +£15-2077:* =0:3912+15-1964/*

4 21-7754 =0-3166 +£21.7708i* ~0-4252+21-7643;*

s 43-0167 -0:32021+43-0143/* =0-5340£43-0298;*

6 61-0008 =0-32022%60-9992i* =0:6249+:60-9880/*

To check out the program for cases V1 and V11, a taut string vibration problem’ was analysed
using the EIGSOL program. The resuits were in very good agreement with that preseated in
Reference 3, the relative solution time being reduced by a factor of about 2:3. A suitable
problem pertaining to the quadratic matrix equations (case III) was aiso checked out by the
present program. A cantilever plate free vibration problem* of aspect ratio 1:2, involving
matrices of order 432, was also solved to check out problems defined by case I. The solution time
for the first six roots and vectors was found to be about 1 min of CPU time, compared to that of
2-S min using the program EASI of Reference 4.

CONCLUDING REMARKS

A unified numerical procedure has been presented for the efficient solution of free vibration
problems of usual and spinning structures with or without various forms of damping. Such a
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- formulation also includes the quadratic matrix eigenvalue problem associated with the finite
dynamic element discretization.

The program fully exploits matrix sparsity, such as bandedness, and enables computation of
only a few desired roots and vectors without having to compute any other. In general, when run
on the same computer, the present program is found to be over two times faster than the related
programs DAMP,’ EASI* and QMESSL.? The program adopts an out-of-core solution strategy,
and as such it is capable of solving large, complex, practical problems. Since the eigenproblem
solution time is proportional to N xM112, it is highly desirabie to adopt a suitable bandwidth
minimization scheme to achieve a minimum value for M11 before utilizing the EIGSOL routine.
Itis hoped that the present program will be developed further into a small general-purpose finite
element computer procedure in the near future.

’
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FREE VIBRATION ANALYSIS OF COUPLED FLUID-

STRUCTURE SYSTEMS
) - K. K. Gurta
Jet Propulsion Laboratory.
Callfornia Institute of Technology.
Pasadena, California 91109, U.S.A.
~
SUMMARY

This paper is concerned with the free vibration analysis of coupled
glujd-structure systems, discretized by the finite element method. Both
cospressible and incompressidle fluids are considered in the anslysis, the
jatter being a special case of the first one. A numerical analysis proce-
dure, based on an inverse iteration technique in conjuction with a special
pisection scheme exploiting the Sturm sequence property, is described in
this paper that enables computation of the desired roots and vectors of
the vibrating coupled systes without having to compute any other. Further,
the procedure utilizes the associated structural stiffness and mass matri-
ces as well as the fluids counterpart matrices in their orginal banded
form, theredy effecting efficient solution of the eigenvalue problesm.

INTRODUCTION

A large numder of practical structures are required to withstand ex-
ternally applied dynsmic loadings. The vital preliminary for such a design
requires the free vibration analysis of the structures, involving, by far,
the sajor amount of computation time of the entire analysis effort. Many
structures exhidbit coupled fluid-structure interacrions, excellent ac-
counts of which are narrated in References | and 2. The first category of
such a phenomenon is characterized by large fluid wmotion, an important
exanple being the flutter of aircraft wings. Some numerical solution pro-
cedures of such problems have been presented earlierd-*“.

. In the second category, the fluid is assumed to undergo only finite
displacement, the motion deing limited to small amplitudes. By employing
a finite eclevent discretization, the free vibration problem of o fluid-
structure resonant system may be writen as’ :

‘Ru-eMu-Cpe=0 et

- where ! Tem

= structural stiffness matrix

structural inertis matrix

= fluid matrix associated physically with tbe inertis proper-
ties of the fluid (analogous to K)

e fluid matrix associated with its compressible bshavior (aral-

=i =i
| ]

Qo
ogous to M)
€ = fluid-structure coupling matrix, sparse and rectangular in
) nature
ue structural nodal deformstion vector
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e fluid nodal pressure vector
o = fluid density

and 1n wvhich the fluid idealization is accomplished by the standard Euler-
ian pressure formulation, the fluid being sssumed to be inviscid sand com-
pressible {a nature. The Q matrix formulation includes the coefficient
denoting the speed of sound in the fluid medium. Equations (1) and (2)

;- may be combined, as below, ylelding the finite elemunt fluid-structure

i eigeavalue problem of the entire systea’

p L iol))e '
: — -a? | == |t} = {0} sesld)
o 0, 8 C .9 )]

vhich may be solved by scandard procedure iavolving real matrices. How-
e ever, because of the unsymmecric nature of the above matrices, the solu-
é! tion teads to be rather inefficient and uneconoaical in nature. Aa earli-

er effort® succeeded in reformulsting equation (3) in a symmecric fora,
although the entice solucion process still required a considerable amount
of computational effort.

In the particular case vhen the fluid is assumed as incompressible,
a siaplification in che eigenproblem formulation may be achieved. Thus,
fn the absense of the O zatrix an expression for p is obtained from the
reduced equation (3), which on substitution ia equation (1) yields the
corresponding eigeavalue problea

[R-w2a+oc B8] a=0 | eeslh)

which has the effect of adding an additional mass matrix to the structural
eigenproblea formulacion. The final mass mstrix, however, tends Co possess
a rather large bandwidth {f the number of degrees of freedom at the inter-
face happens to be large, vhich in turn proves to be expeansive for the
corresponding natural frequency analysis. A solution procedure for equa~
tion (4), based on the inverse iteration method is presented in Reference
7. ‘

The purpose of this paper is to present sn efficient numerical tech-
nique for the eigenprodlem solution of the compressible fluid-structure
iateraction problea defined by equation (3). The procedure starts vith
the natural frequency analysis of the structure in the absence of say
fluid. This s achieved dy s combined Sturm sequence and inverse itera-~
tion technique that computes only the required eigenvalues and vectors. A
special inverse iteration scheme is next developed for the coupled system
that utilizes the eigenvalues, computed earlier, as starting iteration
values for convergence to the required roots and vectors. The solution
process takes full advantage of the relatioaship in the relacive frequency
values of the structure without any fluid, etructure with incompressible
and cowpressidle fluids respectively. Numerical results obtained by
solving & number of standard test cases clearly indicate the pactern of
root convergence cocresponding to varfous simplifying assusptions, further
demonstrating the relative efficiency of the preseant procedure.

‘‘‘‘‘‘‘‘
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DEVELOPMENT OF NUMERICAL PROCEDURE

¢

\ To achieve an affective solution of the eigenvalue problea under con-
;!:; sideration, equation (3) is firsct rearranged as follows:
Ta
A B:i0
o —t ‘E‘ = -9 eee(4)
<!k L s
* which 3ay slso be written as
‘ - (_'. - ‘!)z - 2 .-0(5)
vhere
' ) 3
A= .2 . l o (wm—— o.o(’.)
a .

Subsequeat analysis procedure is based on an i{mplicit assumptioa that che
(s)

roots computed for the structure (l‘ ), structure wvith fncompressidle

fluid (xi”) and structure vit compressible flutd (X:C)) bear the fol-
loviag relationship?®°?

(s) (1) ()

l‘ > A > xt eee(6)
“which proves to be useful in the determination of sny desired roots and

vectots.

~ The entire solution process consists of the following major steps

Step 1
Solve (K ~ AM)u « 0, the eigenvalue problem pertaining to the

-

structure only to yleld li” and zﬁ”. employing a coabined
Sturm sequence and inverse iteration procedurel®.

Step 2 s
For each root determined in step 1 eolve (r - xi )g)z = 0, the

eigenvalue prodleam for the incompressible fluid-structure com-
bingtion by setting O = 0 to obtain a reduced E matrix denoted
by E. The solution is schieved by an inverse itearation scheae
and a bisection etrztegy, described in detail later, by eaploy-

ing X:s) and _zf” as the starting iteration root and vector re~

spectively, yielding sets of l{nud l{t) .

Step 3
Solve (P - x:”pz » 0, pertaining to the cospressible fluid-

structure case by employing \’(_n and z:” as the starting itera-
tion paraseters, as ia etep 2, yilelding the desired root x;(c’

AR e R N
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and vector 1;“:). .

Step 4

Triangularize (_P_ - x;w)l) and perform a Sturm sequence count to

deteraine the sequence of x;(c) in the eigenspectrua (say rth).

Then perform a bisection procedure based ou the strategy as
below: - : ©) .
(1) If r={ then At - xt(c) and repeat steps 2 and 3 for

the next desired root.
(11) If r > { then repeat the inverse iteration procedure

vith A = (X:n + xf_:)/z or éis) - x{f&z (1f step 2

has been oaitted from consideration) to converge to the

(©) ©)
b 8

: cequired ith root A and the corresponding vector b 20

Step 3
Repeat step 4 1f r > 1+1 c¢ill all roots up to the ith one and
the corresponding vectors are recovered. Assm 7‘{ (C)gﬂ‘ 3]

Step 6
Repeat steps 2 through 5 till all required roots and vectors are
computed. .

The inverse iteration scheme, {mplicit i{n the above steps, is carried
out by utilizing equation (5). Thus the iteration at the rth step is per-
formed on the following matrix foraulation

oy I
(2 - 1,B)7,

vhich may also be written as

4l ¢
- 1 E.Z]_ 000(7)

. T} (_r+l T+ oCTut
B0 ‘:"9] E o [28 gy cee(®
T+l 1 r
< JEAM | |uf I_ LY

vhere N, +1 18 8 cormalizing factor. Solution of equation (8) is schieved

by first writing the matrix equation corresponding to the lower and upper
half, respectively, as below

(!_ - xtg)gzﬂ - 2 2:..‘ - n:"l! 2: .oo(’)
(1 - 2 @pf - afocfuft e (g pf 4 ocTu))Y Lo10)

The procedure starts by solving equation (9) with the right hand vector Y
assumed to be consisting entirely of unit scalars. Equation (10) is thea
solved for the p vector and the process being repeated till adequate con=
vergence is assured. The associated root is thean simply computed from the
Rayleigh quotient:
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o MHINT, rHl [ DH\T. T+l
A - (z, )114 /.(z1 yry, eee(11)

Triangularization of the relevant matrix pertaining to step 2 is ob~-
tained by setting Q = 0 in equations (8). Indeed, step 2 may be entirely
omitted for compressible fluid, thereby effecting further saving in solu-
tion time.

NUMERICAL RESULIS

A computer program has been developed for the natural frequency
analysis of fluid-structure systems, vhich 1s capable of computing the
desired roots and vectors of the coupled system in an efficient manner.
The example problem of dry dock in Reference 5 was solved by the program
as & test case, and the results correlated rather well. Such solution
results were printed out at various analysis steps to verify the efficacy
of the bisection procedure adopted for the present analysis, and such
results confira the reliable nature of the numerical algoritha.

CONCLUDING REMARKS

A numerical procedure has been presented that proves to be efficient
for the free vibration analysis of fluid-structure coupled systems. The
fluid is assumed to be compressible in nature and the incompressible
problem 1s only s special case of the generalized algorithm developed in
the paper.

From the numerical formulation depicted by equations 7-11 it is ap-
parent that the current procedure employs the individual X, M, R, Q, and
C matrices in their original banded form and thus fully exploits the in-
Terent matrix sparsity usually associated with a finite elepent foramulas-
tion. The ususl procedures, such as proposed in references 6 and 9, in-
volve various matrix inversions that finally requires solution of eigen-
value probleams characterized by full matrices. A similar situation is
also encountered with the approximate formulation for incompressidle fluid.
The p.esent procedure also enables cosputation of a few roots and vectors
only without having to compute any other.
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