.AD-A125 216 AN EMPIRICAL STUDY OF INSERTION RND DELETION IN BINARY
ERRCH TREESCU) CRRNEGIE NELLON NIY PITTSBURGH PA DEPT
F COMPUTER SCIENCE J L EPP NG R 82 DEC 8
UNCLASSIFIED CHU -C5-82-146 N@@@14-76-C-08370 F G 1274 © NL

11

I END

CRAL " vy e
A T e A

o
E
E
E

N
LX)

I

_\ \m
-l

R 1 :
i

A

-

EEE
N
o

.

I

N
O
>
o

{

b

|:

N . MICROCOPY RESOLUTION TEST CHART
§ .- ,iw_ngml. BUREAU OF STANDARDS-1963-A

W
1

AP » ok

'ty .'-.,“v:;% N "-‘,“- !'p T T TR TN T
P IS et \-.“.".0-‘.‘-"‘- te
k) o AP L, LI

y A

% “-‘\."-"n "

o b
T Bl B Tt T g Sl BT Tt Tt St ek Gt R P e S it A

*‘:.‘-':.v.". 1?..!-'.~‘.-J‘.- N Atﬂ.‘.\'v&: L A A N A
. .

<" P S "’"“"°".4t§"\"--\- IR, ¥~ TN
. sy

~ . ::‘;;,.
= CMU~CS-82-146
' An Empirical Study of
sertion and Deletion in Binary Search Trees

Jefifrey L. Eppinger

Department of Computer Science
~Carnegie-Mellon Universityr
Pittsburgh, Pennsylvania 15213'

December 2, 1982

e
f

: s

DEPARTMENT
of

COMPUTER SCIENCE

AA125210

" Carnegie-Mellon University
(o= 7| gs 03 03 014

LIPS - .
PRy RN
4

v_§

:‘\ 3‘ o

-
s

¢ R

2oL

T
LAY, CAREA

-

r‘[—vv'r r
DA ORI 4
il L0 I, -

CMU-CS-82-146

An Empirical Study of
Insertion and Deletion in Binary Search Trees

Jefirey L. Eppinger

Department of Computer Science Accession For

NTIS GRA&I
Carnegie-Mellon University DTIC TAB 5
. . U
Pittsburgh, Pennsylvania 15213 ﬁ:ﬁ;?ﬁ::?o u
December 2, 1982 By

Distz}bu.tion/
Avallability Codes

Av2il o=idfor
Dist Spueial

Al

T

Abstract: This paper describes an experiment on the effect of insertions and deletions on the path
length of unbalanced binary search trees. Given a random binary tree, repeatedly inserting and
deleting nodes yields a tree that is no longer random. The expected internal path length differs
when different deletion algorithms are used. Previous empirical studies indicated that expected
internal path length tends to decrease after repeated insertions and asymmetric deletions. This
study shows that performing a larger number of insertions and asymmetric deletions actually
increases the expected internal path length, and that for sufficiently large trees, the expected
internal path length becomes worse than that of a random tree. However, with a symmetric
deletion algorithm, the results indicate that performing a large number of insertions and deletions
decresses the expected internal path length, and that the expected internal path length remains
better than that of a random tree.

This research was sponsored in part by the Office of Navel Research under contract N00014-78-C-
0370.

~ g

w " ol N L U AU TS AN Nult NER L S P TR P 2 S SRS
ORI A N A A NI AUCR AR AR e N IO LR Iy

- - v v v ¢ .
0 AN AN N SEACE SR R SLAL IR S WL ORI A L PR PR NIE VLIS A Rl Sl A POV SO R

1. Introduction

A binary tree created by inserting n rmdohly chosen keys into an empty tree has an expected
internal path length of I, = 1.386nlgn.! Randomly delet;ing k nodes from such a tree yields
a tree whose expected internal path length is I,_x. Unfortunately, performing insertions after
deletions does not produce hinary trees whose internal path length is predicted by this function.
A theoretical explanation of the effect of performing deletions and then insertions on binary trees
is still lacking. [Knuth 73, Section 6.3.2) '

This paper presents an empirical study on the effect of applying random insertions and
deletions to random binary search trees and analyses results of experiments comparing asymmetrie
and symmetric deletion algorithms. In a previous empirical study, Knott [Knott 75| suggests that
the expected internal path length tends to decrease after repeated insertions and asymmetric
deletions. In this study, the large number of insertions and asymmetric deletions performed .
suggests that the expected internal path length first decreases but eventually begins to snerease.
For sufficiently large trees, expected internal path length becomes worse than that of a random
tree. However, experiments using the symmetric deletion algorithm show that performing a large
number of insertions and symmetric deletions decreasses the expected internal path length (making
the trees better than random).

Section 2 describes the insertion and deletion algorithms used in this study and provides an
overview of some of the previous work in this area. The statistics used in this study are defined
in Section 3. Section 3 also mentions a few specifics about how the data was gathered. The
observations in Section 4 give an interpretation of the data and the conclusions are summarised in
Section 8.

3. Background

Insertion Algorithm: The structure of binary trees naturally leads to cne insertion algorithm. To
insert a node into a binary tres (known not to contain the node), compare the new and current
keys and insert the node into the left or right subtres, whichever maintains the invariant of the
data structure. The Pascal code for this algorithm is provided in Figure 1, below. For further

! Theoughout this paper, ig# denctes logg 8.
TR o S Lo e e S e e e e T T T e T e e el
L- ’.. “ﬁ‘h:.‘:f‘:!ﬂh.ﬁ' s '_.;_'_'n.:_‘__fAL‘!.'.;_' I T Sl ST i AL Tl ';:‘ LTV PR L S AP Wl Wl Wh:. .

N EN FLAE AN COETNE-ZE IR LA L RGPS SR SE L RIDM AN DA S I R O AR SO O R NI i A MR I A

=
~
% PROCEDURR Insert(VAR root : NodePtr; x : DataType);
X BeaN |
¥ IF root = NIL
: THEN BEGIN
85 NEW(root); roott.data := x;
3 roott.1Child := NIL; roott.rChild := NIL
<! B
oA ELSE IF x < roott.dats

THEN Insert(root?.1Child, x)
o) ELSE Insert(roott.rChild, x)
'z ED;
45 Figure 1: The insertion procedure.

explanation see [Knuth 73, Section 6.2.2, Algorithm T}.

Unlike insertion, there are many reasonable deletion algorithms from which to choose. This
L paper describes experimentl with Knuth's asymmetric deletion algorithm and a trivially modified
version of this algorithm to make it symmetrie.

o Asymmetric Deletion Mm: A node’s successor is defined to be the smallest node in the right
subtree. Similarly a node’s predecessor is defined to be the largest node in the left subtree. To
delete a node from a binary tree, replace the node with its successor, t.c., the node that contains

A the next larger key. The Pascal code for this algorithm is given in Figure 2, below. Figure 4 shows
'q examples of the insertion algorithm and this deletion ;lgorithin applied to a particular binary tree;
) for further explanation see¢ [Knuth 78, Section 6.2.3, Algorithm D).
N Symmetric Deletion Algorithm: To delete a node from a binary tree, replace the node with its
o successor or predecessor. Alternately choose the successor and predecessor (so that half the time
the RightDelete routine is called and half the time a suitably modified version of this routins,
& LeftDelete, is called). -
Conddubdidingoblnuytruuﬁngnhyochom mdomlyfrollfaunlformdhtﬂbuﬁon

(€e., all n! permutations of the keys are equally likely). There are (**)/(n + 1) possible shapes for
N this tree [Knuth 08, Section 3.3.4.4], each with some probability of occurring; call the distribution
3 Dy. By this definition, inserting a new node into this binary tree would yield a tree of sise n 41
5 whose shape occurs with a probability defined by Dy..;. Binary trees whose distribution of shapes

t Figures 4-11 are st the end of the paper.

Larech Sl et Boviacy (e e, v e A E . NN Y T AT T T IR T e TN e T e TN Rt A
IR WG A R IHENMEN ISR IO S I ST L SR AL SR VS S R R R A A 2

PROCEDURE RightDelete (VAR root : NodePtr; x : DataType):
VAR copy. successor, ‘succPtr : NodePtr; '
BEGIN
IF x < roott.data
THEN RightDelete(roott.1Child, x)
ELSE IF x > roott.data
THEN RightDelete(roott.rChild, x)
ELSE BEGIN
copy := root;
IF roott.rChild = NIL
{ Case I: There is no successor. }
THEN root := roott,1lChild
ELSE IF roott.rChildt.1Child = NIL
{ Case IT: The successor is the right child. }
THEN BEGIN
Toott.rChildt.1Child := roott.1Child;
root := roott.rChild
m .
{ Caase III: The successor is the leftmost child in the right subtree. }
ELSE BEGIN
succPtr := roott.rChild;
WHILE succPtrt.1Childt.1Child <> NIL DO
succPur := succPtrt.1Child;
successor := succPtrt.lChild;
succPtrt.1Child := successort.rChild;
successor?.1Child := roott.1lChild;
successort.rChild := roott.rChild;
root := successor
END;
DISPOSE(copy)
END
END;

A SRR A

YL - ,
CACTUIR SR
»

2008 .

oot ;;:;:,:,
«

Figure 2: The asymmetric deletion procedure.

is Dy, are called random binary trecs.

Thomas Hibbard [Hibbard 62] proved that deleting a random node (s.¢c., where each node has
an equal probability of being deleted) from a binary tree of size n, with distribution of shapes Dy,
yields a tree with a distribution of shapes Dy1. |

Strangely, performing random insertion and deletion operations on a random tree does not
preserve this distribution of shapes. Consider building s binary tres of sise n, as described above.
Since the keys are chosen from a uniform distribution, the probability of inserting a new node in
any particular interkey gap is 5ly. After one random delation, the distribution of shapes will be

c T oAty s . L - A
e B A Y S S S
A N ~, - . . .

D1, but the probability of inserting a new node where the delcted node used to be will be iy
(while all other places are still 711). Knuth [Knuth 73, Section 6.2.2] describes this phenomenon

as follows:

The shape of the tree is random after deletions, but the relative
distribution of values in a given tree shape may change, and it
turns out that the first random insertion afler a deletion actually
destroys the randomness property on shapes. This startling fact,
first observed by Gary Knott in 1972, must be seen to be believed.
Empirical evidence suggests strongly that the path length tends to
decrease after repeated deletions and insertions, so the departure
from randomness scems to be in the right direction; a theoretical
explanation for this behavior is still lacking.

Knuth feels that binary trees tend to improve because “path length tends to decrease.” One
way to compare binary trees is to measure their internal path lengths. The internal path length
of a tree is dgﬂned as the sum of the depths of the qoduin the tree,

IPL=) distance(root,i).
| ie{nedes} .
For a random tree ebntainlhg n nodes, the expected IPL is denoted as], and the expected number
of comparisons in a successful search is denoted as C. Knuth [Knuth 73, Section 6.2.3] gives the
expected number of eomplriiom in a successful search, C,, as approximately equal to 1.388ign.
Substituting into the relation I, = n(C, — 1), one obtainy the approximation I, == 1.386nign.
A distribution of trees is said to be “better than random” when the expected IPL is less than I,
(since the expected number of comparisons is proportional to the IPL).

8. Methodology

If a random sequence of insertions and deletions were applied to a random tree of sise n, the
resulting tree would probably not have the same number of nodes. The original tree’s IPL would
therefore not be directly comparable with the IPL of the new tree. In this study, sequences of
insertion/deletion pairs (I/D pairs) are applied to random trees. Since the resulting tres always
has the same sise, it is easy to see whether any improvement has been made. (Knott's data was
also obtsined by using I/D pairs.) The first step of the simulation is therefore to insert n nodes
into an empty tree, after which successive pairs of insertions followed by deletions are performed.

Let TPL,; denote the messured mesn IPL of an n-node binary tree after applying ¢ 1/D pairs.

L

» '.;-‘“?I '0‘}‘
Seod s

'.70‘-.
s

el
e e .‘-"’.’\ o

et

SN

PFigures 5 through 10 show TPL,;/I, plotted as a function of i. This ratio shows the improvement
of the resulting tree's expected IPL as a fraction of the random tree’s expected IPL.

The deletion algorithm given above generally replaces the node to be deleted with its successor,
the “left-most node in the right subtree”. The left and right subtrees are treated differently and,
as observed below, this appears to have a profound affect on the behavior of binary trees. Such a
deletion algorithm is called an asymmetric deletion algorithm. The symmetric deletion algorithm
which is examined in this study is a trivially modified version of the asymmetric algorithm. This
symmetric algorithm alternately replaces the node to be deleted with its successor or its predecessor.
The algorithm requires a small amount of state information, but similar results have been obtained
by rendomiy replacing the node to be deleted by its successor or predecessor. '

To ensure that the results were not an artifact of the random number generator, simulations
were performed on both DEC-20s and Pergs. In the DEC-20 simulations the random number
generator used the linear congruential method to produce 36-bit pseudorandom numbers [Knuth
69, Section 3.2]. The random number generator for the Pergs is the feedback shift-register
pseudorandom number generator as described in [Lewis 73]. The data presented in this paper

was generated on the Pergs and took about one month of CPU time, but similar results were -

obtained for the smaller trees on the DEC-20s.

The outer loop of the simulation program is very simple. First, build a tree with tsize nodes,
then gather data before and after each interval of isize I/D pairs.

m::-x'rouu.nommorp:

FOR 4 := 1 TO intervals DO BEGIN

FOR § := 1 TO isize DO BEGIN RndIngsert; RndDelete END;

END;
FreeTree;

Figure 3: The inner loop of a simulation.

4. Obeervations

Thmphhﬂnmslmdonhnthowhmulpathlmﬂhcfn-nodoblnry
trees plotted against the number of insertion and asymmetric deletion pairs. Initially, TPL,

.

WA)

YA W
VhEAS

LAy

.

a2

-Te
.

PP RN

£ L

'13(':"‘

R

e b, 00

$ l‘ .
Y 2o BV S X LN

- PRI Wl 8
=P i L

R4

310

VIR 2% | O
W_> Ll

SRR AN " B

decreases, as Knott and Knuth observed. After some critical point, though, TPL, ; starts to
increase, eventually levelling off after approximately n? 1/D pairs. Figure 7 is a comparison chart
in which YPL,, ;/I, is plotted as a function of i/n? for each of the values of n tested. (The latter
ratio normalises the z-axis.)

Perhaps the most significant observation is that as n increases so does the asymptotic value
for TPL,, ;/I.. Since binary trees can be modeled by Markov Chains, and any binary tree may be
obtained by applying some combination of 1/D pairs to any other binary tree, the lim;_.o TPI.,,-
exists [Ross 70, Theorem 4.9]. Figure 7 suggests that

Bm TPL.: > I,

§=+00
for sufficiently large values of n (roughly greater than 128). Thus binary trees seem to become
“worse than random” after many insertions and deletions. ’

The comparison chart in Figure 11 shows the asymptotic values of TPL, ;/I, for both deletion
algorithms plotted against n (on a log scale). The data given in Table 1 was obtained by summing

all the TPL, ; and TPZ:;,-, when § > nl.

n Samples TPL.;on: Variance

64 6000 097 001652

128 6800 100 0.01340

256 2300 1.06 0.00085

512 1200 116 0.00070

1024 750 1.30. 0.01013

2048 5340 149 0.00771

Table 1: Dltl for Asymmetric Deletions.

The asymmetric curve appears to be quadratic. A least-squares muitiple regression weighted by

the hnno of the variance yields the following approximation:

’

TH"" s 0.02021g® n — 0.241 1gn + 1.09.

"'.. I‘

Substituting I, s 1.386nign we obtain
Jim TPL,; m 0.0380n1g® n — 0.334n1g" n + 3.34nlg.

'se

P -y ” s a T TN . ST e ;i N W LR I S e S P R S
Tt bt Ve Lo G R A KR AR Y TN SO DR RE S RCE RE R LE SRR SRR S S S R L R A i

The graphs in Figures 8 and 9 show the eorreoponding plots of the data in Table 2 for the
expected internal path length for symmetric deletions.

- n Samples JPL,;.a1 Variance
64 6000 0.905 0.01654
128 6800 0.890 0.00916
256 2300 0.888 0.00615
512 1200 0.890 0.00347
1024 750 0.881 0.00235
2048 5340 0.883 0.00269

Table 2: Data for Symmetric Deletions.

The TPL, ; decreases initially, as in the case of asymmetric deletions, but the asymptotic value °

of the expected internal path length seems to remain lower than that of a random tree. The
comparison charts in Figures 10 and 11 indicate that '

1> nm]u""’so.ss

s—o0 I'

or that
I, > lixz TPL, ; == 1.22n]gn.
=
The comparison chart in Figure 11 shows the asymptotic value of TPL, ; slowly decreasing as n

increases. Since a binary tree with n nodes cannot have an internal path length less than that of
a perfect tree, we know that

‘l_i.n.@. TPL,; = Qi(nlogn).

8. Coneclusions

The expected internal path length of a random binary: tree is I, == 8{nlogn). Empirieal
evidence suggests that performing many insertion and asymmetric deletions yields binary tress
with an expected internal path length of TPL.; = ©(nlog’n). Thus performing ssymmetric
deletions causes binary tress to become mors unbalanced. Amasingly, the expocted path length
does not increase by a constant factor, bntrgthubysfaetorof'lo;’n. However, experiments show

that the symmetric deletion algorithm impioven the balance of binary trees leaving the expected
internal path length ©(nlogn), but with a smaller constant coefficient than the expected internal
path length of a random binary tree.

Because this is an empirical study, the above conclusions can only be conjectures. No one has
provided a theoretical explanation of the behavior of a binary tree’s path length after applying
deletions and then insertions. There is no- proof that the asymptotic value of TPL, ; is less than
I, when performing random insertions and symmetric deletions or that the asymptotic value of
TPL,; is greater than I, when applying insertions and asymmetric deletions. .

In closing, it should be noted that the results of this study will have little impact on the use
of binary trees in practice. It takes approximately 1.5 million random insertions and asymmetric
deletions to make a 2048-node binary tree worse than a random tree, and 4 million before its
expected internal path length reaches the asymptotic value (which is just 50% worse). When so
many operations are required, other data structures are probably more appropriate.

i Yt v - W R T R T P LN e s A ;":'.‘7'.'" M M T Mt et a A"
Ao M A RN U NS AL ASEIC GG AICACACERE SIS SRER SR A SRR RS S AR R

X

¥

.-‘.H"'

A

PR ST R

6. Acknowledgements

e P

I would like to thank Jon Bentley, James Gosling, Diane Lambert, and Jim Saxe for their help

£ and guidance.

7. References

[Hibbard 62) Hibbard, Thomas N.
Some Combinatorial Propertics of Certain Trees
- with Applications to Searching and Sorting.
o Journal of the Association of Computing Machinery 9(1):13-28, January 1962.

[Knott 75] Knott, Gary D.
Deletion in Binary Storage Trees.
Ph.D. thesis, Stanford University, May, 1975.
STAN-CS-75-491.

[Knuth 68] Knuth, Donald E.
- The Art of Computer Programming.
N Volume I: Fundamental Algorithms.
Addison-Wesley, 1968, Section 2.3.4.4.

[Kouth 69] Knuth, Donald E.

< The Art of Computer Programming.
X Volume II: Seminumerical Algorithms.
. Addison-Wesley, 1969, Section 3.2.
[Knuth 78] Knouth, Donald E.
The Art of Computer Programming.
- Volume [II: Searching and Sorting (Second Printing, March 1975).
“ Addison-Wesley, 1973, Section 6.2.2.)
N Note: The Second Printing contains important changes in Section 6.2.2.

[Lewis 73] Lewis, T. G., and W. H. Payne
Generalised Feedback Shift Register Pseudorandom Number Generator

Journal of the Association o)f Computing Machinery 20(3):456-468, July 1973.

[Ross 70) Ross, Sheldon M.
. Applied Probability Models with Optimisstion Applications.
Holden-Day, 1970, Section 4.3.

e e
e Tty
-

(I B |
PELEAR -,
- & 2 8

delete 43
(casel)

delete 54
(case ll)
ﬁ

delete 19
(case i)

10

.......

- \ 2l P e Jad Rred [M LA A S Nl Sap A Ay e
‘i x‘“va.»“a.ur'_(CRICAICEL BEURE MR N M B R A A

TV -‘\7",'.':' - 3
'..‘;' et ot '.‘.',‘.',‘.
0 A R - -.. L2

Lt 2

o %
a's v

et A siruiiE SR

a et
e

v

Ly 2

Tar .

Figure 5

Average IPL(n.i) 7 Kp)

EEEEEEENER

1000 2000 3000 4000 5000 6000 7000 N 8&? . 9000 Palhm
um of Insertion/Deletion
Asymmetric Deletions, 64 Node Tree, 200 Runs

,\—\7/\\..—%\\/-' >

8

Average IPL(n,i) / Kn)

8 8 ® ¥ B8

Y - 2 hd -y A 2

0 10000 20000 30000 Nm‘wof P;:II)
Asymmetric Deletions, 128 Node Tree, 200 Runs

Avenage IPL(nj) / Kn)

s s e B8BEERE

a 2 2 A 2 a

0 20000 40000 , 60000 80000 100000 120000
Asymmetric Deletions, 256 Node Tree, 100 Runs

11

W T W T wW T W TN YW TTW T e T T o
¥ " MR Y

e I TS W * T W T T T N T W T WY W, T T T e Nl o il
!’L»Z‘#’L‘?‘R&v_«k?\?\-.'.. &(\- A SR WA SN A R e N e B o e A e e R O RO AN MDA _"]

R P AT A AR N L . T T A) ~

Figure 6

e

Avenage IPL(0,§) / Kn)

F
&

N " " r 2

8 & B

Asymmetric Deletions, 572 Node Tree, 50 Runs

3

Avenage IPL(a i} / Kn)
-

-

i P Py Y

0 500000 1000000 1500000 znmz P&I.m 1
Asymmetric Deletions, 1024 Node Tree, 25 Runs

8

Avecage IPL(D / Kn)
8§ E B & 3L S

Asymmetric Deletions, 2048 Node Tree, 20 Runs o« Puia

. I L I T .- .

.. Y - - et et S W . MR
B R SR TH et e s . .
L S AN T A ta s e e o en el

T,
P

r‘
3

Figure 7

- A AN
T S

&

Avenage IPL(n,i) / Kn)

by
‘o
..
"
e
'-‘
‘.
e
ks
BN
-"
RS
-8t
;
.

LA N Sh Ay &

, -~

A

,_,l ~'1024 node tree

- "‘-......I -
Pl Y Ll Lt -,
PY il b Y T i) P .
Sy Nqanes® g -

v,

=R RV AN WY

-y (4N - o 2
ves? Ne?T, Nuees’ SAnodetres

T T T e e e e Tt e e et et T e S e e
ot T T e e T e e . R A

PR A TRt TR AL I A JPOL ST

L T T T e e e T T e T T e e

AU S PR AL L YO TVRE S WAL AL WAL YT S U7 SPRIE Sy A WAL S P

Figure 8

- d

8000 9000 10000
Number of Insertion/Deletion Pairs

.

Symmetric (Alternating) Deletions, 64 Node Tree, 200 Runs

§ 8 % 8

(N / (Fu)1d] 98esny

u..~\.'-‘m.-u -«-.,‘-.....“\-

Symmetric (Alternating) Deletions, 128 Node Tree, 200 Runs

50000
Number of Insertion/Deletion Paiss

§8 % & % 8 8
@/ onar ey

nnnnnnnnn

a

Number of Insertion/Deletion Pains

Symmstric (Alkernsting) Deletions, 256 Node Tree, 100 Runs

14

)) . . B
W § mm Av —m o
3 A R
: | c - 5
m s ® ¥ "
:] / {8
[["
3 m m ‘. m m.,w
4\..
: ! ! i
4 3 i3 Bk
L .] E .
. m | 1h

”...m w w +~ M

: 5 ; M h m

:

;

".w“ m— A 4 © L) o

§ &8 § 3 8 8 # EEEEEELRLE

(01 7 (Pe)g) Wesay ()1 /7 (re) a1 Wemay

4 . .

L, n A nyey ¥ B e I,
DANORE . ANAGAIYY 2HARNPS U A

St e %a "adn EEL i

oD Puiny /22

(Number

Comparison Chart for Symmetric (Alternating) Deletions
16

200 25

Figure 10

1%

3 g

(W) /7 (o) 1dl 3%exmay

LA RANI LX TR SXIS T voriey reege A e .- .-
.-\\--..\..-. u--.‘ \\-\n N A v’ . ~....¢c|~.bl4\ﬂ -c vL.

»

"’?IS."—'!T-.._ IACTACY
[N
i~

%
»t*-‘

P e

b

S

.
Yy
L

S AP
<y ¢ty
. g

¥
o
1o
DAFY

.
TR)
200t ‘2t leWa.

'

Observed Asymptotic Value of IPL(n.i) 7 Kn)

&

3

&

110

e
22 a0 tatata s tn, Ry .E RN R A TR R)

TN R Sl nail Nl Al e Mt Nl A Sl Rl tnfsigie R e e N
VAT OFONMORE TR P

Figure 11 | a

’
L4
4
U
(4
®
[4
[4
’
[4
4
(4
[
U4
U
U
[
[4
4
[J
U4
e
U
[4
U
&
’l
¢ Agymmetric
¢ Deletions
&
(4
4
L
’
&
&
U
®
»
U4
4
L4
U4
*
L4
U4
*
P’
»
L4
U4
4
'O
'0
‘0
4
L4
‘O
'0
e’
']
[J
[J
[J
[J
.O
‘0
Py ®
L J

a a re e JENSY T

128 36 12 1024
Comparisen Chart of the Asymptotic Values of IPL(n.l)

......

"

...................
..................................
................

...............................

3
. ® .
...................

..........

CMU-CS-82-146

READ INSTRUCTIONS
BEFORE COMPLETING FORM

RECIMENT'S ATALOG NUMBER

ﬁ/‘ ACC. N NO.

AN EMPIRICAL STUDY OF INSERTION AND
DELBTIQ IN BINARY SEARCH TREES

4 TITLE (end Sebttsie)

Yy~ —
6. PERFOMMNNG ORG. REFORT NUMBER

S TYPE OF REPORT & PLAIOD COVERED
Interim

HOR(s)

. Jeffrey L. Eppinger

T CONTRAEY SR SRAnT nuubti e

PERFORMING ORGANIZATION NAME AND ADDRESS
Carnegie-Mallon University

Computer Science Department
Pittsburgh, PA, 15213

N00014-76-C-0370 h '

. Eﬁi“ ELEMENT, PROJECT, TASK
. e 'OQLK UNIT NUMBERS

1%. CONTROLLING OFFICE NnAME AND ADDRESS

-] 13- =ePORT paTE

fice of Naval 1lResearch « W
Arlington, VA - 22217 ’ _Mmi'g'““ _
) (-] T] wanl & R) Wom Cenwelling Otiice) | 15. SECURITY CLASS. (of thia repert)
' UNCIASSIFIED _
BITRISUTION STATEME (of thie

" APPROVED. 7OR PUBLIC RELEASE;

Y

DISTRIBUTION UNLIMITED:

7. DISTARIGUTION STATEMENT (of the sbowent enterod in Sioch 30, i different bem Repert)

cwe

?!'l';- B

. Approved for public release; d(ltt:l.ht:l.on unlimd ted

SUPPLENENTARY NOTES

REY WOROS (Continge en soverse oide il noccsemy and idencily by aumbet)

ADSTRACT (Cantinue an reverse oide if asescedly and idenify by blosh mumbeny)

E0I1TION OF | NOV 60 18 0000LETR
0 0109°010° 0001 | ’

......................... PR R L A
B . - RS -

. et L e

.-
AdA iat .

DR A U R S TS A S IR DA, S I L N
------------- o “.'L.l‘k\ '

SOOUMTY CLASHIICATIoN OF Tl Ball (then Bete Breeseny

- e . L
DR N S

..............

