
IRD-A125 299 EFFICIENCY CONSIDERATIONS FOR C PROGRAMS ON A VAX 1/1
(TRADEMARK) ti/788(U) CARNEGIE-MELLON UNIV PITTSBURGH
PA DEPT OF COMPUTER SCIENCE C J VAN WYK ET AL.

UNCLASSIFIED 64 AUG 92 CHU-CS-82 i34 N88814-76-C-9370 F/G 9/2 N

mommiii:mon

1601

lIli lk Q

0 1.2

1.25 11.4 11.6

MICROCOPY' RESOLOTION TEST CHiART

NATIONAL BUREAU OF STANDARDS-1963-A.

CMU-CS-82-134
1

Efficiency Considerations for C Programs
onaVAX 11/780

Christopher J. Van Wyk0
Bell Laboratories

Murray Hill, New Jersey 07974

Jon L. Bentley
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

Peter J. Weinberger
Bell Laboratories

Murray Hill, New Jersey 07974

DEPARTMENT
of

COMPUTER SCIENCE

C")

W ! U, 183U

Carnegie-Mellon University

im publi-7 83 03 02 O15

CM-CS-82-134

Efficiency.Conside rations for C Programs
on a VAX' 11/780

Christopher J. Van Wyk
Bell Laboratories

Murray Hill, New Jersey 07974

Jon L Bentley
2

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Peter J. Weinberger
Bell Laboratories

Murray Hill, New Jersey 07974

V A STRACT

Typical C programs are efficient enough for most applic-Cons. If they are not, judicicious

improvement of the algorithms and data structures often can improve performance enough.

Sometimes, even better performance is needed, and one must manipulate the C program in ways that

depend on the language and the machine on which the application is running. In this paper m-

compare the efficiency of some C constructs and discuss some methods of improving the

• performance of C programs running on VAX 11/780'sL
Accession~ For

August 4,1982 DTc TAB

I' B'-. . .

IC n

iVAX is a tradanmk of Dgt Equipment Corpotion.-

res2Thia r h was uppo . ed in pot by flu Ofie of Naval Rmarch Contract NO14.76.C.08O.

Efficiency Considerations for C Programs on a VAX* 11/780

Christopher 1. Van Wyk
Bell Laboratories

K: Murray Hill, New Jersey 07974

Jon L. Bentley

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

Peter J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction
C [3] was designed by Dennis Ritchie in the early 1970's as a programming language for the

DEC PDP-II. Some of its features were designed with an eye to their efficient realization in com-
piled code, and a substantial amount of folklore has grown up about how to write fast C programs.
Since the VAX i aso is becoming popular, we investigated timings for basic operations and the
effects of a few program transformations on C program performance.

2. Caveat Lector

A few of the techniques we report may be useful generally, but most should not be applied
unless the subject programs are "truly needy." The techniques make the code harder to under-

,': stand, and may lock the programmer into a particular choice of data structures and algorithms too
early in program development. Therefore, to achieve an efficient program, one should take the
steps outlined below:

(1) Design the program robustly.

(2) Monitor its performance, and, if necessary, improve the data structures and'algorithms in
time-consuming parts of the code. (Execution timing [I and statement counting [51 may be
useful for this step.)

(3) Monitor its performance again, and improve the code in ways independent of the system and
the language. [2)

(4) Monitor its performance yet again, and if (and only if!) the program still runs too slowly,
apply these techniques to functions that use most of the time.

We cannot emphasize too strongly that steps (1) and (2) are much more important than steps (3)
and (4). Nevertheless there will be times when one must resort to machine-dependent program
transformations to improve performance.

We ran our tests on a VAX 1/780 with a floating-point accelerator. Each C program was com-
piled and optimized under Berkeley UNIXt version 4.1. Readers running on a different system
should try our tests on their machines; our results may apply "more or less" to their systems, but
one of the lessons we hope readers will draw from this paper is that intuition in matters of effi-
ciency is often faulty.

*"VAX is a trademark of Digital Equipment Corporation.
t UNIX is a Trademark of Bell Laboratories.

. . . 7.

-2-

Finally, those who want to try the more exotic of these suggestions should, at the least, iso-
late the time consuming portions of their programs and monitor them before and after changes, to
be certain that they have improved performance. The simplest way to time a program a. out is to
give the command time a.out; this will run the program and tell how much real time, user
time, and system time it took. To find out in which functions the program is spending most of its
time, one can compile the program with the -p option on the C compiler, run it, then give the
command prof; this produces a table that tells how often each function was called and how much
time was spent in it. Peter Weinberger's system [5] produces a listing showing how many times
each statement is executed.

Readers who want or need to apply these techniques in earnest should become familiar with
their machine's assembly language. The assembly version of a C program may be obtained by
invoking the C compiler with the -S option. The VAX Architecture Handbook may also be useful.

3. Caveat Timer
It is hard to get repeatable timing measurements. First, the system function times(2) gives

times in "ticks"-sixtieths of a second--.so one must time a large number of iterations of simple
statements to get any numbers at all. Second, the way times() works is to wake up every sixtieth
of a second and charge whatever process is active at that moment with the whole sixtieth of a
second. When there are other users on the machine, it is possible to be charged far too much or
far too little because of this. For example, here are the times reported for fifty trials of a loop that
finds the largest and smallest elements of an array of size 100,000.

5

4

Number of 3
Observations

2

I
1111111 i lii ,I .I

0 10 20 30 40 50 60

Reported Time (ticks)

It seems inappropriate to apply statistical analysis to such data. Instead, we waited for an
opportunity to run the tests described later in this paper alone on a machine.

If you cannot get a machine to yourself, you can still get an idea of the relative efficiency of
two programs. If the time reported for executing one program is consistently twice that reported
for another, the first is probably faster. Alas, a difference of ten or twenty percent may not be
significant. even on an unloaded machine.

For example, we timed 100,000 iterations of two statements ten times. Here are the reported
times (in ticks):

i-- 24 18 23 25 25 22 25 23 25 24
i--l 20 23 22 22 22 21 22 23 22 22

This suggests it is about 10% better to use the second form than the first. Moreover, the

-3
6-

superiority of the assignment operator over the corresponding increment or decrement operator
held for all types of i. which leads to a simple rule of thumb.

This seemed too wonderful to be true, so we looked at the assembler code for the two tests.
It was identical. The difference arose because the second statement fell on an even eight-byte
boundary in memory, while the first fell across an eight-byte boundary. Thus, the 100,000 itera-
tions of the first statement required twice as many memory fetches as those of the second. So
much for our rule of thumb.

On the other hand, timing revealed that declaring char and short variables register
never made much difference. It turns out Berkeley UNIX ignores register declarations of
char and short variables. Always read the documentation before you start experimenting.

4. Primitive Operations
We hold the numbers gathered from our tests suspect, so we have relegated them to the

appendix. Here we present some principles gleaned from the data.

Keep in mind that these observations apply to VAX 11/780's running Berkeley UNIX. Some
of them could become obsolete because of changes in the microcode, the operating system, or the
C compiler.

1. It is always more expensive to operate on variables of type char or short than on vari-
ables of type int. Use of char and short variables should be limited to where the
program's meaning requires it or where space is limited.

2. Because Qf C's conversion rules, operations on variables of type f loat are much more
expensive than on those of type double. The observation above about trading off space for
time holds here also. Note too that floating-point operations are much more expensive than
integer operations.

3. Converting among the integer types is relatively inexpensive.

4. It is better to use assignment operators, as in a += b, than to write out the expression (as
a u a + b). Bear in mind, however, that the right operand of an assignment operator is
converted to the type of the left operand before doing the operation. Thus i *a 0. 5 for
integer ± will store zero in i, because 0.5 is converted to integer zero before doing the mul-
tiplication.

6. For arithmetic operations, addition and subtraction are cheapest, multiplication is somewhat

more expensive, and division is very costly. For integers in registers, multiplication requires
about 25% more time than addition or subtraction; one division takes about three times the
time for one multiplication.

7. Function calls are about as expensive as five additions. But increasing the number of param-
eters to a function does not increase the cost of calling it appreciably.

8. Operations on integer variables are faster if they are in registers. A possible exception to
this is the cost of calling a function that uses register variables; even here, the difference is
not clear.

s. Some Simple Loop Optimizations
If a section of code accounts for a large percentage of the total run time of a program,

chances are it includes loops. In this section, we investigate some simple transformations that may
be applied to speed up the execution time of loops. The programs are not necessarily of intrinsic
interest, but we hope to illustrate the kinds of transformations that can be useful.

We started with this code to find the sum of twice the elements in an array x of AERSIZE
(- 100,000) ints:

- .

-4-

sum 30;
for (i 0; i ARRSIZE; i++)

sum e= 2*x[i];

This loop executes in 810 microseconds. The code generated is the same whether we use a for-
loop, a while-loop, or a do-while loop, and where we place the increment operation, so we didn't
test such variants further.

We don't need to double each element: we can sum the array elements and double the result.

sum a 0;
for (i a 0; i 4 ARRSIZE; i *)

sum += x[ei;
sum *a 2;

This simple change cuts the run time down to 590 ms, saving 27% of the run time. This is an
example of moving code out of loops.

Next we wrote the loop in terms of pointers rather than array accesses:

sum-= 0;
hi a x + ARRSIZE;
for (p = x; p < hi; p +)

Sum += *p;
sum *= 2;

This loop executes in 660 ms.

The increase may surprise readers who expect programs that use pointers to be faster than
those that use arrays, but the explanation is almost as simple as the remedy. The for-statement on
the array index is compiled into a very fast loop instruction*, which increments by one and tests
whether to jump back to the loop start. The version with pointers is not compiled into such a fast
instruction. We can improve matters, however, by declaring variable sum and the loop variables
(i in the array version, high and p in the pointer version) to be register variables. The
corresponding timings for the three programs above are 620 ms. 410 ms, and 320 ms. In other
words, placing loop variables in registers is important to speeding execution, especially if the loop
variables are pointers.

For our next example, we chose the problem of calculating the minimum and maximum ele-
ments of an array. We filled the array with random numbers, wrote two simple two-argument
functions, Max and Min, and wrote the code this way:

big a small = x[01;
for (i * 1; i < ARPSIZE; i ++)

big a Max(big,x[i]);
for (i a 1; i < ABRSIZE; i +)

small * Min(smallx(i]);

All of i, big and small are declared to be register variables, in light of our experience above.
This code requires 5 seconds to execute. (Note: ARRSIZE is still 100,000.)

Since the timing table in the appendix suggests that it costs a lot to call a function that does
only a little, we defined ma and Min as macros:

".-#define Max(x,y) ((X):,-(y)?(x) :(y))

#define Min(x,y) ((x)<(y?)?(x):(y))

(Note that this is dangerous if the arguments to Max and Min are themselves operations with side
effects, as they would be if they involved, say, increment or decrement operators.) This simple

change reduced the cost of the loop to 1600 ms, saving a factor of more than three.

'the VAX aolb,16 instructio

' , -' m 'l "". .:'I " " , . . , " - -
' - l i t i ' ~ = d ' ' ' ' i ' '

Even this, however, does more work than necessary: big and small are always assigned a
value, even if that value is their old value. So we rewrote the code with the evaluations of Max
and Min in-line:

big a small = xfO];
for (i a 1; i < ARRSIZE; i *e)

if (x[i] • big)
for big * x[i];
for (i 1; i < ARRSIZE; i +)

if (x(i] < small)
small = x[il;

This loop requires 1100 ms for execution.

Fusing the two loops is an obvious way to avoid incurring the overhead of the loop twice.

big a small z xaO];
for (i * 1; i < ARRSIZE; i ++) {

if (x[iJ > big)
big * x[ii;

if (x[i] < small)
small a x[i);

This loop takes only 840 ms: we've broken the one second barrier.

The loop body refers to x i two or three times. If we put the value of x[Ii into a regis-
ter variable t, then we can save a couple of array references at the cost of an assignment.

big a small xo);
for (i a 1; i - ARRSIZE; i ++) {

t a xIil;
if (t . big)

big a t;
if (t 4 small)

small.6 t;

This loop requires 740 ms.
Having written the maximum and minimum calculations in line and fused the loops, we can

write the algorithm so it tests pairs of elements against the current maximum and minimum values.
(If ARRIZZ were odd we could just set big and small to the value of x[O1 and start the loop
with ± set to one.)

a o.

,.......'-., ,;. :.--:. . ;.....4=,..-,,..-. ,.J.--.--,,

-6-

if (xIO) 4 x[l)
big - xil];
small = X[O1;

} else
big a x[O];
small a x[1];

for (i - 2; i < ARRSIZE; i++) {
t a x[i] ;

if (s - t)
if (s ' small)

small a S;
if (t 3 big)

big - t;
} else {

if (t 4 small)
-7.sinai ut;

if (a ; big)
big - s;

I

The execution time of this loop is 590 ms.
Following a suggestion of John Reiser's (private communication], we rearranged the loop to

count down to zero:

if (x[ABRSIZE-1] < x[ARRSIZE-2]) I
big a x[ARRSIZE-2];
small - x(ARRSIZE-1J;

. else (
big a xiARSIZE-1];
small a xIARRSIZE-2];

I

for (i - ARRSIZE-3; --i >- 0;) {
t - xli];

-,,; s a xf--ij;
if (s t) {

if (s 4 small)
small =a;

if (t > big)
big - t;

. else {
if (t 4 small)

small a t;
if (a 3. big)

big m s;

This loop takes only 520 ms.*
Finally, we tried replacing the array references by pointer operations:

It is compilhd into the VAX bobeq instruction instead of an aoblas.

,*.

,7_1

-7-

if (X(0 1 x[ll) {
big * x[1];
small a x101;

3 } else (
big a x[O1;
small = x[l];

high a x + AtRSIZE;
for (p - x+2; p < high; p ++) j

p t *p;
S **+p;

if (t --) {
if (t • big)

big a t;
if (s < small)

small s s;

} else {
if (s , big)

big . S;
if (t < small)

small a t;

(The counting down technique mentioned above is special only when counting down to zero, so we
didn't use it here.) The execution time of this loop is 460 ms.

Summary Table

Change Time (ms) Difference (ms)
Max and Min Functions 5000

-3400
Max and Min Macros 1600

-500
Max and Min In-line 1100

-260
Fusing two loops 840

-100
Replacing two array references by one assignment 740

-150
Avoiding unnecessary tests 590~-70

Counting down to zero
520

-60
Pointers 460

In this section we examined mostly machine-independent program transformations--moving
code out of loops, combining nearby loops, rewriting calls in line, and eliminating common subex-
pressions. These modifications saved a factor of more than 7 in the max/min example. Only after
all these improvements did we perform the machine dependent modifications of reversing the
direction of the loop and performing array operations using pointers.

6. Smeuclng

In this section, we tried to speed up two kinds of searching in a sorted table. The table con-
tained 5,000 elements, and the costs we report are for the execution of a loop that searched for
each element once.

First we examined a sequential search routine.

;:": :: :;:: :: :" :: .: :: :: ::::: :::: : .:- . .::: ::: .:: :- . : : ": . ::.: : : -:: , : . :. ,: : : i :,,ii

*1

-8-

seql (x, v, n)
register VECTYPE x;
VEC.WE v[];
register int n;

register int i;
for (i = 0; i < n && v[i] = x; i ++)

if (i -= n)

return (-1);
else

return (i);

This routine took 55 seconds of user time and 190 ms of system time to find each element of the

table once.

The first transformation we made would be valuable on unsorted tables as well: store the
value being sought at the end of the table, making the bounds check on i unnecessary: (Notethat
array v should have room for n, 1 elements.)

seq2 (x, v, n)
register VECTYPE x;

VECrYPE v[];
register int n;

register int i;
v[n] a x;
for (i a 0; v[i] !u x; i ++)

if (i 33 n)
return (-1);

else.
return (i);

This simple change cut the user time. down to 50 seconds, and the system time down to 170 ms.

Finally, we created a pointer version of the sequential search routine.

seq3 (X, V, n)
register VECTYPE x;
VECTYPE v[];
register int n;
{

register VECTYPE *cur, *high;
high . v + n;
*high x;
for (cur a v; *cur = x; cur ++)

if (cur as high)
aloreturn (-1);
else

return (((unsigned) cur - (unsigned) v)/(sizeof (VECTYPE))};

This version required only 36 seconas 4 .,set . me and 120 ms of system time.

We turned our attention to binary search, starting with this recursive version:

.................

-9-

bini (x, v, lo, hi)
register VECTYPE x;
VECTYPE v(J1;
register int lo, hi;

register mid;
if (lo hi)

return (-1);
mid - (lo + hi)/2;
if (x < vfmid])

return (bini (x, v, lo, mid-i));
else if (x > v(mid])

return (bini (x, v, mid+, hi));
else

return (mid);

The loop using this search, still finding each element once, executes in 2.7 seconds. The systemtime is once again negligible. Notice that this change of algorithm gave better than a factor of 12improvement in running time over the best sequential search routine above. Often a change in thealgorithm or data structure can do more for performance than many iterations of the machine-
dependent techniques that are the subject of this paper.

We rewrote the recursive version as an iterative program:

bin2 (x, v, n)
VECTYPE x. v(];
int n;

register int low, high, mid;

low = 0;
high = n - 1;
while (low <- high) {

mid = (low + high)/2;
if (x < vlmidl)

high a mid - 1;
else if (x : v(midl)

low - mid + 1;
else return (mid);

}

return (-1);

This search requires only .1 seconds, so we saved almost 60% of the execution time.
Following a suggestion of Satish Desai [private communication), we replaced division by two

by a right shift by one. This is valid because the index into the array cannot become negative.

.K

- 10-

bin3 (x, v, n)
VECTYPE x, v[1;
int n;

register int low, high, mid;

low a 0;
high = n - 1;
while (low <= high) {

mid = (low + high)>>1;
if (x < v[mid])

high = mid - 1;
else if (x > .vlmid])

low = mid* 1;
else return (mid);

return (-1);

This change decreased the loop execution time to 700 ms, saving almost 40% of the run time.
Notice that this implies that the division took almost half the time in the earlier loop.

Changing to pointers worked well in the past, so we tried it here:

bin4 (x, v, n)
register VECTYPE x, v[];
int n;
{

register VECTYPE *low, *high, *mid;

low = &v[OJ;
high = &vfn-1];
while (low <= high) I

mid = (VECTYPE *) ((((unsigned) low ((unsigned) high) >> 1) & ((-0)^3)
if (x < *mid)

high = --mid;
else if (x > *mid)

low a ++mid;
else return (((unsigned) mid - (unsigned) &v(0J)/(sizeof (VECTYPEfl;

I

return (-1);

The search loop now takes 870 ms, so we have made the execution time greater by changing array
operations to pointer operations. Since this code is also harder to understand. it is not worth mak-

4

ing this change to one's search routine.

Summary Table
Sequential Search

Version Usr Time (seconds) Difference (seconds) Sys Time (ms) Difference (ms)
seq1 55 190

-5 -20
seq2 50 170

-14 -50
seq3 36 120

Binary Search

Version Time (ms) Difference (ms)
bin 1 2700

-1600
bin2 1100

-400
bin3 700

+ 170
bin4 870

These measurements also tell us when it becomes worthwhile to consider using binary search
on a sorted table. Say the average sequential search for an element requires looking at cin table
elements, and the average binary search requires c21og 2n table accesses. Using the fastest times
above for sequential and binary search, we find that c1=7.3 and C2=5.7. The equation
cln=c2log2n is satisfied when n is around 40, so we should use sequential search unless the table
will be larger than that.

7. Input/Output Operations
Kernighan and Plauger[4l have noted that most programs spend most of their time in input

and output. Almost all programs should start out their lives using the standard. package for
input/output operations (see manual pag- stdio(3)). If the program is worth speeding up. and
input/output proves to be the bottleneck, some of the techniques reviewed herein may help. We
investigated two common operations--counting the lines in a file and copying-a file--to see what
kinds of improvements could be obtained by replacing calls that rely on stdio.h by system-
dependent functions.

We used the file /usr/dict/words (more than 201.000 bytes on our system), arranged into lines
of about eighty characters, as input to each version of line-counting function. The first version
simply checks each character to determine whether it is a newline:

.

6,.

- 12-

"incntl ()
:'. {

register FILE *infile;
char c;
int nualines;

if (!(infile = fopen (FILEAME, "r"f)}
exit (1);

numlines = 0;
while ((c = getc(infile)) !- EOF) f

if (c == '\nl)
numlines +;

fclose (infile) ;
return (numlines);

This function took an average of 590 ms of system time and 1980 ms of user time to count the
lines in our modified version of /usr/dictlwords.

Variations of this program that put numlines in a register, that used functions fgets ()
or fread(), or that placed sentinel newlines at the end of the buffer either took more time or
made little difference in performance.

Al Aho [private communication] suggested that we use the system function read(. (See
the manual page for read(2).)

lncnt2()
.'. {

register int infile;
register int numlines, i, numchars;

if (M(infile = open (FILENAME, 0)))
exit(I);

nualines = 0;
while ((numchars a read (infile, buf, BUFSIZEI) 0 O)

for (i a 0; i < numchars; i *+)
if (buf[i] -a \n')

nualines .*;
)

close (infile);
return (numlines);

This function takes 580 ms system time and only 990 ms user time.

Using a sentinel newline at the end of the buffer reduces this to 550 ms system time and 700
ms user time.

,a

I

13-

lncnt3()

. register int infile;
register int numlines, i, numchars;

if (!(infile - open iFILM4AME, 0)))
exit(1);

numlines a 0;
do {.

nunmchars = read (infile, buf, BUFSIZE);
buf(numchars 1] a "\n';
for (i x 0; i <= numchars; i +.) {

for (; buf[i) != '\n'; i *,)

numlines ++;
- }

-- numlines;
} while (numchars s= BUFSIZE);
close (infile);
return (numlines);

Having examined the relative merits of different means of input, we turned our attention to a

program that copies its input to its output. Our first copy function used getc () and putc (:

copyl ()

register FILE *infile;
char c;

if (!(infile = fopen (FILENAME, "r")))
exit (1);

while ((c a getc(infile)f != EOF)
putc(c,outflds);

fclose (infile);

This function took 740 ms system time and 3 seconds-user time to copy /usr/dict/words.

Writing this function using fgeta () and fputs or fread () and fwrit. made it take
more time. Using the system functions read() and write () improved the performance to 660
ms system time and a negligible amount of user time:

copy2()

register int infile;
register numchars;

if (Minfile = open (FILENAME, 0)))
exit(l);

while ((numchars a read (infile, buf, BUFSIZE)) , 0)
write (outbfds, buf, numchars);

close (infile);

We have seen that the functions provided by stdio.h are hard to improve on without resorting
to system calls. Several of our "improvements" actually resulted in longer run time for programs.
This illustrates well the importance of monitoring to be certain that changes represent improve-
ments.

'-o

4 - 14-

8. Observations

In Section 5 we squeezed a factor of two out of the summation loop, and improved the max-
imum and minimum finder by a factor of ten. The later changes-like counting down instead of
up and switching to pointers--are obviously system-dependent. It is harder, though, to decide
whether the earlier steps were changes in algorithm or system-independent changes. Was moving
the multiplication by two out of the loop at the beginning of Section 5 a change in algorithm or a
change in coding? What kind of modification was the elimination of an unnecessary test in the

*second problem?

Programs are not made faster in one step. In the maximum and minimum finder, the fused
loop (fourth step) was six times better than the program we started with. For many applications it
would be enough to improve the performance of a much-used function by a factor of six, especially
because the code at this stage remains clear. But we know that if we needed to, we could get
almost another factor of two improvement by making more complicated, less portable, changes.

A clearly algorithmic change was the switch from sequential to binary search in Section 6.
The slowest binary search is almost fifteen times faster than the fastest sequential search. But the
fastest binary search is another factor of four better. It involves a system-dependent bit operation,
but it is much clearer than the pointer version (which turned out to be slower). Nevertheless, the
fast sequential search algorithm could be useful for searching short sorted lists, as the discussion at
the end of the section suggests.

With regard to Section 7 we note that the superior speed of read() and write C) over the
functions in atdio .h has not led us to rewrite all of our programs using them. The system calls
are less convenient to use since they do not scan the input or format the output. But if we were
writing a program where performance was critical and input/output was a bottleneck, we would
certainly consider using them.

We end as we began, with a warning that language- and machine-specific changes to pro-
grams are not for universal, or even wide, application. It is much more important that programs
be clear so that they can be understood and modified. But when program speed is an issue, there
are many ways to find out where the time is being spent and how to reduce it.

9. Remarks
These tests are arranged so that others can take them and run them on their own machines.

Please let us know if you would like a copy.

Thanks to Andy Koenig for letting us use rabbit alone for about two days before letting
other users on.

Thanks also to Al Aho, Brian Kernighan, and Tom Szymanski for their comments on drafts
of this paper.

5- 1-

10. References

1. U NIX Programmer's Manual, University of California, Berkeley (1981). Seventh edition. Vir-
tual VAX-I I version. 4.1 BSD.

2. Jon Louis Bentley, Writing Efficient Programs, Prentice-Hall (1982).

3. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice-Hall
(1978).

4. Brian W. Kernighan and P. J. Plauger, Software Tools in Pascal, Addison-Wesley (1981).

5. P. J. Weinberger, Dynamic statement counting: a manual for users and owners. Bell Labora-
tories (1982).

..

16-

Appemsif 1. Tlminp of Printive Operations on a VAX I1Mo

There are so many combinations of kinds of variables and operators that we wrote a program
to generate this part of the tests. The workhorse of the tests is a macro:

repeat 10 times {
record times on usr and sys clocks
execute the statement of interest 100,000 times
record time elapsed since last look at clocks

Thus, we get ten measurements of how long it takes to do some primitive operation 100,000 times.
The numbers we report below represent the average of these ten measurements. In every case, the
system time was negligible-no more than two ticks-so we will say no more about it in this sec-
tion.

Each column of this table is headed by a variable type, which may be one of six C types:
char, short, int, register int (Rint), float, double. The entry in the left column describes the opera-
tion that was timed. Lower case letters in the left column denote different variables of the type
named at the top of the corresponding column. Upper case letters denote variables of a particular
type, usually I for integer.

"' Here are the timings in milliseconds for tests compiled and optimized under Berkeley UNIX
version 4.1 and run on a VAX 1!/780 with floating-point accelerator.

char short int Rint float double
a a -b 590 590 445 336 948 651
.a -b 593 590 443 339
I a [a 609 615 609 528 609 653
RI = la 566 570 568 485 570 611
a ++ 423 423 421 336 1013 718
.+ a 421 421 421 338 990 716
a += 378 381 379 338 949 720
a * a+l 546 545 421 338 951 716
a -- 378 378 423 338 1011 718
-- a 419 423 381 336 993 718
a -a 423 423 379 338 973 716

a a-1 548 548 441 336 949 716
a=bc 1898 1898 1749 1496
aubx,3,c 843 845 653 486
a=b €c 779 778 593 506
a=b&c 736 738 525 400
a=b"c 654 651 506 336
ambic 696 696 443 338

C = a 428 463 466 421 759 949
S a a 439 423 464 421 770 948
I a a 441 443 421 379 654 841
RI a 401 400 379 339 609 803
r a a 738 738 738 676 464 546
D a a 633 631 634 568 609 654
a.-b 464 466 463 339 504 718
a•ab 696 695 464 333 911 718
a-=b 423 423 464 338 506 716
ana-b 695 696 443 336 861 675
a*=b 803 800 508 420 506 886
auaeb 821 824 504 485 906 886
a/-b 1605 1600 1328 1244 823 1368
ama/b 1601 1605 1375 1266 1286 1416

7. -7 -- 7

-17-

char short int Rint float 'double

a%=b 1876 1880 1794 1500
" anab 1899 1899 1728 1494

a2.3-=b 843 843 611 529
a.-a*2b 906 906 615 486
a44.b 821 821 545 506

7- aaa4cb 779 783 611 464
a&-b 738 734 508 379
ama&b 740 740 563 376
a=nb 464 463 423 336
aua~b 696 700 424 336
alanb 421 421 421 339
anai b 695 695 463 338
anb?c:d 738 741 676 528 908 1098
if 588 593 590 483 633 858
anb+c .696 696 486 338 908 738
amb-c 651 656 443 335 991 784
anb*c 823 823 548 485 928 928
anb/c 1603 1624 1350 1265 1244 1368
I =a,:b 695 696. 696 525 781 970
I=ajb 615 611 613 529 696 886
Inat=b 681 675 671 548 759 949
Iua>sb 675 675 675 548 759 970
"nazub" 729 716 695 546 781 968
Ima I ab 611 609 611 528 696 886
Iua&&b 759 759 758 678 759 845
I-a flb 696 695 700 696 695 736
f(a)* 2050 2048 2008 1983 2218 2276
f(ab) 2130 2130 2133 2155 2488 2550
f (a, b,c) 2300 2300 2341 2239 2805 2933

In all cases f () is the empty function. One hundred thousand calls on the empty function with no
parameters takes 1941 ms.

•.-..-.-.-............. •-......... : " .
• , ,- ..- .. ' . "." . ". ' ' '
S- -.

SECURITY CLASSIFICATIO'4 OF "w1S PAtC '14%on Daoa EnfSred)

REPORT DOCUMENTATION PAGE I READ INSTRUCT'ONS
I FORE COMPLETt?,. FO'.-t

1. REPORT NUMBER R800N* ACCESSION RECIPIENT'S CATA60G 'lUMBER

- CMI-CS-82-134 iN
4. TITLE (od Subtile) S. TYPE Or REPORT & PERIOD COVERED

Interim
EFFICIENCY CONSIDERATIONS FOR C PROGRAMS ON A
VAX 11/780 6. PERFORMING ORG. REPORT NUMER

7. AUTmOR(a) JO4 . BTL S. CONTRACT OR GRANT NUmIER(o)

CHRISTOPHER J. VAN WYK,Bell Labs Murray Hill, NJ N00014-76-C-0370

PETER J. WEINBERGER, Bell Labs Murray Hill, NJ
9. PERPORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM E69%lENT. PROJECT. TASC

Carnegie-Mellon University AREA 4 wORK UNIT NUMBERS
Computer Science Department
Pittsburgh, PA. 15213

1-. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
August 4, 1982

Office of Naval Research 13. NUMBER OF PAGES

Arlington, VA 22217 19
14. MONITORING AGENCY NAME A AODRESS(It differenfr otm Cansaellind Office) IS. SECURITY CLASS. (f ttis repert)

UNCIASSIFIED

lie. DECL ASSI PIC ATION/DOWNGRADING
SCHEDULE

S116. %XSTRIBUTION STATEMENT (01 thie epma

1T. DISTRIBUTION STATEMENT (of Ise 0hilt 011140d JIM 8161 20, II dilfalamt bam Aet)

Approved for public release; distribution unlimited

*" ,O. SUPPLEMENTARY NOTES

19. KEY WORDS (Centifm~m u8eaee itii Re0eaav mEd 440h019 6F,6' 01411P. • mW-

2B. ABSTRACT (CanU... 40 reeeee Ad* eit m..a0my e, id*eMAV Or 61414 NeaOWA

DO 1473 ETIOi, OP I NOV II is OBSOLETE UNClASSIFIED

SECURITY CLASSIFICATION OF T1IS PAGE (,e be. BOeOM**

.

