AD-A125 288 SPELLING CDRRECTION XN USER INTERFRCES(U
CRRNEGXE-HELLON UNIV PITTSBURGH PR DEPT OF COHPUTER
SCIENCE_ 1 DURH T AL. 20 DEC 82 CMU-C5-82-151

UNCLASSIFIED NO8@14-76-C- 0378 ,F/G

,41...41-}1_!11 T —rr T 1111111\‘141 ‘J

' B ll!f“?li't ’Pl v v '~ . .
. . - - .?nb r\rfrrlr\ .

S S o
LR A R -‘...(.. .o

¢ - |

e

.

‘ E
.

B

: I
= 22
4
| 123
16

U

] | mmuu

. ﬁm—wm—m—muuhw

=

—
=
—=——

__

NATIONAL BUREAU OF STANDARDS-1963-A

1.25

a—
———
 ———
—

MICROCOPY RESOLUTION TEST CHART

, W, Gy -
IR W
o -

lle=

Il
Il

e e,
R, .

A A N
3

- e e
AN

T

S

w
A
2 o
... A ‘ A
. | .

, 4
. .h

domnd s Rovoeds ‘ |
. als! alae’aa g2 48 [s N Pt)
e

¢
P

i

————rTY
o~
ey
> R

- s S AL ¢ -
SORLASITERY A

"'ﬁmm%m. -

T A

ST

A
LK

CMU-CS-82-151

A

10 December 1982

DEPARTMENT
‘of

COMPUTER SCIENCE

5

Carnegie-Mellon University
Sl 83 03 02 o022

[PV

T v

*

Y

Fony e
FY

v ——v wew w v w w w

-

. T T T T SNIUAdORE T et e S g S Jre shar ar e = S — — <
5"?."': [LA T e b Ty -8 7 .- ’ . -
- .- l;::— v .“\&»— N
e ; LT T - Eal NS
RCI”C;\‘ DO(“.‘"’.“:P’\‘,U‘\ r:-". ! LEELRE LT T . et J
VTRIGIRT AlwsLm T T - T T, eTCELLIN D c s P ENTS CATALYG Lo, &
’ -
CMU-CS-82-151 Jﬂlaﬁ 20 g :

6. TITLE (and Sudiitle)

SPELLING CORRECTION IN USER INTERFACES

Interinm

TYPE OF REPOAT & PER.CC C:vf-.alb T

Rl bl ety
PLAFCRMING CRG. REFOART N . ~BER

7. AUTROR{e)

Ivor Durham, David A. Lamb, James B. Saxe

8. CONTAACY OR GRANT NLMBERS)

N00014-76-C-0370

9. PLRFORMING ORGANIZATION nauE And ADCRESS
Carnegie-Mellon University

Computer Science Department ’
Pittsburgh, PA, 15213

0. PROGRAM ELEVMENT, PADIECT, TAaSK
AREA & WORK UNIT NUMBERS

——

V. CONTROLLING OF F1CE WAME AnD aDCAESS

Oftice of Naval Researcn) .
Arlington, VA 22217

12. REPOAT DaTE

~

2

5 WUMBER OF FAGES
26

e LONITORING ACENCY NANE & ACORESS(ditlerant troo Contralling Ollice)

18. SECURITY CLASS. (of this repory)

UNCLASSIFIED

Lyopreved for
t 38

1 sooaL FMLw*aly “OTES

"~. f‘tv - .S{:."-"l’\.: 5.,:.:.:..;;1 i ~e. voimy @' wlily oty &
e) .)". PR X § (C.-J:l':\ul—m r.‘oo.'_..p e 1! eiassay W@ ien. ‘g By o 0B o)
D 0'4;“‘;) 16°3 socmerr v o 8

~

) L\h. DECLASHFICATION' GowhCAACING
SCHEDULE

- ————— = —— —— o= e ~
16, ISTRIBUTION STATEVENT (of thie Reperl)

- - . N

tpproved for Puplic release; istribution unlimited
. m e - - - R o s - - ————— . - -~ e PR - [- veem - et ¢ ———— o - v e o e e

33, %L e .@JTIN ST A-CMENT Jof Lhe atgiraz: enm 03, Elveh €, 1 g - wr F ey rt)

0'.",‘_.

iublie release; Ji- rorion unlimited

,.uA

A CMU-CS-82-151

Spelling Correction in User Interfaces

Ilvor Durham, David A. Lamb, and James B. Saxe

Computer Science Department,

Camegic-Mellon University, | °¢cession For
. . NTIS GRA&I
Pittsburgh, Pennsylvania.
g y DTIC T4B
Unannonuced O
20 December 1982 Justifientin
|

Py.. . —
I\ T e el .) H
I ’ . ;
oIl ;

\ i .
\ P : i ; |
- 1 1
Lot [. ‘
T . | |
‘,/I - m{_j, i R S :f'}:‘ Absll'act’
. v > y ”\‘-“1/'. . "V/ . g0 . .

- : frr-this paper we demaonstrate the feasibility of ptoviding a spelling corrector in most interactive
. user interfaces. The issues in using spelli)ii(mrrcction in a user interface arc cxamined and a
- simple correction algorithm is described. describe the results_of an experiment in which the

corrector is incorporated into,a heavily used intcractive program. More than one quarter of the
errors made by users during ows experitnent ware corrected using our simple mechanisms. From

~ this we have concluded that there arc considcrable benefits and few obstacles to providing a
spelling corrector in almost any interactive user intcrface. (1,’ —_—

D) g

Key words and phrases: spelling, spelling corrcction, typographical errors, user interfaces, inter-
active programs.

v .,
Y‘

CR Categories: 4.0, 4.9,
t_ Copyright © 1982 [. Durham, D.A. Lanb, and J.B. Saxe

This rescarch was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract F33615-81-K-1539, and in
part by the Office of Naval Rescarch under Contract N0C014-76-C-0370. J.B. Saxe was supportcd in part by
an IBM Fcllowship.

L Bun A o SEE .y a4
»

e fun)

The views and conclusions contained in this document arc thosc of the authors and should not be inter-
preted as representing the official policies, cither expressed or implicd, of the Defense Advanced Rescarch
Projects Agency or the US Government.

] SPELLING CORRECTION IN USER INTERFACES i
Table of Contents
1. Introduction 1
- 2. Design Issues 2
] 2.1. Algorithm Design Issues 2
2.2. User Interaction Issues 3
3. The Correction Algorithm 6
- 3.1. Implementation of the Corrector 8
i 3.2. Performance 8
. 4, The Experiment 10
& 4.1. The RdMail System 10
T 4.2. The Data Collected 1
b 4.3. Usage Statistics 12
p 44, Results 13
i 4.5. Evaluation 17
i: 5. Conclusion 18
" Acknowledgements 19
References 19
I. Example Implementation of the Spclling Corrector 20

Figure 2-1:
Figure 3-1;
Figure 4-1:
Figure 4-2:
Figure 4-3:

List of Figures
Keyword matching patterns
Mcasurements of the Corrector
Keywords in a session
Keywords in Error
Taxonomy of Errors

.......

AT

........

SPELLING CORRECTTON IN USER INTERFACES .

12
13
14

<o

g LA A e i e e S e SE e e Be v JUas e aver e SUWL S AN A A RO R T T .,.--¥
A T T e o RLT ST . . - S e . St L e D - .

,4. SPELLING CORRECTION IN USER INTERFACES 1
1. Introduction

L::E The automatic detection and correction of spelling errors in prose has received a considerable amount of

:! attention (an annotated bibliography is given by Peterson [7]). However, users spend a considerable amount

N of time typing commands to the user interfaces of programs, and inaking similar typographical errors to those

made while entering prose. Although designing and implementing a well human-engincered and tolerant

‘

~—wev v~
[TR
'

user interface requires considerable cffort, it is possible that some basic techniques. such as correcting the
spelling of keywords, can be applied at low cost. In discussing desirable attributes of good user interfaces,
Hayes. Ball, and Reddy [4] assert that spelling correction in typical interactive programs is straightforward,
since usually an error is made in a context where only a limited number of keywords (fewer than 160) are

applicable. If spelling correction is really “straightforwaird” then there is no rcason why almost all user

AN

interfaces should not provide such a facility, even to the extent of retrofitting a corrector into existing
programs. Morgan [6] describes a spelling corrector that was implemented in both an operating system and a
compiler, for which the statement of purpose was:

The goal of the proposed spelling correction techniques is. roughly stated, to achieve a
proficiency comparable to that of a quick scan of the source program by an experienced program-
mer who has no knowledge of the program, and who makes no attempt to understand its purpose.

There scem to be very few systems that take advantage of such a facility. The most well known such facility is
DWIM (Do What I Mean) in Interlisp [9], whose statement of purpose is almost the same as Morgan's.

The purpose of our investigation was to learn what issues distinguish spelling correction in user interface

applications from the more gencral problem of manuscript spelling correction and to learn how much of a
contribution such a facility could make. We also wanted to get a realistic picture of the errors users really
make and to supplement the data presented by Damerau in 1964 [1]. To this end we considered the desirable

characteristics for a spelling corrector for an interactive program, and developed a variation on Damerau’s
algorithm meeting these requirements. We incorporated the spelling corrector into the command table
module used by the RdMail electronic mail system [5], which is in heavy daily use by a community of several
hundred rescarchers. RdMail has a conventional typescript-oriented comnmand language, where most com-
mands consist of a verb followed by a sequence of arguments. Most user terminals are low-bandwidth “glass
teletypes,” which can display 24 lincs of 80 characters. To Icarn about the issues and to find out what kinds of
mistakes are made by users, we coliccted data on the accuracy of the keywords entered by users and the ability

of the program to offer corrections when keywords were not recognized immediately. We collected general

LZBEL B 0 2 diy ol e M L N 4 S e 0D SNLINE SR e g

information about the use of the command interface and recorded specific information about the keywords

—

that were not recognized and what corrections were made,

Throughout the paper we will illustrate issucs with cxamples of a user intcracting with RdMail. User

WwCR»

type-in is underlined to distinguish it from RdMail output. The symbol represents the carriage return

key. ltalics are our comments and explanations. not part of the typescripts.

P Y T ——

L

YTTwW

2 SPELLING CORRECTION IN USER INTERFFACES

2. Design Issues

We were prompted to look for a new correction algorithm because of several differences between correct-
ing spclling in general manuscripts and correcting spelling in uscr interface applications. Design considera-
tions for the spelling corrector fell into two categorics: those affecting the design of the algorithm, and those

affecting its usc in an interactive system.

2.1. Algorithm Design Issues
We chose the same set of assumptions about typographical errors as Gorin did for the PDP-10 SPELL
program [3]. We assumc that there is exactly onc error in the symbol to be corrected and that the error arises
from one of the four causes that account for over 80% of spelling errors [1):
o Transposition of two adjacent letters.
e One letter wrong.

o One extra letter,
e One letter missing.

These errors are illustrated in Figure 2-1.

Dictionary _E—Mrg (1] a|[n] d Dictionaty [A]m[e] r[1] c] al

X

User E[n[glal 3| n]d User [Alm[e D¢l 4] cf al

(a) Transposition (b) Wrong Letter

Dictionary [C|a[n]a]d]a Dictionary [Clo[rD el c]t]i]o]n]

User [clal&{] a[o] a User Clojrle]c]t
(c) Extra Letter (d) Missing Lctter in Abbreviation

Figure 2-1: Keyword matching patterns

To minimize the difficulty of modifying programs to use the new corrcctor, we decided to transparently
replace a library keyword look-up routine with a version that did spelling correction. ‘The original symbol
table module accepts as parameters an unsorted vector of strings and a single probe string to match against the
elements of the vector. The look-up algorithm allows the probe to be a unique initial substring of a table

entry and reports if the probe is ambiguous.

‘3ie 200 Jn K u ¥

sy W .

e J Nl Waad Ld A el et - - Calt™Y - - e - .
e e T R AR e SN M e e e R e e S e LN T B e e

. - P PITS I) .
\J PP T N S R, SRS U e

SPELLING CORRECTION IN USER INTERFACES 3

The specification of the original library module illustrates three differences between spelling correction in

manuscripts and spelling correction in user interfaces:
o [t is common to allow abbreviations in a uscr interface, to minimize typing.
o The probe being looked up in a table may match several entries.

o Affix (suffix and prefix) analysis is not necessary since the legal symbols come from a very limited
vocabulary.

2.2. User Interaction Issues
A number of issues arise when a uscr interface is supplemented with a spelling corrector. These issucs
concern the interactions with the user when spelling correction is atteinpted and can interfere with the user’s

ability to work with the interface. These issues are discussed below.

If the user’s symbol contains only one character, the “cxtra letter” test would omit this character from the
dictionary search and would therefore match all the words in the dictionary (or none of them, depending on
the semantics of an empty string), which does not help the user. Similarly, the “wrong lctter” test would
maich any word beginning with any other character in the symbol alphabet. We chosc to report that no

match had been found in this case.

If the user’s symbol contains only two characters, the various tests for diagnosing errors may still produce a
substantial number of possible matches. The “transposition™ test and “missing letter” test are reasonable and
behave the same for two character symbols as for longer symbols. However, the “extra letter” and “wrong
letter” tests can produce a large number of possible matches. Suppose the user’s symbol is “xy” then the
“extra letter” test would match all symbols beginning with either “x” or with “y”. The “wrong letter” test
would match all words beginning with “x?” and “ly”, where “?" matches any character. The designer must
decide whether the size of the set of possible matches in thesc cases is sufficiently small to permit the user to
choose one of them or whether to bchave as inough no match had been found. We initially chose to omit
both the “extra letter” and “wrong letter” tests for two character symbols. After a few months of operation we
included the “wrong letter” test and reccived many complaints that the spelling corrector offcred too many

choices, most of which were quite uncxpected; this supports the original decision to omit the test.

Suppose that the correction algorithm finds exactly one matching symbol. Is it safe to assume that the
correction is accurate? In general, the answer is no, because the user may havq made an error (or multiple
errors) not detected by the four tests. An example of this is to omit the space between two keywords. The
designer’s decision must be based on the consequences of using the symbol in error. The following example is

quite harmless:

"(, "a ..

v

RCIRCRRA0E " SRR 19
. . . . - : * . LLet. .

v
'

............

oo

L.* 4 SPELLING CORRECTION IN USER INTERFACES
of

b ’

P <_h]§nck

% I assume you mean °'Help’' instead of 'hlep’.
Help text is output here.
<-

However, the consequences of assuming the accuracy of a particular correction may be much more scrious, as
we demonstrate in the following contrived example:

<- rwite®

% I assume you mean ’QOverwrite’ instead of ’'overwite'.
Program proceeds to expunge deleted messages.

<-

The unfortunate user did not mean “Overwrite”, he actually meant

<~dover wite®®
Program sends file “WITE" to the Dover xerographic printer.
<-
In RdMail this problem is avoided by requiring confirmation before some irreversible action is taken, even if

the user did not make a spelling error; these mechanisms are entirely outside the spelling corrector.

Suppose next that the engincering decision is to require confirmation of all spelling corrcctions. In a
human-engincered system, the actions taken by the system should require little effort by the user. For
example in offering particular default answers to questions, the common response to accept the default is
simply to hit one key, carriage return:

<-List AR

onto file? [LPT:MAIL]: &

Program lists all messages onto the line printer.
<

«CRs

In the previous example we sce that the user can still suffer from prior training to hit in response to

defaults offered by the system:

<-gverwite®
% Do you mean ’'Overwrite’ instead of 'overwite’'? [Yes]: &

Program proceeds to expunge deleted messages.
<-

Clearly the default response when the user typed “hlep” instead of “Help” could safcly have been “Yes”,
while in the “Overwrite” example it would have becn dangerous. It is important that the default responses for
spelling correction be consistent to prevent scrious mistakes. Although it might be more frustrating for the
user to have to say “y**” to accept “Help” for “hlep”, it is certainly better than losing information in the

“Overwrite” example. Hence, the safe version of the previous example is:

5 e A S oL e A o ooe e

.'T'.'.‘:“. f

SPELLING CORRECTION IN USER INTERFACES S

<-gverwite®
% Do you mean 'Overwrite’ instead of 'overwite'? [No]: &

No damage this time
<~dover wite®®
System prints file “WITE".
<=

A reasonable compromisc may be to assume the accuracy of corrections for which the consequences are
reversible (flagging such dictionary entries, for example) and request confirmation of those for which the
conscquences are not reversible. A simple variant of this last option is used in the current version of RdMail:
Confirmation is required for corrections made in some dictionaries but not others. For example, main
command corrections are assumed to be accurate since all actions are further confirmed or are reversible,
However, confirmation is requircd when an error is made in naming a program for RdMail to run as a
sub-job. Assuming the wrong program name could have irreversible consequences, such as deleting files. A

RdMail user may set an option to always request confirmation of spelling corrections.

When the correction algorithm finds more than onc matching symbol in the symbol table, the designer
must decide whether or not the user should be given the opportunity to select the correct symbol from the
smaller set of matching symbols. He must also decide whether to invest the cffort in further reducing the size
of the set of matching symbols by using heuristic facrors, such as the relative positions of characters on the
keyboard. We included no such heuristics and simply offered the user all matching symbols. The data
collected during our experiment showed that between two and ten alternative corrections were offered, with

the majority of cases producing between two and four alternatives.
CR

<-eCX__

% 'ecx' could be any one of the following:
Echo, Exit

Which one do you mean? [None of the above]: &

<=

An alternative stratcgy for handling common ambiguities is to provide preferred disambiguations. For
example, in RdMail “A” is presumed to mean “Answer” instead of “Accept,” “Alias,” or “Allocate.” This is
handled by a mechanism outside the spelling corrector: the single-character command “A” is added to the

command table as a synonym for “Answer.”

Finally, what should be done if there is a problem with the symbol supplicd by the user in response to the
question, “Which one do you mean?" Some of our users suggested that spelling correction should be applied
recursively, but others wanted to be able to type in the name of the command they had meant initially. For
example when a user typed “d¢” instead of .d” for “F . the program offered as alternatives only those

commands for which “de” is an ambiguous at:... viation; the user would probably prefer to respond with

o & PP PG SN v . PO SN

A2Bh A e 00

i

At Pulim il B AR 5 gite o anr
P

M gamasun- sace

VO
e .

R i e B o g % 28 o ok P . B
e e)

6 SPELLING CORRECTION IN USER INTERFACES

“Edit” even though the symbol is not in the sct offered by the program. Clearly a combination of the two
could be applied. For example, apply spelling correction first, but if that still doesa’t produce an un-
ambiguous symbol, look for the ncw symbol in the original symbol table rather than in the sct of possible
corrections. On the other hand this would require the user to maintain a complex model of what the corrector
is doing. For our experiment, we chose the simple cxpedient of forcing the uscr to get the symbol right rather
than making any atternpt to correct the correction. The program simply repeats the question:

<-de_201*

% 'de’ could be any one of the following:
DeAllocate, Debug, DeClassify, Delete

Which one do you mean? [None of the above]: dle®*
% 'dle’ is not an option.

Which one do you mean? [None of the above]: del®®
Program deletes message 201,

The action taken at a user interface when all autempts fail to produce a unique symbol is not spccific to
thosc interfaces that use spelling correction. However, a couple of simple actions should be mentioned. First,
the command containing the erroncous symbol may be aborted. Having tried our best to make sense of the
command, we must ultimately give up since it will be much easicr for the user to express himsclf more

accurately. This approach was used in RdMail,

<-Aaaarrgghh!®
? No such command as Aaaarrgghh. Type ? for help.

<-
A slightly more sophisticated approach is to ask the uscr to correct the symbol and then attempt to continue
with the comma~~ {Notice that two errors are detected in the command):

<-haeders from_Robertson intersect week "May 16"
% 1 assume you mean ‘'Headers' instead of ’'haeders’.
? 'week’' is not a Message Sequence keyword.
Message Sequence keyword [Abort command]: since®®
Program lists headers of messages from Robertson since May 16.

<-

This mechanism was added to RdMail after our experiment.

3. The Correction Algorithm
The comparison of two symbols (the user’s and a dictionary symbol) is donc in three parts, as illustrated by

the three divisions of cach example in Figure 2-1;

1. Find the common initial sub-string (i.e. up to the first difference). Case distinctions in letters may
be ignored; the algorithm must find all possible matches for the symbol not found by the initial
search.

2. Examine the next pair of letters for a transposition error.

i e e T o ac i drw Ao e S s e S D PSS PN T

. -

SPELLING CORRECTION IN USER INTERFACES 7

LA PR

.

3. Match the tail substrings. If the previous step suggested that two characters had been transposed,
omit two characters from both symbols and maitch the remaining substrings. For the “wrong
letter” test omit one character from each symbol and match the tail sub-strings. For the “extra
letter” (“missing lctter™) test, omit one letter from the user's (dictionary) symbol and match the
remaining tail substrings.

e adt 4
P
[

L
1
X

The matching steps are repeated for cach symbol in the dictionary. Each dictionary symbol that is matched
is added to a set of possible corrections for the user’s symbel. If there is only one member in the sct when all
of the symbols in the dictionary have been examined, that symbul may be offered as the correction. [f there

are several symbols in the sct, the user may be asked to sclect one.

We originally tried the SPELL program’s strategy of searching the symbol table for cach string that could
be transformed into the user’s symbol by one of the four kinds of crrors. This was far too slow with the

original library look-up algorithm.

Using only the lengths of the user’s symbol and the dictionary symbol, two optimizations can be made to
avoid unnecessary string comparisons:
1. If the length of the user’s symbol exceeds the length of the dictionary symbol by more than one

charactcr, no match is possible with the above algorithin, so the “no match™ result can be returned
immediately. (This assumes that the string length is readily available.)

2. If the first difference found is in the last character of the uscr’s symbol, the “extra letter” test
would discard the character and therefore convert the uscr’s symbol into a matching initial sub-
string of the dictionary symbol.

This algorithm requires no intermediate string construction. The only additional storage required is for the
set of matched dictionary entries, which can be represented as a vector of booleans with one element per
dictionary element. At the end of the algorithm the sct of matching symbols is identified by all frue elements

in the set vector. The algorithm also has the advantage of being trivial to implement. The most expensive

components are the low-level functions that locate the first difference and match substrings. In our ex-
perimental implementation both of these functions were written in assembly code using straighiforward

character-by-character comparisons.

i An example implementation of this algorithm in Adal is given in Appendix . This implementation
exploits Ada’s facility for dynamically dimensioned arrays. In languages which lack this facility, other data

structures, such as linked lists or large fixed-size arrays, can be used instecad.

.

1Ada (2] is a registered trademark of the U.S. Department of Defense (OUSDRE-AJPO).

-]

.
0
.

8 SPELLING CORRECTTION IN USER INTERFACES

3.1. Implementation of the éorrector

‘The main spclling correction algorithm was implemented in SAIL[8], an Algol-based language that
provides strings as a primitive data-type. There is an extensive library of SAIL functions at C-MU that
includes a command-table abstraction and a more primitive symbol-table abstraction. It is in the command
table module that the spelling corrector was applicd depending on the result of the table search by the

symbol-table function. ‘The corrector was applied only when the keyword was not found in the symbol table.

To handle multiple matching symbols, the corrector builds a table (vector) of string pointers and calls a
subroutine which asks the user to select the correct keyword. 'The subroutine forces the uscr to be accurate in

sclecting one keyword from the set offered. In particular, no attempt is made to correct the selected keyword.

3.2. Performance
The following informal analysis shows that the spelling corrcction algorithin is quite adequate for our
requiremenis even though it clearly is not optimal for the general correction application in prose. What it

lacks in performance is returned in simplicity that facilitates its introduction in a wide varicty of applications.

To correct one symbol given a dictionary of N symbols, our algorithm performs N initial substring matches
and at most 4N tail substring matches. (The transposition tail match is performed only if the “transposition”
test succeeds.) At worst, this is cquivalent 1o 4N equality string matches. plus a small constant overhead per

dictionary elcment.

To get a more concrete measure of the cost of spelling correction, we performed some measurements of the
algorithm’s running time. Mecasurements werc taken on a lightly loaded DECsystem~102 KL-10 processor
(the same onc used in the RdMail experiment described in Section 4). In each case the data were obtained by
running 5000 tests in a loop, subtracting the original value of the system clock from the final value, subtract-
ing loop overhead and dividing by 5000. Look-ups were done on a table of 66 entries, a subset of the main
command table from the RdMail program. The original command table had 77 cntries; we eliminated five
punctuation character commands and six commands where transposing the first two letters results in an
ambiguity. Mcasurements were taken of

a. The time to look up a correct entry with the original library module (without spelling correction)
and with the new module (with spelling correction),

b. The time taken to decide a probe is not in the table with each of the two modules. Five sources of
failing keys were chosen:

2DECsystcm~ 10 is a trademark of Digital Equipment Corporation.

B

..............

SPELLING CORRIECTION IN USER INTERFACES 9

Clamt

1. Character strings of the form “aaaaa”. “bbbbb”, and so on.
2. Failing keywords collected during the experiment described in Section 4. All keys longer
. than two characters were included.
! 3. The numeric keys from the experiment.
4, The alphabetic keys from the experiment.
5. Strings of the form "KEYxxx"”, where KEY is acommand from the main table.

Thesc times do not include the time taken to print an crror message: printing times are reported
separatcly. We also report the difference between the new and the old look-up times, which
represents the time taken by the spelling correstor, and this difference divided by the table size,
which roughly represents the cost per table entry. The last number varies because of the optimiza-
tions mentioned in Sccticon 3, which can reject some symbols quickly.

¢. The tme taken to handle a transposition of the first two characters of a command. A command
was chosen and its tirst two letters were transposcd before calling the routine. For the original
module this results in a failing look-up; the new module corrects this error.

[

d. The time taken to print a message of the form “[assume you mean X instead of Y.”
¢. The time taken to print a message of the form “X is not a command.”

The results are illustrated in Figure 3-1.

Time (milliseconds)
Test Original New Difference Per Table
look-up look-up Entry
Succeeding 1.781 1.797
Failing
“aaaaa”, etc. 3.100 24728 21.628 328
real data 3.123 22.060 18.937 -.287
real numeric 3.162 25.613 22451 340
real alphabetic 3.122 21.943 18.821 285
KEYxxx 2.990 12.385 9.395 142
b Transposition
1 failing 3221 e
; correctingerror = - 28.384
: Print "I assume.. "' mcssage 5.749

Print "... not acommand"” message 4.59%4

Figure 3-1: Mcasurcments of the Corrector

i We conclude that the algorithm described above is a good choice for those applications, such as user
interfaces, in which the size of the dictionary is quitc small and abbreviations must be handled. For the
library symbol tablc module used in the experiment we cannot do much better since the specification for the

lookup routine docs not require that the table be sorted.

v

10 SEELLING CORRECTION IN USER INTERIFFACES

4. The Experiment

The principal purpose of the informal experiment described in this section was to Icarn how useful a
spelling corrector might be in an interactive uscr interface. In asking about the errors made by users, our
attention is confined to finding symbols in the various symbol tables used by the program; we explicitly
exclude scmantic and syntactic errors in composing commands except as they are detected by failing to find a
symbol in a particular table. The efficacy of the correction facility depends on the varicty of errors uscrs make
and their respective frequencies. The rate of crrors made determings the overall cost of the spelling correction
facility. We need to determine what proportion of thosc errors can be attributed to typographical errors that
may be recovered by the corrector. Learning what other errors are made may suggest other ways to improve

the tolerance of the user interface to user errors.

The RdMail Message Management System [S] was used for the experiment. We describe the program and
the information we rccorded from it next. Then we present the results of the experiment and offer a brief

evaluation of the effectivencss of our mechanisms in the light of those results.

4.1. The RdMail System

RdMail is an interactive electronic-message manageinent systein that provides facilities for the composition
and transmission of messages among users of a network of computers. Messages received can be classified,
answered, and filed conveniently. RdMail commands are sequences of keywords and parameters, where the
parameters are usually numbers or quoted strings. Users may operate on sets of messages by specifying the
particular messages by number, attribute (such as”date of arrival, name of originator, or subject), or user-

defined classitication. For example,

<-headers meetngs intersect (since "Jan 1") intersect 650:175%®

% Do you mean 'Meetings’' instead of 'meetngs’'? [No]: y®
produces a bricf identification of all messages between 50 and 175 that arrived since January 1 and were
classified as “Mcetings™. Since the uscr defines the names of classifications, such as “Meetings”, the set of

symbols in the table used in the parsing of message set specifications is dynamic.

The user lecaves RdMail cither temporarily to use an cditor to alter the composition of a message, or
permanently to return to the system’s exccutive program. For the purposes of the experiment, a session
encompasses only those commands that are given before the user leaves RdMail for any reason. Hence one
user “session” in which a message arrives, an answer is composed then cdited before being mailed, and finally
new mail is sent to other pcople would be considered two sessions in the collected data: the first before

entering the editor; the second after returning from the cditor and before leaving the program permanently.

.

For the duration of the cxperiment, RdMail forced users to confirm all corrections suggested by the

program. This was the only alteration in the RdMail user interface specifically for this experiment.

TV T
,"v"'j T.‘Tv ‘

o v
MM ~ (MU S Sk

Lot a3

T

SPELLING CORRECTION IN USER INTERIACES 11

4.2. The Data Collected

Because of the sensitive pusition of RdMail in communicating between users we recorded no data that
could be traced directly to particular users. This anonymity was also important to reduce the probability that
users would become self-conscious about making typographical errors and take more care than usual. We felt
morally obliged to warn people that we were performing an cxperiment, and to give them the option of
running a different program to avoid participating in the experiment. Warning uscrs that the experiment was
to be conducted encouraged a few to entertain us with some colorful, if illegal, keywords. In some cases it was
apparent that users were probing the limits of RdMail's correction facility. However, we cannot be sure of

any particular user's intention and have therefore included the apparently intentional errors in our results.

The data recorded for each RdMail session were:

e The number of commands given to RdMail (both from the keyboard and from pre-existing files).
o The number of keywords for which RdMail scarched symbol tables and the number of those
keywords that were not found or werc ambiguous.

For cach symbol that was not uniquely matched in a particular symbol table, a detailed record was made
including:
o The symbol the user provided.
o The correct symbol, if any, as confirmed by the user.
e The number of possible corrections for the symbol identified by the spelling corrector.
o The identity of the symbol table.

e The approximate exccution time taken to identify the corrections that could be made (rounded to
the nearest millisecond).

Gathering additional data, such as the entire command line containing each unrecognized symbol, would
have aided us in determining the causes of uncorrected errors. We decided not to do this on account of the
need to respect privacy.

<- rs from Bovi rsec . "R

We shouldn't learn that Bovik is up for a pay raise jus! because someone misspelled “subject”.
The reason we chose RdMail as our experimental vehicle in spite of this inconvenience is that, with the
possible exception of various operating systems. RdMail has by far the most heavily used “command line”
style interface in our environment. The othicr heavily used programs are either compilers, which arc not

interactive, or text editors, which use mostly single-character commands.

YT

DS S b g

12 SPELLING CORRECIION IN USER INTERFACHES

4.3. Usage Statistics

The experiment ran for 41 days during which time a total of 23.361 RdMail sessions were recorded.
RdMail processed a total of 145,972 commands during the experiment; 140,038 from terminals and 5,934
from command files. Data from baich jobs were discarded becausec we were interested only in human
typographical crrors, not general RdMail use. RdMail handled a total of 455,811 keywords during the
expcriment, averaging three per command. The distribution of numbers of keywords in sessions is shown in
Figure 4-1.

© 100 Minimum 0
3 Maximum 563
= Total keys 455811
a0 Average Kcys/Scssion 19.5
< 1000 Mode Keys/Session 14
§ 3 Standard Deviation 17.87
5
3
S
(Over 192)
el il it il T
":]' " 1| e 4 :i I HR R IHH n'\‘{ﬂ ‘]
eI ‘ ' R I R 1t
It vl i»'-i TR AR ,!I.ufﬂ M fll 1 L
0 20 40 60 80 100 120 140 160 180 200
Kcys

Figure 4-1: Keywords in a session

The running time for identifying the sct of possible corrections varied considerably, ranging up to 31
milliseconds with an average of 9.5ms, but with a relatively large standard deviation, ¢ = 9.5ms.? The total
time used by the spelling corrector over the 41 days of the experiment was 19.2 seconds, an average of 468
milliseconds per day.

3Thc: average time spent in the spelling corrector for the subset of the data used as “real keys™ in Section 3.2 was 19.7ms. This agrees
wcll with the spelling corrector cost €19.1ms) shown in Figure 3-1. Many crroncous keys were processed more quickly because they were
shorter than three characters or because they were looked up in small tables.

R ——

»

SPELLING CORRECTION IN USER INTERVACFS 13

4.4. Resuits

During the 41 days of our experiment, RdMail cncountered 2527 erroncous—ie, not uniquely
identifiable—kceys (0.554% of all symbols entered). Due to an oversight in the data-collection routines, we
cannot dctermine how many keys came from command files. Four percent of commands came from com-
mand files. Even if the number of keywords per file command were an order of magnitude greater than the
average number of keywords for all commands. the crror rate for manually cntcred keys would be only
0.934%, which is still very small. Actual error rates may be higher, since we cannot tell how often a user
noticed an error and corrected it manually (by backspacing over the crror or deleting the input line, and
re-typing) before hitting carriage return to cnter the command. The erroncous keywords were recorded in
two diffcrent classes: keywords not found in the symbol table and kcywords that were ambiguous. The
distribution of these errors is shown in Figure 4-2.

Unmatched Keys Numberof Ambiguous Keys Number of

Per Session Sessions Per Session Sessions
0 21800 0 22905
1 1293 1 423
2 181 2 28
K} 44 3 3
4 27 4 2
5 7
6 2 Total uninatched keys 2031
7 3 Total ambiguous keys 496
8 0
9 2

10 1
40 1

Figure 4-2: Keywords in Error

By examining the data collected for each erroncous key, we arrived at the taxonomy of errors shown in
Figurc 4-3. The percentage figure in parentheses after each class of error gives the size of that class in relation

to the cntire class of 2527 recorded instances of erroncous keys.

Corrected errors (27%)—Trunsposition error corrected, Missing letter restored, Wrong letter corrected, and
Extra letter removed (16%); Ambiguity resolved (11%). The error recovery mechanism offered potential
corrections (24%) or disambiguations (20%) for 44% of all crroncous keys. However, uscrs did not always
accept corrections and disambiguations when they where offered. Only 56% of the ambiguities detected were
resolved by the useraccepting one of the alternatives offered, and users accepted spelling corrections in only
66% of the cases where one or more potential corrections were offered. The errors thus resolved accounted
for 27% of all crroncous keys. For 13% of all crroncous keys, the corrector offered a single correction that was

accepted by the user,

14 SPELLING CORRECTION IN USER INTERVACES

o All erroneous keys (100%)
o Corrected/disambiguated keys (27%)
e Ambiguity resotved (11%)
¢ Typographical (16%)
o Transposition crror corrected (2.7%)
¢ Missing letter restored (4.8%)
o Wrong letter corrected (4.5%)
o Extra letter removed (4.0%)
o Uncorrected keys (73%)
o Alphabetic (46.6%)
o One character (10.4%)
: o Two character (9.9%)
i o Three or more characters (26.3%)
- o 'T'ypographical? (2.9%)
‘ o Missing space?
L‘_ o Missing carriage return?
. o Missing slash?
- o Control key?
L o Typeahead?
t. : o Multiple typo?
-d o Miscellaneous typo?
o o Non-typographical? (23.4%)
o Intentionaf crror? (3.2%)
' o Good correction or disambiguation rejected? (0.4%)
3 o Syntax or vecabulary error? (19.8%)
' e Non-alphabetic (26.4%)
o Control character (12.9%)
o Number {(4.6%)
o Punctuation (8.9%)

Figure 4-3: Taxonomy of Errors

Speculative classifications are marked with *“7”,

In some cases, accurate disambiguations or corrections may have been rejected accidentally. We are unable
to say how often this happened because the privacy constraints on our experiment prevented us from record-

ing sufficient information to determine which rcjected disambiguations and corrections werc in fact accurate.

q
k.
»
[
1)
8
»
‘.
»
»

;
.

Errors with two or more explanations were assigned to the first of the above categories into which they fit.
For example, if the crroneous key “dle” was corrected to “Deleted”, we accounted for the error as the

transposition of “I'" and “e”, rather than as the omission of an “e” or the inclusion of a spurious “1”.

Uncorrected alphabetic keys (73%): Of the 1845 uncorrected crroncous keys, 1179 (46.7% of all erroneous
keys) were “alphabectic™—that is, consisted of a letter followed by zero or more Ictters or digits. Of these, 264
(10.4% of all crroncous keys) were single letters, 249 (9.9%) were only two characters long, and 666 (26.4%)
were three or more characters long. We manually classificd the 666 “multicharacter™ (>2-character) uncor-

rected alphabetic keys. Since we had to rely on educated gucsswork for this classification, it is possible that

L i I P N "
S T e S

LI ar ua GEM G amn o S st

SPELLING CORRECTION IN USER INTERFACFES 15

we incorrectly classified some of the keys. We have indicated this possibility by placing question marks by the

names of the manually-generated subclasses.

Typographical crrors (2.9%)—Alissing space, Missing carriage return, Missing slash, Control key,
Typeahead, Multiple typo, Miscellaneous typo. We attributed 74 of the 666 crroncous multi-character al-
phabetic keys (2.9% of all crroneous keys) to typographical errors of sorts not corrected by our algorithm.
Perhaps the most obvious sort of crror in this category is the omission of a space between two keywords (e.g.,
typing “numncw” instcad of “num new™ to ask for the message numbers of all new messages, or “hdel”
instead of *h del” to ask for the hcaders of all deleted messages). A similar kind of error, but one whose
existence we might not have gucssed without sceing some examples, is thc missing carriage return. An
exampic is the key “exitbb”, almost surely typed by a user who intended to type an “Exit” command to leave
RdMail and then type “BB" to the opcrating system to read an clectronic bullctin board. In one case we
diagnosed an erroneous key as resulting from a missing “/”. On our system, the control character CTRL-S is
uscd to suspend output to the terminal, an action that is useful to prevent long messages from scrolling off the
screen faster than the user can read: typing a CTRL-Q causes output to resume. [f the CTRL key on a terminal
is broken. or if the user doesn’t have his finger on it—some of our terminals have kcyboards with REPEAT in
the same position where others have CTRL—the result may be an erroneous key such as “ssssty™ (instead of
“ty” to type a message). Another feature of our system is that terminals run in full duplex mode, allowing the
uscr to enter additional commands while waiting for the machine to respond to carlier commands. Since such
“typeahead” may not be cchoed immediately or may be echoed in the middle of a lot of output, it is possible
for a uscr to forget how far ahead he has typed. An cxample of an erroncous key that is probably due to this
phenomenon is “typetype”. Presumably the user keyed in the command “Type™ while waiting for the
previous command to finish, then forgot that he had done so and keyed it in again. We attributed eight
erroneous keys to multiple typos. Two examples are “aner” (instcad of “Answer™ to reply to a message) and
“hbok” (instead of “h book™ to type the headers of all messages in the uscr-defined message class “book™).
Finally, there were several erroncous keys which appeared to resuit from problems with the mechanics of
keying in commands but for which we could not confidently specify a most probable cause. It is interesting to
note that 353 of the corrected keys (excluding disambiguated keys) were threc or more characters long.
Assuming that our count of 74 typographical crrors among the uncorrected multicharacter alphabetic keys is
accurate, this means that 83% (353 out of 353 + 74 =427) of all typographical errors resulting in multicharacter
alphabetic erroncous keys were in the four classcs handled by the corrector. This is in agreement with

Damerau’s [1] experience that these four classes account for over cighty percent of all spelling errors.

Non-typographical multicharacter alphabetic erroncous keys (23.4%)— Intentional error, Good correction or

disambiguation rejected, Syntax or vocabulary error. In addition to the 74 multicharacter alphabetic keys that

DRSS ~ Sattans

e a0
L

-

-y

T TEFTw TTYYTTTYTYTY

Lt T e T e T e T T s D e e S)

o

16 SPELLING CORRLECTION IN USER INTERIACES

we could diagnose as typographical crrors, there were 80 keys (3.2% of all erroncous keys) that appcared to be
intentional errors and 10 cases (0.4%) in which we were reasonably confident that accurate corrections or
disambiguations were rejected by users. ‘The intentional errors included messages to the authors of the
spelling corrector (e.g., “hithere”, and “doyourcallymeanyoucantfigurcouthbok™), strings which appeared to
result from usc of the keyboard as a pacifier (e.g.. “kkklknlkn™), and a scquence of twenty-cight consccutive
misspellings of the command “Put” (“up”, “tup”. “tpu”, “sput”. etc.)—presumably generated by a user who
was probing (i.e, playing with) the spelling corrector. This leaves 502 (19.9%) legitimate multicharacter
alphabetic crroncous keys, which we must presume were duc to errors above the typographical level—ie,
syntax and vocabulary errors. Broadly speaking in these cascs the user cither forgot the appropriate keyword,
used a keyword that would have been recognized in some other context, or induced a parsing error by
omitting a symbol and thereby leaving an operand keyword where an operator was expected (or vice-versa).

The following examples are typical:

<-headers from Durham since 2-mar<t
illegal message sequence at "SINCE" - junk at end

FROM DURHAM SINCE 3-MAR
?

<-headers from Durham inters ince 3-mar<k
Program prints headers of messages from Durham dated later than March 3.

<-kjob/a*®
?No such command as kjob. Type ? for help.
<-axitk

EXIT
.kjob/a®

Logged off CMUA.

Non-alphabetic erroneous keys (26.4%)—Control character, Number, Punctuation: The non-alphabetic
erroncous keys included 325 control characters (12.9% of all erroncous keys), 116 numbers (4.6%). and 225
punctuation marks (8.9%). Among the control characters, the most common by far was CTRL-S, which
occurred 181 times (7.2% of all erroncous keys). As we mentioned carlicr, this character is used on our system
to suspend output to a terminat temporarily. Normally, the user types CIRI1-Q to cause output to resume.
However, typing a second CTRL-S while output is suspended will cause output to resume, but the operating
system will pass the second CTRL-S to the program’s input strecam. If a uscr types CTRL-S, but output doesn't
stop immediately (because the load on the system is impairing response time), he may type a second CTRL-S,
thereby inadvertently sending a CTRL-S to RdMail. We believe that this phenomenon accounts for all, or
almost all, the observed occurrences of CTRL-S as an erroncous key. In some cases CTRL-S might have been

intended as SIIFT-S, but these cases alone can hardly account for the great frequency of CTRI.-S compared to

AT

R

MR ATEL

.

Lo al e S sn o e ¢

—

Py

F._

g

o e e aUS SAMM e Sent LAt i ew s o et e SN R A M R RSt s N I et o R YL SO

SPELLING CORRECTION IN USER INTERFACES 17

other control characters. Given RdMail’s command syntax, we would have expected numbers and punctua-
tion marks to appcar most frequently as erroncous keys in the middle of long commands. Surprisingly, 84%
of the numbers and 51% of the punctuation marks, as well as 92% of the control characters other than CTRL-S,
occurred as the first symbols of the commands in which they were detected as erroncous keys. We have no
solid cxplanation for this phenomenon.

4.5. Evaluation

Our mechanism handled 27% of the crroncous keys entered during the experiment. Examination of the
remaining 73% led us to wonder what other mechanisms might permit further corrections while retaining the
typescript-style interface. Most of the other errors seemed specific to the operating sysiem (TOPS-10) or
application (RdMail). Although there does not seem to be a mechanism as general as the spelling corrector
for handling these errors, we believe that developing an “expert” level of friendliness requires paying atten-
tion to this sort of detail.

Since the ambiguous key “D” was almost always disambiguated into “Delete,” adding “D” to the main
command table as a synonym for “Delete™ would remove 3.7% of the errors. Ignoring the character CTRL-S,
or treating it as a space, could climinate 7.2% of the errors. Since we belicve most of these occur because of
attempts to suspend typcout. this seems reasonable. Iguoring 21! control characters could account for a further
5.7%, but further study is needed to determine why these errors occur.

Errors causcd by typcahead might be reduced by not cchoing characters until the application requests
input, as is done on TOPS-20. This might actually increase error rates, since users would not be able to see

their typeahead. Our data indicate that typeahead errors are very infrequent.

A portion of the syntax and vocabulary errors (19.8%) and numeric errors (4.6%) may be due to omitted
keywords, or to the uscr forgetting the context. These crrors may be amenable to the techniques described by
Hayes, Ball, and Reddy [4]. Some syntactic errors might be handied by the recovery techniques used in
compilers, or might be eliminated by modifications to the grammar. For cxample, after the experiment we
made a small modification to the grammar for RdMail message sequences so that a user may omit the
keyword “intersect.”

Finally, there are some errors that do not seem to admit any reasonable automatic recovery. For example,
if a user trics to classify a message as “ICs” (a uscr-defined class for messages regarding integrated circuits),
when the namc of the class is actually “chips”, the best that can be donc is to atlow the user to choose among

the namcs of all of his classifications.

Lk et auti Jul b P A)

Ak

i *‘; YT ST I Y Y

e vi' S ———T T vﬂ? T

L 4 Ak iy LA
fi @

-y

18 SPELLING CORRFECTION IN USER INTERFACES

5. Conclusion
The spelling corrector offered a unique acceptable correction for 13% of the keyword crrors detected
during the experiment. In a further 3% of the cascs it found multiple possible corrections, one of which was

accepted by the user, Allowing the user to correct ambiguitics manuaily fixed a further 11% of the keyword

errors.

The correction algorithm is very simple to implement and costs us about half a second per day for a heavily
uscd interactive system. The corrector was invoked about 50 times a day at an average cost of about 10
milliseconds. RdMail has since been modified to apply the corrector to ambiguities as well as to symbols that
arc not in the symbol table at all. If we project with our datz, the invocation rate increascs to about 60 times
per day. The data clearly support the premise ihat spelling correction is “straightforward™ in user interface
applications. The most complex part of the engincering is sclecting the behavior of the system with the results

of the correction algorithm,

It is interesting that, in response to repeated requests by certain users, the RdMail maintainers have
provided options for suppressing all of the cxtra warnings and confinnations normally produced when some
irreversible action is about to occur. Such users are vulnerable when the corrector changes a typographical
cerror into a valid, irreversible command. The mistakes made by experts appear intuitively to be causcd by
rapid typing and extensive use of abbreviations, while less experienced users tend to use full command names

and make the more commen typographical errors.

We have installed the command module that uses the spelling corrector in the standard SAIL library at
C-MU. As a conscquence, any program that uses the library module acquires the spelling corrcction facility
the next time that it is link-edited. The number of programs that now routinely provide spelling correction

without any action at all on the part of their author or maintainer is growing slowly.

We conjecture that the spelling correction facility and algo?ithm described in this paper would be cqually
beneficial in both operating system environments (intcractive and batch) and compiler applications, where
compuling resources might be conserved by continuing computations that might otherwise be aborted, only
to be repcated later. In particular, we are somewhat surprised that the work described by Morgan in 1970 [6)
has not found wider application today. We foresee no significant technical difficulties in implementing our
algorithm in a varicty of languages. Perhaps our results can convince programmers to provide this simple,

cheap, and effective facility in new and even cxisting uscr interfaces.

T e et A i e esces] o 00 e s Mhissors Boors s mersror o . o~ om_ = o~ -

SPELLING CORRECTION IN USER INTERFACES 19

Acknowledgements
‘This work began in response to a suggestion by Hayes, Ball, and Reddy, that spelling correction of

keywords in programs like RdMail ought to be casy [4).

RdMail was originally written by Philip Karlton at C-MU. It was nursed through adolescence to maturity
by a serics of dedicated people including Mark Sapsford, Craig Fverhart, Philip I.echman, and David Lamb.
We are indebted to our user community at C-MU for allowing us to conduct the experiment and for provid-
ing immediate and high quality fcedback on the improvements made to RdMail. Craig Everhart shared with
us his considerable expertise to overcome some intricacics of our operating systein and gave us valuable
advice on the design of the experiment. Mark Sherman helped us to persuade the Intermetrics Ada system
that our cxamplc implementation of the corrector was indeed good, legal. and operational Ada code. Com-
ments from Bob Chansler, Craig Everhart, Phil Hayes, Anita Jones, Annc Rogers, and Mary Shaw helped us
to improve the clarity of this paper. Finally, we arc indebted to Gorin’s SPELL program which did a fine job

of correcting the typographical errors in our manuscript.
References

1. Fred J. Damerau. "A technique for computer detection and correction of spciling errors.”
Communications of the ACM 7, 3 (March 1964), 171-176.

2. United States Department of Defence. Reference Manual for the Ada Programming Language. 1980.
Government Printing Office Order No. L008-000-00354-8.

3. Ralph E. Gorin. SPELL.: Spelling Check and Correction Program. Online Documentation. See also
Peterson [7].

4. Philip Hayes, J. Eugene Ball, and D. Raj Reddy. "Breaking the Man-Machine Communication Barrier."”
IEEF. Computer 14, 3 (March 1981).

5. David Alex Lamb. RdMail Message Managemeni System: User’s Guide and Reference. Carnegie-Mellon
University Computer Scicnce Department, 1980.

6. Howard L. Morgan. "Spelling Correction in Systems Programs.” Communications of the ACM 13,2
(February 1970), 90-94.

7. James L. Peterson. "Computer Programs for Detecting and Correcting Spelling Errors.” Communications
of the ACM 23, 12 (December 1980), 676-687.

8. John F. Reiser (cd.). SA/L Manual. Stanford University Computer Science Department, 1976.

9. Warren Teitclman. /nterLisp Reference Manual. Xcrox Palo Alto Rescarch Center, 1978.

L o me 4
P

“‘m"r"

P it

R calig
-

LA AARAA A S0 00 an
- .

- PR S A A i e Bt Jeben aven g T

20 SPELLING CORRFCTION IN USER INTERFACES

l. Example'lmplementation of the Spelling Corrector

The following Ada implementation illustrates the functions required for the speiling correction algorithm.
The code was compiled by the Intermetrics Ada Prototype Compiler and exccuted on a DECsystcm-ZO.‘ This
example uses the 1980 version of Ada, since a compiler for 1982 Ada was not available to us at the time of

publication.

-- Example implementation of the Spelling Corrector in DoD Ada.
-- This code is operational. However, to improve the clarity of this example,
-- we have omitted the detailed interactions with the user. We have excluded

-- the routines that interact with the user (User_Accepts, User_Selects) and
-- have commented out their invocation.

package Spalling_Corrector 1s
Not_Correctable: exception; -- Raised if no corrections found.
type Symbol_Table 1is array(integer range <>) of string(1..32);

-- The Correct_Speliling function delivers the index in the table of
-- the corrected symbol or raises the Not_Correctable exception.

function Correct_Spelling(ST: in Symbol_Table;
User_Word: in string;
Assume_Correct: in boolean) return integer:

en¢ Speliing_Corrector;

with text_io; -- Need an I/0 package
use text_io;

package body Spelling_Corrector is

-- The Same_Character function returns true iff the two characters are
-- the same when case-differences are ignored.

function Same_Character(A.B: in character) return boolean is

Folded_A, Folded_8: 1integer; -~ Case folded character positions
Case_Difference: constant integer := character 'P0S('a') - character'POS('A’);
begin

Folded_A := character’'POS(A);
it A 1n 'A°..'1" then
Folded_A := folded_A + Case_Difference; -- Upper to Lower case conversion
oend 1f;
Folded_B := character'POS(B);
if B in 'A°.. ZI' then
fFolded_B := folded_B + Case_Difference; -- Upper to Lower case conversion
ond 1f;
return Folded_A = Folded_B;
end Same_Character;

4Dl;'Csysu:m-zo is a trademark of Digital Equipment Corporation.

T W T W e
. ce T

»

f'va T OTATATe

LB o) e g amn SER Snh Sd

SPELLING CORRECTION IN USER INTERFACES

-- The First_Difference function locates the first character
-- position at which the two parameter strings differ (ignoring case
-- distinctions). Zero is returned if either string is empty.

function First_Difference(A,B: in string) return integer is
Last_Index: integer;

begin .
if A’LENGTH <= B'LENGTH then -~ Find shorter string
Last_Index := A’'LENGTH;
else
Last_Index := B'LENGTH;
end if;
if Last_Index = 0 then -- One string is empty
return 0;
end if;

for i in 1..last_lndex loop
1f not Same_Character(A(i1),B(i)) then
return i;
end if;
end loop:
return Last_Index+1;
end First_Difference;

-~ Function Match_Substring returns true iff the second string (B) is
-=- an initial Substring of the first string (A). A is considered to
-- begin at index First_A and B is considered to begin at index First_8.

function Match_Substring(A: in string: First_A: in natural;
B: 4n string; First_B: in natural) return boolean is

bagin
it First_B > B'LENGTH then
return trua; -- B is empty sub-c=iring
e1sif (First_A > A'LENGTH) or ((B'LAST-First_B) > (A'LAST-First_A)) then
return false: -~ A is empty or B is too long.
end if;

for i in 0..(B'LAST-First_8) loop
if not Same_Character{A(i+First_A),B{i+First_B8)) then
return false;
ond if:
aend loop:

return true:;
end Match_Substring:

21

Dl et At i et Y A et S A sttt Rren dechee Ea 3
. D - Nt < .

p- 2 SPELLING CORRECTION IN USEFR INTERFACES

-- Function Possible_Correction returns true iff one of the four tests
-- applied to the user word yields the dictionary word.

function Possible_Correction({Dictionary_Word, User_Word: im string) return boolean f{s
Index: integer;
begin
-~ Heuristic: Can't match if symbol is more than one character longer than dictionary word.

it (User_Word'LENGTH - 1) > Dictionary_Word'LENGTH then
return false;
end 17;

-- Step 1: Find the index of the first different characters

IV MM ALSA SRR I S g
T A~

Index := First_Difference{Dictionary_Word,User_Word);

-- Heuristic: Assume wrong letter if difference at end of word

——YTY

if (Index = User_Word'LENGTH) and (User_Werd'LENGTH > 2) then
retura true;

—y
-l

& end if;
s
2 -- Step 2: Check far transposed characters & tail match
) 1f ((Dictionary_Word'LAST > Index) and (User_Woro'LAST > Index)) and then
k’ {Same_Character(Dictionary_Word(Index),User_Word(Index+1)) and
¢ Same_Character(Dictionary_Word(Index+1),User_Word(Index)) and

& Match_Substring(Dictionary_Word.(Index+2),User Word.(Index+2))) then
X raturn true; -- Transposition.
A end if;
- -~ Step 3: Apply remaining tail Substring matches

if Match_Substring(Dictionary_Word,(Index+l).User_Word,Index) Lhen

return true; -- Missing letter.
oend if;

-- Policy: Don't try other tests on 2-character strings.

if User_Word'LENGTH = 2 then
return false:

end if;

if Match_Substring(Dictionary_Word,Index,User_Word,(Index+1)) then
return true; -- Extra letter.

end if;

if Match_Substring(Dictionary_Word,(Index+1),User_Word,(Index+1)) then
return true; -- Wrong letter.

; end if;

return false:
end Possible_Correction;

Ml B ke e § i - .

La e o (A R A ARl

RIS Bar) Sl chd T

T

SPELLING CORRECTION IN USER INTERFACES 23

function Correct_Spelling(ST: tn Symbol_Table:
User_Word: in string:
Assume_Correct: in boolean) return integer is
Match_Count, Last_Match: integer := 0;
Match_Flag: array (ST'range) of boolean:
Test_Word: string(l..User_Word'LENGTH) := User_Word;:
begin
for i in ST'range loop
Match_Flag(i) := Possible_Correction(ST(i),Test_Word);
if Match_flag(i) thea
Match_Count := Match_Count + 1:
Last_Match := i;
end 1f;
end loop:

1f Match_Count = 1 then
if Assume_Correct then
Put_Line("% I assume you mean '" & ST(Last _Match) & "' instead of " &Test_Word& "'.");
return Last_Match;
-- e1sif User_Accepts(ST(Last_Match),Test_Word) then
- -- Ask Do you mean 'x’' instead of 'y'? question.
- return Last_Match;
end 1f:
el1sif Match_Count > 1 then
Put_Line("% '" & Test_Word & "' could be any one of:");
-- return User_Selects(ST,Test_Word,Match_Flags);
end if;

raise Not_Correctable;
end Correct_Spelling;
end Spelling_Corrector;

