
AD-A±25 288 SPELLING CORRECTION IN USER INTERFACES(U) 1/1
CARNEGIE-MELLON UNIY PITTSBURGH PR DEPT OF COMPUTER
SCIENCE I DURHAM ET AL. 29 DEC 82 CMU-CS-82-151

UNCLASSIFIED NOBB14-76-C-6379 F/G 9/4 NL

mmmnmmmmmmmEIEIi

'-44

1 1.1

.7.

1.2 __11 . 11111206.

MIRCP RESUTO TES CHAR

NATINAL UREA OF IANDRDS-963-

CKU-CS-8;7151

tpelin4.0orre
4.4v

in Ust rfao
* f;

Ivor Durham, David A. Lamb, and James 6. Sax.

J1

.

20 Dcccmbcr 1982

* DEPARTMENT

I 'of
I COMPUTER SCIENCE

cIc

4

Caregi-Mellon University
~ 3 03 02 022

7 .7K . - -

I, F. C i DC" _,TAit&", I"' -.- '- . "-:- ' .- - '.

'- % , - , .',, :.ft . . - ,. , , ,. .: ,'- - " -,; C A, A"L- * " - -. . .'"

,..~~J 4" '11'.140 $I)I1) TYtPE or REPlOR~T PLA-CC C.LtD

! Interim

SPELLING CORR -CTION IN USER INTERFACS
6. PL C~tmlkw§ COG. RIPORT AiLi.

1. AuTimOpR() ,.
COTuT*&C 0A GRANT NIw tls)

Ivor Durham, David A. Lamb, James b. Saxe N00014-76-C-0370

.a-.s "2AON NAME ANDO ACSS MUAM Lt.T. PROACT. TASK

Carnegie-Mellon University

Co puter Science Department'
Pittsburgh, PA. 15213

lI. COftptAoLLING Ol$F#CC N E AND *D-RLSS 11L REPORT DATIL

Oft'ice of Naval Researcn :.ermber 20. 1R8 _

-
"

-IS. $&N DER I ow PAGESr

Arlington-, VA 22217 _6

ME"I4,1R*IN AG£51t $(a Ad. o S f(Ied lOma 5w. CwonlreUid OithceJ IL SECURITY CLASS. IL i repolJ

k~~w UNIASI.E

Z' EL OSSIPICATOON' ZZ w -: :1%
SCHEDULE

IS.~ -iI 1Z.-12 ST -TE *,N (mth A Rop"s

S A.,proved for PuDlic release; D1stribution unlimited

17* 7 :0 S M N
1

e -- J.>E h .. C. of d .! - P.; r?)

!-,pprcved ft,r +, ic t !,2'. ,; ,'+- . r" r ..on .31,'Limitea

I& S. 7L rLftA -1 E'IS'-

9. ..Ore... . . - ..

, -D ',, .-- -, 3 "- - -,* +. s

• | | , • * . • . .

JCMU-CS-82-151

Spelling Correction in User Interfaces

Ivor Durham, David A. Lamb, and James B. Saxe

Computer Science Department,;" Accession For
Carnegie-Mellon University, --NTes Trc

Pittsburgh, Pennsylvania. DTIC TRAB

20 December 1982 Justifln,-....

fIr-this paper we demonsuae the feasibility of pioviding a spciling corrector in most interactive

user interfaces. The issues in using spelling/ 6rrection in a user interface are examined and a
simple correction algorithm is described. Wd describe the results.of an experiment in which the
corrector is incorporated into, a heavily used interactive program. More than one quarter of the
errors made by users during Ow' experiment wc-re corrected using our simple mechanisms. From
this we have concluded that there are considerable benefits and few obstacles to providing a
spelling corrector in almost any interactie user interface.

Key words and phrases: spelling, spelling correction, typographical errors, user interfaces, inter-
active programs.

CR Categories: 4.0.4.9.

Copyright @ 1982 1. Durham, D.A. Lamb, and J.B. Saxe

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597. monitored by the Air Force Avionics Laboratory under Contract F33615-81-K-1539, and in
part by the Office of Naval Research under Contract N00014-76-C-0370. J.B. Saxe was supported in part by
an IBM Fellowship.

The views and conclusions contained in this document are Those of the authors and should not be inter-
pred as representing the official policies, either expressed or implied, of" the Defense Advanced Research
Projects Agency or the US Government.

SPELLING CORREtIION IN USER INTERFACES

Table of Contents
1. Introduction 1
2. Design Issues 2

2.1. Algorithm Design Issues 2
2.2. User Interaction Issues 3

3. The Correction Algorithm 6
3.1. Implementation of the Corrector 8
3.2. Performance 8

4. The Experiment 10
4.1. The RdMail System 10
4.2. The Data Collected 11
4.3. Usage Statistics 12
4.4. Results 13
4.5. Evaluation 17

5. Conclusion 18
Acknowledgements 19
References 19
I. Example Implementation of the Spelling Corrector 20

SPF.LLNC; CORRECTJON IN USER INIhR-ACES

List of Figures
Figure 2-1: Keyword matching patterns 2
Figure 3-1: Mcasurements of the Corrector 9
Figure 4-1: Key words in a session 12
Figure 4-2: Keywords in Error 13
Figure 4-3: Taxonomy of Errors 14

I'

- SPELLING CORPECIION IN USER KNrtI-RI:ACIS

1. Introduction
'c automatic detection and correction of spelling errors in prose has received a considerable amount of

attention (an annotated bibliography is given by Peterson 7D. However, users spend a considerable amount

of time typing commands to the user interfaces of programs, and making similar typographical errors to those

made while entering prose. Although designing and implementing a well human-engincered and tolerant

user interface requires considerable effort, it is possible that some basic techniques. such as correcting the

spelling of keywords, can be applied at low cost. In discussing desirable attributes of good user interfaces,

Hayes. Ball, and Reddy [41 assert that spelling correction in typical interactive programs is straightforward,

since usually an error is made in a context where only a limited number of keywords (fewer than 100) are

applicable. If spelling correction is really "straightforward" then there is no reason why almost all user

interfaces should not provide such a facility, even to the extent of retrofitting a corrector into existing

programs. Morgan [61 describes a spelling corrector that was implemented in both an operating system and a

compiler, for which the statement of purpose was:

The goal of the proposed spelling correction techniques is. roughly stated, to achieve a
proficiency comparable to that of a quick scan of the source program by an experienced program-
mer who has no knowledge of the program, and who makes no attempt to understand its purpose.

There seem to be very few systems that take advantage of such a facility. The most well known such facility is

DWIM (Do What I Mean) in Interlisp 191, whose statement of purpose is almost the same as Morgan's.

The purpose of our investigation was to learn what issues distinguish spelling correction in user interface

applications from the more general problem of manuscript spelling correction and to learn how much of a

contribution such a facility could make. We also wanted to get a realistic picture of the errors users really

make and to supplement the data presented by Damerau in 1964 [1]. To this end we considered the desirable

characteristics for a spelling corrector for an interactive program, and developed a variation on Damerau's

algorithm meeting these requirements. We incorporated the spelling corrector into the command table

module used by the RdMail electronic mail system [51, which is in heavy daily use by a community of several

hundred researchers. RdMail has a conventional typescript-oriented command language, where most com-

mands consist of a verb followed by a sequence of arguments. Most user terminals are low-bandwidth "glass

teletypes," which can display 24 lines of 80 characters. To learn about the issues and to find out what kinds of

mistakes are made by users, we collected data on the accuracy of the keywords entered by users and the ability

of the program to offer corrections when keywords were not recognized immediately. We collected general

information about the use of the command interface and recorded specific information about the keywords

that were not recognized and what corrections were made.

Throughout the paper we will illustrate issues with examples of a user interacting with RdMail. User

type-in is underlined to distinguish it from RdMail output. The symbol "'R" represents the carriage return

key. Italics are our comments and explanations. not part of the typescripts.

2 SPFE.LING CORRLC1iON IN USR IN"RFAC'S

2. Design Issues
We were prompted to look for a new correction algorithm because of several differences between correct-

ing spelling in general manuscripts and correcting spelling in user interface applications. Design considera-

dions for the spelling corrector ce into two categories: those affecting the design of the algorithm, and those

affecting its use in an interactive system.

2.1. Algorithm Design Issues

We chose the same set of assumptions about typographical errors as Gorin did for the PDP-10 SPELL

program [3]. We assume that there is exactly one error in the symbol to be corrected and that the error arises

from one of the four causes that account for over 80% of spelling errors [1):

* Transposition of two adjacent letters.
9 One letter wrong.
* One extra letter.
* One letter missing.

These errors are illustrated in Figure 2-1.

Dictionary E n~q d Dictionaty Alni e r a

User l _ d User A mn. Pcl

(a) Transposition (b) Wrong Letter

Dictionary a n a Dictionary C o r I_ c t

User j 1 ra Use, e c

(c) Extra Letter (d) Missing Letter in Abbreviation

Figure 2-1: Keyword matching patterns

To minimize the difficulty of modifying programs to use the new corrector, we decided to transparently

replace a library keyword look-up routine with a version that did spelling correction. The original symbol

table module accepts as parameters an unsorted vector of strings and a single probe string to match against the
elements of the vector. The look-tip algorithm allows the probe to be a unique initial substrimg of a table

entry and reports if the probe is ambiguous.

... . .

SPELLING CORRIKM'ION iN LSER INTERFACES 3

The specification of the original library module illustrates three differences between spelling correction in

manuscripts and spelling correction in user interfaces:

* It is common to allow abbreviations in a user interface, to minimize typing.

• The probe being looked up in a table may match several entries.

* Affix (suffix and prefix) analysis is not necessary since the legal symbols come from a very limited
p vocabulary.

2.2. User Interaction Issues

A number of issues arise when a user interface is supplemented with a spelling corrector. These issues

concern the interactions with the user when spelling correction is attempted and can interfere with the user's

ability to work with the interface. These issues are discussed below.

If the user's symbol contains only one character, the "extra letter" test would omit this character from the

dictionary search mid would therefore match all the words in the dictionary (or none of them, depending on

the semantics of an empty string), which does not help the user. Similarly, the "wrong letter" test would

match any word beginning with any other character in the symbol alphabet. We chose to report that no

match had been found in this case.

If the user's symbol contains only two characters, the various tests for diagnosing errors may still produce a

substantial number of possible matches. The "transposition" test and "missing letter" test are reasonable and

behave the same for two character symbols as for longer symbols. However, the "extra letter" and "wrong

letter" tests can produce a large number of possible matches. Suppose the user's symbol is "xy" then the

'extra letter" test would match all symbols beginning with either "x" or with "y". The "wrong letter" test

would match all words beginning with "x?" and "?y", where "?" matches any character. The designer must

decide whether the size of the set of possible matches in these cases is sufficiently small to permit the user to

choose one of them or whether to behave as iaough no match had been found. We initially chose to omit

both the "extra letter" and "wrong letter" tests for two character symbols. After a few months of operation we

included the "wrong letter" test and received many complaints rhat the spelling corrector offered too many

choices, most of which were quite unexpected; this supports the original decision to omit the test.

Suppose that the correction algorithm finds exactly one matching symbol. Is it safe to assume that the

correction is accurate? In general, the answer is no, because the user may have made an error (or multiple

errors) not detected by the four tests. An example of this is to omit the space between two keywords. The

designer's decision must be based on the consequences of using the symbol in error. The rollowing example is

quite harmless:

4 SPELLING CORRECTION IN USER INTFRFACES

i:" <-hieo c

% I assume you mean 'Help' instead of 'hep'.
Help text is output here.

* However, the consequences of assuming the accuracy of a particular correction may be much more serious, as

we demonstrate in the following contrived example:

<-overwiteca
% I assume you mean 'Overwrite' instead of 'overwite'.
Program proceeds to expunge deleted message.%

SThe unfortunate user did not mean "Overwrite", he actually meant

<-dover wit c,
Program sendsfile "WITE" to the Dover xerographic printer.

In RdMail this problem is avoided by requiring confirmation before some irreversible action is taken, even if

the user did not make a spelling error; these mechanisms are entirely outside the spelling corrector.

Suppose next that the engineering decision is to require confirmation of all spelling corrections. In a

human-engincered systcm, the actions taken by the system should require little effort by the user. For

example in oflring particular default answers to questions, the common response to accept the default is

simply to hit one key, carriage return:

<-List Allc
onto file? [LPT:MAIL]: cR
Program lists all messages onto the line printer.

In the previous example we see that the user can still suffer from prior training to hit "ca" in response to

defaults offered by the system:

<-overwite C
% Do you mean 'Overwrite' instead of 'overwite'? [Yes]:
Program proceeds to expunge deleted messages,

6<_

Clearly the default response when the user typed "hlep" instead of "Help" could safely have been "Yes",
while in the "Overwrite" example it would have been dangerous. It is important that the default responses for

spelling correction be consistent to prevent serious mistakes. Although it might be more frustrating for the

user to have to say "yea" to accept "Help" for "hlep", it is certainly better than losing information in the

"Overwrite" example. Hence, the safe version of the previous example is:

SPELLING CORRECHION IN USER INTERFACES S

<-overwite .
% Do you mean 'Overwrite' Instead of 'overwite'? [No]: CR
No damage this time
<-dover WitecR
Sysiem prins file "WITE'"

A reasonable compromise may be to assume the accuracy of corrections for which the consequences are

reversible (flagging such dictionary entries, for example) and request confirmation of those for which the

consequences are not reversible. A simple variant of this last option is used in the current version of RdMail:

Confirmation is required for corrections made in some dictionaries but not others. For example, main

command corrections are assumed to be accurate since all actions are further confirmed or are reversible.

However. confirmation is required when an error is made in naming a program for RdMail to run as a

sub-job. Assuming the wrong program name could have irreversible consequences, such as deleting files. A

RdMail user may set an option to always request confirmation of spelling corrections.

When the correction algorithm finds more than one matching symbol in the symbol table, the designer

must decide whether or not the user should be given the opportunity to select the correct symbol from the

smaller set of matching symbols. He must also decide whether to invest the effort in further reducing die size

of the set of matching symbols by using heuristic factors, such as the relative positions of characters on the

keyboard. We included no such heuristics and simply offered the user all matching symbols. The data

collected during our experiment showed that between two and ten alternative corrections were offered, with

the majority of cases producing between two and four alternatives.
<-e cR
% 'ecx' could be any one of the following:
Echo, Exit
Which one do you mean? [None of the above]: 2

An alternative strategy for handling common ambiguities is to provide preferred disambiguations. For

example, in RdMail "A" is presumed to mean "Answer" instead of "Accept," "Alias," or "Allocate." This is

handled by a mechanism outside the spelling corrector: the single character command "A" is added to the

command table as a synonym for "Answer."

Finally, what should be done if there is a problem with the symbol supplied by the user in response to the

question, "Which one do you mean?" Some of our users suggested that spelling correction should be applied

recursively, but others wanted to be able to type in the name of the command they had meant initially. For

example when a user typed "de" instead of d" for "F . the program offered as alternatives only those

commands for which "de" is an ambiguous at. viation; the user would probably prefer to respond with

6 SPELLING CORRI:L ON IN USI-R IN'ERFIACLs

"Edit" even though the symbol is not in the set offered by the program. Clearly a combination of the two

* could be applied. For example, apply spelling correction first, but if that still doesn't produce an un-

ambiguous symbol, look for the new symbol in the original symbol table rather than in the set of possible

corrections. On the other hand this would require the user to maintain a complex model of what the corrector

is doing. For our experiment. we chose the simple expedient of forcing the user to get the symbol right rather

than making any attempt to correct the correction. The program simply repeats the question:

<-de 2 0 1CR
f% 'de' could be any one of the following:
DeAllocate, Debug, DeClassify, Delete
Which one do you mean? [None of the above]: diecK
% 'dle' is not an option.
Which one do you mean? [None of the above]: delcR
Program deletes message 201.

The action taken at a user interface when all attempts fail to produce a unique symbol is not specific to

those interfaces that use spelling correction. However, a couple of simple actions should be mentioned. First,

the command containing the erroneous symbol may be aborted. Having tried our best to make sense of the

command, we must ultimately give up since it will be much easier for the user to express himself more

* accurately. This approach was used in RdMail.

<-Aaaarrgahh c!
? No such command as Aaaarrgghh. Type ? for help.

A slightly more sophisticated approach is to ask the user to correct the symbol and then attempt to continue

with the comma-' (Notice that two errors are detected in the command):

<-haeders from Robertson intersect week "May 16''ra

% I assume you mean 'Headers' instead of 'haeders'.
? 'week' is not a Message Sequence keyword.
Message Sequence keyword [Abort command]: since cR
Program lists headers oftnessages from Robertson since May 16.

This mechanism was added to RdMail after our experiment.

3. The Correction Algorithm
The comparison of two symbols (the user's and a dictionary symbol) is done in three parts, as illustrated by

* •the three divisions of each example in Figure 2-1:

1. Find the common initial sub-string (i.e. up to the first difference). Case distinctions in letters may
be ignored: the algorithm must find all possible matches for the symbol not found by the initial
search.

2. Examine the next pair of letters fbr a transposition error.

SPELLING CORRECTION IN USE.R IN' I"RFACES 7

3. Match the tail substrings. If the previous step suggested that two characters had been transposed,
omit two characters from both symbols and match the rcmaining substrings. For the "wrong
letter" test omit one character from each symbol and match the tail sub-strings. For the "extra
lctter" ("missing letter") test, omit one letter from the user's (dictionary) symbol and match the
remaining tail substrings.

K The matching steps are repeated for each symbol in the dictionary. Each dictionary symbol that is matched

is added to a set of possible corrections for the user's symbol. If there is only one member in the set when all

of the symbols in the dictionary have been examined, that symbol may be offered as the correction. If there

are several symbols in the set, the user may be asked to select one.

We originally tried the SPELL program's strategy of searching the symbol table for each string that could

be transformed into the user's symbol by one of the four kinds of errors. This was far too slow with the

original library look-up algorithm.

Using only the lengths of the user's symbol and the dictionary symbol, two optimizations can be made to

avoid unnecessary string comparisons:

1. If the length of the user's symbol exceeds the length of the dictionary symbol by more than one
charactcr., no match is possible with the above algorithm, so the "no match" result can be returned
immediately. ('h11is assumes that the string length is readily available.)

2. If the first difference found is in the last character of the user's symbol, the "extra letter" test
would discard the character and therefore convert the user's symbol into a matching initial sub-
string of the dictionary symbol.

This algorithm requires no intermediate string construction. The only additional storage required is for the

set of matched dictionary entries, which can be represented as a vector of booleans with one element per

dictionary element. At the end of the algorithm the set of matching symbols is identified by all true elements

in the set vector. The algorithm also has the advantage of being trivial to implement. The most expensive

components are the low-level functions that locate the first difference and match substrings. In our ex-

perimental implementation both of these functions were written in assembly code using straightforward

character-by-character comparisons.

An example implementation of this algorithm in Ada1 is given in Appendix I. This implementation

exploits Ada's facility for dynamically dimensioned arrays. In languages which lack this facility, other data

structures, such as linked lists or large fixed-size arrays, can be used instead.

1Ada [21 is a rcgistcrcd trademark of the U.S. Department of Defensc (OUSDRE-AJPO).

8 SPI.I.ING CORREC 1ON IN USER INTERFACES

3.1. Implementation of the Corrector

'rhe main spelling correction algorithm was implemented in SAIL [8]. an Algol-based language that

provides strings as a primitive data-type. There is an extensive library of SAIL functions at C-MU that

includes a command-table abstraction and a more primitive symbol-table abstraction. It is in the command

table module that the spelling corrector was applied depending on the result of the table search by the

symbol-table function. "lhe corrector was applied only when the keyword was not found in the symbol table.

To handle multiple matching symbols, the corrector builds a table (vector) of string pointers and calls a

* subroutine which asks the user to select the correct keyword. The subroutine forces the uscr to be accurate in

selecting one keyword from the set offered. In particular, no attempt is made to correct the selected keyword.

I
3.2. Performance

The following informal analysis shows that the spelling correction algorithm is quite adequate for our

requirements even though it clearly is not optimal for the general correction application in prose. What it
'I lacks in performance is returned in simplicity that facilitates its introduction in a wide variety of applications.

To correct one symbol given a dictionary of N symbols, our algorithm perfornis N initial substring matches

*and at most 4N tail substring matches. (The transposition tail match is performed only if the "transposition"

test succeeds.) At worst, this is equivalent to 4N equality string matches. plus a small constant overhead per

dictionary element.

To get a more concrete measure of the cost of spelling correction, we performed some measurements of the

algorithm's running time. Measurements were taken on a lightly loaded DECsystem-102 KL- 10 processor

(the same one used in the RdMail experiment described in Section 4). In each case the data were obtained by

running 5000 tests in a loop, subtracting the original value of the system clock from the final value, subtract-

ing loop overhead and dividing by 5000. Look-ups were done on a table of 66 entries, a subset of the main

*I command table from the RdMail program. The original command table had 77 entries; we eliminated five

punctuation character commands and six commands where transposing the first two letters results in an

ambiguity. Measurements were taken of

a. The time to look up a correct entry with the original library module (without spelling correction)
and with the new module (with spelling correction).

b. The time taken to decide a probe is not in the table with each of the two modules. Five sources of
failing keys were chosen:

2DECsystcm- 10 is a trademark of Digital Equipment Corporation.

6

.7

SPELLING CORRI -C'ION IN USI"R INTEIRFACES 9

1. Character strings of the form "aaaaa". "bbbbb", and so on.
2. Failing keywords collected during the experiment described in Section 4. All keys longer

than two characters were included.
3. The numeric keys from the experiment.
4. The alphabetic keys fron the experiment.
5. Strings of the form "KEYxxx", whcrc KEY is a command from the main table.

These times do not include the time taken to print an error message, printing times are reported
separately. We also report the difference between the new and the old look-up times, which
represents tie time taken by the spelling corrector, and this difference divided by the table size,
which roughly represents the cost per table entry. The last number varies because of the optimiza-
ions mentioned in Section 3, which can reject some symbols quickly.

c. The time taken to handle a transposition of the first two characters of a command. A command
was chosen and its first two letters were transposed before calling the routine. For the original
module this results in a failing look-up: the new module corrects this error.

d. The time taken to print a message of the form "I assume you mean X instead of Y."

e. The time taken to print a message of the form "X is not a command."

The results are illustrated in Figure 3-1.

Time (milliseconds)
Test Original New Diffcrence Per Table

look-up look-up Entry

Succeeding 1.781 1.797
Failing

"aaaaa", etc. 3.100 24.728 21.628 .328
real data 3.123 22.060 18.937 ..287
real numeric 3.162 25.613 22.451 .340
real alphabetic 3.122 21.943 18.821 .285
KEYxxx 2.990 12.385 9.395 .142

Transposition
failing 3.221
correcting error ------ 28.384

Print "I assume.." message 5.749
Print "... not a command" message 4.594

Figure 3-1: Measurements of the Corrector

We conclude that the algorithm described above is a good choice for those applications, such as user

interfaces, in which the size of he dictionary is quite small and abbreviations must be handled. For the

library symbol table module used in the experiment we cannot do much better since the specification for the

lookup routine does not require that the table be sorted.

* 10 S'I.iTNG COIRF(IION IN USFR INTERFACES

4. The Experiment
The principal purpose of the informal experiment described in this section was to learn how useful a

spelling corrector might be in an interactive user interface. In asking about the errors made by users, our

attention is confincd to finding symbols in the various symbol tables used by the program: we explicitly

exclude semantic and syntactic errors in composing commands except as they are detected by failing to find a

symbol in a particular table. The efficacy of the correction (icility depends on the variety of errors users make

and their respective frequencies. The rate of errors made determines the overall cost of (he spelling correction
facility. We need to determine what proportion of those errors can be attributed to typographical errors that

may be recovered by the corrector. Learning what other errors are made may suggest other ways to improve

the tolerance of the user interface to user errors.I
The RdMail Message Management System [51 was used for the experiment. We describe the program and

the information we recorded from it next. Then we present the results of the experiment and offer a brief

evaluation of the effectiveness of our mechanisms in the light of those results.

4.1. The RdMail System

RdMail is an interactive electronic-messa<e management system that provides facilities for the composition

and transmission of messages among users of a network of computers. Messages received can be classified,

answered, and filed conveniently. RdMail commands are sequences of keywords and parameters, where the

parameters are usually numbers or quoted strings. Users may operate on sets of messages by specifying the

particular messages by number, attribute (such asdate of arrival, name of originator, or subject), or user-

defined classification. For example,

<-headers meetngs intersect (since ",Jan 1") intersect 50:175
% Do you mean 'Meetings' instead of 'meetngs'? [No]: yc'

produces a brief identification of all messages between 50 and 175 that arrived since January 1 and were

classified as "Meetings". Since the user defines the names of classifications, such as "Meetings", the set of

symbols in the table used in the parsing of message set specifications is dynamic.

The user leaves RdMail either temporarily to use an editor to alter the composition of a message, or

permanently to return to the system's executive program. For the purposes of the experiment, a session

encompasses only those commands that are given before the user leaves RdMail for any reason. Hence one

user "session" in which a message arrives, an answer is composed then edited before being mailed, and finally

new mail is sent to other people would be considered two sessions in the collected data: the first before

entering the editor; the second after returning from the editor and before leaving the program permanently.

For the duration of the experiment, RdMail forced users to confirm all corrections suggested by the

program. This was the only alteration in the RdMail user interface specifically for this experiment.

6

i

SPELLING CORRECTION IN USER INTEIRFACES 11

4.2. The Data Collected

Because of the sensitive position of RdMail in communicating between users we recorded no data that

could be traced directly to particular users. This anonymity was also important to reduce the probability that

users would become self-conscious about making typographical errors and take more care than usual. We felt

morally obliged to warn people that we were performing an expcrimcnt, and to give them the option of

running a different program to avoid participating in the experiment. Warning users that the experiment was

to be conducted encouraged a few to entertain us with some colorful, if illegal, keywords. In some cases it was

apparent that users were probing the limits of RdMail's correction facility. However, we cannot be sure of

any particular user's intention and have therefore included the apparently intentional errors in our results.

The data recorded for each RdMail session were:

* The number of commands given to RdMail (both from the keyboard and from pre-existing files).
* The number of keywords for which RdMail searched symbol tables and the number of those

keywords that were not found or were ambiguous.

For each symbol that was not uniquely matched in a particular symbol table, a detailed record was made

including:

* 'The symbol the user provided.
* The correct symbol, if any, as confirmed by the user.
* The number of possible corrections for the symbol identified by the spelling corrector.
* The identity of tie symbol table.

' The approximate execution time taken to identify the corrections that could be made (rounded to
the nearest millisecond).

Gathering additional data, such as the entire command line containing each unrecognized symbol, would

have aided us in determining the causes of uncorrected errors. We decided not to do this on account of the

need to respect privacy.

<-headers from Bovik intersect subetct "pay raise"c

We shouldn 't learn that Bovik is up for a pa) raise just because someone misspelled "subject'

The reason we chose RdMail as our experimental vehicle in spite of this inconvenience is that, with the

possible exception of various operating systems, RdMail has by far the most heavily used "command line"

style interface in our environment. The othcr heavily used programs are either compilers, which are not

interactive, or text editors, which use mostly single-character commands.

'712 SPII.IING CORR E7I ION IN USER INTERFACE'S

4.3. Usage Statistics

The experiment ran for 41 days during which time a total of 21.361 RdMail sessions wcrc recorded.

RdMail processed a total of 145,972 commands during the experiment-, 140,038 from terminals and 5,934

from command rles. Data from batch jobs wcrc discarded because we wcrc interested only in human

typographical errors, not general RdMail use. RdMail handled a total of' 455,811 keywords during the

*experiment, averaging three per command. The distribution of numbers of keywords in sessions is shown in

Figure 4-1.

~100 Minimum 0
bi Maxinmum 563

TIotal keys 455811
Average Keys/Session 19.5

SING Mode Keys/Session 14
Standard Deviation 17.87

* fI1f (Ove 192)

.iiI1I~i~II~ ~till ' ll

JI I n nj

0 20 40 60 80 100 120 140 160 180 200
Keys

Figure 4-1: Keywords in a session

The running time for identifying the set of possible corrections varied considerably, ranging up to 31

milliseconds with an average of 9.5ms, but with a relatively large stindard deviation, a = 9.5ms3 The total

time used by the spelling corrector over the 41 days of the experimcnt was 19.2 seconds, an average of 468

milliseconds per day.

1The average time spent in the spelling corrector for the subset of the data used as "real kc~s- in Section 3.2 was 19.7ms. This agrees
well with the spelling corrector cost 119. Ims) shown in I-igurc 3-1. Many erroneous keys werc processed more quickly because they were
shortcr than three characters or because they were looked up in small tables.

SPELLING CORRE'ION IN USER INTI-RFACFS 13

4.4. Results

During the 41 days of our experiment, RdMail encountered 2527 erroneous-i.e., not uniquely

identifiable-kcys (0.554% of all symbols entered). Due to an oversight in the data-collection routines, we

cannot determine how many keys came from command files. Four percent of commands came from com-

mand files. Even if the number of keywords per file command were an order of magnitude greater than the

average number of keywords for all commands, the error rate for manually entered keys would be only

0.934%, which is still very small. Actual error rates may be higher, since we cannot tell how often a user

noticed an error and corrected it manually (by backspacing over the error or deleting the input line, and

re-typing) before hitting carriage return to enter the command. "Ihe erroneous keywords were recorded in

two different classes: keywords not found in the symbol table and keywords that were ambiguous. The

(distribution of these errors is shown in Figure 4-2.

Unmatched Keys Number of Ambiguous Keys Number of
Per Session Sessions Per Session Sessions

0 21800 0 22905
1 1293 1 423
2 181 2 28
3 44 3 3
4 27 4 2
5 7
6 2 Total unmlatched keys 2031
7 3 Total ambiguous keys 496
8 0
9 2
10 1
40 1

Figure 4-2: Keywords in Error

By examining the data collected for each erroneous key, we arrived at the taxonomy of errors shown in

Figure 4-3. ihe percentage figure in parentheses after each class of error gives the size of that class in relation

to the entire class of 2527 recorded instances of erroneous keys.

Corrected errors (27%)-Trunsposition error correcte(L Missing letter restored. Wrong letter correctet and

Extra letter removed (16175): Ambiguity resolved (//%): The error recovery mechanism offered potential

corrections (24%) or disambiguations (20%) for 44% of all erroneous keys. However, users did not always

accept corrections and disambiguations when they where offered. Only 56% of the ambiguities detected were

resolved by the useraccepting one of the alternatives offered, and users accepted spelling corrections in only

66% of the cases where one or more potential corrections were offered. The errors thus resolved accounted

for 27% of all erroneous keys. For 13% of all erroneous kcys, the corrector offered a single correction that was

accepted by the user.

14 SPELLING CORREC'rON IN USER IN IERFACES

SAll erroneous keys (100%)
o Correctcd/disambiguatcd keys (27%)

, Ambiguity resolved (11%)
* Typographical (16%)

o Transposition error corrected (2.7%)
c Missing lettcr restored (4.8%)
o Wrong letter corrected (4.5%)
o Extra letter removed (4.0%)

o Uncorrected keys (73%)
* Alphabetic (46.6%)

o One character (10.4%)
o Two character (9.9%)
o Three or more characters (26.3%)

* Typographical? (2.9%)
o Missing space?
o Missing carriage return?
o Missing slash?
o Control key?
o Typeahead?
o Multiple typo?
o Miscellaneous typo?

* Non-typographical? (23.4%)
o Intentional error? (3.2%)
o Good correction or disambiguation rejected? (0.4%)
o Syntax or vocabulary error? (19.8%)

* Non-alphabetic (26.4%)
o Control character (12.9%)
o Number (4.6%)
o Punctuation (8.9%)

Figure 4-3: Taxonomy of Errors

Speculative classifications are marked with '"?".

In some cases, accurate disambiguations or corrections may have been rejected accidentally. We are unable

to say how often this happened because the privacy constraints on our experiment prevented us from record-

ing sufficient information to determine which rejected disambiguations and corrections were in fact accurate.

Errors with two or more explanations were assigned to the first of the above categories into which they fit.

For example, if the erroneous key "die" was corrected to "Deleted", we accounted for the error as the

transposition of'T' and "e", rather than as the omission of an "e" or the inclusion of a spurious "I".

Uncorrected alphabetic keys (73%): Of the 1845 uncorrected erroneous keys, 1179 (46.7% of all erroneous

keys) were "alphabetic'"-that is, consisted of a letter followed by zero or more letters or digits. Of these, 264

(10.4% of all erroneous keys) were single letters, 249 (9.9%) were only two characters long, and 666 (26.4%)

were three or more chhractcrs long. We manually classified the 666 "multicharacter" (>2-character) uncor-

rected alphabetic keys. Since we had to rely on educated guesswork for this classification, it is possible that

e

SPE.LLING CORRI:CTION IN USE.R IN-E.RFACFS IS

we incorrectly classified some of the keys. We have indicated this possibility by placing question marks by the

names of the manually-generated subclasses.

Typographical errors (2.9%)-Aissing space. Missing carriage return. Alissing slash. Control key,

Typeahead Multiple typo, Miscellaneous lypo: We attributed 74 of the 666 erroneous multi-character al-

phabetic keys (2.9% of all erroneous keys) to typographical errors of sorts not corrected by our algorithm.

Perhaps the most obvious sort of error in this category is the omission of a space between two keywords (e.g.,

typing "numnew" instead of "num new" to ask for the message numbers of all new mcssagcs, or "hdel"

instead of "h del" to ask for the headers of all deleted messages). A similar kind of error, but one whose

existence we might not have guessed without seeing some examples, is the missing carriage return. An

example is the key "exicbb", almost surely typed by a user who intended to type an "Exit" command to leave

RdMail and then type "BW' to the operating system to read an electronic bulletin board. In one case we

diagnosed an erroneous key as resulting from a missing "/". On our system, the control character CrRL-S is

used to suspend output to the terminal, an action that is useful to prevent long messages from scrolling off the

screen faster than the user can read: typing a CrRL-Q causes output to resume. If the CTRL key on a terminal

is broken, or if the user doesn't have his finger on it-some of our terminals have keyboards with REPEIAT in

the same position where others have CTRL-thc result may be an erroneous key such as "ssssty'" (instead of
"ty" to type a message). Another feature of our system is that terminals run in full duplex mode, allowing the

user to enter additional commands while waiting for the machine to respond to earlier commands. Since such

"typeahead" may not be echoed immediately or may be echoed in the middle of a lot of output, it is possible

for a user to forget how f ar ahead he has typed. An example of an erroneous key that is probably due to this

phenomenon is "typetype". Presumably the user keyed in the command "Type" while waiting for the

previous command to finish, then forgot that he had done so and keyed it in again. We attributed eight

erroneous keys to multiple typos. Two examples are "aner" (instead of "Answer" to reply to a message) and

"hbok" (instead of "h book" to type the headers of all messages in the user-defined message class "book").

Finally, there were several erroneous keys which appeared to result from problems with the mechanics of

keying in commands but for which we could not confidently specify a most probable cause. It is interesting to

note that 353 of the corrected keys (excluding disambiguated keys) were three or more characters long.

Assuming that our count of 74 typographical errors among the uncorrected multicharacter alphabetic keys is

accurate, this means that 83% (353 out of 353 + 74 = 427) of all typographical errors resulting in multicharacter

alphabetic erroneous keys were in the four classes handled by the corrector. This is in agreement with

Damerau's [11 experience that these four classes account for over eighty percent of all spelling errors.

Non-typographical multicharacter alphabetic erroneous keys (23.4%)-intentional error, Good correction or

disambiguation rejected, Syntax or vocabulary error In addition to the 74 multicharacter alphabetic keys that

16 SPI:LING CORREC ION IN USER INTERFACES

* we could diagnose as typographical errors, there were 80 keys (3.2% of all erroneous keys) that appeared to be

intentional errors and 10 cases (0.4%) in which we wcrc reasonably confident that accurate corrections or

disambiguations were rejected by users. The intentional errors included messages to the authors of the

* spelling corrector (e.g., "hithere", and "doyourcallymeanyoucantfigureouthbok"), strings which appeared to

result from use of the keyboard as a pacifier (e.g., "kkklknlkn"), and a sequence of twenty-eight consecutive

misspellings of the command "Put" ("up", "tup". "tpu". "sput". etc.)-presumably generated by a user who

was probing (i.e., playing with) the spelling corrector. This leaves 502 (19.9%) legitimate multicharacter

*• alphabetic erroneous keys, which we must presume were due to errors above the typographical level-i.e.,

,. syntax and vocabulary errors. Broadly speaking in these cases the user cifhcr forgot the appropriate keyword,

used a keyword that would have been recorgnized in some other context, or induced a parsing error by

omitting a symbol and thereby leaving an operand keyword where an operator was expected (or vice-versa).

The following examples are typical:

<-headers from Durham since :-marc

illegal message sequence at "SINCE" - junk at end
FROM DURHAM SINCE 3-MAR

t

<-headers from Durham intersect since 3-marL'
Program prints headers of nessagesftom Durham dated later tha, Aarch 3.

<-kloa/a c

?No such command as kjob. Type ? for help.
<-exitcR

EXIT

kJob/a

Logged off CMUA.

Non-alphabetic erroneous keys (26.4%)-Control character, Numbcr. Punctuation: The non-alphabetic
0 qerroneous keys included 325 control characters (12.9% of all erroneous keys), 116 numbers (4.6%). and 225

punctuation marks (8.9%). Among the control characters, the most common by far was CTRL-S, which

occurred 181 times \7.2% of all erroneous keys). As we mentioned earlier, this character is used on our system

to suspend output to a terminal temporarily. Normally, the user types crI-Q to cause output to resume.

However, typing a second CrRL-S while output is suspended will cause output to resume, but the operating

system will pass the second CTRL-S to the program's input stream. If a user types CTRL-S, but output doesn't

stop immediately (because the load on the system is impairing response time), he may type a second CTRL-S,

thereby inadvertently sending a CrRL-S to RdMail. We believe that this phenomenon accounts for all, or

almost all, the observed occurrences of CURL-S as an erroneous key. In some cases CrRI.-S might have been

intended as siFrT-S, but these cases alone can hardly account for the great frequency of CrRI.-S compared to

i

"6 SPEI.LING CORRECTION IN USER INTERFACES 17

other control characters. Given RdMail's command syntax, we would have expected numbers and punctua-

tion marks to appear most frequently as erroneous keys in the middle of long commands. Surprisingly, 84%

of the numbers and 51% of the punctuation marks, as well as 92% of the control characters other than CTRL-S,

occurred as the Iirst symbols of the commands in which they were detected as erroneous keys. We have no

solid explanation for this phenomenon.

4.5. Evaluation

Our mechanism handled 27% of the erroneous keys entered during the experiment. Examination of the

remaining 73% led us to wonder what other mechanisms might permit further corrections while retaining the

typescript-style interface. Most of the other errors seemed specific to the operating system (TOPS-10) or

application (RdMail). Although there does not seem to be a mechanism as general as the spelling corrector

for handling these errors, we believe that developing an "expert" level of friendliness requires paying atten-

tion to this sort of detail.

Since the ambiguous key "D" was almost always disambiguated into "Delete," adding "D" to the main

command table as a synonym for "Delete" would remove 3.7% of the errors. Ignoring the character CrRL-S,

or treating it as a space, could eliminate 7.2% of the errors. Since we believe most of these occur because of

attempts to suspend typeout, this seems reasonable. Igaoring all control characters could account for a further

5.7%, but further study is needed to determine why these errors occur.

Errors caused by typeahead might be reduced by not echoing characters until the application requests

input, as is done on TOPS-20. This might actually increase error rates, since users would not be able to see

their typeahead. Our data indicate that typeahead errors are very infrequent.

A portion of the syntax and vocabulary errors (19.8%) and numeric errors (4.6%) may be due to omitted

keywords, or to the user forgetting the context. These errors may be amenable to the techniques described by

Hayes, Ball, and Reddy [4]. Some syntactic errors might be handled by the recovery techniques used in

compilers, or might be eliminated by modifications to the grammar. For example, after the experiment we

made a small modification to the grammar for RdMail message sequences so that a user may omit the

keyword "intersect."

Finally, there are some errors that do not seem to admit any reasonable automatic recovery. For example,

if a user tries to classify a message as "ICs" (a user-defined class for messages regarding integrated circuiz),

when the name of the class is actually "chips", the best that can be done is to allow the user to choose among

the names of all of his classifications.

18 SPILLI NG COR RErrION MN USER I N1ERFACES

5. Conclusion
The spelling corrcctor offered a unique acceptable correction for 13% of the keyword errors detected

during the experiment. In a further 3% of the cases it found multiple possible corrections, one of which was

accepted by the user. Allowing the user to correct ambiguities manually fixed a further 11% of the keyword

errors.

The correction algorithm is very simple to implement and costs us about half a second per day for a heavily

used interactive system. The corrector was invoked about 50 times a day at an average cost of about 10

milliseconds. RdMail has since been modified to apply the corrector to ambiguities as well as to symbols that

are not in the symbol table at all. If we project with our data, the invocation rate increases to about 60 times

per day. The data clearly support the premise that spelling correction is "straightforward" in user interface

applications. The most complex part of the engineering is selecting the behavior of the system with the results

of the correction algorithm.

4 It is interesting that, in response to repeated requests by certain users, the RdMail maintainers have

provided options for suppressing all of the extra warnings and confinnations normally produced when some

irreversible action is about to occur. Such users are vulnerable when the corrector changes a typographical

error into a valid, irreversible command. The mistakes made by experts appear intuitively to be caused by
rapid typing and extensive use of abbreviations, while less experienced users tend to use full command names

and make the more common typographical errors.

'We have installed the command module that uses the spelling corrector in the standard SAIL library at

C-MU. As a consequence, any program that uses the library module acquires the spelling correction facility

the next time that it is link-edited. The number of programs that now routinely provide spelling correction

without any action at all on the part of their author or maintainer is growing slowly.

6 We conjecture that the spelling correction facility and algorithm described in this paper would be equally

beneficial in both operating system environments (interactive and batch) and compiler applications, where

computing resources might be conserved by continuing computations that might otherwise be aborted, only

to be repeated later. In particular, we are somewhat surprised that the work described by Morgan in 1970 [61

* has not found wider application today. We foresee no significant technical difficulties in implementing our

algorithm in a variety of languages. Perhaps our results can convince programmers to provide this simple,

cheap, and effective facility in new and even existing user interfaces.

S

SPELLING CORRII'ON IN USER INTERFACES 19

Acknowledgements
"ibhis work began in response to a suggestion by layes, Ball, and Reddy, that spelling correction of

keywords in programs like RdMail ought to be easy [4].

RdMail was originally written by Philip Karlton at C-MU. It was nursed through adolescence to maturity

by a series of dedicated people including Mark Sapsford, Craig Everhart, Philip Lehman. and David Lamb.

We are indebted to our user community at C-MU for allowing us to conduct the experiment and for provid-

ing immediate and high quality feedback on the improvements made to RdMail. Craig Everhart shared with

us his considerable expertise to overcome some intricacies of our operating system and gave us valuable

advice on the design of the experiment. Mark Sherman helped us to persuade the Intcrmetrics Ada system

that our example implementation of the corrector was indeed good, legal, ind operational Ada code. Com-
menws from Bob Chansler, Craig Everhart, Phil Hayes, Anita Jones, Anne Rogers, and Mary Shaw helped us

to improve the clarity of this paper. Finally, we are indebted to Gorin's SPELL program which did a fine job

of correcting the typographical errors in our manuscript.

References

1. Fred J. Damerau. "A technique for computer detection and correction of spelling errors."
Communications of the ACM 7. 3 (March 1964), 171-176.

2. United States Department of Defence. Reference Manual for the Ada Programming Language. 1980.
Government Printing Office Order No. L008-000-00354-8.

3. Ralph E. Gorin. SPELL: Spelling Check and Correction Program. Online Documentation. See also
Peterson (71.

4. Philip Hayes, J. Eugene Ball, and D. Raj Reddy. "Breaking the Man-Machine Communication Barrier."
IEEE Computer 14, 3 (March 1981).

5. David Alex Lamb. Rdifail Message Management System: User's Guide and Reference. Carnegie-Mellon
University Computer Science Department, 1980.

6. Howard L. Morgan. "Spelling Correction in Systems Programs." Communications of the ACM 13, 2
(February 1970), 90-94.

7. James L. Peterson. "Computer Programs for Detecting and Correcting Spelling Errors." Communications
of the ACAI 23, 12 (December 1980), 676-687.

8. John F. Reiser (ed.). SAIL Manual. Stanford University Computer Science Department, 1976.

9. Warren Teitelman. InterLisp Reference Manual. Xerox Palo Alto Research Center, 1978.

20 SPEL.ING CORRPCT'ION IN USE~R INTRFACES

I. Example Implementation of the Spelling Corrector

The following Ada implementation illustrates the functions required for die spelling correction algorithm.

The code was compiled by the Intcrmetrics Ada Prototype Compiler and executed on a DECsystcm-20.4 This

example uses the 1980 version of Ada, since a compiler for 1982 Ada was not available to us at the time of

publication.

-- Example implementation of the Spelling Corrector in DoD Ada.

-- This code is operational. However, to improve the clarity of this example,
-- we have omitted the detailed interactions with the user. We have excluded
-- the routines that interact with the user (User-Accepts. liserSelects) and
-- have commented out their invocation.

package Spelling-Corrector is

NotCorrectable: exception; -- Raised if no corrections found.

type Symbol-Table is array(integer range <>) of string(l..32);

-- The Correct-Spelling function delivers the index in the table of
-- the corrected symbol or raises the Not-Correctable exception.

function CorrectSpelling(ST: In SymbolTable;
User_Word: in string;
Assume-Correct: in boolean) return Integer;

end Spelling-Corrector;

with text-io; -- Need an I/O package
use text-io;

package body Spelling-Corrector is

-- The Same-Character function returns true iff the two characters are
-- the same when case-differences are ignored.

function SameCharacter(AB: in character) return boolean is
FoldedA, FoldedB: integer; -- Case folded character positions
Case-Difference: constant integer : character'POS('a') - character'POS('A');

begin
FoldedA := character'POS(A);

* if A in 'A'..'Z' then
Folded-A :a FoldedA + Case-Difference; -- Upper to Lower case conversion

end if;
FoldedB :- character'POS(B);
if 8 in 'A'.. Z' then
FoldedB :- FoldedB + Case-Difference; -- Upper to Lower case conversion

end if;
return FoldedA a FoldedB;

end Same-Character;

4 DECsystcm-20 is a tradcmark of Digital [quipmcnt Corporation.

r

L

SPELLING CORRECFION IN USER INTERFACES 21

-- The FirstDifference function locates the first character
-- position at which the two parameter sLrings differ (ignoring case
-- distinctions). Zero is returned if either string is empty.

function FirstDifference(A,B: in string) return integer is
Last-Index: integer;

begin
if A'LENGTH <- B'LENGTH then -- Find shorter string
Last-Index : A'LENGTH;

else
Lastjndex : B'LENGTH;

end If:
if Last-Index - 0 then -- One string is empty
return 0;

end if:
for i in 1.-.Iast-Index loop
it not SameCharacter(A(i),B(i)) then
return i;

end if;
end loop;
return LastIndex+1;

end First-Difference;

-Function MatchSubstring returns true iff the second string (B) is

an initial Substring of the first string (A). A is considered to
begin at index FirstA and B is considered to begin at index FirstB.

function MatchSubstring(A: in string: FirstA: in natural;
B: in string; FirstB: in natural) return boolean is

begin
if FirstB > B'LEIJGTH then
return true; -- B is empty sub-string

elsif (FirstA > A'LENGTH) or ((B'LAST-FirstB) > (A'LAST-FirstA)) then
return false; -- A is empty or B is too long.

end if;

for i in O..(B'LAST-FirstB) loop
if not SameCharacter(A(i+FirstA)Bi'-FirstB)) then

return false;
end if;

end loop;

return true:
end MatchSubstring;

22 SP[II.ING CORRIEC'c'ION IN USITR INTERFACES

-- Function Possible-Correction returns true iff one o the four tests
-o applied to the user word yields the dictionary word.

function PossibleCorrection(DictionaryWord, UserWord: in string) return boolean is
(Index: integer;

begin
-- Heuristic: Can't match if symbol is more than one character longer than dictionary word.

if (UserWord'LEIGTH - 1) > DictionaryWord'LENGTH then
return false;

end it;

-- Step 1: Find the index of the first different characters

Index :- FirstDifference(DictioaryWordUser_Word);

-- Heuristic: Assume wrong letter if difference at end of word

if (Index = User-Word'LENGTH) and (UserWorrd'LENGTH > 2) then
Ireturn true;

end if;

-- Step 2: Check for transposed characters & tail match

if ((OictionaryWord'LAST > Index) and (UserWoro'LAST > Index)) and then
(SameCharacter(Dictionary-Word(Index),UserWord(Index+l)) and
SameCharacter(OictionaryWord(Index+l),UserWord(Index)) and
MatchSubstring(DictionaryWord.(Index+2).UserWord.(Index+2))) then
return true; -- Transposition.

end if;

-- Step 3: Apply remaining tail Substring matches

if Match.Substring(DictionaryWord,(Index+1).UserWord.Index) then
return true; -- Missing letter.

= end if;

-- Policy: Don't try other tests on 2-character strings.

if UserWord'LENGTH = 2 then
return false;

end if;

if Match-Substring(DictionaryWord.lndex.UserWord,(Index+1)) then
return true; -- Extra letter.

end if;

if Match.Substring(DictionaryWord.(Index+1).UserWord,(Index+1)) then
4 return true; -- Wrong letter.

end if;

return false;
end Possible-Correction;

4

SPELLING CORRECTION IN USER INTERFACES 23

funCtfon CorrectSpelling(ST: in Symbol_Table:
UserWord: in string;
Assume-Correct: in boolean) return integer is

Match-Count, Last-Match: integer :- 0:
Match-Flag: array (ST'range) of boolean;
Test-Word: strlng(1..UserWord'LENGTH) :- UserWord;

begin
for i in ST'range loop

Match-flag(i) :- PossibleCorrection(ST(i),TestWord);
if MatchFlag(i) then

Match-Count := Match-Count + 1;
Last_Match : i;

end if:
end loop;

if MatchCount aI then
if Assume-Correct then

PutLine(" I assume you mean " & ST(LastMatch) & " instead of &TestWord& '2);
return Last-Match;

-- elsif UserAccepts(ST(LastMatch).TestWord) then
.... Ask Do you mean 'x' instead of 'y'? question.
-- return Last-Match;

end if;
olsif Match-Count > I then

PutLine("% ' & Test_Word & "' could be any one of:");
-- return UserSelects(ST,TestWord,MatchFlags);
end itf;

raise NotCorrectable;
end CorrectSpelling;

end Spelling-Corrector;

/I p

