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FUTURE PUBLICATION OF
NAVAL RESEARCH LOGISTICS QUARTERLY

The Office of Naval Research will discontinue publication of the Naval Research Logistics
Quarterly after distribution of the December 1982 issue.

The journal will continue to be published, however, and will appear as a nongovernmen-
tal periodical to be published with the cooperation of the Office of Naval Research.

The new publisher will be John Wiley and Sons, Inc. The Naval Research Logistics Quar-
terly will become a copyrighted journal in the Wiley-Interscience series, and will be sold on a
subscription basis by the publisher. The cost for a one year subscription will be $60.00 to indi-
viduals and institutions. Wiley-Interscience publication will be initiated with the March 1983
issue, Vol. 30, No. 1.

A substantial professional discount will be offered to members of the Operations Research
Society of America and The Institute for Management Sciences. Members of ORSA or TIMS
may subscribe to the journal for $20.00 per year.

If you are currently receiving the NRLQ by paid subscription through the Superintendent
of Documents, U.S. Government Printing Office, and your subscription is due to expire after
the December 1982 issue, a refund for the unfulfilled portion of your subscription will be
issued to you by the Government Printing Office. The new publisher has agreed to honor
requests at the GPO rate for unfulfilled portions which were subscribed to previously. The
Superintendent of Documents will notify subscribers if they are due refunds because of such
termination, and refund checks will be mailed subsequently. Subscribers may then elect to
extend their subscriptions at the GPO rate by contacting the publisher and enclosing their
endorsed refund checks in payment for the issues due subsequent to termination. An order
form 1o facilitate this extension and/or renewal by the new publisher is enclosed.

Distribution through officially authorized Navy lists and SupDocs dissemination to govern-
ment repository library centers will be discontinued after the December 1982 issue.

The Office of Naval Research regrets that it cannot provide support incident to such distri-
bution and that those activities requiring copies for official purposes will be expected to bear the
necessary costs directly.

Due to restrictions governing the use of GPO subscription lists, the publisher will be
unable to follow-up with solicitations mailed with listings provided by the Superintendent of
Documents; hence, future promotional efforts may only be through professional and trade
sources. Because of this some current recipients may not receive anticipated additional notices
from the publisher, and may not maintain the continuity of their collections if they rely upon
the receipt of subscription solicitations from the publisher. Thus, all present recipients who are
interested in receiving the journal are encouraged to initiate communications with the publisher

promptly so thal their names will not be purged by defauit.
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It is expected that current editorial policies will be continued in the commercially pub-
lished version. Professor Herbert Solomon of Stanford University will be the new editor in
charge and will be responsible for the review of manuscripts in the future. New manuscripts
submitted for consideration for publication may be sent to him immediately (4 copies) at the
following address:

Professor Herbert Solomon, Editor
Naval Research Logistics Quarterly
Department of Statistics

Sequoia Hall

Stanford University

Stanford, California 94305

The Office of Naval Research is pleased with the recognition of the contributions to
research promulgated through the Naval Research Logistics Quarterly. As ONR’s own scientific
journal it has reflected Navy interests in diverse areas of mathematics research which we
believed would enrich future work in logistics and systems analysis, and has well served its
intended purpose of providing a forum for mathematicians and logistics engineers to interact at
the highest scientific level. The willingness of the publisher and scientific community to per-
petuate the journal on a self-sustaining independent basis is profoundly reassuring that its value
has been clearly established. With the forthcoming transition to the private sector, the journal
will be able to better serve the entire scientific community in the area of logistics research.
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ON SOME STOCHASTIC INEQUALITIES
INVOLVING MINIMUM OF RANDOM
VARIABLES*

Peter Kubat
The Graduate School of Management

The University of Rochester
Rochester, New York

ABSTRACT

Let X; be independent IFR random variables and let ¥, be independent ex-
ponential random variables such that E[X,) = E[Y,] for all i =1.2. ..., n
Then it is well known that E[lzn’ig x)) 2 El‘ztlig (Y)]. Nevertheless, for

L L)

exponentially distributed ¥;’s and for a decreasing convex function ®(*) it is
shown that

El®( min (X))] € EM®( min (V)]
1€ign I€ign

1. INTRODUCTION

The bounds for the mean lives of series and parallel systems under various assumptions
on component life distribution were extensively treated in the well-known book by Barlow and
Proschan [3].

In particular, if we denote by X;(Y,) the life length of the ah component in the first
(second) series system, then the following proposition holds:

THEOREM 1: (Barlow and Proschan [3, p. 122]). Let X;(Y;) have continuous distribu-

tion F,(G)) with the mean u,. Let X, ..., X, (¥}, ..., Y,) be independent and F, < G,
i=1,..., nie., F is star-shaped with respect to G,[F; < G; iff (1/x)G;™! F,(x) is increasing
for x > 0]. Then the mean life of a series system using components with lives Xy, ..., X, is
greater than the corresponding system mean life using components with lives ¥}, ..., Y,, that
is,

(1.b) Elmin(X,, ..., X,)] 2 Elmin(Y,, ..., Y)L.

In this note, it will be shown that for F, having Increasing Failure Rate (IFR) and G;
being exponential we get

(1.2) El®(min(X,, ..., X)] € El®(min(Y,, ..., V)],

*This work was supported in part by the Office of Naval Research under grant No. CNA SUB N00014-76-C-0001.
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400 P. KUBAT

provided that ®(¢) is decreasing convex. A special case of the inequality (1.2) was already dis-
cussed in [2] where bounds for the discounted mean of the series system life was considered.

2. BOUNDS FOR THE MEAN OF A FUNCTION OF LIFE OF THE SERIES SYSTEM
Before we prove the main result the following two lemmata are needed.

LEMMA 1. Let X, ~ F, i=1,2, be two positive continuous r.v.’s such that F; < F,
and E[(X,] = E[X,]. Then,
(VRY El®(X)] < El®(X))]

for any convex and bounded function &(+).

PROOF: For i = 1,2 we have
E (X)) = [.” ®(x)dF,(x)

~0WEW[ + [TvwEw &

where we denoted ¢(x) = ®'(x) and F(x)=1- F(x). Since ®() is bounded then
—®(x)F,(x) | = cis finite. Moreover, since ®(-) is convex then ¢ (x) is increasing and thus
all the conditions of Lemma 6.4 [3, p. 112] are satisfied and

J, v0F ) ax < [ 9 0F(0 ax.

The rest of the proof follows easily. (m]

LEMMA 2: Let Z ~ Fz(x) =1 — e™**and X ~ Fy(x) = 1 — ¢7** with E[Z] > E[X].
Then there exists a unique point, say x,, where the density of X crosses the density of Z and
the crossing is from above.

PROOF: EI[Z] > EIX] implies u > A. Solving pe "= re ™ yields xq=
(@ = A)tin(/r) > 0. a
Now we are ready to prove the main theorem.

THEOREM 2: Let X, ~ F, IFR and Y, ~ G; with G, being exponential and E(X,] =
ElY])fori=1, ..., n. Let ®(-) be decreasing convex bounded function on [0,c0). Then
2.2 E[«b(m,in X)) < E[tb(mlin i

PROOF: Denote by X = mlin(X,). Let X ~ ~ then F is IFR and there exists an

exponential r.v. Z with cumulative distribution function (c.d.f.) G such that E(X] = E[Z].
Furthermore, F < G (2, p. 107).

By the Lemma | we have E[®(X)] € EI®(Z)], and by Theorem 1 we have
E(Z] > E(Y], where Y =min(Y,, ..., ¥,). Note that Y is also exponential. If
ElZ) = E[Y] we are done.
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STOCHASTIC INFQUALITIES OF RANDOM VARIABLES 401

If EIZ] > E[Y], then there exists a unique point x, where the density of Y crosses the
density of Z and the crossing is from above. Since

El®(2)) -fow @ (x)Ae™ dx

and
Eo (] = [~ ®loue™ ax
we get
(2.3) EI®(2)] - E0(N)] = [~ x) ke~ pes) dx
which can be written as
Q.4 ST 00 - @)l e = e dr + Dlxy) f (e = pe) d

The second term of (2.4) is, of course, equal to zero and the first term written as,
L= 000 - )] e — e ax
+ f“° [®(x) ~ D(xg)] (Ae ™ — pe™%) dx £ 0,
Xp

is nonpositive, since for x € [0,x], ®(x) —®(xy) 20 (P() is decreasing) and
Ae M —pue* <0 (by Lemma 2). Similarly, for x € (x5,00), ®(x) — P(xy) £ 0 and
Ae M —pe 2 0. ]

When the function ® () is exponential we obtain the following corollary:

COROLLARY 1: Let X,~ F, IFR and Y, ~ G, exponential, for i=1, ..., n,
E[X;]] = E[Y,] = 1/u;. Then for ®(x) = e~ we get

2“-1

—a(min X)}] € ——e—
Elexpf a(miln LAl IES At Ta

Finally, let us remark that Theorem 2 will hold even when F; is Increasing Failure Rate
Average (IFRA), since this condition together with G, being exponential still implies that
F<G 13, p. 107].

3. EXAMPLES
Two simple examples will illustrate the theorem.

EXAMPLE 1: Consider an r-unit series system, where the unit lifetime X; ~ F;. The F,
is IFR and E[X,] = 1/u;. When the system fails it is replaced by a new system. The cost of
the new system at the time s = 0 is C. The expected discounted cost of replacement at the
time of system failure is CE[e~**], where X = min(X,, ..., X,) denotes the life time of the
system.
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It follows from Corollary 1 that the upper bound for the discounted replacement cost is
3
i

a+z”’l.
i

Suppose now that F; is Gamma (\;.a,), a, > |, forall i=1, ..., m i.e., the probability
distribution function (p.d.f.) of X; is

-1
LGOS,

filx) = r(a) e ", x>0\, >0

In this case F; is IFR, E[X;] = a/\; and thus u; = A;/a;. Moreover,
CEle ] < C/la/A + 1),
where A = ¥ (\;/a;).

EXAMPLE 2: Let X = min(X,, ..., X,). All X;’s are independent, have IFR distribu-
tion F; and E[X,] = 1/u,. Assume that $(x) = (ax +8)"', a > 0, 8 > 0. Clearly, ®{(x) is
decreasing convex and bounded on (0,00). It follows from Theorem 2 that in this case

ER(N)] = EllaX +B)71 < f, axl+B e
A L,e=1 _, A
=;—e"fd e ’=;—e"E|(d),

where A= ¥ u;, d=AB/a and E\(d) denotes the Exponential Integral. The numerical

values of E|(d) are tabulated in [1].
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COMPOUND AVAILABILITY MEASURES

Laurence A. Baxter

Department of Applied Mathemaiics .:nd Statistics
Stare University of New York at Stony Brook
Stony Brook, New York

ABSTRACT

An availability measure is the probability that a two-state system modeled
by an alternating renewal process is available at one or more points or intervals.
The concept of availability measures is extended to formulae for the joint pred-
iction of availability and numbers of breakdowns (or repairs) of the system
during a fixed interval.

1. INTRODUCTION

Consider a two-state system, i.e., a machine subject to stochastic failure and repair, and
suppose that the breakdown/reactivation cycle of the machine can be modeled by means of an
alternating renewal process (e.g., Cox [4], Chapter 7). Under this assumption, we can derive a
variety of useful formulae for predicting the reliability of the system. In particular, we can
determine the distributions of the N (¢), the numbers of failures and repairs in a fixed interval
{11, and we can obtain availability measures, probabilities of the form p{/(t) =1V ¢ € T}
where 7(t) = 1(0) if the system is operating (failed) at r and where T is an index set compris-
ing a (finite) series of points or intervals [2]. The dependence between the N(r) and the /()
precludes the simultaneous prediction of numbers of failures (or repairs) and availability using
existing theory. In this paper, we present a series of formulae which generalize the availability
measures, enabling us jointly to predict numbers of breakdowns (or repairs) and availability.
We call these formulae compound availability measures.

Availability measures are of use in assessing the likelihood that a repairable machine
modeled by an alternating renewal process is available at specified times. If the probability falls
below a certain threshold, arrangements for securing an adequate back-up can be made. The
distributions of the N(z), on the other hand, are of use in deciding on the allocation of
sufficient repair facilities for a fixed time interval. The formulae presented in this paper enable
us to consider these probabilities simultaneously.

In Section 2 we examine the simplest case and consider probabilities of the form p{/(¢) =
1, N(t) = j) and p{l1(u) = 1 ¥ u € [, + x], N(t) = j}. In Section 3 we consider probabili-
ties of the form p{/(¢r + x) = |, N(1) = j}, and in Section 4 we consider probabilities of the
form p{I/{(¢) = 1, N(t + x) — N(1) = j]. Some numerical examples for the Weibull/gamma
process are given in Section 5. It is first necessary to introduce some notation and briefly to
review some relevant results.
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404 L. A BAXTER

Let F and G denote the distribution functions of the failure times and repair times,
respectively, and let their Stieltjes convolution be denoted

K =F + G -fo' F( = u) dGlw).

Further, the n-fold recursive Stieltjes convolution of K is written K for n =1,2,3, ..., and
we define K9{(r) = 1(0) if ¢+ > (<) 0. Let /, g and k be the densities corresponding to F, G
and K, respectively. The renewal counting functions of the numbers of failures and repairs in
(0,¢] are denoted N,(¢) and N,(8) (N,(¢t) and N;3(1)), respectively, assuming that there is a
repair (failure) at time 0. The corresponding renewal functions and renewal densities are
H () = E{N(D)} and h;(¢) = dH(¢)/dt (i = 1,2,3).

The distributions of the N;(t) are as follows:

1 - F(r) n =0
(1.1) PN =l =1 gy = F e K™()  n21
(1.2) PN (D) = n) = K (1) = K“"*V(r) n20
1-G() n=0
(1.3) PN =m) =1 oL k() G K" 31

(see Barlow and Hunter {1}). The point availability of the two-state system is defined as
A, (1) = p{I, (1) = 1} where k = 0(1) if there is a failure (repair) at time 0. The interval avai-
lability is defined as R, (x,r) = p{/,(u) = 1 wu € [t + x]}. It can be shown that

(1.4) A (1) = F(t) + F » Hy(1)

(1.5) Ag() = G(1) = G » Hy(1)

(1.6) Riten) = Fle+x) + J mG) Flu+ x = u) du
a.n Rox0) = [ my(F(t + x ~ u) du

where

F() =1~ F(O[2.

2. COMPOUND MEASURES OF /() AND N(1)

The expressions for the simplest compound availability measures, i.e., p{/(s) =1,
N(t) = j}, are of particular interest as surprisingly simple formulae can be obtained for the
covariances of the /,(¢) and the N;(r).

2.1 pll (1) =1, N\(1) = jl = F « K9 (1) ji=0
(2.2 plI(D) =1, Ny(1) = j} = F « K (1) j20
(2.3) pllg(t) = 1, Ny(1) = j} = F » G » KV (1) ji20
(2.4) plly(t) = 1, Ny(1) = j} = = (=1 j:- 0
FeGoK"P) j21.
NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. 3, "EPTEMBER 1982
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COMPOUND AVAILABILITY MEASURES 405

Observe that p{l,(t) =1, Ny(t) = j} = p{l(t) =1, Ny(s) = j} for all j This is to be
expected in view of the identity /,(¢) = Ny{1) — N (¢) + 1.

The corresponding formulae for Pl{x.6j) = pll(w) =1 v u € [tr + x], N, (1) = j} are
as follows:

25) Pllxrs) Flt + x) J=0
. Hoatg fol K9 FaG+x—wdu  j21
F(t+x) j =
(2.6) Pl (x1)) = (o j=0
j;k‘“(u)F(r+x—u)du jz21
! —_
2.7 PEti) = [ B Fu+x~wdu 20
(2.8) P Gor =" /=0
- t —
: O S b P x~ w21

where k(1) = dK(¢)/dt and
foig(r— Wk uydu j 21

b(1) = g Jj=0.

[t should be noted that the above formulae, and many of those of Sections 3 and 4, do
not need to treat the cc-  j = 0 separately, but this has been done in the interests of clarity.

The following covariances are readily derived from (2.1)-(2.4) above:

(2.9) cov {L(DON(D) = A, » Hy (D) = A () H (1)
(2.10) cov {1 () Na(D) = Ay « Hy() — A (1) Hy(D)
(2.11) cov {Ig(t) Ny (1)) = Ay * Hy(t) ~ AgQ) Hy (1)
(2.12) cov {Ig(2),N3(D)) = Ay » Hy(8) — Ag(r) [H3 (1) — 1]

These may be obtained directly, in which case the identity
zjK'“(r) = H, « Hy(1) + Hy(1)
j=1
will be found helpful, or by exploiting the binary nature of the indicator variable. Thus, for
example, expression (2.10) follows from the identity
cov (ll(l),Nz(f”
A|(f)" - A|(')]

and the other covariances may be derived similarly.

= E{N, (D1 1,(1) = 1} ~ E{N, ()| 1,(1) = O]

VOL. 29, NO. 3, SEPTEMBER 1982 NAVAL RESEARCH LOGISTICS QUARTERLY
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406 I A BAXTER

Observe that the expectation of the product of the indicator variable and N,(t) is the
Stieltjes convolution of their expectations.

3. COMPOUND MEASURES OF /(¢ + x) AND N(¢)
We now present formulae for probabilities of the form p{/ (r + x) = 1, N.(¢)} = j}.
3.1 pllie+x)=1, N\(p) =}
= F+ 0+ [+ ) dox = ) dy =0
=f0’ kY (u) Flr + x ~ u) du
x pt
+; fo K9 (u) £t + y = u) Aglx ~ y) dudy
+f0' fo a_(u) glt+y—u) Ai{x — p)dudy j

> 1
" — e :
where a,(1) = S ra-wkwa j>1
§46)) Jj=0
(3.2) p{ll(f+X)= l,Nz(l)=j}
=Fu+x)+ [ 10+ agle—p) dy
+f0xfolf(u)g(l+y—u)A,(x—y)dua’y j=0

= [ KP@FG+ x = u) du
+foxf0' K9u) £+ 3 — u) Ag(x—y) dudy
+f0xf0' a; (gt +y—u) A,(x — y) dudy j=1
(3.3) pllolt + x) =1, No(0) = j)
=j;' b(w) F(t + x — u) dudy
1 +f0xfol bi(u) f(t + y — u) Ag(x — ) dudy
+foxj;' kNu)g(t+y—u) Ay(x—y)dudy 20
(3.4) plla(t + x) =1, N3 (1) = j}
=f0xg(l+y)A|(x—y)dy j=0
- ’j;lb~_l(u)f_'(t+x-u)du
+foxfol b () f(t + y — u) Aolx — y) dudy
+f0xfo’k‘f’(u)g(t+y—u)A.(x—y)dudy il

Note that, as would be expected, expressions (3.1)-(3.4) degenerate to (2.1)-(2.4),
respectively, at x = 0 and that application of the key renewal theorem shows that

M
my + oy
where u, and u, are the means of Fand G, respectively.

lim p{f(r +x) =1, Nj(1) = j} =

pIN() = j)

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. 3, SEPTEMBER 1982
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COMPOUND AVAILABILITY MEASURES 407

The corresponding formulae for p{f,(u) =1V u € [t + xt + x + wl, N,(t) = j} are
obtained from (3.1)-(3.4) above on replacing F(t + x) by F(t + x + w) and A,(x — y) by
R, (w,x — y) as appropriate. Further extensions of these formulae to more general compound
availability measures of the form

pll) =1(t))= - =L{)) =1 N(D=jlfort < << -+ <1,
are similarly obtained.

4. COMPOUND MEASURES OF /(¢) AND N(¢t + x)

In this section we consider a different type of compound availability measure, that of the
form p{l. (1) =1, Ni(¢t + x) = j} where N;(tt + x) = N,(+ + x) — N,(¢) is the number of
renewals in [t + x].

4.1) plhi () =1, Ny(et + x) = j}
= Rl(X,f) j=0
=J:)xf(t + 1) p{Ny(x — u) = j— 1} du
+f0xj;’h2(s)f(l—s+u)p{Nz(x—u)=j—lldsdu j=1

4.2) pll () =1, Ny(et + x) = j)
= Rx0) + [ £+ w) Glx ~ w) du
+fox.£)'hz(s)f(t-s+u)5(x—u)dsdu j=20
==j:) S+ w) pINy(x = u) = j} du
x t
+f0 S, m() £ = 5 + 0 pINs(x = w) = ) dsdu i1
(4.3) plig(t) =1, Ny(rt + x) = j}
= Ro(.x,f) _j =0
-foxfol h3(s) f(t = s + w) p{Ns{x — u) = j — 1)} dsdu Jjz1
4.4) pllo(e) = 1, Ny(tt + x) = j}
-Ro(x.t)+j;xj;' hy(s) f(r — s + u) G(x — u) dsdu j=0
-j;xj;'}u(s)f(t—s+u)p[N3(x—u)-j}dsdu j2z L

Observe that, as would be expected, (4.1) and (4.2) degenerate to (1.1) and (1.2), respec-
tively, at r = 0 whereas both (4.3) and (4.4) vanish. Note further that on applying the key
renewal theorem to the above formulae we see that

tim p{l;(¢) = 1, Ny (et + x) = j} = lim p{lo(0) = |, Ny(e,¢ + x) = j}
{—co

Landad

A V(x) j=0
AL Vo= =j-Nau 21
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408 L. A BAXTER

and that
lim p{lj(0) =1, Ny(er + x) = j} = lim p{ly(z) = |, Ny(st + x) = j)
o0

=00

= A foxib(u)p{N;(x—u) =jlau j20

- t
where A4 = pu,/(u; + ), ¢() = F(t)/u, and ¥ (1) =f0 W(u) du. Thus, we see that the
asymptotic probabilities are equal to the corresponding probabilities for the equilibrium alternat-
ing renewal process.

Generalizations to formulae of the form p{l,(u) =1V u € [t + xl, NGt + we+
w + x) = j} are readily obtained by obvious modifications to (4.1)-(4.4).

S. APPLICATIONS

One important industrial application of the alternating renewal process is to model the
sequences of failures and repairs of electricity generating plant, such as boilers and turbo-
generators. The author’s experience in analyzing such data shows that, typically, failure times
are identically distributed, as are repair times, and that these random variables do not appear to
be dependent. Knowledge of various availability measures is a means of assessing the likeli-
hood that, for example, peak demand will be met over one or more periods. The distributions
of the renewal counting functions, on the other hand, give some indication of the number of
breakdowns likely in a fixed interval. These may be used, for example, in deciding the levels
of stocks of those spare parts which are most commonly used in repair work. The compound
availability measures enable us to make the two sets of predictions simultaneously.

As an example, we examine the alternating renewal process with Weibull failure times
and gamma repair times, the scale parameter being unity in each case, i.e.,

() =atx Ve, gty =" eYTxn.

Values of
pll (1) = 1, Ni(0) = j} = p{1,() = 1, Ny(1) = j} = F « KY'(1)

were evaluated for 0 € + & 10 and j=1,2,3, ... for a variety of values of « and . The
numerical integration wa$ achieved by means of the Cléroux-McConalogue algorithm [3] for
recursively-defined Stielties convolutions using  FORTRAN subroutines developed by
McConalogue [5]. (See McConalogue [6] for further details.) The values of F « K''(s)
obtained are illustrated in Figures 1-4 for the following combinations of shape parameters:

Figure «a n

1 1 1

2 25 25
3 45 25
4 5 1.25.
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COMPOUND AVAILABILITY MEASURES 409

FIGURE |. Curvesof F + K () Torp =1, a = 1.

FIGURE 2. Curves of F « KV (¢) forp = 2.5, a = 2.5.

FiGURE 3. Curves of F » KY'(1) for n = 2.5. a = 4.5,

FiGURE 4. Curves of F » KY(1) for q = 1.25, a = 5.
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A COMPARISON OF SEVERAL ESTIMATES OF AVAILABILITY

M. Mazumdar

University of Pittsburgh
Pitsburgh, Pennsylvania

ABSTRACT

We compare several competing estimates of the availability of a system
which alternates between two states, "up” and "down.” in accordance with an al-
ternating renewal process. Both interval and point estimators are compared
under several special but representative situations. The comparison reaffirms
the validity and robustness of the log-logistic jackknifed estimates However.
when the point estimates are compared from the intrinsic criterion of probabib-
ty of concentsation, the uniformly minimum variance estimate obtained for the
Markov model performs very well.

1. INTRODUCTION

In a system which alternates between two states, "up” or "down," in accordance with an
alternating renewal process, the long-term point availability (often simply abbreviated as awaila-
bility) measures the probability that the piocess is up at a given instant of time far enough in
the future. This index measures the long-run expected fraction of time that the system
operates satisfactorily. It has been shown in reliability textbooks, (see, for example. Barlow and
Proschan [1]), that under not too restrictive conditions, this index equals the ratio of the mean
uptime to the sum of the mean uptime and mean downtime. Such two-state models are con-
sidered frequently in the literature in problems related to design and maintenance of computer
systems, communication systems, power plants, etc. System productivity s directly related to
equipment availability, and, therefore, much attention is currently being placed in the industry
on the assessment and optimization of plant availability. Any availability improvement program
has to begin with the estimation of current availability. In this paper, we examine several con-
tending estimators of availability, and study some of their properties.

In a recent paper, Gaver and Chu [2] have studied the behavior of the jackknife method
for estimating availability under several different probability models for the underlying distribu-
tions. They have pointed out that frequently in availability studies, it will be difficult to obtain
clear and unequivocal probability specifications. Their resuits obtained by Monte Carlo simula-
tion show that the jackknife method is reasonably robust for providing interval estimates and
valid under several different special but representative probability models. In this paper, we
carry out an investigation similar in spirit to0 Gaver and Chu [2). Our poinmt of departure from
this paper is that we consider an additional estimate of availability (Mazumdar [3]), and we also
consider the intrinsic properties of the estimates from the point of view of point estimation.
Our main result can be stated as follows: from the point of view of providing interval esti-
mates, the jackknife estimate of Gaver and Chu appears 10 be suitably valid and robust. and it
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412 M. MAZUMDAR

performs as well or better than the other contending estimates. However, from the point of
view of point estimation, when the intrinsic property of probability of concentration (Rao {5])
is considered, the uniformly minimum variance unbiased (UMVU) estimator seems to perform
as well or better.

2. THE MODEL AND THE ESTIMATES OF AVAILABILITY

We assume that the times spent by the process in the "up” and "down" state are mutually
independent, and we have at hand a sequence of 2» observations giving the successive up and
downtimes, U,, Dy, U;.D,, ...", U,, D, of the system. Except for one case, we shall make
the usual assumption that the uptimes U; have the exponential distribution. The downtimes D,
are identically distributed, and in Section 3, we shall assume that their common distribution
belongs to the exponential, gamma, lognormal or the Weibull family. The parameter of
interest, availability, is given by

___EW
ETU] + EDI

where ELU) and E1D] are, respectively, the expectations of U, and D,.

() A

We consider the following estimators of availability:

(a) the maximum likelihood estimate:

-

2) Amle =

U+D
where U = i U/nand D = i Di/n.

i=1 i=1

(b) the jackknifed maximum likelihood estimate:

X v
(3 Ak mie = V+E
where
Ga) V=S VinE=Y E/n,
i jmy
(3b) VianU - (n-1U_,
- 1
(30) Ui~ j;l U,
3d) E, =nD~-(n~-1D_,
and
= 1
(e) D_ = =D "2] D,.

(c) the log-logistic jackknifed estimate (Gaver and Chu [2})

7)) e?
Ay =
! 1+ e?
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where
(4a) z-1yz
noi
(4b) Z,=nZ-(n-1Z_,
(4¢) Z,= [2 U,.I - In [}: D,-]
Iz IE]
4d) Z =1In(U) - In(D).

(d) the uniformly minimum variance unbiased estimate (Mazumdar, [3]): This estimator
was derived for the case when both U, and D, are exponentially distributed with un-
known parameters A and u, respectively. Denote U/D by S. Then the estimator is

given by
n—1fn—1 St — )1
- - o e— <
) 1 —(n I)E{) i nol4) ifS <1
(5a) Apmwu(n) =
L= - 3 | "7 SIS gy
" per 8 U n+j )
The above reduces to:
n—1 n—1 n-—1 n-1|
. 1 2 3 n—-1
Aymwe(n) = S~ $2+ S -+ =D s}
n n+1 n+2 2n-2
1 2 3 n-—1
ifs <1
and
n-1 n—1 n-1
N 1 2 n-—1
(5b) Aymwln) =1-— s+ S22 4+ (=D e gD
n n+1 ' 2n-2
1 2 n—1
if §>1.
Some examples of /iumv\, are given below. When n = 2,
N 1/28 if S <1
(5¢) Aun@ =14 _ 257t irs > 10
When n = 4,
3og_3 a1l g S <
(5d) Aume(®) #7710 T e
umvu - _ i . .‘L 1 I
1 4S +IOS 208 ifs >1
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414 M. MAZUMDAR

(3) the jackknifed uniformly variance unbiased estimate.

(6a) Apumaln) = £ 3 Wi(n)
i=1
where
(6b) W, (n) = nAymu(n) — (1 = 1) A_ymygiln = 1)

fiumw(n) is given by (5b),

n—2 n-2 n-2
R 1 2 3
A_ymwiln —1) = S, —~—— S8, + —= 83— ...
n—1 n n+1
1 2 3
-3
n—2
+ (= ——5 85" if S, L1,
2n—4
n-—2
ln—2] n—2] n—2]
R 1 2 n-2
A ymuiin =1 =1- +—= 8§+ - 82, - .+ (-1)? —nu g7 (0D
n—1 n 2n+ 4
1 2 n—2
(6¢) ifS_; > 1
and
U,
(6d) S = —
n D—i

In the terminology related to jackknife estimates, the quantities V,, E,, Z,, W, are referred
to as pseudovalues. Let @ be an estimator of the parameter @ based on a sample of size n. Let

8, refer to the set of pseudovalues in this situation, i = 1,2, ..., nand let
beo ™ h=133.
no
It has been stated (Miller [4]), that under certain general conditions, the statistic
@) vn (8 - 6)

| @ 172
o _. 2
["_l 1-21(9’ 0)’

has an approximate ¢ distribution with (n — 1) degrees of freedom. Thus, the approximate
two-sided 100 (1 — a)% confidence interval for @ will be given by (L,, U,) where

. 1o 112
9 U,=6+1 l Y @ - 9)’] /n”’
j=1

-2 1n-1
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| 12
i _ i — 9)2 12
L,=4# ll_%’"_l ’;l(o, O)I/n

refers to the ll - %l 100% percentile of Student’s r with n — | degrees of free-

where tl a
2

dom.

In a recent paper, Rao [5] has commented on the wisdom of using minimum mean square
error as the only criterion for obtaining optimum point estimates. He has suggested that
because of mathematical convenience and intuitive considerations, the minimum mean squared
error could be used as a postulate to derive estimators, but he has recommended that their
acceptability should be judged on more intrinsic criteria such as the probability of concentration
(PC), where this quantity measures

10) PC = Pr {[Estimate — True Valuel < 4}

for different values of a.

For the purpose of comparing the performance characteristics of the estimates (a)-(e), we
choose the following three criteria: (i) estimate probability of coverage of the true availability
using the formula (9) corresponding to a nominal value «; ii) the estimated mean and variance
of the confidence interval length; and iii) the estimated probability of concentration. (The
mean squared error was used in [3] to compare the maximum likelihood and the umvu esti-
mate, and we do not repeat the use of this criterion here.) These estimates are obtained by
performing Monte Carlo simulation experiments where 1,000 synthetic system realizations were
observed through a cycle of n consecutive up and downtimes.

Following Gaver and Chu (2], we assume the following distribution forms for the up and
down times for the purpose of the simulation study. Although these distribution forms
represent special cases, they are representative of many different practical situations.

(A) U is exponentially distributed, E[U] =A"!; D is exponentially distributed,
EID] = u ", {U}, |D,) are mutually independent sequences of independent random
variables.

(B) U is exponential with E[U] = A~': D is gamma distributed with E[D] = (ku)™'. Var
[D] = (Jk )%, where k and u represent, respectively, the shape and scale parame-
ter of the distribution. The successive up and dowtimes are mutually independent as
in (A).

(C) U is exponential with E(U) = A~!; D is Weibull distributed with the scale and shape
parameters y and 8, respectively, given by the following density:
an fpld) = y%62~Le= 0" L 1 >0,
The successive up and downtimes are independently distributed.

(D) U is exponential with E(U) = A~"; D is lognormally distributed with parameters u
and o, given by the following density:

(12 fpld) = exp(~1/2(1nd — w)¥a?. d 2 0.

1
VInad

VOL. 29, NO. 3, SEPTEMBER 1982 NAVAL RESEARCH LOGISTICS QUARTERLY

W

U




416 MOMAZUMDAR
The successive up and downtimes are independently distributed.

(E) U is represented by a long-tailed # distribution, see Gaver and Chu [2). For a fixed
value of the tail-stretch parameter f, (0 < fi < 1), represent an uptime as
= d=-mn" Xet.
A
where X is exponentially distributed with E[X] = 1. The sequence {U;} is one of
independent random variables, themseives independent of {D,}. The downtimes are
here assumed independent and exponential.

In case (A), the ratio U/D is proportional to a statistic having the F distribution with
(2n, 2n) degrees of freedom. Thus, an exact confidence interval for the availability parameter
A can be obtained in this situation with the help of the F-tables. The confidence intervals ;
using the F-statistic were also computed.

3. NUMERICAL COMPARISONS

In this section we compare the different estimators using the three criteria described ‘
above for the probability models (A) to (E). 1,000 Monte Carlo realizations were used to '
obtain the estimates of these performance measures. As far as practicable, the same random
numbers were used for the purpose of the comparison. We examined the case where n = 15.

Table 1 gives the properties of the confidence intervals obtained from (9). Table 2 gives the
properties of the point estimates using the PC criterion of equation (10).

TABLE | — Simulation Results* (1000 Runs) Comparing the Two-sided 95% Confidence
Intervals of Various Estimators of Availabiliy; n = 15, t+ = 2.145
(True Value of Availability = 0.9901).

o e o e

Underlying Coverage A L Variance of .
Distributions (%) verage Length Length
A (exponential, F954 1.65 x 10~7 365 x 1075
exponential) JK.LL:94.5 1.87 x 1072 8.00 x 1073
. A=00lpu =1 JK,.UMVU:92.3 1.54 x 102 4.59 x 10-5
] JK.MLE:93.2 1.64 x 1072 5.02 x 10~%
* B. (exponential. F984 | 167 x 1072 252 x 10°¢
gamma) JK,LL:94.7 1.40 x 1072 3.21 x 1073
A=001 4 =30 | JKUMVU94 1.29 x 1072 2.64 x 10°° . 1
k=1/3 JK.MLE:94.8 1.38 x 102 289 x 107}
‘ f C.  (exponential. F:98.0 1.67 x 10°2 265 x 1073
Weibull) JK.LL:94.3 1.39 x 10-2 324 x 1073
A=00l,y =113 | JK.UMVU:92.5 1.29 x 1072 271 x 1073
$ =20 JK,MLE:94.0 1.38 x 10-2 298 x 10-%
D. (exponential, F:92.7 1.68 x 10~2 5.30 x 10~$ !
lognormal) JK.LL:949 2.28 % 1072 437 % 1074
A =001, u =050, | JK,UMVU92S 1.66 x 1072 886 x 10~%
=10 JK MLE:89.8 1.76 x 1072 953 x 10~3
E.  (ong-tailed A, F:88.2 1.77 x 1072 6.74 x 10~%
exponential) JK,LL93.4 241 x 1072 1.60 x 104
A=001,u =1, JK.UMVU92.7 1.91 x 1072 848 x 10~
h=0.2 JK.MLE94.0 | 201 x 107? 9.18 x 10°%

‘(‘F: F-sta(isiic; JI-(.LiL: ’;Log-Logislic Jackknife;” JK,UMVU: "Jackknife UMVU;"
JK.MLE: "Jackknife Maximum Likelihood Estimate) ;
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ESTIMATES OF AVAILABILITY 417

TABLE 2 — Simulation Results (1000 Runs) Comparing the Probabilities of
Concentration for Various Estimates of Availability, n = 15.
[PC = Pr (Estimate - Availabilit) < ¢))

Underlying Extimat ! Probability of Concentration (PC) in % ]}
B . . stimate
Distribution a=0001 | a=00025| a=0005 a= 01
A.  (exponential, Amie 229 53.8 835 974 |
exponential) A mie 20.8 527 86.1 98.3 |
A=00lu=1 Aumva 25 539 86.0 983 |
A umvu 215 52.6 85.8 98.2 )
A1 24 | 534 834 97.7
B.  (exponential, Amie 81 | el 890 | 986 }
gamma) Ak mie 66 | 6l6 9a1s | 990
A=00L =30 | A 28.1 62.1 91.7 99.1 ]
k=1/3 Ai.umvu 26.9 61.9 91.3 99.0 {
A1 28.1 618 89.8 98.7 [
C.  (exponential. Amie 26.2 599 1 891 983 |
Weibull) Ak mie 2538 91 1 91 | o989 |
A=00Ly =113 | Ay, 26.9 ] 608 | 924 ] 99.0 }
5 =120 A umva 61 593 916 | 989
A 11 26.0 59.4 90.5 | 984 |
N |
! D. (exponential, Amie 205 471 ‘ 825 | 951 i
lognormal) Aik.mie 19.9 474 833 | 96.6
A=001, . =050 | 4 19.1 469 84.6 96.4
a=10 Ak umva 20.4 47.4 836 | 966
At 20.0 472 806 | 946
E.  tlong-aited h, Amie 16.5 } 426 73.5 } 928 |
exponential) Ak.mie 15.2 | 39.2 70.8 [ 945
A=001p=1 1 4,,, 170 | 434 749 | 951
h=102 | Auwumve | 155 1 400 7| 94l
a1 1es | a07 1 | 930

Table 1 shows that the log-logistic jackknife estimate provides approximate nominal cover-
age of the true parameter value under a wide variety of situations. In comparison, the jack-
knifed uniformly variance unbiased estimate or the jackknifed maximum likelihood estimate
does not fare as well. However, when the probability of concentration of the point estimate is
considered, the uniformly minimum variance unbiased estimate performs very well. [n many
cases, it performs better than the maximum likelihood estimate or the jackknife log-logistic
estimate. These findings are not surprising in view of the more pronounced locally linear
characteristic of the log-logistic estimate.

4. SUMMARY AND CONCLUSIONS

Several competing estimates of availability of a system which alternates between two
states — "up” and "down" have been compared. The data is assumed to consist of n complete
cycles of successive up and downtimes. Monte Carlo simulations carried on several special but
represeatative situations indicate the general validity and robustness of the log-logistic jackknife
estimate of Gaver and Chu. However, when point estimates are considered, from the point of
view of probability of concentration, the uniformly minimum variance unbiased estimate for
the Markov case performs very well in these situations.
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ABSTRACT

In this paper we consider a simple three-order-statistic asymptotically un-
biased estimator of the Weibull shape parameter ¢ for the case in which all
three parameters are unknown. Optimal quantiles that minimize the asymptotic
variance of this estimator, ¢ are determined and shown to depend only on the
true (unknown) shape parameter value ¢ and in a rather insensitive way.
Monte Carlo studies further verified that, in practice where the true shape
parameter ¢ is unknown, using always ¢ with the optimal quantities that
correspond to ¢ = 2.0 produces estimates, ¢* remarkably close to the theoreti-
cal optimal. A second stage estimation procedure, namely recalculating ¢ based
on the optimal quantiles corresponding to ¢, was not worth the additional
effort. Benchmark simulation comparisons were alsc made with the best per-
centile estimator of Zanakis [20] and with a new estimator of Wyckoff, Bain
and Engelhardi [18]. one that appears to be the best of proposed closed-form
estimators but uses all sample observations.

The proposed estimator, ¢ should be of interest to practitioners having
limited resources and to researchers as a starting point for more accurate itera-
tive estimation procedures. Its form is independent of all three Weibull param-
eters and, for not too large sample sizes, it requires the first, last and only one
other (early) ordered observation. Practical guidelines are provided for choos-
ing the best anticipated estimator of shape for a three-parameter Weibull distri-
bution under different circumstances.

1. INTRODUCTION

The cumulative distribution function of a three-parameter Weibull variate X is given by:

NAVAL RESEARCH LOGISTICS QUARTERLY

1) F(x)=1—exp{—[(x —a)/bl] x2a
*Research performed by this author was supported by the US Office of Naval Research under Contract No. N0OO14-
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where "a " is the threshold, or location parumeter. "b " is the scale parameter and "¢ " deter-
mines the shape of the distribution. Sce Johnson and Kotz, [7] and Mann. Schafer, Sing-
purwalla [11] for comprehensive information about this distribution and its applications.

Maximum likelihood estimates (MLEs) of all three parameters have desirable asymptotic
properties. However, since no closed-form expression for the MLEs exists, the use of a
numerical iterative procedure is necessary to solve, for a given sample, the corresponding non-
linear optimization problem. This is a computationally difficult problem for which many algo-
rithms fail to provide solutions [19]. Other deficiencies of the maximum-likelihood procedure
as it applies to this three-parameter distribution are detailed in [16].

Practitioners having limited time and access to analysts or computing facilities would thus
prefer using closed-form (analytic) estimators. However, only rather inefficient estimators cf
this type for the three-parameter Weibull distribution have been available in the past [11].
Recently. more than seventeen closed-form estimators for the three Weibull parameters were
compared by Zanakis. and the moest efficient ones identified [20].

Of the three Weibull parameters, the shape parameter, ¢, is particularly important because
it affects the shape of reliability and hazard rate curves (see [7], [12]). and is the primary cause
of computational ditficulties and estimation errors in MLE problems [10]. {21].

Here, we examine an improved simple percentile estimator, ¢, of the shape parameter.
} with quantiles determined optimally and independently of the other two Weibull parameters.

2. A PERCENTILE ESTIMATOR OF SHAPE ¢ WHICH IS INDEPENDENT
OF THE LOCATION AND SCALE PARAMETERS.

Let r; £ 1, € ... < 1, be the ordered observations from a random sample of size n from
(.

For the rwo parameter Weibull (when the location parameter is known or zero) Dubey [3]
proposed a two percentile (p, < p,) estimator for the shape parameter ¢
‘ 2) ¢ = In{ln(1 = p)/In(1 = p)}/in{4,/ 1}

with 1, = 1{,,14) and ( = Hnp, 141+ [np,} being the greatest integer less than or equal to np,.

| He showed (as was shown earlier by Lieblein [9] in investigating the extreme-value distri-
L bution) that its asymptotic variance is minimized when

(3) pi = 0.16731 and p, = 0.97366.

Murthy and Swartz [13] derived unbiasing factors and hypothesis tests for & Recently, Bryson
(1] argued that the asympiotic efficiency of ¢ is not especially sensitive to small deviations from
the optimal percentiles.

In a recent paper involving simple estimators for all three Weibull parameters [20], five
estimators of ¢ were compared. These included the following proposed simple percentile esti-

mator,
(4) ¢ = 0.5Inlin(1 = p)/In(1 ~ p)V/Inl(y — £}/ (1; = 1))
NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. 3. SEPTEMBER 1982
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where p,, p,. p, are three quantiles satisfying
(5 0<p<p<p<!
(6) —In(l —p,)={ln(l—p,-)-|n(1 - pP?

and 1. ¢, 1, (t, < t, < g} are the corresponding three ordered -ample observations. (See also
Johnson and Kotz [7].)

This estimator requires only three sample observations and is independent of the other
two Weibull parameters. Thus, when all three parameters are unknown, estimator & is appeal-
ing if the three percentiles can be selected in some optimal way. It was shown before [20] and
verified here that using (3) and ‘4), i.e..

(7) & = 1.494/Inl(g, — 1))/ (r, = 1)]

produces a rather poor behavior.

The purpose of this paper is to derive optimal {or nearly optimal) quantiles p, and p, (p,
then obtained from (6)) for ¢ when all three Weibull parameters are unknown and to compare
the estimators based on these optimal quantiles with certain others which also require no com-
plicated iterative procedures. Such simple estimators can be used to obtain final estimates or as
initial estimates for iterative procedures.

3. OPTIMAL QUANTILES FOR ¢

With the use of a theorem of Mosteller [12] and a lemma of Rao [14], the following ana-
Iytic expression for the asymptotic variance of ¢ was obtained:

o o=z blgl /G5 )

eo—w lera—o o [ote - ael 7o
=10, — Q) ‘(Q, ;' 0-0 OG-0} & 'Qg-0)
_ R [ ! H [ I 1 |+ 2 l
Q! QJ—Q, -Q Q, o - Q, KTHQ, - Q)
S ]
oo <Qk—Q,->2
where
R,=p/(1=p) s=ijk
and

Q.= [-In(1 ~ p)IV¢  s=ijk
50 that from (6)
Q=000

Thus, for a given sample size a, this asymptotic variance is a function of the true shape param-
eter ¢ and only two of the three quantiles.
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A pattern search procedure [6], extended by Zanakis [21] for bounded-variable nonlinear
optimization problems with or without derivatives, was employed to obtain, for selected values
of the shape parameter ¢, the quantiles p;, and p, that minimize ¢ (p;, p,, c}/n. The results are
summarized in Table | along with the function values at the point given by (3).

TABLE 1| ~ Optimal Results for ¢

True Shape Optimal Values Non-Optimal* Asymglotic
Parameter ¢ (p'.pL.c) In,efﬁcnency
¢ b Py n¢ (9, 0.¢) ek & (p/.0i.c)/(p;.pi.C)
0.5 0.0086 | 0.9746 0.230 0.484 2.10
1.0 0.0048 | 0.9816 1.028 3.194 in
1.5 0.0028 | 0.9887 3.155 12.314 3.90
2.0 0.0033 { 0.9920 9.096 34976 3.85
2.5 0.0051 | 0.9932 23.215 81.286 3.50
3.0 0.0072 | 0.9939 51.070 164.374 3.22
3.5 0.0092 | 0.9944 99.545 300.142 3.02
4.0 0.0109 | 0.9947 176.936 507.770 2.87
4.5 0.0124 | 0.9949 292.965 809.210 2.76
5.0 0.0137 | 0.9951 458.762 1229.437 2.68
7.5 0.0179 | 0.9957 2522.945 6194.795 2.46
10.0 0.0202 | 0.9960 8314.425 19586.645 2.36

*p; = 0.16731 and p, = 0.97366

These results reveal that the asymptotically optimal quantiles (p;.p,) depend on the true
value of the shape parameter in a rather insensitive way, especially for p,.

It should be noted that using instead (p,,p,) from (3), which is optimal for the two-
parameter Weibull distribution, essentially triples the asymptotic variance of estimator ¢ if all
three Weibull parameters are unknown. This is more pronounced when the true ¢ = 1.5 to 2.0,
as the last column of Table 1 indicates. Note also, from Dubey [3] and Kimball [8], that the
asymptotic variance of ¢ (given by our Equation (2)) when the location parameter, a, is known
to be or can be set equal to zero, is 0.92 c?/n. Thus, incorrectly assuming that "a" is nonzero
makes the estimation of ¢ much more difficult than necessary.

4. MONTE CARLO INVESTIGATIONS

In order to gain further insight into the behavior of the percentile estimator & two Monte
Carlo investigations were made. The first investigated the sensitivity of ¢ to small deviations
from the optimal quantiles and whether a simple iterative scheme could improve the perfor-
mance of ¢. The second investigation compared ¢ to a very recently proposed efficient percen-
tile estimator, ¢, based on all order statistics [18] and the best percentile estimator, ¢', found in
our previous study {20].

Sensitivity of &
Since the asymptotically optimal quantiles depend upon the true (unknown) shape param-

eter ¢ in sucfl an insensitive way, a Monte Carlo study with 1,000 replications was made using
¢, defined by (4), (5), and (6), with p, and p, corresponding to optimal quantile values for
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¢ =2.0and 3.0. Over the range of investigation. i.e., ¢ = 0.5 (0.5)3.5, somewhat better results
were obtained with ¢* corresponding to p, = 0.0033, p, = 0.9920 than with one corresponding
to p, = 0.0072, p, = 0.9939. We define

(9 &* = 3.643/Inl(s ~ 1))/ (1, — 1)]
where £ = tjgoo33n]+1- f = f0.9920n]+1> and £, = tig 11871+ Note that for most sample sizes of

interest, f, = f;and t, = ¢,.

In this investigation, we also examined the following two estimators:

¢p: defined by (4), (5), (6) and based on the optimal combination of p, and p; from
Table 1, although this would not ordinarily be possible since the true ¢ value is not
known. For this reason, we also examined the following:
&**: a single iteration modified estimator

(10) e =¢lpr pb)

with p?and p} selected in a manner prescribed by the value of ¢* as given in Table 2.

Table 2 — Rule for Selection of p; and p;, in
Calculation of ¢** = ¢ (p%p¥)

¢ p! Pk
0.0-05 | 0008 | 09746
0.5-1.0 | 00048 | 09816
1.0-1.5 | 00028 | 0.9887
1.5-20 | 00033 | 09920
20-25 | 00033 | 09920
25-3.0 | 00033 | 09920
30-35 | 00033 | 09920

The schedule shown in Table 2 for selection of combinations of values of p! and p} was
determined from results involving &, and ¢* Because of the negative bias of ¢* for values of
¢ 2 1.5, a correcting term (ranging from 0.1 to 0.7) was also investigated for calculating ¢** as
a function of ¢* This tended to decrease the bias of ¢** al the expense of higher mean square
errors. Early simulation results also revealed that for n € 100, perfect choice of percentiles
(those corresponding to the true but unknown ¢) reduces the bias but not necessarily the MSE,
particularly when the true c is large. This theoretical estimator, &, has optimal asymptotic pro-
perties and is not necessarily good for small n and large c¢ values.

Comparison with Two Previous Percentile Estimators ¢’ and ¢

As a benchmark comparison, the proposed estimators ¢* and ¢** were also compared via a
similar Monte Carlo study of 5,000 replications with the two best percentile estimators, ¢' and
¢, suggested in earlier studies [20 and 18].

The best of the simple estimators for the shape of a three-parameter Weibull distribution

examined in [20) was found to be:
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(1) ¢ =2989/Inl(s, — a)/ (e, — @)

where

(12) a=(tt, — 13}/, + 1, — 21y

was the best estimate of the Weibull location parameter and
2.989 = Inlin(1 — 0.97366/In(1 — 0.16731)].

Wyckoff, Bain and Engelhardt (18] recently extended their earlier estimator ¢ [4] via the
following three step procedure:

First determine the shape parameter initial estimator (C12.20 in [20])
(13) 2‘0 = 2.989/|nl(l|",,kl+|_[|)/(l|,,p‘|+| - f|)]
with p;, p, given by (3), and the location parameter estimator
(14) a=1lr,—1/n" V11— 1/n""%)

where ¢ is the sample mean. Note the similarity of estimators (I1) and (13). Then the
Wyckoff, Bain, Engelhardt estimator is given by:

o : R s - u
(15) &= nk,/-F In(t, — a) + — ¥ In(t, - a)

re] re=s+1

where s = [0.84n] and the constant k, is tabulated in [4].

This estimator uses all order statistics and consequently it is not surprising that it was
found in [18) to have smaller bias and MSE than the much simpler estimator ¢‘, which is based
only on three quantiles. However, &' performed better in [20] than the earlier version of ¢ pro-
posed by Engelhardt and Bain [4].

Monte Carlo results comparing the proposed new estimators ¢* and ¢** with the previous
estimators ¢’ and ¢ are shown in Table 3. The nonoptimal estimator &, given by (7) was also
computed in the same simulation, but MSE values were so large and unpredictable for large
values of ¢, that no comparisons were necessary.

TABLE 3 — Comparison of Average Values and Mean Squared Errors of ¢',¢,¢*, and ¢**

Average Value MSE

True ¢ True ¢

0.50 1.00 1.50 2.00 2.50 3.00 350 0.50 1.00 1.50 2.00 2.50 3.00 3.50
& 0.52 0.99 1.38 1.70 1.95 218 236 0.008 0.031 0.087 0.227 0.510 1.031 1.551
n =30 ¢ 053 1.04 1.52 191 228 2.60 287 0.008 0.035 0.097 0.191 0.39 0.705 1133
[ad 0.54 101 143 1.81 213 245 280 0.011 0.038 0.120 0.313 0.673 1.528 2.258
e 0.50 099 1.44 1.81 21 245 280 0.008 0.053 0.120 0310 0.668 1.523 2
¢ 0.52 101 142 177 205 2.30 248 0.005 0.020 0.050 0.143 0.343 0.714 1144
neso ¢ 0.53 1.06 1.55 201 236 2715 309 0.005 0.021 0.052 0.131 0.236 0.392 0.804
[ad 0.51 098 1.41 1.80 216 252 283 0.005 0.021 0.067 0.187 0417 0.851 1.644
2 0.50 099 1.42 1.80 216 2.52 283 0.004 0.025 0.063 0.183 0414 0.848 1.642
& 0.50 099 1.42 179 209 236 258 0.002 0.009 0.027 0.087 0.232 0.518 0.991
nelo0 ¢ 0.52 1.02 1.52 199 L3 278 3 0.002 0.008 0.022 0.059 0.129 0.240 0.395
[ad 0.50 097 1.43 187 27 270 3l 0.002 0.011 0.033 0.093 0217 0.434 0.823
& 051 1.00 147 187 27 270 3l 0.002 0013 0.026 0.088 0.215 0.434 0.823

Number of replications = 5000 Number of replications = 5000
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Estimator’s ¢** slightly better performance over ¢* is not considered worthy of the addi-
tional effort required. Therefore, the latter is instead recommended in all cases—especially
when the true cis large, but with caution if also n < 30

All four estimators behave similarly for small values of ¢ particularly as n increases.
Comparing the proposed estimator &* with our earlier ¢’ we see that the former has a smaller
bias in almost all cases. The MSE of ¢* is clearly smaller than that of ¢' when n = 100 and
¢ 2 2.50. In problems with large sample sizes n, ¢ tends to have almost no variance around
its expectation; thus, for large n, the MSE of ¢’ consists mostly of the bias squared. with almost
no contribution from its variance.

Finally, the bias of ¢*is about equal to that of ¢. but the MSE of & is smaller than that of
¢*when ¢ 2 2.00. Our results about ¢ and ¢’ are consistent with those in [18].

S. SOME LITERATURE EXAMPLES

The estimators examined earlier in this paper. along with some other percentile estimators
used in [20] were applied to seven literature test problems, with known shape parameter. Prac-
titioners may find the results summarized in Table 4 particularly useful. However, these results
should not be generalized since they represent a static picture 1o a few examples; something
like setting your watch at 9:00 and keeping it there: it will be an excellent estimate of time
twice a day.

TABLE 4 — Literature Test Problem Results

Problem 1 2 3 4 | 5 T e 7
Source 15) I5] 17} [17) 12 15) {15)
Sample Size 40 40 100 100 100 100 100
N a 10 20 0 1975 | ©
3 b 100 100 1 47.072 | 47.072
= ¢ 2 3 2 2 1.2 1.328 | 1.328
Zanakis &= C8t 7697 | 2027 | 1360 | 1577 | 098 | 1546 | 1.344°
% |Zanakis  C12.21# 2950 | 3.633 | 2.001¢| 2139 | 1.305 | 1436 | 1.600
5 |Zanakis &= 12238 1801 | 2226 | 1714 | 1747 | 1080 | 1350 | 1377
+ |Hassanein €25.23t 1502 | 1933 1756 | 1.154 | 1170 | 1321*| 1.041
< Engelhardt
= & Bain  C27.23# 16571 19621 1770 | 1225 | 1175 1262 | 1.139
E Wyckoff,
1 |Bain &
<|Englehardt & 2,185 | 2.571*| 1970 | 1.870°! 1.280 | 1.380 | 1444
Zanakis-Mann &* 2026 1939 | 1712 1575 | 1437 | 1.231 | 1.384
(p, = 0.0033, p; = 0.9920)
MLE for ¢ 2.48 2330 | 1.783 | 1857 | 1.201%] 1330t] 1.767

*Best percentile estimate for problem.
+MLE better than best percentile estimate for problem.
#Notation used in [20].

It is interesting to note that in five out of the seven problems, one or more simple per-
centile estimator was mote accurate than the MLEs (iteratively obtained on a computer). As it
was shown earlier [19], [21], this occurs mostly in problems with small shape parameter values,
particularly when the sample size is small—a fact of particular interest to practitioners having
limited resources.
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6. CONCLUSIONS

A simple, three-order-statistic estimator ¢* is developed for estimation of the Weibuli
shape parameter ¢, when all three parameters are unknown. It was found to compare very weil,
in terms of mean squared error, with an estimator of the same form based on an optimal selec-
tion of order statistics, dependent only upon the unknown true value of c¢. Compared to our
previous best simple estimator &' [20), ¢é* has a smaller bias in almost all cases and a smaller
MSE in problems with large values of n and ¢. For small values of ¢, ¢* and ¢’ are as efficient
as the new estimator ¢ of Wyckoff, Bain, and Engelhardt (18] which is determined from al!
ordered observations after a single iteration.

We feel that all three percentile estimators ¢* ¢’ and ¢ are useful to practioners and
researchers, depending on the particular circumstances as suggested in Figure |.

Is a

Yes Computer No

available

soon
O)

Yes Yes No_

good
MLE code

vailable
?

Yes

Use Use MLE with
¢ starting point 3
¢ (preferably), Use Use
&' or é* ¢’ c*

FIGURE 1. Practical guidelines for choosing an estimator for the shape of
a three-parameter Weibull distribution

The following comments will further clarify and support our suggestions:

If a computer code is available, one is naturally tempted to use Maximum Likelihood
Estimation iterative procedures. However, research has shown that:
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(i) MLEs sometimes do not exist or represent a local optimum [16];

(it} The shape parameter is the least accurate of the three Weibull parameters to esti-
mate, causing computational difficulties for MLEs as ¢ gets larger [19]:

(iii) In nonregular cases (¢ < 2), the simple percentile estimator ¢’ was found to be more
accurate than the corresponding MLE, particularly when n is small [21];

(iv) the choice of a percentile estimator like ¢', ¢* or ¢ as a starting point may affect the
speed of convergence, but not so much the final shape parameter estimate of a good
iterative MLE procedure [21); and

(v) If the sample size is too large, determination of MLE or even ¢ is very time
consuming—a real concern in repetitive situations.

So. even if a computer is available, one may use a percentile estin-ator initially, addition-
ally or instead.

It should be noted that practitioners and students (usually nonstatisticians) often need a
good estimator of the Weibull shape parameter and do not have the time or access to a com-
puter facility. but only a pocket calculator. In such cases, estimator ¢—which uses all order
statistics— will be computationally prohibitive for any but extremely small sample sizes. Instead
we recommend using ¢* if n 2 50, ¢’ otherwise. The unusual advantage of ¢* is that it is
independent of the other Weibull parameters.

These quick estimators are also well suited for obtaining point and interval estimates for
the otherwise unattainable optimum solution to large scale integer, combinatorial or nonconvex
mathematical programming problems [22]. A sample of heuristic minimum solutions fits natur-
ally a three-parameter Weibull distribution.

In this paper we also demonstrated how the use of optimization methods can change an
erratic estimator (&) into a good estimator (&*), by specifying the appropriate three order
statistics that minimize the asymptotic variance of this simple estimator.
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ABSTRACT

Must Newton-type methods for linearly constrained optimization be either
of the modified Newton or guasi-Newton variety”? The contention of this paper
is that explicity recomputing part of the projected Hessian may be superior 10
both approaches. A computational comparison with MINOS is presented.

1. INTRODUCTION

In a previous paper [10], we presented a new algorithm for solving the linearly con-
strained nonlinear programming problem:

Minimize f(x)

subject 1o Ax 2 b.

That algorithm is a modified Newton one, i.e., for a problem involving n decision variables, an
entire matrix of projected second partial derivatives, which may be as large as n X n, must be
computed at each iteration. Such an approach, which requires order n? function evaluations
and order n® arithmetic operations (multiplications and divisions) at each iteration, may not be
practical when dealing with larger problems, say n > 20. This paper proposes a closely related
method, which requires substantially less computational work pei iteration, while retaining the
desirable features of our previous algorithm.

The chief novelty of our approach in this paper is the idea of explicitly updating part of
the second derivative matrix at each iteration. To illustrate the idea, the user chooses a "pipe
width,” 7, of rows to update each iteration, and the "pipe” moves from upper left to lower right
from iteration to iteration. For example, if the second derivative matrix is S x Sand 7 = 2, at
the first iteration the updated elements (indicated by asterisks) would be

OO O s s
SO O e s
OO O O Q
= N i — I ]
[=J = e R e R e}
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at the second iteration,
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and at the third iteration
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00
00
00
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Broadly speaking, Newton-like methods fall into two categories—modified Newton ones
and quasi-Newton ones. As indicated above, modified Newton methods update an entire
second derivative matrix at each iteration, while quasi-Newton algorithms iteratively update an
approximated matrix by adding a matrix of low rank (typically rank 1 or rank 2) to the last such
approximation. While modified Newton methods generally perform well, they are impractical
for larger problems. Quasi Newton methods require less work (usually order » function evalua-
tions and order n? arithmetic), but are potentially subject to a number of numerical shortcom-
ings, chiefly due to the second derivative approximation process, related to scaling the ele-
ments, restarts, and inability to deal with regions of nonpositive curvature. QOur idea is to take
a middle ground between those two approaches, by letting the user decide how much of the
second derivative information to recompute each time. Qur mathematical analysis shows that
such an algorithm is a viable idea, and some computational evidence indicates that it may yield
solutions more rapidly than either equivalent modified or quasi-Newton methods.

The present method inherits four major strengths from our modified Newton approach.

First, the theoretical convergence results carry over to the present algorithm. Thus,
under relatively mild conditions, the algorithm can be shown to converge to a point satisfying
first order necessary optimality conditions. Under somewhat stronger conditions, the methods
find a3 point also satisfying second order necessary conditions. The rate of convergence is also
shown to be superlinear, that is {[Ix**' — X[|/||x*— X||} — 0 as k — oo, or of order two
(lx**' = %|| < cllx**! - %[(2 for some c), depending on the assumptions made, where {x*}
is the sequence of points generated by the method and X is the optimal solution.

Second, the method is reasonably easy to use. It does not require the user to provide
analytical derivatives. However, while we have had some success in using this approach on
problems whose derivatives are not smooth (May, Shocker and Sudharshan [11]), the conver-
gence proofs do assume such properties. Our computational experience indicates that the per-
formance of the method is sensitive to only a few parameters, but will converge dependably
even with highly nonoptimal parameter values.

Third, the algorithm can deal directly with areas of nonpositive curvature. When minim-
izing a function, and using a Newton-like method, one would like the second derivative matrix
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(or its projection, if appropriate) to be positive definite, since then the usual search direction
generation approach yields a descent (improvement) direction. When the second derivative
matrix is not positive definite, though, a modified approach is required if we want to be sure to
obtain a useful search direction. Now the second derivative matrix is stored in a factorized
form, so it can be efficiently used in the solution of the set of linear equations yielding the
search direction. In our modified Newton method, we utilized the modified LDL7 factorization
of Gill and Murray {6], where L is a unit diagonal lower triangular matrix, and D is a diagonal
matrix with all positive entries. That factorization. when applied 10 a nonpositive definite
matrix A4, will actually find the factors of 4 + E, where E is a diagonal matrix with positive
entries, instead of breaking down, as the usual LDLT factorization would. In our present algo-
rithm, the Gill and Murray LDLT factorization could not be used. since we could not find a
way of updating it in order »? arithmetic when the second derivative matrix is modified by the
addition of a rank-1 matrix. Instead, we use the factorization of Bunch and Parlett [2]. which
they denote Q”MDMTQ, where Q is a permutation matrix, M unit diagonal lower triangular,
and D block diagonal, i.e.. it may have entries in the first sub- and super-diagonal, with only !
x | and 2 x 2 blocks allowed. (We will suppress the permutation matrix Q to simplify the
notation.) Sorenson [17] has shown how to modify the MDM7 factorization when a rank |
matrix is added to the matrix under consideration. While modified Newton methods often have
provisions for dealing with the case of nonpositive definiteness, using special line search tech-
niques, our method appears to be the first one which extends these methodologies to a quasi-
Newton environment.

Finally, the algorithm is a "least-constrained" method, in the sense of Lenard [8], which
means it may find the optimal constraint set, and thus converge, quickly. Since our approach
uses an e-active constraint strategy, it is desirable to identify those constraints met with equality
at the optimal solution as quickly as possible. A least constrained method allows for the drop-
ping or adding of several constraints from the active set at each iteration, as opposed to the
usual simplex-technique related strategy of dropping or adding only one at a time.

2. THE COORDINATE SYSTEM

A basic idea in our approach is the representation of the locally feasible region in the
neighborhood of a point x by a matrix factorization of the active constraint matrix N. That is,
the columns of N are the normals to the constraint considered active at x. Since we always
assume that N is full rank, for an n x u matrix N, we can find an »n % n orthogonal matrix Q
and a ¥ x u upper triangular nonsingular matrix R such that

R
ON =
0

where 0 is a matrix of zeros.

Now the last (n — u) rows of Q are all orthogonal to the columns of N, which means that
they define a set of vectors spanning the linear manifold defined by the active constraints.
Moving away from x along any such row keeps all the active constraint active. Also, the gen-
eralized inverse of N, N*, is given by N* = [R=10)Q. The rows of N* have the property that
movement away from x along the first row of N*, say, corresponds to dropping the first active
constraint while retaining all the others.
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The rows of N*. plus the last (n — u) rows of Q, constitute our coordinate system for
performing an iteration of the method. Since N changes with any change in the active set, so
does the coordinate system. The method is thus adaptive, adjusting itself to the local structure
of the feasible region. This adaptability, though, implies a need for proper second derivative
matrix maintenance, as outlined in Section 5.

Note that by the orthogonality of Q, the 1wo sets of rows are orthogonal, but that the
tows of N* are not necessarily mutually orthogonal.

3. THE ALGORITHM

The algorithm requires positive real numbers a.8.v. €. 7. and p, with p < 1 and
B2 < p/2u. a and B are used for move point acceptability, and p is used for a second-order
Armijo type test for Newton point acceptability. An e-active constraint strategy is incorporated
by letting any column A, of A4 satisfying (A,)rx — b, < €5 be considered active. y is of the
order of machine precision, and is introduced to avoid numerical difficuities. 7 is required in
the theoretical development as a lower bound on the negative curvature curve stepsize but
could be set arbitrarily ssnall. Also required are an initial feasible point. x", an initial stepsize
s% > 0, an initial n-vector " of +1's and —1's, a symmetric matrix G", and 7. the number of
Hessian rows / columns to be updated each iteration.

Let N* and Q be determined by QR factorization of N. Denote the i th column of [N*]7
by n, and ith column of Q7 by ¢,. that is,

IN1T=1Inn...nJand Q7= lg,q, ... g,].

Initialize the current solution point x = x% the current stepsize s = s%, the current direc-
tion sign indicator o = o°, the current matrix of QR approximate second partial derivatives
G = G° the sequence index k = 0. the last updated column /= n, and the local variations

failure indicator r = 0.
General Iteration

Step 1: (Determine active constraints.) Set the square of the gradient norm n’= 0.
Determine N for the current x and s. If the active set has changed since the last
execution of this step, update Q, N*, and G.

Step 2: (Computer second order multiplier approximations.) For each constraint |,
i=1,2, ..., u, compute Af;, an approximate Karush-Kuhn-Tucker multiplier, by
evaluating f at two feasible points, a stepsize and a half a stepsize along n;, and
using a three point forward difference approximation. If, for any 0, Af, > 0 and
neither of the two points evaluated along n; yields an improvement, dropping con-
straint i would be undesirable, so set d; = 0. For each /such that Af, < 0 or one
of those two points does vield an improvement, compute an approximate second
partial derivative A2f,, set d, = |Af;], and let n? = 7% + (A f)2.

Let x5 denote the point with lowest objective function value amongst all those evaluated
at the step.
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Step 3: (First and second derivatives for manifold directions explicitly updated). Let g,
denote the row of Q corresponding to the jth row of G, which is to be explicitly
updated this iteration. Then evaluate fat two points, one a feasible stepsize along
q; away from x and the other a feasible stepsize along —g, away from x. Using a
central difference formula, compute g and G;, approximate first and second par-
tial derivatives along g, (the discrepancy in subscripts is due to the fact that we are
interested in only the last (n — u) rows of Q). Set n’ = n’+ g2, adding g, to the
norm of the (projected) gradient.

Update xg to represent the betier of xz from the last step and the lowest function value
point evaluated at this step.

Step 4: (First derivatives for manifold directions not updated.) Let g, denote the row of Q
corresponding to the j th row of G, which is not to be explicitly updated this itera-
tion. Then evaluate f at one point, a feasible stepsize along ¢ ,q; away from x.
Using the value of G, from the last iteration, and the new function value. com-
pute a second order approximation to g;. Add g? to n>.

Update xj if appropriate.

Step 5: (Compute mixed second partial derivatives.) Consider each row g, as in Step 3.
Then for every other g, corresponding to the /th row of G, I < j, evaluate fat a
feasible point appropriately chosen along g, + g, and compuie the mixed second
partial derivative Gy (this fills in the "pipe" as in Section 1).

Update xp if appropriate.
Incorporate all the new second derivatives into the matrix factors of G.

Note that (n — u)/m passes through this step, with the same N, will explicitly update all
of G, using % (n — u)? — (n — u) evaluations. In the worst case (v = 0), then, % m(n—1)

evaluations are used, on the average.

The factors of G may be updated at this point using any rank-one or rank-two formula
which does not force positive definiteness on G on an infinite number of iterations.

Updating row/column / of G, for | # 1, is equivalent to adding a rank-two update of the
form we! + ew7, where w,,| = ... = w, = 0, is the / th column of the identity matrix. so that
if a scheme utilizing this special structure was devised, at most = updating passes using
Sorenson’s method [17] would have 1o be performed. We have not yet devised a procedure
exploiting this structure. Our code uses a strategy that is reasonably efficient when

r < % (n — u), and does two rank-one modifications for each row/column updated—the

second of which wipes out the undesired results of the first. Using the operation count in [18],
between 27 (n—u)? + 0(n) and (11/3)w(n — u)2 + 0(n) operations are required for this
updating. Full details on updating the Bunch-Parlett factorization are given in [17].

Step 6: (Check accuracy of derivative approximations.) If G is positive semidefinite and
the gradient norm 7 is sufficiently small, stop; x is an acceptable solution.
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If G is positive definite but the stepsize is too big relative to the gradient norm, i.c..
s > (n/a), set the failure indicator r = 1 and go to Step 12, where the stepsize will be reduced
with no movement made. Otherwise, scale the Newton search direction 4 relative to the N~
directions. If G is positive definite, go to Step 7, otherwise to Step 8.

Step 7:

Step 8:

(Eigenanalysis when Hessian approximation is not positive definite.) Determine 2
and A such that Z is orthogonal, A is diagonal, and D = ZAZT. Let A,y denote
the most negative eigenvalue of D. If A, =0, D is positive semidefinite: go to
Step 8. Otherwise, a direction of strictly negative curvature exists. Solve
My = Z, for it If the gradient norm is too small, go to Step 9.

(Compute direction of line search.) Solve M(D + ZEZT) M5 = —g for 6. where
E is a diagonal matrix given by £, = [max{|A . y(n —wA.yl - A ] for
Jj=1,2, ... n—u and A= max |A,l. E is thus the "smallest" diagonal

Si€<n—u

additions matrix necessary to force positive definiteness on G. If D is positive
definite, go 1o Step 10 and search only along the usual Newton direction. If D is
not positive definite, consider either the "fixed-up Hessian" direction
IN1Td + Qf8 or the quadratic curve {ylx, =x-+ ([((NTd~ Qlel +
PIUNSTd + Qfv]), where Q, is the submuatrix consisting of the last (n — ) rows
of Q. Note that (N*)7d — Qfg is just the negative gradient in QR coordinates.
The second vector, (N*)7d + @[y is guaranteed to be a descent direction for fif
A, < 0 and the derivative approximations are sufficiently accurate. Our curve
search is thus similar to that of McCormick [12] and More and Sorenson [14],
except that we reverse the r and r? terms. Our motivation for doing this is that.
unlike them, we allow a stepsize 7 to exceed one. Since the gradient direction is
most useful only close to the current point, we wanted it to be multiplied by r
rather than /%

If the curve is to be searched, go to Step 9. if the "fixed-up” Hessian direction, go to Step

10.

Step 9:

(Search along a curve.) Use a one variable search method to find a * 2 7 such
that the point x. satisfies the two term Armijo-type acceptability condition

flx) = f(x) < ple*n? + ()2pTg + %(1’)‘)'76)']. trying ¢ = | first. If success-

ful, let xz = x;-. In either case, go to S'ep 11.

Step 10:(Regular line search.) Search for a + > 0 such that f{x + ({(N*)7d + Qfg)) -

f(x) < ple(d’af +87g) + % 187G, wying ¢ = 1 first. If successful, redefine

Xg.

Step 11:(If the move point is good enough, reduce the stepsize.) If [f(xg, —

Sf(x) > —a?B?s?, there has not been sufficient function value decrease: go to Step
12. If f(xg) — f(x) < —a?Bis?, set the local variations failure indicator r = 0. If
flx,) — f(x) < B2, there has been, in addition. sufficient decrease relative 1o
the gradient norm. so choose a new smaller stepsize s and go to Step 13. Other-
wise, x ~— xg. 80 10 Step 1, having moved 10 xg, but using the same stepsize on

the next iteration.
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Step 12:(Failure; try reversing the local variations directions.) Reverse the o direction
indicators. If r = 0, this is the first time this step has been encountered with the
current x and s, set r = | and go to Step 1. Otherwise, if r = 1, let the new step-
size s' = s/2, set r = 0, xg — x, and go to Step 13.

Step 13:(Define a new sequence point.) If x # x* k — k + |, x* — x, s*— 5, x — xz.
and s — s’. Go to Step 1.

4. CONVERGENCE

The asymptotic couvergence behavior of our method is similar to that of our modified
Newton method [10] from which it inherits its coordinate system and searches, and our uncon-
strained method [9] from which it obtains its second derivative matrix approximation approach.
Proofs for the theorems below are thus obtained by extending results from (9] in the manner of
{10], so that we omit the complete proofs and indicate only the key points used.

THEOREM 1. (First order convergence.) If fis continuously differentiable on an open
convex set containing the bounded set {x[47x = b f(x) € £(x%)}, then the method con-
verges to a point satisfying the Karush-Kuhn-Tucker first order necessary optimality conditions.

PROOF: Since f(x) is bounded from below, we must have that {s*} is infinite, unless the
sequence {x*} is finite. If so, we can show that the last point found satisfies the optimality
conditions. Now assume {s*} is infinite. Then [s*} — 0, and, by the acceptability tests at Steps
6, 10, and 11, we have that the gradient norm is bounded above by a function of the stepsize,
so that the projected gradient norm also goes to zero.

The next two results all require that f be twice continuously differentiable. {x*} converge
to a unique point X, at which strictly complementary slackness holds, and that there is some
finite bound on the norm of the largest element of the true projected Hessian at X, which we
denote H.

THEOREM 2: (Second order convergence). If, in addition to the above. V7 /(+) satisfics
a Lipshitz condition in a neighborhood of X, and r is chosen small enough, X satisfies the
second order necessary optimality condition that H be positive semidefinite.

PROOF: This result follows from the explicit updating we do of G. If H is not positive
semidefinite, then it has at least one strictly negative eigenvalue. Since {x*} — X. and. by our
updating, {G*} — H, eventually our curve search direction will be sufficiently close to the
eigenvector direction associated with that negative eigenvalue, and, if 7 is small enough, the
search at Step 9 will be able to be successful infinitely often. Since 7 is bounded away from
zero, this would imply that {f(x*)} — —oo, so that H must be positive semidefinite. The need
for a "sufficiently small 7" is due to the fact that the upper limit of the interval over which *
may be chosen to satisfy the acceptability test at Step 9 is a function of the magnitude of the
most negative eigenvalue of H, and r must be chosen smaller than that upper limit for the
proof to follow.

THEOREM 3: If, in addition to the above, H is sufficiently positive definite in a feasible
neighborhood of x, the convergence rate of the algorithm is superlinear. If a Lipshitz condition
also holds, order 2 convergence holds.
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PROOF: These two results follow from making our approximated Newton line search
direction computed at Step 8 be sufficiently close to the true direction which would be com-
puted using exact derivatives. The stepsize 1 = | will then be feasible and acceptable. and. by
McCormick and Ritter [13, Theorem 2], the rates claimed follow.

5. MODI¥YING THE SECOND DERIVATIVE MATRIX

The algorithm maintains an approximation, G, to the second derivative matrix projected
onto the coordinates defined by the last (n — u) rows of Q. M and D factors can be main-
tained in the lower triangle of G, and, since G is symmetric, it is stored explicitly in the upper
triangle of the same array. G can thus be used to aid in adjusting the matrix when the active
set changes. Two cases must be considered—dropping a constraint from the active set, and
adding one.

Dropping a constraint from the active set removes a column from R and a row from N*,
and adds a row and column to G. An identity column is added to G, requiring no arithmetic.
(While this may tend to imbalance G, since it will intermix a direction for which no informa-
tion is available with those for which much better approximations are known, we compensate
by making the new column the first candidate for explicit updating.) The amount of work
involved in updating Q and R will depend on the number of constraints deleted and their rela-
live positions in the active set. Removing a single constraint would require from 0 (last con-

. 3, -
straint dropped) to 3un + % u? + 0(n) multiplications, 3un + -2— u® + 0(n) additions, and

{(u — 1) square roots (first constraint dropped) to update R, and an additional
Mu = 2) w — 1/2] + (u — 1)O(1) multiplications/additions for updating Q. using the
arrangement in [5].

Adding a constraint 1o the active set adds a column to R and a row to N7, deflates G from
uxwuto (u—1) x (y — 1}, and modifies Q. »n multiplications and n additions are required to
determine the new column of R, and then an (n — u) vector must be reduced using orthogonal
matrices. Using straightforward multiplication, the (n — w — 1)2 x 2 Givens' matrices each
require one square root, 4 multiplications and one addition. Premultiplication of Q involves
3n(n — u) = 3n + 0{n — 1) multiplications and additions. Updating of G is simplified by
using those transformations that will zero out all but the last entry in the vector, as in Gill and
Murray [7]. We would like to determine triangular factors, LL7, for G, since then premultipli-
cation by the successive Givens' transformations would change L to lower Hessenberg form,
and postmultiplication would restore triangularity.

Now G is recurred as MDM7. with D consisting of 1 x | and 2 x 2 blocks. and difficulties
arise when a | x [ block is nonpositive or whenever a 2 X 2 block exists, that is, whenever
there is a nonpositive eigenvalue. Fortunately, a fix up of G to be positive definite, so as to
have LLT factors, is easily done. since whenever G is not positive definite at this step, the com-
plete eigensystem of D has already been determined during the previous execution of Step 7.
Note that this modification of G would have to be performed once, before each set of con-
straints is added, and it will tend 1o modify the negative curvature information we try to main-
tain. Again, a least-constrained approach should tend to minimize such modifications.

The method used follows ideas in Sorenson [17], and is an attempt to replace G with the

"nearest" positive definite matrix, i.e., G = MDMT is replaced with G = M(D + ZEZT)M'.
The exact effect on the second derivative information in G is not clear, but, since we were not
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able to derive any scheme for preventing the indefiniteness of G which would be more efficient
than an entire refactorization, we opted for the fix-up approach. Note that this fix up would be
exactly what we would have obtained if we had used the Bunch-Parlett factorization and forced
the projected Hessian approximation to be positive definite.

The fix-up of G and determination of the LLT factor requires between
%(n — u) (n — u — 1) multiplications, no additions, and (n — u) square roots in the case of

all 1 x 1 blocks, to (n — u)? + 4(n — u) multiplications, (n — u)?+ (n — u — 6) additions,
and (n — u) square roots in the case of all 2 x 2 blocks. The subsequent straightforward mul-
tiplication of the lower triangular factor and its postmultiplication to regain triangularity
involves 4(n — u)> — (n — u + 2) multiplications and 2(n — u)? — (n — u) additions. It
should be noted that the reduction of the (n — u) vector

Vi

V2

could be replaced with a single multiplication by the matrix

) 8§ 0 0 0
| ; $1C) —C|C; AY) 0 0

- —u- 2
ou-1> Pazisy ... P3Pf = 5182€3 —C1563 603 53 0

5)15283C4 —C185383C4 —C383C4 —C3Cyq $4

which is a special lower Hessenberg matrix in the sense of {5). Thus, savings of approximately
25% of the work involved in premultiplying the lower triangular factor of G could be saved by
using Lemma 1V of Section 2 of [5].

If constraints have been added to the active set, N* increases. Due to the complexity of
updating N*, especially since several constraints are often added at the same time, N* is

. . . 1 e
recomputed at such times. Recomputation of N* requires 3u2n multiplications and

% u(u — 1)n additions.
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6. COMPUTATIONAL RESULTS

The essential motivating factor in this research was our feeling that a partiai explicit
update of the second derivative matrix might prove to be superior to the usual quasi-Newton
strategy. We coded our method to see whether numerical experimentation would be consistent
with that conjecture. (A copy of that code may be obtained from the author.)

There are actually two different major hypotheses to test here. First, we wanted to see if
varying . the number of rows/columns in the update "pipe." could improve convergence
behavior. We tested this using different values of = in our new code, and by comparison with
our older modified Newton method, thus holding the algorithmic structure constant. Second,
we needed to see whether our new method is competitive with other current software. For this
comparison, we used a state-of-the-art quasi-Newton method, Murtagh and Saunder's MINOS
{15] ailgorithm. On a secondary level, we were curious as 1o how the inclusion of a low rank
update might affect the results, so we also ran the test problems using Broyden’s rank-1 update
and the complementary DFP rank-2 update. Note that the latter forces positive definiteness on
G.

As with similar numerical experimentation with optimization codes, our results cannot be
considered an absolute conclusion for either hypothesis. The test resuits using our methods are
affected by the parameter settings, particularly the starting stepsize. While we tried to find good
values for each instance, other parameter settings might have been optimal. The path our algo-
rithm took to the solution may differ with =, so that the results may be an artifact of the start-
ing point. Finally, we used the default parameters in MINOS for runs through it. A more
experienced MINOS user might have been able to speed its convergence by setting its various
parameters differently. Note that our stopping criterion, since it is a second order one, is more
stringent than that of MINOS.

These caveats aside, our experiments do tend to support our conjectures. Table 1 sum-
marizes the number of function evaluations used until convergence (i.e., agreement with the
optimal f value to 10 decimal places) for the bes configuration of our new method, our
modified Newton method, and MINOS for six popular test problems. The results are

TABLE | — Comparative Function Evaluation Counts

Best Form of the New Method Our Modified
Proglem and Newton |MINOS
7| Update Evaluations Method
Gauthier [3] 3| Rank 2 111 187 496
(Colville #7)
Hydrazine Equil- {7| None 213 223 561
ibrium [4)
Rosenbrock {16] [2] None 109 (9] 97 192
Shell Primal [3] 0| None 44 50 60
(Colville #1)
Water Quality [10]{2] None 271 480 2,292
Wood {3] 3] None 245091 447 585
(Colville #4) ]
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i particularly striking for the Water Quality problem, which is a nonconvex 11 variable model
derived from a model of the Willmette River. The new method performed about the same as
our modified Newton one on Hydrazine Equilibrium, Rosenbrock’s banana function. and Shell
Primal, and did much better on the other three.

To further see the effect of modifying w, Figure 1 shows, graphically, the number of
function evaluations required for convergence on the four linearly constrained problems. Sheil
Primal is a relatively easy cubic problem, and Figure 1A shows that not much benefit results
from either increasing w or adding a low rank update. The best performance occurred for
7 = 0 and no update; since we start with an identity matrix for G this is nothing more than
steepest descent.

Gauthier’s problem is a 16 variable quartic. In Figure 1B the convex pattern with respect
to 7 that was so marked for unconstrained problems [9] appears for the "no update" and "rank-
2 update" curves. That is, an intermediate value of 7 is superior to either the modified Newton
(w = n) or quasi-Newton (& = 0) strategy. The pattern for the rank-1 update is different, con-
founded in part by local variations moves. Since the method moves to the better of the points
found by line (or curve) search or points used for derivative approximations, fortuitous values
of the stepsize and coordinate system sometimes lead to fast convergence.

Hydrazine equilibrium is a tightly constrained 10 variable problem. The feasible region is
small, and the method spends much time changing constraint sets (the optimum is strictly inte-
rior to the inequality constraints). Again, particularly lucky searches on local variation moves
had an impact on the convergence. The pattern of Figure 1C is a bit confusing, although the
modified Newton-like strategy of larger = seems to be desirable.

Finally, the performancc of the Water Quality problem is illustrated in Figure 1D. Since a
rank-1 or rank-2 update cannot be performed uniess the same constraint set is used for two
consecutive iterations, the constant changes of constraint sets meant that such updates were
never performed. Here the "U" shaped patterns appear again, lending support to the idea that
some explicit updating is better than none, but that a complete update is usually not
worthwhile. This is also a rather hard problem; note that MINOS required 2,292 function
evaluations to converge.

Table 2 shows the relative percentage of time used by each part of our algorithm. Our
code is an experimental one, written by the author, so that a more skiliful implementation
might redistribute these somewhat. Test runs were performed on the University of Pittsburgh’s
DEC 1099 in the usual batch environment. In this situation, times tend to vary by +15%.
The standardized times reported in the last two columns were computed relative 10 the 28.48

| seconds required for Colville’s [3] timing routine (average of 3 runs).

The bulk of the time required by the new method was for the numerical derivative
approximations. This was reassuring, since a basic idea in using a nonderivative method, such
as ours, is to trade off increased computer time for the human time necessary to compute the deriva-
tives analytically.

Finally, the standardized time ratio for our new method compares favorably with that of
MINOS. The percentage reduction in time for our method, relative to MINOS, ranges from
37-70% for the constrained problems and is about 90% for the unconstrained ones. Considered
together with the additional time necessary to derive and program the derivatives for a code
such as MINOS, we can conservatively conclude that our new method is at least competitive
with a representative, state-of-the-art, quasi-Newton algorithm.
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TABLE 2 — Timing Results

Time (sec.)

New Method MINOS

Problem |Setup: Finding { Evaluations|Constraint Handling Standardized |Standardized
Initial and and Searches Time Time

Feasible Point |Derivatives| Matrix Updating Ratio (1otal) | Ratio (total)
Gauthier 28%: 38% 1 7% 17% 0.0557 0.0885
Hydrazine 16% 75% 2% 6% 0.0331 0.0572
Rosenbrock - - - - 0.0015(19! 0.0330
Shell Primal 56% 28% 16% < 1% 0.0109 0.0372
Water Quality 14% 61% 14% 12% 0.1131 0.1921
Wood - - - - 0.0066(19) 0.0509

7. CONCLUSIONS

Our thesis, in this paper, is that explicitly updating a few columns of the approximated
(projected) matrix of second partial derivatives at each iteration may yield convergence
behavior superior to that of traditional quasi-Newton algorithms. We presented a method for
linearly constrained optimization, incorporating that idea into our existing algorithmic frame-
work. The user specifies the number of rows/column to be updated at each iteration. Theoret-
ical convergence proofs show that such a method retains the properties of our modified Newton
algorithm —convergence to a second-order Kuhn-Tucker point, and superlinear rate. Numerical
experiments indicate that this approach is competitive with a state-of-the-art quasi-Newton
code, and that a small number of explicitly updated rows/columns (usually 2 or 3) can
significantly improve the speed of convergence.
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ABSTRACT

In this paper. we develop efficient interactive methods for the solution of
bicriteria nonlinear programming problems. The methods do not require
trade-off information from the decision maker. pose less cognitive burden and
converge 1o the "best compromise solution” fast. Two methods, called the
paired comparison method and comparative trade-off method, are presented
with examples. A real application of the interactive method to a bicriteria prob-
lem that arose in the planning of the cardiovascular disease control program in
the U.S. Air Force is also presented.

INTRODUCTION

Bicriteria mathematical programming (BCMP) problems as a first generalization of single
criterion nonlinear programs have been studied by many researchers [1, 2, 3, 4, 7, 13, 17].
The small dimensionality of the problem permits a visual presentation of the "payoff set,” which
partly explains such widespread interest. Further, when we restrict ourselves to "efficient solu-
tions,"” the complementary roles of the two criteria yields additional computational power.

The BCMP problem may be stated as follows:

(1) VMAX (A1), frlx))
Subjectto g(x) <0 i=1, ..., m

where x is an n dimensional vector of decision variables, f, and f, are real valued criterion func-
tions and g;'s represent a set of nonlinear constraints. Let § = {x|g,(x) < 0} denote the feasi-
ble region. An optimal solution of BCMP will be taken to be a "best compromise solution” that
maximizes the preferences of a Decision Maker (DM); that is, a feasible solution that solves
the following program.

*Research funded under Contract F33615-78.D-0617 for the U.S. Air Force, School of Acrospace Medicine.
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(2) Max Ulfi(x), fr(x)]
Subjectto x € S

where U is the DM’s preference function or value function defined over the criterion values
(f,. 1) such that for any two alternatives x; and x;. ULf(x)), fr{x)] > Ulsi(x,), frlx)]),if
the DM prefers x; to x,.

In one of the earlier papers addressed to the bicriteria problem. Geoffrion {7] considered
the "scalar maximization approach,” i.e., maximizing a convex combination of the two criteria.
He showed how such problems can be numerically solved using parametric programming algo-
rithms. Bacopoulas and Singer (2] on the other hand, used the "constrained criteria approach.”
i.e., maximizing one criterion keeping the other criterion as a constraint. They showed how all
the efficient solutions can be generated by parametrically varying the level of the constrained
criterion over a particular interval. Some further refinements and alternate proofs appear in
Gearhart [6] and Benson [3]. Pasternak and Passy [13]. addressed the special case when the
variables are zero-one and devised a special enumerative algorithm for generating the efficient
solutions. Choo and Atkins (4] address the case when the criteria are linear fractional func-
tions. Adulbhan [I] considers the special case when the criteria are linear. In all these
methods, the emphasis is on generating all the efficient solutions of BCMP. But Walker [17]
considers the "interactive" approach and uses the Generalized Lagrange Multiplier method of
Everett [5]. Walker's method is slow in convergence and seeks difficult interaction from the
DM.

In this paper we will consider interactive approaches to the solution of BCMP where the
preference function U is only implicitly known. Such an approach in the more general context
of multiple criteria problems have been addressed by Geoffrion, Dyer and Feinberg [8] and
Zionts {19). However, Wallenius [18] has observed that such methods pose considerable cogni-
tive burden on the part of the DM; also the procedures converge to the optimal solution rather
slowly. In this paper, we develop interactive procedures that pose less cognitive burden to the
DM and converge to the optimal solution fast.

Section 2 presents the principal results that form the basis of the interactive methods
developed for BCMP. Section 3 discusses one of the interactive approaches called the Paired
Comparison Method. Section 4 discusses another approach called the Comparative Trade off
Method. Section 5 discusses a real application of the interactive method to a bicriteria problem
that arose in the control of cardiovascular disease in the U.S. Air Force.

2, PRINCIPAL RESULTS

In this section, we will establish a number of results that form the basis of the new
interactive procedures which are develolped in the later sections. We will assume throughout
that the feasible region § is a compact convex set. the criterion functions f; and f; are
differentiable concave functions and the preference function U is differentiable, increasing and
strongly quasiconcave defined in the following manner.

DEFINITION 1: /: S => R!' where S is a nonempty convex set in R" is said 10 be
strongly quasiconcave on S, if for each x|, x, € § with x; # x, and for every A € (0, 1), we
have

3) SIxx; + (1 = A)x;y] > Min [£(x), fO)].
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The convexity assumptions on criteria and feasible region are made only to allow the
methods of convex programming to be applicable. The quasiconcavity assumption of U is well
supported by preference theory (see Intriligator [10]).

Use of the concavity assumptions gudrantee the attainment of maxima and quasiconcavity
ensures us that local optima are also global optima. In addition it is sufficient to restrict
ourselves to efficient solutions defined below as candidates for the optima.

DEFINITION 2: A solution x° € Sis said to be efficient to BCMP_ if f,(x) > f,(x") for
some x € § => £,(x") > f5(x).

We will now develop procedures for generating the efficient solutions and then a method
of "efficiently” searching among the efficient solutions for the "optimal" solution.
(4) Define the payoff set ¥ = {y|f{x) = y for x € S}.
(5) Let 4 = {vlf(x) > vy for x € S}. Obviously, ¥ C 4.

LEMMA 1: If Sis a convex set and fis concave, then 4 will be a convex set [12].
Consider the following single objective nonlinear programs:

Pl: Max f,(x) P2: Max f;(x)
Subject to: x € § Subject to: x € S

Let the optimal values of (P1) and (P2) be v*and w* respectively. Now consider the fol-
lowing mathematical programs:

P,: Max f;(x) 0.: Max f(x)
Subject to: x € S Subject to: x € §
Silx) 2 v LHlx) 2w

Let x§ solve Q, for w= w* Then f|(x}) is the minimum achievable value for f,
without sacrificing any achievement on f,, while v*is the maximum value of f| at the expense
of f;. Hence, the range of achievable values for f), denoted by ¥, is given by [f;(x$), v*] and
the best compromise value for /) lies in this range.

THEOREM 1: In the optimal solution to the program P, where v € [f1(x}), v*]. the
constraint f,(x) 2 v will be a binding constraint, i.e., if X solves P_ then f1(X) = V.

PROOF: Assume the contrary, i.e..

(6) NE)Y >V 2 fGD
w* being the absolute maximum of f, over S,
(7) w* = fz(xf) > /‘2(})

we will consider the two cases
(8) (i) Let f3(x3) = f,(x)

(6) and (7) taken together contradict the fact that x§ solves Q%.
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9) (i) Let fylx}) > fr(X)

consider the line segment [X, x3] which lies in the convex set §. Over this line segment, the
concave functions /| and /, are unimodal. Because of *‘strict’’ inequality in {(6) and (9). there
exists a feasible solution x’ on the line segment X, x3] such that

(10) N > filx) > v
Jix) < fHx) < frlx}).

In equality (10) indicates that x' is a feasible solution to P; with f3(x') > f,(¥) contradicting
the optimality of x.

Hence, /(X)) = V.
THEOREM 2: X € Sis efficient if and only if X solves P, where V € [f)(x3),v*].
PROOF:
Sufficiency: Let X solve P. where v € [/(x%),v*]. We will show that X is efficient. Con-
sider an x € S such that
i) > filx)=V.
1t is clear that x is feasible to P;. But x cannot be optimal to P;: as per theorem 1 every
optimal solution x° satifies f,(x") = V. Hence, f,(x) < f,(x). Consider an x € §such that
fz(x' > fz(;')

Since X is optimal to P, x cannot be feasible to P;. Hence, f (x) < f,(x). Consequently, ¥
must be efficient.

Necessity: Let E be the set of all efficient solutions. Suppose x € E. Obviously f,(¥) 2
J1(x?) as, otherwise, x3 will dominate X. Let f,(X) = V. Assume that x does not solve P but
some other x' € § solves P,. By theorem 1. f)(x) =¥ = f|(X) since x' is optimal for P,
£i(x) 2 H(F): but X € E=> f,(x) € f,{x) and hence f,(x') = f,(X). Consequently, ¥
solves P..

Theorem 2 enables us to generate the entire set of efficient solutions by parametrically
solving P;. By theorem 1, the generated solutions will have specific levels of attainment of f;,

namely v. The next theorem would give some unimodality property enabling us to make an
efficient parametrization.

Consider the problem where we maximize U over the pay-off set Y, keeping /) fixed at v;
ie.,

P3: Max Ulv,fy)

(v.fEF

where (v,f;) € Yis a subset of Ydefined by {(v,f5))]f; = f>(x) for x € Sand f,(x) = v}
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By Theorem 1 and the fact that U is increasing in f5. it is easy to see¢ that an optimal solu-
tion to (P3) is also an optimal solution to program (P.) where v € [f;(x$).v*]. We now estab-
lish the unimodality of g(v), defined below:

THEOREM 3: Let Y’ be a convex subset of RZand U(f,.f5) is a strongly quasiconcase
increasing function of f; and f, defined over Y. then

glv) = Max Ulv.f;)
worpey

is strongly quasiconcave, i.e., unimodal in v.

PROOF: Let
glvy) = Max  Ulvy,fy) = Ulvywy) (say)

vy r€eY

gvy) = Max  Ulvyfy) = Ulvgwy) (say).

fvg 7)€Y
Assuming boundedness of functions the maxima are attained: by convexity of } and strong
quasiconcavity of U they are attained uniquely.
Note that (v;,w3;) € Y and (v,.wy) € Y’ by convexity of V',
Avi+ (1= Avg, Auy + (I —Mwylalso € Y, for0 A < 1.
glvi+ (1 = A)vyl = Max Ulvy + (0 = Mvy. 1ol

AV +iT—R v e}

(By convexity of ¥’} 2= Uvy+ (1 = Nvgawy + (1 = Ayl

(By strong quasi- > Min [Ulvyw,), Ulvyw,)]
concavity of U) = Min lg(vy), glvy]

Hence, g(v) is unimodal in v.

In the proof of the above theorem. we have heavily exploited the convexity of Y. When
we want 1o apply the result 1o 7, the pay-off set, we find that the assumption of convexity of
pay-off set may be overly restrictive. For example our assumptions of convexity of S and con-
cavity of f's are nor sufficient to guarantee convexity of Y. as the following simple example
would illustrate.

EXAMPLE: S=x > 0. f = (f,.f,) = (x, —log x) Obviously, §is a convex set and 1's
are concave. But the pay-off set Y is the graph of —log x which obviously is not a convex set
[12].

However, we will presently estabiish the fact that we can extend the pay-off set } 1o the set 4
defined in Equation (5) without affecting the results. Lemma I established the convexity of
the set A. Hence identifying 4 with Y, the result of theorem 3 holds even when the pay-off
set iS nonconvex.
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We will establish in the next theorem, the equivalence of solutions to the following two
problems.

P4: Max Ula,.f;) P5: Max Ula,f5)

tafpey la.fy)€ 4

THEOREM 4: The optimal solutions to (P4) and (P5) are identical, i.e., if Y,, be the set
of optimal solutions to (P4) and 4,, be the set of optimal solutions to (P5), then Y,, = 4,

PROOF:

{a) We will first prove that every element of 4, is an element of Y, i.e., 4, DO V,.
Let y* = (y},pP maximize PS5 for a = yf, ie., y* € 4,. We have (o show that
y* € Y and hence y* € V,. Since A4,, C 4, by definition 3 and x* such that
Sfix*)= (ft.f3) 2 y* Note that y*€ Y is f(x*)=y* Assume that
S(x*) > y* e,

at) ST =t 3> v} (say).

Since U(f\.f;) is increasing in /) and f,, (11) gives

(12) Uty < UGS,

But from the fact that y* maximizes U(yt,f3) over (y1.f,) € 4 we get
(13) UGty 2 UGLM).

(13) contradicts (12); hence our assumption (11) must be invalid and f(x*) = y* By
definition of the set Y, y* € Y. Being a maximizer of (PS) for & =y}, y* € Y, and hence
4,2 Y,

(b) Assume »* € Y,. We will show that y* € 4, as well or Y, C 4,. Since
Y, C Y C A we get ¥* € A. Assume p* is not optimal to (PS). Hence q
another v' = (y},y;) such that

Uyty;) = M Ut/

X
yhf€4
(14) UGty 2 Ut S, forany (vh.fy) € 4

and in particular 2 U(yt.py}.

Now (y%t.y;) € 4,:. by part (a) of the proof we will have (y},¥;) € Y. By optimality of
(yt.yp for (P4)

(15) Ulyty) < Uty

(14) and (15) imply that
Uty = Uty

or in other words (yf.y3) optimizes (P5) as well. Hence
y*€A,orY, CA,
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THEOREM 5: With the assumptions mentioned earlier the tollowing relationshin is true:

Max Ulv. f3) = glv) = Max U (v, f3)

(\.I:.)G)
Subject to: fi{x) 2 v
x €S8

PROOF: Follows directly from Theorems 3 and 4.

3. PAIRED COMPARISON METHOD

Using the results of Section 2 we will develop a procedure needing only a paired compart-
son from the DM, i.e.. given any two feasible solutions and their outcomes. sav +'' and v'-'
the DM only has to specify whether

(16) P> 32 or 2 % 4 or both

where "»" denotes "preferred to."

Interaction of this form is presumably much less demanding than asking the DM to
specify his local tradeoffs. We will presently indicate how (16) can be used 10 ¢liminate a por-
tion of the efficient set and progressively converge to the "best compromise soltution.”

Based on the theorems given in Section 2, the BCMP problem has been reduced to deter-
mining the maximum of g{v) where v belongs to the interval [v, v*} where v, = /{x%. How-
ever. g{v) is not known explicitly since U is not known. But. using a search technique which
requires only functional comparison and not function values. we can still solve the BCMP prob-
lem. using the following region elimination concept:

For a unimodal function g(v) defined over a finite interval {v,,v*), let v, and vz be two
points in the interval such that v, < vg. Then, g(v,) < glvg) implies that the maximum of
g(v) will not lie in the interval (v, v,). On the other hand, g(v,) > g(vg) implies that the
maximum will not lie in the interval (vg, v*).

General Steps of the Algorithm
Step 1: Solve P1: Max f\(x), subject to x € S.
Set max f1(x) = v*

Solve P2: Max f,(x), subject to x € S
Set max f(x) = w*
Step 2: Solve Q%: Max f(x), subject to x € Sand f3(x) 2> w*

Set the maximum of f, v,. Now the optimal value
of /) to the BCMP lies between v, and v*

Step 3: Choose two values, v, and vg, such that v, < v, < vz < v* Solve the problem

P,. Maximize f,(x), subject to x € Sand f(x) 2 v for v= v, and v = v let
g(v) = Max f,(x) for P..
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Step 4: Let 'V = [v,g(v )], y? = [vg,g(vp)]. Given y''"" and p'~', the DM is asked to
specify whether p'' > (preferred to) v?', or ' » 'V, or indiffereni. Usine the
DM'’s response, a portion of the efficient set can be eliminated.

If V' > y? then set v, = vg: g0 to step 5.

If y2 » ' then set v, = v, go to step 5.
Step 5: If {v, — v,| < € (chosen small number) stop; otherwise return to step 3.

Figure 1 illustrates the paired comparison method. Here, y®' > ' since U(,'?) >
U(»'""). Hence, the maximum of U cannot lie in the interval [v;,v,]. Eliminating the region
(v;,v4), the interval of uncertainty where the optimum lies reduces to (v,,v*) If Golden Sec-
tion Section Search is used to generate the two new points between v, and v* one of the new
points will turn out to be vg. With Golden Section Search, we will be able to bracket the besi
compromise solution y° to less than 10% of the original interval on v with just 5 paired compar-
isons from the DM; in 10 paired comparisons, the optimal solution will be within 1% of the ori-
ginal interval of uncertainty [v,,v*]. Thus, for a specified level of uncertainty we have a finite,
rapidly convergent procedure using only paired comparison of two efficient solutions.

f2
A
:Eﬂiciem Frontier )
Maxtl — P ! ‘ \ \ | \
]
increases
u> u Uy
Payoff /Attribute
l Space ¥
| 1L,
| -1,
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FiGURE 1. Paired comparison method. '
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Numerical Example
Consider the following bicriteria program [7] with

Silx) =32 40 x, + 23 x3— 7 x4

fz(X)=32—lOX| —4X2+7X3_7X4
and the feasible region S is specified by the following linear equality constraints in detached
coefficient form in addition to the usual nonnegativity restrictions:

X X X3 X3 Xs X b

| 0 —-23/50 27/50 0 0 132/50
0 1 —65/100 35/100 0 0 60/100
0 0 1725 1/25 1 0 16/25

0 0 15/50 —-35/50 0 1 40/50

In order to simulate the interaction process, we will assume that the DM’s implicit prefer-
ence function (which guides him in the selection process) is the following quasiconcave func-
tion
Uirs) = 17 h

The true optimal solution is x* = (x},x3,X3,X4,X5,X¢)
= (1.2857, 0, 0.7895, 3.1805, 0.4812, 2.7895) with f/* = (f}, f3)
= (27.895, 2.406) and U(/fT]. /P = 22.13.

Solution Using Paired Comparison Method

Step 1: Solving (P1) and (P2) we get v* = 60 and w* = 3.2
Hence v, = 60
Step 2: Solving (Q%) yields v, = 8

Iteration 1

Step 3: Using Golden Section ratios 0.618 and 0.382, v, = 27.864 and vg = 40.136. Solve
the problem P, for v = v, and vp. g(v,) = 2.407 and g(vg) = 1.707

Step 4: Interact with the DM and seek his paired comparison between y!) = (27.864,
2.407) and y'? = (40.136, 1.707). Assuming that DM is guided by the implicit
preference function U(f,.fy) = f¥3 f,. Uly""]1 = 22.12 and U[y'®] = 20.01. By
the property of the preference function, y' » y@ if Uy'"] > Uly'?). Hence,
»'!" would be preferred to y? Consequently, v, will be updated to vz = 40.136,
thereby eliminating a portion of the efficient frontier.

Step 5: Assuming that the interval of uncertainty is to be reduced to 10%, the search has

to be continued further on the reduced efficient frontier. For brevity of presenta-
tion the results of further calculations are summarized in Table 1.
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TABLE | — Solution of Bicriteria Problem Using
Paired Comparison Method

Remaining
. o (b2} KT Interval
lteration #| v, v, vy Ve ¥ v vl o) % of Orig-
inal)
0 8 60 - - - - - - 100
1 8 40.136(27.864(40.136{(27.864, [(40.136.| 22.12 | 20.01 61.8
24071 1.707)

2 20.276(40.13620.276|27.864 | (20.276. |(27.864,| 21.12 | 22.12 38.2
2.841) 2.407)

3 20.276(32.549|27.864132.549((27.864, |(32.549.| 22.12 | 21.82 23.6

2,407} 2.140)

4 24.964(32.549124.964]27.864|(24.964, | (27.864,] 2197 | 22.12 14.6
2.573)} 2.407)

S 24.964(29.652{27.864(29.652|(27.864, [(29.652,| 22.12 | 22.09 9.0
2.407)) 2.306)

4. COMPARATIVE TRADEOFF METHOD

The local trade-off at a feasible point x € S, between criteria 2 and 1 is defined 1o be

U U

evaluated at x.

T, measures the loss in criterion f; from the current level the DM is prepared to trade-
off for unit gain in criterion f).

If the DM can provide local trade-offs then the problem can be solved interactively using
Geoffrion-Dyer-Feinberg (8] type approaches. However, it has been repeatedly observed in
practice that precise tradeoffs are difficult to provide. However, the DM can provide "impre-
cise" tradeoffs much more easily, e.g., "interval estimates" in place of "point estimates." For the
bicriteria case, an estimate of the local tradeoff that is easier than the interval estimate is the
"comparative estimate." The DM is provided with a number and will be asked to respond
whether or not he would be prepared to tradeoff more than, less than, or equal to the specified
number in criterion f; for a unit gain in criterion f). Based on the DM’s response, a portion of
the efficient frontier can be eliminated. We will presently indicate how the results of Section 2
can be used to provide the basis for the "comparative trade-off method.”

At any feasible point x € S, let Ay be the perturbation in f, from its current level per
unit perturbation in f|. Limiting ourselves only to efficient solutions, we find that Theorem 2
provides us a method of generating efficient solutions; also Theorem 1 specifies that the con-
straint f1(x) 2 V in program P, will be binding in every optimal solution. Hence, A, is
obtainable as the negative of the Lagrange multiplier associated with the constraint f,(x) > V.
Note that A, is part of the solution output of most mathematical programming algorithms.
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A, has the following interpretation: A, measures the loss in f; from its current level that
must be suffered per unit gain in f|. On the other hand T,; measures the loss in f; the DM is
prepared to trade-off per unit gain in f,. Naturally. these two quantities must be related to the
optimality of BCMP and the precise relation is the subject of our next theorem.

THEOREM 6:

Let x* be the optimal solution to BCMP with f(x*) = (/7. f3). Let x be any efficient
solution. Then

(a) x*is optimal to BCMP if and only if A, = T3, at x*
(b) At xif Ay < Ty then fi < fF similarly, if Ay, > Ty, then f, > f}.

PROOF: Part (a) Sufficiency: At x*let Ay = T3. By definition of T;, at x* the DM is
indifferent to unit gain in f; and Af; units of loss in f, where Af, = g/g g;ﬂ . In
J1 2

other words
18) A1) L] ~ [FA(xe*) +8,./,(x*) — Af, - 8]

where ‘~- denotes the indifference of the DM and 8, is the differential change in f;. When
Ay = Ty, in the neighborhood of x* a differential change &, in f, is accompanied by a
differential change of —(Af,) - 8, in f,, as per the definition of A,. Hence, points in the
neighborhood of x* are equally preferred to x* hence, x* is the local optimum. By quasicon-
cavity of U, x* must be the global optimum too.

Necessiry: Let x* be optimal to BCMP but Ay, # Ty, say Ay, < Ta,. Around a neighbor-
hood of x* @ a point [f,(x*) + 8,, f2(x*) — §,Ay] where 8, is a differential change in f as
per the definition of Aa. At hy < Ty,

(19) (fz(x‘) - 5|)\2|) > (fZ(X.) - 8|T2|) for 8, > 0.

Since U is strictly increasing in both f; and f,, inequalities (18) and (19) taken together imply
that

(20) ix*) +8,,152(x*) — 8 )ay] > [/1(x*) +8,./,(x*) — 8,Ty]
~ 1) f(xM).
By transitivity of preferences
an %) + 8y, f{x*) — x5 > 1 (x*), fL{x")].
Obviously, (21) contradicts the optimality of x* Hence, Ay, £ T;,. Similarly we can show that
Ay # T3 Hence the proof.

Part (b) Let Ay < T,. By (21) an increase in f, from its current value leads to a pre-
ferred solution. Hence, an increase in f| is a locally increasing direction for U along the
efficient frontier. Also x being an efficient solution is a solution to program (P,) by Theorem 2
and f,(x) = v by Theorem 1. We noted earlier that x is a solution to program (P3) also, i.e.,

(l\'}aﬁ(‘ U(v,f;). Theorem § established the unimodality of g(v} which is the "value" of
v, b1
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optimal solution to program (P3); as f,(x) = v, the value of optimal solution to program (P3)
is unimodal in f,(x). By the property of unimodality, U increases along a locally improving
direction continuously up to the optimal solution and continuously decreases in the other direc-
tion. Hence, f,(x*) > fi(x) or ft > f,. Similarly, we can prove the other case also.

Note that Theorem 6 provides a convenient way of ruling out a portion of the efficient
frontier. All that is needed is an interaction with the DM whether or not A, $ T3,. Depending

on his response we can narrow down the search of efficient points to only those with £, value
greater than or less than the current f; value. We wish to point out here that the Surrogate
Worth Tradeoff method due to Haimes, Hall and Freedman [9] is essentially based on a result
similar to part (a) of Theorem 6. However, they do not have a result comparable to part (b) of
the Theorem. Thus no "region elimination” is possible in their method. Also the DM has to
specify how far T3 is greater than or less than A, on a subjective scale of + 10 to —10.

We now formally state the procedure as follows:
Step 1: Solve (P1) and (P2) and determine v* and w*.
Step 2: Solve (Q,+) and determine f(x3). Set v, = f,(x3).

Step 3: Solve P, for v = v, where v, < v, < v,. Determine A3, i.e., the Lagrange mul-
tiplier corresponding to the constraint f,(x) > v, in the program P,.

Step 4: Interact with the DM and present him with A;; and seek his comparative trade-off
75, i.e., whether Ty 5 A2 Depending on the outcome of interaction eliminate a

portion of the efficient frontier using the following rule:

If Ayy < Ty, update v; = v, go to step 5.
If Ay > T, update v, = v,; go to step 5.
If Ay = T3, stop; the current solution to P, is optimal to BCMP.
Step 5: If |v, — v,| < & (chosen small number) stop; else go to step 3.
Note that selection of v, values can be done efficiently using the midpoint of the interval.
For example, with § stages of interaction, we will be able to bracket the optimal solution to less
than 4% of the original interval. In 7 stages, we will be within 1%, etc. Thus we have a finite,
rapidly converging procedure using only "comparative tradeoffs.” We shall illustrate the method
using the s#me example given in Section 3.
Numerical Example

Solution Using Comparative Trade-Off Method:

Step 1: As before v* = 60; w* = 3.2. Hence v, = 60.
Step 2: As before v, = 8.
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Iteration 1

Step 3: Using the ‘Bisection’ method (i.e., midpoint values) to choose v, values, v, = 34.

x4 which solves P, for v = v, has f values of (34,2.057); also the Lagrange multi-
plier Ay = 0.0571.

Step 4: Interact with the DM and seek his comparative estimate of local trade-off 7). i.e.,
whether Ty > A3, Ty < Ay or Ty = Ay Assuming that the DM is guided by
the implicit preference function
U0 = FE7° £ we get
1Y - U .

— =2/3 /7" f,and ——— = f¥*. Evaluating at x,,

a7, ST 3 Si g at x,

AU 2 -

— = = (34)7"3 (2.057) = 0.4233 and

af, 3 ) (2.057) an

1 oU [ aU 0.4233

—— = 3473 = 10.4951. Hence, Ty = —— [ — = —2=22 _

9/ YT 10.4951 0.0403.
Thus, Ay; = 0.0571 > Ty = 0.0403. Hence, update v, to v, = 34

Step 5: As the limits v, and v, are not close enough, the search has to be continued
further on the reduced efficient frontier. The details of the calculation for further
stages are summarized in Table 2.

TABLE 2 — Solution of Bicriteria Problem Using

Comparative Tradeoff Method

T f r Remain Interval
Lhemuon Bl 4} Y L" Vaglve) A T (% of original interval) |
! 0 g 60 [ = - - - 100
] ! E 8 : ¥ M (34,2057 0.0571 | 0.0403 50 !
, 2 ;21 [ 34 ‘ 21 (21.2.800) 0.0571 | 0.0889 25 ;
1 3 | 275 |34 | 275 (21.5,2.429) 0.0571 | 0.0589 12.5
| 4 [ 215 | 30.75 | 30.75 (30.74,2.243) 0.0571 | 0.0486 6.25 |

5. BICRITERIA OPTIMIZATION APPLIED TO THE U.S. AIR FORCE
CARDIOVASCULAR DISEASE CONTROL PROGRAM

In this section we will demonstrate an application of the paired comparison method to a
bicriteria optimization problem of designing a cardiovascular disease control program for the
U.S. Air Force personnel. this part of a study currently undertaken by Purdue’s School of
Industrial Engineering, under contract with the USAF School of Aerospace Medicine.

The United States Air Force (USAF) is planning a comprehensive program for reducing
the incidence of cardiovascular disease (CVD) among its active duty personnel. This program,
known as the Health Evaluation and Risk Tabulation (HEART) program, would consist of
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(i) an extensive educational program about CVD, its causes and prevention,

(ii) a risk screening program to identify those AF personnel who have a high susceptibil-
ity for developing CVD, and

(iii) a risk intervention program to treat such high risk personnel and reduce their CVD
risk by medications and/or behavior modifications.

In order for such a program to be viable, the expected benefits resulting from reduced
incidence of heart disease must outweigh the cost of the HEART program.

Risk Identification: A general cardiovascular risk profile, based on the Framingham Study
{11], is presently being considered as the means of identifying high-risk personnel for treat-
ment. With this approach a logistic regression model would be applied to each individual and
would yield his CVD risk; namely, the probability of manifestation of cardiovascular disease in
the individual in an eight-year time period.

Risk Intervention: By rank ordering the CVD risk scores of USAF personnel, a certain
percentage of the highest risk individuals are selected for specialized face to face therapy for
modifying their elevated values of risk factors. At present, those high-risk individuals with
elevated systolic blood pressures will be treated with medication, while those with elevated
cholesterol levels will be treated with diet modification only. Both individual and group thera-
pies will be used to persuade smokers to quit smoking.

The recurring cost of the HEART program, excluding the initial start-up costs, is
estimated between 7 and 9 million dollars a year depending on the total size of the therapy
group. Hence, before implementing the HEART program on all airforce bases, the Air Force
was interested in answers to the following question:

Given the total size of the therapy group, determine the optimal
number of Air Force personnel to be selected in each age group
of flyers and nonflyers such that the total "cost-effectiveness" of
the HEART program is maximized.

The therapy selection problem has indeed two competing objectives. One objective is to
minimize the USAF CVD risk and the other objective is to minimize the HEART program
cost. By increasing the size of the therapy program, the CVD incidence in the Air Force will be
progressively reduced but this can be achieved only at the cost of increased HEART program
expenditure. If we follow a poticy of selecting the high risk personnel from each age group for
risk intervention, the graph of CVD incidence versus therapy size will be a monotonically
decreasing function. Hence, there is an optimal expenditure level for the HEART program, an
optimal level of CVD incidence, an optimal therapy size and an optimal selection strategy for
that therapy size. Determination of all these quantities is a nontrivial problem for which we
developed the following bicriteria mathematical programming model which was solved using the
paired comparison method developed in Section 3.
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BCMP Model
Minimize Si1(x)
Minimize S2(x)
17
Subject to IS
j=1
ai S xi < bl
Where: J=L ... 17
x = selection strategy (x;,x;, ... . x7) for each age group of flyers and nonflyers.

J1(x) =USAF CVD risk for a given selection strategy x
Jf>(x) =HEART program cost for a given selection strategy x
S = Maximum size of the therapy group (fixed)

a;= Minimum number to be selected from age group j (flyers and nonflyers);
Jj=1, ..., 8 correspond to flyers in age groups 20-24,....55-59, respecitvely,
Jj=11, ..., 17 correspond to nonflyers in age groups 15-19,...,55-59, respectively.

b, = Maximum number that can be selected from age group .

Even though f>(x) could be determined analytically, f,(x) is indeed a random variable
because of the unpredictability of the effectiveness of the risk intervention programs on modi-
fying the risk factor levels. Hence, a comprehensive simulation model known as P-HEART
(Purdue Health Evaluation and Risk Tabulation) was developed by the authors [14]. P-
HEART simulates the USAF population and performs risk identification, therapy selection and
risk intervention. The description of the simulation model, its validation and findings are given
in Reference [14]. Through extensive simulation runs, the expected value of f|(x) for different
selection strategies were estimated and a polynomial equation was fitted to get analytical forms
for f,(x) by age group and flying status.

The paired comparison method was then programmed within the frame work of interac-
tive solution of BCMP for minimizing CVD risk and HEART program cost. The Generalized
Reduced Gradient Algorithm was used to solve the nonlinear programs in Steps 1, 2, and 3 of
the interactive algorithm. The interactive program was extensively tested at Purdue using Air
Force Officers as decision makers. The program has been well received by the policy makers in
the USAF HEART program office and is being used as part of the long term project planning
currently underway in the Air Force. For more details on the interactive computer program
and its output, the reader is referred to Sadagopan [16].

6. CONCLUSIONS
In this paper we have developed interactive procedures for the solution of bicriteria pro-

grams. Even though the entire set of efficient solutions can be generated and pictured, such
iteractive procedures do have merit due to the following reasons: in many real life problems
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complete generation of all efficient solutions may be computationally expensive, even granting
such generation, the DM is unaided in the selection process. Hence, the procedures developed
in this paper may be thought of as "decision aids" [15].

The primary power behind our procedures is the unimodality property (Theorem 3). A
similar result is available in Geoffrion [7]. However, our proof of unimodality is entirely new
and allows extension to more general cases unlike Geoffrion’s result. Also our relationship
between Lagrange Multipliers and local tradeoffs is new. For more details on the bicriteria
results, U.S. Air Force application and extensions to the general multi-criteria problem, the
reader is referred to Sadagopan [16].
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ABSTRACT

There are a great number of queucing systems. ncluding the MUY e
GIY My and the diserete GG queue 1n which the < e probabilities are
determined by repeated queue equations. This pape- 4 simple. efficient
and numerically stabie algorithm to caleulate the sta ;b7 lies and measure
of performance for such systems. The method aver - ih complex anth-
metric and mairix manipulabons

1. INTRODUCTION

This paper gives a new method 10 find the equilibrium probabilitics of continuous-time
Markov processes in which the rate of going (rom state m to nis equal o d,_,, for any »
exceeding a certain limit, say r. The largest and smallest possible jumps are / and —g respec-
tively, that is. the subscript of d, runs from —g to . These concepts will be further expanded
in the next section. Here. we demonstrate it shortly, using the MY/ M?/1 queue as an example.
In this queue. arrivals of size j, | € j € /i occur at rate A,. and departures of groups of size i
occuratarateof u,. | € 7 < g Hence,
d=x, 1<

d_,=u,, i<nligigy

!

The paper also considers discrete Markov processes with a similar structure. In this case.
there is a probability of p, to go from state nto n + & Queues with such structure include the
system size of the GIY/ M/ ¢ queue (4] and the waiting time of the discrete GI/G/1 queue [5].

At present, there are several approaches available to solve such queucing problems. In
the first approach. one sets up generating functions, and uses partial fraction expansions 1o
invert these generating functions. These cxpansions require one to find the roots of an equa-
tion of degree g + A The same is true it one uses operators on the queucing equations and
determines the characteristic roots. For practical applications. these approaches have some
disadvantages. The equations are often difficult 1o solve, especially when they are of a high

VOL. 29, NO. 3, SEPTEMBER 1982

FRECEDING PAGE BLANK-NOT F1LMED

461 NAVAL RESEARCH LOGISTICS QUARTERLY

L N e |




462 WK GRASSMANN AND M T Ol DHRY

degree. Their roots are usually compiex and difficult 1o work with. Moreover, there may be
double roots which lead 1o further complications. Neuts (3] therefore suggested solving thesc
problems using matrix equations.

The method in this paper combines the approach of Neuts with the classical method. In a
sense, it can be considered as a modification of the method of Neuts. The main difference
between our method and the Method of Neuts is the following. [n Neuts® approach, a matrix R
of dimension /# x /) has 1o be calculated. In our approach, only the first column of R is calcu-
lated. which reduces the number of operations approximately by a factor of 4. Even though the
method is similar to the one of Neuts, its derivation is done. using the classical approach. In
this wav, our method bridges the gap between the classical approach and the approach of Neuts.

2. PROBLEM DEFINITION

In this section. 4 precise problem definition is given and demonstrated. using a number of
examples. First, we discuss the discrete case. Let there be a Markov chain with the transition
probabilities. p,,,. #.m 2 0. The equilibrium probabilities of this chain are denoted by =,.
that is, =, is probability to be in state n. As is well known, the 7, are determined by the fol-
lowing equilibrium equations. provided the system has an equilibrium

(]) Tl’,, = Z ”nlpmn’ n ? O

m=10

We assume that there is a certain limit r such that for n 2 r. p, , = d,_,, only depends on the

difference between m and n. In other words, if Q represents the state. d, is the probability to
increase Q by k from nto n + k. I w,, is defined to be zero for m < 0, equation (1) becomes
therefore for n 2 r

T, = Z 11’,"(/"_,,, = 2 T,k d/\- n ; r.
m=—o0 k=--00
We furthermore assume that d, = 0 for k < —gor k > h Thus, one has
h
T,= 3 Tppde n 2T
k=—g
If one solves this equation for =, one gets
h
(2) Ty= Y Ty N 2T
k=—g
The ¢, in this expression are defined as
Pk=’dk/(l"d0), k#O

?050.

(3)
For n < r, one uses equation (1), that is

o0
4) Ty= 3 TbPmn N < T

me=0
Equation (2) will be referred to as the queueing equation, whereas equation (4) gives the initial
conditions. There are r initial conditions. However, it can be shown that one of them is redun-
dant, In its place, one has the normalizing condition
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(5) irr,,=l.

n=0
If there exists a unique equilibrium vector [, ], this vector is fully determined by the queucing
equation. the r — 1 initial condition and the normalizing condition. Of course. il r = 1. there
are no initial conditions. As is well known, an equilibrium solution will exist i

h £
p=3 /d,/iid,,, < 1.
=1 1=1

This paper will show how to find this equilibrium solution in an efficient way.
In continuous-time Markov chains, the equilibrium probabilities are ucicrmined by

(6) 0= 7ptp, n 20

m=1u

Here. g, ,. m #Z n.are the transition rates. and

Imm = — 2 Gm.n-

nEn
We now consider problems where
q"l," = (l"‘!"‘ n ; r.

Here. d, is defined as
d(] = - z dA .

=0

As in the discrete case, it is assumed that d; = 0 outside the range —¢g < A < i lf 7, = 0 for
n < 0, one finds thus from equation (6)

h
0=Y 7, ydion 2r

k=—g

This equation can again be solved for 7 ,, which gives

h
(7) T, = 2 Ty € N 2 r.
k=—y¢
Here,
ey = 0
®) o= df(~dy), k=0

Note that equation (2) and equation (7) have exactly the same structure. In particular, ¢, = 0
and the sum of the ¢, is one in either case. The normalizing condition is given by (51 both in
the discrete and the continuous case. The initial conditions of the continuous case are casily
found from (6) by letting 0 € n < r.

We now give 3 examples which will be used later for the purpose of demonstration.

EXAMPLE . First, consider the waiting time in queue of a discrete G//G/1 queue. Fol-
lowing Ponstein (5], a Markov chain is set up, in which the state space are the waiting times
rather than the number of elements in the system. To set up this chain, it is assumed that the
difference between the service time (S) and the interarrival time (A4) is (a) always integer and
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th) always between —gand A 1t is well known (see c.g. Ponstein [5]). that the waiting time of
customer f exceed the one of customer f — | by an amount S — 4, provided, of course, that
customer f — 1 had a waiting time above — (§ — 4). Consequently, if W represents the wait-
ing time of a customer in cquilibrium, W increases by & with probability P(S — 4 = k). This
means

di=P(S—A=k), g <k <h
and

=P —A=k/1-PS=10] k=0
()]

=0

In the problem considered, there is only one initial condition, and this condition can be
dropped as redundant. The queueing equation, together with normalizing condition is thus
sufficient to determine all #,. Here, m, represents the probability of having a waiting time of
n.

EXAMPLE 2: In the G/*/ M/ queue, arrivals occur in groups of size . Let a, be the
prabability of servicing j elements between two consecutive arrivals and let 7, the probability
of having n elements immediately before an arrival. It is casily verified that the queueing equa-
tion is given by (2) with r = | and

o=a, Il —a,), o < kK h kK#ZO

(10) ¢a= 0.

Here. a, is the probability of serving k cusiomers between 1wo successive arrivals. The initial
conditions consist only of one equation which can be omitted. Also. in the case considered, g
is infinite. However, for practical calculations, it is sufficient to carry only a finite number of
€ -

EXAMPLE 3: Consider the MY/M!/1 queue. A,. 1 € j < A is the rate at which groups
of size jarrive. No service is done unless at least g elements are in the system. If the number
in the system is g or more, there is a rate of w,. | € i € g that /elements leave the system
after having received service together. For this problem, onc has the following transition rates

Gon =Ny O< n—m< h

<
qm,n=ﬂm—n'0< m-—n<gmz2g

All other g¢,,,,. m # nare zero. in particular, all g, ,, m < g n < mare zero because nobody
leaves if there are less than g elements in the system. The ¢,,, become

Gnm == LA, ., o m<yq
J=1
h ®
Gum=—{2 N, + ] m2e
j=1 i1
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A little reflection shows that r = g, and the queueing equation is given by (5) with

eg=0
h L
e = A/ SA+HTul k>0
1= =1
(rn 0 .
b= SN+ T ul k<0
=1 1=

The initial conditions are given by (7), that is

el h
0= 3 miguo=—my I A, + T,
K=0 =

oo h h K
0= Z T e = 2 Ty Ay~ w0, Z At Z Tope by < &
A= =1 1= =g
Again, the convention was used that 7, = 0 if m < 0. From the initial conditions. one can be

omitted, and it turns out 1o be convenient to omit the one corresponding to n = g — 1.

Above, we discussed a few examples which are amenable to our method. Additional
examples can ecasily be generated. We now show how to solve these examples.

3. THE MAIN RESULT

The fundamental result of this paper is the following. If p < 1. and if the Markov chain
is ergodic, there are Avalues g, 2 0,1 € j < hsuch that

h
(12) T, =Y Qm,_,, N 2"

=1

The a,. 1 € j € hare determined in a unique way by the ¢, —g < & < A Further-
more, .

h
zq, < 1.

i=1
This paper will present several methods to find the a,. Once the a, are found. the problem is
actually solved. Together with the r — 1 initial conditions and the normalizing equation (12)
gives exactly r + | equation 10 determine my, m,, ..., w,. Moreover, the generating function
of the =, can be expressed in terms of a;, and wg, 7. ... . 7w,_;. To see this it is convenient
to define a, as —1, and set

h
Az)= ¥ az’

=0
P(z)=Y m,2"
n=0
In this case, one finds. as will be shown in Section 4:
h r—1
(13) ACZVP() =% a ¥y =m, 2"
=0 -y
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When setting z = 1. P(z) becomes [, and
h r—1 r—1 ¢
AD=Ya ¥ynm,, =37, ¥y a. ¢e=mnlr—n-—1h.
y=1{) n=y n=0 =)
This means
h r—1 ¢
(14) Sa=-l+at+ta+. .. ta=Y7r, ¥ a e=mnlr—n—1h.
=) n=0 j=0

This equation provides a convenient normalizing condition and can be used in place of (5). To
find L. the expected number in the system, one can differentiate (13) and find

h r—1
A GCYPE) + A2 P(2) = 2 a, 2 nﬂ"_/:n-l.
1=0 n=
If z=1, P(z) =1 and P'(z) = L. Using these values, the above equation gives after some
calculation
h =1 h
(15 L=Ya|Ynm,,-j / ¥a.
=0 n=y j=0)

Equations (14) and (15) simplify if r = 1. Then

A(2)P(z) = AgTTy = —Ty.

If one sets - = 1, this gives.
h
(16) 11-0=—A(l)=1—2a,.
j=1
This means that
La <1
If Qis a random variable representing the state of the system. E(Q) can be found as:
oo h
(17 EQ)=Y nm,=-A"()/A() =¥ ja/m
n=0 =1

The ideas just presented shall now be demonstrated, using the examples discussed above.
First, consider the discrete G//G/1 queue. Specifically, suppose that the distribution of interar-
rival time and the distribution of the service time are as given in Table |.

TABLE | — Distribution of the Interarrival Time
and the Service Time.

k 1 2 3
P(S=k) {04]03103
P(4=1Fk) |01 ]03]06

<

Using these values, one can find the ¢,, ~g < k < A, from equation (9), and the ¢, in turn.
determine the a,, 1 < j < h (see Sections 4 and 5). For the problem described by Table 1.
one finds,

ay = 0.23156
a; = 0.05039.
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Equations (16) and (17) give now
my=P(W=0)=1-a,— a,=0.71804
E(W) = (a; + 2a,)/P(W = 0) = 0.46287.
Since m_, is assumed to be zero, one can use (12) to calculate 7|, 75, m; and so on.
myo=mya, + 7_,a; = 0.1663

wH = MA) + Tpdr = 0.0747

Since all g, 2 0, this recursion is numerically very stable.

Next, consider the GI'/ M/1 queue. Specifically, let the arrival time distribution be deter-

ministic, let A =2, A; =04 and u = |. The a, of equation (10) are in this case Poisson-
distributed with parameter 2.5. One finds in this case

a, = 0.41045

a,= 0.13711.

Again, all entities of interest can be calculated. L, the expected number in the system preceed-
ing an arrival becomes for instance

L= (al + 202)/“ - ay - 02) = 1.5132.

Finally, consider the M*/M'/| queue of Example 3. Specifically let
AM=M=u=py=p3=1L
In this case, the a; turn out 1o be
a, = 0.34960
a, = 0.24582.
The initial conditions are now
0==27y+ m;
O=mg—2m + 73 + 7y,
my and 4 are given by (12) as
my= a\my + aym; = 0.349607, + 0.24582m,
my=aymy + aymy = (a} + ay))w, + aa,m, = 0.36804m, + 0.085947 .
Using these values, the initial conditions become
0= —2m, + 0.24582m, + 0.349607,
0=y~ 1.66824m, + 0.71764m,.
As a third equation. one uses the normalizing condition as given by (14).

—l+a|+a2=wn(—l+a|+a2)+1r| (-—I+a|)—11'3
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or
0.40458 = 0.404587, + 0.65040m, + .

These 3 equations can be solved for mg, 7, and =,.

The result is
my=0.06741, 7, = 0.15840, 7. = 0.27428.
It is now simple to find L from Equation (15). One has
L=I[-(r +2n)+a (my+2m,— D4 a Quy— 21/(=1 +a, + a))
= 34128

0

Thus. once the g, are found. the problem is solved easily. The next two sections show
several methods to find the a,.

4. THE SIGNIFICANCE OF o, AND THEIR CALCULATION

In this section, it is shown that equation (12) holds. and how one can find the a, in the
general case. From the initial conditions and from the queucing equation, one finds the follow-
ing expression:

Plzy= U/ V().

Here U(z) is a polynomial of degree r + g — | which is of no further interest, and 1(z) is
equal to

It is well known (see e.g. [5]) that V(z) has a zero at - = 1. g — | zeros inside the unit circle
and # zeros outside. It follows that ¥ (z) can be written as

Viz)=A(z) B(z).
Here

AG)=—l+a;z+a2*+...+az"
contains all the 4 zeros outside the unit circle.

Because of the convergence of P(z), U (z) must be divisible by B(z}. Since U(z) has a
degree of r + g — 1, and B(z) has a degree of g C(z) has a degree of r — 1. Consequently.
r—1
Uz)/B(z) = Clz) =¥ ¢z
ym(}
or
Pz)=C(2)/A(Z).

This equation can be written as

(18) P(2)4(z) = C(z).
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The coeflicient of =" of the product P(:)4(z) equals. as is well known
Yam, .

For n < r — |, this means

h
(19) 2(1,11',,,,= ¢y

=0

For n 2 r, one finds

h
(20) Yan,, =0

=0
Equation (20) is identical with Equation (12), and Equation (18) and (19) can be combined to
give Equation (13). This proves Equations (12) and (13).

From the above discussion. the significance of the a, becomes clear. 1'(z) can be factor-
ized into two factors 4(z) and B(z), and the a; are merely the coefficients of 4 (=), provided
aq is defined as —1. The problem is thus reduced to finding 4(z). The most consvenient
method to do this scems to be the following one. One starts with the identity, which will he
proven in Section 6.

(21 a=¢+Ye ,q,1<,;,<h
=1
with
ap,=a,, 1 < j<h
22)

a4, ,= 4,4, + a, 41, VX S g — 1,1 S / S h

Furthermore, a,; is 1o be taken as zero fo. j > h Equations (21) and (22) can be used to find
a, by successive approximation. As starting values, one can use a," =e. /=12 ... .h
These values can be used to replace the a, on the right of (22), and a new approximation for a,
can be found from Equation (21). In this way, one continues uniil 4 suitable stopping criterion
is satisfied.

We tried two different stopping criteria. First, we required that the =, generated by Equa-
tion (12) satisfy the queueing equation with a specified precision €. It was found that tor high
values of /rand/ur g, this criterion performed poorly. The reason for this is simple. If 4 is say
100, a small change in d,q, will have a dramatic impact on p and, consequently. on the perfor-
mance measures of the system. As an alternate stopping criterion, we used the change of the
calculated 4'(1) = T ja, to decide when the precision of the g, is adequate. Since 4'(1) is
closely related to the expected number in the system (see Equation (17)) this seems 10 be a
good stopping criterion.

If there are ¢ iterations, one needs 4quh operations to find all a,. The reader may want to
verify this. If one adds all e_,a;, to the sum at the right of Equation (21) as soon as the a,,
becomes available one only needs to store the g, for the current vaiue of i If this is done. the
algorithm requires only an array area of 44 + g as the reader may verify. The algorithm is thus
efficient and does not require huge arrays.

The algorithm described above was programmed in FORTRAN and run on the DEC
2060. The execution times were negligible. A problem with 4 = 100 and g = 100 and p = 0.9
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oy required 8 3 seconds and 53 iterations until all @, were obtained. At this point there was a
refative change ot 47¢1) of less than 0.0001 between two iterations. The computer time to find
the « tor ¢ = 100 and A = S is 0.2307 seconds (19 iterations). The method performs thus
U AY well

S. ALTERNATE METHODS

To gain a check for our results, and also 1o get further insight into the problem, we
deaded o try other methods as well. These methods are based on V(z) = V(z)/(z — 1), that
Sis bz was deflated by - — 1. F(Z) can be written as

Viz) = ,4(:)3(:).

where Bz s equal to B(z}¥(z = 1), This deflation decreases the degree of the polynomials
once works with by one. and it also increases the difference between the zeros of 4(z) and
Btz improving thus the efficiency of the algorithms to be discussed. A further deflation by
the only positive zero of 4(2) is possible.

To tactorize §'(2), two methods were used. The first one is given in (1, page 158]. The
second one used the fact that V(z) can be interpreted as the characteristic polynomial of a
difference equation. It these difference equations are used to calculate values x,, X,.y. X, +2
recursively, the zeros greater than one will dominate, and eventually. the effect of B(z) will
become negligible. The x, are thus almost identical to a series generated by a difference equa-
tion that has 4 (z) as characteristic polynomial. In other words. the x, will almost satisfy the
following relationship

h
(23) Xy =Y 4, X4
=)
If x, is known for n =k, kK + 1, ..., kK + 2h — 1, this gives h equations for the # unknown
d,.
The x, will satisfy Equation (23) precisely if the initial conditions xy, Xy, ..., X,_; satisfy

(23). Consequently, one can repeal the above algorithm several times 1o gain a higher preci-
sion for the a,. In each repetition, one uses the a, obtained in the previous iteration in order
1o calculate the starting values needed. In the first iteration, one can use a = d,. This algo-
rithm gave good results for most cases we tried.

The disadvantage of the two algorithms just mentioned is that they require the solution of
h equations in A unknowns during each iteration, and this requires #* operations. This means
that they are inefficient as compared to the algorithm suggested in the previous section, at least
if his high.

Of course, 4(z) can also be found, provided one knows all the zeros of V(z) outside the
unit circle. Let zy,z3,23, ... . 2z, be these zeros. 4(z) becomes, given one uses the fact that
ag = -1

AG)==(z~-z)(z=2z) ... (z = z)/ (=2 (=2)) ... =(=2,)]
=—(1-2z/z) (1 = z/z,) ... (1 = 2/z,).
The factors can now be multiplied in the usual way, (see e.g. [4]) giving
A(z) ==l +az+ay22+ ...+ a,z"
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Note that this procedure even works for multiple roots, provided, of course, all z, are known.

A final comment shall now be made. Suppose one has the /i + g probabilities m, ..

Mo -oo . Woepee Then, one can theoretically calculate m,,. m > k + h + g, recursively by
using Equation (2), that is
] h
Tpee = — T, — 2 € Ty-g]-
LET h=~gu+]

This recursion is numerically unstable. that is, the round-off errors will increase with each itera-
tion. The characteristic equation of this difference equation is ¥ (1/x) = 4(1/x) B(l/x), and
any recursion based on it will eventually be dominated by B(1/x). (Indeed. this very effect
was used earlier 1o find 4(2)) Instead of doing such a recursion. it is better 1o use 2h subse-
quent 7,,. and use (12) 1o obtain /i cquations for the a,. j=1.2, ... . &

6. THE SIGNIFICANCE OF THE q,,

This section proves Equations (21) and (22) and establishes the relationship of our
method with the method of Neuts. We start 1o prove the following equation, in which the a,,
are calculated as given by (22)

h
(24) Tye, = 2 d, Ty, "0 20.n27r
7=

Since aq, = a,. this equation is certainly correct for i = 0. Moreover, il it is true for i it is
also true for i + 1. One has. if a,,,;, =0

s+l h+1
Tpaie] = z a,Typ1-, =a o, + E a,,Ty+t-,
j=1 1=2

h h
a,1 2 am, -, + 2 a1 Ty,
=1

i=1
h
2 [a:.la/ + a!./*I]”n—/'
=1

Because of (22), this gives

L]

h
Tpeivl = z A,y Ty
f=1

This proves that Equation (24) is correct for i + 1, given it hoids for i To prove Equation
(21). one rewrites the queueing Equation (2) as

q h
T = Ze~l1r)l+l+ z?lnn—/'
{m] j=1

Using Equations (12) and (24) this gives

R

h h
Yam, , = Sem,; e, Ya,m,,
jo i J=1

=1

n %
=Y+ Y e_a,lm,_,.

=1 ot
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Consequently,

¥
a=e+Yc,q,

=]

and Equation (21) is proven.

Equation (24) can also bc¢ used to simplify the initial conditions. Consider for instance
Equation (4) which can be written as

oo r—1 oo
1T" = 2 ”mpm.n = E ”mpm.u + Z p’+m,n ”r+m' n < r.
m=0 m=0 m=0

If 7., is replaced by (24), one obtains after some calculation
r—h-1

r~1 £
T, = z T uPrm.n + 2 ”m[/’m.n + Z Prein al\,r—m]' 0 S n S r.

m={) m=r—h k=0

Together with Equation (14), this provides a sct of rindependent equations in the r unknowns
Ty, Ty ooo Ty

We now compare our results with the ones obtained by Neuts. [3,4] Neuts sets up the
following matrix equation for the unknown matrix R.

(25) R= 3: R"A,.

n=M
The A, are problem-dependent matrices. In our case, they become
A, =421 n=0,12. ..., [g/h]+1]
Here, [g/h] is the lowest integer above g/ #. and
Al =y e o

All other A, are zero. As before, all ¢, outside the range —g < &k < #hare assumed to be zero.
If one defines
k=
=l Tanea o0 Tl

one has according to Neuts
it = kR,

If R = r,,). this gives
h

Tik+rh+e: = 2 ‘"MH-/'./,/
j=1

or

h

Tne, = z Trn+l—;rh+l—-/.l'
i=1

When this equation is compared with (24), one finds

Q. = Thal-yi+1

In particular,

aO./ = aj = rh+l—/.l-
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The a, are thus contained in the first column of R. We also note that Equation (21} follows
from Equation (25) as the reader may verify.

To calculate R according to (23) one has 1o find the terms R"A,. n = 2.3, ... . (g/h]l + |
and this can be done in 2[g//] matrix multiplications. However. each matrix multiplication
requires 2/ operations. which mecans that there are 4 #* [g/#]. or approximately 4 i°¢ opera-
tions per iteration to find R. not counting the matrix addition-. Thus. by taking advantage of
the special structure of the probiem one obtains a more efficient algorithm. namely the one
described in this paper.

The equivalence of the a, with r,,,_,, is of greal importance. In particular, Neuts (2]
proved that all r,, are nonnegative. Consequently. all @, are nonnegative. Neuts also finds that
the r,, have a probabilistic inierpretation.  Indeed. the r, are the expected number of visits to
state n + H + jstarting at # + 1 without hitting {n + 1, ... .0+ i ....n + h). This means
that @, gives the expected number of visits to state n + ; starung at n without hitting
ln+j—h ...n+ -1}

7. CONCLUSIONS

This paper derives an extremely eflicient algorithm which can be used o numericalhy
determine the state probabilities of many queucing problems cfficiently and precisely.  This
algorithm was obtained a by combining the classical approach with the approach of Neuts.
Indeed it bridges the gap between these two approaches and opens new horizons for further
rescarch.
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INDIVIDUAL HEADSTART STRATEGIES
FOR COMBATING CONGESTION
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ABSTRACT

This paper c¢xamines the process by which a user of a queueing system
selects his arrival time to the system to compensate for unpredictable delays in
the system if he wishes 10 complete service at a particular time. Considering
the case in which all the system users have already decided on their arrival
times to the system and will not change these times. this paper investigates how
a new user of this system develops his strategy for selecting his arrival time
The distribution of this customer’s arrival time is then obtained for a special
case.

1. INTRODUCTION

If a user of a queueing system can choose when 10 enter the system, then he would prob-
ably choose to enter when the delays he experiences will be minimum. However, if he wishes
to complete receiving service at a particular time, called the "target time." then he would have
to arrive at the system early enough to allow for his service time and unpredictable delays in
the system. This allowance was termed "headstart” by Gaver [3] and the same terminology will
be adopted here. The strategy by which a user selects his headstart is studied in this paper.

Consider the case in which all the system users already have fixed headstart strategies and
will not change these strategies under any condition. This paper investigates the case in which
a new user who wishes 1o use the system develops a headstart strategy. This will be done by
assuming that this user, whom we name U (cf. Alfa and Minh [2]), attaches some perceived
costs to delays and to early and late completion of service, and that he selects his headstart in
order to minimize his total cost. Gaver [3] obtained the "best" headstart strategy for this user,
in this type of situation, on the assumption that the user wishes to minimize his expected total
cost. This paper proposes the headstart strategy usually adopted by such a user, on the assump-
tion that he selects his headstart each day in order to minimize the total cost he incurs. It is
assumed that on the first day he uses the system he does not know what the delay distribution
is and therefore selects his headstart arbitrarily, and hence probably incurs high total cost.
However, for the following day, he uses his knowledge of the previous day's outcome 10 try
and reduce his total cost; and this continues until a stage is reached in the long-run when he
settles for a particular headstart and does not change any further. Let us call this stage
"steady-state.” This headstart reflects his arrival time at the system and our interest is in the
distribution of his arrival time at the system at steady-state.
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This paper does not restrict its analysis to nonrush hour traffic or linear cost parameters as
done by Gaver [3].

2. PROBLEM FORMULATION
2.1 Assumptions and Definitions

Consider a queueing system used by a finite number /, (/ > 0), of customers who behave
identically and independently. For each day. let us observe the system at equally spaced epochs
sequentially numbered 0.1,2.3.... and assume that all the customers arrive at and depart from
the system only at instants immediately prior to these epochs.

It will be assumed that once a customer is served he does not return to the pool of poten-
tial customers. This assumption and that about the number of customers being finite are not
necessary for the analysis but they allow us to use the results from Alfa [1] and Minh [4].

Assume that each customer, considered separately. has the time-dependent probability A,
of arriving at the system prior to epoch » + 1, given that he has not arrived at the system by
epoch n (n = 0.1,23....). Assume that the service times of the successive customers are
independent. identically distributed random variable S in the set {1,2, .... M}: M < oo,

Suppose the new customer. U who also wishes to use this system, chooses to arrive at the
system at epoch a = n. Let the delay he experiences by so doing be W". The distribution of
W” can be obtained as shown in Alfa [1]. Note that the addition of this customer U to the sys-
tem has raised the total number of customers to / + 1. Although the distribution of U’s arrival
time is not necessarily the same as that of the other / customers, the results in Alfa [1] can stiil
be applied keeping in mind that W” is a conditional random variable. The distribution of s
arrival time shall be developed in this paper.

Let V” be the time spent in the system by U, given that he entered the system at epoch n,
then V"= W7 +S. Let V7 A Pr{V"=i}.

For practical purposes it will be assumed that U shall arrive at the system only at an epoch
between | and V. where | < N < oo,

Suppose U wishes to complete service at epoch 7, where for convenience | <+ < N If
he arrived at the system at epoch a = n, got delayed W” = j units of time and took S = j units
of time for service then he would complete service at epoch n + i + . One of his objectives is
for n + i+ jtoequal r. However.if n+ i+ j < rtorn+i+j> 7 then heis early by an
amount * — n — i — jor he is late by an amount n + i + j — 7. respectivelv. He attaches a
cost to either of the outcomes and these costs are not necessarily the same. In addition, he
attaches a cost to the time spent in the system /i + j. He would. therefore, incur a total cost
Cn, i+ j), where Cln, i + j) is the sum of the cost of time spent in the system and the cost
for either earliness or lateness, depending on which is the outcome, keeping in mind that if
n + i + j = 7 then he only incurs the cost for his time in the sysiem.

Let C, be the total cost incurred by U given that he arrived at the system at epoch n

where C, can only assume the values in the set {C(ni)|li=12. ..., (I + 1) x M}, For
brevity, C, will bc termed the cost associated with epoch n.
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Let us define the faltowing sets that will be used in the next subsection,
(i) GALli=1.2, ..., tl+ 1 x M|
(i) LAtili=1.23 ...V
tin) L,Alili=123 ....on—=10. n+1 ... N
i) -r’r’: é Ln n [-m

If there are v epochs. (1 £ v < N = 2), (N > 2), labelled m;. m;. ... . m_ for which
C,=€C, =C, =...=C, whereVm, € L. r=12 ..., v.then let

H 2 S

(v} L), A lili=my om0 o ma¥m, € L r=1.2, ... vl

Let
(vi) Ly, AL, — Ljie L) is the set difference of L, and L ..

2.2 The Model

2.2.1 The General Model

Suppose on the d"" day. (d = 1,2, ...). U arrived at the system at epoch a‘= n Let
ay A Pr{a“= n}, n € L. U would incur a total cost C,. and by definition

(1) Pr{C, = Cln, D)= V"

We assume that U's choice of arrival time epoch for one day depends entirely on the out-
come of the previous day's choice of arrival time i.e., on the total cost incurred. U wishes 1o
minimize his total cost. Hence, a?*! is a decision variable with an action space L. and a‘*'
depends on the cost incurred on day d Given the action on the 4" day the action for the
(d + 1" day, a¢*!, is thus a Markov Chain.

Let 1,,, A Pr{a‘*" = mla’= n} be the transition probabilities of the chain. These transi-
tion probabilities define U's strategy.

U's intention is to choose an arrival time epoch that minimizes his total cost each day he
uses the system, hence for the (d + 1) day, his strategy for choosing his arrival time epoch
will be

(2) tnn=PrlC, < C,: Vu € L,}.
3) tam = PrlC,, < C,. ¥w € L]}
N=-2 1 . -
+ v-zl —— PriC, =C, <C,.V¥m € L, . ¥we Ly |
VYm # n.
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The arguments leading to (2) and (3) above are as follows:

ta)y If U arrived at the system at epoch # on the ™ day he will not change his arrival
time to any other epoch on the (d + 13" day if he can not reduce his total cost by so
doing. This leads to (2).

(b} It U arrived at the system at cpoch n on the &' day he will change his arrival time 0
epoch m on the (d + 1™ day if this could reduce his total cost. provided there is no
other epoch which has equal potential reduction in total cost as epoch m—this leads
to the first term on the R.H.S. of (3). In addition. however. if there are v other
cpochs, other than » and m. at which U could choose to arrive at the svstem and
achieve the same reduction in o'} cost as arriving at epoch m, then L would arrive
at any of these v epochs or epoch m with the same probability. provided the total
costs to be incurred at each of these epochs, inctuding epoch m. is less than at any
other epoch. This leads to the second term on the R.H.S. of (3} (2) and (3) above
constitute the transition probabilities that define L7s strategy.

Define an N x A matrix T = (1, ) and an N vector AY= [a{, a¥, ... «{]. Then U
selects his (¢ + 1) day’s headstart according to

4 Adh = AYx T,

.
THEOREM 1 tom = 1.
1

n=

PROOF: Consider one epoch n, (n € L), and the associated cost C,. If we compare this
cost C, 1o the costs associated with other epochs in the set L, then C, is either the minimum
vost, one of the equally minimum costs or neither of the two. This can be stated as

(5) Pr{C, < C,:VYu € L, +Pr{C, €C,: Vu € L,} = 1.

un
Substituting 1, , for the first term on the L.H.S. of (5) gives
(6) tuy + PriC, £C, . Yu € L} = 1.

The second term on the L.H.S. of (6) is the probability of having at least one epoch, in
the sct L,. whose associated cost is less than C,. This implies that there is at least one epoch.
other than n, whose associated cost is minimum. If there is only onc such ¢poch then the pro-
bability of such event is given by

PriC, < C,:¥w € L,}

Ymel,
If. however, there are v other epochs (I < v < N — 20 labelled my, ms. ... m . ¥m, € L],
1 € r < v suchthat C, = C,,,I =C, =..= C,,,\. then the probability of such event s given
by

N-2 1 —
T Y P, =C, <Covmel Vel

Vmel, =1
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The second term on the L.H.S. of (6) can thus be written as;

(N PriC, €C,Vu € L)= ¥ PriC, < C,Vw¢€ L}
¥mel,
N-2 1 _
+ Yy X PriC, =C, < C,.¥m € L2, ¥we€ L }
Vmé[_" v=1 v+ "

= 2 ,/I‘ n:

Ymel,

Substituting this into (6) gives
{/I.Il + Z ,Il,"I = l
¥me€ I.”
N
i.e., ¥ f,m = 1. and this proves Theorem 1.

m=1

REMARK: If t,, =1 for any n € L then n is an absorbing state and the solution to
Equation (4) is trivial. However, the occurrence of such a situation in real life would be quite
rare—we therefore assume for our present problem that 0 < +,,, < 1, ¥(n,m) € L.

LEMMA 1. If taymy = Q1 {my.ny) € L, forany n, # n; and tyyn) * 1, then:

(a) either t, ,, =0, Vny € L, and n, is a transient state which can be deleted from the
chain, or

(b) there exists at least one n, & #n, such that ¢ > 0 and therefore state n, can be
4 1 ngny

reached from state n, via state ny, hence, all n € L form an irreducible markov chain
(Note that ny € L).

PROOF: Lemma 1{a) is a compliment of Remark above and does not require & proot.
For Lemma 1(b), if there exists n; & n;, such that ly,ny > 0. then there also exists at least

one N wple iy, ..., i) such  that Clngiy) > Clnsiy) € Clniy) <
C(”|,i[) S (‘(”k-’-/.): ¥k > 4. VII € G, 1 < / < N

Further let

(vii) LoAlilt,, =0.¥n € L}
(viii) Loa L - L,
(ix) Ly, A LyN L, and let N, be the number of elements in L.

Define an Ny x Ny matrix Ty = (1,,)., Y{nm) € Ly, and also define an N, vector
A= (a!: ¥n € L, Equation (4) can now be stated in a modified form, for only the epochs

ontgied in L“. 4as)
“ A“),’l = A[f X T().

CEMMANDY 4 >0,V € Zn, hence all n € Z,, are aperiodic states.

PETEABER L9 NAVAL RESEARCH LOGISTICS QUARTERLY




480 A S ALFA

PROOF: From the cost structure, it is apparent that if ¢,, =0 then ¢, , =0, ¥m € L.
and hence n_¢ L, i.e., state n would have been deleted from the chain considered in equation
(8) (i.e.. in Ly). Therefore, 1,, > 0, ¥n € Ly, and hence Lemma 2 follows.

THEOREM 2: There exists a limiting probability vector Ay, = dlim A{ such that

(9) AO= AO X T()

has a positive solution which is unique.

PROOF: The necessary and sufficient conditions for the existence of a positive and
unique solution A, is that the chain should be irreducible and aperiodic. Both conditions were
established by Lemma 1(b) and Lemma 2 respectively.

The interest of this paper is in U's choice of arrival time in the long run, Ay, which can
now be solved for in Equation (9).

2.2.2. A Special Case

In the general model it was assumed that if U arrived at epoch n on the d" day, he would
not change his arrival time to any other epoch if C, £ C,,, ¥m € L,. Suppose we modify this
assumption and now assume that when C, = C,, for any m # n we would not rule out the pos-
sibility of {/ changing his arrival ume to epoch m. In that case we shall attach equal chances of
U changing his arrivi: ume to epoch m and to him not changing his arrival time from epoch n.
Thus, U's strateg, will now be modified such that the transition probabilities that define his
strategy will be given by:

(3a) tam = Pr{C, < C,:VYu € L,} +

N-1
7 V-:— = PrC,y = C,, < i ¥m, € Ly
v=1

Vw € L, .} ¥nm € L,

where

(x) L,.Alili=mym,, ..., mJ} such that
Cn=Cp=C,,=...=C,: I vg N—-1, and
L,,< L:and

(xi) L, AL,— Ly.

It is immediately apparent that the right hand side of Equation (3a) is independent of n,
hence f,, =, n: ¥(nmv) € L. Let t, A t,,: ¥(nm) € L. For this special case, therefore,
all the rows of T are identical, and the steady state solution is given by

[/ VHGZ()

(10) a, = 0 Vn € LO~
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2.2.3. llustrative Example

For illustrative purpose let,
=2, N=3, r=3 M=1,
Ag=103, A, =05 x,=1.0.

Let;
CXbG-n—i). ,4+i<+
(an i) = C, % (i S
l Clui) = €, x () + CGxn+i—-7) ., n+izr
and let G, = 1.0, ¢,=1.0, C, = 2.0

By using resuits from Minh (4] we obtain the distribution of queue lengths and from Alfa
[1], the distribution of waiting is obtained as

WII

1

"
i

1 2 | 3
01073 060 | 057
1024|036 ] 039
210031004 | 004

Hence, V'= W', i=1,2,3.

The total cost C(n,i) are given as

Cn,i)
n

oo W NN
Eowu

N
~ R | -

|

The transition probabilities are thus given as

(12) ha=VIVE+ vil+ vivi + vil(vi + vil+ vivivi
(13) ho=Vi+vivitvi + vl
(14) fha= VWS + V11 IVE + vil+ vivivy
(15) o= VIV VLIV + v+ vi v+ VLIV + v3)
+ VIvivi + v v+ vilvi/e,
(16) = Vi + Viviivi + vil,
a”n ha=ViVivE+ vil+ v + v vi vl + viviivi + vile.
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(18) =V + ViLVE + ViIIVE + (v + vilvi + vilve
+ vivivi,
(19) 132= Vi + Vvivi[vi+ vi],
(20) y= VIV + Vil+ vil+ viviv).

Thus, this leads to the transition matrix,

0.333 0.605 0.062
(2D T=1]025 0.605 0.139
0.167 0.605 0.228

from which we obtain
(22) A = [0.265, 0.605, 0.130].

Note that for this example Ly = L, hence Ty =T and Ay = A.
3. CONCLUSION

This model, based on its assumptions, can only be used to predict the customer’s arrival
time at the system when all other customers previously using the system have setiled for a par-
ticular arrival time and will not change it under any circumstances. However, when all the
other customers change their arrival times as a result of the new customer’s "interference" then
there will be a slight modification to the problem.

If other customers change their arrival times everyday, then the distribution of W” will
change from day to day and, hence, T and T, will also change from day to day. If we let T or
T§ represent the transition matrix for the strategy for the (d + 1) day then U's choice of
arrival time can be reformulated as

(23) A+l = Ad x TY

However, with (23) existence of a steady state solution cannot be assured. If we further let
there be more than onc server in paraliel such that a customer develops a strategy noi just for
selecting his arrival time only but for joint selection of arrival time and of the server to serve
him, then the problem becomes similar to that in Alfa [2].
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ABSTRACT

This paper develops a forward algorithm and planning horizon procedures
for an important machine replacement model where it is assumed that the tech-
nological environment is improving over time and that the machine-in-use can
be replaced by any of the several different kinds of machines avarlable at that
time. The set of replacement alternatives may include (i) new machines with
different types of technologies such as labor- and capital- intensive, (ii) used
machines, (iii) repairs and/or improvements which affect the performance
characteristics of the existing machine. and so forth.

The forward dynamic programming algorithm in the paper can be used to
solve a finite horizon problem. The planning horizon results give a procedure
to identify the forecast horizon T such that the optimal replacement decision
for the first machine based on the forecast of machine technology until period
T remains optimal for any problem with horizon longer than T and. for that
matter. for the infinite horizon problem. A flow chart and a numerical exam-
ple have been included to illustrate the algorithm.

1. INTRODUCTION

In our previous paper {51, we developed forward algorithm and planning horizon pro-
cedures for a machine replacement model under the ass.umption that only one kind of machine
is available for replacement in any given period. We showed that there exists a forecast horizon
T, such that the optimal replacement decision for the first period (based on the forecast of
machine technology until period T remains optimal for any longer (than 7) horizon and, for
that matter, the infinite horizon.

In this paper, we relax the assumption of a single possible replacement alternative by mul-

tiple alternatives. That is, we develop a model in which the machine-in-use can be replaced by
any of the several different kinds of machines available at that time. This model can deal with
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many realistic situations. For example, the set of replacement alternatives may include (i} new
machines with different types of technologies such as labor- and capital- intensive, (ii) used
machines, (iii) repairs and/or improvements which affect the performance characteristics of the
existing machine, and so forth. {1t should be noted that the set of replacement alternatives can
change from period to period.

This multiple alternative replacement model represents a major generalization of the vari-
ous single alternative replacement models developed by Terborgh [7], Thompson (8], Sethi and
Morton [6). Gordon [1). For a survey of the extensive literature on the machine replacement
models. the reader is directed to Rapp [4]; see also Pierskalla and Voelker [3].

In the next section, we formulate the multiple alternative replacement model under
improving technologies. In section 3, we develop an efficient forward algorithm for solving
finite horizon problems. Section 4 develops a variant of the regeneration- monotonicity pro-
perty [2. 5] and planning horizon procedures for the model. A flow chart summuarizes the com-
plete solution procedure. A numericat example is solved in Section 5 to illustrate the steps of
the forward algorithm and the application of the planning horizon procedure. We weaken the
assumption of improving technologies in Section 6 and show that planning horizon procedures
can be adapted to this case. Section 7 concludes the paper with some important remarks.

2. MODEL FORMULATION

Consider the situation of a production shop which must keep a single machine of a partic-
ular capacity at all times. To run this machine, the shop incurs operating expenses which may
include labor cost, electricity cost, maintenance cost, depreciation, and so forth. Usually. the
performance of the machine deteriorates, i.e., operating expenses increase over time, so that
the shop might consider selling the existing machine for its salvage value and buying a new
one. This new machine is selected from various different alternative machines available. If a
major repair is decided on the existing machine, then this alternative can be considered as it a
new machine of another technology is purchased at the cost of repair plus the salvage value of
the existing machine. Once the new machine is purchased, the same situation repeats with the
new machine. Consequently, for any finite or infinite horizon, the shop will make a chain aof
replacement decisions (4], [S]. The problem of the shop, of course, is 10 find simultaneously
the optimal times of these replacements and the types of machines selected at these times.
Obviously, these decisions will depend on the prices of the future machines and their per
period operating expenses over time. More precisely, we are considering the foliowing model
which the shop must solve:

Let A/ denote the machine of technology 4 available at time . Let there be machines of
N alternative technologies available to choose from in any period. It is noted that the extension
to the case, when the set of alternative technologies is changing over time, is straightforward
and will be described in Section 7.

Let O, k > 1 be the operating cost of the machine 4/ in period k. With reference to
our previous paper [5], we note that
01’,'1 = "th - SI’.’I + M!f'l
and
Ol = Sh—1 — St + M}y
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where /' is the purchase price (it is assumed that the new machine 4 is purchased at the
beginning of period o and S}, is the salvage value at the end of period & of the machine A/
The term M, denotes all the costs, which are specific 10 the technology /. of operating the
machine 4 in period & excluding the cost of depreciation (or loss in salvage value from period
A — 110 k.

To obtain a forward algorithm, we must solve the multiple alternative replacement model
for any given finite horizon 7. Suppose the shop uses n machines during the interval <1,7>.
Let ¢, 15, ..., t,.;. t, be their salvage times and let A, hy, ..., h, be their technologies.
Note that 1, 2 L fori= 1,2, ...,(n = 1) and 1, = T, since we assume that the shop goes out
of business at the end of the given finite horizon 7. Define t,=0. Also note that
<pq>=1{p. p+ 1. ..., q} with nonnegative integers p and g with ¢ > p. We can now state
the finite horizon problem as

fivt

n—1
h
. 1
) Minimize 2 T 0%
i=0 k=1 +]
noty, ) oo, oy
hy, hy, ..., h,.

In the next section, we develop a forward dynamic programming algorithm to solve (1).
3. FORWARD ALGORITHM
We start with defining the following terms:

Purchase Point. A period ¢ is defined to be a purchase point (or P-point) if a machine is
purchased at the beginning of period r.

Regeneration Point. A period t is a regeneration point {or R-point) if a machine is sal-
vaged at the end of period ¢

It is easy to see that any P-point is immediately preceded by an R-point. This property
allows us to develop an efficient forward algorithm [2].

We need to introduce the following notation:

C(T) = minimum cost of the T-period problem (1),
C"(j,T) = the total operating cost for the machine
2) Al in the interval <j + 1,T>
U
= E Oj+l.k
k=j+1
T = minimum total cost of the T-period problem when (j + 1) is the last
P-point and 4 is the technology of the last machine
(3) =C()+ C";T)
C,(1) = minimum total cost of the T-period problem with (j + 1) as the last
purchase period.
VOL. 29, NO. 3, SEPTEMBER 1982 NAVAL RESEARCH LOGISTICS QUARTERLY

. e - .
e e 8 5 M e S 2

e




486 S CHAND AND S SETHI
Clearly,

(4) C,(T)=m'3n CHT)

and

(5 C(T)=,e<'})',i7"_\> Ci(7)

Equations (2)-(5) complete the statement of the forward algorithm. [t is possible to sim-
plify the computation of C*(T); using (2) in (3) gives the following sequential procedure

CHT =1+ 0,1 for j<T~1

h =
(6) AM=lcar-n+ot, j=T=1

4. PLANNING HORIZON RESULTS
To obtain planning horizon results, we need to assume that every technology is an
improving technology. Thus, for technology A, we assume that

In other words, we assume that the operating cost in a period for a machine of technology # is
lower than the operating cost for an older machine of the same technology, except perhaps in
the first period of operation of the new machine when the amount of depreciation on the new
machine is usually high.

Lower Bound Monotonicity Property:

Let j*(T) denote the latest next to the last R-point in the optimal solution of the I~
period subproblem; note that period T is the last R-point. By the lower bound monotonicity pro-
perty we mean that the fower bound of j*(T) increases monotonically with 7. To prove this
property, we must also define j*"(T) 10 be the latest next to the last R-point for the optimal
solution of the C'(T)-problem, where the C"(T)-problem is the T-period problem subject to
the constraint that the last machine be machine of technology #.

THEOREM 1: Under the assumption (7) of improving technology over time, j**(T)
satisfies the regeneration monotonicity property, i.e.,

(8) PMT 41 2 ().

PROUF: Let j**(T + 1) = a and j*"(T) = b. It is easy to see that CXT) > CNT).
Furthermore, if @ < bthen O, 7, 2 0L 741
If @ < b, then using (6) we can write
CHT + 1) = CHT) + O,y 14,
> CHT) + Ofyy 11
= CMT +1).
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This contradicts the optimality of the C/(T + 1)-solution, implying that @ 2 b. This compieles
the proof.

THEOREM 2: If we define
9) AMT) = mifn {i*"(T},
then A(T) represents a lower bound of j*(T + 1) and A{(T) is monotonically increasing in T.
ie.,

(10) JHT + 1) 2 A1) 2 AT - 1).

PROOF: The proof easily follows from (8) and (9).
Regeneration Set:

The regeneration set of the C(T)-problem can now be defined as
an R(T) —set = {M(T), AM(T) +1, ..., T—1}.

We note that a set is known as an R (T)-set if it contains al least one R-point of an optimal
solution to any problem with horizon T or longer.

In many cases, it is possible to reduce the size of the R (T)-set. This reduction makes it
easier to obtain planning horizons as can be seen in the planning horizon theorem below. The
reduction procedure requires computations of the S"(T)-sets for all A, where an S"(T)-set is
defined 10 be a set of regeneration points such that j*"(T + 1) € §"(T)-set for all periods
(T + D) with j*"(T+ D < Tand / 2 0. Tt is convenient to express this procedure by the flow
chart on the next page.

The reduced R (T)-set can be obtained as follows:
(12) R(T)-set = L’J S"(T) -set.

It should be noted that the R(T)-set in (12) cannot be bigger than the R(T)-set in (11). We
now prove the following important result for the set S found in the flow chart.

THEOREM 3: If a period ¢ € the S-set found in the flow chart for technology A then
J¥T + 1) # tfor any value of I 2 0.

PROOF: If 1 € the S-set found in the above flow chart, then there is a period u,
T—12 u > 1 such that C/{T) < C/T). From the improving technology assumption. we
also have O}, , € O}, for k 2 T + 1. We can now write for any period 7 + /:

T+i

C,:'(T +1) = C,:'(T) + z 0:+I,k
k=T+]
T+!

< C,"(T)+ 2 0,h+|,k
k=T+1

=CHT+ 1D,

implying that j**(T + /) % t This completes the proof.
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Start

Initialize

I = /'Hl( T’
S=1{

Yes STOP

S"Tiset = §

4

Find j € <!+ 1, T— 1> such that

CHT) < CHT) fori€ <I+1, T-1>

{n case of 4 tie, choose the largest such /)

A
S=5u={/}
=

Flow Chart for Computing the $"(T)-set.
Planning Horizon Theorem:

Let f*(r) denote the period when the first machine is salvaged in an optimal C(r)-
solution. We now state the planning horizon theorem which gives us a stopping rule for the
forward algorithm to find the optimal replacement time in an infinite horizon problem.

THEOREM 4 (Planning Horizon Theorem): If /*(r) = 1t = constant for all r € R(T)-
set (12} for some T such that /*(T) = 0, then the salvage time of the first machine in an
optimal infinite horizon solution is ¢} Furthermore, the optimal technology 4t is determined
by the condition

(13) ol = o).

The first replacement time (! is called the planning horizon and T is called the forecast
horizon. We need only to forecast the relevant technology up to period T to find the optimal
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technology A} and the optimal replacement time ¢} for the first machine. The reader is referred

to [2] for a discussion of such theorems.

We now present a flow chart for the complete forward algorithm along with the planning
horizon procedure. We will use this flow chart to solve a numerical example in the next sec-

tion.

TAR

Initialize
T=1

Ci(1) = Ofy, j*"(1) = 0 for all &

Co(l) = m’jn ch(l)
Ay = j* () =0, /~(1)=1

Find C*(T) from (6) for
MT-1K,j<T-1

Y

J**(T) = the largest j that
minimizes C/(T)
AMT) = mnin G ()

L ]

Find the S$"(T)-set
and the R (T)-set

]

Find C(T) = min cHT)
forall j € <A(T), T—-1>

A
| Compute j*(1) |

STOP
f*(r), r € R(T)-set f‘(T). is the
= constant? planning
horizon

Tif j*(T) =0
LD =1 gl (DIifj*D > 0

Fiow Chart for impl
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5. NUMERICAL EXAMPLE

We now illustrate the planning horizon procedure by solving a numerical example. This
example assumes that machines of two different technologies are available for replacement at

any time. The operating costs OQ,! and O/ are as shown below:
€

Ol} O‘;’

j J
160 120 130 140 150 160 300 60 70 80 90 100]
160 120 130 140 150 300 60 70 80 90
i 140 105 115 125 | i 200 50 60 70
140 105 115 400 30 40
120 80 400 30
120 200

Note that technology 1 can be interpreted as a labor intensive technology and technology
2 can be interpreted as a capital intensive technology. The calculations of C,‘(T). Cf( T), and
C;(T) are shown below:

cl(n CA(T)
T 1 2 3 4 5 6 I 2 3 4 5 6

\i

U 0 0 0 2 4 S5m0 0 0o 0 2 2
0 160 280 410 550 700 0 300 360 430 510 600
1 320 440 570 710 1 460 520 590 670
Jl 2 420 525 640 765} 2 480 530 590 660
3 550 655 770 3 810 840 870
4 630 710 4 910 940
5 710 5 790
C (T)
T 1 2 3 4 S 6
MDT 0 0 0 2 2
J*(T) 0 0 0 0 2 2
S(T) 1 2 3 4 2 2
0 160 280 410 510 600
1 320 440 570 670
J 2 420 525 390 660
3 550 655 770
4 630 710
5 710
Sample calculations for 7 = 3 are shown below:
COI (3) = 0]11 + 0']2 + 01‘3 = 160 + ]20 + 130 = 410,
Cl(3) = C(1) + O} + 0}y = 160 + 160 + 120 = 440,
Ci3) = C(2) + 03}, = 280 + 140 = 420,
J*3) = 0.
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Ci3) = 0F + 08 + Of =300+ 60 + 70 = 430,
CP3) = CA) + 05y, + 0% =160 + 300 + 60 = 520,
Ci3) = () + 0O = 280 + 200 = 480,

*2(3) = 0. A(3) = min{j*'(3), j*(3)} =0,

Co(3) = min(C) (3), C§(3)) =410,

Cy(3) = min(C} (3), CE(3)) = 440,

C2(3) = min((3 (3), C#(3)) = 420,

(3 =0, f*3) = 3.

[

The planning horizon theorem is not satisfied for T £ 5. For example. for 7 = 5. we
have §'(5) = {4}, §°(3) = {2.3.4}, and R(5) ={2.3,4}. Since f*(2) = f*(3) # r*(5). the
planning horizon theorem is not satisfied. For T = 6, we have s'(6) = {5]. $2(6) = {2.5}. and
R(5) =1{2,5}). r*(2) = f*(5) =2, so the planning horizon is 2 periods and the forecast hor-
izon is 6 periods.

6. RELAXING THE IMPROVING TECHNOLOGY ASSUMPTION

Let 1(/#1) 2 1 be a number associated with technology A such that
0/‘11./*/\ ? OJI.’j.,A- fof k 2 f(h)

This conditinn is likely to be satisfied by most improving technologies. The following
result holds for this assumption:

THEOREM 5: Let #%T) < T —=1(h) (0 if T < 1(h)) be the latest period such that
C*hyy € CATiforall j € <0, T — (h)>, then j*"(T + 1) 2 i*"(T).

PROCF: Assume to the contrary that j*"(T + 1) = a < #"T) It is easy 10 see thal
Oho 7oy 2 O *n(T) + 1, T+ Land CHT) 2 C! *hp(T). We can now write
CH hip (T + 1) = CH*hp(T) + OF * hipyay 11
< CUT) + Of.y ra
CHT + 1),

implying that j*"(T + 1) 2 i*"(T).
Regeneration Set.
Let AMT) = m’fn (i**(T}], then the regeneration set of the C{(T)-problem can be defined
as
R(D=set=(T), AT +1, ..., T—1}.

As in Section 4, it is possible 10 find a reduced regeneration set. For this we first find the
S$"(T)-set as below. The reduced regeneration set can be found by using (13).
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v
' Initialize

L I=i*"(T), §=1{1

S"TYy=Suft+1,1+2 ... T-1}

Find the tatest period /. T—(h) = | > |,

Such that CHMT) < CMUD fori € <1+ 1, T—1ti)>

L

S=95u !}
{ =
L

Flow Chart for Computing the S"(7)set.

7. EXTENSIONS AND CONCLUDING REMARKS

In this paper we have solved the infinite horizon replacement model with multiple alterna-
tives. We have obtained planning and forecast horizons for this model under reasonably gen-
cral conditions. Furthermore, the model can be casily adapted to situations where the set of
alternative technologies is changing over time. This is done by setting OF = % for the ima-
ginary A machine for all j < ¢ for a technology which appears at time 1 for the first time. I a
technology h disappears in period 1, then we let 0" = oo for fictitious machines 4% for all
J 2 1. With these definitions, the model developed in the paper is applicable 1o the situation of
changing sets of technologies.

Another situation to which the mode! can be easily adapted is the situation in which a
switch over cost k9" occurs whenever a machine of technology a is replaced with 4 machine of
technology b For this. we do require the assumption that 9% is separable. i.c..

kuh= K+ k".
In this case, we can adjust the salvage value of the existing machine downward by amount &~

and adjust the price of the new machine upward by amount &*.

Finally, we must state that the extensions of the machme replacement model o ope proy
ous paper [S] can also be solved in the multiple alternabine case i b Lt saehel o w
manner
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FLOWSHOP/NO-IDLE OR NO-WAIT SCHEDULING
TO MINIMIZE THE SUM OF COMPLETION TIMES

I. Adiri and D. Pohoryles

TECHNION-Israel Institute of Technology
Haifa, Israel

ABSTRACT

This paper deals with flowshop/sum of completion times scheduling prob-
lems, working under a "no-idle” or a "no-wait" constraint, the former prescribes
for the machines to work continuously without idle intervals and the latter for
the jobs to be processed continuously without waiting times between consecu-
tive machines. Under either of the constraints the problem is unary NP-
Complete for two machines. We prove some properties of the optimal
schedule for n/2/F, no-idle/EC;. For n/m/P, no-idle/EC; and n/m/P, no-
wait/ZC; with an increasing or decreasing series of dominating machines, we
prove theorems that are the basis for polynomial bounded algorithms. All
theorems are demonstrated numerically.

INTRODUCTION

The nonpreemptive, flowshop, sum of completion-times scheduling problem is: n jobs
(uJy ..., J,) have to be processed by m machines (M M, ..., M,). Job J,
i=1,2, ..., n, consists of, at most, m operations (0;,,0;3, ..., 0;,,). Operation 0, which
precedes 0, ;,,, has to be processed uninterrupted for ¢ time units, on M;, j = 1,2, ..., m. ¢
is a nonnegative integer — £, = 0 if 0, is missing and positive if it exists.* Two operations of
the same job cannot be processed simultaneously and a machine may process at most one job at
a time. Find the operation sequence on each machine, that obeys the problem constraints and
minimizes the sum of completeion times. The problem is designated n/m/F/EC,t where F
stands for flowshop discipline and C, is the completion time of job J,.

The no-idle constraint: machine M,, k = 1,2, ..., m, works continuously without idle
intervals.
The no-wait constraint: job J;,, i = 1,2, ..., nis processed continuously without waiting times

between consecutive machines.

Both constraints arise in real life situations. Examples of such scheduling are: (i) under a
no-idle constraint — use of very expensive equipment (.e.g., a computer and its peripheral dev-
ices) with the fee determined by the actual time consumption; (ii) under a no-wait constraint
— in metal-processing industries (e.g., hot rolling) where delays between operations interfere
with the technological process (e.g., cooling in the above case).

*For further elaboration of the meanings and influence of zero processing times see Hefetz and Adiri (4].
tFor notation and classification of scheduling problems we follow Lenstra {S) and Rinnooy-Kan [6].
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While the no-wait case has been widely discussed in the professional literature, [1] [6],
the no-idle case is defined here for the first time. This paper deals with flowshop disciplines
with a no-idle or a no-wait constraint where the objective function being minimum sum of

completion times.

Garey, Johnson and Sethi [3] proved that n/2/ F/L.C; is unary NP-Complete by construct-
ing an instance that is no-idle and no-wait, and thus proved at the same time that of n/2/F.
no-idle/XC; and n/2/F, no-wait/LC,. Section 2 deals with some properties of the optimal
schedule for n/2/F, no-idle/%C;. Sections 3 and 4 are devoted to proofs of theorems that
underlie polynomial bounded algorithms for n/m/P, no-idle/EC; and n/m/P, no-wait/EC, with
an increasing or decreasing series of dominating machines, respectively.

1. COMPLEXITY OF FLOWSHOP/NO-IDLE OR NO-WAIT/SUM OF
COMPLETION TIMES PROBLEMS

Garey, Johnson and Sethi [3] proved that 3-partition is reducible 10 n/2/F/LC,. How-
ever, as the constructed instance of n/2/ F/LC; happens to be no-idle and no-wait, thus at the
same time proved the unary NP-Completeness of n/2/F/LC;, n/2/F, no-idle/EC, and n/2/F,
no-wait/LC;. Moreover, only minor modification of the proof is needed for proving the NP-
Completeness of the first two problems where missing operations are prohibited. Specifically,
replacement of zero processing times on M, (missing operations) by € > 0 (existing operations
with infinitesimal processing times) and shifting of all € to the beginning of the schedule on
M,, proves the unary NP-Completeness of n/2/F, t; > 0/EC, and n/2/F, t; > 0, no-idle/LC,.
The complexity of n/m/F, t; > 0, no-wait/EC; for fixed m > 2 is an open problem.

2. CONSTRUCTION OF A NO-IDLE SCHEDULE

We distinguish two ways of constructing a no-idle schedule. Both are implemented con-
secutively on the machines, starting with the second, proceeding to the third and so on until

the last machine.

(i) Right shifts. We shift to the right every operation that precedes an idle interval
(maintaining the constraints of the problem on M,, k > 2, further right shifts might be
needed), until al! idle intervals have been eliminated.

(ii) Left shifts. At first we schedule the operations on M, k > 2 in a single stretch (a
block) without idle intervals, starting when the last job on M,_, has been completed. After-
wards we apply a maximum left shift (without violating the constraints) to the whole block.

Let us define a blocking job on M, k 2 2, in a no-idle schedule as the first job on M,
that prohibits shifting to the left.

3. PROPERTIIES OF THE OPTIMAL SCHEDULE FOR »/2/F, NO-IDLE/XZC,

Conway, Maxwell and Miller {2] fundamental theorem for flowshop scheduling that states
that an optimal schedule exists for a n/m/F/8 problem (8-—any regular measure of perfor-
mance) with the same processing order on the first two machines [2, p. 811, holds for the case
under discussion. Thus, the set of permutation schedules for n/2/F, no-idle/ZC; is a dominant

one.
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THEOREM 1: If in the optimal schedule for n/2/F, no-idle/ZC;, the blocking job, is the
last one, then the optimal schedule is according to SPT (Shortest Processing Time) on M,,
except for the blocking job that is the one with the minimum processing time on M,.

PROOF: Let us denote, a, = 1, b, = t,, Sy starting time of J; on M,; and the square
brackets indicating the place of a job in the sequence, for example, Sy;;—starting time of the
first job on M,. Since the blocking job is the last one, we have (see Figure 1).

n n=1
(1) Sip=Y an— Y b= K + b

i=] =1

where

n n
K =3 a,— ¥ b = Constant.
=1 =T

M1 RONUIET NI NN N gy
My AN P

Si2 Sinj2

FiGURE 1. Two machines no-idle schedule where the
blocking job is the last.

The sum of completion times takes the form

n n
(2) Z, Ci=Smz+by+Suyp+by+by+...+Sup+ 2} b
fa= f-

n
= nSupz + 2 (n— i+ 1)by.
i=]

Substitution of (1) yields

3 f‘_ C,= nK + nby,) + # (n=i+ Dby

=l

-1
=nK + (n + )by, + "2 (n—~i+ Dby

=]

To minimize (3) by, should be the smallest and by, i=1,2, ..., n — 1, a nondecreasing
sequence, thus the optimal schedule is given by the sequence
biay € by € by € ... € by a

THEOREM 2: The jobs that (i) precede (ii) succeed the blocking job in the optimal
schedule for n/2/F, no-idle/LC, are ordered according to SPT on M;, provided the no-idle con-
straint is not violated.

PROOF: Let us assume that the blocking job in the optimal schedule is the #-th in the
sequence.
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M1 AAIIUITUIIINIIT 2 AT
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FiGuRre 2. Optimal schedule for n/2/F, no-idle/ZC; where the blocking job is Ji,).

L n~1
(l) S = agiy — b,-.
un .Z; (i E i)

The situation here is rather similar to that of Theorem | with = replacing n. Thus, in the
optimal schedule we have b} € b3 € ... € bpp—y).

Gii) Fori=a+1,7+2, ..., n we have

i

Cia=Cm+ Y by

j=n+l
Thus,
n n
z Ca=—-m)Ciy + 2 (n—i+ Dby
i=mw+1 jmm+]
We have that in the optimal schedule the jobs that succeed the blocking job obey the SPT rule
on M,, provided the no-idle constraint is not violated, by 41) € Ofp+21 € ... € by} a

4. n/m/P, NO-IDLE/XC,, m 2 2, WITH A SERIES OF DOMINATING MACHINES

Machine M, dominates M, if
@ min ¢, > max t,.
i i R
In abbreviated notation
M. > M,.
A scheduling problem with a series of increasing [decreasing] dominating machines is one

where M, <M, <... <M, M > M,> ...> M,].

For n/m/F, no-idle/TC;, m > 2, the set of all permutation schedules is not a dominate
set. However, for the sake of solvability (development of polynomial bounded algorithms for
special cases) we confine our search for optimality to permutation schedules, and the problem is
designated n/m/ P, no-idle/ZC,.

Note that for m = 2 the set of permutation schedules is a dominate set.

Let y, be the processing time of the ith job on M, where the order is according to SPT
on the last machine, M,,.
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SCHEDULING TO MINIMIZE SUM OF COMPLETION TIMES 499

THEOREM 3: The optimal permutation schedule for n/m/P, no-idle/LC; with an
increasing series of dominating machines® is according to SPT on the last machine, except for
the first job that satisfies

m=1 Jj=1
Min[Vj- nY vt G—Dym— ;'Yim]-
J k=1 -

PROQOF: For this case we have
n n
(5) 1§ C, = nSyim + ,; (n =i+ Dtyjyms
where Sy, is the starting time of the first job on the last machine, and
m-1
(6) Stilm = ;-
Im '_§ i

Thus, for a given first job the optimal permutation schedule is SPT on M,,,
m € oim € - € pime
Selecting the jth job in the SPT sequence on M,, 1o be the first, we have

n m—1 j—1 n
¢)) Y C=n 2yj,.+(i-1)7jm_fzyim+;(n-—i+l)'yi,,,.

i=l i=1 i={

Since the last term in (7) is not affected by the choice of the first job, the latter is taken so as
to satisfy

m—1 j-1
ﬂ'l}n Vj-” zl'yjk+(j‘l)7jm-zlyim]' g
k= j-
EXAMPLE 1: A 5/4/P, no-idle/LC; with an increasing series of dominating machines

with processing times as per Table 1.

TABLE | — Processing Times

Jobs
h &L Iy dy U
1 Machines
M, 3 1 3 2 2
M, 4 5 6 4 6
M, 7 9 8 8 9
M, 11 13 14 10 12

M,> M;> M, > M,, thus we have an increasing series of dominating machines.

SPT sequence on M, is 4-1-5-2-3.

*Since My, > M, k=1,2, ..., m = 1, the no-idle constraint is not effective and for the case under discussion, the
two problems n/ m/ P, no-idle/LC, and n/m/P/LC, are equivalent.
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The first job, say J;, satisfies ¥, = Min V,, is the #th in the SPT sequence on M,.
J

V) = 5Q2+4+8) . - 70
V, = S3+4+7) + 11-10 - 71
V, = 5Q+6+9) + 212~ (11+12) - 88
Vo= SU+5+9) + 313 — (10+11+12) - 81
Vs = SG+8+8) + 414 — (10+114+12+13) = 95

The job chosen to be the first is the first in SPT sequence on M, (¥, = min V)), namely J,.
J
The other jobs are schedls.lled according to SPT on M,. Thus, the optimal permutations
schedule is 4-1-5-2-3 with ; C; = 240, and takes the form as per Figure 3.
-

My 4] 1]sH]3

M, 4 1 5 2 3

24 35 47 60

FiGURE 3. Optimal schedule for Exampie 1.

THEOREM 4: The optimal permutation schedule for n/m/P, no-idle/LC; with a decreas-
ing series of dominating machines is according to SPT on the last machine except for the last
job that satisifies

mjin{V,--n i?jk- ("‘j)71m+ i 7im}'

k=2 i=jt1
PROOF: Since M|, > M, > ...> M,, the blocking job on M,, k= 2,3, ..., m, is the last
one, we have

m—1
®) Stiim = ; (Snyw+n = Sun)

'™

m=11{n n~1

= T X ik = T ttiwen
k=l |i= =1

m—1 m—1
=¥ (G- T+ tiusn) = K + 21 {MIPISIE
= i=

L
where 7, is the total processing time demanded on M,, T, = constant = z 4, and
o=

K-TI-TM.
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Substitution of (8) in (5) yields

" m-—) n
9 2 C =nkK +n 2 Hnltk+1) + ; (n—i+ l)’(iIM'
i=1 k=1 i-

Given the job in the last (n-th) place, we have

n n~1
(10) Y =K+ 2} (n =i+ Ditgim,
i=1 i

m—1
where K| = constant = nK + 2 3 tau+n + Hnim:
k=1

Minimum of (10) is obtained by an SPT sequence on M,,,
tHm < tHoim €...< tin—11m-
Choosing the jth job in the SPT sequence on M,, for the last place, we have
n m~1 n n
(an TC=nK+n F Yiurn =0 =)¥im+ T yim+ T, =i+ Dy,
i=1 k=1 i=j+1 i=1
The last term on the right hand side of (11) is independent of the choice for the last place, thus
the job is taken so as to minimize
m-1 n
Vi=n ; Yirn = (D= DVjm + T Vim{- o
k-

i=jt+1

COROLLARY 1i: The optimal schedule for n/2/F, no-idle/EC; where M, > M, is
according to SPT on M, except for the last job that is the one with minimum processing time

on M,.

PROOF: As was pointed out the two problems n/2/P , no-idle/TLC; and n/2/F, no-
idle/L C;, are equivalent. Substitution of m = 2 in Theorem 4 yields
n
Vi=min{V,=jyp+ ¥ viof-
J i=j+1

Thus, the last job is the first in SPT sequence on M,. This result is in agreement with
Theorem 1-—since M| > M, the blocking job is the last one and should be the smallest. a

EXAMPLE 2: A 5/4/P, no-idle/EC; with a decreasing series of dominating machines
with processing times as per Table 2.

TABLE 2 — Processing Times

Jobs
I PO O P A
Machine
M, 11 13 14 10 12
M, 7 9 8 8 9
M, 4 5 6 4 6
M, 3 i 3 2 2
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M, > M, > M; > M,, thus we have a decreasing series of dominating machines.
SPT sequence on M, is 2-4-5-1-3.

The last job, say J;, satisfies V; = Min V, is the th in the SPT sequence on M,.
J

Vi = 5(9+5+1) — 41 + 242+3+3 = 8l
Vy=S(84+4+2) — 32 + 243+3 = T2
Vy = 5(9+6+2) — 22 + 3+3 = 83
Ve=5(1+4+3)—13 +3 =170
Vs = 5(8+6+3) = 85

The job chosen to be the last is the fourth in SPT sequence on M,, (¥, = min ¥,), namely J;.
J
The other jobs are scheduled according to SPT on M,.

5
Thus, the optimal permutation schedule is 2-4-5-3-1 with 2 C; = 343 and takes the form as
i=1

per Figure 4.
M 2 4 5 3 [ 1
M, 2 4 5 3 1
Mj 2|45 ] 3 |1
M, Rlls| 3 |1
6466687 %

FiGURE 4. Optimal schedule for Example 2.

5. n/m/P, NO-WAIT/ELC;, m 2> 2, WITH A SERIES OF DOMINATING MACHINES

We recall that "no-idle" constraint prescribes for the machines to work continuously
without idle intervals, while the no-wait constraint prescribes for the jobs to be processed con-
tinuously without waiting times between consecutive machines.

The set of all permutation schedules for an "F, no-wait" problem (z; 2> 0, missing operations
are allowed) is not a dominant set. However, we confine our search for optimality to permuta-
tion schedules, namely, the problems under discussion in this section, are particular cases of
n/m/ P, no-wait/ZC,. Note that for 7, > 0 (missing operations are not allowed) a feasible solu-
tion for an "F, no-wait" problem is a permutation one, thus "F, ¢, > 0, no-wait" and "P, 1, > 0,
no-wait" are equivalent. As was previously pointed out, n/2/F, no-wait/EC, is NP-Complete
while the compexity of n/m/F, no-wait, t; > 0/EC;, m > 2, is an open problem.
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THEOREM $: For an increasing series of dominating machines the two problems n/m/ P,
no-wait/LC; and n/ m/ P, no-idle/LC; have the same optimal sequence.

PROOF: For n/m/P, no-wait/LC; with an increasing series of dominating machines, we

have
m~—1 i
(12) Ca= Z;, y + Z‘ tjim-
= J=
It i3 readily shown that (12) leads to (5) and (6). 0

A direct consequence of Theorems § and 3 is that the optimal schedule for n/m/P, no-
wait/ZC; with an increasing series of dominating machines is SPT on M,, except for the first
job that satisfies

m—1 Jj=1
MJ‘“[V/ =1 2] Y + G- ”’ij - zyim}-
k=

=]

EXAMPLE 3: A 5/4/P, no-wait/LC; with an increasing series of dominating machines
with processing times as per Table 1 (Example 1). i

mEd _ [1] [8] B [3
Ma| |4 1]15 2 3
Mjy 4 | ] 1 5 2 3 '
M, 4 1 5 2 3 )
2% 35 47 60 %

FIGURE 5. Optimal schedule for Example 3.

The calculations and the optimal sequence are the same as in Example 1, but the resulting
schedule is as per Figure 5 (compare with Figure 3).

THEOREM 6: The optimal schedule for n/m/P, no-wait/2C,, m 2 2, with a decreasing

- series of dominating machines® is according to SPT on M.
*Since My > M, k= 1,2, ..., m~ 1, the no-wait constraint is not effective : ~ for the case - :r discussion the

two problems n/m/ P, no-wait/EC, and n/m/P/LC, are equivalent.

M iaherd & o
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PROOF: Since M, > M.y, k= 1,2, ... .m — 1, we have for the optimal schedule

” m m n~1 m
(13) G- ; Xty Xt X tay
jml = J=1 =1

i=1
n m n—1
- ; 2 fay + 2 (n - Dp-
ju] j=l j=1
The first term on the right-hand side of (13) is a constant, and the sequence
tun € fan € ... € [,y minimizes the second term. Morever, t,11 2 f{,-1)1, otherwise if
Han # max 1q the value of the second term can be reduced by interchanging the last job with
i

Jyn. fyn = max ;). a

EXAMPLE 4: A 5/4/P, no-wait/IC, with a decreasing series of dominating machines
with processing times as per Table 2. Since M, > M, > M, > M, we have a decreasing series
osf dominating machines and the optimal sequence is according to SPT on M;, 4-1-5-2-3, with

Z C; = 247. The optimal schedule takes the form as per Figure 6.

i=]

m[ s ] 1+ T s 1 2 | 3 |

e e e e -

50 61

FIGURE 6. Optimal schedule for Example 4.
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ON THREE BASIC METHODS FOR SOLVING
BOTTLENECK TRANSPORTATION PROBLEMS

Ulrich Derigs

Institut Fiir Okonometrie und Operations Research
Bonn, West Germany

ABSTRACT
For solving transportation problems essentially three types of methods are
known: primal methods, the Hungarian method and the shortest augmenting
path method. In this paper we present the specialization of these approaches to
the bottleneck transportation problem and report some computational experi-
ence.

1. INTRODUCTION

The classical transportation problem (TP) can be formulated in the following way. There
are m supply points and » demand points with supply point i capable of supplying amount
a(i=1, ..., m) and demand point j having demand b;(j =1, ..., n) with ¥ a;= Y b,

i J
Find the least cost transportation pattern from the supply points to the demand points when the
cost of transporting a unit amount from i to jis ¢;, i.e.,

m n
min ¥ ¥ ¢, x; subject to
i=1 j=1
. .
) (1.1 jgl’x,j-ai (i=1 ..., m
¥ m
‘ i=1
fk (1.3) x; 20 G=1,...,myj=1, ..., n)

A related problem is the bottleneck transportation problem (BTP). Here a transportation
time #; is specified between each supply point i/ and each demand point j. Now it is required to
find a transportation pattern which minimizes the total time necessary for transporting the
goods from the supply to the demand points. Thus,

(1.4) min max {1;|x; > 0} subject to (1.1),(1.2) and (1.3)
Problem (1.4) is often called "time-transportation problem." It occurs in connection with tran-
sportation of perishable goods, with the delivery of emergency supplies or when military units
are to be sent from their bases to the front.
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506 U. DERIGS
For solving TP we know essentially three types of methods
— primal methods
— the "Hungarian" method
— the shortest augmenting path method.
Nearly every approach for solving TP can be modified to treat BTP.
So for instance the primal method of Hammer [10], [10al, for solving BTP is strongly
related to the method of Klein [11] for solving TP. Starting from a feasible solution both

methods are looking for "negative cycles" to improve the actuat solution.

In this paper we present these three basic approaches for solving BTP and we report some
computational experience with these methods. }

1. THE HUNGARIAN METHOD

This method for solving BTP was first proposed by Garfinkel and Rao [8]. Inspired by a
work of Edmonds and Fulkerson [5] on general bottleneck problems, they called the procedure
the Threshold Method. The algorithm can be described in the following way: First determine a '
"good" lower bound z for the optimal objective value z. Then define a network A(z) in the fol-
lowing way: Let V= {stJUMUNwith M={1,2, ..., mland N={m+1, ..., m+ n}.
be the nodeset of N (z). Now every node i € M is connected with s by an arc, respectively,
each m + j € Nwith +. A pair (im + j) is connected by an arc only if ¢; < z holds.

The arc-capacities d; , are defined by

e e oo e =4 ot ==

d,=a (i=1, ..., m
Qpej =00 (=1, ..., mj=1 ..., n) .
dm+j,l = bj (J- 1, cee s ”).

Now a maximum flow / = (f;;) from source s to sink ¢ is determined using the labeling method
of Ford and Fulkerson [6]. If for the maximal flow value v = Y. a; holds, the optimal solution

for the BTP is obtained defining

Xi= fimej =1, .. omj=1, ..., n)

If v < I a; the labeling procedure yields simultaneously a minimal cut (X.X) in ¥(z)
with s € Xand ¢t € X. This cut has the property

t, < z=» (im+j) € (X.X) |

To obtain a solution to (1.1)-(1.3) it is therefore necessary to use an arc (i,m + j) with ; > 2
Hence, we determine

2 =min{ylie X, m+j€X}>
Define z := z* and repeat the process.

After (m - n) iterations, at most, an optimal solution is obtained. The algorithm is sum-
marized in the following flow-chart:
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Determine a "good”
lower bound z

Construct #(z) and determine
a max. flow f = (f,) and a
min. cut (X, X) using the
Ford-Fulkerson fabeling method

Yes Optimal solution

X = Sim+

No
z:=min{1;li € X, m+j € X}

|

FIGURE 1. Flow-chart of the Hungarian method

During the algorithm the network & (z) need not be constructed explicitly. All operations of
the labeling procedure can be performed directly on the "time" — matrix T = (z;).

3. A PRIMAL METHOD

The first method for solving BTP proposed by Barsov (1] is a primal algorithm which
proceeds "dual” to the Hungarian method in some sense. In the course of the Hungarian
method the "threshold” z is successively increased until a feasible solution can be found. In this
method a feasible solution is always at hand and the threshold-value is successively decreased
until no further solution can be found. Starting from a feasible solution x = (x;) with objec-
tive value Za cost-matrix D = (dj) is defined by

0ifr, <7z
4= |1 else
Now a TP with cost-matrix D is solved. If the optimal solution y = (y;) has an optimal
value z(y) > 0 the solution x = (x;) is optimal for BTP. Otherwise

z* = max {g;ly; > 0} < Z7 holds.

Define 7 := 2*and x := y and repeat the process.

Computational experience shows [8] that this method is inferior to the Hungarian
method. Recently, Finke and Smith [7) developed an improved primal method.
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Starting from a lower bound z and a "good" start solution x = (x,), a cost-matrix
D = (d;) is defined by
Iy

dy = z+1

with [x] = greatest integer < x.

Now the associated TP is solved using the well known MODI-method and x = (x;) as
start solution. If the optimal solution y = (y;) has objective value z(y) = 0, then y is optimal
for BTP. Otherwise, we consider the dual variables u;, i=1, ..., mand v;, j=1, ..

.,n
associated with the optimal solution y. Then

u+v; < d; i=1, ..., mj=1, ..., n

Vi > 0= u 4+ v;=d,

and
2" = min {z;]u; + v; > 0} > z holds.

It can be shown that z' is a lower bound for the optimal value for the BTP. Define z = 2’
and repeat the process. In an implementation the actual basic solution of the TP is stored as a
tree using the list structures proposed by Glover and Klingman [9], Srinivasan and Thompson
{12]. Due to this technique primal methods are superior to other methods in the case of TP.

The following flow-chart summarizes the algorithm of Finke and Smith.

Determine a "good"
lower bound 2

4
Determine a "good”
start solution x = (x;;)

Q

} Solve the TP using the

) cost-matrix D = (d;)) FiGURE 2. Flow-chart of the primal method
) L of Finke and Smith

N . i

! withd; =

: ith d;; Z+1

Optimal value = (?

z:=min {t;lu, + v, > 0}
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4. THE SHORTEST AUGMENTING PATH METHOD

This method was proposed by Tomizawa [14] for solving TP and applied to BTP by Derigs
and Zimmermann [4]. A theoretical foundation of this method can be found in [2]. During
the procedure so-called k-subproblems (P,) have to be solved for | € k < m:

(Pk) min max (t,jlxij > 0}
n a; i=|.2,...,k
2% =10 else
J=1
m
Tx;$b j=1....n
Py
x; 20 i0i=1,...,mj=1 ..., n

The solution for (Py) is obvious. Starting from an optimal solution x = (x;) for (P,)

with k=1, ..., m — 1 an optimal solution for (P,.,) is obtained by means of augmenting
paths. For this purpose we partition (1,2, ..., nl = N, U N, with
k
N=113 x =8 "saturated columns.”
j=l

Now a sequence Ax of mutually distinct matrix-entries
(k + l.jl)' (ilyj]); (il;jz)» (iZ'jZ)' rer s (ir-jr)! (ir'jr-H)
is called an augmenting path with respect to x = (x;) if

x;;, >0 forg=1,2, ..., rand

/e
jq € N| fOl'q =1,2,...,rand Jr+1 € Na.
The capacity of Ax is defined by

k
cap (Ax) = min {a,,,. blm - 2 Xijoor? €} with
jou1
€ == min {x,-g_quq =12, ..., r}

Let us define x = x ® Ax by

x; —cap (Ax) for (ij) = () ooy Gdy)
X, =1 x; +cap(ax) for (ij) € Ax\[(ip.j)lg=1, ..., r
X;j else
and
w (Ax) = max {1,|%, > 0).
Let D, be the set of all augmenting paths with respect to x = (x;) and AX € D, with
@.n w(AX) € w(Ax) for Ax € D,
4.2 cap (AX) = gy

then ¥ := x @ AX is an optimal solution for (P, ).
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An augmenting path Ax € D, with property (4.1) can be determined using a modified
Dijkstra method. If Ax does not fulfill (4.2) we split (P,,,) into two subproblems (P),,) and
(P2)) with g/, == cap (Ax) and a?,; = a,,, — a},;. Thus, (P,,;) can be solved in a finite
number of steps.

Computational experience shows that the method can be improved with the aid of the fol-
lowing starting procedure. First we determine a "good" lower bound z for the optimal value :z
and a "good" partial solution % = (X;), i.e.

(4.3) i‘,IQG, ,i-l,...,m
j=1
m .
(44) zi‘lsbl ,_I-l,-..,”
j=l
4.5) x; 20 yi=1, ..., mj=1 ..., n
with the property
such that

L

m
2 z X, is large.
=1 j=l

A partial solution % with (4.3) - (4.6) is called z-feasible. Computational tests have shown
that it is not useful here to determine a zfeasible solution with maximal possible sum. Some
simple heuristics will give solutions which are within 5% from optimality much faster and, with
respect to the running time of the complete procedure, this is of advantage. The complete pro-
cedure is summarized in the following flow chart.

Determine a "good”
lower bound :

-

Determine a "good” ; ~
feasible solution x = (X,,)

1

i, ma - R k=1 m
tm]|
k=0
Figure 3. Flow-chart of the shortest
augmenting path method.
G =00 Yes

No No
Determine a shortest

augmenting path Ax
X =5 ®Ax

l Yes
Li,. - g, — cap (Ax) J
B
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5. LOWER BOUNDS AND STARTING PROCEDURES

All three methods presented above start with a lower bound 2 for the optimal value z.
Computational experience shows that thelbound proposed by Garfinkel and Rao is favorable.
Row-thesholds z; and column-thresholds z/ are computed with

z, = min max {1;|x; > 0} subject to

n

pIETER
J=1

0L x; < b fori=1, ..., m

and 2z’ defined analogously.

Then z = max {z),z, ..., z,, 2'.2% ..., 2"} is a lower bound. This bound is easy to
calculate and yields a good estimation for the optimal value in most cases.

The primal method of Finke and Smith heeds a good starting solution x = (x;). They
propose the following method. First a z-feasible partial solution X = (J'r,-j) is constructed. Such
a partial solution is used for the shortest augmenting path method, too. A zfeasible solution
can be obtained in the following way. For every row i (column j) the number 7, (77) of feasi-
ble matrix entries (ij) subject to 17; € z is computed. Now the row iy (column jg) with
minimal 7;, > 0 (T'° > 0) and positive a;, (b;)) is determined. If no such row (column) exists
the partial solution is completed. Otherwise, determine in row iy (column jp) the feasible entry
(ig.jo) with minimal number T (T,) and positive b; (a,). Then define

%io 4o = min [a,~0, bfo)
aio - a,-o - x,'o_jo

bjO Ko bjO - iio»io‘
Update T; and 77 and repeat the process.

This way a good z-feasible partial solution % = (%;) is determined. If % = (%;) fulfilis

‘ t (1.1) and (1.2) then it is an optimal solution for BTP. If the partial solution is not optimal in
the second step of the starting procedure proposed by Finke and Smith, the remaining supply is
distributed using a north-west-corner rule. Finke and Smith call their procedure threshold-
: totals-method.

The following flow-chart summarizes the starting procedures for the three methods.
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Determine the lower bound 2
proposed by Garfinkel and Rao

+_ — — — — — —{ Hungarian Method

Determine a z-feasible partial
solution using the threshold-
totals method

Shortest Augmenting
Path Method

Distribute the remaining supply
via north-west-corner rule

L ————— —{ Primal Method J

FiGURE*4. Flow-chart of the starting procedures.

6. COMPUTATIONAL RESULTS

FORTRAN 1V implementations of all three methods were tested on a CDC CYBER 76 of
the Computer Center of the University of Cologne. We used the following codes:

HUNGAR - a version of the Hungarian method which Professor Garfinkel kindly made
available to us

PRIMAL - a version of the primal method which Professor Finke kindly made available
to us

SAP - an improved version of the BTP-code which is listed in [4]. The improve-
ment concerns mainly the starting procedure.

The HUNGAR-code uses the maximal cardinality NL of expected postive x,’s in any
column as input data. The running time of the program is highly dependent on the choice of
NL since the value and position of the x;;’s are stored in NL x N matrices. Thus, the choice of
smaller "NL" decreases the running time. But if the actual number exceeds NL, termination
occurs. Choosing NL = M/2 all problems were solved.

We considered rectangular as well as quadratic examples. The integer coefficients of the
time matrix 7T, the supply vector a and the demand vector b were generated by a machine
independent uniformly distributed pseudo random number generator in the interval [1, 23! —1].
Afterwards these numbers were transformed into the intervals [1,6] with
b = 10, 100, 1000, 10000, 2! —~1. Twenty-five examples were generated for each combina-
tion to calculate the mean running time. Numerical ¢xperience showed that the running time
of HUNGAR and SAP for solving rectangular problems with m > » is less than for the
equivalent transposed problem with m < n. Therefore, we recommend that rectangular prob-
lems always be solved in the form with m > a.
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The following table shows the mean running time for quadratic problems with
m=n = 100.

TABLE 1 — Mean Running Time in CPU-Seconds for (100 x 100) BTP

L 1 1-10 | 1-100 | 1-1000 | 1-10000 | 1-(2° —1)

a,,b,-

° SAP | 112 | 177 177 192 181
- PRIMAL | .106 | .124 124 133 126
- HUNGAR | .226 | .400 .383 478 .504
S SAP | .107 | 120 144 171 150
- PRIMAL | .094 | .106 .105 .106 111
- HUNGAR | .332 | .582 611 588 672
§ SAP | 089 | .140 188 121 223
= PRIMAL | .092 | .098 119 106 114
- HUNGAR | .333 | .439 .548 603 13

The mean running time of PRIMAL is significantly better than the other’'s. For SAP this
is simply caused by a single "ill conditioned" problem for which the running time is more than
tenfold the running time of the other 24 examples of the group whose running time is compar-
able to those of PRIMAL.

SAP and PRIMAL are shown to be relatively insensitive to the range of the parameters
a;,b; and ¢; while the running time of HUNGAR is more than doubled when the range for 1, is
increased from b = 10 10 & = 2% —1.

Then we modified the problems subject to
n;=t;,=0fori=1 ..., mandj=1, ..., nand
a, = b, = max {max{a,}, max {p}}.

For these perturbated problems the starting procedure has no effect and thus the computational
behavior of the "pure” algorithms is shown.

Table 2 shows that PRIMAL and HUNGAR are more dependent on the quality of the
starting procedure aid the range of the time values 7, than SAP.

TABLE 2 — Mean Running Time in CPU-Seconds for the Perturbated
(40 x 40) Problems

% | 1-10 | 1-100 | 1-1000 | 110000 | 1-2*' 1)

a,-,b,-
o SAP | 014 | 105 | .122 117 121
= PRIMAL | 015 | 118 | 369 | .446 448

HUNGAR | 016 | 269 | 608 | 720 686
2 SAP | 014 | 153 | .19 | 202 169
= PRIMAL | 014 | 133 | 389 | .483 504
=~  HUNGAR | 026 | 436 | 790 | 922 988
g SAP | 014 | 161 | 179 | 217 164
S PRIMAL | 015 | 132 | 398 | .483 506
T HUNGAR | 025 | 422 | 834 | .937 983
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Then we applied the algorithms to bottieneck assignment problems i.e., problems with
a=>b =1

TABLE 3 — Mean Running Time in CPU-Seconds for (100 x [00)
Bottleneck Assignment Problems

1 1-10 | 1-100 | 1-1000 | 1-10000 | 1 — (23" ~1)
ge SAP | 074 | 074 | 074 073 071
E g
S5  PRIMAL | 083 | 092 | .100 096 105
2 &
< HUNGAR | 055 | 103 | .143 140 155

For assignment problems SAP needs at most n/2 iterations while PRIMAL will perform
a number of degenerate pivot operations. Again PRIMAL and SAP show a more robust nature
with respect 10 the range of the time parameters f; than HUNGAR.

More computational results can be found in [3] and {4].

7. CONCLUSIVE REMARKS

In this paper we presented three basic methods for solving the bottleneck transportation
problem. It is beyond the scope of this study to give an entire review of all the different
methods which are available for solving BTP. Nevertheless, we think that the presented pro-
cedures are represeniative in the sense that the main approaches for tackling combinatorial
optimization problems are specialized to the bottleneck transportation problem.

The computational tests indicate that PRIMAL and SAP outperform HUNGAR in gen-
eral. The optimal choice between PRIMAL and SAP is data dependent and should be specially
made for every problem to be solved. If it can be expected that the start-heuristic is perform-
ing well, PRIMAL is recommended. Otherwise, SAP is of advantage.

We want to close our discussion by referring to another computational study. Werner
[15] compared versions of SAP and PRIMAL on special problems the data of which was
defined by some structured transportation networks incorporating time tables for transportation
vehicles, waiting-times and different regions with different magnitudes of demand and supply.
Werner reports that the running time for PRIMAL was highly dependent on the distribution of
data and the more the data was not uniform the more SAP became superior.
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SEQUENCING n JOBS ON TWO MACHINES WITH SETUP,
PROCESSING AND REMOVAL TIMES SEPARATED

Dileep R. Sule

Louisiana Tech University
Ruston, Louisiana

ABSTRACT

The paper extends the machine flow-shop scheduling problem by separating
processing time into setup, processing and removal times.

In a recent paper Yoshida and Hitomi [2] extended the classic two machine scheduling
problem first introduced by Johnson {1]. They allowed setup times to be independent of the
processing times. This paper is the further extension of the Yoshida and Hitomi model. it
allows for separation of processing time into setup time, processing time and removal time for
each job on each machine.

For example, consider a machine shop environment. Operations associated with each job
on each machine when the machine/operator is available could be summarized as follows:

1. Setup time independent of the unit to be processed. This operation consists of activi-
ties such as obtaining the blueprints, procuring the necessary tools, fetching the
required jigs and fixtures and setting them on the machine.

2. Setup time that is a unit dependent. This operation includes the time required 1o set
the unit in the jigs and fixtures and to adjust the tools as required.

3. Processing time.

4. Removal time dependent on the unit. This operation includes the times for activities
such as disengaging the tools from the unit, and releasing the unit from the jigs and
fixtures.

5.  Removal time independent of the unit. This operation includes activities such as dis-
mantling the jigs, the fixtures and/or tools, inspecting/sharpening of the tools,
returning them to the central depository, cleaning the machine and the adjacent area.

Since activities 2, 3 and 4 are unit dependent, their times could be combined and desig-
nated as the processing time. However, times for the activities |1 and § are independent of the
unit to be processed.
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Formulation of the Problem
Let,

P™ = processing time of job / on machine m. This includes times for the activities 2, 3 and
4 described before. i=1,2, ...n, m=1,2,

SM = setup time independent of the unit, i.e., activity 1, for job /i on machine m.
R™ =removal time, i.e., activity 5, for job i on machine m.
C" =completion time of job i on machine m.

In addition, in the mathematical development, it is assumed that the jobs are designated
so that the job in the Ah position of the processing sequence is job i Since the setup is
independent of the unit, if there exists an idle time on machine II, setup on machine II can be
done before the unit is available from machine I. The unit is availabie from machine I when
processing on the unit is completed; however, the machine is not available for the next job
until the removal operation on the machine is finished. Figure 1 shows these activities graphi-
cally.

C,'l_ ] Si

s TR

o

Miachine 1 y/////s///

FIGURE 1. Graphical illustration of two machine problem.

Completion time for job i on machine I is given by,

(1 G-:$+H+N
j-
Completion time for job i on machine Il is
(2) Cl=(CLi+S§'+P)+ P+ R?
if C2 +S2< ClL, +S'+ P' (see Figure 1)
or

Gl=CLi+ S+ P+ R
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whenever
3 CL,+S*2CL +S'+P.

The combination of (2) and (3) gives
(4) Ciz = Max [C,l - R,‘I - S,z. Clz_]] + S’_Z + P‘Z + R,Z.
By successive application of (4) using (1), the total elapsed time is given by
u—1

OSu<n |2 i=1

(5 T=Cl= Max{ Max [i ('~ 8§+ PH— T (PP+R*-R))
T

+ i (57 + P2+ RM).

im]
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[

The optimal schedule can be found by using Johnson’s method to solve a two machine flow-
shop problem where the processing times of job i on machines I and Il are S!' — §2 + P! and

P?+ R?— R}, respectively.
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A NOTE ON THE MAXIMIN VALUE OF TWO-PERSON,
ZERO-SUM GAMES*

Alvin E. Roth

Mellon Prafessor of Economics
University of Pittsburgh
Pittsburgh, Pennsylvania

1. INTRODUCTION

The theory of two-person, zero-sum games has occupied a special place in the general
theory of games ever since its introduction by von Neumann and Morgenstern {17]. They
presented the theory of two-person, zero-sum games as a natural extension of the theory of
rational choice under uncertainty, as modeled by the maximization of an expected utility func-
tion. Their conclusion was that rational players should always play their maximin strategies in
such games, and should regard the maximin payoff as the "value” ot the game.t

Subsequent authors have questioned both the validity and generality of these conclusions.
Elisberg [4], for instance, points to gaps in the arguments which von Neumann and Morgen-
stern present in support of their conclusions, and raises questions related to the interpretation
of the naure of the outcomes of the game, while Aumann and Maschler [1] discuss issues
which arise in passing from the extensive to the normal form of a game. This latter discussion
has generated a lively controversy (cf. Aumann and Maschler [2], Davis (3], Owen {7], Taylor
[13]). McClennen [6] also examines gaps in the arguments presented by von Neumann and
Morgenstern, and, like Aumann and Maschler, concludes that the prescription that rational
players should choose maximin strategies cannot be derived directly from the principle that
rational individuals are utility maximizers.

There is thus a gap between the rationality assumptions which insure that an individual
evaluates single person decision problems as a utility-maximizer, and the assumptions which
insure that he evaluates two-person, zero-sum games in terms of the maximin value. Two dis-
tinct issues are involved here, since the maximin value is intended to be used both to evaluate
alternative games and to identify maximin strategies as "rational” choices. This paper addresses
the first of these issues.

One approach to studying the maximin value is the axiomatic approach ot Vilkas [15] and
Tijs (141, who consider arbitrary functions defined on games and present axioms which are

*This work was supported by National Science Foundation Grant SOC75-21820 to the Institute for Mathematical Stu-
dies in the Social Sciences, Stanford University, and by National Science Foundation Grant SOC78-09928 to the
University of Illinois.

tStrictly speaking. this conclusion applies only to games having saddiepoints in the set of admissable strategies. Such
games are sometimes referred to as determined games.
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uniquely satisfied by the maximin value. This paper takes a different, but related, approach,
and shows that the maximin value of a two-person, zero-sum game can be interpreted as a
rational individual’s von Neumann-Morgenstern utility for playing the game, and demonstrates
necessary and sufficient conditions on the individual’s preferences over games for this to be the
case. That is, we will consider conditions which an individuals's preferences must obey in addi-
tion to those which insure that he is a utility maximizer, in order for his utility function to coin-
cide with the maximin value. This approach has been used to study other classes of games:
e.g., cooperative games with side payments (Roth (8], [9]), simple games (Roth [10]), and bar-
gaining games without side payments (Roth [11], [12D). The concluding section of this paper
will discuss briefly the relationship between the results obtained here and these other results.

It should perhaps be emphasized at this point that it is not the purpose of this paper to
further explore the mathematical properties of the maximin value, which are well understood.
The questions which have been raised in some of the papers cited above concern, rather, the
interpretation which can be placed on the maximin value as part of a theory of rational (i.e.,
utility-maximizing) behavior. The purpose of this paper is to further explore this latter issue.

2. THE MAXIMIN VALUE AS A VON NEUMANN-MORGENSTERN UTILITY

A two-person, zero-sum game g will be denoted by a triple g = (S,,5,,4), where S, and
S, are arbitrary sets, and u is a function such that u:S, x S, — RZ2, and such that, for any
(s,1) € S, x 8§y, u|(s.t) = —uy(s,t). The interpretation is that in the game g, the player in
position i (i = 1,2) will have available a set of strategies* S;, and will compete for prizes over
which his preferences are represented by the utility function u;. His opponent’s preferences
will be precisely opposite his own. (Note that in general it is not necessary that the players
compete for a single set of physical prizes.t It is sufficient that the results of the game be such
that the two players are never in agreement over which of two outcomes is preferable.)

This formulation defines the game independently of the individuals who will play it. Con-
sequently, it is meaningful to consider the preferences of some individual over the positions in
a game, or in different games. Letting G be some class of two-person, zero-sum games, and
letting N = {1,2} be the set of positions, we will be considering an individual’s binary prefer-
ence relation P defined on N x G, the set of positions in a game. For i, j € Nand g, g' € G,
the statement (i,g) P(j,g') should be read "it is preferable to play position i in game g than to
play position j in game g'." We will interpret P as a strict preference relation, and define an
indifference relation I and a weak preference relation W in the usual way.t We will assume that
the preference relation is defined over the mixture set of lotteries generated by N x G, and
that it satisfies the rationality conditions necessary for the existence of an expected utility func-
tion v.

*Typically the strategy set $; could be the set of all probability mixtures of some finite set of pure strategies.

tTwo person, zero-sum games are sometimes interpreted as games in which, for every pair of strategy choices. one
player’s gains are precisely equal to the other’s losses in terms of some physical commodity, such as money. Under
this interpretation, the game would only be zero-sum in the rare case that the two players have precisely opposed
preferences for lotteries involving money. In our formulation, the game specifies the utility payoffs to be faced by the
players. For a given pair of individuals to play a specified game. the monetary rewards to each would have to be ad-
justed in terms of each individual's utility function for money.

1So, for a.b € N x G, alb il and only if neither aPb nor bPa, and aWb if and only if either aPb or alB.
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Since we are interested in preferences over a possibly infinite set of alternatives (e.g., let
G be the set of all matrix games) it will be simplest to refer to the axiomatization of utility due
to Herstein and Milnor (5], rather than to von Neumann and Morgenstern’s original axiomati-
zation. Denote by [p(ig); (1 — p)(j,h)] the lottery which with probability p has an individual
play position / in game g, and with probability 1 — p play position jin game A Then we assume
that the preference relation is defined on a mixture set containing all such loiteries, and that
this preference relation has the properties of transitivity, continuity, and substitutability
sufficient for the existence of an expected utility function (Herstein and Milnor [5]). That is,
there exists a function v (unique up to origin and scale) which preserves preference (v(ig) >
v(jh) iff (ig)P(i.h)) and evaluates the utility of a lottery by its expected utility (vip(ig):
(1 - p) G =pvlig)) + (0 = p)v((Gm).

The fact that we are considering preferences defined over games, which are themselves
defined in terms of an expected utility function, puts some additional restrictions on the allow-
able preferences. In particular, for any real number &, let g, be the (degenerate) game defined
by g = (5,,5,,4) such that 1§,| = |5,] = 1, and #,(S5,,S,) = k. Thus g is the game* in which
each player has only one strategy to choose, which results in the player in position 1 receiving a
utility of k, and the player in position 2 receiving a utility of —k. Since k is an expected utility,
we know precisely how an individual's preferences should behave over alternative games g,.
" ~rmally, we assume that the set G contains the set of degenerate games, and impose the fol-
.~ 7ing conditions on preferences over degenerate games, which have the effect of embedding
the space of utilities into the space of games.

(1) (l.gl)P(l.go).

This simply states that it is preferable to play position | in the degenerate game g, which
awards the player in position 1 a utility of 1 than to play position | in the game g, and get a
utility of 0.

(2) For any real numbers c and & such that ¢ 2> 1,

u.gmi% (1w

o1
(4

(l.go)l and (l,go)l{—;-(l,gk);% (l.g-k)l.

The first part of this condition states that a player is indifferent between receiving a utility of k
for certain in the degenerate game g, or participating in a lottery which gives him a utility of ck
with probability 1/c and a utility of 0 otherwise. The second part of the condition states that a
player is indifferent between receiving a utility of k or —k, each with probability 1/2, or receiv-
ing a utility of 0 for certain. This is precisely what is meant by the statement that the function
u is an expected utility function.

Condition (1) permits us to normalizet the utility function v in the natural way, and we
henceforth take v(1,g9) = 0, and v(l,g;) = 1. Condition (2) then completes the embedding of
utilities into the space of games, giving us the following result.

PROPOSITION 1: For any real number k, v(l,g,) =~ k.

*Technically speaking. our definition allows there (0 be more than one game g. since we could allow different one-
element strategy sets. This difference is inessential, and can be ignored.
tRecall that v is determined only up to choice of origin and scale.
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PROOF: Since v is a utility function, the first part of (2) implies that, for ¢ > 1,
v(l,g) = vil/c(l,g,): (1 = (1/c))(1,g9)). But v is an expected utility function, so the utility
of a lottery is its expected utility; ie., vil/c(l,gy): (1 — (1/c))(1,g9)] = (1/c)v(l,g,) +
(1 - (/c)vll,gy) = (1/c)v(l,g4). Thus, for any k, v(l,g,) = cv(l,g) for ¢ 2 1. For
0<c<1, letd=1/c, and k' = ck. Then v(l,g4) = dv(l,g), so v{l,g,) = cv(l,g) for
any k and any ¢ 2 0. In particular, for any k > 0, v(l,g) = kv(l,g)) = k. But the second
part of (2) implies that v(1,g,) = ~v(1,g_,) for any k, and so v(1,g) = k for all k, as was to
be proved.

So far we have imposed conditions on preferences over degenerate games which reflect
the fact that they are associated with the underlying expected utility function, but we have yet
to impose any conditions which reflect the zero-sum nature of all games in G. The following
conditions will suffice for our purposes.

(3) Forall g € G, (1,g0)1{% (Lg): % 2.9

This condition states that a player is indifferent between getting a utility of zero for certain in
the degenerate game gy or participating in a lottery which gives him an equal probability of
playing either position in any two-person, zero-sum game g The motivation for this require-
ment is the idea that if a given zero-sum game g yields an advantage to a player in one of the
positions, then it must yield a corresponding disadvantage to the player in the other position.
An immediate consequence of condition (3) is the following:

PROPOSITION 2: For all g € G, v(l,g) = —v(2,g).

PROOF: (3) implies that v(1,g,) = vi1/2(1.g); 1/2(2,g)] = (1/2)v(1,9) + (1/2)v(2,9).
But v(1,g0) = 0, so v(),g) = —v(2,g).

To state the next condition, consider a game g = (§,,5,,4) and a given position i € N.
for every strategy s € S, define k(s) = k(gis) = 12;‘ u,(s,t), where j # i* Then in addition
€3
to the conditions already imposed on the preferences, we require the following.
(4) Forany g € G, i € N, and s € S;, (i,g) Wlig)).

If the game g were such that S; contained only a single strategy, then condition (4) would sim-
ply be a version of the "sure thing" principle, which states that any prospect is at least as desir-
able as the worst outcome which can result from that prospect. As it stands, the condition also
reflects that individual i is free to choose any strategy s in S;. Condition (4) implies the follow-
ing proposition.

PROPOSITION 3: Forany g € G,
S .
v(l,g) 2 Sseuyl ,lenst; u(s,1),

and

5 .
v(2,g) 2 sseug ’lensfl uy(t,s).

*So kg L.s) = inf u(s.r),and k(g 2,s) = inf u,(ss).
1€5, €S
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That is, the utility of playing a game is at least as large as the "security level” which the game
provides. No further assumptions are needed to permit us to reach the following conclusions.

PROPOSITION 4: Forany g € G,

inf sup u;(s,1) 2 v(1,g) 2 sup inf u,(s,).
1€S, s€8, S€S) 1€5,

PROOF: The right hand inequality is simply the first part of Proposition 3, while the left
hand inequality follows from Proposition 2 and the second part of Proposition 3, together with
the fact that u,(s,1) = —u,(5,0).

A game g is said to have a saddlepoint if there exist strategies s € S, and ¢ € S; which
achieve the inf sup and sup inf of Proposition 4, and make them equal. For such games, Pro-
position 4 has the following immediate consequence.

PROPOSITION 5: If g € G has a saddlepoint, then

v(l.g) = max min #,(s,t) = min max u,(s,t).
SE€ES 1€8, 1€S, SES,

The famous Minimax Theorem of von Neumann [16]) establishes that if g is the mixed exten-
sion of a finite two-person, zero-sum matrix game, then g has a saddlepoint and Proposition 5
applies.

DISCUSSION

The previous section establishes conditions on an individual's preferences over games
which yield the maximin value as his utility for a given game. Insofar as these conditions are
consistent with our other notions about zero-sum games, this shows that the maximin value is
consistent, both formally and substantively,* with the notion of rationality embodied in utility
maximization. The "machinery” necessary to establish this result shoiuld not, however, be per-
mitted to obscure the essential simplicity nf the argument.

The two substantive conditions on preferences are (3) and (4). Condition (4) serves to
establish a lower bound on the utility of playing the game from either position. Condition (3),
by fixing the utility for one position in the game with respect to the utility for the other posi-
tion, combines with (4) to produce an upper bound on the utility. For a game with a
saddiepoint these bounds coincide, and so the utility is determined.

Since the maximin value is often interpreted as being an unnecessarily conservative
assessment of a game (cf. Elisberg’s [4] "reluctant duelist"), it is interesting to note that condi-
tions (3) and (4) actually prevent the utility function from reflecting an excessively conserva-
tive attitude. In particular, if g is a game withour a saddlepoint, then the utility of playing g in at
least one of the positions must be strictly greater than the maximin value for that position.
This is because Proposition 2 requires that v(l,g) = —v(2,g), and, in a game without a
saddlepoint, the maximin values for each position are not the negatives of one another.

*Any numerica) index for certain events can of course be extended to a function which preserves expected value over
lotteries. The purpose of this paper is to investigate what substantive assumptions about preferences need to be made
in order o interpret this extension as an expected utility function.
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Note that if the class G does include games which have no saddiepoint, then the condi-
tions imposed in the previous section do not completely determine the utility function v. To
do so, it would be necessary to precisely specify a player’s attitude towards the additional uncer-
tainty present in games with no saddlepoint. The same phenomena occurs in studying coopera-
tive games, in which it is necessary to specify a player’s attitude towards strategic risk (cf. Roth

9h.

As a final observation, note that, although the maximin value is linear in degenerate
games, it is not linear in arbitrary games. Let g and h be finite matrix games of the same
dimensions, let p be a probability (i.e., p € [0,1]), and let g' = pg + (1 — p)h (where we
employ the usual conventions of matrix arithmetic). Then each element of the matrix g’ is the
expected value of the corresponding element of the random matrix defined by the lottery
[pg;(1 — p)h]. We might conjecture that a player would be indifferent between playing a given
position in the game g’ or 1aking the same position in the lottery. But for preferences obeying
the conditions considered in this paper, this is not the case. That is, vip(ig); (1 — p)(ih)]
equals pv(ig) + (1 — p)v(ih) and is in general not equal to v(ig’), for i =1,2.* In this
respect, the preferences considered here over zero-sum games resemble the preferences over
bargaining games considered in Roth [11], [12] more than the preferences over games with
sidepayments considered in Roth [8], [9].
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ABSTRACT

Certain lypes of communication nodes can be viewed as multichannel
queueing systems with two types of arrival streams. Data arrivals are character-
ized by high arrival and service rates and have the ability to queue if all service
channels are busy. Voice arrivals have small arrival and service rates and do
not have the ability 10 wait when the channels are full. Computational pro-
cedures are presented for oblaining the invariant probabilities associated with
the queueing model.

1. INTRODUCTION

The steady growth of the data processing industry and the telephone network over the last
four decades has introduced computer-communications networks as efficient transportation
vehicles for the remote sharing of information data bases. Recent Defense Communications
Agency studies have shown the desirability of a network which integrates voice, interactive, and
bulk data for the 1980’s (Rosner [10], Schmitz, Saxton, Huang and White [11]). Several addi-
tional studies relating to information processing growth in the next few decades portend new
data/voice services with substantially increased data flows (Rich and Schwartz (8], Rosner [9]).
There are several different time division integration methodologies proposed for combining
voice and data demands over the available channel bandwidth (Coviello and Vena (2], Fischer
and Harris (4], Frank and Gitman [S]). A competitive allocation scheme allows the data and
voice calis to compete for time slots using a first-come, first-served scheme.

Simulation models have been developed to study competitive allocation schemes;, how-
ever, because of their expense and the fact that rare events are of interest, simulation studies
are not necessarily appropriate. Analytical models have also been developed to describe com-
petitive allocation (Bhat and Fischer (1], Fischer (3], Fischer and Harris [4]). The analytical
models developed to date all share the common drawback of not being tractable for problems of
reasonable size. The purpose of this paper is to present an analytical model of the dynamic
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movement of voice and data calls within an integrating device and give a tractable solution pro-
cedure for the model. The allocation scheme is that used by Bhat and Fischer [1]. The

methodology for the solution scheme combines procedures developed by Neuts [6,7) and
Wong, Griffin, and Disney [12}.

2. THE MODEL

There are two classes of calls that arrive to the service center: data calls and voice calls.
The arrival process of data calls is assumed to be Poisson with rate A, and the arrival process of
the voice calls is assumed Poisson with rate A,; the two arrival processes being independent.
Although each data call actually consists of a random number of discrete bits, the length of
each data call is assumed to be adequately approximated by a continuous exponential random
variable with mean 1/u, and the length of the voice call is assumed exponential with mean
1/u3. The characteristics of data calls are frequent arrivais and short length whereas the voice
calls have infrequent arrivals with a long service time. A buffer is available that can store
incoming data calls when all channels are busy. The size of the buffer is such that no effective
limit is placed on the queue size. Voice calls, however, may not form a queue so that any
incoming voice call is lost whenever all channels are busy. The service center has ¢ channels
using a FIFO discipline. '

The data/voice integrating system is modeled as a Markov process with a two dimensional
state space given by
E={nm):m=0,1,...,candn=20,1, ...}

The vector p (ordered lexicographically) denotes the steady state probabilities where p(n,m) is
the steady state probability that there are » data calls in the system and m voice calls in the sys-
tem. For ease of notation the vector p is partitioned as

() p=(po. p1. -..) ’
where the mth component of p, is p(n,m). The vector p is the solution to the equation

pQ =0
(2) pl=1

where 1 and 0 are vectors of all ones and zeros, respectively, and Q is the transition rate matrix
for the Markov process representing the data/voice system. The matrix Q is infinite and is

given by
4, A
"o O
3) = M., A A
M_, A. A
O M, A A
. - :
NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 29, NO. ), SEPTEMBER 1982

ok, Fhoa fy 01 a0 .

' e T oo

e e - T
~ .

. . . T
i+ A —— i -




>

g

NOTE ON DATA/VOICE COMMUNICATION QUEFUEING SYSTEM 531
where the submatrices are defined. for i j,n = 0,1, ..., ¢, by
Al |r i - j-
(@) AGD =10 otherwise:
nu, ifi=jandj < c—n,
(5) M (ij) =3 (c—j)uy ifi=jandj>c—~n,
0 otherwise.
Az ifi=j~tandi < c—n—1,
M ifi=j+1,

© AN = o) ifi=),

0 otherwise;
where a, (i) is such that the row sum is zero.
3. SOLUTION PROCEDURE
The general structure of the matrix Q is identical to the type investigated by Neuts [6]
and similar to the finite system investigated by Wong, Griffin and Disney [12]. The solution

method as given by Neuts [6] is a two step process. First, it is necessary to find the matrix R
such that

M RM. +RA. +A=0.

The matrix R gives the relationship

8) Pesk =P R¥*Y fork=0,1, ....

The second step isto let p = (pg, ... . P._1) and then solve for p v<i~g equations
9) pT=0

and

frL+p. RU-R)'"1=1

where
Ay A O
M, Ay A
T= . ' A
O Mt—l Ac—l +R Mc
- _

It will turn out that for this communication problem, the matrix R of equation (7) is easy to
obtain whereas § from equation (9) gives computational difficulties which will be overcome by
using a technique utilized by Wong, Griffin and Disney {12].
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The matrix R is lower triangular since the matrices M., 4., and A are lower triangular.
Therefore, the diagonal elements of R? are simply the square of the diagonal elements of R.
Thus, the following equation results when considering the diagonal elements in (7) for
i=0,...,c¢c

(10) ri(c = Dpy = rdhy +ipg + (e = Du) + A, =0.
The solution of (10) yields

Fee = N/ (cuy + Ay)
andfori=0, ..., c—1

ro=1An +ipy+ (e = Dy = [+ ipy + (e — Duy)?
an =4, (e — D)W/ (2(c = D).

The off-diagnonal elements are not quite as straight forward but by considering the i,j element
with i > j, equation (7) yields
] C
(e =y X orurey + X ra Ac(kj) =0
k=j k=0
which in turn yields
i-1
(e = pulrlry + 1) + Y i)
k=i
+ G+ Dugrer =+ juy + (e = Puilry
and thus for i > j

i-1

(12) ri =G+ Dpyro + (e=Duy I ranV/ Iy + jug + (e =y Q= 1y = 1))
k=

where the sum in equation (12) is defined as zero if j = i — 1. Equation (11) and (12) give an

easy iterative procedure where the diagonal elements of R are first computed, then the ele-

ments such that j = i — | are computed then the elements such that j = j — 2, etc. In this

manner the exact expression for R is obtained and the solution of equation (9) remains.

The obvious difficulty with (9) is that for a typical system in which ¢ = 48, the dimension
of Tis 2352 x 2352. In order to obtain a solution to (9) it will be reduced to solving a 49 x 49
system.

Equation (9) can be rewritten as

13) Podo + PIM; =0
(14) PioiA + Ay + P aMi =0 fork=1 ..., ¢-2
(15) PcA+p._ (A, + RM,) = 0.

Each of the submatrices in the above equation are of dimension (¢ + 1) x (¢ + 1). New
matrices B, are defined with dimension (2¢ + 2) x (2¢ + 2) by

—A AT
'-MK+|A—‘ 0

B = I fork=1,...,¢-2.
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It now follows from (14) that

(16) P P = (i Pis ) B
and thus
an (po. p|) = (p‘._z, p‘._|)8‘._zB‘._3 Bl'

Combining equations (13) and (15) with (17) resuits in

Ao
(18) P14y + RMIATLDB,, ... By [ M, l -

Equation (18) gives a solution for p._; that is unique up to a multiplicative constant. Any such
solution is obtained and equation (16) is used to obtain p._,, P.-3. ... . Pg. The norming
equation of (9) is then used and the steady state probabilities are determined.

A unique combination of two previously determined solutions techniques thus yields a
computational procedure that can be used to solve a class of problems in the telecommunica-
tions field. Typical measures of effectiveness can easily be determined in the same manner as
in Neuts [6]. Thus, the utilization of analytical models for such telecommunication systems is
now feasible.
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A NOTE ON THE INFLUENCE OF MISSING OPERATIONS
ON SCHEDULING PROBLEMS
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Haifa, Israel

ABSTRACT

This paper attempts to resolve the existing confusion concerning missing
operations. Scheduling problems are classified in two groups: (i) null-
continuous (NC)—comprising the problems where an optimal schedule remains
optimal on replacement of arbitrarily small processing times (existing opera-
tions) with zeros (missing operations): (i} null-discontinuous (NDC)—
comprising those problems which are not nulil-continuous.

A "zero processing time" of an operation refers to either of the two following contingen-
cies: (i) An actual operation whose processing time tends to zero. Thus. if 7, denotes the pro-
cessing time of operation 0, in job J;, then for a sufficiently small positive number €, scheduling
problems with 7, = € and #; = 0 have the same optimal schedules (algorithms), and € may rea-
sonably be replaced with zero to facilitate calculations, and (ii) A nonexisting (missing) opera-
tion.

Since an infinitesimal (arbitrarily small) processing time operation (i) has a starting time
while a missing operation (ii) has not, the two types have a different effect on a scheduling
problem and must be differentiated to prevent ambiguity. Accordingly, we propose 10 designate
an infimitesimal processing time operation as €, and a missing operation as a zero.

Scheduling problems involving operations with arbitrarily small processing times (existing
operations where, for all practical purposes, the length may be considered as zero, but have
starting times) are basically the same as those with the usual strictly-positive processing times
and do not merit separate consideration.

Whether a discipline (flowshop or openshop) allows missing operations or not depends on
its definition, without clear preference for one definition over another. However, for the sake
of understanding, the definition (whatever it is) must be known and accepted. We propose to
define flowshop and openshop disciplines allowing missing operations. (Note, [2] and (3]
define flowshop allowing missing operations while [4], [9] and [14] implicitly assume that
flowshop does not allow missing operations.) Accordingly, F or 0 in the notation n/m/y/8*
v € [F,0) comes under that definition and the processing time of the 0, operation of job
J.li=1,2, ..., mj=12, ..., ml,isanonnegative integer, +, 2 0—positive if the opera-
tion exists and zero if it does not. In the case of a flowshop, or an openshop, where all n jobs
have m operations—i.e., where the processing times of all mn operations are strictly positive—

*The notation is that proposed by Lenstra [9) and Rinnooy Kan [14].
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the constraint ; > 0¥ (ij) is added, and the designation becomes n/m/fy. ¢, > 0/8.
y € {F.0}.

Panwalker, Smith and Woollam {11], demonstrated that the commonly held view that
there exists an optimal permutation schedule for n/3/F/Cyqy and n/m/F. no-wait/ C,, .
m = 3, turns out to be correct only for positive processing times.* (The latter fact was recog-
nized by Baker (2].)

1. NULL-CONTINUOUS AND DISCONTINUOUS SCHEDULING PROBLEMS

The general rule is that optimal schedule remain unchanged under small changes in the
close neighborhood of the given processing times, providing there is no replacement of € with
zero (deletion of an infinitesimal operation). Where such replacement is resorted to. some
problems remain unaffected while in others the optimal schedule undergoes total transforma-
tions: in the latter category, an optimal algorithm and schedule for 1, > 0 V(i) are not
optimal for 1, > 0. Moreover, there are problems for which there exists an efficient optimal
algorithm (belonging to P) for the first case (1, > 0 ¥ (i,j)) while for the second (¢, 2 0). the
problem is NP-Complete.

DEFINITIONS

Null-continuous (NC} scheduling problem — one where an optimal schedule remains
optimal on replacement of arbitrarily small processing times with zeros and vice versa. Thus.
an optimal algorithm and schedule for ; > 0 ¥ (i,j) are also optimal for 1, =2 0.

Null-discontinuous (NDC) scheduling problem — one which is not nuli-continuous.
Thus, an NDC problem defines two different probiems, one with strictly positive processing
times (r; > 0 ¥ (i j) —missing operations are not allowed) and the other where zero processing
times are allowed (1, > 0—missing operations are allowed).

Informally, a problem where all operations with arbitrarily small processing times for
every machine can be shifted to the beginning or the end of the schedule without affecting the
measure of performance or violating the constraints—is NC. To show that a problem is NDC,
it suffices to work out an example where replacement of arbitrarily small processing time with a
zero results in a different optimal schedule.

The following numerical examples of NC and NDC problems demonstrate the fact that an
NDC problem defines two different problems—one where 1, > 0 and the other where 7, 2 0.

EXAMPLE I:

NC instance — 5/2/F/Cpma,t with processing times as per Table 1.

*[11]) was brought to our attention by the referee. At the time of writing the first version of the paper. we were
unaware of [11) and independently reached the same conclusions.
tThe n/2/ F/ Cypnex and n/2/ F, no-wait/ C,, problems are NC and NDC, respectively.
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TABLE | — Processing Times
Job|1 2 3 4 5

Operatio
| {machine)
1 4 € € 3 2
2 2 2 2 € 4

The problem is NC since arbitrarily small processing time operations on the first and second
machines can be shifted to the beginning and the end of the schedule, respectively, without
violating any constraint or affecting C,,,,. Thus, optimal schedules constructed by Johnson’s
algorithm (8] remain optimal after replacement of e with zeros.

NDC Instance—S5/2/F, no-wait/ Cy,,, with processing times again as per Table 1. For
t, > 0¥ (ij) Gilmore and Gomory’s algorithm [S], [13] yields an optimal schedule as
presented in Figure 1. The algorithm itself is not affected by replacing € with zeros, but the
resulting schedule is no longer optimal (Figure 2}.

M, Js J a4
M2l J2 | J3 Js )
0 2 4 6 8 10 N

FIGURE 1. Optimal schedule for 5/2/ F, no-wait, 1, > 0/Cp,ys € > O

M, Jq Jg Jq

M,

L | J3 | 4 {s
0 2 4 6 8 10

FiGure 2. Optimal schedule for 5/2/ F, no-wait/ C ., (e > 0)

NP-Completeness of a scheduling problem is proved by reducing a known NP-Complete
problem to an instance of the problem in question that in many cases contains zero processing
times. In the light of the preceding discussion only if the problem in question is NC then
results obtained for 1, > 0 ¥ (i) are also true for ¢, > 0, and vice versa; if NDC, the problem
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may refer either to 1, > 0 ¥(i,j) or 1, 2 0 with a different approach and specific optimal algo-
rithm and schedule in each case. Thus, before zero processing times are allowed, the problem
in question must be characterized as NC or NDC.

2. CLASSIFICATION AND COMPLEXITY OF NC AND NDC PROBLEMS

A first attempt has been made to classify some of the scheduling problems into NC and
NDC, and to examine the complexity of each problem (the results are obtained in Table 2).
As explained previously, each NDC problem defines two different problems, one with strictly
positive processing times (1, > 0 ¥(;j)) and the other with nonnegative ones, (1, 2 0). The
fact that for a particular problem, the case where 1, > 0 ¥ (i,/) is a special case of 1, 2 0 and.
thus, its complexity is lower than or equal 10 that of the latter (theoretically speaking, all com-

binations are possible) is demonstrated in Table 2.

TABLE 2 — Classification and Complexity of NC and NDC Problems

Complexity
Problem
t, >0 t, 20
n/2/ F. no-wait/ Cp,, * 0(n?, (5] Unary NP-Complete, [15]
n/3/ F. no-wait/ C s, 7t Unary NP-Complete, [4]
n/4/ F. no-wait/ Cppy Unary NP-Compiete, [12] | Unary NP-Complete. [12]
nf2/F, r, 2 0/Cpax Binary NP-Complete, (10} | Binary NP-Complete. [10]
n/2/ F, tree/ Cppy Binary NP-Complete, [10] | Binary NP-Complete. [10]
n/2/ F aree’/ Coun§ 0(n log n, {16} 2
n/3{ F Cax Unary NP-Complete, [10] | Unary NP-Complete, (4]
g n/2/0, no-wait/ Cp,,,* Unary NP-Complete, [15] | Unary NP-Complete, [15]
Z | n/2/4. n; = 2, no-wait/ Cp,* | Unary NP-Complete, [15] | Unary NP-Complete. [15]
n/2/FIEC, Unary NP-Complete, [4] Unary NP-Complete, 4]
n/2/ F, no-wait/EC, 7% Unary NP-Complete, [4]
n/2/0, no-wait/X C, ? Unary NP-Complete, [1]
n/2/0/XC; ? Unary NP-Complete,[1]
n/2/J/n; = 2, no-wait/LC; 2 Unary NP-Complete. [4]
n/1/seq.dep./ Cpax Unary NP-Complete, [14] | Unary NP-Complete.[14]
(Travelling salesman)
112/ F/ C s 0(n log n), (8]
Ol n/2/J, n, € 2/ Crax 0(n log n), (7]
z n/m/0/8 Depends on the number of machines (m) and the regular
measure of performance (8).

*Flowshop. jobshop and openshop disciplines are defined allowing zero processing times.
+Prize carrying open problem. [6]. [9]. [10].
ttree—Tree precedence relations where job J, may start only after job J, has been completed.
$tree’ - Tree pr 'cedence relations where, on cach machine. job J, may start only after J on this machine

has been completed.
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