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Sumnary

An imperfect, laminated, circular, cylindrical, thin shell, simply
supported or clamped at the boundaries, and subjected to a uniform axial
compression and torsion (individually applied or in combination) is analyzed.
The analysis is based on nonlinear kinematic relations, linearly elastic
material behavior, and the usual lamination theory. The laminate consists
of orthotropic laminae, which typically characterize fiber reinforced com-
posites. Two types of formulation have been developed; omne is referred
to as the ¥W,F-formulation, based on Donnell-type of kinematic relatioms.

The governing equations consist of the transverse equilibrium equation and

the in-plane compatibility equation. These two equations are expressed in
terms of the transverse displacement, w, and an airy stress resultant functionm,
F. The other, referred to as the u, v,@W-formulation, is based on Sanders'-
type of kinematic relations. The governing equations for this case consist

of the three equilibrium equations. These three equations are expressed in
terms of two in-plane displacement components u, v, and the transverse dis-
placement component, W, Donnell's type of shell theory approximation can be
treated as a special case in theu, v, v-formulation.

Some results are generated for certain geometries (isotropic and lami-
nated) and these serve as bench marks for the solution scheme. Results are
also generated for composite cylinders by changing several parameters. The
scope of these parametric studies is to establish the effect of (a) geometric
imperfections, (b) lamina stacking, (c) in-plane and transverse boundary con-
ditions and (d) 1load eccentricity on the critical conditioms. Moreover, dynamic
critical loads are obtained for certain configurations under axial load (sud-

denly applied).
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CHAPTER 1
INTRODUCTION
®
Shell-like structural configurations find wide uses in complicated
aerospace structural systems. Thelr use requires sophisticated analyses
in order to answer questions associated with their behavioral response
¢ to external loads and extreme temperature environments. In the past forty
years or so, numerous investigations addresses themselves to several specific
questions of shell behavior, and the answers to these questions have tremen-
¢ dously enhanced our understanding of their behavior. All of this was done
primarily for metallic construction of these configurations. In particular,
attention was paid to the degree of approximation involved in the use of
¢ various kinematic relations (which led to several linear and nonlinear shell
theories), to the discrepancy between theory and experiment for the buckling
of shells (post-buckling analyses and imperfection-sensitivity studies), to
¢ the use of stiffening for shell configurations (including eccentricity effects)
to the effect of support conditions, cutouts, foreign inclusions and others.
Moreover, as the size of shell-like structures increased and as the computa-
¢ tional capability improved, large computer codes became available, for the
analysis of the configurations.
In the recent few years, the constant demand for lightweight efficient
¢ structures led the structural engineer to the use of nonconventional materials,
such as fiber-reinforced composites. The correct and effective use of these
materials requires good understanding of the system response characteristics
i to extermal causes (loads, properties of the environment, etc.). Several
research programs have been initiated in order to evaluate the physical
. properties of such materials. The main emphasis in these studies is placed
| on the characterization of physical properties (finding the constants in the
e
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E? constitutive relations and how the environment affects them). In additionm,

:3 there are several efforts related to failure criteria and failure-related
S;: effects, such as scissoring and delamination.

i; In 1975, R. C. Tennyson (1) made a review of previous studies on the

e buckling of laminated cylinders. According to Tennyson's (1) review, perhaps
- one of the earliest stability analyses of homogeneous orthotropic cylindrical
3? shells was published by March et al. (2) in 1945, After that time, several

:i theoretical analyses limited to orthotropic shell configurations were performed
- by Schnell and Bruhl (3), Thielemann et al. (4), and Hess (5). In these studies,
Ej simply supported end conditions were partizlly satisfied. The general linear
;E theoretical solutions to anisotropic cylinders were presented by Cheng and Ho
f;. (6) (7), Jones and Morgan (8), Jones and Hennemann (9) and Hirano (10). Several
papers were involved in the comparison of the efficiency and accuracy between

:i? Flugge's linear shell theory, which was employed by Cheng and Ho (6) (7), and
3;‘ other shell theories (such as the work done by Tasi (11), Martin and Drew (12)
ié whose theory was based on Donnell's equations, and the work done by Chao (13),
54 vwhose analysis was based on Timoshenko's buckling equations). Stiffened com-

{; posite cylinderical shells have been analyzed by Jones (14). Terebushdo (15)
,ii and Cheng and Card (16). Theoretical analyses of the effect of initial geo-

;; metric imperfection based on anisotropic shell theory have been published for

:: the loading cases of pure torsion (17) axial compression (18) and combined

25

loads (19) (20). Moreover, several computer codes (21-32) (based on finite

elements and/or differences) that deal with the analysis of stiffened shell

configurations have been modified in order to account for laminated shell

L construction. These codes do serve their purpose, and that is that they are

very good analytical tools. On the other hand, it is very difficult, if not
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possible, to use these codes for parametric studies or for evaluating

the applicability and limitations of various shell theories. 1In this
report, the following are presented:

(1) The mathematical formulation and derivation of the governing
equations, based on Donnell-type (33) nonlinear kinematic relations and
in terms of the transverse displacement component and an Airy stress
(resultant) function, defined in the text.

(2) The mathematical formulation and derivation of the governing
equations, based on Sanders'-type (34) nonlinear kinematic relations and
in terms of the three displacement components (small strains but moderate
rotations about in-plane axes).

(3) Solution schemes for both formulations. The solution methodology
for the first formulation includes post-limit point behavior, while the so-
lution methodology for the second formulation refers only to the pre-limit
point behavior and it is employed to estimate critical static conditions
(limit point loads). The listing of the related computer codes are presented
in the Appendices of this report.

(4) Some numerical results are generated (and presented herein) with
two objectives in mind. (a) some serve as bench marks for the solution
schemes and (b) some limited parametric studies are performed in order to
assess effects of boundary conditions and of the lamina stacking sequence,
for axially-loaded laminated cylindrical shells.

In closing, this report should be viewed as the first in a series of
reports dealing with the behavior of geometrically imperfect, stiffened and
laminated, thin, circular, cylindrical shells, supported in various ways
(all possible extreme cases of transverse and in-plane boundary conditions)

and subjected to static, as well as suddenly applied, destabilizing loads.
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CHAPTER II.
MATHEMATICAL FORMUIATION AND SOLUTION
METHODOLOGY
The governing equations are derived, with all necessary steps shown in

detail, in Appendix A. The geometry is a thin, circular, geometrically im-
perfect cylindrical shell. The construction consists of an orthogonally and
eccentrically stiffened laminate (each lemina is orthotropic). Note that a
laminated geometry, an eccentrically stiffened metallic configuration and a
metallic shell are all special cases of the construction used herein. The
stiffeners are uniform in geometry and with constant close spacing, which
allows one to employ the "smeared" techmnique. The boundary conditions can
be of any transverse and in-plane variety. This includes free, s imply-sup-

ported and clamped with all possible in-plane combinations.

The loading consists of transverse (uniform lateral pressure) and eccentric
in-plane loads, such as uniform axial compression and shear. Eccentric
means that the line of action of these loads (applied stress resultants) is

not necessarily in the plane of the reference surface.

In the derivation of the governing equations, the usual lamination theory
is employed. Moreover, thin shell theory (Kirchhoff - Love hypotheses with
two different approximation) and limearly elastic material behavior one assumed.

The primary assumptions are listed in Appendix A. On the basis of these

general assumptions two sets of field equations are derived. One, referred

to as the w,F formulation, is based upon Donnell-type of kinematic

— e iornmh e e i i il et




relations. For this case, the governing equations consist of the transverse
equilibrium equation and the in-plane compatibility equation. These two
equations and the proper boundary conditions are expressed in terms of the
transverse displacement component, w, and an Airy stress resultant function,
F. The second, referred to as the u, v, w - formulations, is based on
Sanders' type of kinematic relations, those corresponding to small rotationms
about the normal and moderate rotations about in-plane axes. The governing
equations, for this case, consist of the three equilibrium equations, expressed
in terms of the displacement components u, v, and w. Also, the proper boundary
conditions are expressed in terms of u, v, and w. In this formulation, the
Donnell approximation is a special case of the more general Sanders' kine-

matic relations.

The solution methodology is an improvement and modification of the one
employed and described in Refs. 36 and 37. For details the reader is referred
to Appendix A. A brief description of the solution scheme is given below and

only for the w,JF - formulation.

1). First, a separated form (fourier series type) is assumed for the
dependent variables , w(x,y) and F(x,y). In addition the initial geometric
imperfection is also expressed in a similar form.

2). Next, these expressions are substituted into the compatibility
equations. Use of trigonometric identities and use of the orthogonality of
the trigonometric functions reduces this nonlinear partial differential
equation (compatibility) into a system of (4k + 1) nonlinear ordinary dif-
ferential equations. Furthermore, use of the Galerkin procedure in connection
with the equilibrium equation (in the circumferential direction) yields

(2k + 1) additional nonlinear ordinary differential equations in the (6k + 2)
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dependent (on x) functions needed to describe the response of the system.
Thus, through these steps the two nonlinear partial differential equations
are reduced to a set of nonlinear ordinary differential equations.

3). The nonlinear ordinary differential equations are reduced to a
sequence of linear systems by employing the generalized Newton's method
(Ref. 38). Iteration equation are derived, through this, based on the
premise that a solution to the nonlinear set can be achieved by small cor-
rections to an approximate solution.

4). Finally, the field equations (linearized iteration equations) and
the corresponding boundary terms (liner: set of equation) are cast into finite
difference form by employing the usual central difference formula.

Finally, a computer program has been written (see Appendix B for Flow
Charts and Program Listings) for genmeration of results. The solution
algorithum is a modification of the one described in Ref. 43. This modification

is fully described in Appendix C.




CHAPTER III

DESCRIPTION OF STRUCTURAL GEOMETRY

Three basic configurations are used in generating results. The consist
of a four-ply laminated cylinder, an isotropic cylinder and an orthotropic
© cylinder. All configuration are geometrically imperfect but the imperfection
in either symmetric or (virtually) axisymmetric.
The laminated geometries considered in the present study are variations
® of the one employed in (44). This reference reports experimental results for
a symmetric angle-ply laminate, subjected to uniform axial compression and
torsion. In addition some isotropic and orthotropic configuration are also used.
L3 I1I,1 Laminated Geometry
‘ For the laminated geometries, five different stacking combinations of
the 4-ply laminate are used in the study.
, @ First, the common geometric and structural features are: each lamina is
orthotropic (Boron/Epoxy; AVCO 5505)with properties
- ? ¢ .
: E, = 2,0690 X /0 kN/m' (30x/0°PSi); V= 0.21;
®
8 e -y
E,.=0.1862X /0 AN/ (27 X/0°PS i) ; R=17190.5Cn.(7.5:n) ;
é . .
e G2 = 0,04482X/0° xnfac (0.65X/0°Ps i) L=38Icm.(/8im.);
ol = 0.0/3462 Cm(0.0053in.)
e
(h’l)I:hk‘hk-li h k:/:2,3,4‘;jﬂdﬂh‘) (')
e
7
e
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The five different stacking combinations are denoted by I - 1, i =

1, 2..5, and correspond to
T-1: 45°/-45%/-457a5° ; 1-2: 487/-45"/as’/-45" ; 13=-12
I-4:90%/60°/30°/0° ; I-&: 0/30°/60°/ 90° (2)

Where the first number denotes the orientation of the fibers of the out-
most ply with respect to x, and the last of the innermost. Geometry I-1 is
a symmetric one and it corresponds to that of (44). Geometries I-2 and I-3

denote antisymmetric regular angle-ply laminates, while geometries I-4 and

I-5 are completely asymmetric.

I1I1.2 Isotropic Geometry

The isotropic cylinder has the following geometric and structural fea-

tures (aluminum alloy)
E = 724 X710  kN/m' (10.5%/0%psi); = 0.3

R=10./6Cm (4in); Lfp=1; R/ =/000 (3)

I111.3 Orthotropic Geometry
Finally, the properties of the oxthotropic configuration are (single

0° - ply shell made of the Boron/Epoxy material)

Ex = 2.067 X 10° kN/M (30 X70° psi) 5 iy = 0.21
Eyy= 0.1862x/0° kN/m® €27 X10° psi )
Gy = 0.04482 X/0° kN/m*(0.65X/0P5i) ; R = 190.5CH, (16in.)

L =38locm. (Kin); t= 0.05385Cm. (0.0212in.) (4)




o
I11.4 Imperfection Shapes
[ Two imperfection shapes are used in the study, one which is symmetric,
o
and one which is virtually axisymmetric
3 :, XX y
o Symmedic :  Wooy) = Eh T G (5)
. ° .
omisywaiic : W (XY) = Bh (- Coe2E +0.1 snZE cpaZy (6)
o
where £ is a measure of the imperfection amplitude. Note that for the
‘. symmetric imperfection, Eq. ( 5), & = w° m/h, while for the (virtually)
axisymmetric imperfection, Eq. (6 ), § = W m/l.lh.
‘.
le
e
4
@
9
e




CHAPTER 1V

NUMERICAL RESULTS AND DISCUSSION

Numerical results are generated, for the geometries described in the
preceeding chapter, using the W-F formulation, for two load cases: (a) uni-
form axial compression and (b) torsion. The loads are applied individually
and in combination. The results consist of finding pre- and post-limits point
behavior, as well as critical, conditions for static and dynamic (sudden-
some results) application of the loads.

The generated results serve a multitude of purpose. Some results serve
as bench marks for the solution methodology and the computer code. These
results are compared with already known and accepted numbers. Some results
correspond to parametric studies, which are performed in order to enhance our
understanding of the behavior of laminated shells. The effects of lamina
stacking on critical conditions is studied. Furthermore, the effect of in-
plane and transverse boundary conditions on critical loads is evaluated for
some geometries. Moreover, the imperfection sensitivity is fully assessed
for all geometries. Dynamic critical loads are obtained for very few geome-
tries. Most of the generated results are presented in tabular and graphical
form. All generated results are not presented, herein, for the sake of bre-

vity. The conclusions, though, are based on all generated data.

IV. 1.0 Axial Compression

Several studies are performed for this load case. Each one of these

studies is described and discussed separately.

10
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IV. 1.1 Effect of Lamina Stacking (Static and Dynamic)

For this study, the load is applied through the reference surface (which

is the midsurface of the laminate) and the boundary conditions are S$S-3
(classical simply supported). The imperfection shape is symmetric, Eq. {5 ).

Table 4-1 shows critical loads, ﬁix (limit point loads), for each geo-
metry and various values of the imperfection amplitude parameter, . It
also presents the range of n-values used in finding critical loads, and the
n-value corresponding to the critical condition. These results ae also pre-
sented graphically on Fig. 4.1.

Geometry I-1 is the one reported in (44). According to this reference,
the classical (linear theory) critical load is 165 1lbs./in (ﬁ;x . ) and the
experimental value is 106 1lbs./in, Note from Fig. 4.1 that tﬁr;ugh extra-
polation Eix at § = 0 is approximately equal to 148 1lbs./in., which is 10%
lower than the reported [44] classical value.

The results for geometries I-2 and I-3 are identical. Both geometries
are antisymmetric. This is reasonable since (a) the imperfection shape
is symmetric with respect to a diametral plane and (b) the axially-loaded
cylinder does not distinguish between a positive 45° direction and a nega=-
tive 45° direction.

Moreover, for virtually the entire range of f-values considered, the
1-2(3) geometry seems to be the weakest configuration, while the asymmetric
configuration corresponding to 1-5 is the strongest. The order of going
from the weakest to the strongest is I-2(3), I-1, I-4 and I-5. Note that
I-5 1is a geometry for which the 0° -ply is on the outside. Now since buck-
ling occurs in an inward transverse displacement mode (w is positive), then
the outside layer is in compression and it is reasonable to expect the strong-
est configuration to correspond to I-5, the fibers of the outer ply are in
the longitudinal direction. \

11
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Table 4.1 Critical Loads
Geonmet N
i : “lxx n-Range n at flz
1bs/in xx
1-1 0.05 145.55 5-7 6
0.50 136.0 6
1.00 123.0 6
2.00 98.3 6
1-2,3 0.05 138.80 5-7 6
0.50 130.0 6
1.00 118.7 6
2.00 92.2 6
1-4 0.01 243.1 7-9 8
0.05 232.03 8
0.50 178.0 8
1.00 137.2 8
2.00 90.0 8
1-5 0.05 233.25 7-9 8
0.50 191.0 8
1.00 150.0 8
2.00 109.5 8

..........

12
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Fig. 4.1 1Imperfection Sensitivity of the various Configurations
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Furthermore, the difference between I~4 and I-5 geometries is the order

of stacking (cre is the reverse of the other). Their behavior, then, can be

G0~ R0 s

compared to the behavior of orthogonally stiffened metallic shells with out-

: side and inside stiffening. Geometry I-5 is comparable to outside stiffening,
! while geometry I-4 to inside.

Figs. 4.2 and 4,3 present typical equilibrium paths for all geometries.
,ﬁi Fig. 4.2 corresponds to geometry I-1, while Fig. 4.3 to geometry I-4. As

ii seen, the response is in terms of plots of applied load ﬁ;x versus average

end shortening, It includes, pre-limit point behavior, limit points

eAv‘
and post-limit point behavior, for each £-value. The entire curves corre-

spond to the same wave number, n. This n-value is the one that yields cri-
tical conditions (the one at the instant of buckling). If a clear picture
of post-limit point behavior is desired, one should show the plots that cor-
respond to other wave numbers. This would possibly reveal that the post-
limit point curves cross each other, as in the case of isotropic shells (46).
Finally, for the two asymmetric configurations, I-4 and I-5, critical
dynamic loads are calculated of the entire f-range (see Fig. 4.4). These
are obtained by employing the criteria described in (46, 39), and they
correspond to lower bounds of critical conditions when the axial compression
is applied suddenly with infinite duration. According to this criterion
and methodology for estimating critical dynamic conditions, when € = g
(perfect geometry) the static and dynamic critical loads are the same. As
the imperfection amplitude increases the dynamic loads are smaller than the
static loads, For these geometries, 1-4 and 1-5, and 0<§<2.0, the dynamic
critical load, i:x is never smaller than 60% of the corresponding static

load, i:x.
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IV. 1.2 Effect of Boundary Conditions

The effect of both transverse and in-plane boundary conditions are
assessed,

Results are also generated for the isotropic geometry (aluminum alloy)
and various in-plane boundary conditions. These serve as bench marks for
the solution scheme, and the results are presented, in part, on Table 4.2
and Fig. 4.5. For this geometry the shape of the imperfection is taken to
be axisymmetric, Eq. ( 6 ). On Table 4.2, the n-value that corresponds to
the critical load is given in brackets. Note that for small §-values (see
Fig. 4.5), the trend is exactly that suggested by Hoff and Ohira, indepen-
dently (see (47)), i.e., the weakest configuration is SS-1, the next one
$S5-2, while SS-3 and SS-4 yield the classical results. Note also that,
through extrapolation, (as § — 0), the present results agree with those of
(47). For SS-1 the ratio of critical load to classical load is 0.55, for
§8-2 0,68, and for $S-3 and SS-4 0.98. C(Clearly here (isotropic case) the
geometry for boundary conditions SS-1 and SS-2, is not very sensitive to
geometric imperfection, while for S5-3 (primarily) and SS-4, it is. Note
that, for small §-values, the v = const. in-plane boundary conditions (SS-3
and SS-4) yield a stronger configuration. For higher E-values the stronger
configuration corresponds to u = const. in-plane boundary conditions (8S-2

and SS-4).
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Tasle 4.2 Effect of In-Plane Bounda;y Condition on Critical Load
(Isotropic Geometry, Simply Supported Case).

‘e 1 )
. £ | Nxx, kN/m (1bs/in.)
. ss-1 ! ss-2 Ss-3 | S§S-4
" t
10 | 2.52 | 3.05 | 3.973| 4.307
Io (14.40) | (17.40) | (22.69) | (24.60)
' n=12]| [n=15]| [n=13] | [n=15]
3 .
: .50 7 2,45 2.89 2.905 4,027
r 1(13.98) | (16.50) | (16.59) | (23.00)
[ [n=127 | [n=15] | [n=13] ] [n=15]
® 1.00 2.36 2.68 1.985 | 3.192
(13.50) | (15.30) | (11.34) | (18.23)
; [n=12) | [n=15]] [n=13]) [n=15]
: Note that, no attempt is made here to find the shape of the imperfection
¢
that yields the lowest critical load. For the case of the laminated shell,
the imperfection amplitude parameter, £, is varied from 0.05 to two. The
first number, 0.05, corresponds to a virtually perfect geometry shell, while
®
the second number (two) denotes an amplitude in the neighborhood of two shell
thicknesses (this is considered very large for thin construction).
In order to establish the imperfection sensitivity of the laminated shell
®
and the effect of boundary conditions on the limit point load (critical load),
geometry 1-5 is employed, along with a symmetric type of imperfection, Eq. (5 ).
As already established, 8eometry I-5 yields the strongest configuration for
®
SS-3, by comparison to all other geometries (I1-1i, i =1, 2, 3, 4).
Table 4.3 Effect of Boundary Conditions on Critical Loads. (Laminated Geometry I-5).
~X
N KN/m (lbs/in)
® 4 $5-1 $5-2 55-3 $5-4 cc-1 cC-2 | C€C-3 | cCC-4
n=7 n=g§ n<8 n=9 n=8 n=9 n=8 n=9 |
0.05 27.32 32,39 40.84 46.79 41.88 46.32 41.97
(156,0) .70) | (233.25) ] (267.26) 1 (239.20) | 264.46) |(239.70)
0.50 26.76 31.78 33.43 40.15 37.10 40.75 37.22 41.44
e (152.83) 1(181.51) | (190.90) } (229.3) | (211.86) ] (232.70)|(212.59))(236.71)
1.00 25.84 30.04 26.27 32.92 29.53 33.62 29,51 34.63
(147,55) 1(171.58) | (150.00) | (188.00)| (168.62) | (192.00){(168.57)|(197.80)
2.00 20.44 23.21 18,67 21.20 19.65 21.27 19.04 21,95
o (116.74) 1(132,55) 1 (106.62) ] (121.10){ (108.88) | (121.50){(108.75)[(125.37)

19

. . . S . - P PR L T V.
T . P LA R S U GUNNLY VPN W PR, WPOUE Y P Samd P — B i o




x (kN/m)
W

|
X

N

n t

20

B S N N MR S i lly N S N Sy S i



N A Ve L

Table 4.3 lists critical loads for various boundary conditions and g-values
@€ = wpmax/h; for this case). The value of n denotes the number of full waves
around the circumference at the instant of buckling. These results are shown
graphically on Figs. 4.6 and 4.7. A number of observations are made. First,
for low §-values (see Fig 4.6) SS-3 and SS-4 yield stronger configurations
than SS-1 and SS-2. For higher values of €, SS-2 and SS~4 yield stronger
configurations than SS-1 and SS-3. Another way of stating the same thing is
that for low §-values the v = const. in-plane boundary condition yields a
stronger configuration, while for higher §-values the u = const. in-plane
boundary condition yields higher critical loads. This conelusion is the
same for isotropic geometries. On the other hand, for the clamped case,
CC-2 and CC-4 (u = const.) yleld stronger configurations than CC-1 and CC-3
for the entire f-range considered. Another observation is that for SS-1
and SS~-2 the geometry is not as sensitive to initial geometric imperfections
as it is for ss-3, SS-4, and CC-1i (1 = 1, 2, 3, 4) [see Figs. 4.6 and 4.7].
It is also worth mentioning that a comparison between the values at § = 0
between SS-1 and SS-4 is reminiscent of what happens in the isotropic case

(the critical load for SS-1 is virtually half the value of that for SS-4).

1V, 1.3 Effect of In-plane Load Eccentricity

Next, the effect of load eccentricity is assessed. 1In all configurations
for which results are generated, the shell midsurface is taken as the reference
surface, Then it is assumed that the uniform axial compression is applied
eccentrically, which induces a bending moment at the boundary, M=E ﬁ;x
[see Eqs A-35 & A-33. Note that this load eccentricity affects only the

simply supported boundary conditions.
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Results are generated and presented for the isotropic geometry, ortho-
tropic geometry, and laminated I-1, I-4 and I-5 geometries, using a symmetric

imperfection shape Eq. ( 5 ), and classical simply supported boundary condi-
tions SS-3.

These results are, in part, presented on Tables 4.4-4.6.

One might expect a negative edge moment (corresponding to positive load
eccentricity) to have a stabilizing effect on an axially-load cylindrical
shell, regardless of the construction. Contrary to this, the generated re-
sults do not support the expectation. For small eccentricities (-0.5<E/h<O0.5)
and isotropic geometry (see Table 4.4) the response seems to be insensitive
to the eccentric application of the load. This is true for both imperfection

shapes [axisymetric and symmetric, Eq. (5 ) & ( 6 )].

Table 4,4 Effect of Load Eccentricity (Isotropic & Orthotropic)

Imperf. "./.h ¥ * fn kN/m (1bs/in.)
Shape Xx
Gegmetry i 1 12.5 2.5 0.5 0 -0.5 -2.5 -12.5
Axisym. |0.5 3.08 2.40 2.84 290 292 299 | 2.47
£q. (23) 17.57) 1a3.720 (6.20) |(26.59) |(16.58) (7.C7) . (14.01)
. Eq.
1 1.0 1-98 ’1.99 1098
Isotropic ! (11.336) | (11.342) | (11.337)
Sym, Eq. 3.026 | 3.097 3.100
(22) 0.5 (17.284) | (17.686) | (17.704)
;. Isotropic | :
' Axisym. |1.0 12,41 | 12.39 12.36
. orthotro- i(70.89) (70.74) (70.57)
pic
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Table &.5 Effect of Load Eccentricity (Laminated I-1 Geometry)

;
4
.t.
t
r
f
g
E
:

g ’ﬁ‘ in kN/m (1bs/fin.)
XX
cr
e E/h = 0.5 Em=0 E/h = -0.5
> Axisym. Sym. ,  Axisym. Sym. Axisya. Sym.
® Eq. (23) Bq. (22) _ Eq. (23) Eq. (22) ]| Eq. (23)| Eq. (22)
0.5 22,21 21.75 23.58 22.85 26.52 23.35
(126.85) (124.2) (134.71) (130.49) (151.48) | (133.34)
1.0 19.89 20.31 20.46 20.88 20.78 21.82
(113.61) (115.98)  (116.85) (119.25) (118.7) | (124.6) ]
2.0 13.10 | 17.07 ¢ 13.12 17.21' 13.17 17.33
(74.83) ! (97.46) ! (74.91) (98.30) (75.22) (99.00)

$S-4 boundary conditions and n = 6

Table 46 Effect of Load Eccentricity (Laminated I-4 and I-S Geometries;
Symmetric Imperfection; SS-3 boundary conditions). =

ﬁ“ in kN/m (1bs/in.); un = 8

g 1 - 4 geometry I - 5 geometry

E/h = < E/h = E/h = - —  EB/h =

0.2569 E/h =0 -0.2569 0.2569 E/h =0 9569

0.5 30.61. 30.66 30.67 33.00 33.44 36.16
(174.70) | (175.08) | (175.18) | (188.49) . (191.00; | (206.52)

1.0 264.07 24.02 24.08 28.76 26.27 29.18
(137.45) | (137.18) . (137.50) , (164.27) ! (150.00) | (166.62)

2.0 15.78 15.76 15.75 18.90 18.67 18.90
(90.10) (90.00) ' (89.93) | (107.96) | (106.62) | (107.85)

I T R
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For very large eccentricities (|E7h| > 12), positive eccentricity has a
stabilizing effect, while negative eccentricity has a destabilizing effect.
In the intermediate range an irregularity is observed. It was suspected that
one possible reason for this behavior may be attributed to the Poisson effect.
As the load is applied, quasistatically, the midportion of the shell moves out-
ward because of the Poisson effect; it reaches a maximum expansion, before the
load reaches its critical value, and then an inward motion takes place, and
finally at and after collapse this inward motion continues. This sequence of
events and the corresponding stabilization or destabilization of the load ec-
centricity is heavily dependent on the value of Poisson's ratio or the A12
term in the extensional stiffness matrix. For instance, some data are gene-
rated, for the isotropic geometry (€ = 0.5; SS-3 and axisyymmetric imperfection)
but with v = 0.1. The limit point loads, N:x, (critical load) for three values
of eccentricity (E/h) are: 3.305 kN/m (18.88 1lbs/in) for E/h = + 0.5; 2.76
kN/m (15.81 1bs/in.) for E/h = 0; and 2.745 kN/m (15.68 lbs/in) for E/h = -0.5.
This clearly shows that positive eccentricity has a stabilizing effect. This
observation is also true for the orthotropic geometry (see Table 4.4) for which
the value of A12 is small by comparison to A11' On the other hand, for v = 0.3
and the laminated geometries for which the values of A12 are of the same order
of magnitude as Ay it cannot be said that positive eccentricity has a stabi-
lizing effect (see Tables 4.5 and 4.6). In reality, for these geometries no de-
finite conclusion should be drawn regarding stabilization through load eccen-

tricity (or applied edge moment). It is worth observing, though, that for all

laminated geometries (see Tables 4.5 and 4.6), whatever the effect is, it does

diminish with increasing amplitude of imperfection.
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IV. 2.0 Torsion with and without Axial Compression

For this particular load case, in addition to the axisymmetric shape for
the geometric imperfection, two additional shapes are employed in the studies.
These additional qgapes correspond to approximations of the linear theory

o
(see AppendixlDS buckling modes for positive and negative torsion for all

five geometries.

In particular, Appendix C deals with solutions to the linearized buck-
ling equations for the case of pure torsion. To this end, the Galerkin pro-
cedure is employed and the following approximation is employed for the buck-

ling modes

- _L-___ - (i+2)7LX (7)

Because of orthogonality, only one n-value is needed In Appendix D a ten-
term approximation (M=5) is obtained for all five geometries. By stu_ying
the results, one two-term approximation for positive torsion, w°(+), and one
two-term approximation for negative torsiom, wo(-), for all five geometries
are used in this study. The various coefficients are first normalized with
respect to an, Eq: (7 ), and then adjusted such that the maximum amplitude

is €h.

27




W't+) = BR (0536747 CoaB (M E - L aim 3F)

- 0.67091 am¥om*T -+ 4] (%)
W) = & h(0.583/28 M%Z(M'%! - ‘3LM§Z""‘

+ 064172 fum B (gen32 - + )] (9)
Wax/h = E (/0)

The generated results for this case are presented, in part, both in tabu-
lar and graphical forms. The discussion, though, and the related conclusions
are based on all data.

First, Table 4.7 shows values of critical torsion, ﬁ:y, for the two asym-
metric imperfection shapes, Eqs. ( 8 ) and ( 9 ) (corresponding perfect geo-
metry buckling modes for positive and negative torsion) and several values of
the imperfection amplitude parameter. The torsion is applied in both directions
and the critical values are recorded. The corresponding minimizing value of n
(number of full waves) is shown in parenthesis.

Note that the linear theory, perfect geometry critical values (from Ap-
pendix p) for geometry I-1 are 39.9 lbs./in. for positive torsion, and -75.5
lbs./in. for negative torsion. Moreover, the experimental results obtained
from (44) for this geometry (I-1) are 26.5 lbs./in. for negative torsion.

Note that the comstruction (oriemtation of the plies) is such that the
configuration is much weaker when loaded in the negative direction, regardless
of which of the two imperfection shapes is used. Furthermore, when v°(+) is
present the configuration is somewhat sensitive for positive torsion (see second

column at € = 0.10, ﬁ;y = 35.32 sensitive for negative torsion (see third

colum). On the other hand, when wo(-) the reverse is true, i.e. the
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Table &, 7 Critical ghear Stress Resultant
(Ceometry 1-1 ; Positive & Negstive Torsiom)
@
ror v (+) ; 2y. (8) ror v’(-) ; Bq. ()
4 ?,’ 1bs./1a. (s) {, 1be./18. (a) i:, 1bs./tn. (n) -i:’ 1bs./1a. (n)
0.1 35.32 (11) -93.94 (13) .83 (11) -63.44 (9)
® 0.5 3.9 A1) -92.80 (19) 36.06 (10) <57.61 (8)
1.0 28.32 (11) -92.00 (13) 35.17 (10) -52.11 (8)
Table 8. 8 Critical sheer Stress Resyltant
° [for a1l gecmetries and w'(+))
i‘n 1 lbs./tn. (0)
¢ 1-1 1-2 1-3 14 1-5
0.1 35.32 46.40 46.36 4.1  66.49
® (11) 1)} (9 12) 12)
0.5 31.57 41.81 41.84 38.75 56.91
(1) ) ) a Q12
1.0 28.32 37.89 37.96 34.22 &8.72
Q1) (9 ) 12) (12)
®
Tabled . 9 critical Axial Compression-Torsion Table &30 Critical Axfal ession-Yorsioca
Intersction Data® (Cecmetry 1-1; Igteraction pata® [Cecmatry 1-1;
Axisymmetric Imperfect) v+, 8. (]
® q n ¢ 10 10 10 1 4 ‘ . 1 12 u u u
0.1 W, 146.1 135.1 5.9 40.9 0.0 7 1.5 132.1 7.5 31.0 0.0
= 0. ? .0 .0 . .0 35,
o 10.0 200 30.0 36.7 1 W, o 10 20.0 30.0 35.3
a 6 10 1 1 1 n 11 1 11 11 11
® 0.5 W, 140.2 120.9 19 207 0.0 0.5 W, 1374 12.0 7.4 4.2 0.0
?“ 0.0 10.0 20.0 30.0 35.3 g 0.0 8.0 16.0 2.0 31.6
. 6 6 10 10 1 - a 1u 12 u u u
1.0 # 177 1.2 8.3 484 0.0 1.0 ¥ 1268 1029 73.1 40.4 0.0
B . -f
+ 0.0 20 160 2.0 33.8 %, 00 70 mo 20 23
a ¢ ¢ 10 10 1 " 1 1 1w 12 1
.S & 937 9.2 7136 3.8 0.0 1.5 % 105.7 80.9 63.8 26.2 0.0
g o 7.0 0 21.0 25.4
- 0.0 20 160 200 32.5 L "0 21.0
*Ihe unit of the strese vesultsnt is lbs./du. *rhe unit of the stress resultant s 1bs./in.
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Fig. 4.8 Acﬁiisjd shear stress vs.'Imperfecti.on Amplitude (Ss-3; w°(+). Eq.
o2
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configuration is insensitive for positive torsion (fourth column) and rather
sensitive for negative torsion (last column). Note that the experimental values
(+ 26.5 lbs./in. and -65.72 1bs./in.), compare well with the theoretical values.
Note that the tested specimen (44) is of unknown imperfection shape and ampli-
tude.

Next, Table 4.8 presents critical shear stress resultants (and the mini-
mizing n-value in parenthesis) for all five geometries and an imperfection
shape similar to the positive torsion buckling mode of the perfect geometry,

Eq. (8 ). These results are shown graphically on Fig. 4.8). Note that the
strongest configuration corresponds to I-5, while the weakest to the symmetric
geometry I-1. This conclusion holds true for the imperfection shape used, w°(+).

It is worth observing that the regular angle-ply antisymmetric geometries,
I-2 and .I-3, yield virtually the same strength for positive torsion and w°(+).
Moreover, geometry I-4 is much weaker by comparison to the other asymmetric
geometry (I-5) but not as weak as the symmetric geometry. These observations
are reminiscent of the old external versus internal positioning of thke ortho-
gonal stiffeners controversy concerning metallic stiffened configurations. In
relation to this, in the case of orthogonally stiffened complete spherical
shells subjected to uniform pressure (see Ref. 48) it is observed that the
weakest configuration corresponds to zero (or close to it) stiffener eccen-
tricity, and the strength of the stiffened sphere increases as the eccentricity
increases in either direction (inward or outward). Thus, one can conclude from
Fig. 4.8 that all five configurations are imperfection sensitive, but not as
sensitive as they are for the case of uniform axial compression (See Fig. 4.l).
This conclusion is in line with the behavior of metallic cylindrical shells

with or without stiffening members.
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In Ref. 44, experiments are conducted for geometry I-1, to determine the
interaction curve that separates the stable from the unstable region between
uniform axial compression and torsion. Because of this, numerical results are
obtained fro geometry I-1 and two imperfection shapes. One is virtually axi-
symmetric, Eq. (6 ), and one similar to the (positive torsion) perfect geo-
metry buckling mode, Eq. (8 ). The theoretical interaction curves are gene-
rated for several values of the imperfection amplitude parameter, g, by the
following steps. First, the critical value for pure torsion is obtained.
Then, starting with zero torsion and several vales of the applied shear stress
resultant, but smaller than the critical pure torsion the corresponding cri-
tical axial compression is obtained. In each combination a study of the ef-
fect of n is performed. The results are presented in tabular form on Tables
4.9 and 4.10 and graphically on Figs. 4.9 and 4.10.

The data of Table 4.9 are plotted on Fig. 4.9 and of Table 4.10 on Fig. 4.10
On both figures the experimental (44) interaction curve is shown by the dash-
ed line. Not knowing what the imperfection shape and amplitude of the tested
cylinder are, these plots may suggest a reasonable comparison between theory

and test.
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IV. 3.0 CONCLUSIONS

All of the conclusions are based on the generated results, which are
obtained by the W, F-formulation. No results have, as yet, been generated
by the u, v, w-formulation.,

From all results, one may list the following as the most noteworthy c an-

clusions.

1. Buckling, for all configurations, is of the violent type (snap through
buckling through 1limit point instability).

2. For SS-3 boundary conditions and axial compression with zero eccentricity,
the strongest configuration corresponds to the asymmetric congiguration,
I-5, while the weakest configuration corresponds to the antisymmetric
configurations, I-2 and I-3.

3. Again for $S-3 and axial compression, the dynamic critical loads (lower
bounds, when the corresponding static loads, but their values are never
smaller than 607 of the static critical loads.

4. The average end shortening (for axial compression), corresponding to the
limit point for the same €-value, is smaller for the asymmetric geometries
(1-4, 1I-5) than for the symmetric (I-1) and antisymmetric (I-2 and 1-3)
geometries by almost a factor of three.

5. For the isotropic geometry (§S-i boundary conditions)

S5a¢: For the perfect configuration and very small imperfections, the effect

of in-plane boundary conditions is such that $§-3 and SS-4 (v = const.)

yileld stronger configurations than SS-1 and SS-2 (ny = -F xy = 0)
?
5b: For higher values of the imperfection amplitude, £, SS-2 and SS-4
(u = const.) yield stronger configurations than SS-1 and SS-3

(Nxx = F’yy -Nxx)
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For the laminated geometry, the effect of in-plane boundary conditions for

SS-i is the same as for the isotropic geometry. For clamped boundaries,
CC-2 and CC-4 (u = const.) yield stronger configurations that CC-1 and
CC-3, for the entire E-range.

For both geometries, I-5 and isotropic, the sensitivity to initial geometric
imperfection is dependent upon the in-plane boundary conditions for SS-i.
When v = const (SS~1 and §S-2), the geometries are not very sensitive. On
the other hand, when u = const the geometries are very sensitive.

As far as the effect of load eccentricity on critical loads is concerned,
no general conclusion can be drawn. But whatever the effect is (stabi-
lizing or destabilizing for a given geometry), it diminishes with in-
creasing value of the imperfection amplitude parameter (€-values).

When loaded in pure torsion, the strongest configuration corresponds to
geometry I-5 (asymmetric), while the weakest corresponds to the symmetric
geometry I-1, for the imperfection shape corresponding to the positive
torsion buckling mode, w°(+).

Geometry 1-1 is weaker when loaded in the positive direction than when
loaded in the negative direction regardless of the imperfection shape
(for all that were employed).

wWhen loaded in pure torsion, laminated shell configurations are sensitive
to initial geometric imperfections, but not as sensitive as when loaded
in axial compression.

Comparison between theoretical predictions (corresponding to various im-
perfection amplitudes and shapes) and experimental results is reasonably

good.
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APPENDIX A

MATHEMATICAL FORMULATION

A. 1.0 Introduction

The governing equations are derived, in this section, for the following
geometry and loading. The thin, circular, cylindrical shell is assumed to
be geometrically imperfect. The construction is laminated (each lamina is
orthotropic) and in addition, the shell is orthogonally and eccentrically
stiffened. The stiffeners are uniform and with uniform close spacing,
which allows one to employ the "smeared" technique. The boundary conditions
can be of any transverse and in-plane variety. This includes free, simply-
supported and clamped with all possible in-plane combinations. The loading
consists of transverse (uniform lateral pressure) and eccentric in-plane
loads, such as uniform axial compression and shear. Eccentric means that
the line of action of these loads (applied stress resultants) is not
necessarily in the plane of the reference surface. In the derivation of the
governing equations, the usual lamination theory is employed. Moreover,
thin shell theory (Kirchhoff-Love hypotheses) and linearly elastic behavior
are assumed. The primary assumptions are listed below:

(1) The shell is thin (total smeared thickness is much smaller than
the initial average radius of curvature-cylinder radius).

(2) Normals remain normal and inextensional.

(3) The strains are small, the rotations about the normal are amall
and the rotations about in-plane axes are moderate.

(4) The imperfection ghape is such that the initial curvature is small
[leo,11 «l; 1 = x,y].

(5) The stiffness are along principal directions.

(6) The stiffener-laminate connections are mnolithic.
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(7) The stiffeners do not carry shear; shear is entirely trans-
mitted by the laminate .

(8) The stiffeness are torsionally weak and thus they do not con-
tribute to the shell twisting stiffness (the equations and related pro-
grams can easily be changed to accomodate the case of torsionally strong

stiffeners).

On the basis of these general assumptions, two sets of field equations
are derived. One, referred to as the w, F - formulation, is based on
Donnell-type of kinematic relations. The governing equations consist of
the transverse equilibrium equation and the in-plane compatibility equation.
These two equations and the proper boundary conditions are expressed in terms
of the transverse displacement component, w, and an Airy stress resultant
function, F. The second, referred to as the u, v, w - formulation is based
on Sanders' type of kinematic relations, those corresponding to small rotations
about the normal and moderate rotations about in-plane axes. The governing
equations for this case consist of the three equilibrium equations. These
equations are expressed in terms of the three displacement components, u, v
and w. Also, the proper boundary conditions are expressed in terms of u, v,
and w. The corresponding Donnell approximation appears as a special case of
the more general Sanders' kinematic relations. The derivation along with all
necessary relations are presented separately for each formulation.

A. 2.0 The w, F - Formulation

The geometry and sign convention for this formulation are shown on Figs.
A.1 and A ,2,
The topics of kinematic relations, stress and moment resultants, governing

equations, boundary conditions and solution procedure are treated separately.
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1 Ae 2.1 Kinematic Relations
' Let w° be measured from the perfectly cylindrical surface to the
®
f refer surface of the laminated shell. Let w denote the transverse
displacement component of reference surface material points and be
measured from the undeformed surface. Let u and v denote the usual
®
in-plane displacement components along the x and y directions respective-
{ ly.
The Donnell-type (33) kinematic relations are given by
. ©
éx: = exx - Z ku
°
eyy‘ey}‘Zkyy (A")
[ ]
® ny = Yx, - 21}(!]
where the superscript "o'" denotes reference surface strains and the u's
denote the reference surface changes in curvature and torsion. Note that
4 the positive z-direction is inward (see Fig. A.l).
According to Donnell the eo's and »'s are related to the displacement
components by
® 2 .
Ex = U tF W + Wox Wi
° A ° (A -2 )
é” = U’.y"* + 2 W.y +My“’-y
[ ° °
@ rxy- u,y+v:‘+wrsty+MxMy+MKMy
Xax= Pux = (Wix)x = Wixx
o Hyy= Pyy = (Woy),y = Wiy (A -3)
Ky = (px,} = %." = Wiy
A 2.2 Stress-strain Relatioms
Each lamina 1s assumed to be orthotropic and the directions of
e
orthotropy (1,2) make an angle 6 with the in-plane axes (x,y).
41
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The orthotropic constitutive (it is assumed that the generalized

Y

Hooke's law holds) relations for the kth lamina are given below. Note
that for an n-ply laminate k varies from one to n, and the first ply
(or lamina) is on the outside, while the nth ply is on the inside

(see Fig. A.1),

! W S0

[ a,] Q. Q. o ||e.]
'.f. Qu = Q,_. Q,, O en (A -4)
; 5. [0 0 Qu)lze,
' where 2312 = Y1 and 1, 2 are the orthotropic directions.
% Since one is interested in relating the stresses to the strains
e

in the xy frame of axes, the usual transformation relation for second

order tensors are employed (see Ref. 35 for details) and the transformed

ﬁ constitutive equations (for the kth ply) become

K ) - - = yk) e

N a. Qu an le Lo

-, Ca = 6'1 éu ézs €yy (A-5)
ﬁ O'Iz é-s éa; ég; €xy

- where

3 - =1

: Q] = [(T]QIT] (A-6)

and

( Coi® S Sin26)
. [T] Sin'd Cos6 -Sin26
3 -3 5m26 35020 Cos26

Next, the stress-strain relations for the stiffeners are

(A-7)

/

G;"St = ES{ Eux

: G-VYS" E r e yy

(A -8)
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where Eg¢ and Er denote the Young's moduli for stringer and ring material
respectively. Note that according to the smeared technique assumptions,
stiffeners do not transmit shear.

A. 2.3 stress and Moment Resultants

Instead of dealing with stresses, it is more convenient in thin
shell and plate theory to deal with integrated stresses. This leads to the

introduction and definition of stress (N,.,) and moment (M,.) resultants.

i} ij

For a stiffened laminate these are

[N hn ’G-“‘ Tgﬁ‘* d Ax.
Ny = Gyy dZ + S”r dAy (A-Q)
4. 4
sN'yJ A’ [ O-.y J ‘ 0
and
e [ ] ( Ox ]
Mxx hn Qe Z "‘—:"? dAx
My = fz Ty dz + f z O dA (A -/0)
A i 5B 4
.M‘)’J | Oy | © ,
where

lx and ly are the stringer and ring spacings (respectively), Ai denotes the
proper stiffener cross-sectional area with Ax denoting stringer area and
Ay ring area, and h° hn denote the outer surface and inner surface coordinate
of the laminate (see Fig. A.1l). Note also that the above definitions lead to
the sign convention shown on Fig. A.2

Substitution of Eqs. A-5 and A~8 for the stresses in Eqs. A-9 and A-10
prior substitution of Eqs. A-1 for the strains in Eqs. A-5 and A-8 and

performing some minor mathematical operations lead to
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N,y =Z [Q] '/‘:-‘ 6,; - Z | Kyl (dZ
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k=) k=1
{ Nx, j LYx, J L2 )(xy‘ J
g E °1 ’
b She, oo, k.

ErA ° r =
L‘ + 7;'Le>y - Ej]';q'eykﬂ (A-11)

o) 0
A ( [es ral
N o [N
M,y =Z Q] f{ Z|€,| -2 |[Ky fdz
k=) /(’M
| My X, 2)<.,J
~ L ) L /

[N

S Leth€r)
Br{ItAe)| (A-12)
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\ J . /
where e ey are the stiffener eccentricities (positive if on the side of
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positive z) and L Iy

centroidal axes.

C (o]

ha Ban Suw mas g

are the stiffener second moment of areas about

After performing the indicated operation [Eqs. p-11 and 5.17], one

may write

rN»(*

where

B,

[ 5@]

{f

(> 5 7 = 35 B o |
A“ Al! Al} "Bu ’Bu '8,3 (en
A—Iz ZL; A?i "én 'éaz-Ba é;y
B R B -Bo-BuBa| | 00
’—3-“ Bn st '5:1 -Da. _DIS kxx
én Bu ézs ‘1512 °f)u'D‘¥ XV)’
B:s éas é;g '5; -Dys- 43 )(l')'J
r |
EvAy
@) 0] @) J
r~7-—=0E’*f“ .0 0
[B;.J.] + 0] _EZE;/‘L'_Q} 0
0 o0 0 J
ST HeA) O 0
[DQ] ' 0 %(Ik+Q;Ay) O
| 0 0 0|
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A-1%5)

Since, in the derivation of the field equation for this formulationm,

the dependent variable are, w and a stress function F (through which the

stress resultants are derived), then it is convenient to express the

mement resultants in terms of the Nij's and the # 's.

Starting with Eqs. A-13, one may write

sny‘

N | =4

“

€y
S

J

[ )(xxl
- [Byl| Xy
_2)(‘;‘

From this, one can solve for the strain vector, or

F o) -

S

- =l

€E;y = [/qi&]

-

€l
GE;y = [czﬁ}]
¥

where

[a.:}] = [/Zi(jj'

Yo Ny

Another form for this equation, Eq. (17), is the following

N
N yy

, /\j‘;
Ny
Ny

- /

r kx‘"‘
+ AGIBR| K

[ x|
+ [Qi}] Xyy
MZ)({X

[6:;] = [Aa&] [ézﬂ
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'F Next, substitution of Eqs. A-18 into the expression for the moment
’p’f resultants, Eqs. A-13, yields
p.. -}
s Mxx Exx _ Wy
-_ ° .
3 My| = [Ba;] Eyy - [Di;] Kyy
A [ ]
io MX)' XX, 2)()(]
. N)(X kxx
: = [Bl.d,][al.&-] Nyy +[[Bzd[gld] "[Etd']] Ky
3 ny 2)(:(}
o
[ T Nxx kxx
~ = 1851 |Ny| * [digd |x
; ¢ v ¢ | Ay (A-20)
b N‘f 2)(xy
]
where
t — —
o
Note that [aij] and [dij] are symmetric three by three matrices, while
[bij] is a nonsymmetric three by three matrix.
A. 24 Equilibrium Equations
@
The equilibrium equations are derived by employing the principle
of the stationary value of the total potential.
According to the principle, for equilibrium
®
SU, =0 (A-22)
where
- UT = UL + Up (A‘23)
the sum of the strain energy and the potential of the external forces.
ad
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From Eq. A-22 one may write

SUry = 8U+ dUp =0
=£j?Nxx8 Exx+ Ny §Epy + Niy§¥ey
~ M8 K =My Skyy = 2 MuyS Jw)dXdy
‘f,fggwf)"‘dy - f:l(fﬂl}xSu + NySv
+ QeSw - MWy - Fly Swg)ldy  4-24)

Where q denote the external pressure (positive in the positive z-

direction) and the 'bar' quantities denote external loads applied at the
boundaries (ﬁxx and ﬁ*y are in-plane loads, while Qx is applied transverse
Ei shear load and M__ and M__ external moments). Note that M__ and M__ could
XX Xy XX Xy
represent moments arising from eccentrically applied ﬁ;x and ﬁ;y’

Use of Eqs. A-2 and A-3 for expressing the variations, in the reference

surface strains and changes of curvature and torsion in terms of variations

in displacement components yields

= f"]"{ Nux [ § Usx + Wax § Wi + Wo § Wi
+ Ny (SUy - B SW + Wy Swyy +WySwy]
+ Niy(SUy +SUx + wxSWiy + W,y Wix
+ W,xSWy + Wy SWix] = M8 Wax = Myy§ Wiy
-2M,,5w.x,j dxdy - f/gs»vdxdy
j[ Nox SU +NwySU + QySW - My 8%,
- Py |y (A25)
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Re-writing the above in a convenient form in order to use Green's

theorem, one may write

SUT=fmIL{[N“ SU 1 Ny (Wix + Wix) W
+ Nxy(W,y + Wiy) SW = Mxx3Wox ) x
+ [Ny SU + Nyy(wiy +wi3) Sw + NeyU
+ Ny (Woe # Wot) SW = MyySWiy Ly
= [Ny SU + [Nxx (Wix Wi )], W
+ NugeSU FUNxy Wiy twiy) ], W
= MaxdSW T Nay,ySU + [Ny Wy
+ W,y )],5w + Ny,y SU
+ [ Ny (Wox # Wix )],y §W = Myyy SWoy)
- —’:—é!! SW - 2My SW,xy} dxdy
-J:uf gswolxdy -j:mf- NaxSU + Nxy8U

+ éx W - ﬁxx 890,, - ny(?%;]l:dy
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[
=fu [ L { [ NecSU + N (Wor + Wit JSW + Nuy SV + Ny (W.y
3! + Wiy) SW = MuySWox 1+ Mux,xdW + 2Muyy W ] ,x

+ [Ny SU + Ny (wWiy +Wy) SW + Ny SU

F + Ny (Wix +Wix) W = My W,y Myyydw

+ 2Mundw],y = [Nos §U + [N (Wor W))W
+ NigxSU + [Ny (Woy #Wyy )] SU

t! + M SW 4 Ny SU 1 [N,y (W +Wiy))y SW

+ ny.y SUu+ [ Nxy(W;sx 'I’WI;)],aJW

_ N
+ ny,vgw] "F%ZSW

- 2Mayy sw} dx dy
L 27R —_
_ [ gowdxdy - [ (- NuSUF Nyst7
— L i
¢ ToW ~FloS®, - My 8% ]| dy (A-26)

By Green's theorem, one obtains the following equilibrium equations and

associated boundary terms,

Equilibrium Equations

o Nt Nayy = O

» 50




-----

ny.x + Nyy,y =0

Mxx,)lx + 2 Ml}.l] + My,,’)‘ + % + Nxx ("/'“+ W;:“)
+ 2Ny (Way +Woy) + Ny (Wi W) + 3 = 0 (4-27)

Boundary Terms

elther or

Nax = = Nix SU=0

Nxy = Ny suU=0

Nix (Wax + Wi ) 4 Ny (W.y+W,5)

+Mux +2Muy,y = Q.+ M—W dw =0

Myy = M SWix =0 (A-28)

The first two equilibrium equations, Eqs. A-27 can be identically

satisfied through the introduction of the following stress function
Nx = F%zy =~ Nixx

hdyy = %X
Ny = ~Fay TNy (A-29)
With the introduction of the stress function, F, the third

equilibrium equation becomes

mex t+2 Mxy.xy + Mw:yy +—FL?-F»" + F'-:yy("‘/'“* W»;)
+ Fox (Wt W) = 2 F oty (Wany +Wiay) = Nl Wxy 4 Wiay)
+ 2 Ny(Wuyt W) 18 =0 (A-30)

A. 2.5 Compatibility Equation

Since the in-plane equilibrium equations are identically satisfied with

the introduction of the Airy stress function, F, then the governing equations
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consist of the transverse equilibrium equation, Eq. A-30 and one more. This
one mor~ results from requiring compatibility of the in-plane displacement
components u and v. From Eqs. A-2 one obtains

(4

GXX:’y

y

° l )
Z(’xyy + —2’. &}'xﬂ (W" +2 ch) + -2— W.x( W.xyy +2 W,xn)
° WIXX ! ° o
eyY)xx = uyﬂ - R + E (2 W)y WO’Xx +2 N)YX} My + QW,y \'V,y")

° o
Xxy.xy = Z(,xyy + U:xxy + Wy Way + W,x Waxyy T Wy Wix
+ W;yW.:xy + W:Xl} V\/:; + W,x W,:yy (A -3 I)
Elimination of u and v leads to the following compatibility equation
° [} W. o
Exey + Eppn - oy =~ Rt Wy (Woay + 2W5x )
/ °
-3 Wy Wy +2Wop) = TWopy (Wars $2W,00) (A =32)

Substitution of Eqs. A-18 [Eqs. A-29 for the N's and Eqs. A-3 for the

u's] into the compatibility equation, Eq. A-32, yields

G Fyyyy 1 Q,, F vy = (s Foxyyy T Gt Waxgy + 6.2 Wiy + 28,3 W.xyyy
+ QoaFoyy + QaaFovery = as Foxxxy ""-83, Wore + B Wostry + 2 GusWeaary

- a:s F 2xYyy 'aza »XXXY "'ass F 1xxyy = 33: Wy = @,, Wy =2 8,, Woxary

° { ¢ v
- ‘%’M" + Wiy (Waay+ 2Woig) = 3 Wk (Woy #2 Wagy ) = 5 Wopy (Woax 2 Wine)
(4 -33)

Similarly, substitution of Eqs. A-19 into the transverse equilibrium

equation, Eq. A-30, yields
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8., F.xxyy + B Fooox - -g,,F.my + du W F A, , W,xxy"'Qdu W xxry
+2 8,3 F ooy +28. Fostty =2 8oy Fornry + 203 Wasnsy + 20lsaWornry + 4 el Wy
+ ’@n | — @z F,ayy = @,IF,,,M Oy Woany + Ass Wy +2 dsWorny
+ B+ Fw (Wt Wikx) = Nox (W, xx + Wosx )
+ 2 Ny (Wort W) =2 Foy(Woy Py )+ Fox (Wopy # W)

t+4 =0 (A-34)

A. 2.6 Boundary Conditions

The boundary conditions, Eqs. A-28, can be designated according to
transverse one (simply supported, clamped, free) and in-plane ones. Since
all of the application to be considered deal with supported boundaries,
only simply supported (ss-i; 1 = 1, 2, 3, 4) and clamped (cc-1i) boundary

conditions are listed. These are (at x = 0, L ).
SS-1: W=0; M= Ma;s Nu=-Na; Ny= No
SS-2: w=0; Mu=Mu: Y= Cast. 5 Ny= Ny
SS=3: W=0; Ma=Mu; Ny=-Nu: U= Canst
SS-4: W=03 Mu=Ma; U cConst 3 U =Comst (A-35)

e

and
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CC-1: w=0 ; Wix=0 ; Nxx"‘N-xxJ nyzlvxy
CC-2: W=0 ; Wix = O u:c:ns{.; ny=my

CC-3: W=0 ; Wu=0: Nu=-Nui ¥ =Const.
Cc-4° wW=0; Wix=0; Uz Goast. 5 U =Const. U36)

The above boundary conditions may be written in terms of the dependent
variables F, and w. The kinematic conditions u = const and v = const are
first expressed in terms of equivalent conditions. This is shown below for
each of the relevant conditions separately.

Note, first that the expressions for the Mij's and Nij's are given by
Eqs. p-20 and A-29.

S5-1: w=0

'ngF-o—(x + dn W,ax + 2d,3\Mxy= Fixx%gnﬁxx‘-é,, /—\Zy

F,=0 ond Fiy=0 437)
88-2: W=0

BoF gy + 8o Fon t Ol 2013wy = Mt BN~ BNy

F,y=0 and Fuay=0 (4- 38)

The u = const. candition is expressed in terms of an equivalent condition
by employing the following steps.

The expressions for ny from the kinematic relations, Eqs. A=2, and

from the congstitutive equations, Eqs. A~18, are first equated to each other,

. K‘; = u,y + 7).’; + W,x W,y + W,x Wn; +W.: W,y
i‘. ‘-'ara(’:'yy‘n:x) + az3F.xx+ an(nry":;xy)
: +8::W.u + -832 MY} + 2_8_33 W,‘y (A -380)
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One differention with respect to y and use of the conditions w = 0 and F,x =0

yields at x = 0, L
'U;nv + Wy W,; +W,x W,° = [L; F.yyy + aas FM’J + &:Mw

o
+26n Wy (A- 386)
Similarly,
° Ep=Uy-H +5 Wy +Wyw,
= Qu(Fy~No) + Qs Fex + Q.3 (Ny = Fary )
(A-394)

+ gzl Mxx + 'gaz V\/.yy + 2 gzs W,ny
from which one differentiation with respect to x yields

Urx - '%i + MXyM; = azz F:sxxx 'aas F:»xxy + 264; W,xxy
o

+82IM/’XX¥ + 8)1 W,xyy (A -3QA)
Elimination of v, and v, . from Eqs.(A-38) and (A-39)yields the equivalent

(to u = const) boundary term, which is:

[
aa’:,yyy + 2 azs F.xxy - anF,xxx - “\%,—”“ - Wx W:vr —‘9:: V\/.xxx
t (831-2843) W,xxy - ('gn "2 g.u) Nﬂw =0

Note that because F,x = 0 for this boundary condition, the ter— con-

o
taining F’xy has been dropped.
Thus, for $S-2 the final form of the boundary terms becomes
e w=0
0” F,yy + vg,,/:,n + 'gn W, + 2d/sW-l/ =I‘_7xx + gu Nn ‘QJ,N_,’
F.xy=0
. QusFoyyy 12 Qs Foxay = A2z Fogne '%"" - WixWiyy = G Wies
+(64-282) Wixxy (6. -2 @33) Wiyy = O (A ~40)
8s-3
w=0
¢ G Fny + B, Fou + du Winx + 20is Wiy -GsiFuy = M B Nex =4y, le
Fay=0 and U= Const.
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Similerly, as in the case of SS-2 (u = const), an equivalent condition
is obtained for v = const. From Eq.A-39a., since w = 0 and Vig = 0, then

the equivalent condition becomes E,=0 or
-Q, Nxx"' QAa: Fox + Qi (ny - Fy) + 8. Wi + 2823Woy = 0
Thus for S$-3 the final form of the boundary term becomes
W=0
BauFxtd, W + 2d/3 Woey = Gy F,xy = My +Eu N 'g,. /ny
F»yy =0
QaaFoy = R Foxy + BaWisx + 28 Wy = Uiz N = Qas N"Y(A-4I)
ss-4
For this case the equivalent set of the boundary terms becomes
w=0
BFoy+ Gs Foux = s Foxy #0y Warx +20li3 Wony = Flix + 84 N - GaiNiy
GuF.ox#QaFory = Qas Foy + a1 Wixx 2 BosWoty = iz Nex = liog Ny
a,; Fowy 4 2Q0F oy - (G2 /1 Faxy = Qa2 Frxx — _\g?.’.‘ - Wa 'W.‘;y
+(283-8.) Wxyy T ('3'3; ’2&3) W) axy ‘gzt Wi = O (A-42)

Following similar steps, boundary conditions CC-i, i = 1, 2, 3 and 4, are also

expressed in terms of w and F only, or

cc-1

W:: W)X = F;Y] = F,Xyz O (A-4'3)

cc-2

W= W,x = Fﬂy: 0

Qs Fomy +2Qas Foxxy = Ay Fooex — B Waex +(83,-2 b)) Wy = oA-44)
cCc-3

w = WvX = F,” =0
au F»u - &'z;F.xy + Qu W,ex = annu - aa ny (A '45)

CC-4
W: W’X = 0

anFU)' + Q. F;xx"' anF,xJ + 'gu Wyxx = a/znn 'auN:y

a'3 F'”y+2aﬂ Fm'r - (a'2+ &‘u)F,xyy - an qu( = gu“/uu +(&I-) 8.3)”2‘!4
_ (

=0 €)
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II. 2.7 Solution Methodology - Field Equation

The solution methodology is an improvement and modification of the one
employed and outlined in Refs. 36 and 37.
The separated form, shown below, is used for the two dependent variables

w(x, y) and F(x, y).

Fx,y)= Couit g[C;(X)CML%"’ t Di(X)Sini,%i]

W(X.Y) = Aoa)+-;'§[Aicx)Cos%’ tBill) Sin %) (A-47)

where n denotes the circumferential wave number.
In addition, similar expression can be employed
for the imperfection parameter wp(x, y) and the external pressure q (x, y).

Note that in most applications the pressure is assumed uniform (ao only).
° -] N ] N
wuLyy = A.(x) 4 g—,[ﬂa (x) Cos%" + B; x) Sm%’]

)= gL +f‘§[ 200G + 2w S ] (A-48)

Because of the nonlinearity of the field equetions, Egqs. A-33 and jz-34
subgtitution of Eqs. A-47 , and A-48 into them yields double summations for
the trigonometric functions. These double summations involve products of
sine and cosine of iny/R in all four possible combinations (cosine-cosine,
sine-cosine, cosine-sine, and sine-sine). Furthermore, these products have
different origins. Some of them come from products of w,xy W,XS; others from
products of Fox Wogy (see Eqs. A-33 and A-34l. 1In order to simplify the
final expressions (and use single sums instead of double sums), and in order
to cover all possible combinations of double sums, the following simplifying

equations are presented. These are based on trigonometric identifies in-

volving products.
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Z. Z [d’b Cos,fﬁl Qi Cosif = ﬁf Amu&) (b,a) Cos it

LOJO

ﬁz [JbJCosja] Q;L Sinif = ‘Fa’ AIsz(b,a)SinLH

ﬁz‘_ (4b; Smdb] il Cosif = z CA e (DR)Sini8

120 4°0

io%o[} bd S‘m}&] Q;i Sinif = ZZ=5 Anq(x)(b,a) Costf (A-49)

1 b Cusd6] G U Cosit = -z AL (b,2) Coaif

-0 40

ﬁ_i[b C°3J9] Al ‘Sinif = 5—- A:rzza)(b a)Sini§

120 40 ¢

£ 5 (b, Sind6) ui'Cosi =5 At (b.0)Sini8

LOJO

fZL- [b(, Sinj8] it Sinif = g Alare (6,8) Cosi8 (A-50)

i=bg=0

i~

£ [7hjCuia:iCoai6 = 5 Abab,a) Cosi

£ 1 (b Cosj8) 0:Snif = 5 A b,2)Sinl6
S (i Sinj 61 QiCosi® = S Aronkb.0)Sinis

(=040

ZZ (4 bd Sing81QiSinif =§0 A;zam(b'a)CosiG (A-51)

1204=0

where

i k... 2 .. :
A:mur)(b:a) = ELZO((”J) biﬁ"‘“’ 7)—1+7i)“‘d'b“9']<fa&
‘:
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S
g
g
~
b
1
Ni—
Q’M Q.Mk

_(Ctdbing + (=14 oy 4101141 iy )4 Gy

L Kk :
Az (b.0) = %ft-[(‘*&)btq*( == "’75 Mi-¢l bli-JI]Jad" (A-52)

K S .,
Anwo (b,6)= %—Ebiq’ *( ”'Zi-i."’Z) bli-jl]cf Qg
/‘4 Inw (6, a)= 2_’5{5- it t (/- 7:-;" Z) bu,-,]fa}

Avswbd) = X > Ubiy+ (147441 ) bigili G;

Ar (b@) =3 Z bt -1t bidi'ty (453
Al (b) =+ ELHTbyy + 0334100047 iy 10

Ao (5:0) = 3 2 -0 by U= 1)) by 104
/‘].)i'zsug (b,a) = é"é[(t’q) bL+J+(/f7&+7 ) (14§ Y bip) Oy
A:Lzafx)(b-a) = '5{‘& of(iq‘) 61134(-I-Z,J-+7i)(£+<j)'b;;.¢;,]GJ(A—54)
an

/ if ¢ >0
K2 L h=9° if £=0
’ t/ IJL £<0
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Next, returning to the solution procedure, the expressions for F, w, w° and
9, Eqs A-47 and A-48 are substituted into the equilibrium and compatibility
Equations, Eqs A-33 and A-34. This substitution yields the following non-
linear differential equations:

Equilibrium equation

):Lhu,(ALm Cos B + B Sini%) +hy(B)(-Aiws Sin'¥

+ BiooaxCos 2 = haa (B2 (A sCos S8 + Biex S i)

+ N3 (BF (A ixSinZ - BiuCosit) theo (330 A; Cog R + B; Sin'%)
+ 2 [84(C o Cos 2 4D SiniB) + Gy (BN~ CoonSin %

+ DimaCos ) -2,, () (Crnx Cos B + D; o Sin'%)

O s — S Rt
R ) v'v‘-v.".

+ 93 (B (Cix SniZ - Dux Cos2) + Guq (B)'(C, Cos i +D,Sin'¥)]
z (Cimxlos® + DinSin®) + L (F,ww®)
- Nxef( Aisx + Aixc) Cos B +( By # Boux) Sin ]
+2 nyzf( - Aixthix)SinZ + (Bt By) CosH]
+f(2 Coq 2 + 5. Sn#) = 0 (4-55)
where
L(Fwiw) = [E Crun Cosilt 4D, S 1[5 B[~ 1410052
- (Bi+ B)Sn#)] -2 [ £ (B (~CinSn'¥ + DixCos ][ £
(BN~ A+ Ai'x) Smit + (B + Biy) Cos B} 7[21 (%8)(Ci Cos ¥
4 Dy SN S At Al Cos B + (Bing # Bi) S8 }) =0 (A-56.0)
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or

and

LRy = (BS 53 (-4 Upt4)) Cos i) CuonCosiy

2 3k K a2 ' . .
+ (ZR!) %:o%of-J (AJ+AJ)C°5%!] Dixx inig
+(%>’§fof‘§0f £ (Bi+8)SindZ] CimxCosi

agk K . . .
+BIE S 4848 Sn B ) Di Sn R

22K ° i 2 1
- (BB (i HAje) Cos 110" Cos R

- (%)aégo[(/’j.xx "’A;.,a) Cos"g] D;I:ISM x5
n a3k K ° : w JC iny

- ( R)%EOE(BJ“ + BJ,xx)S'n R JC,, L Cos R

2 3 ° ; .3 iny
- (%) Zf (( Bd"x" +Bd',xx)$;;.¢%’-'] D;i Sin‘g

0 §=0

22K K . ‘ _ _
+ 22 (4 Uyt A)SinB 1 Conl Sin%

+2 (%)IZ):Z? (¢ (Ad‘,x ‘fAd‘?x) Sin %in,x LCoSLg
i704=0

+ 2R 524 (Bt B Cas B ICinl SR

2 K . o . ;
+2ABIEE CHB B Custf I Pin i
L= 0

Reo= di Q“: 8.,

h-‘“: 26{3! +2d/3

hll: dll+4d33 'f'dz:
hB = 2d:a+2du

l’loa: 0(32
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gsl = -—@,, +2b23

9122 'Qu "28,3 +-e21
9'3 = 2@/3 - '@32
Gu= b,

(A-56b)




Note that the operator L(F, w + wo), Eqs A-56, can be written in terms of a
single geries, which is the most appropriate form, for use in Eq. A-55 . This

is accomplished through the use of Eqs. A-49-A-54,

L (F; W+Wo) S (%)zé[/q;ﬂw‘) (A +A°n CMX ) + /4_3‘}24(*)(8480: ,KX)
+ AILZILZK) (A 1 XX +A1:x s C ) .f A ;)4(2&) ( B.xx‘fB,:x /D)
oy

128 Esaay (At A s Cor) 42 A i (Boct B2, D) R

"“.%)zg [ Ai (A +A°a D,u) + /43';3014) (B fBol C'xx)

Jaxcax)

F Ay Aot A% D) + A sy (BrctBia,C)

DAL s (At Do) -2 Astion (BB O] SR
(A-57)

Compatibility equation

> (G AsonaCos B + B SlB)+ a2 (i caSn i+ Buo ot )
+Q, (3 (~ Ay Cos B - B Sin R ) + Gk S Ai Sl - BiaCos')

+ ey (BF (4 Cos H + B; Sin'R))

£ [00aCommn Cas B + D Sm) + 203 ) (Corms S

- Dixxx COS Jﬁl) + (‘2 a/l + a.B )(%)z(“cz.xxgﬂ %_y - Di,xx in%x)

62




(J
Lo iy
: +2 aB( ) ( Ct;x S\‘n‘-—z + DMXCOS " ) + a“('l) (C Cos +D Sn )]
; K o i L B‘.xx inyy L ake 0
W‘ +> ( ;2 COS Sin ) 2 (R)z-‘-[Ajzmz)(A*zA yAr)
r.. i:b =0
: N [} ‘ o ‘
: -'- A;l‘“ﬁ) (B+28 » B)XX)+ AIJ/(K) (/44,'*'2/4,“ ,A) +AI24¢)(B:XX 28 XX;B)
'0 ; ° i 0 any
g -l- 2AIJ4‘R) (Agx+2A'X » A'x) +2 AIJ“K) (Brx+2B:X b BJX)J COS R
L
; TR ‘ P B, Avwx)
li -3(R) X (As2wA 124, Bux) + Asssuy (B+28, Auxx
{ Y izo
£ . L °
L (Y
\ + Ataw (Awt2Ax,8) 1 A 12w (Bt 2B.,A)
g
y J ] Lﬂy
4 € - 2 A]‘Jj(k} (Ag.x +2’4/’( )Bn\') 2 AIJ)(K)(B’K+2BI"’ ,X)
: =0 (A"SB)
L
3 Parenthesis
‘ As far as the equilibrium equation is concerned, the summation starts
® from zero and goes up to 3k [see Eqs A-55 and A-57) because of the nonlinea-
rity. The Galerkin procedure will be employed for this equation in the cir-
cumferential direction. This will yield (2k + 1) nonlinear ordinary differen-
¢ tial equations [from the vanishing of (2k + 1) Galerkin integrals].
On the other hand the compatibility equation, Eq. A-58, is written in
series form, from, zero to 2k Because of the orthogonality of the trigono-
€ metric functions (4k + 1) nonlinear differential equations result, which re-
late the C's and D's to the A's and B's [see Eqs A-47). This set of ordinary
differential equations is shown in a complete form in the pages that follow.
-
‘ Before showing them, though, some simplification can be made.
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For the case of i = 0, one obtains the following equation, from the

combatibility equation, Eq A-58.

Qoo Aot 2o Ao + Qs Cos = 3(BF [ Asnow (4424 Ai)

¥ Ay (B428%B) + Asasu (st 245, 4)

+ A:Mw(&"ua;,g) +2 Azsgy (Ax 3245, Ax) !

k + ‘2/4 :Jl(k) (B;X"') B:; ’ B:X)J =0

or

__’__ | 2 K .2 . (] .
Conuex = au{‘gao A o, xesx - BAowut ZL(%) %I[d. (Ai #2453 Ajxx

+ fj)( 831'25; ) Bd':xx +&1(Ad~‘x,( 12 Aj,‘(x)AJ' +d: (8j.1x +2 Bd‘fxx) BJ'

20 (Agxr24550) A 124" (B 12850 8.4} (A-59)

Moreover, the displacement component v(x, y) is a continuous and single-valued

;,. function of y (and x), therefore

2R

- f Uy dy = UX.21R) - UX,0) =0 (A-60) '
.-; [

&

- - From the second of Eqs A-2 one may write

- Uy = Ey +WR = Wiy (Way +2W,) /2 (A-6D)
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Furthermore, use of Eqs A-18 [relation between 63;‘“d Nii’ n of Eqs A-29
. ij

[definition of stress resultant function), and of Eqs A.47 and A-48 [assumed

form for W, F and w’] yields the following relation,
[y = [ 0 R @ Ry dy
4 wf GuaFoy 1t OarFax = Qus Foy + Bos W
+8.uWoy 12803 Wyy + % - TW,y(wW,y
+2wW,y)]dy = 0 (A-62)
 aRio + QuRo)dy + 5 (#(-Cics®
-DiSm &7 4 aa;‘fa (CinCos % + D, Sini]
= aasé(%)f-&,xsm% + DixCos ¥
+ G, é[Ai,xxCOS 2 +B;,4x Sin w4+ Quz (&5(
~Ai Cos% - B Sin®] 42 Gu 5 (B)[ ey Sin2 + BinCs'Z]
+ 2 (ACos i + BiSn ) - L5 (B)-4;5n %
+B;Cos B2 (B0- (A +245) Sin 3B + (814 28 Cog iR 1] 3

=0 (A’é3)
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This equation, Eq. A-63, after performing the indicated operations (integra-

tion, becomes

J:m{-a’znxx + G Ny + Qa2 Co +Guy Aoxx + -’%

2

“zﬂé’éﬁ'E(Aﬁ?/’iM;* (8;+28))83}dy= 0  (A-64)
From which, one may write

| X
Q,xxzm{°QzIAo,xx" "%’ ’%JZ. [(Aéi’ZA&)AJ

+(B;+2B]) B;) + vz Nux = Oz Ny (A-65)

The remaining compatitility (nonlinear, ordinary differential) equations are

For i =1, 2, .. 2k and cosine terms

Qoo = 2 Qs (33) Disox = (202 4Gy ) (B) oo + 203 (29’ D
+QuBICt 8il Goo A + G (B) B~ Gou (B Av
() B + Gun (24 + A - T B (A 28]
-({ﬁ)’f_;o{ CCLti) Ay #2050 + 2= 0523 20 gt i)

]AJ,X" + [ (i+§ )t(Bi.fJ +2 BL:J) = 7,:_& (l:‘e}')a (8,,;.;, +231£1jl )) Bd‘.xx
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>

gt 2A i 20 At 2 A i’ A

+{ Bif)ﬂ“ 12 Bc':j.u - 7;7- (Bijmt2 B::-,;,.u)]JaB}

+ 2 L) (Asgr + 2 Aigo) = i 1541 (A2 Ao
§Ajx +200+§) (Buju+2 Byjux) 4 (2-F )14 1 ( Biicjux

+2By )i Bia} = 0 (A-66)

For 1 =1, 2,.... 2k and Sine terms

au Dz,xxxx "'-203 ('%!‘) Ci.xxx = (20/2 1 aﬂ) (%)QDi,xx

-20:3 (%‘)3 Ci.x + au (%)473& + SL fg«co Bz,xxxy

-33' (%)Air*"’" gu (%f B; xx '*9:3(%‘);/4:.): +?»4 (%)QBL

- . N 2 K e .
+ Bis - L (2384870 - 7 (B) 2100 Ayt Uy

Q) @) iy +2 Aiicje)) B+ [Likdr* (B #2 By )
+ 7“ (L‘d )2( Bli-j, +2 B,;.J,)] Ad‘,xx t[- (Aiq‘,xfoAz:“,xx)
+(2 ‘74‘-2) (Avsjiax +2 41:+;|,xx )1}23& +[(Bujux 72 Byyjne)

+7L-J (Bn-;a.xx +2 B’ZJ""‘)JJ)A} -2 U‘ﬁ)Miﬁ'l"'«’/‘;,}.x)""ﬁgli-ﬂ

(A "’2{44;.-}!.:()]& Bjx -2 [‘(i#j)(Bif‘.’x+2B‘-;-’,) + (z-z;)[i—d‘[

« (Byijix 2 B/E-Jn,x)lc} AJ.!} =0 (A-617)
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where
0o iL>K -1 £ <0
8;= . ¥={ o0 £=0
) L€K ! L >0

As already mentioned, the Galerkin procedure is employed in connection
with the equilibrium equation, Eq. A-54, in the circumferential direction.
The vanishing of the (2k + 1) Galerkin integrals yields the following set
of nonlinear ordinary differential equations.

For i = 0O

AaAo,xxxx 1’9«» Co.xxxx +'% Co,xx = (A",XX +A:ﬂ) N-xx
- (BIFEE 4 H4]) Cpos +4 (B4 B) Djoxs 14 (A
§-25 “ ¢ (A;34;) Chor T4 (Bj1 85 ) Djoxx T4 [ Ajoxx
-+ A;,xx) CJ +4'( BJ,xx"’ Bf,xx) D; "’2}1(44‘# *Afo) CJ »X
'fQJ'J(Bd'.x ‘f‘Bd":x)’Dd‘.x] +go' =0 (A-68)
By employing Eqs. A-59 and A-635 one obtains
A'o,xxu (du- -%—:‘;) - Ao,xx ( 2%‘; ) - /-\7,“ (,4 oxx F A:,xx) —a-'g‘;'?z
+ B P2 Ait24) B+ A +2A00) A
d=t
+2 (x4 2455) A xt (Bi#2 B)) Bjon # (Bjaxt2 Bjw)B;
+2(Bjx 42810 Byu) +RI(A+24]) Apt (By+28)) By
-2 (U #4)Cax + (Bj#B]) Djax+ 2 xt Ajex) Gox
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+2(Bd‘,x+Bd'.,,)'DJx+(AJ,u+A;a)CJ' + (Bt Bio) T; 1}
a.z »‘ aai ny 4 3 (A-69)

For i = 1, 2,... K (when the weighting function is cos %Z)

e Ol Ainsse + 4.0 (B) Bueex ~ (20he +4 Al3) (32" A xx
4 (2 Bi + s (B, + Gt Cimax + (2 80s- B) (D
o ~(81-2 8 + 822) (B) Cinx ~(265-60) (33 Dix
+ 82 0B'Cot & Conp - (B (B - 0, Ao - 4
® + ('zzzp')zé ELA 124045 + (Bj+28)) B; 13
- (W (ALY (A - B Np) = (s + A Ny
° +2 Ny () (Bix t Bix) - -L(%) Zﬁ{[(ud) Sij (A Asj)
+ (2-13) () S R 1 A )] C oo
o + (S Sung (Bug +Biy) ~ oy (843 Siijr (Bugyt Biijn)) Djw
+ 2 CCitp) Sirg (Aujx +Asa) - 7z-d'l£~JI St C Asicjioy
o + Ao I Ga + 2 (itg) Sirg (Bugj+ Bio)
+ Q1 Sij (B + Bigod] d Dyt (g (Aigjoct Airjm)
- 1 (2-74_‘1) Stijt (A g +A,'.-.J,,u)JJ2C} +(Sigj ( Bud-,u+B;,;,u)

~ Vg St (Bijn +Bigu)Ji' Dy} + g/ =0 (4-70)
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For i = 1, 2...k (when the weighting function is sini—;j—)

A Bixay — 4 s GB) Aioux - (Zd/z-l-lldy)(%)aBz,xx + 46&(-‘})’,4;;

+ o %)451 + 8. Disox = (2613~ bu) (%) Ci ey

< (Bu=28u+80) (B Disct (28568 Co + 6ul'D:

E‘ T %"ﬂ" (%)z(%%) {‘ 8.1 Aoxx “—’-é—" + -ZZZR')ZdZ):JT(AJ +QAJ.) A;

+ (BJ+28<;.) Bd»]} _ (%)z( _8%—2?;) (aul—\]“ _ a”i\l_xy)— (B[,x;'f‘Bi,"u)_,\]u
- . ° A ) K I °

~ 2 Ny (48) (Aux TAix)— 2 (%) JZ_-.,{R"{U) Jl*d ( B‘Q t Bzg )

t 114 S (B # Blog)] Coct L (1) 8igy (it Ai)

+ (2-7;.‘1)(1-(})1 8izi (A‘i_}' "'At.i;}l)] Djoux -2 ["(HJ‘) 5,;?-( Bitj.x +Baj,x)

F + (2"7}-1 Y it4 Sii-Jg ( Bn,»d';,x"l'B/;;,,, )]J' CJ,X

i - 2 [ (itg) 5;;& (AE'J:X""Ai;j:x) 4-%,3 Ji-! Su-&p (4 lizjlyx +l4/i;'1.x)1<} Dj.x

4

» o o .2

2 + (Sug (Bugjowr T Bagjon) + Ui 3 1iji (Buyyxt Byl Ci

. b 0= Su gt Ampae) + (2750 Sin gt ALy ali "D

3 +4) = o (A-T71)
«
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number of equations and number of unknowns is reduced by one to (6k + 1).

This number is determined by requiring the total potential to be a minimum

at a given level of the load. 1In other words the response is obtained for

Clearly the response of the configuration is known provided that one can
solve the nonlinear ordinary differential equations. Their number is (6k + 2)
and the number of unknown dependent variables (functions of x) is also (6k + 2)
These are (k + 1) Ai's, (k) Bi's, (2k + 1) Ci's and (2k) Di's. Note that C,

can and has been eliminated, through Eqs A-59 and j-65 and therefore both the

In

these equations there is one more undetermined parameter, the wave number n.

various n-values and, through comparison the true response (n-value and cor-

i responding values for the dependent variables) is established.
4
; So far, the partial differential equations are reduced to a set of (6k + 1)
g nonlinear ordinary differential equations. Next, the generalized Newton's
® method (Ref. 38), applicable to differential equations is used to reduce the
nonlinear field equations and boundary conditions to a sequence of linear
| ]
systems. Iteration equations are derived by assuming that the solution to
i. the nonlinear set can be achieved by small corrections to an approximate
solution. The small corrections or the values of the variables at the (m + 1)
step in terms of the closely spaced state m, can be obtained by solving the
19» linearized differentiate equations. Note below the way that a typical non-
linear term (product of X and Y) in the differential equation is linearized.
L T Y » X' » "
XY = (X +dX)Y*dY)
®
M ;M »n ” n o™ m
= XY +XdY +YdX +dXdY
m,. .m »n »”n » » g » n
X Y+ YdX + XY+ X dY - XY
[ 4
= XMY"+AY") +Y (X T+AX)-XTY
o 71
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7rﬁ7i e g o

':Xu Ym-l +Yme,—-XmYn (A-72)

where X & Y can be Ai’ B Ci or D

i’ i
By making use of Eqs (72), the linearized set of governing equations
(iteration equation) is obtained from Eqs A-66, A-67, A-69, A-71. These

are:

1. Compatibility (i) [cosine terms, Eqs A-67 ]

Qe Cley =2 s (B2) Dy ~(2 00 # G ) (B2) C 1o

+ 20, (2T Dy + Qu (B CM'+ §: 0 80 Al e

(260 80) () Brrve = (8u-28t £:) (2T 470

~(284-8,) (B BI 4 8. () AT+ AT

T AT AT HAT+2 A2) Ao = AL At}

- <§£—)‘;§{ T (A 424" A + T (A4 240 Aie = T (A+2A) Ay ox
+ Ky (B+28") Bl + ki (B+28") Bjw = Ki; (B+28) Bl

+ 20 U5 (AAD A+ U (A 1240 Ap = L3 (A+24') Ajx ]

+2(M (B+28") 8]+ M (8 +28) By ~ M (B+28) B[]

N CARADAT + NG +28%) A7 = NG(A+24°) A,

t 05 (B+28)B] + O (8+28) 8]~ 0] (8+28)8])]

=0 (A-73)

where

TglY) = () S Yo + -Gy (4 Syt Yiog
”m ) . :
Kia (v) = (”'J)z étfd Yn; = 7‘; (i) Siiy Yz-:‘(:
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L5 () = Uiy Sig Yoo~ foglicd! Ssiit Vi

M;(Y) = (Citd) Sutj Vi + (2~ T ) ig Sy Yn:;x]d'
" " 1 mn .

Nij(Y) = (8 Yoo # (2052 Suit VigjueJd*

O: (Y) = [Sifd'Yh:',txx —77-3' S’ETJ’ Xi;}l,xx]d:l

(i) [sine terms, Eq A~68)

For 1 =1, 2,...K

mtl

anD:,’x':’Xx + 20 (%) C:':J:X = (2. +Q) (Lp'l)2 D; i
- .20,3 (% )SC::‘ +ala(%)4D:ﬂ+ 51 ['gu B:‘;;o: - (2 4&3“@1)
+ G A = (G2 +-B.) (B Bim +(2 s By RS Ais

S & my _’“ : H o
+ 8. (8) B+ Bigx - (BB A v+ (8] 428 A

n , el . m . nt

" ° mH ° m o, _mei
- Qz&-(8+28 ) Aﬁd 7?;6-*(,4 +24) B;fm t Ry (A#RA) B«
. 27]

- o mH ° LR
. - Ry Us2A Bl -2 (S (842847 + S Br28V ALY

- 55 (848 A ) =2 LT 4428 Bl + T (4124 8]

®
- T AYA)BL] + U (B+2B) A+ U (8428 A
o .M mt 0 °
_ - U5 (Bt28) 4 +\A}'(A+2A)5;+Vz:(4“’4)gfl
] ¢ mi _
~ V5 (At24) 8]} = 0 (A-74)
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-
‘ » where
- » I » L2 »
Lu de (Y)= (U—d) si*d X*a + Z-J(L-d) 5/13) n'-d‘;
s
':ji: » CoL2 " 2 2
L R‘d (Y) = -(it§) Suy Yud' 1 (J—Zi ) (i) 511-3/7/,:,'1
o m . - R ‘ )
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(i) [i =0, Eq. .%69]
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WY,
[ Y

'+ (Bdn"'lB(;)B‘;:): - Bd dxx'l' (Bd xx +28 u) B(J
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w__m o
+2 BixDjx + (Bjn +Byu) Dy =28 Do

4

" ° e ” n
+ e Cf + ( Ajes -f/l,‘,xx) Q — Ajux CJ

m ° M| m .
+ Bl D +(B+ Bia) D} - Bin D} J

Q2 1 az N/ " _
+a:,—;%Nxx"&:%?ny+go =0 (A-75)
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(iiv {1 =1, 2, ...K; weighting function is cos _%Z]
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x+ . | . Y

du ALx:txx + 40(13(%) B:xxx -(2 d12+4d33) (%) Ai,xx

q 3 M L ™ wel

- 4d15(%‘[ ) Bi,x "l’ dn (‘R’) 4{, + ‘gxl Ci.xvx
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= T4 CR) + [ K (B) Dinn # K(846) Dy
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1 O BT+ 05 B18YD; - 0L @[ +4 =0 (A-76)

(1iiy {1 =1, 2,...K; weighting function is sin -i—;l; Eq A.71]

3 M|
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m
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m)J:,J (B: +B;)(A;j+24))A; t(B: 1 B:)l Wk
n ° " ° wtl x ° » ° m
+ (BT +B])Uj+245 ) Aj -2 (874 B (A 24 )4,
+ (BB (B]+28) B +(B+B]) (8] +28])8;
+ BB B 288 - 2(8] +8)(8] +25) 8}

= (%)l(B&IBi (Q,z NXX *Qn /_\—/X)') - (B:": + 8:’0‘) ;\l—xx

At

20, U+ A - +BVE [ @y ®) G
+ QG (84B) G - QBIC] + RY (4) Djun
n ,?’,-; (AfA')'D;:i - Pz} (A) D;xx -2 (,S”:;-”(B ) Co:f(
+.55(8+8)C)x =.SEA)ClR) =2 (TA) Dyx
4 T Djx - T D) + Uz 8)CF + Uja8) ¢
- U7 B) G+ V5 () DF + VS A+ D] - i) Dy

2
+2 =0 (A-77)
Finally, the Boundary Conditions [ss-i, cc-1i, Eqs A-37, and A-40 - A-461]

are also expressed in terms of the dependent variables, through the use of

Eqs A-471 They are:
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Ao,xx(du bz:) ‘gzl( a;sz, +023N)9¢)+Mu +é'1/_\]xx jJ;ny
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An A +8.Coxe- 8, G2VC +20s (Z) B =0 pi=lha.~k

du Bi xx 14, Dixx "-@;(%)lpl - 20{13(%')4;,): =0

Dyx= Ci,x =0 ; 0=02,-- 2k

auC;,xxx ‘2&13 (LRA) Di'xx +a/3 (%’)BDL +‘éll/4i'xx'+(‘28:s"é')%'5¢ XX
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+ =05 4 1) (64 Ay T Ajox + (i)' B,
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le F=1+ T+ 7)(14) Byl Ain}= 0 sé=t2 -2k (A-19)
i SS-3 A. = 0
© 2 _ - — - —
E /4 °:KY(d” - g’:): %[_ORNXX+azJny]"'M“-*é“N"-eile
)
{. Al‘B;_z 0 7
' @
duB; et b Diax+ G5(#)Cix-2015(4)8B; =0 Ti=l,2. K
_ ¢ du Bi,XX"‘Gu 1,XX '}"830(%)(3,)( -2 du(%)AbX =0
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: Qs oGl D+ B 4200 B = O e 2%
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'io Qa2 D, +0u(%)C;.x+ BuBix ~2basAix = 0 J (,4 -§0)
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g‘ Ao,xx(du":g_a)" [ alszx+azsny]+Mxx+ guNxx GJINU
‘ Ai= Bi=0

@
E Q), C[,xx - -8” (%)ZCL - -gﬂ (%I}DLX + dIIAi,XX +2le{%’)Bi,x:0 ?i:"‘)’""k
e G Dixx = G (%)l'Dz +6u) D, x +d,, B‘-,,,—Jdis(%) Bix=0 J
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=0 (B'Cy +Qaa Cixx = Qas GB) Dix + 1 Ain 42 615(38) Bia=0)
- Qs (%)B'Dz +205 () Dy (At8in) Coxl3R) =022 Cioxax
+(8-280) (3181 - (280-811) (B i - Gu e~ T2

+8 S0 A3+ 30 G ) A

+ ((14))" Bisj+ ("'723 +7i)(1'cf)’3/;",] BJ'X} =0
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}
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}i=l.2.~--2l<
= G(B) Dit 0o Dis + A (B)C:y B Biwx ~26s (E3Min=0
”’ Qs BY G -2003 () Coxx + (At Q) Dix (B~ Ass Dixer
ﬁl = (B1-285 )W) Auer - (2B0s- B ) B = B Br e~ B
g +24 fio [0-GH0* Ay + =Bt 0) ) A ) Blox
- +((itj) By + (—1+71_J+71)(z-4‘)‘ 3,‘;#,],44.,,} =0 J(A-21)
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7
3 A = Aox =0
;. Aiz Aux=8i= Bix=0 5 i=l,2. =K
E‘_i Ci= Dix=D:;=C;,x=0 s 0=1,2.---2K (4-82)
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Ao = Ao,x = 0

.......

1. AL = Ai.x=B;=Bz,x=0 ;=12 -,k
\
Di:x= CipX = 0
®
~a'3 (%)AD‘: 12 al’(‘g)Di.XX =CuiCixsx = 82”4(:;“)'
o "“(8”‘28:3)(‘%)3",“:0 »L=/,2,--",2K
a/s (%)3CL "2023 (%)C&,XX "au Dz,xxx - 914 Bi.xxx
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~(8; ‘.283)(%-),4;,“=0 J (4-83)
cCC-3
o
Ao = AO,x =0
° Ai=Aix= Bi= Bix=0 i=1l2.-- .k
Ci=Di= UuCi -Qas (%)Dlx 1 8::/4“! =0
o }i=/2, -2k
auD;,xx +azs(‘}§)Ci,x+ ‘gJIBz,xx =0 (A '84)
o
Ao = Qox= G
Aiz Aix=8i=Bix ; i=12.-.K
\ o 2 .
-Qia (—‘/g} Ci t Qaa Cioxx- Qs (“,!")Di,x + gz' Aixx =0
~Q3 (B)'Di #20us($3) Dy + (B #012) () Cinx
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= Q22Civovx = B Aveex 4+ (H31-28,) () Biw= 0
= QU3)Dit QuDiss + OB Cix + B Binx =0
QsEVC, 200,08 Ciax 4 (A +04)(B)' D .«

= AnDiny - Bu Biwx= (83-280) (E) Ao =0 (A-85)

(=12.---,2K

8 A, 28 Solution Methodology-Finite Difference Equations
Before casting the field equations into finite difference form, the
b' linearized ordinary differential equations of compatibility and equilibrium,

Eqs (73) - (77), can be written in matrix form.

5 (M K]+ (M K]+ (MY
+ M)+ M +{M4} =0 (A-86)

where

Xy =0 e A Bl B T

T

o Dt D (A-87)

’

is the column matrix of the unknown function of position x, and [Mj], i=1,
2....5 are square matrices [(6k + 1) by (6k + 1); see Eqs A-73-A-77] with

hi elements composed of known parameters (applied loads, geometry, and values

of the unknowns evaluated at the previous step, m and therefore known).

[ {MG} is a column matrix of known elements.

E‘ Next, transformation equations are introduced in order to reduce the

i order of the linearized differential equations. This step increases (doubles)
the number of equations, but it is introduced for convenience, because it is
[1 easier to deal with low order equations when employing the finite difference

scheme., These transformation equations are

T 82




AR AS S I ahdihd
=

| @

sanmenmiiiba . canme ama s e me cctuiinan el it b Anntd A R A
g M b s el g el cema st Jeesi AN - R an -astte Eadiiag B B

{1 = (X

and they are used in only in connection with the third and fourth derivatives.

y s[Rr;ns {ol:l:& o:,[sq;l A-&Z}I q. A[-s-:] econ}les { }
{ ”"j {71} {7}

—

(A -88)

where

(0] (M) 1 M.
®) - 51 (M) (M)

L (1] o] ; (o) o]

((Ms) (M) - (M)
[T] = {Gr} -
(o) (1) {0} (A -39)

The governing equations (linearized ordinary differential equations) shown

in matrix form, Eqs A-88 are next cast into finite difference form. The

usual central difference formula is employed and the equation become
()

i +(-35 [R)

{xi (4) xi -

+(-'I?[R]w . ESJ(»)
f’l} ’ * {t {} (A-90)

where j denotes the j th node of the finite difference grid. At each end

?))

(4 (RI* (51

¢

+ ETJ(J))

(x = 0 and L) one more fictitious point is used. This requires (12k + 2)
edditional equations at each end [the total number is (24k + 4)]. These
needed additional equations are the boundary conditions at each end, Egs
A-78- A-79, (whichever set applies from SS-i or CC-i) and their number is
(12k 4+ 2). The boundary conditions may also be, first, expressed in matrix

form and then cast into finite difference form.
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at either x = 0 or L

P
. S IR

(NJ{Xuod + [NJ{Xmi +[N;]{X,xj + [ Na) {X} +Ni] = 0 (4-7)

where LNj}, j =1, 2, 3, 4, are matrices [(12k + 2) by (6k + 1)] with known
element, and iNs} in a column matrix [(12k + 2) by one] with, also, known elements.

Use of the transformation equations, Eq A-87, yields

e}« Eff) - ea

where

(B5]

1

[INJINY]

(BT = [(NJIN))
and

(8G] =- {Ns} (A-93)
Note that [BS] and [BT] are square matrices [(12k + 2) by (12k + 2)]. 1In

A 72
finite difference form, Eq. A-92, becomes

L cgsy (0] HOOY . 1 caey? (007 at?
% (85] { m} +[87] {m}*z)z[BSJ {Iﬂi - {Be}  A-w)
where j in the node number at x = 0 and x = L(1 or N)

A. 2.9 End Shortening, Average Shear Strain and Total Potential

Before outlining in detail the numerical scheme of the solution methodo-
logy, it is necessary to write the expressions for the average end shortening,
average shear strain and the total potential in terms of the dependent varia-
e Ci and Di'

The average end shortening and shear strain are defined by

bles, Ai’ B
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I Ml
Ly = ’En'kT_L J’ %dx"l?

T

In terms of the variables w(x, y) and F(x, y), the above expressions

IR L
T ), J(%% + 2%y dx dy (A-95)

become:
— — ’ MR L -
O = QAn Ny - A Ny = 27RL L L [ Qu F»Y)’ t Qi Foax = Qs Foxy
180 Woe 182 Woyy + 2813 Wiy = 7 Wae (W 22W.0] X Ay (A-96)
_ _ i 2R s
nv = __aBN’“ +anyy +37ZR’!'.L L [aaF,,, ‘)‘ast,xx "assF»x)f
+ 4, W.xx T Ga2 Wiyy +2>935 Wy - 1,’-M,,(W,,+ -?W,})

- 3 Wy Wy +2W,0) ] dxdy (A-97)

Finally, 1f the expressions for w and F are substituted into Eqs. A-96 and

A-97 these equations become:

- - L 2 ” —
Oy = Qi Ny ~Us Ny~ ELL {%,_, { -8, A -A. /R + Ui N
~ Qs Nyt &) é,é’f (A+2A))4; +(8;+28) 8]}
+ 60 ds - 3 (A +2) Ao 42448 8] 4283}y A-T0)
X;V == aBN&! + ass ny +'2!_/,L {%{'QJIA: - A‘/R
8 No- Go R+ QR £ 4°0(4424)) Ay
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” k H ’ °
+(B;+28)) 8] + Bu A - 2 () (A (5+8))
- Bi (A4 Ap)+ A} B; - BiAI] olx (A-99)
Similarly, the expression for the total potential is:
2R ° o 0
Ur= 5[ [ (M€t Ny + Ny Y = Macke ~Myy e,

- 2Mu key)lkely - [ [* gw dndy - [t R

— /l d MR __ L
+ Ny U dY + [ Hy wie)| dy (A-/00)
o
where M = -~ EN__ and E is the load eccentricity meas —ed positive in
XX XX

the positive z-direction and

ul=[ Mdk s vl <[ Fdx

o

Thus, the contribution of the in-plane loads to the total potential becomes
[T Rat+ Np 3 [[ly = = [T R [ e +R, [ Selx]dly
In terms of w and F the expression for U, becomes

Ur = 4 [ ([ Foy +0u Fax 10y Fiy + 20y
=205 FoyFiy =2 Qo FounFoy YNy =3, [ ol i
+ AWy + 4 0lsy Winy 12 Oy Woy W,y + 4 0liy WogWony
+ dcay Wiy Wiy ) dXdy - Nxxfuf(an Fiyy +QnF,xx
- QisFxy)dxdy + /nyf"f(au Foxx = A3 F,xy
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+ Qs Fovy)ltdy -f"'f Fwdkdy + TRL (O Ny

+Qs3 Ny =27RL (€0 N+ gy Ny ) = 27TRL Ay Nix Niy

- Llu< E Nxx W:x)/:d)' (A-r01)

Finally, the expression for the total potential in terms of Ai’ Bi’ Ci and

Di becomes
L y 2 K ., .
Ur = TR[ [l 6 Al- AR #(R) 2 ¢ ((4+24) A
+(8;+2 B;) Bl + Q. Nxe = U nyr+2 (G N_xy"a”/v")
Gl Gl - Al + BT EF 24
+ (Bd""ZBJ’)Bd"] + an Nxx - aasnyJ - du (140")2
A1 2Kk in 4. 2 2 » 2 v
43 .L>_:_'{a,, )G+ D)) +aslccy'+ (D))
+0u(&) (ccii+D)') ~2q,, (3 )(CiC,* DD,
-20a (T (- C.D; + DiCI) -2 (2)(CD; - DIC)
! v 3 w2 : 2 ]
-7 £ {duCCAN 4800 alun(B)4; 48))

+4ds (B[4 +(8D)) ‘an(%)‘(ﬁtu/h"‘gf&)
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-4d, (%)("A:B; +Bi',Ai,) -4d.s (%)3(/7185'85 '4; )ﬁ ax
- /_L/?jot {2?.’144, + éf_-' [33'143 ‘f'?; Bj]jdx -27RL (~€4v/\7xx

.}nv ny) + 7RL (Qu /T/;x ‘20:3Nxx ny + Qs ley )

- 47[EnyR /4»' (A-102)

Before leaving this section, it is important to give the expression for
the modified potential an expression needed in the estimation of dynamic cri-
tical loads. As explained in Ref. 39 the modification is associated with the
deflectional response of the system. When an axial load is applied, an axial
motion will result (with some related transverse motion). TIf an instability
of the type described in Refs. 40-43 and 37 is to take plane, under sudden
application of the axial load, it should not be expected to occur through the
primary axial node, but through the existence of transverse deflectional nodes,
unrelated to the axial node. Because of this and since the governing equation

for dynamic buckling is (though conservation of energy)
U _ _ .
T + T=20 (A-103>

where T is the kinetic energy (unrelated to transverse deflectional modes),
then the modified potential must not contain in plane node terms, when sud-
denly applied in-plane loads, Exx and ﬁ;y’ are considered. 1In the case of
lateral pressure, the modification is different, therefore the expression,
given below for the modified total potential, applies only to in-plane loads.

This expression is obtained by excluding strictly load-dependent terms and

those terms related to F(x, y), [QD'I], which correspond to in-plane motion.
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E -— =2 2 —
U‘l'md - UT + 7[RL [Nxx (au - an/au) + N,,(Cu;
®
2 — =
* - Qi3 /Gie) +2Nxxny(a’2 Qxs /Qa2 "ars)J (A-104)
® A. 2.9 Solution Methodology - Numerical Scheme
A computer program has been written (see Appendix A for flow charts
and Program Listing) for data generation. The linearized finite difference
® equations are solved by an algorithm which is a modification of the one de-
scribed in Ref. 43. The modification, which consists of a generalization
of the algorithm of Ref. 43 is fully described in Appendix B. The solution
e procedure used for the problem, herein, is based on the algorithm described
in Appendix B.
The field equations, Eq. A-90, can be written as
. - -— - - - -~
(&){2.) +[B,]{,gkj + (A2 = (64 (A-r08)
. where K=1, 2..0000. N and
—_ 1 K ! x =9_ / Y K
(&= 5[R) - 3g(5)" ; [Bd=-3p[R)+(T]
k
e 1. el relt iz {x
Note that there are (12k + 2) elements in the {?k} vector.
e In addition, the boundary conditions, Eqs. A-94  can be written in a
similar [to Eqs A.105] form.
at x =0 (k = 1)
e
e 89




and at x = L(K = N)

(BA[EL+ (BIfE}+ (L)f2w - {BGw}

whetfe

(&1-5x(85)"; (B] = (871" [A)=3x[BS)

Ls l.N

(A-/01)

(A-108)

(A-/09)

- (= h
Note that {zo} and ‘LZN + lj denote the vectors of the unknowms at the fic-

titious points (k = 0 and k = N+ 1).

......................

g B2,
& BIA|
AR
AL

o9

i~

the following matrix representation is obtained.

Z)
Z
Z,
2,
A'l"l E.rl }:
Bi| A _ gz
Em BiNIAif gi*‘
Eﬂ%‘ém}m — 2’4-2
L= Bn— AN-! _ Zﬁ‘"
CN gn An z.:"
EN BN AN' 'MJ
90

By properly arranging Eqs. A-105, A-107 and A-108 for the entire cylinder,

[ 86,
G,
G
Gs

- P(A—no)

G'mh

G
L GB.




...........................
T e A T T T T T S e T T T e e T R S S 4

Eq. A.110 can be put in the form of Fig C.1 (Appendix C) and it will be a
special case of this form, by the following changes. First, there is no
common unknown vector Z, and thus all the {di} vectors are zero (tridiagonal

matrix). Next,

(29k+4) by (24k+4)

(8]

(24Kk44) by One

gy
M
| )
]
—
!
v

(24k+4) by (12k+2)

* [9.] = 9 ‘ 24k +4) by One
| ie.x

e ] = [ (C)] (12k+2) by (24Kk+4)

(G = [ &= 3.4.-- -, N-I
e -

(8] = (8] §=2.3. - -~ N-I
o (4] = (A §=2.3. ", N-2
e 91
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} {J §2.3, -5 N1

(Aw) = [CAL], [0]] (12k+2) by (24K+4)
(G
[CN] = - (24k+4) by (12k +2)
_[CN]J
(B (A
(B (AJ

(24k+4) by (24k+4)

L
Qo
2
—
n

(24k+4) by o

e
Ny
E o
H
—
Ny
g

{gﬂ} = {{::; (Ak+4) by ome

Note that mo=m = 24k + 4, while m = 12k + 2 for 1 = 2, 3, 4, ...
N-1.

Note also that Eqs. A-110 represents equilibrium and compatibility equa-
tions in which displacement components (Ai.’ Bi) and stress resultant components

(C4» D) (see Eq. A-86q are the
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unknown functions, while the geometry and the loading (taken in increments)

are taken on known parameters (assigned everytime the equations are solved).

Thus, this special case of the algorithm, Eqs A-110, is employed for find-

ing pre-limit point response. When approaching the critical load, the in-
crement in the applied load parameter is kept small and the sign of the deter-
minant of the coefficients [D in Eq.(C ~ 19)] must be checked. If convergence
fails, the load level is over the limit point. But if convergence does not
fail and the sign of the determinant changes from what it was at the previous
load level, then the load level is also over the limit point. Desired accuracy

can be achieved by taking smaller and smaller increments in the load parameter.

It is also observed that by employing this procedure (special case of the al-
gorithm in which the load parameter is known), no solution can be obtained
past the limit point. Because of this, the more general algorithm, described
in Appendix B, is employed at this point of the solution procedure. The new
and more general algorithm simply changes the role of one of the displacement
terms with that of the applied load parameter. By so doing the form of the
equations changes and the matrix of the coefficients of the unknown ceases to
be tridiagonal. Depending on the position of the particular term that replaces
the load parameter [which one of the (6k + 2) terms, and at which node (x-position)]
column matrices appear all along the column corresponding to the vector {ZL}
and the new equations assume exactly the form shown on Fig. C-1, Thus, at
some level before, the limit point, the procedure is switched to the more
general algorithm (Appendix C), in which one of the displacement parameters

(AI or BI) at some specified node is taken as known (specified increments)

and the load parameter is the unknown. This solution procedure is continued

until the desired portion of the post-limit point response is obtained.
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Finally, in generating data, numerical integration is used to find the
values of the total potential, the average end shortening and the average

shear [see Eqs A-102, A-98, and A-99].

A.3.0 The u, v, w - Formulation

The geometry and sign convention for this formulation are showm on Figs
A.3 and A.4. Note that for this case the x-axis (and therefore the transverse
displacement component w) is taken as positive outward.

In this formulation two distinctly different kinematic relations (dif-
ferent shell theories) are employed. One is due to Sanders (Ref 34) and one
due to Donnell (Ref 33). 1In the case of Sanders' equations, it is assumed
that the reference surface strains are small, the rotation about the normal
is negligibly small and the rotations about in-plane axes are moderate.

One of the reasons for expressing the governing equations in terms of
u, v, and w, is that it is not possible to define a stress resultant function,
in order to satisfy the in-plane equilibrium equation identically, when using
the Sanders' kinematic relations. The case of using Donnell-type kinematic

relations is a special case of the Sanders case.

A, 3.1 Kinematic Relations
The kinematic relations derived by Sanders assume a perfect reference
surface. These kinematic relations (Ref 34) are modified to include the ef-

fect of an initial geometric imperfection wp(x,y) as shown below.

Exx = G;x + Z )Cax

Ey = 6;, +2Z ky,

&
it

Yo +2Z Ky (A-111)
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Fig. A.4 Sign Convention
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!
Uxt T Wi +Wix W

m
}.
]

* . W 4 Ly s BB -2 K (wyew]
w = UptgiaWytWyw, +3 [%‘ & (WytWy)]
)
K;y = u" + zj’x +W’X Ny + W’; w), +W»x w&’ = S’%(N.x +W,:)
o D = - Wyx i @, =-wWyt 3%
Mux = =W,xx , ) Ky’:-.w,”{-s,}#
Ky == W,y +33,‘%* (A-113)
where
o S l Jor Sendind kipemadic by
\ =
0 . Donnlls kingsuls bilime (A-114)
_A. 3.2 Stress-Strain Relations
® The constitutive equations are the same as in the w, F~formulation. Be-
cause of the different sign convention the relations between the stress and
moment resultants on one hand and the reference surface strains and changes
@ in curvature and torsions on the other, these equations are
R (A A2 A. B B Bl [ee]
NXY " 2 3 Bn Bn B[3 € xx
o

Ny| |Aa AwAs Ba B. B.| |€
o ny -A-B Zz; /433 -B-'i E” —B-Js X;;

Mxx -é-" Bn B;; :-D-H 12 13 k %

N Myy Bn Baa 833 ‘D,z (13 23 KY]

Mlyj X BB 83) é;; D.i —B.u DJ}J L,ZnyJ (A‘I/S)
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:j where the expressions for A are given by Eqs A-14 and A-15.

15° Bij and Di

3

A, 3.3 Equilibrium Equations

Following the same procudure as the one described in section A.2.3,

the equilibrium equations and associated boundary conditions are:

Equilibrium Equations

Nox + Nay.y= 0
Nux + Nyyy = 852 (¥ -(w, x4 w2)) +8,N,,$-“"—’;—“’4§)
+8, g5 4 5, Hax = 0
C Nex (Waxt W%)],x + UNiy (Woy 4 w3)],, # [ Nyy (W, + W),y
t (N (W.y twW,p)),y -~ B - B U(Ney)ox + (Ny 1))
+ Moo +2Meysy + Mypyy+ @ = O (A-116)

Boundary Conditions (at x = 0, L)

Either or
Nix = Ny Su= 0
ny+ﬂéx§|=i\7xy+%y8| su= 0

Nex (Woxt Wix )+ Nay(W,ytW,y)

- S"N'gv "' M&,x +2Mmy:§g+nmy Sw = 0

Mix = Mgy dWx =0 (A-117)
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Use of the first equilibrium equation in the third yields
L]
(N'Y +W,,) (NIY;X + Ny,,y) + Nxx ( W,xx + W,;x) + 2ny(woiy+w.:y)

1 Ny (W,yy ¢ Wyy) = -Aéa - —SRL[ U (Nxy.x +Nyy,y) +NayUy * Nyyuy)

t Maax + 2Mayxy 1 Myy,yy 'f‘g =0 (A-118)

A.3.4 Solution Methodology-Field Equations

The solution procedure for this formulation is as follows: assume a
separated solution for u, v, and w; express the known (assigned) parameters
wo(imperfection) and q(pressure) in a similar form; find expressions for
reference surface strains, changes in curvature and torsion and stress and
moment resultants; substitute these expressions into the equilibrium equations
and use the G alerkin procedure in the circumferential direction (this changes
the nonlinear partial differential equations to a set of nonlinear ordinary
differential equations); use Newton's method, applicable to differential equa-
tions, to reduce the nonlinear field equations to a sequence of linear systems;
finally cast equations into finite difference form.

All of these steps are shown herein, in detail. Then, once this step is
completed, the solution scheme of Appendix B is used to solve the final set
of equations.

The dependent wariables are the three displacement components u(x,y),

v(x,y) and w(X,y). A separated series form is assumed for each of them
Ux,y) = i%fuu("’ Coq'F + Utx) dimF)
Uy = f‘;[l};i(x}m—‘ﬁ’ + Uy 0) din )
Wy = £ (Wi C i + watnain %] (A-119)
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o Thus, the number of unknown functions of x is (2k + 2) for each variable.

The total number is (6k + 6) subject to the condition that

U = Vie = Wao = 0 (A-—/JO)
Note that the true number of unknown functions is (6k + 3).
F Similarly the expressions for w and the pressure q(x,y) are:
F w oy ﬁ[ wicaq B+ wilin ) (A-121)
Adwy)= 5_'(3:1 CNJ + 511"4""- y] (A-122)
In this case also, the condition w20 = Qy = 0 is imposed.
3 In order to express the equilibrium equations in terms of the parameters
r of Eqs 5-119 -A-122, one needs to first find the expressions for the stress
: resultants and therefore reference surface strains and changes in curvature
E and torsion.
Use of Eqs A-~-119 and A~120 in the expression for cij and n‘ij’ Eqs A-112

and A-113 yields

é Z'_[( §i Uiix + {-xl:. + 'éx“) COQ

i=0

+ (8§, Uiy 'é;,; + 'tx:i ) Sm%) (A-123)

where

L i ° i 0
_txn = A roo (Wi ,Wiy) T Aoy (Wax , W)

f;ai A;w (W;;, Wix) -+ A;w (Wz,.x SWix)

n | i :
txn =2 { At (Wex, W, w) t A:,,(w.,x, W;,x)j

"

xi = 3" { Am) (Wi, x, Wa,x) 4 /4;00( Wax, an)} (A-1234)
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€,, Z.{[( RUn + )8 "‘i;u "'{IIL]C"‘Q%’

(B U+ M) 8, 4 4y + Fyu) S
where !

G = (RV U Arsoon (W5 W) + Ay (05, 0)
4 &ﬁ’} [- /4;.@)(“""”') + A;iqw(m‘, U,))

o = = T W) + Ay (i way)

+ %'[Ais(k)(w,', v,) - /4.;'109 (w:",U,))
'é::; = :zi(%)z(/lziaaw(wu W) ¢+ Azﬁlu)(WhWI))
+ 5 (i (U0, U) + Ay (U2, 01))
__%Z (Aazao(w" V) ‘Aaimq (Wa,U))

y:i zI 71) (/413:(/:)(“/* W-HAnsw(w' Wh))
15 (Ao (0, 0,) + Al (0, U1
*%(Aaiww,m -Af.mw,,w))

o 2K -

Ky = g{((%'um‘w,x)& # gy + Hip ) Coa i

0B Ui+ Vi) §i + gy + Fgey) Sl

where

Lo Nt i
'tw = R[AJm(Wa'rth) -Achn(W"me)
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- A;‘(” (W‘?g W) ‘f A;, x (Wi..x +Wh )J

- '%l ( Aotg) (v, W;:x)-f' A‘Lw (V. W;:,‘))

't t = % [A ;zw (Wa', V\/I,Y) - A;3W (Wv.' M:X)

Xy
¢ o i .
= Anm (Wix ,W,) + An (Wz,,.,W;)J

Sirat . ;
i -kl [A3 o (Ve W) + '4;4;: (v, szx )

" Nprai i
txy,i = m"[AJ“k)(W), V\/o,x) - /434“) (Wp ’ Wg,x)

i 0 ; 0
= /41400 (Wax 'y W) + AIL,w (Wh.x ,Wa)_]

- % (A oo Vi, Wix) + A;(n)(va , Wax))
1 ; .
txyzi, '-"3%[:43‘20:) (W2, Wyx) - A;m)(wn sWix)
~ Azaom (Wi ,W,) A 3309 (Way, W)

- %[ A;(K)(U‘:Wl,x) 'f'Aziw(Ul. Wa,x)]

and
Kk

Muy = = % [Woi'xx Caqi'g + Wit xx S‘m%]

L X, . .
)(yy = R E‘[Ln(l"Mi-}s,Uu)a‘q%
+ in(inW;l ~S'wi)S;nj¥J
K . .
Ky = Eaf(-%wzi,x'*'%ui.x)m%
* (jawr"” +'.'2§é Uzi.x)-gmi'ﬁx
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(A-126)

(A -121)

(A4-128)
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Note that 61 mdﬂz are the same as before, or

i . <0
0 L >k ¢
Si= { 7& =10 L=0
L¢Kk ’
! I £>0 (A-129)
(1) - ¢ = =
The symbols A 100 d=1,2,3,4), A 33 () (j = 1,2,3,4), AU(k) @
1,2,3,4), AIJj(k) (3 =1,2,3,4) and A,y (3 = 1,2,3,4) result from the use

of trigonometric identifies, which are employed to change double to single
sums [similar to Eqs A-49 ~ A-5land symbols defined by Eqs A-52 -A~54; note
that some are common). The needed trigonometric identities and definition

of symbols are given below.

ts (6; cj 6] Gicons = ﬁ;A.‘m(b,a) caig

L30 =0

é% (6;cxj0) Qi Sinib = £ Ay, (6,09 Sinid

@ :
ﬁé[%&'njo] Qi (Xl = tz,, Am, (b,a) Sint8

10
L Kb g .
é}z‘osz;nw] a; Sinif = % Ad(k)(b:a) Coq il (A-/3o)

206,000 01005 10 = 55 Ay 6.0) Coqi

=0

x
r~

ZZEJ'QJ.OSJOJ AiSmif = g 4;:«; (6.2) Sini@

=04%0

éfh (¢ 6;5inj8) Qicos i8 = fé__:: Az (6.8) Sinif

L]

73 SN .
fi%&-@}?iﬂja]ai&niﬂ = & Azan (b.2) O i6 (4-131)
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E5.0 G,Coeje) QuiCatif = £ Az 00(8.0) Cnaif
£ £ 08 Cuj0) Qui ainif = & Arsoe (8.0) Abnif
ﬁ:{- ( 8} dinjs) Aii Cip = #Auww a) inis
%;: [éd Am,,a_]a,L A = F Auww a) cei8
ffl[J'GJCOQJBJaaLC’Qw = Z Amw(@ Q) N6
2&[.}34; Cos 46)Q1 i ainif = g A.r.nw(é a) omid

'DJO

ﬁ;tJ@waJaumw 2 Amw (4.0) 4inib

188

E-;f- (4 6; ainjo) ;i amif =5 Ay (4.0) CRIE
.,.;:fé’é Cej8) A CX LB -? A(8.2) Ci6
s ;_— (¢ -QJCQJDJ Qi Amib = =2 A.nwr) (6.a) 49

?[JIQWUJ Qilxio = f_i Amw (8.a)Amib
EZ (§*8; Amgs) Qi Amig = gi Am,,, (8,a) C6Ll

'.

where

A,iw(é.a) = %é[ Qaq +(l’7‘-fz+7;) 8] Q¢
Alw(b.a) = ;z‘gft-&w('-’!ﬁ#?-)@n;n] %

Asuu (8.a) = 3 2[6“&*( ""7;-}"’7)4!&;!10#

Aw (8.a) = ? Le"d"'( 1= 71& +%) 'ell‘J aJ-

Ao 8.8) = 3 £,064%) Bui+ (-1 3t ) 4
AJz(k) (4.a4) =% :‘;E a*ﬂ&# +("7}-4+7z)“'&’g"?'Ja
A.‘Ii300 (6 Q) = 3L F E(iﬁ)&u} + (-147-447;‘)"-1'(31!1!] ad‘
A:uw 4.a) =3 5[(&4)3% +(~1- {4 +7%) 1141 6ngr) Gy
A_n(k) (6. a) = ﬁ[ e&fd. + (/- 7 +7,) 3:1;:]& ad‘
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(A-136)




Atrey(8.0) = 'iLf"‘:-:o[ Buyj + U-Y3 +1.) B ) a;

AiswB.a) =+ £ L bui+ -1+ 7,41 Bua) 0

Atw(8.0) =3 %f&ﬁ 104 ) Bupd b O (4-137)
A f,,m (4.4a) = 3'-5':_‘:0 (Citd) Buj+ (1- 4 +4.) li-41 Brild G

A Ii-mk’ (b.a)=3 %o (- @) 8uj+ (- G+ 0) g1 Bu)d G

Ainw (4.2) = 3 F:““J') Bugt (=144 7)1i-¢1 &,—JJ’@

Azi.uw ba) =3 3’{—5,,[("'*}) Guj (- 1= Ty +h) -4l Briju) ¢ O (A-138)
AJ‘}.W(M) = }f-, @) &q +(1- z._; ) (i-g) GGy

sy B) = 4 E(-Goif bui + =03 47,)(8) Giin ]Gy

Ason @) = FETCH) B +-1+ By #h)Ed Y800

t K ysad 2
Aszrang 6.0) = éfol( 43 Gosg (=1 + 1) (140G d Gy (A-139)
In order to write the strain-displacement relations in matrix form the fol-

lowing definitions of column matrices (vectors) are needed.

€x

€Y..v . ¢ ] «

‘r(:: - %“; (({€a) +{te)+ L) corH(lE+ R+ 1)) iR

K

2Ky, (A-700)
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T
{eu} Eg" ’ eyy" anp ’ Kxn ’ kwl 2kl¥l Jé

{611} Em, em, rm; Kxxa Kyy: ZK'NJ:

T

{i':;} = Lt:o :-t;p, t’(’;’, 0,0, OJ,;

L T
{ii.\} = l.thz "é;:;.éxyz ’ 0; On OJ‘;
{t:;] txs:tal ,'éyno 0. OJ"
T

{‘t:; ® ,_‘f:,{”:.‘&;z.o,o,OJb (A=/141)

Note that t£ and 2 elements are given by Eqs A-123a A-124a &nd A-125g while

the ¢ and k,, elements are:

1] i)
°
Exn = i Usi,x s K=~ Wiixx &g

e;xa = §i Usix Koz = = Wumd;

e

-

Epn = (U +28)8; K,y = (B (inwi #8055

eﬂl ‘( 'av;d’ ‘)SL ; Ky,z:[%(in\'\hz*&v.;)]s;
K‘ﬂ = (%uai{’v;:.x)& H nyv"'['%wti"’;%lﬁu]si

= (-BU; + Via)§; 5 Mage® [RWL D Uas,  (A-182)

3.
]
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t Substitution of the expressions for reference surface strains and changes in
E curvature and torsion into the stress-strain relations, Eqs A-115, yields
| @ N
; Nxx
Ny ]
® Ny x|A B L N in
% PG RN
° Mo t (e +HE) H ) dm R
e (A-143)
2K . .
. < (10, e tn ) cu
. +H({23 {3 +H{n) ain'R ) (A-/44)
@
where
N
® Ny F o -
” A B
{ﬂ'} x 4 ”'} = {G".j
. ) (P B D
Moy | J
7’105 (A-145)
L
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(A-146)

(A-141)

(A-148)

(A-/49)

(A-150)




Note that the {‘1 i} and {32 1} vectors result from linear portion of the kine-
matic relations; the :Lti‘i,’ and ‘Ltlz‘v‘ from the coupling between the imperfection
parameter, w°, and the displacement components v and w (thus, in a sense, non-
linear relations); and the ‘Lt;"} and {t;i.} vectors from the nonlinear terms
of the kinematic relations (v and w coupling).

Substitution of all the derived expressions into the equilibrium equations,

Eqs A-116, yields in-plane equilibrium

:Z:;[( Moaix + 5 Mo+ Nuntiry + S M + Pyt B 700) Co0 12

+ (M =8 oy i + Pexiix = By + Puaie - %ﬂ;,i)myg

=0 (A-151)
£8.00F +F st 500Gk ¢ (BE5i)Ce0

{20

v £ 5 4+ 2 (BB I + FBUIEDRE =0 (45

5= F i + Nemix + Moy +2p;
5 = B i+ Wi + %ﬁvu.x - 83 M i (A-153)
£2, = S AoV Mom) = Al W 7))

+ %’-( Al oo (Wil ) + Ak m (Woex Tlaya) )

H L L .
t %ni;zi + o x %m:m.x + ‘%‘- ) .?Im;_
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2

B2 = S (Adiw W, 7y = Adson (W, 7))
+3 (Asoo (Wit , Zun) F AL (W, Zy))
L+ it B Magsicn - 58 Py

X =A% 4 Mg t St B8 My
+ %372 EA:;lu)(W’fﬂm) ’AJﬁwf)(Wuﬂﬂl)]

- % AIiw (Ui, 2lyy) - %Ai"" (Vs.7yy2)
+ B LAl Wax, 7o) + Aacey Wak, Zlen )
E2 2 - BN 4 Monin + S Mirix B8y
+ %71 ( A:imm (W2, 2lyys) - A:risw(w" Zlyy1)]
- §R‘La [A.iwo(vhﬂyxn) + Afw(U,,%,,,)]
+ % [/431 (Wa,x M) 1 A:m (Wiv, ”ﬂyz)J
5 = SR Adin (WS Aoy = Adean (W' Zom)]
$ 51T Al (Wi e )+ Ao (W  Zya))
g = (- Ao (W', i) + Agsom (W7
+ %’ [As om0 (Whix, 70 ) Alary (Wioe 7))
B = 3 {Asian(Watw’ 7m) - Astom s/ 2]
- B LA Vi 720 ) # Ad (8 2]

+ % ( A 'icw(w'il* w"; ’”,ﬂ,) + AQ& uk)( VV:,:#W&; ﬂ!;a)]
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+§:‘R-”1 [ A;'(w (w;l%”") - A;‘.(w (w'o ”y;)))

- B U hlan (Vi 7) + Ady (Vs 3]

t % [A:wo (wl;x:%k;h!)"'A;um (Wir"nl;:)J

g; = % [- A;,‘,,,(w,w,',%,;’, )+ Az Wetwd, 7))
N '%"[ A::w (U-.?lr;a)‘ + A;w (U, 74,)]
+ 3 2 [ At e (Wox+Wak , 2250 + 4 saa (Vex ¥ Wi 700, ))
+ 3—"{ ; AJ,uv(w.,ny,) + A rcm (Ws, )
-8 [ Abo (W, ) 3 ALy, (0 7)
+ 3 [ Ason (Wox . Zam) + Ascay Worr, 7)) (A-158)

Transverse equilibrium

T+ in ) + LU Ty B 4Bt o i)
+Z.leu+Z,,,)C«; +<:{.‘+7;.)Am%'1+ﬂlaw  +3,,.000 %) = 0 (A-156)

where
,Zu %xm,u +2 mml.x( ) {20 ‘k"
Toi = Manioen -2 Muprine () - (-}) P - 2t (A-157)
7,4- Mnti,x: +2 mwi.x (“A’) (-ﬂ) m”'h. hR)m'

-4 [,4.7: w (WS, Xwix) - AJquy (W2, a.x) ]

+ (% )‘( A;JIW (Wx.fnyys) "'/41‘:14“) (W:.. ”Y)")_]
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0 Atew (Wi, 2000 + Ay (WS, 720 ]
+ % (A gwo (Wax , 2i) ~A ng (Whx » Mays))
BRI A OV, Zon) = A by (W6, 73] (A-152a)
T = Mussios = 2C8) Mo = (B My - 2o
"‘(‘g)[Afrwc)( Wo', Peys,x ) = 4}3w (W.', 2y1x))
HOB) L= Arran (WS Ty = Az (WS 7,
+ Asoo (Wo s Zees) # Ay (Woum, Zens)
4 % (4 :fz(x) (Wi ) - A g.wx)( Wiy 2lxy1))
+(B) (- Agraoy (W) = Ay (W 2p03) (A-158h)
Nin ™ Poosiox +2 Wapara (29 - () w35, - %;—"J
+ %f 4§,w (Wa, Zayrx) = Aguw (Wi, Mg x))
+E)'( Afm (Wa 2y ) +A S0 (W, 2yy0))
+3 C-Al i (Vi Py <Al (0 Any]
48 (- Ay (V3. ) + A V0, 711]
+ A :' w (Wi ) + /4¢iw (Waex, Naya )
+ 221 Ao Wost . 2 = Ay gy (Wors o))

- g’ [A‘t(ﬂ ( wm J?Ixy,) +Aqi(u (u.hﬂry))J

+&) - Anw (Wi, 7%,,) -A;iguw(uh,%m)]
+ ﬁé (- Az s (Vs.7y,) 4 A.yicw('lfn”m)J (A-158¢)
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Y2 = Wosion = 2 Py (12) - (2) mtpry; - Lot
+ (7’5' ) A::La w (We 2y ) ~ A;lsw (Wi 2ey,x ) ]
+ (3= Assaco (Wa Zm) ~ Airsig (W 230
t % (- Aziw (Ui, Ny ) - Asiu)(vl Jey1x)]
+ %’{ [A izw (V1 2yy)) = /4;300 (V2,21yy,) ]
3 Ao (Wisens 7o) + Abeny Waan, 7un)
t %‘2"! [Ajztk) (Way, 2rys) « A Jis(x)(“"'h”xw)]
+ & 1= Ao (Ui, Zgn) - Ay (010, 700)
+(%)1[’ /4;2209(“’“7702) - Aguw(wz,%yy:ﬂ
+ 3L~ Az (Ui, Py) + Assanr (U1, 7)) (A 580
7:;. = TZ‘ [Aai'l(zk)(w"' Poytx) - /4.:40» (W?, Rayax)
+24 guw(Wz?x ,%Xl;'l) -2 /4.;41219 (W, 77"‘73 )]
+ (‘ﬁ)t[ A;JIN(W; ) 72;}:) + A:izacz&)(w'o'”/;l )
- '4:;'212&) (W, Ty ) - 4;«,,)(“/; .7?;1):{
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+ A;uk) (Wi > Xl ) + A;wo (Wa,xx, 72;:) (A-159d)

According to Eqs A-119 subject to the constraint of Eq A-120, there
exist 6k + 3 unknown functions of position . These are the displacement co-
efficients uli(x), vli(x), wli(x) for 1 = 0,1,2...k, and u21(x), v21(x),
w21(x\ for 1 = 1,2,3...k. Note that if one can solve for the displacement
components the response of the system is fully characterized (deformation

approach),

Next, the Galerkin procedure is employed in the circumferential direction.
The vanishing of the Galerkin integrals leads to (6k + 3) nonlinear algebraic

equations in the (6k + 3) unknowns. These equations are:

115




____________________________________

R L 3 in ”n . n
%nn" +-"g ﬂxyzi + %xﬂi.x + %xyzi,“k‘ - %xxu‘,x - %ﬂxy:i
' 2 3 ? 3
gci. +§n at §m + g/m + Sun =0
' 2 3 2 3
)Zi,x "'Zu, *Zu + in T 7/;’:; 'gu‘,

1 i:=012 -,k

_in ) L ; ¢ i 7 ”

%mi.x !'ﬁ' ”xm + ﬁx"i.x = %‘”mi = %’- 74 Xy = 7?:«:1.!
! 2 3 2 3

gzi + gzu. +§m + g‘i" S = 0

7 ' 2 3 2 3

:.: *Zu + Zu. tla ? Zin * Zl’l = —235,

f"l L= 1,2, -+ . Kk (A-/60)

Next, the generalized Newton's method (Ref. 38) is used to reduce the
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nonlinear field equations to a sequence of linear systems. This procedure
is similar as the one in section II.2. Because the final set of equationms,
Eqs A-160, contains n's, §'s and 7's, and because these are in turn functions
of other parameters,then Bq A-72 will be applied to all of the elements, need-
ed in deriving the iteration equations. In so doing, only the nonlinear terms

need be considered. Thus,
(tx’:i)w = A;;uo (Wix . Wye') + A:ar) (Wexs V::M)
—%{A:im(“h:. W) + A:a., (W:x,w,:)} (A-161)
(fx’;j)" = Ailk) (W,: » “/,:ﬂ) + A}i.(k) (Way » W:;')

-3 Av Wk Woane )+ Aseo (W, Wi ) (A-162)
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where m is the number of the iteration step.
Substitution of Eqs A-161- A-178into Eqs A-149 and A-150 one may obtain
the iteration equations for the nonlinear part of the stress and moment re-
ran = i
sultant vectors Kln?fi and‘ing}i>. In so doing, new symbols are introduced
and defined. The part of the t's or n"'s that is linearized (linear) with
™l ml mtl
respect to the iteration parameters (containing u s V &w ) is denoted
{ aL
by superscript L next to n, {.e.it L‘.
< ¥
m m

value of the parameters at the previous step (um, v, w), is denoted by

The part that only depends on the

-
superscript n next to n, 1i.e. 1t;n .
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In a very similar manner, the nonlinear terms of the equilibrium equations are
also linearized by Newton's method:
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After linearization the equilibrium equations, Eqs A-160, can be written in
matrix form

[Cal{ P + LCI{M0] +TCI HUEN P} 4 TE D)
+ CE) [ 41 B/z]{ ﬁ,f',i} +(B.) {ni’;} +[8m]{72,"} +(C.] { ﬂm}
+CC{ma + L)+ (E){nia) + B[+ (2
+CB ) + (80 + 8 + LA (X CANX
+(Au) (X} = {g} (A-193)

where

mtl
} L ﬁ"Xli ’ %Wli, %xyli, Mooni, Mo, Maysi
m
{ﬂ’} Ny L %xei, ﬁyyzi,nxyzt p%xni ’ %vyzi. Wlxyzu
T
{X}:Lu‘. i V\/i u U‘-V\/‘_:"H

ml

72'} (_72)()([; 72}’)01, 7?)0'/4. MXIL %nm MYYILJ

T m
[3

”1} = Lﬂxm ”yyz 7?xyz W?xxz 7”,,,, mm i

ng Mt

{
{
{ M}Y L%;;L" ?Zyy, ??X)H. %ﬂl; ”Ivyl m:ryu,_l
("

NI. T neL
{3 7".
} WXXJ %yyzi » 7?")’31 N Mxx)i » mryzi ) mmx_,

In Eqs A-145 A-150 {e}, {tl} and {t"} can be written as:

............

(6= (k0 {X + (k1) {3}
(€} = Lk2){ X4+ (k2 {X]
AR OIPI) B RICIR])
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t;} (k2;){X.} + (k2 ){K}
1= (KIN{X+ (k2 {XS
t.ﬂx} [K’ax { xx} ‘l’[KI,, {Xx +[kl.x {f
{td= (K2 X LRI (X + (K20 (R)

(g (Klsue X o # R L)X K1) X, JHKL]
[tod= (k2] (X, }+£kz.u1{X.x.} (k2] (X} tKIYX)  (A-190)

Substitute of Eqs A-145-A-150, and A-194 into Eq A-193 yields a matrix equation
which only contain the vector of unknown, {x}

(R8I {Xoud + (R3NX o} + (R2IX.f +T RIT{X J + RO} {X}= {9 a-19)

As in the case of W-F formulation transformation equation are introduced in
order to reduce the order of the linear equations.

1} = {Xa)

By this transformation, Eq A-195 can be written in the féllowing form:

ERJ[);’:}*[ 1y }+[TJU {6} (A-196)

A.3.5 Boundary Condition

Boundary condition Atll7 can be presenéed in the following form

Either Oor

Ny = Ny . U = Conef.

Nxy = Nixy U = Conel.

Q = @ +Muy W=0

M = Mxe W.x =0 (A-1170)
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Q = Nu(w,ﬁw,;)-}ny(W,y’rM;)-—/%lU&

+ Ma,x RMy.y (A-191)
Obviously, the boundary condition can be written in matrix form (at x = 0, L)
[Ny | (U
Nay U
(QI) fgrt T At = {8
M) | W] (A-198)

where the form of [{U] and [N] depends on the type of boundary conditions.

The stress and moment results, and the displacements are represented in series

form.
F (R Cot L + Ny MR £ UiCotR + Uoi Ain )
[ 57y Corlg 17 i R £ UG + U, 4in
Q1) + [Al]
ﬁ(QCoQ‘"HQ /.lm"‘y] L%[w,‘wq +MLM—‘—;'{]
iny Ry
z (L Co0 S+ Mow 'R F (Wit R P W'z

i=o

= {Bg—} (A-199)
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After applying the Galerkin Procedure, the boundary conditions can be written

as:
"_ | 1 r h
7lxx.‘, uu
_—1
Nxyi 'Uci,
—
Qi. Wli_
— |
Mu; Wii.x
) 9§ } + E)\ 3 = (@
[ ] %xxi. ] uzl { }
— %2
Ny: Vi
= =0, . R
Qaz Wa ¢
—1
L %ﬂ;‘ | WZLXJ (A'ZOO)
where
—1 L n
Nxi = %xxu + Nni + 2w
— L n
72::(1 T Noai T 7Zx¥2i + nxxzi.
—
%xyi, = ﬂxyli + %:yli L 77:;;1 +%I’ ( Mayii + 7/[,;“1"' ?ﬂx’;,i)
— 42 L .
%xyi = %xyzi. + ?nya.‘, + %x;:vi +—%(?ﬂ,’u+ Pleyai +7ﬂx;41)

= ¥

Qi = M + 22 Ty + Atew (Wixtwi, ) F Augeo (et Wi, 7o)

+ 7; (A;zwo (Wa*Wf»ﬁA;f)“A.yia(zx)(w-f“"ofﬁ:yﬂ

~ & (Al V0 Tt + Ao (V2. 7))
O = Mhox 2B Ty + Al Wac W )+ Ao (Wot Wl 7t )

+ %[ A.rizm)(“’a*’w;),%;y) -A;, (W, WS 7))

- Aran i, Tiy) + Aseo (V.70
/i-fx'xi = Mo + Mo %x’:/i,
771&1 = Wi * Vo + mx:zai (A-201)
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Using the similar procedure as used in sectionlI, Eqs A-200 can be linearized

and written in matrix form:

(RN + CAI X7 2 (D (ING} + NG +INGT+ NS 1) (X
= {.Q}

" LQ)(INS N ENSD) + O X = e} - [0 {NG (4202

where PETEN

o

Xy

¢z
%
\ I
Substituting of Eqs A-145-A-150, A-194 into Eqs A-202 yields the following form

[DB]{{I)S} + [Dc]{ ;)'2] {M—mjmj

0

- { BG} (A-203)
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A.3.6 Solution Methodology - Finite Difference Equations

The linearized iteration equations (equilibrium) assume the form

(X} (Xq) | } ]
(R] ) +0S) etk } 4 (A-194)

Note that the true number of unknown is (6k + 3). These are Uigs Vi Vi
(1 =1,2...k) and uy;, vy, W, (1 =1,2...k) [see Eqs (119)]. For conveni-

ence though the number of unknown is treated as (6k + 6) with u & w

20" V20

existing for the count, but subject to the constraint Usg = Voo = Yoo = 0.

Thus with the transformation, tn} = ix’xxj’ the number of unknowns is (12k + 12),

20

The equilibrium equation, Eqs A-196, are next cast into finite difference
form, by employing the usual central -difference formula. Thus at each node

point j, the equations become (in matrix form)

. ay (XN @ oy [
(R4 %) {m} + (- sh[R1+T) ){ }
g (é-1) i)
+(7£:=[R]m sw(s17) {g} = {G}( (A-204)

At each end one fictitious point is used. This requires (12k + 12)
additional equations at each end (j = 1 and N; the fictitious points are de-
noted by j = 0O and j = N+ 1). These additional equations come from the

boundary conditions.
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Paradoxically, the number of boundary equations is (8k + 8) at each
end. Note that these are either natural (8k + 8 through the Galerkin (pro-
cedure) or kinematic (8k + 8, u

= 0, =v,, =0, w,, =w,, =0&

11 - Y2 Vig T V21 TV Vg T Yy

Wiy T Wy oS 0 for 1 = 0,1,2...k). This necessitates the requirement of
’x ’x

(4k + 4) additional conditions at each boundary.

The additional boundary terms are given below and they only involve
uli, s UZi’xx’ vli, s Vo1 at each boundary. Their existence deriva-
tives with respect to x of the displacement components u and v in the equi-
librium equations. On the other hand, regardless of whether or not the

boundary conditions are natural or kinematic, they do not contain second de-

rivatives of u and v with respect to x.

oo

)7 uu,xx( NH) }? uu..xx(’z )+ ’73 u‘w(d N) =0

Uhi xx c,,‘,,) ’HZ UL;XX(G_N) )-7.3 Vi (?z =0

=Y

)7, uuxx<d 2 ) 7 uu,xx(;,:) T‘Lu,h,‘x(*_:_):o

4 =Nt

)ZUzz,xx(d ~+:) }? USzxx( )"'73 Vs ( __‘j,)= 0 (A-208)
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Where the constant ﬁ&, ﬁé and ﬁs are assigned to achieve certain goals
(in generating some results ﬁi = 1,“2 = -2 and ﬁs = 1 are used, which implies
that a derivative at a boundary is obtained in a forward manner).

Note that Eqs A-205 are the additional (4k + 4) boundary terms and
that these equations are incorporated in the matrix form shown in Egqs A-203.
This means that [DB] and [DC] are square matrices, [(12k + 12) by (12k + 12)].

These boundary equations, Eqs 5-203, are also cast into finite difference form.
dtl & . ¢! .
‘ e {X4 4 :iﬁ’f} _ d .
57 [DB] {M}J + [ DC] ]{ (08 f [(BCvj (A-206)

where j = 1 or N.

A.3.7 Total Potential & End Shortenigg

The expression for the total potential for a supported (ss~-i, cc~i)

cylindrical shell is given by

] MRt o 0 °
Ur = EL Jo [ Nu€xx + Nyy €y t Nay oy
T Mux Kx T My Ky +2 Mxy Hxy] dXdy
410 Nt = Ny v+ Flawin3 [ dly

- ﬁlmjoLZWdXdy (A'2°7)

or
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Ur= 3 Taes € + on g+ Py Yoy + Mo Wi
4 Myye Hyye 42 Meyo K yyo +5'§ ( Zxi Exi + Py Ewi
+ Pugi Yoyi, + 7logi Exxi, + Pyg; Eyvi + Vlegi Yge
+ Mas Joi + 777»’0: Ky, + 2%}1 kx;'«a + W?xzn‘ o
+ Myyi Kyi + 2 My oy )] X

+27R (= TX, U+ T U’ - 70y U4 Pge U

£ 0 °
st W o ma W) (4-208)

‘_ where
'

p Vi \ = ), + i+ i,
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P 3 n
foif = {ﬁa}*’{‘f} +{,
1 2 21 2L
Kxx&
3
Kyyi
b 3
\2klyi,
u 12 mu' ult vu' uare the values at x = £ nlo nlo mlo
and Nyyqs Myyg? Myxg? g 2 Vg 0 ¥y » Pyxi? Maoed? Mxd?
ui? vlg , wio are the values at x = 0

= {éli} + {t::} + {t:’oj
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APPENDIX B

COMPUTER PROGRAM

B.1 w, FP-Formulation

B.2 u, v, w-Formulation
Flow charts and program listing, for both formulatioms,

will be made available upon request. (Write to Professor

G. J. Simitses).
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APPENDIX C

MODIFICATION AND GENERALIZATION
OF POTTER'S METHOD.

The behavior of several structural configurations is often fully described
by a set of linear algebraic equations., In general, when these linear equa-
tions are put in matrix form, they can be partitioned as shown in Fig. B-1.

The blank spaces in the coefficient matrix are zeroes and [Ci]’ [Bi] and

[Ai] are matrices of orders miby me g My by m, and m, by m respectively

i+1

Z.is the vector of unknowns, each of order m, by one and there are N such vec-

i i

tors. Let ZL be the common unknown vector. Moreover, 84 is also a vector of

order m, by one and di is a vector or order m, by one, which includes the co-

i
efficients of the common unknown.

Note that the presence of vectors di make the whole coefficient matrix
nonbanding and irregular. If, on the other hand, the di-vectors do not exist
then the coefficient matrix is identical to that of Ref ¢-1. 1In this case,
the matrix is a banded tridiagonal matrix with zeroes everywhere and with,
at most, three submatrices banded along the diagonal as shown on Fig. C-l.

Therefore, the present case is a bit more general than that of Ref c-1. The

solution procedure, though, is basically the same on that of Ref. c-1.

C.1 Description of the Algorithm

The explicit form of the system of linear equations of Fig. C.1 is given

by

(832) +A)z) + {4} 2.0 = (9]
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[CL]{ZH} + [B;]{Za} + ( AJ{Z&*-} 1 M ZL(J)=[%§

with (=2.3 ----- YN-1

cedfed +eeafz) +1aafed - {8

with t=L-].L,L+]

[CN][ZN-l} t [BN] {Zﬂ} + {d"} Z,(§)= {?u} (c-1)

Note that ZL(j) is one element of the common unknown vector zL (see Fig C.1).
A short description of the solution procedure is next outlined.
By using Gaussian elimination for the first (L-2) matrix equations, one

may find the equivalent set of equations, which is

{Zi} t [PL]{ZL,j t {EJ Z.(¢) = {Xi}

izl,2, ", L=2 (c-2)

where

(p) = [BI'(A) 5 {E}= [B]{d]
{1} = (8 {8 .

and

(P)=((8I-(CICP.)] [A)
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(£] = (Ba-CCIP.)) [(d} - ()]
(] = (8 - (e )] 84 - ceafnd)

ﬁ i—=2,30 b JL-Z
Note that the order of the various matrices is as follows:

[Ci] M; ‘8)’ i
(8J M éa- n:
[AJ n: 8} %ul

[Pa.] ’Zi g& miﬂ

{z;}, {g,], {a,}, {X;} and {E,} ave allm by1

Next, for 1 = L-1, L, and L+l the equivalent equations are:

{Z,’_..} + [Pi-l] {Z;} = {Xi-o}
S L=l=1, 0,141
where, for { = L-1

(P) = (B -tcatra] [ag- (€A L Eod)

() = (8- e PL) (184 - (€. {x})
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b ¢ —o

[Ei-,] = [ 0 [Eu} O] (C-7)

r— 7
Note that LEi-l-E is an m_q by m .1 matrix (defined, as shown, for convenience).

and for i =L, L+ 1

(P.]) =[(8]-(C) sz-J]-' (A:)

{X'LK = [[Bi.] - [C) [Pt--]]..({a} - [CJ{Xi~} ) (Cc-8)

<

Finally, for i = L+ 2, L + 3, ....N, before writing the equivalent

N
equations, “-di); 1s eliminated from each matrix equation. The elimination
is accomplished by multiplying JLd’} with the appropriate terms of matrix

A
i_PL » This leads to a matrix with only one nonzero column (vector), as shown

below

r dit) P.(L) )
di)P.(t.2)
[(d}etpa] - | O :

L ldimypa.m.
l"_!'—_—"'

—

(c-9)
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Note that the symbol @ is introduced to define the operation that leads to
the matrix of Eq (C-9).

Similarly, the symbol ® is introduced to define an operation that leads

to a column matrix.

! VL U) Ve (1)
" VI(z) Vz(z)

URUEE .

‘\ V, (ﬂ,)\/z (1&)} (C-10

With these definitions one may now write the equivalent equations for

i =1+2, 143, ....N-1. These are

(2] + (Pafid - 4

where
(] = ((8J- (&ICR.IT TAD (1)
=
{Xa} = [fBﬂ - [C](R.]] ({3-,} -(C,) {X;.,} ) (C-73)
E;. with
E

(G = [C) -0 {d)e (PRI - (P) (C-n)
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and

. (81 =8 - {d} o ({ud - (PI X, + (PI (Rl

= [PL] [PLN][Pm] {Xw} teeee (")i-“fPL] [P“][Xu}) (C-15)

Finally, for 1 = N
(24 = {x4} (c-/6)

where an is given by Eq (C-13) with i=N. The recurr-nce formulae for back-

ward substitution, in order to calculate zy ), Zy ,..-- Z,, and Z, are
. ERERER!

{2 = (X} - (PI{Zud ; i=N-1.N-2, - 1=
. (2} = 6} - (R, - (6] 2u0) szt 20 (c-ry

G2 Determininant Calculation

In each step of the inversion process, one must calculate the corresponding

b determinant e namely

£, = d‘é [BJ

@, = det[(Bi)-(CI(P.)]; is2.3, - 142

Q= At ((B:)-(C)P.]) ;i=t42.43, N (C-18)
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Thus the determinant, D, of the entire coefficient matrix of the system can

easily be computed by

N
D= T e.'_ (C-17)

i=!

Reference

C.1 Tene y. Epstein M., and Sheinman I. "A generalization of potters method"
Computer & Structures vol. 4 pp. 1099-1103 1974,
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Appendix p

INSTABILITY OF LAMINATED CYLINDERS IN TORSION

by

D. Shawt and G. J. Simitsest?
School of Engineering Science and Mechanics
Georgia Institute of Technology, Atlanta, Georgia

Introduction

A Galerkin-type solution, for the buckling analysis of a perfect
geometry, laminated, circular, cylindrical thin shell subjected to pure
torsion, 1is presented. The torsion is applied through the reference
surface, which is the midsurface of the laminate and the boundaries
are classical simple supports (SS-3). The analysis is based on Donnell-
type nonlinear kinematic relations and linearly elastic material behavior.
It is assumed that a primary state exists and that it is axisymmetric.
This primary state can be obtained by solving the field equations. Through
perturbation of the governing field equation a set of (linearized buckling
equations 1is obtained, along with the related boundary conditions. A
Galerkin procedure is employed for solving the buckling equations. Thus,
the problem is reduced to an eigen-boundary-value problem. Critical
torsioual loads are obtained for several Boron/Epoxy configurations of
symmetric, antisymmetric and asymmetric stacking. Tn addition, approxi-

mate buckling modes are established for both positive and negative torsion.

tGraduate Research Assistant
ttProfessor
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Fig.D.1 Geometry and Sign Convention
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Coverning Equations and Solution Procedure

The geometry and sign convention are shown on Fig. 1. The torsion
is positive if applied clockwise at the right end (x = L) and counter-
clockwise at the left end (x = 0). The governing equations for a general
laminated circular cylindrical shell, with or without orthogonal stiffen-
ers, without geometric imperfections, and subjected to a pure torsion, con-
sist of two coupled partial nonlinear differential equations in the
transverse displacement component w(x,y) and an Airy stress (resultant)
function, F(x,y). One of the equations characterizes transverse equilibrium
and the other in-plane compatibility. These equations are taken from .11
by setting ﬁxx =q = wp(x,y) = 0, where ixx denotes the uniform axial
compression, q lateral pressure and wo(x,y) an initial geometric imperfec-
tion. The two equations are
Equilibrium:

+ 2

b ’ b -
11F yyxx+ 21F’xxxx b31F’xxxy+ dllw’xxxx+ d12w’xxzz d13w’xxxy

+ 2b + 2d31w 2

13 ’xyyy+ 2b23F’xxyy+ 2 b33F’xxyy ’xxxy+ Cl32“":vcyyy+ 4 d33“":myy

by oFs oy P22F ey P3aFryyyt 921 Yigeyyt 922 Woyyyyt 2923 Vpn

+ F, W, =0 £ 1)

2F_w, +
Xy xy XX yy

) =
R Froet Fryg¥om® 2Ny ¥on

Compatibility:

811  yyyyt 2125 myy” 2135 xyyyt P11 xxyyt P12 yyyyt 2P13V xyyy

2

+ °12F’xxyy+ 822F’xxxx- a23F’xxxy+ b21w’xxxk+ b22w‘xxyi+ b23w’xxxy

B .13F’xyyy' a23F’xxxy+ .33Fxxyy- b31w’xxxy- b32w’xyyy- 2b33"’xxyy =

. XX + w, W, - W w, (D-2)
R xy ’'xy ’xx yy
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Cagyd = Cag 370 5 [v 0 = a0 05,

la,,) = [3,,] [b,,] - [p,,] (>-3)

and [Aij]' [Bij] and [Dij] are the extensional, coupling and flexural
stiffnesses appearing in the usual lamination theory.
The expressions for the simply supported boundary conditions (SS - 3)
are given below in terms of w and F (at x = 0, L).
w=20 H F’yy =0 ; !

+ 2d w,xy - b31F’xy = - b31ny s

D1 Frax 911 Yrxx 13

b,.w,  +2b (D-4)

829F x” 223F sy ¥ P21Wr 23y = 7 823Ny -

where ﬁ;y is the applied torsional stress resultant. For more details see
[c.1].

It is assumed that, under the action of pure torsion, a primary state
exists, which is axisymmetric (all three reference surface displacment
components, u, v and w, are independent of the circumferential coordinate y).
Note that for symmetric corstruction (regular angle-ply or cross-ply with
odd number of plies, for example) a membrane state exists and, therefore,
the above is not an assumption. How reasonable this assumption is depends
on the nature and magnitude of the coupling stiffnesses [Bij]' Primary
state quantities are denoted by tilda. wWith this assumption, the field

equation becomes

£ . % = "5
b F oo * 911% so0x t F,xx/R 0 ®-5)
8,,F, + b21"’xxxx + w,xx/R =0 ( B6)
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Moreover, the expression for the reference surface hoop strain C;

is given by
' ~
[ 4 = -
vy w/R
S - PS 3
= 8yoFix t 823 Nyy ¥ By Veun S (D-7)

These three equations, Eqs. p-5, D-5 and p-7, are employed to
eliminate F and thus there is only a single field equation. This
resulting equation is:

2

b b » a
21) ~ 21 ~ w 23 =
(d -— w, + 2 v, - = N (D-8)
11 a,, XXXX a22R xx a22R2 322R xy

The general solutions for w and consequently [ from Eq. D-7]) for F’xx

become
A L
¥ =B, sirh A (x - '5‘) sin A, (x - 2)
. L - L, _ -9)
+ B, cosh kl(x 2\ cos lz(x 2) R a,, ny (p
A -1 2 2
Fox ™ 2, (BB Ay = A + 2 byBAgh, +
B, L L
+ 1{) cosh ll(x - 5) cos kz(x - E)
1 2 .2
" g (BB (] = 23) = 2By, Bohg, 4
22
+-l-3-1-) fnh A (x - 2) sin A (x - &) (p-10)
R) sinh A (x - 3) sin A, 2
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.41 2 221 _ .1 23 21 “h
N {2 (a R ‘a22 "11)] 7Gx zzn)‘du 2, )
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b b X
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The crnsteants Bl and B, can be obtained by making use of the

2
boundary conditions, Eqs. p_ 4,

Next, the buckling equations are obtained through a perturbation
of the nonlinear governing equations. The dependent variables, w and F,
are replaced by the sum of the primary state parameters, ; and %, and
small additional quantities, w1 and Fl, necessary to represent the buckled
state. Moreover, the related boundary conditions for the buckling equations

are also obtained in the same manner. Note that since the additional

quantities can be made small as one wishes, only the linear terms in

wl and Fl are retained.

The buckling equations and related boundary conditions are:

1 1 1 1
D o1F st (2P237 P3Pt Py 233t Do p)F s gyt (2P137 0300 sy
4+ b Fl wl (2d +2d )wl 4+ (d,+ 4d, .+ d )wl
12 ’yyyy 11 » ook 137 T'xxxy 12 33" 7217 TPxxyy
F1
1 1 ‘XX |, A 1
+ (2 d32+2 d23) w’xyyy+ d22w’yyyy+ r -t F’xx w’yy
. 1 N 1 = '12
+ W, F,yy + 2 ny Vay 0 (p-12)
1 1 1 1 1
‘22F’x o 2323 xxXy + (zali+‘33)F’xxyy' 2a13 xyyj+‘11F’yyyy
+b 1 + (2b,.-b )w1 + (byy~ 2b__+ Db )wl
2% 23 3177 xxxy 11 337 7227 T’xxyy
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1
1 1 w’xx » 1 _ (p-13
+ (2 b13 b32)w’xyyy+ blzw’yyyy+ Rt Yoy w,yy =0 (D-13)
_ . 1 1 1 1 _ .
at W= 05 by Fs et PapFoxyt 911%o st 2d13¥yy = 0
x = 0,L
, gl 1 1 1 ,
l?’yy bo8F it 23F’ + byt 2b23W’xy =0. ©-14)

The Galerkin procedure is employed for both equations. The following
approximate series 18 used for generating the Galerkin integrals. Note

that the boundary conditions are satisfied by each term in the series.

M
- ny n [_L_ oI gi+22ﬂx:]
nZ-"l z (Azmc:osR + Binsin-Rl) T sin T (1+2)TT si
N
ny ny, [ L inx 1+2 X o
zl(cm"“n + Dy singh) | 3% siop- - (i+2)11 sl (*15)

Substitution of the above expressions, Eqs. p,.15, into the buckling

equations results into a set of systems of linear homogeneous algebraic

equations in A n’ Bi ’ C and D, for each n (decoupled with respect to n).

in
Assuming that the lowest eigenvalue corresponds to the critical load,

nyct’ a computer program has been written to this effect. The Georgia
Tech high speed digital computer CDC - CYBER - 170/760 is used for
generating data. Note that a minimization with respect to n is per-
formed in order to find the lowest eigenvalue.

Numerical Results and Conclusions

The geometries considered in the investigation represent variations
of the one report in p,2. Each lamina is orthotropic (Boron/Epoxy;

AVCO 5505) with the following properties:
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Eyy = 2.0690 x 10% kv/m? (30 x 10%8i.) ; @ = 0.21 ;

Ey, = 0.1862 x 10% kN/m? (2.7 x 10%psi.); R = 190.5 em(7.5in.);

G12 = (0.04482 x 108 kN/m2 (0.65 x 106 psi) ; L= 381 cm (15 in.);

h , = 0.013462 cm. (0.0053 in.) (D.16)
ply

(hply = hk - hk-l for k = 1,2,3,4 ; four plies)

Five different stacking combinations of the four-ply laminate

I

comprise the various geometries, I - i, 1 = 1,2, == 5. These are

I -1 : 45°/-45%/-45°/45°

I -2 : 45%°/-45°/45°%/-45°

I -3 : «45°/45°/-45°/45° ®-17)
I -4 : 90°/60°/30°/0°

1-5 : 0°/30°/60°/90°

where the first number denotes the orientation of the fibers of the
outermost ply with respect to x, and the last of the innermost. A pure
torsion is applied through the midsurface of the four-ply laminate.
Some of the generated results are shown on Table D.l.For each
geometry, the critical torsion (for both positive and negative
application; clockwise and counterclockwise at the end x = L), the
minimizing value of n (full number of circumferential waves), and the

values of the coefficients A n and Bin (normalized with respect to BZn)

i

are shown. Note that the Ain and Bin

Eqs. D.35 yields the buckling mode. It was concluded that M = 5 suffices

when substituted into the first of

for determining critical loads.
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Note that Geometry I - 1 is symmetric (with respect to the
midsurface), Geometries I-2 and 1-3 antisymmetric, and Geometries I-4
and I-5 asymmetric. For the symmetric geometry (I-1), the positive
direction critical torsion is 6987 N/m (39.9 1bs./in.), while the
negative critical torsion is 13,220 N/m (75.5 1lbs./in.). The
respective reported D-2 experimental values are 4640 N/m (26.5 1lbs./in.)
for the positive direction and 11,508 N/m ﬁ65.72 lbs./in.) for the
negative. This suggest that the geometric imperfection in the tested
cylinder D-2 {s such that the configuration is more sensitive to it, when
loaded in the positive direction, than in the negative (the ratio of the
experimental to theoretical value is 0.664 for the former and 0.87 for
the latter). The difference in response is understandable, because of
the anisotropy. The antisymmetric geometries, I-2 and I-3, yield the
same response when loaded opposite to each other. Note that the positive
direction critical load for I-2 is the same as the negative direction
critical load for 1-3 (the same is true for the buckling mode). Also,
observe that the two (+ direction) critical loads are very close (9534
N/m. and 9454 N/m.). This is due to the fact that the extensional, [Aij]’
and flexural, [Dij]’ stiffness have the same form as if the shell were
isotropic. The difference from isotropy is the existence of some small
(in value) terms in the coupling, [Bljj’ stiffnesses.

Finally, for the asymmetric configurations, I-4 and I-5 the response
is completely different when each geometry is loaded in the positive and
in the negative direction. Although the [Aij] and [bij] stiffnesses, for
the two configurations, are the same and only the signs are different

in the [Bij] stiffness, the geometries behave (radically) differently.

The only similarity is that the nimber of full waves, n, is approximately

the same (12 and 13).
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