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NOMENCLATURE
.j N

Aij /. Qij(k " k-I

k=l

N
1~ k 3 3
3ij La QiJ~ -Zk

k=l
N

F = Airy Stress Function

iL = Leghof Shell
L = ~Length o hl

HM H - Moment Resultants
XX' xy' yy

NxN y N = Stress Resultants

Qf Material Elastic Constant

Q = Shearing Force at Boundary

R = Radius of Shell

UT = Total Potential

Ui  = Strain Energy

U = Potential of External Forces

h,h °  = Z Coordinate of Extreme Surfaces of the Shell

q = Pressure Force in Z direction

u,v,W = Displacement Components

0  = Initial Geometric Imperfection

x,y,z = Coordinates

= 0 for Donell's Approximation

- I for Sanders' Approximation

0 0 0 Reference Surface Strain Components. X * ..... yy



NOMENCLATURE

(Continued)

x xxi Kyyq xy = Changes of Curvatures and Torsion of Reference Surface

= Imperfection Amplitude Parameter

acx' yyy = Stress Components
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Summary

An imperfect, laminated, circular, cylindrical, thin shell, simply

supported or clamped at the boundaries, and subjected to a uniform axial

compression and torsion (individually applied or in combination) is analyzed.

The analysis is based on nonlinear kinematic relations, linearly elastic

material behavior, and the usual lamination theory. The laminate consists

of orthotropic laminae, which typically characterize fiber reinforced com-

posites. Two types of formulation have been developed; one is referred

to as the W,F-formulation, based on Donnell-type of kinematic relations.

The governing equations consist of the transverse equilibriu equation and

the in-plane compatibility equation. These two equations are expressed in

terms of the transverse displacement, w, and an airy stress resultant function,

F. The other, referred to as the u, v,W-fomulation, is based on Sanders'-

type of kinematic relations. The governing equations for this case consist

of the three equilibrium equations. These three equations are expressed in

terms of two in-plane displacement components u, v, and the transverse dis-

placement component, w. Donnell's type of shell theory approximation can be

treated as a special case in the U, v Vw-formulation.

Some results are generated for certain geometries (isotropic and lami-

nated) and these serve as bench marks for the solution scheme. Results are

also generated for composite cylinders by changing several parameters. The

scope of these parametric studies is to establish the effect of (a) geometric

imperfections, (b) lamina stacking, (c) in-plane and transverse boundary con-

ditions and (d) load eccentricity on the critical conditions. Moreover, dynamic

critical loads are obtained for certain configurations under axial load (sud-

denly applied).
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CHAPTER I
INTRODUCTION

Shell-like structural configurations find wide uses in complicated

aerospace structural systems. Their use requires sophisticated analyses

in order to answer questions associated with their behavioral response

to external loads and extreme temperature environments. In the past forty

years or so, numerous investigations addresses themselves to several specific

questions of shell behavior, and the answers to these questions have tremen-

dously enhanced our understanding of their behavior. All of this was done

primarily for metallic construction of these configurations. In particular,

attention was paid to the degree of approximation involved in the use of

various kinematic relations (which led to several linear and nonlinear shell

theories), to the discrepancy between theory and experiment for the buckling

of shells (post-buckling analyses and imperfection-sensitivity studies), to

the use of stiffening for shell configurations (including eccentricity effects)

to the effect of support conditions, cutouts, foreign inclusions and others.

Moreover, as the size of shell-like structures increased and as the computa-

tional capability improved, large computer codes became available, for the

analysis of the configurations.

In the recent few years, the constant demand for lightweight efficient

structures led the structural engineer to the use of nonconventional materials,

such as fiber-reinforced composites. The correct and effective use of these

materials requires good understanding of the system response characteristics

to external causes (loads, properties of the environment, etc.). Several

research programs have been initiated in order to evaluate the physical

properties of such materials. The main emphasis in these studies is placed

on the characterization of physical properties (finding the constants in the

e
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constitutive relations and how the environment affects them). In addition,

there are several efforts related to failure criteria and failure-related

effects, such as scissoring and delamination.

In 1975, R. C. Tennyson (1) made a review of previous studies on the

buckling of laminated cylinders. According to Tennyson's (1) review, perhaps

one of the earliest stability analyses of homogeneous orthotropic cylindrical

shells was published by March et al. (2) in 1945. After that time, several

theoretical analyses limited to orthotropic shell configurations were performed

by Schnell and Bruhl (3), Thielemann et al. (4), and Hess (5). In these studies,

simply supported end conditions were partially satisfied. The general linear

theoretical solutions to anisotropic cylinders were presented by Cheng and Ho

(6) (7), Jones and Morgan (8), Jones and Hennemann (9) and Hirano (10). Several

papers were involved in the comparison of the efficiency and accuracy between

Flugge's linear shell theory, which was employed by Cheng and Ho (6) (7), and

other shell theories (such as the work done by Tasi (11), Martin and Drew (12)

whose theory was based on Donnell's equations, and the work done by Chao (13),

whose analysis was based on Timoshenko's buckling equations). Stiffened com-

posite cylinderical shells have been analyzed by Jones (14). Terebushdo (15)

and Cheng and Card (16). Theoretical analyses of the effect of initial geo-

metric imperfection based on anisotropic shell theory have been published for

the loading cases of pure torsion (17) axial compression (18) and combined

loads (19) (20). Moreover, several computer codes (21-32) (based on finite

elements and/or differences) that deal with the analysis of stiffened shell

configurations have been modified in order to account for laminated shell

construction. These codes do serve their purpose, and that is that they are

very good analytical tools. On the other hand, it is very difficult, if not

* 2
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possible, to use these codes for parametric studies or for evaluating

the applicability and limitations of various shell theories. In this

report, the following are presented:

(1) The mathematical formulation and derivation of the governing

equations, based on Donnell-type (33) nonlinear kinematic relations and
0

in terms of the transverse displacement component and an Airy stress

(resultant) function, defined in the text.

(2) The mathematical formulation and derivation of the governing

equations, based on Sanders'-type (34) nonlinear kinematic relations and

in terms of the three displacement components (small strains but moderate

rotations about in-plane axes).

(3) Solution schemes for both formulations. The solution methodology

for the first formulation includes post-limit point behavior, while the so-

lution methodology for the second formulation refers only to the pre-limit

point behavior and it is employed to estimate critical static conditions

(limit point loads). The listing of the related computer codes are presented

in the Appendices of this report.

(4) Some numerical results are generated (and presented herein) with

two objectives in mind. (a) Some serve as bench marks for the solution

schemes and (b) some limited parametric studies are performed in order to

assess effects of boundary conditions and of the lamina stAcking sequence,

for axially-loaded laminated cylindrical shells.

In closing, this report should be viewed as the first in a series of

reports dealing with the behavior of geometrically imperfect, stiffened and

laminated, thin, circular, cylindrical shells, supported in various ways

(all possible extreme cases of transverse and in-plane boundary conditions)

and subjected to static, as well as suddenly applied, destabilizing loads.

e3



CHAPTER II.

MATHEMATICAL FORMULATION AND SOLUTION
METHODOLOGY

The governing equations are derived, with all necessary steps shown in

detail, in Appendix A. The geometry is a thin, circular, geometrically im-

perfect cylindrical shell. The construction consists of an orthogonally and

eccentrically stiffened laminate (each lemina is orthotropic). Note that a

laminated geometry, an eccentrically stiffened metallic configuration and a

. metallic shell are all special cases of the construction used herein. The

stiffeners are uniform in geometry and with constant close spacing, which

allows one to employ the "smeared" technique. The boundary conditions can

*- be of any transverse and in-plane variety. This includes free, simply-sup-

ported and clamped with all possible in-plane combinations.

The loading consists of transverse (uniform lateral pressure) and eccentric

." in-plane loads, such as uniform axial compression and shear. Eccentric

means that the line of action of these loads (applied stress resultants) is

not necessarily in the plane of the reference surface.

In the derivation of the governing equations, the usual lamination theory

is employed. Moreover, thin shell theory (Kirchhoff - Love hypothese.s with

two different approximation) and lirearly elastic material behavior one assumed.

* The primary assumptions are listed in Appendix A. On the basis of these

general assumptions two sets of field equations are derived. One, referred

to as the w,F formulation, is based upon Donnell-type of kinematic

• S



relations. For this case, the governing equations consist of the transverse

equilibrium equation and the in-plane compatibility equation. These two

equations and the proper boundary conditions are expressed in terms of the

transverse displacement component, w, and an Airy stress resultant function,

F. The second, referred to as the u, v, w - formulations, is based on

Sanders' type of kinematic relations, those corresponding to small rotations

about the normal and moderate rotations about in-plane axes. The governing

equations, for this case, consist of the three equilibrium equations, expressed

in terms of the displacement components u, v, and w. Also, the proper boundary

conditions are expressed in terms of u, v, and w. In this formulation, the

Donnell approximation is a special case of the more general Sanders' kine-

matic relations.

The solution methodology is an improvement and modification of the one

* employed and described in Refs. 36 and 37. For details the reader is referred

to Appendix A. A brief description of the solution scheme is given below and

only for the wF - formulation.

1). First, a separated form (fourier series type) is assumed for the

dependent variables , w(x,y) and F(x,y). In addition the initial geometric

imperfection is also expressed in a similar form.

2). Next, these expressions are substituted into the compatibility

equations. Use of trigonometric identities and use of the orthogonality of

the trigonometric functions reduces this nonlinear partial differential

equation (compatibility) into a system of (4k + 1) nonlinear ordinary dif-

ferential equations. Furthermore, use of the Galerkin procedure in connection

with the equilibrium equation (in the circumferential direction) yields

(2k + 1) additional nonlinear ordinary differential equations in the (6k + 2)

5



"*-'" dependent (on x) functions needed to describe the response of the system.

Thus, through these steps the two nonlinear partial differential equations

are reduced to a set of nonlinear ordinary differential equations.

:: 3). The nonlinear ordinary differential equations are reduced to a

sequence of linear systems by employing the generalized Newton's method

(Ref. 38). Iteration equation are derived, through this, based on the

premise that a solution to the nonlinear set can be achieved by small cor-

rections to an approximate solution.

4). Finally, the field equations (linearized iteration equations) and

o " the corresponding boundary terms (lineP set of equation) are cast into finite

difference form by employing the usual central difference formula.

Finally, a computer program has been written (see Appendix B for Flow

Charts and Program Listings) for generation of results. The solution

algorithum is a modification of the one described in Ref. 43. This modification

is fully described in Appendix C.

0
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CHAPTR III

DESCRIPTION OF STRUCTURAL GEOMETRY

Three basic configurations are used in generating results. The consist

of a four-ply laminated cylinder, an isotropic cylinder and an orthotropic

* cylinder. All configuration are geometrically imperfect but the imperfection

in either symmetric or (virtually) axisymmetric.

The laminated geometries considered in the present study are variations

* of the one employed in (44). This reference reports experimental results for

a symmetric angle-ply laminate, subjected to uniform axial compression and

torsion. In addition some isotropic and orthotropic configuration are also used.

C Ill,1 Laminated Geometry

For the laminated geometries, five different stacking combinations of

the 4-ply laminate are used in the study.

First, the common geometric and structural features are: each lamina is

orthotropic (Boron/Epoxy; AVCO 5505)vith properties

E l, 2.o690 x /01 N/g'(.OX/o'PSi); Vi= 0.21;

Ell= 0./162 X /Ot1N/ l(2.7 X/OP-S i.); R = 19o.60t.(7..

0G,2  04482XIOk lN/ t* (O.65X/O's I); L = 3?iCMt. (/S'i1.);

y 0.01342 CI (0.003771.)

c( h,,y = ,i_, p k ./ 2 3 4 ; . 4 14d )

7



The five different stacking combinations are denoted by I - i, i =

1, 2..5, and correspond to

I:4- j. 4 S/-4S'-4s5l45 1-2, 4 '/- °/4 'l-4 " ; 13 - 12

- 4 9o / 3o/o -: o1/3o// 5o10 (2)

Where the first number denotes the orientation of the fibers of the out-

most ply with respect to x, and the last of the innermost. Geometry I-i is

a symmetric one and it corresponds to that of (44). Geometries 1-2 and 1-3

denote antisymnetric regular angle-ply laminates, while geometries 1-4 and

1-5 are completely asymmetric.

111.2 Isotropic Geometry

The isotropic cylinder has the following geometric and structural fea-

tures (aluminum alloy)

= 724X/O xNI#'(/O.sX/oIpS); 0.3

l 1/.ldcm. (Mi7); L/R =/ ; R//00 ooo (3)

111.3 orthotropic Geometry

Finally, the properties of the orthotropic configuration are (single

0° - ply shell made of the Boron/Epoxy material)

E = 2,00?XI 1kM (3oX/o' psi); X10 D:..2'

0 Eyy = O.IY62X/OkN/M 3 (C2,7X/o ' psi)

Gxy o.o44 2 X/O XN/M( 0.9sx/oP) R i9o.SCt. (7 .)

~L =381. 0On. (lVX~.) 0. 0"/; 07.O3 . (0~.212in,.) (4)

8
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111.4 Imperfection Shapes

Two Imperfection shapes are used in the study, one which is symmetric,
0

and one which is virtually axisynmetric

* Sy~it,,'".C W(x Y) &Pt jt(5)

,, ,, ,: w ( X. y : ,t( -Y C 4o .1 OkliCO- (6)
0L

where C is a measure of the imperfection amplitude. Note that for the

symmetric Imperfection, Eq. ( 5), W max /h, while for the (virtually)

axisymsetric Imperfection, Eq. (6), = w0 Ma/.h.

9



CHAPTER IV

NUMERICAL RESULTS AND DISCUSSION

Numerical results are generated, for the geometries described in the

preceeding chapter, using the W-F formulation, for two load cases: (a) uni-

form axial compression and (b) torsion. The loads are applied individually

and in combination. The results consist of finding pre- and post-limits point

behavior, as well as critical, conditions for static and dynanic (sudden-

some results) application of the loads.

The generated results serve a multitude of purpose. Some results serve

as bench marks for the solution methodology and the computer code. These

results are compared with already known and accepted numbers. Some results

correspond to parametric studies, which are performed in order to enhance our

*" understanding of the behavior of laminated shells. The effects of lamina

stacking on critical conditions is studied. Furthermore, the effect of in-

-* plane and transverse boundary conditions on critical loads is evaluated for

some geometries. Moreover, the imperfection sensitivity is fully assessed

for all geometries. Dynamic critical loads are obtained for very few geome-

*, tries. Most of the generated results are presented in tabular and graphical

form. All generated results are not presented, herein, for the sake of bre-

vity. The conclusions, though, are based on all generated data.

IV. 1.0 Axial Compression

Several studies are performed for this load case. Each one of these

, studies is described and discussed separately.

10
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IV. 1.1 Effect of Lamina Stacking (Static and Dynamic)

For this study, the load is applied through the reference surface (which

0 is the midsurface of the laminate) and the boundary conditions are SS-3

(classical simply supported). The imperfection shape is symmetric, Eq. (5 ).

Table 4-1 shows critical loads, i. (limit point loads), for each geo-!.x
metry and various values of the imperfection amplitude parameter, . It

also presents the range of n-values used in finding critical loads, and the

n-value corresponding to the critical condition. These results we also pre-

sented graphically on Fig. 4.1.

Geometry I-1 is the one reported in (44). According to this reference,

the classical (linear theory) critical load is 165 lbs./in (Nxx ) and the

experimental value is 106 lbs./in. Note from Fig. 4.1 that through extra-

polation g, at = 0 is approximately equal to 148 lbs./in., which is 107.XX

lower than the reported ["3 classical value.

The results for geometries 1-2 and 1-3 are identical. Both geometries

are antisymmetric. This is reasonable since (a) the imperfection shape

is symmetric with respect to a diametral plane and (b) the axially-loaded

cylinder does not distinguish between a positive 45 direction and a nega-

tive 450 direction.

Moreover, for virtually the entire range of g-values considered, the

1-2(3) geometry seems to be the weakest configuration, while the asymmetric

configuration corresponding to 1-5 is the strongest. The order of going

from the weakest to the strongest is 1-2(3), 1-1, 1-4 and I-5. Note that

T-5 is a geometry for which the 0 -ply is on the outside. Now since buck-

ling occurs in an inward transverse displacement mode (w is positive), then

the outside layer is in compression and it is reasonable to expect the strong-

e
est configuration to correspond to 1-5, the fibers of the outer ply are in

the longitudinal direction.

11
e



Table 4.1 CriticAl Load&

Geometry N~ n-Range ~ a
xxx

lbs/tn

Ii0.05 145.55 5-7 6

0.50 136.0 6

1.00 123.0 6

2.00 98.3 6

1-2,3 0.05 138.80 5-7 6

0.50 130.0 6

1.00 118.7 6

2.00 92.2 6

1-4 0.01 243.1 7-9 8

0.05 232.03 8

0.50 178.0 8

1.00 137.2 8

2.00 90.0 8

1-5 0.05 233.25 7-9 8

0.50 191.08

1.00 150.08

2.00 109.5 8

12
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Furthermore, the difference between 1-4 and 1-5 geometries is the order

of stacking (one is the reverse of the other). Their behavior, then, can be

compared to the behavior of orthogonally stiffened metallic shells with out-

side and inside stiffening. Geometry 1-5 is comparable to outside stiffening,

while geometry 1-4 to inside.

Figs. 4.2 and 4.3 present typical equilibrium paths for all geometries.

Fig. 4.2 corresponds to geometry I-1, while Fig. 4.3 to geometry 1-4. As

seen, the response is in terms of plots of applied load N versus average

end shortening, eAV. It includes, pre-limit point behavior, limit points

*. and post-limit point behavior, for each g-value. The entire curves corre-

spond to the same wave number, n. This n-value is the one that yields cri-

•. tical conditions (the one at the instant of buckling). If a clear picture

of post-limit point behavior is desired, one should show the plots that cor-

respond to other wave numbers. This would possibly reveal that the post-

" limit point curves cross each other, as in the case of isotropic shells (46).

Finally, for the two asymmetric configurations, 1-4 and 1-5, critical

dynamic loads are calculated of the entire g-range (see Fig. 4.4). These

* are obtained by amploying the criteria described in (46, 39), and they

correspond to lower bounds of critical conditions when the axial compression

is applied suddenly with infinite duration. According to this criterion

and methodology for estimating critical dynamic conditions, when C =

(perfect geometry) the static and dynamic critical loads are the same. As

4 the imperfection amplitude increases the dynamic loads are smaller than the

static loads. For these geometries, 1-4 and 1-5, and Og<2.0, the dynamic

. critical load, N is never smaller than 60% of the corresponding static

oload,

o4: 14
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IV. 1.2 Effect of Boundary Conditions

The effect of both transverse and in-plane boundary conditions are

assessed.

Results are also generated for the isotropic geometry (aluminum alloy)

and various in-plane boundary conditions. These serve as bench marks for

the solution scheme, and the results are presented, in part, on Table 4.2

and Fig. 4.5. For this geometry the shape of the imperfection is taken to

be axisymmetric, Eq. ( 6 ). On Table 4.2, the n-value that corresponds to

the critical load is given in brackets. Note that for small %-values (see

Fig. 4.5), the trend is exactly that suggested by Hoff and Ohira, indepen-

dently (see (47)), i.e., the weakest configuration is SS-I, the next one

SS-2, while SS-3 and SS-4 yield the classical results. Note also that,

through extrapolation, (as 0), the present results agree with those of

(47). For SS-l the ratio of critical load to classical load is 0.55, for

* SS-2 0.68, and for SS-3 and SS-4 0.98. Clearly here (isotropic case) the

geometry for boundary conditions SS-l and SS-2, is not very sensitive to

geometric imperfection, while for SS-3 (primarily) and SS-4, it is. Note

that, for small g-values, the v = const. in-plane boundary conditions (SS-3

and SS-4) yield a stronger configuration. For higher 9-values the stronger

configuration corresponds to u = const. in-plane boundary conditions (SS-2

and SS-4).
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Taule 4.2 Effect of In-Plane Boundary Condition on Critical Load
(Isotropic Geometry, Simply Supported Case).

2
Nxx. kN/m (lbslin.)• SS-1 !SS-2 SS-3 SS-4

.10 2.52 3.05 3.973 4.307
1,(14.40) (17.40) (22.69) (24.60).nffi12] _-_15 _n-3 3 _n=15

.50 2.45 2.89 2.905 4.0271(13.98) (16.50 (16.59) (23.00)

[n-12] i[n.1-i rn-13] rn-15]

1.00 2.36 2.68 1.985 3.192

(13.50) (15.30) (11.34) "(18.23)
I n=12] I n-IS] rn-131 [n-15]-

Note that, no attempt is made here to find the shape of the imperfection

that yields the lowest critical load. For the case of the laminated shell,

the imperfection amplitude parameter, , is varied from 0.05 to two. The

first number, 0.05, corresponds to a virtually perfect geometry shell, while

the second number (two) denotes an amplitude in the neighborhood of two shell

thicknesses (this is considered very large for thin construction).

In order to establish the imperfection sensitivity of the laminated shell

and the effect of boundary conditions on the limit point load (critical load),

geometry 1-5 is employed, along with a symmetric type of imperfection, Eq. (5).

As already established, geometry I-5 yields the strongest configuration for
p

SS-3, by comparison to all other geometries (I-i, i = 1, 2, 3, 4).

Table 4.3 Effect of Boundary Coditions on Critical Loads. (Laminated Geometry 1-5).
-1
N , IkU/r (lbs/in)
xx

Le " SS-1 SS-2 SS-3 SS-4 CC-I CC-2 CC-3 CC-4
n-7 n=8 n-6 n-9 n-8 n-9 n=8 n-9

0.05 27.32 32.39 40.84 46.79 41.88 46.32 41.97
(156.0 ) (185.70) (233.25) (267.26) (239.20) 264.46) (239.70)

0.50 26.76 31.78 33.43 40.15 37.10 40.75 37.22 41.44
___(152.83) (|1..51) _(190.90) (229.3) (211.86) (232.70) (212.59) (236.71)

1.00 25.84 30.04 26.27 32.92 29.53 33.62 29.51 34.63
(147.55) (171.58) (150.00) (188.00) (168.62) (192.00) (168.57) (197.80)

2.00 20.44 23.21 18.67 21.20 19.65 21.27 19.04 21.95
Q .7 .i55 (106.62) (121.10) (108.88) (121.50) (108.75) (125.37)
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Table 4.3 lists critical loads for various boundary conditions and I-values

= wmax/h; for this case). The value of n denotes the number of full waves

around the circumference at the instant of buckling. These results are shown

graphically on Figs. 4.6 and 4.7. A number of observations are made. First,

* for low C-values (see Fig 4.6) SS-3 and SS-4 yield stronger configurations

than SS-1 and SS-2. For higher values of g, SS-2 and SS-4 yield stronger

configurations than SS-1 and SS-3. Another way of stating the same thing is

• that for low g-values the v = const. in-plane boundary condition yields a

stronger configuration, while for higher C-values the u = const. in-plane

boundary condition yields higher critical loads. This conclusion is the

* same for isotropic geometries. On the other hand, for the clamped case,

CC-2 and CC-4 (u = const.) yield stronger configurations than CC-l and CC-3

for the entire g-range considered. Another observation is that for SS-1

* and SS-2 the geometry is not as sensitive to initial geometric imperfections

as it is for SS-3, SS-4, and CC-i (i = 1, 2, 3, 4) [see Figs. 4.6 and 4.7).

It is also worth mentioning that a comparison between the values at C = 0

• between SS-1 and SS-4 is reminiscent of what happens in the isotropic case

(the critical load for SS-1 is virtually half the value of that for SS-4).

IV. 1.3 Effect of In-plane Load Eccentricity

Next, the effect of load eccentricity is assessed. In all configurations

for which results are generated, the shell midsurface is taken as the reference

surface. Then it is assumed that the uniform axial compression is applied

eccentrically, which induces a bending moment at the boundary, M - E Nxx

Fsee Eqs A-35 & A-3a. Note that this load eccentricity affects only the

simply supported boundary conditions.
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Results are generated and presented for the isotropic geometry, ortho-

tropic geometry, and laminated I-1, 1-4 and 1-5 geometries, using a symmetric

imperfection shape Eq. ( 5 ), and classical simply supported boundary condi-

tions SS-3.

These results are, in part, presented on Tables 4.4-4.6.

One might expect a negative edge moment (corresponding to positive load

eccentricity) to have a stabilizing effect on an axially-load cylindrical

shell, regardless of the construction. Contrary to this, the generated re-

sults do not support the expectation. For small eccentricities (-0.5<E/h<0.5)

and isotropic geometry (see Table 4.4) the response seems to be insensitive

to the eccentric application of the load. This is true for both imperfection

shapes [axisyrmmetric and symmetric, Eq. (5) & ( 6 )1.

Table 4 4 Effect of Load Eccentricity (Isotropic & Orthotropic)

Imperf. in kN/m (lbs/in.)
Shape &I
Geometry 12.5 2.5 0.5 0 -0.5 -2.5 12.5

Axisym. 0.5 3 08 2.40 2.84 2.90 2.92 2.99 2.47
* (17:57) (13.720 (16.20) (16.59) (16.$8) (l7.C7 (14.01)Eq, (23) ..

1.0 1.98 1.99 1.98
Isotropic __(11.336) (11.342) (11.337)

Sym, Eq. 3.026 3.097 3.100-. :. SymEq. 0.5

' (22) * (17.284) (17.686) (17.704)
Isotropic _
Axsym. .0 12.41 12.39 12.36

Orthotro- 1 (70.89) (70.74) (70.57)I pic __-
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Table 4.5 Effect of Load Eccentricity (Laminated 1-1 Geometry)

-A
N r in k/n (lbs/in.)x

S/h 0.5 1/h 0 1/h -0.5

Axtaym. Sym. Axisym. SYm. Axisym. Sym.
E a_. (23) . 122) Eq. (23) Eq. (2g) ES. (23) Eq. (22)

0.5 22.21 21.75 23.58 22.85 26.52 23.35
(126.85') ,(124.2) (134.71) (130.49) (151.48) (133.34)

1.0 19.89 20.31 20.46 20.88 20.78 21.82

1 (113.61N (115.98) (116.85) (119.25) (118.7) (124.6)

2.0 13.10 I 17.07 13.12 17.21' 13.17 17.33
(74.83) I (97.46) (74.91) (98.30) (75.22) (99.00)

SS-4 boundary conditions and n - 6

Table4U'6 Effect of Load Eccentricity (Laminated 1-4 and 1-5 Geometries;
Symmetric Imperfection; SS-3 boundary conditions). z

A in kN/m (lbs/in.); U w 8]x

I - 4 geometry I - 5 geometry

I/h- - /h - /h - E/h - 0 i R/h -
0.2569 -0.2569 0.2569 1 0.2569

0.5 30.61. 30.66 1 30.67 33.00 33.44 36.16

(174.70) (175.08) i (175.18) (188.49) (191.00) (206.52)

1.0 24.07 24.02 24.08 28.76 ' 26.27 29.18
(137.45) I (137.18) (137.50) (164.27) (150.00) (166.b2)

2.0 15.78 15.76 15.75 18.90 18.67 18.90
(90.10) J (90.00) (89.93) (107.96) (106.62) .(107.85)
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For very large eccentricities (IE/hi > 12), positive eccentricity has a

stabilizing effect, while negative eccentricity has a destabilizing effect.

" In the intermediate range an irregularity is observed. It was suspected that

one possible reason for this behavior may be attributed to the Poisson effect.

As the load is applied, quasistatically, the midportion of the shell moves out-

. ward because of the Poisson effect; it reaches a maximum expansion, before the

* load reaches its critical value, and then an inward motion takes place, and

-finally at and after collapse this inward motion continues. This sequence of

events and the corresponding stabilization or destabilization of the load ec-

centricity is heavily dependent on the value of Poisson's ratio or the A1 2

*term in the extensional stiffness matrix. For instance, some data are gene-

rated, for the isotropic geometry ( - 0.5; SS-3 and axisyymmetric imperfection)

but with v = 0.1. The limit point loads, Nxx (critical load) for three values

of eccentricity (E/h) are: 3.305 kN/m (18.88 lbs/in) for E/h = + 0.5; 2.76

* kN/m (15.81 lbs/in.) for E/h = 0; and 2.745 kN/m (15.68 lbs/in) for E/h = -0.5.

This clearly shows that positive eccentricity has a stabilizing effect. This

observation is also true for the orthotropic geometry (see Table 4.4) for which

the value of A is small by comparison to A11 . On the other hand, for v = 0.3

122:..,.and the laminated geometries for which the values of A1 2 are of the same order

of magnitude as A11,lit cannot be said that positive eccentricity has a stabi-

lizing effect (see Tables 4.5 and 4.6). In reality, for these geometries no de-

finite conclusion should be drawn regarding stabilization through load eccen-

tricity (or applied edge moment). It is worth observing, though, that for all

laminated geometries (see Tables 4.5 and 4.6), whatever the effect is, it does

diminish with increasing amplitude of imperfection.
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IV. 2.0 Torsion with and without Axial Compression

For this particular load case, in addition to the axisymmetric shape for

the geometric imperfection, two additional shapes are employed in the studies.

These additional shapes correspond to approximations of the linear theory

(see Appendix D) buckling modes for positive and negative torsion for all

five geometries.

In particular, Appendix C deals with solutions to the linearized buck-

ling equations for the case of pure torsion. To this end, the Galerkin pro-

cedure is employed and the following approximation is employed for the buck-

ling modes

w' ,,{= .(AixG-W + Bist 4 [ , ,- ,,.,-.
n:, I, R t /

6**

Because of orthogonality, only one n-value is needed In Appendix D a ten-

term approximation (1=5) is obtained for all five geometries. By stu-yinF

the results, one two-term approximation for positive torsion, w (+), and one

two-term approximation for negative torsion, w0 (-), for all five geometries

are used in this study. The various coefficients are first normalized with

respect to B2n' Eq. (7 ), and then adjusted such that the maximum amplitude

is Ch.
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The generated results for this case are presented, in part, both in tabu-

lar and graphical form. The discussion, though, and the related conclusions

are based on all data.

'
First, Table 4.7 shows values of critical torsion, N , for the two asym-

y

metric imperfection shapes, Eqs. ( 8 ) and ( 9 ) (corresponding perfect geo-

metry buckling modes for positive and negative torsion) and several values of

the imperfection amplitude parameter. The torsion is applied in both directions

and the critical values are recorded. The corresponding minimizing value of n

(number of full waves) is shown in parenthesis.

Note that the linear theory, perfect geometry critical values (from Ap-

pendix D) for geometry I-I are 39.9 lbs./in. for positive torsion, and -75.5

lbs./in. for negative torsion. Moreover, the experimental results obtained

from (44) for this geometry (I-i) are 26.5 lbs./in. for negative torsion.

*Note that the construction (orientation of the plies) is such that the

configuration is much weaker when loaded in the negative direction, regardless

0of which of the two imperfection shapes is used. Furthermore, when w (+) is

present the configuration is somewhat sensitive for positive torsion (see second

colunm at - 0.10, Nxy = 35.32 sensitive for negative torsion (see third

column). On the other hand, when w (-) the reverse is true, i.e. the

u i28



Table ,7 Critical Shear stress Iesultwt
(Geomettry I-1 ; Positive & Negative Torsiom)

For re() g Sq. (8) For v(-) ; 2q. (91

V Ie/ta. (a) V lbe./ia. (a) it lbs./In. (a) 4i lbs./ia. (a)

0.1 35.32 (11) -93.96 (1) 36.83 (11) -63.44 (9)

* 0.5 31.57 (11) -92.80 (13) 36.06 (10) -57.61 (5)

1.0 28.32 (11) -92.00 (13) 35.17 (10) -52.11 (a)

Table 4. 8 critical sher Stress aesMitat
Efor a11 gemetriee and v( ))

in lbs.. a. (a)

1-1 1-2 z-3 1-4 1-5

0.1 35.32 46.0 46.36 44.18 66.49

* (11) (9) (9) (12) (12)
0.5 31.57 41.81 41.64 36.75 56.91

(11) (9) (9) (12) (12)

1.0 28.32 37.89 37.96 34.22 48.72

(11) (9) (9) (12) (12)

Table4 . 9 ritical Axial Cpreeoa-Toreioa Tame.4d Prititl Axl CpreUion-Torto
Interctio Data (ometry 1-1; Interacties Data Leemetry 1-1;

AXsiBYINsttic Imrfect) IF(+). 34. (V)

a , 10o 10 10 11 a 11 12 it it 11

0.1 146.1 135.1 95.9 40.9 0.0 141.5 132.1 67.5 31.0 0.0

0 10.0 20.0 30.0 36.7 0.1 o.0 10.0 20.0 30.0 35.3

to0.5 14.2 128.9 81.9 23.7 0.0 0.5 t37.4 123.0 67.4 43.2 0.0

0.0 10.0 20.0 30.0 35.3 0.0 8.0 16.0 24.0 31.6

a 6 6 10 10 11 11 12 11 it 11

1.0 117.7 117.2 67.3 46.4 0.0 1.0 126.6 102.9 73.1 40.4 0.0

(., 0.0 2.0 16.0 24.0 33.6 ifM 0.0 7.0 14.0 21.0 26.3

a 6 6 1o 10 11 a II 11 11 12 11

1.5 i. 93.7 93.2 73.6 37.6 0.0 1.5 V 105.7 60.9 63.8 26.2 0.0

0.0 2.0 16.0 24.0 32.5 - 0 7.0 14.0 21.0 25.4

*2e uit of the stress resultant i s /lei . Tait of the stress resultant is lb e.Im.
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configuration is insensitive for positive torsion (fourth column) and rather

sensitive for negative torsion (last column). Note that the experimental values

(+ 26.5 lbs./in. and -65.72 lbs./in.), compare well with the theoretical values.

Note that the tested specimen (44) is of unknown imperfection shape and ampli-

tude.

Next, Table 4.8 presents critical shear stress resultants (and the mini-

mizing n-value in parenthesis) for all five geometries and an imperfection

shape similar to the positive torsion buckling mode of the perfect geometry,

Eq. (8 ). These results are shown graphically on Fig. 4.8). Note that the

strongest configuration corresponds to 1-5, while the weakest to the symmetric

geometry I-I. This conclusion holds true for the imperfection shape used, w (+).

It is worth observing that the regular angle-ply antisymmetric geometries,

I-2 and .I-3, yield virtually the same strength for positive torsion and w0 (+).

Moreover, geometry 1-4 is much weaker by comparison to the other asymmetric

geometry (1-5) but not as weak as the symmetric geometry. These observations

are reminiscent of the old external versus internal positioning of the ortho-

gonal stiffeners controversy concerning metallic stiffened configurations. In

relation to this, in the case of orthogonally stiffened complete spherical

shells subjected to uniform pressure (see Ref. 48) it is observed that the

weakest configuration corresponds to zero (or close to it) stiffener eccen-

tricity, and the strength of the stiffened sphere increases as the eccentricity

increases in either direction (inward or outward). Thus, one can conclude from

Fig. 4.8 that all five configurations are imperfection sensitive, but not as

sensitive as they are for the case of uniform axial compression (See Fig. 4.1).

This conclusion is in line with the behavior of metallic cylindrical shells

with or without stiffening members.
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In Ref. 44, experiments are conducted for geometry I-i, to determine the

interaction curve that separates the stable from the unstable region between

uniform axial compression and torsion. Because of this, numerical results are
p.

S.obtained fro geometry I-I and two imperfection shapes. One is virtually axi-

symmetric, Eq. (6 ), and one similar to the (positive torsion) perfect geo-

metry buckling mode, Eq. (8 ). The theoretical interaction curves are gene-

rated for several values of the imperfection amplitude parameter, , by the

following steps. First, the critical value for pure torsion is obtained.

Then, starting with zero torsion and several values of the applied shear stress

resultant, but smaller than the critical pure torsion the corresponding cri-

tical axial compression is obtained. In each combination a study of the ef-

fect of n is performed. The results are presented in tabular form on Tables

4.9 and 4.10 and graphically on Figs. 4.9 and 4.10.

The data of Table 4.9 are plotted on Fig. 4.9 and of Table 4.10 on Fig. 4.10

On both figures the experimental (44) interaction curve is shown by the dash-

ed line. Not knowing what the imperfection shape and amplitude of the tested

cylinder are, these plots may suggest a reasonable comparison between theory

and test.

r
3
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I V. 3.0 CONCLUSIONS

All of the conclusions are based on the generated results, which are

obtained by the W, F-formulation. No results have, as yet, been generated

by the u, v, w-formulation.

From all results, one may list the following as the most noteworthy can-

clusions.

1. Buckling, for all configurations, is of the violent type (snap through

* buckling through limit point instability).

2. For SS-3 boundary conditions and axial compression with zero eccentricity,

the strongest configuration corresponds to the asymmetric congiguration,

* I-5, while the weakest configuration corresponds to the antisymmetric

configurations, 1-2 and 1-3.

3. Again for SS-3 and axial compression, the dynamic critical loads (lower

* bounds, when the corresponding static loads, but their values are never

smaller than 60% of the static critical loads.

4. The average end shortening (for axial compression), corresponding to the

* limit point for the same -value, is smaller for the asymmetric geometries

(1-4, 1-5) than for the symmetric (I-I) and antisymmetric (1-2 and 1-3)

geometries by almost a factor of three.

f 5. For the isotropic geometry (SS-i boundary conditions)

5a: For the perfect configuration and very small imperfections, the effect

of in-plane boundary conditions is such that SS-3 and SS-4 (v = const.)

* yield stronger configurations than SS-l and SS-2 (N = -F = 0)
xy ,xy

5b: For higher values of the imperfection amplitude, , SS-2 and SS-4

(u - const.) yield stronger configurations than SS-l and SS-3

Ab (Nxx F,yy "Nxx )
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6. For the laminated geometry, the effect of in-plane boundary conditions for

SS-i is the same as for the isotropic geometry. For clamped boundaries,

CC-2 and CC-4 (u = const.) yield stronger configurations that CC-I and

CC-3, for the entire t-range.

7. For both geometries, 1-5 and isotropic, the sensitivity to initial geometric

imperfection is dependent upon the in-plane boundary conditions for SS-i.

When v = const (SS-l and SS-2), the geometries are not very sensitive. On

the other hand, when u = const the geometries are very sensitive.

8. As far as the effect of load eccentricity on critical loads is concerned,

no general conclusion can be drawn. But whatever the effect is (stabi-

lizing or destabilizing for a given geometry), it diminishes with in-

creasing value of the imperfection amplitude parameter (%-values).

9. When loaded in pure torsion, the strongest configuration corresponds to

geometry 1-5 (asymmetric), while the weakest corresponds to the symmetric

geometry I-i, for the imperfection shape corresponding to the positive

torsion buckling mode, w°(+).

10. Geometry 1-1 is weaker when loaded in the positive direction than when

loaded in the negative direction regardless of the imperfection shape

(for all that were employed).

11. When loaded in pure torsion, laminated shell configurations are sensitive

to initial geometric imperfections, but not as sensitive as when loaded

in axial compression.

12. Comparison between theoretical predictions (corresponding to various im-

perfection amplitudes and shapes) and experimental results is reasonably

good.
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APPENDIX A

MATHEMATICAL FORMU TION

A. 1.0 Introduction

The governing equations are derived, in this section, for the following

geometry and loading. The thin, circular, cylindrical shell is assumed to

be geometrically imperfect. The construction is laminated (each lamina is

orthotropic) and in addition, the shell is orthogonally and eccentrically

stiffened. The stiffeners are uniform and with uniform close spacing,

which allows one to employ the "smeared" technique. The boundary conditions

can be of any transverse and in-plane variety. This includes free, simply-

supported and clamped with all possible in-plane combinations. The loading
0

consists of transverse (uniform lateral pressure) and eccentric in-plane

loads, such as uniform axial compression and shear. Eccentric means that

the line of action of these loads (applied stress resultants) is not

necessarily in the plane of the reference surface. In the derivation of the

governing equations, the usual lamination theory is employed. Moreover,

thin shell theory (Kirchhoff-Love hypotheses) and linearly elastic behavior

are assumed. The primary assumptions are listed below:

(1) The shell is thin (total smeared thickness is much smaller than

the initial average radius of curvature-cylinder radius).

(2) Normals remain normal and inextensional.

(3) The strains are small, the rotations about the normal are small

and the rotations about in-plane axes are moderate.
00

(4) The imperfection shape is such that the initial curvature is small

Rlw°, ii <<l; i - x,y].

(5) The stiffness are along principal directions.

(6) The stiffener-laminate connections are monolithic.
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(7) The stiffeners do not carry shear; shear is entirely trans-

mitted by the laminate

(8) The stiffeness are torsionally weak and thus they do not con-

* "tribute to the shell twisting stiffness (the equations and related pro-

grams can easily be changed to accomodate the case of torsionally strong

stiffeners).

On the basis of these general assumptions, two sets of field equations

are derived. One, referred to as the w, F - formulation, is based on

Donnell-type of kinematic relations. The governing equations consist of

the transverse equilibrium equation and the in-plane compatibility equation.

These two equations and the proper boundary conditions are expressed in terms

of the transverse displacement component, w, and an Airy stress resultant

function, F. The second, referred to as the u, v, w - formulation is based

on Sanders' type of kinematic relations, those corresponding to small rotations

about the normal and moderate rotations about in-plane axes. The governing

equations for this case consist of the three equilibrium equations. These

equations are expressed in terms of the three displacement components, u, v

and w. Also, the proper boundary conditions are expressed in terms of u, v,

and w. The corresponding Donnell approximation appears as a special case of

the more general Sanders' kinematic relations. The derivation along with all

necessary relations are presented separately for each formulation.

A. 2.0 The w, F - Formulation

The geometry and sign convention for this formulation are shown on Figs.

A.1 and A .2.

The topics of kinematic relations, stress and moment resultants, governing

equations, boundary conditions and solution procedure are treated separately.
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A. 2.1 Kinematic Relations

Let w° be measured from the perfectly cylindrical surface to the

refer surface of the laminated shell. Let w denote the transverse

displacement component of reference surface material points and be

measured from the undeformed surface. Let u and v denote the usual

in-plane displacenent components along the x and y directions respective-

ly.

The Donnell-type (33) kinematic relations are given by

E.- E - Zk.-

, -zk,, (A-I

where the superscript "o" denotes reference surface strains and the 's

denote the reference surface changes in curvature and torsion. Note that

the positive z-direction is inward (see Fig. A.1).

According to Donnell the c O and x's are related to the displacement

components by

: + 0 cA-2)

)(Y,= (PoYY = W Y),=W (A -3)

A. 2.2 Stress-strain Relations

Each lamina is assumed to be orthotropic and the directions of

orthotropy (1,2) make an angle 8 with the in-plane axes (xy).
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The orthotropic constitutive (it is assumed that the generalized

*. Hooke's law holds) relations for the kth lamina are given below. Note

*S that for an n-ply laminate k varies from one to n, and the first ply

(or lamina) is on the outside, while the nth ply is on the inside

(see Fig. A.1).

Mk (k)
a;, Q,, Q,, 0 Ell

Cal Q 22 0 E1a2  (A-4

0 0 033. 2,2,

w where 2e12 = Y2 and 1, 2 are the orthotropic directions.

Since one is interested in relating the stresses to the strains

in the xy frame of axes, the usual transformation relation for second

order tensors are employed (see Ref. 35 for details) and the transformed

constitutive equations (for the kth ply) become

1101[Q -- [T]"[Q][T] (A-6)

and

[T] S; Cse -S;,2G (A -7)i:,I -s ,,ae S ,20 Cs 2O

Next, the stress-strain relations for the stiffeners are

Q-9 = (A -8)

M, e . EYy
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where Eat and Er denote the Young's moduli for stringer and ring material

respectively. Note that according to the smeared technique assumptions,

stiffeners do not transmit shear.

A. 2.3 Stress and Moment Resultants

Instead of dealing with stresses, it is more convenient in thin

shell and plate theory to deal with integrated stresses. This leads to the

introduction and definition of stress (Nij) and moment (12j resultants.

For a stiffened laminate these are

N,, dzc

and

rM1 = f 3. O d,+ JA. dA, (A -/0)
. o

where

A and A are the stringer and ring spacings (respectively), Ai denotes thex y

proper stiffener cross-sectional area with A denoting stringer area andx

A ring area, and h h denote the outer surface and inner surface coordinate~y o n

of the laminate (see Fig. A.1). Note also that the above definitions lead to

the sign convention shown on Fig. A.2

Substitution of Eqs. A-5 and A.8 for the stresses in Eqs. A-9 and A-10

prior substitution of Eqs. A-1 for the strains in Eqs. A-5 and A-8 and

performing some minor mathematical operations lead to
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> N... t r k):> ; .. .- i i ) . . . .

Eck k-
2k,

o L L

ma E° kx)

N Ck) (Ar=•[Q] f E E
Ak.,

La

1Vlyj 4y 2kgy

- rAx 0A

'Er Ay

o 0

*where e xe are the stiffener eccentricities (positive if on the side of

44
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positive z) and Ic, I are the stiffener second moment of areas about
C YC

centroidal axes.

After performing the indicated operation [Eqs. A-11 and A-121, one

may write

* NM =  A, A,,, A, 3 - ,-5-B, E

0- 0

No ~ A12 Aal As - B12 -a, -Ba Gy
NAAY A~,A 8,3 (A -3

rXX 8, [3, B8 -D, -D,2 -D/j kx

my, B&Z B1  -5v-

where 

A, 0 0

[ Ai1 [A8j] + o -r-, 0 (A -14a)

0 0 0

and

0Z 00

1[,L,] =T ['D" 0 0 (A-14c)

0 o o
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n r . . .- + . . P • . . -- - -. " . - .. • - -. -. . -. - -

with

N M
k=I

t4 W(k)
Dq I Q% ( hk)

k-I

Since, in the derivation of the field equation for this formulation,

* the dependent variable are, w and a stress function F (through which the

.. stress resultants are derived), then it is convenient to express the

mement resultants in terms of the N ij's and the K's.

Starting with Eqs. A-13, one may write

F (A -6

Nyy] [A41 c, -IB ] k -16)
""~~1 ,x j",, L .2 X,,.,

From this, one can solve for the strain vector, or

C-Xe, Nx, k,,,

E; [A N,, + [A J&I (A-I)

Another form for this equation, Eq. (17), is the following

Ex'x N,x XXIK

-E; = [ai] Nyy + [@-,.1 )G,, (A-/8)

where'

-- 1 (A --! 4
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Next, substitution of Eqs. A-18 into the expression for the moment

resultants, Eqs. A-13, yields

1 01M [8 E yI - [Diidk;;1
MN Y + [18 -2 J I

1.Nxyj L2XxY

*~~ r l[kX)1

[4 dij y(A-20)

where

[dzi [13qj] I-o -D (A- )

Note that [a ij and [dij] are symmetric three by three matrices, while

SbijI is a nonsymmetric three by three matrix.

A. 2.4 Equilibrium Equations

The equilibrium equations are derived by employing the principle

of the stationary value of the total potential.

According to the principle, for equilibrium

UT =  0 (A -2 2)

where

to UT = UL + U (A-23)

the sum of the strain energy and the potential of the external forces.
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From Eq. A-22 one may write

U SUN 4 g U =0

-N-/,Skx -fi7 SXy - 2 r,, 9xy),dxdy

b - J~ (~NxxS'

-+ Q -- - i , & ,,,)L dy -2 4)

Where q denote the external pressure (positive in the positive z-

*direction) and the "bar" quantities denote external loads applied at the

boundaries (N and N are in-plane loads, while Q is applied transverse
xx xy

shear load and M1 and H external moments). Note that M and M couldxx xy xx xy

represent moments arising from eccentrically applied N and N .

Use of Eqs. A-2 and A-3 for expressing the variations, in the reference

surface strains and changes of curvature and torsion in terms of variations

in displacement components yields

8!: U, f•qx SUXW O

+ + W . j + 0 SVY)

L! ~~~-f NY -, ,+ S YX + WX .8 W", S wj+ yw,

+ 1, y 4 K- 1,, S ,, Sw,

.2M~lxySW, dxdy -f ff w dxdY

f6T.L.( , u +NEAT + Q1'V - Xg

- PxySCPy))o dy (A-2 r)
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eR-writing the above in a convenient form in order to use Green's

theorem, one may write

f N.S + No, (vv,., + s~

-y r y (, + V4) S Wi + NrXS,

I+ Nxy ( VMx + Wo) 8W -M-YYSI'Vl,y

t Nxx,x 8Vt +LNxx(W~x fVV,) )(SV

0 xAlx,xSW + IyyySr+ C NY(Wix

w-t ,,v + N.cyySUt

-f C NAxy(WOX + W,;)),SW - My~

J~f. YSw~dd -f7-'rySwujd

4 b SW - -~x S(x XY y3Ld
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fX f~+; N~WXw, 4 wN j Y + Nxy (w.y

+ SW nM xSWx ffyx,xSW + 2xy~ySWJIx

+ Ny(Ws<yy~ LW-)SW +NxYRky~~M

+Nxy,x Su + y(y-tv;]

2 tMly),rjW] L~x Oly

By Green's theorem, one obtains the following equilibrium equations and

associated boundary terms,

Equilibrium Eiuations

N919 + Nx 0

* 50



Ny ~x N#,y 0

I l 4 2 Mfl ,.2Y,., 4 Ml,yY: +/ + N,.. (W.,+ W.,)

4 2N X( ,v4. xy W,'v,) + qyy( VVy4 .y)e 4 0 (A-27)

Boundary Terms

either or

*
M &iv 0

Nxx Cv~ -f, Woo,) + Nxy (W~y +W,;.)

+ M'lx... +2 ,Jl.,yj O x + Fix.; =0 -

M.* = frlxX 0 (A-18)

The first two equilibrium equations, Eqs. A-27 can be identically

satisfied through the introduction of the following stress function

* Nx =F,y- ,

NYY = FIXX

*Ny - .,, + t (A -,29)

With the introduction of the stress function, F, the third

equilibrium equation becomes

•~~~~~ ~~ + Fw. w.,- F w,~,,- (YY +,:7)-

+ F3, ( w,yy+ "4*Y) - 2 Fo (W~, 1, + v) - FL x4,Y-f vM,,)

+ 2 FNy(W,,4 V,) + o (A-30)

A. 2.5 Compatibility Equation

Since the in-plane equilibrium equations are identically satisfied with

the introduction of the Airy stress function, F, then the governing equations
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consist of the transverse equilibrium equation, Eq. A-30 and one more. This

one mor' results from requiring compatibility of the in-plane displacement

components u and v. From Eqs. A-2 one obtains

-U,X) y + -.L &Jx (kl.+2V -L) 4 Wow42 .x)

i Vj'yW,,Oc + Wi~XxyM *j;+VI W 'wYr (A -31)

Elimination of u and v leads to the following compatibility equation

00

0-'V + __ +WyL jx2xy,

Ej.,y ,w.j - -,. F.?+ , ,, A

W'. 'YY+ W,) -(A-3.2

Substitution of Eqs. A-16 EEqs. A-29 for the N's and Eqs. A-3 for the

Eims] into the compatibility equation, Eq. A-32, yields

C..L , + ,1., - y - 0,3 F, 3tyv -t .1,, W ,,y Jtyyy,

+ aj2Fg3 y + OaFfx - 0  Fp2xg, 4.& W,v 4~ V~/,vey + 2 As W4My

*-013 FAY -a2 3 FoXXX Oas 3FxxY 63 K/- -2 6., .,

--± ) W, 1  , W,xx2W ) - 4 2,,i W,,,,) (y W-AJIt2 iX')

(A -33)
Similarly, substitution of Eqs. A-19 into the transverse equilibrium

equation, Eq. A-30. yields
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So, Foxy + "e~o FAJCX - .6j, Fpjx + di W +~fX d,., W"X, ~2d, IVW, Vry

+2 8,3 F mj + 2 .23  2 F,, F,,-2y 4 206, w.,, 2d.W ,,y + 4 c/ W,, o..,y

+ -6a F, ,yyy + a 2F,, - 6,,Fyyy -+ d2, W,A. + d,,, .2 d W.,YY

+ F, + F ,"' , - .. (Vw,,, + V ,,,,,)

+ .2 Nwy(Wxy+W,-y ) /, (I, 4y i-w)

=0o (A -34)

A. 2.6 Boundary Conditions

The boundary conditions, Eqs. A-28, can be designated according to

* transverse one (simply supported, clamped, free) and in-plane ones. Since

all of the application to be considered deal with supported boundaries,

only simply supported (ss-i; i - 1, 2, 3, 4) and clamped (cc-i) boundary

conditions are listed. These are (at x - 0, L ):

SS-/ I M-o ,R , Nx -N ,,,; NY NR,,

SS -2: w 0 g" ,-1- V " Co,,i. ; NY M

SS -3: v:w-o M.= . Nx,, = -a,. ?J= C,,,,
,SS -4: w o, Mt4,= Fl; ?A =Coxsi , u - xl.(A -35)

and

53



cC-I: w O 0 o ,0 NAx-N,.x NY y /, Y

CC-2: W0 W ,o; U=Gs; Ny= 4x

cc-4 w-o ; w, 0; V -a,. ; C 4.4-36)

The above boundary conditions may be written in terms of the dependent

variables F, and w. The kinematic conditions u = const and v = const are

* first expressed in terms of equivalent conditions. This is shown below for

". each of the relevant conditions separately.

Note, first that the expressions for the Mi's and NJ's are given by
iii

Eqs. A-20 and A-29.

SS-l: W 0

F., +2d,jwy= f1 .2,A--,o F,,

Fy) = 0 ad Fwy o (A-37)

SS-2: W =0

%, F. +Ap,, +d ,, w,, +2d,wj= R,#,, , -1#,,g

, and Fay o (A-38)

The u = const. ccmdition is expressed in terms of an equivalent condition

. by employing the following steps.

The expressions for Y from the kinematic relations, Eqs. A-2, and

from the constitutive equations, Eqs. A-18, are first equated to each other,

or ,% ,+ ,I;+JtAIj• =U,,y- 4 4 wxMy+ w, xv' MY ,0 My

Oil°" .=,( F,- + 0,23g.X + a,(F4-.,- 1 ,)
19 + ,4 + W, 4- 2. 3,, 2,y (A-3860)

4 54



One differention with respect to y and use of the conditions w - 0 and F, - 0
xy

yields at x - 0, L

* i+ WiA,; # I/)O x a, 3r F, 1 ,YFx 4 tW
4 2AjW'xY, A38b')

Similarly,

W + W.;-~+ fw V ,YW,

+ 19,,w, K + 4 9, Wa., + .2 & IA/,.., (A 3-? 0)
from which one differentiation with respect to x yields

S+9,w,*,X + &,aYY (A -3gb)

Elimination of v, XYand v, yx from Eqa. (A-38) and (A-39)yields the equivalent

(to u - const) boundary term, which is:

a,,F,.y + 2 a, F - - - , , -

+ ( 83, --2 go)kv ,-2 S.,,1 K-Y, 0

* Note that because F, - 0 for this boundary condition, the ter- con-

taining F, has been dropped.xy

Thus, for SS-2 the final form of the boundary terms becomes

W=O

.,, F,y 4 6,,Fxx + Ai,, w.,, + 2d, w.xg, =il,,+ ,tNI,-. 6 .,N,,
Fxy = 0

CG, F, + 2 F, a, , - W ,x IIw,;, -
+ 4,- 28 GO ,,o, -0. -2 e.n)Wxy - 0 (A -O)

ss-3
WI=O

so,. F , + At F , ,W. + du W+ 2d, oW,4Y - .. '.,x +.,1 -431 Rcy

F,,, o ca,,o Z. C,,i.
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Similarly, as in the case of SS-2 (u -const), anequivalentodto

is obtained for v - const. From Eq.A-39a., since w 0 and v = 0, then

the equivalent condition becomes oEyy= 0 or

-a Nxy + a2  F.x + ai -Ax Rxy) + -Sa W~s, + 2 Sqi Wo,, 0

Thus for SS-3 the final form of the boundary term becomes

W=o
-ea, Fpxx + dl W,xx + 2d3 W.jey - 1011 FXY fRit +eliqa V31 R'X,

la.o- a,& x+iejIsh 1  +2S)V.j(y c2 z iRXx -aNY -1

* SS-4

For this case the equivalent set of the boundary terms becomes

W=O

O,.~4z.Y -2 34%, + -0-a W,, xx.AW.V , . -aUo
L213 F,%,fl 4 2 OnFxly - (a. +a~s) Fxy - az F, x - w wA W,y

(. 6j -- a ) ,,y + ( Oil -2 &) WxAy - Oai Wjwr =0 (A-42)

* Following similar steps, boundary conditions CC-i, i1 1, 2, 3 and 4, are also

* expressed in terms of w and F only, or

W= Wa = F,y,, Fx (A -43)
CC-2

v WJ = =W',x = 0
~ +2 g,~ - ~, ~ - w~ CA1 -2,6u) W~icxy C(A -44)

* CC-3
VV X= F 0

02.1 F'X - £223F'x, 191 Wj~ Q=~ o - a 3 Nx (A -4-)
CC -4

* W= W,, 0
Ci F . + ai FX -0a.) F w,
a13FP y24I3~x - (a124aOu)Fxy - 6IaF,,jj r Ww'*(i)xxW 1 1

=0 C(A4
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II. 2.7 Solution Methodology - Field Equation

The solution methodology is an improvement and modification of the one

employed and outlined in Refs. 36 and 37.

The separated form, shown below, is used for the two dependent variables

w(x, y) and F(x, y).

j: I

where n denotes the circumferential wave number.

In addition, similar expression can be employed

for the imperfection parameter w°(x, y) and the external pressure q (x, y).

Note that in most applications the pressure is assumed uniform (a only).

a 0

* ~~~W(X.Y) A:(K) 4P,1CAj k)Cos * ~)hiv

w(XY) (x) + () - ) &i,.} (A-48)

Because of the nonlinearity of the field equations, Eqs. A-33 and A-34

substitution of Eqs. A-47 , and A-48 into them yields double sunmmations for

the trigonometric functions. These double summations involve products of

sine and cosine of iny/R in all four possible combinations (cosine-cosine,

sine-cosine, cosine-sine, and sine-sine). Furthermore, these products have

different origins. Some of them come from products of W, XY W, , others from

products of F W, [see Eqs. A-33 and A-31Z. In order to simplify the
, xx yy

final expressions (and use single sums instead of double sums), and in order

to cover all possible combinations of double sums, the following simplifying

equations are presented. These are based on trigonometric identifies in-

volving products.
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.Z65 0(db iCos LO~~ AAb,a) cvsi&
Lmo j:zj

j 0j L S Az32O (b, a) Sin i

~ s~S~ndo] 6tj CDSie JLA (ba)6t)
j=0o

r- [ I bs. 3;,,ie3 C~ L*Sx AU4 wcb, 6) Cos i (A-49)

Z:b ~JOlCos io faf AsLI-2 A (b~a)SinQ LO

KL L

Lo v

1~~bs~jo i os e1-
KL

~~~ZLAI4V (6.n1J~S~i A ba) CoS L (A -50)
L~d

L0

where
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*Ajj2 (rb) .2Z

A (b a) bi + (-I 4 - i )I LV

A I24(kJ() Z-(pb~ (fA-/.53)D

A (2 b,a) + = j

.2 d

L + +j4 i~:O
J2~~, eo b 0

(b, 65)



Next, returning to the solution procedure, the expressions for F, w, w° and

* * q, Eqs A-47 and A-48 are substituted into the equilibrium and compatibility

Equations, Eqs A-33 and A-34. This substitution yields the following non-

* linear differential equations:

Equilibrium equation

Z ( iA .icxo Gs + 8,. (-, w) +h' -8)( R

+ &.s'.) Cos z-z () (A .iCos /Z 81x SPt)

+2-f 4( c,,, ~cosY D, s + )& Cix "fl

C -x,Cs ,, CoS ) + .

-N,. II( a, +A~,.,,)Co +( z,,,C + 8C,,)S,,+ S
gI (A-SS)iX ixT.- (Bi C)S; J.A LE(, ( KCtxOs

"-) (A +A*x) )COS,,-,+o( + 81'x) Cos0J) Si -4rJy(

4- o 2 I (A. ,x4 Ai., 4 (8, (

j=60

where

I+" ()-,+: sj, Cas ,, + D,,x S, ; ' , )

R o Hi i -

R) (AX +',- [ t( +.,)_ : + Bia. a ,,s,, J o(4- .

" ~~~~~ (k x - xx C 4 8 . . , t_1 . . . ._ . . i, . . .. .+ B-m Sin



or AI K0 9 m

L(F, vv~w*. [- As,) CoAsq) CL,ocCsljz

* (.2t IfC im

:Z _~Zlf (AJ.+A;)co~Y
4 ~~F 2 84 t) nJC±.Xxos jlfY

(2 P(L4.R dx) os1O cii .

L@JZO( (4x44ix) ii'

+21 Z (1J- (Ap j)in-V I AXi '?-

*+2(fJlft (i (Ai.x Aj0.)S;x~JDL1x!Cos%-

*f2( ) - LN(Ixf8j)CsW Vi sIxCS Ll (A -Tb
L=OJ-O

and

h 3 i= .2dCY 1 +2d 3  93 - t

h13  + 2d ,3 26L32
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Note that the operator L(F, w + w ) Eqs A-56, can be written in terms of a

single series, which is the most appropriate form, for use in Eq. A-55 .This

is accomplished through the use of Eqs. A-49-A-54.

L (F, w+W0) - (*) 0:(A-,,,, c(A 0,C,AKx)4q((8 ",c

+A1o (A,xx-iAO~) t A 124(29)'& ~~J

i 3K

-t+~- AZ.( )(A +A0J Z J3.U 8B,~x

-2 A;r~cax (AxAA 1)

Compatibility equation

.2L94.(A z,xxCoj Bi,xvx &,z1? , 1L -4 ,xxsvj .

+ eo (A Cos 8i Si RY)+g3-fAjSjl~-8ixo

+ 2 L ,,OICCO$A + i, xxxA gJOX) +,.2az 3 ()(CZ,Xxx n

-myx Co$9) + (2a/.z, j3 - Di, xxSn~
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#2 COi3 (*)(- Ci,x Sj~tW D,,Cos-,) %R A"

+A LACo~

± A 4W~ (84.283 8,'x) 4 A121 K) (A -0 +2A 0.A) +A j?4Qt(83S,r+2Bx,)

0

4.2A 1J4,x (A.r42A,0,0 x +2A A ,(1, x+2B ,8, ))GOAR

2A 0

+ A a (Allx+)A -2 8,t) -FA*+o(--8 ~x

bL

£2 Z 2.2 ) -28,x+2 8,04

Parenthesis

As far as the equilibrium equation is concerned, the sunuation starts

from zero and goes up to 3k [see Eqs A-55 and A-57J because of the nonlinea-

rity. The Galerkin procedure will be employed for this equation in the cir-

cumferential direction. This will yield (2k + 1) nonlinear ordinary differen-

tial equations [from the vanishing of (2k + 1) Galerkin integrals].

on the other hand the compatibility equation, Eq. A-58, is written in

series form, from, zero to 2k Because of the orthogonality of the trigono-

metric functions (4k + 1) nonlinear differential equations result, which re-

late the C's and D's to the A's and B's [see Eqs A-47. This set of ordinary

differential equations is shown in a complete form in the pages that follow.

0,0 Before showing them, though, some simplification can be made.

63



For the case of i 0 0, one obtains the following equation, from the

combatibility equation, Eq A-58.

+ L _-~jJA ,w() A A, xx)g .4X -- A +, 02 Cca,. - -NY .2 "2 A

+Z A2 4()(B+28°.B,x) + Av, ( A,,,,+2A, .A)

Al 24 (V( +2,X,; ) 4.2 A:, 4 )(A,x2A,,A.x)
• 0

+ A (, +B,. , 8,, 8,x)

or

Co, xxj A OA.,xk A[ + i,(A?4.,,, ,

+ f4 B;) +.,+ +(A j. * t A.,)A4 + 8 +x .2 8:0,') B

p -t, .2AjOx A( -x (8-., ,01 (A-.5q)

Moreover, the displacement component v(x, y) is a continuous and single-valued

function of y (and x), therefore

J udy -- (x, 2R) - 7r(x,o) 0 (A-6)

From the second of Eqs A-2 one may write
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Furthermore, use of Eqs A-18 [relation between eand N K- of Eqs A-29

[definition of stress resultant function], and of Eqs A.47 and A-48 [assumed

form for W, F and w] yields the following relation,

.2AR 2IR _

'. jIrs~ (- o,2 NVXX+ 025 AhY) dy

+ J K/ .249 2 x + Y'Y3 V',* + a ,. +2 _.3 WV,) 4" w I

+.2 ,;)] = 0 (A -62)

or

-a ,N ,x + a 3, N,) dy +I' a , M Ys
D Si-C I Co's !

+ ~ A Co 8i i.i + .1 i 2GO 82

+- ~E0 (AkCos' "K Aii-R

=(A-t3)

65

.~~~ ~ - - - -, -, - -] - - - - -



This equation, Eq. A-63, after performing the indicated operations (integra-

tion, becomes

.-a,Ncx3 +, +a0G,,, ,. + A.

- ((A +.2A)A +i+az8)8j]jd = 0 (A-64)

From which, one may write

G,9 AA Ax- A+ k &A[#2A

+ (U54 2B) B.3 + CA,2 xJ,, -2a, a YJ (A -65)

The remaining compatit.ility (nonlinear, ordinary differential) equations are

For i - 1, 2, .. 2 and cosine terms

02Ai~x~x- 2 13 (4) Dix - 2a4 aij () ~Ci,. v 4 2L2ii ()D 1x

:01,, N a,( CL + iCq.oA ,,.x + 9, I),'M- (i, x,,

4 (4)'(A +,Ai)A.,,]

-( 04 ;A,4 + 2 A + 2- U-

A*x) 4 [(1 7 +j))'(3)(A.2 ,
.. :] ,,,4 c+ £( , e ,a - . - y 8 + 8, -, )) Bj.,,~

'66
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+(Aa4 +2Ai4,px ± +(.2- 1')(Aj.jv+2A,.,~)

+4 ( ~jx + 2 -otj(Bx -+2Bsx)38J

4~ 2 ja o (A- 6

0, -i-ja (-) - (20/2 4 a..) ( DZi,or

- 261 a (4 3C,,,4a, (171 4DI +- SL [go8,v

+ ( -l.U. (-j)"(A~, A 11-dI )3 tj,x +fitJV (81 +2 8Br;)

+ (8a~d -f2Ba81) Ad,xx + C-(Aij. .2i~~x

+ (L)Ai.lxc+2 A,L+',jlx).k"8i + C(ijx -f2 Bi~j.xx)

+&j7 cBA, ,EJ +2 0 -.2 [GO (A ) p +-2A 7q +

2 S 2BIL-ji,.v) idA4j.v -o 0 (A -67)
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where

L:0: <'.== 0

10

As already mentioned, the Galerkin procedure is employed in connection

with the equilibrium equation, Eq. A-54, in the circumferential direction.

The vanishing of the (2k + 1) Galerkin integrals yields the following set

of nonlinear ordinary differential equations.

For i 0

hu .A Oxxx tgoCoxxcxx +-A Co,xx- (A,Ext 4A~x) Tijxj

K)

Ai~C~ 4Ai)~x C-)D (8 42 8'(A j,xA~x)'J (491

". Ith~B temeqliyingiu eqatio nd A-5, ne otaeins meetaldrcin

.t2 Te nshin (Ad e 24 A+ (e n.2 ) y d +

-f 2* B+ s)8s,x3 +g
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(82~ ~ 8d +8.~?D~ + (4x AKt) Ci + 8~x+ D

+ OI q40 (A -69)

For i =1, 2,... K (when the weighting function is cos RnX

C11 A iXX 4 f (4 ) 8Bi,xxX - (-2da 446d.33) () A,xx

-4d., (f) 3B i,x + d- (V)44 + &zi Czx- + (2 a3 - At

*(~ .62 8-3 4 (21) )2 Ci,XX (2 161 - 6,a) ( 4) D,

da

+ (44~ir tL(.1 2;)4A 4 (8 4.2~8) B j}j

-(va)(AL A:)(x f-a. R.~,) - (A i,xk +A i,xx) ')'&r
Oil

-12 &Y t(8 )(&Sjf4Mq)

4 ()- ja) (j4~?Ii-j (Aaj-41 ~A .,9)] Cj,AV

4 L44fS ( & 4 B;4 -- I (811. Sjj , + -j)ID.A

C W ) IU~ji $ oj + j J -j 74 Ea ,S ( A i.*.XX

.2~ ii S 1~ (ALi-ji, xx+ A +~1 ~L 2 ~ St

- ~ ~ ~ ~ ~ ~ ( ~ y ~ +,,)dv1± 70)
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For 1-12 .k (when the weighting function is sift!r

d1. (A dA~'~+~i ,'i (2 du+ d 6t ( ),xx 44C6 A

(1 8 + (4-9 3 4) C,. + 42L')

(61-01 (i-~ -93.a) (O, 1) 6 IAJ4y 2

f .0~2  AD, (8y- ~-~lC 4 -i)S (+Ai

44

WO Siq(A a(AAjq')
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Clearly the response of the configuration is known provided that one can

solve the nonlinear ordinary differential equations. Their number is (6k + 2)

and the number of unknown dependent variables (functions of x) is also (6k + 2)

These are (k + 1) Ai's, (k) B.'s, (2k + 1) C. 's and (2k) Di's. Note that C

can and has been eliminated, through Eqs A-59 and A-65 and therefore both the

number of equations and number of unknowns is reduced by one to (6k + 1). in

these equations there is one more undetermined parameter, the wave number n.

This number is determined by requiring the total potential to be a minimum

at a given level of the load. In other words the response is obtained for

various n-values and, through comparison the true response (n-value and cor-

responding values for the dependent variables) is established.
t

So far, the partial differential equations are reduced to a set of (6k + 1)

nonlinear ordinary differential equations. Next, the generalized Newton's

method (Ref. 38), applicable to differential equations is used to reduce the

nonlinear field equations and boundary conditions to a sequence of linear

systems. Iteration equations are derived by assuming that the solution to

the nonlinear set can be achieved by small corrections to an approximate

solution. The small corrections or the values of the variables at the (m + 1)

step in terms of the closely spaced state m, can be obtained by solving the

linearized differentiate equations. Note below the way that a typical non-

linear term (product of X and Y) in the differential equation is linearized.

op"l .s' = (X "+d/)Y Y21 Y )

-XwY +X dY + Y dX + dX dY*

-XV f+ M

=X ( y m+ d Y") + Y(X +aX') -XV'Y
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-XMY +YXn -x (A-72)
where X & Y can be Ai, Bi, Ci or Di

By making use of Eqs (72), the linearized set of governing equations

(iteration equation) is obtained from Eqs A-66, A-67, A-69, A-71. These

are:

1. Compatibility (i) [cosine terms, Eqs A-67]

For i = 1, 2,....K

Of~f I V+ I
O: C ,x,-20.23 () , -(-20/, 0+3)(-)', C,,A

_, 4 4. fr 8 , ,~+20 g6 ,)_0,+ _ K,_2,+  o, m,

Iwt

± 2CL.j' ( A ' .+ L (A t2AL A ,-x+2A)A 4

(A+ (A+2"0 4 , x + -2(A+. ) .,(, (+2A .

+ O , ( 8 ) 8 ., + 28 B'-, (8+2 ),

-o (A-73)

where

ilf
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L~4 (Y) Ui~)i~Yto _rJ4I giy 1

* I-1~~~M' () =i)SjY'x 1 (.2-Z~.)iJJ~ Yji',x~

NQ(Y) = id

(ii) [sine terms, Eq A-681

* For 1 1, 2,... .K

2 ~iX)X+ 01 (CiXX 0(211 033)A) Di .

q,, +a,,( j;) D, 4 -6.3

A 24 8("B'>~, + (B2BA

91, k> +2 x -8!f2 80

- (B+.R AQ'*-2(TB* (+287) Ad~

-~+2* UB(826~Ajx 4, V~(#A)4 (A +QA )8Ii

- V(A2/f)8'J ~O(A-44

(A4. ) -2 S4 8 2 !)dx,73 "*



where

Q, (Y) 4 ~i 1~±

(i)y [tiO Eq.

4 A(Y) C (L) s, Zj + (AI 4dx +l-i ( i41A~4

U' (Y) A;71 + (Ai-j Yl+2,K 3~)~-AA

4.2 (A) +2A,Ax (-2 -7 4r

(i) ~ ~ ~ 3 -i0 
q 19

44 A(B v2$) i (Aj*, x +( 424

4 l + A*,Y A

f 4(BiIx- 4A2
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+ S.

- ~-~~ AfCJx + (A- +4 ) C7j - A4 Ciam

+ A 4~ (ABj +4x~r C7' 4j2 C x

A-+V 3J ;,OtD + (2 + 4

0~ (A-K's)ImC X

(UN~ [i1, 2, . ..K; weighting function is cos inYl

I( A L,Xoxx 4 4d,3(-4)8ij(Xx (.2d, (*)dA )(4x)

-~ ~ + 41 ( t ±d. ~44l CZ

4 (2 62 S3) VZA (.1 '634 ,

-(.2 &,, -. 1 ) (-"R)3~ Dix+6aJa , C~,

(+ -itAi""A 0 I - 4a,(! AI

+ (02 ,~L~+ +A)A2j)*Aw4)(T2J
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+,(4 +4) (47424 ); AZ-2 (A4(A"4.24)Aj

4(A m+A)i"(8!l 2DSB+ (A +A (8T'428 8

- (Lfj( A4A:) OF N - a23 NJY)

-(Az~x 4A ox) Nx- +.2 N,, (4) (73Z za

,#1j4 (A) C V- + jj(40)
- ~ ~ ~ ~ ~ ( *JA(A CC~J- LijX()

-k() +~ ei(A + ~ L74(AM A'L (A)Cj,,3

H'[Ilj(8)7^Jx 4HMzj(84Bo)Dj', -YB) Z1jlx]

Nt 70+
4P ~AC +Ij(f~ N ACT

04 (~8) D+ ~s8 0L D -Oq (6)fLi+Lf (A -70)

(iii) ri =1, 2,.. .K; weighting function is sin L ; Eq A.711
R

-40(,,-'A,) A (.dl2 + 4Lda) (4)' 3 x B 't 4 d23(IVA i

+d ~ all~t lof I

Bi - 21Di Y X (. -. 13- 931 ( ) CjThj
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+ A-x l8 oA; 14 W 2

+ 2 k c 2 +*I - +11Is0

P Intl

.~~~8 4 +g+g()8 + 81t +A("4 -28!)!'J

7 *I

(2 (8

iRV~ 8~ (aP~ a 7Y) - 82

* -(~~AyALx+;x'~4~ ;f'()C

-4 (8) C-4 f

~ (AM*') -K Ai() Q (5)

'7 d

- tUfD'jc- + 7(Ai d 4)V + ;( +)CD V A.'8)C

(A -77)

Finally, the Boundary Conditions [SS-i, CC-i, Eqs A-37, and A-40 - A-46]

are also expressed in terms of the dependent variables, through the use of

Eqs A-47 They are:
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SS-l Q

Ai 8i= c)

d, Cxx 4~a i, -2d3()L,x 0 J

SS-2 A*=o0

AL=8 0

dl A A ,y + 911 Cl -x l, )2Cj 42d,, (-4 ),gB

Di~x~z CA2d.iz 0 2k

ai, a -20,3(4,Z) ZAXj,xx A i~ .?

631 - 12A + -A-i x - (402 6Ai8,x

PR R .2R"
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±4 + % )( 3 JAj~xj~ 0 ; i '2,. 2,k (-

SS-3 A 0O

P~yd 1-/2R + a23F Xyj WXX +-xNx

AL=Bi~= o

d 1 ,Y + -9 1 IA+ 03, (') ,x -2d3(f)B;,,jO I,. 'J

di, Bax + a-D,xr +-S>j 1(9C;,x -2d3(4A1x=0

SS- A~)~ 0

A~ cl kOa L-)~~ -a. 4 zxj qx a (AF x -63)

00

A,~~ D, A (4) Vi +63,4& )i, x + d,, 8i, x X2 d3&()&xo
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'a,)&4JCi +aaaCixx -23 (13,) D ,+jtAixx +24j3(4)Bi,J(0O

6,3 (-%fD#i+2a3 Wa-)DL,XX4(24a#-)aL)x# tx--aa Aci xxx

+~~~ ((+)B3~~ (-i 2 +)(fBJBj,xJ L2i~

- ~f O.aDi'cm ~ BJ~ .2(~At ,

a13 (j#)3Ci --2Wi(a) CZx 4 (03 On,x i~-f-aa D,

I- (fj - (Aj43 Z- -ai li4)' i,x--~

4Q 7) ijl13*~iI j,
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AO = Ao 0

* ~~Ai = Ai,x 81 BixO L/,.-X

DL,x =CiDx 0

-2 0

Cc-3

C* =D 0 i,x. aL(4) Si A i,) w

Ao = A..,=

Aiz A!,)( Bi= Bj,x "k...

-0/1, j)aC f 0 CL, KX - aaj(-I)PiK, A, 6? ,x =0~

-013 OW~)2 ~2 )D - (CM, + AkiC x
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• ' L I.2.- .,2,

?:.- zL, - .,A -f.( j,-. ) C ) . 0

A. 2.8 Solution Methodology-Finite Difference Equations

Before casting the field equations into finite difference form, the

*linearized ordinary differential equations of compatibility and equilibrium,

Eqs (73) - (77), can be written in matrix form.

(MiI4Xixwc + (fMaJ XX~~ +

4 ]'fr3 x} + [.Msx ,x 4 (A-86)

where

is the column matrix of the unknown function of position x, and [Mj, j - I,

2.... 5 are square matrices [(6k + 1) by (6k + 1); see Eqs A-73-A-77] with

elements composed of known parameters (applied loads, geometry, and values

of the unknowns evaluated at the previous step, m and therefore known).

(M I is a column matrix of known elements.
6

*g Next, transformation equations are introduced in order to reduce the

order of the linearized differential equations. This step increases (doubles)

the number of equations, but it is introduced for convenience, because it is

' easier to deal with low order equations when employing the finite difference

scheme. These transformation equations are
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and they are used in only in connection with the third and fourth derivatives.

By this transformation, Eq. A-87 Eq. A-86 becomes

I. ~ ~ ~ + CS43;fl-. CT) [~ Cj A I
where

IL M IS) [ oM2

(] Co] C(o

IT]~ J r

(o -1 1 [oi J (A 49)
* The governing equations (linearized ordinary differential equations) shown

in matrix form, Eqs A-88 are next cast into finite difference form. The

usual central difference formula is employed and the equation become

jjx}"

* 4 ( 7 (LRJ- o+tT 4.AI ( A-90

where j denotes the j th node of the finite difference grid. At each end

(x = 0 and L) one more fictitious point is used. This requires (12k + 2)

additional equations at each end [the total number is (24k + 4)]. These

needed additional equations are the boundary conditions at each end, Eqs

A-78-A-79 (whichever set applies from SS-i or CC-i) and their number is

(12k + 2). The boundary conditions may also be, first, expressed in matrix

form and then cast into finite difference form.
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at either x = 0 or L

IN J{fX4x + C Nilao +LIN3) X'x} 4 IN4)[j'N. 0 (A'i

where _NJ. j = 1, 2, 3, 4, are matrices [(12k + 2) by (6k + 1)] with known

element, and .N} in a column matrix [(12k + 2) by one] with, also, known elements.

Use of the transformation equations, Eq A-87, yields

Cbs '] X+ (B3{(8 G)(A -92)

where

(sS] (N31(NI]

and

( J -{N (A 3)

Note that [BSI and [BT] are square matrices [(12k + 2) by (12k + 2)]. In
4 ?

finite difference form, Eq. A-92, becomes

I (f j')ir., ([XI~ (A"1-)

where j in the node number at x = 0 and x = L(l or N)

'0

A. 2.9 End Shortening, Average Shear Strain and Total Potential

Before outlining in detail the numerical scheme of the solution methodo-

logy, it is necessary to write the expressions for the average end shortening,

average shear strain and the total potential in terms of the dependent varia-

bles, Ait Bit C~ and D

The average end shortening and shear strain are defined by
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In terms of the variables w(x, y) and F(x, y), the above expressions

become :

2 L a 
1

QGAV = 2LRL - .. LLJ (as,,+aXr~-e

*f&,~PJj(2 +~2 -i-u/1.&3 ,-) X (Wdy ~ ,) xd (A -9t)

2 ILS J

+- .XX + , ) ddy (A -q7)

Finally, if the expressions for w and] F are substituted into Eqs. A-96 and

a
A-97 these equations become:

zIR if- MAD -A.Ip+a,N
+ -41g W'(A.'G w+2 :)P AXY .2KAjcAv 4 .2 VV';8)jdA-)

Fi y if h s fr wd i' -A9a

m85
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8j (A4 Aj-+A!' - 8.A4JjdX (A ?9)

Similarly, the expression for the total potential is:

UT(., ' + N#,;#XY M, tjk --~

-2M kt,)dXdy f'f ddy Ax -

+ NlUj dY 4 (A ,x),v, Y (A -/00)

where M = - EN and E is the load eccentricity mea- -ed positive in
xx xx

the positive z-direction and

LJ, v-0 -r idx

Thus, the contribution of the in-plane loads to the total potential becomes

%x u + Kxyzrj (dy J- dx +,,S,' <xJdy
.6

In terms of w and F the expression for UT becomes

u, = L fva,e ,,, +aa, F,P ,,F,,, +. 2,F,xxFyy

-a, F, ,, -.2 a,F,,x, dvY d j (d, w,

4d22,y+40(3W, 2 daW, x , 4 4 W xWO xy

O-ay)dXdy 4 N~xyf
4 86



03 F'yy)d(Xdy -fj 1w~d t7~ aN

4 033 p/ixy -2 7,LR (42vNxxz+e~yNxy) 2 /7RL a13 Nx Ax

-6 f A ) ~ vX)I d(A -/0/)

Finally, the expression for the total potential in terms of Ail B., C.i and

D. becomes

UT A *I

i jf 8 ;) Bjj3 -2 NXX - 3 RXJ + (X3 RAh, - 0,NJr)

4 (B30-+2 8) Bi) + 0,2t1- a23 Nqxy]j d, (A")"

0.

iw 2 Dp 0/

87



43

- RJ.t .4 + 'c(ilid -27Z RL (t AV

4kF) +i 7- "-.-2 a,-, i 4 33 Nx)

-471EA,R A' (A-/o2)

Before leaving this section, it is important to give the expression for

the modified potential an expression needed in the estimation of dynamic cri-

tical loads. As explained in Ref. 39 the modification is associated with the

deflectional response of the system. When an axial load is applied, an axial

motion will result (with some related transverse motion). if an instability

of the type described in Refs. 40-43 and 37 is to take plane, under sudden

application of the axial load, it should not be expected to occur through the

primary axial node, but through the existence of transverse deflectional nodes,

unrelated to the axial node. Because of this and since the governing equation

for dynamic buckling is (though conservation of energy)

U + T = 0 (A-103)
TMod.

0 where T is the kinetic energy (unrelated to transverse deflectional modes),

then the modified potential must not contain in plane node terms, when sud-

denly applied in-plane loads, N and N , are considered. in the case of
xx xy

* lateral pressure, the modification is different, therefore the expression,

given below for the modified total potential, applies only to in-plane loads.

This expression is obtained by excluding strictly load-dependent terms and

* those terms related to F(x, y), [CC''], which correspond to in-plane motion.
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UT. UT + 7RL CqF, (xa.-a, la,) + (A-(ott

-a,/a )4 2 ,,Nxy (, a / 3/0 -01,3)] (A -/o4)

* A. 2.9 Solution Methodology - Numerical Scheme

A computer program has been written (see Appendix A for flow charts

and Program Listing) for data generation. The linearized finite difference

* equations are solved by an algorithm which is a modification of the one de-

scribed in Ref. 43. The modification, which consists of a generalization

of the algorithm of Ref. 43 is fully described in Appendix B. The solution

* procedure used for the problem, herein, is based on the algorithm described

in Appendix B.

The field equations, Eq. A-90, can be written as

* ~ ~ E f Z*){4~ CL~3{ + (A4~~} (k (A -lus)

* where A = 1, 2....... N and

,AJ CRY+ ICSjk f (A 1o)

Note that there are (12k + 2) elements in the {} vector.

In addition, the boundary conditions, Eqs. A-94 can be written in a

similar [to Eqs A.1053 form.

at x - 0 (k - 1)
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~1]f -tr~1Jf,} I['4fi~ =[a,.j(A -/07)

and at x L(K = N)

whete

C. rihO I &I C(A-/a)
ij= i,N

Note that and 'ZN + If denote the vectors of the unknowns at the fic-

- titious points (k = 0 and k = N + 1).

*By properly arranging Eqs. A-105, A-107 and A-108 for the entire cylinder,

the following matrix representation is obtained.

C, ".,A

(-f- o)

I..,.. Bw zit , Goo

c,,B..r-,,* C..



Eq. A.110 can be put in the form of Fig C.A (Appendix C) and it will be a

special case of this form, by the following changes. First, there is no

comon unknown vector Zi and thus all the [diI vectors are zero (tridiagonal

matrix). Next,

- (24k+4) by (1-2k+-2

ft') j(24k +4) by 07&, A1] - (., 4k+4, by,(ak+.?

cu = Ck (2k+4) by o)0

* LC(O) C.(o. '),] (/x+2) bv.(241+4)

C ci) = I(,:3,4.-, N-

jB,] r Ai . - -"-.-
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= N (o)'1 (12*42) by (24k+4)

I I (.2404) by (121c +2)

[,AN-4 4 = 2k4oi ,,077

{~} (240+4) b'y OWM

Note that m1 NL 24k + 4, while m 12k + 2 for i 2, 3, 4, ... ,

N-i.

Note also that Eqs. A-11O represents equilibrium and compatibility equa-

tions in which displacement components (Ai, Bf) and stress resultant components

(C1 , Di) [see Eq. A-86s are the
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unknown functions, while the geometry and the loading (taken in increments)

are taken on known parameters (assigned everytime the equations are solved).

Thus, this special case of the algorithm, Eqs A-110, is employed for find-

Iug pre-limit point response. When approaching the critical load, the in-

crement in the applied load parameter is kept small and the sign of the deter-

minant of the coefficients [D in Eq.(C - 19)] must be checked. If convergence

fails, the load level is over the limit point. But if convergence does not

fail and the sign of the determinant changes from what it was at the previous

load level, then the load level is also over the limit point. Desired accuracy

can be achieved by taking smaller and smaller increments in the load parameter.

It is also observed that by employing this procedure (special case of the al-

gorithm in which the load parameter is known), no solution can be obtained

past the limit point. Because of this, the more general algorithm, described

in Appendix B, is employed at this point of the solution procedure. The new

and more general algorithm simply changes the role of one of the displacement

terms with that of the applied load parameter. By so doing the form of the

equations changes and the matrix of the coefficients of the unknown ceases to

be tridiagonal. Depending on the position of the particular term that replaces

the load parameter [which one of the (6k + 2) terms, and at which node (x-position)]

column matrices appear all along the column corresponding to the vector 1z

and the new equations assume exactly the form shown on Fig. C-l. Thus, at

some level before, the limit point, the procedure is switched to the more

general algorithm (Appendix C), in which one of the displacement parameters

(AI or BI) at some specified node is taken as known (specified increments)

and the load parameter is the unknown. This solution procedure is continued

until the desired portion of the post-limit point response is obtained.
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Finally, in generating data, numerical integration is used to find the

values of the total potential, the average end shortening and the average

shear [see Zqs A-102, A-98, and A-991.

A.3.0 The u. v. w - Formulation

The geometry and sign convention for this formulation are shown on Figs

A.3 and A.4. Note that for this case the x-axis (and therefore the transverse

displacement component w) is taken as positive outward.

In this formulation two distinctly different kinematic relations (dif-

ferent shell theories) are employed. One is due to Sanders (Ref 34) and one

due to Donnell (Ref 33). In the case of Sanders' equations, it is assumed

that the reference surface strains are small, the rotation about the normal

is negligibly small and the rotations about in-plane axes are moderate.

One of the reasons for expressing the governing equations in terms of

u, v, and w, is that it is not possible to define a stress resultant function,

in order to satisfy the in-plane equilibrium equation identically, when using

the Sanders' kinematic relations. The case of using Donnell-type kinematic

relations is a special case of the Sanders case.

A 3.1 Kinematic Relations

The kinematic relations derived by Sanders assume a perfect reference

surface. These kinematic relations (Ref 34) are modified to include the ef-

0
- fect of an initial geometric imperfection w (x,y) as shown below.

GO EX + )
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where

, ,4- 4 1 ", +, , - -,-*-.(W,+ + WO

ry -- 4 U, + Wx ,,y +- s,*(.J,, f. A, :) +

3< = -;,. J K - + ,-

XWX .-Wx w.y " VV, y + 81,
-x W41xy + S),

where

f0 f;t um,.lew's t kivr41 dM (A -14)
A. 3.2 Stress-StraLn Relations

0 The constitutive equations are the same as in the w, F-formulation. Be-

cause of the different sign convention the relations between the stress and

moment resultants on one hand and the reference surface strains and changes

• in curvature and torsions on the other, these equations are

y A 1 A 2,, 8,, B, 1 E,3 r

Nxy A13 1; L~ B;393 j

,1 12 88 V.. D,. D ,1 DO.gp

H?, el B2 B3  14 'Do, Do l)" s,, g, - -.§ - -. + "

Ml y 8 ,3 1. ;D13 " 33i 1  -
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where the expressions for A1i, B i and Dj are given by Eqs A-14 and A-15.

A. 3.3 Imuiibrium Equations

Following the same procudure as the one described in section A.2.3,

the equilibrium equations and associated boundary conditions are:

I.uilibrium Zuations

.+ -Y.Y 0

N,,x + N,, -so +
"*" ( V '-, vx) s

+ 1 + =0

IV,

5., +I. (.. ,.). - - - ( u. + (N. U).y)

+ 1,, + 2I'FX,, + m , Y 0 (A-116)

Boundary Conditions (at x = 0. L)

Either Or

Su= 0
:!!: ~N)( N x-- ,x. , u

No (W,x w)4 Nj(wy+w;)

+ My 4cjjy SW 0

v rlyX = ,w,- 0 (A-117)
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S1

Use of the first equilibrium equation in the third yields

* (4 tbJ, ,) (Aj., 1y + Nyy.,y) + NX ( W,.x 4 W,) + 2 Nvy( 4.y + w,)

N.(W, + W, -!-- N U (N y.X 4 Nyyy) +N +y N4 I uy)

+ ?1,E + 2 ,xy f A , =f 0 (A-/iS)

A.3.4 Solution Methodology-Field Equations

The solution procedure for this formulation is as follows: assume a

separated solution for u, v, and w; express the known (assigned) parameters

w (imperfection) and q(pressure) in a similar form; find expressions for

reference surface strains, changes in curvature and torsion and stress and

moment resultants; substitute these expressions into the equilibrium equations

and use the G alerkin procedure in the circumferential direction (this changes

the nonlinear partial differential equations to a set of nonlinear ordinary

differential equations); use Newton's method, applicable to differential equa-

tions, to reduce the nonlinear field equations to a sequence of linear systems;

finally cast equations into finite difference form.

All of these steps are shown herein, in detail. Then, once this step is

completed, the solution scheme of Appendix B is used to solve the final set

of equations.

The dependent variables are the three displacement components u(x,y),

v(x,y) and w(x,y). A separated series form is assumed for each of them

K

2trX, Y) :,U j CI(X) CO44 -Vi(X) 4t W~)

Lao

IDW(XMY) W1 00~(~ C4 q 'my + MCA A -1/9)
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Thus, the number of unknown functions of x is (2k + 2) for each variable.

The total number is (6k + 6) subject to the condition that

2.o To h M 0 (A -/2o)

Note that the true number of unknown functions is (6k + 3).

Similarly the expressions for w° and the pressure q(x,y) are:

W' ULL W7J (A-2)

In this case also, the condition w20= = 0 is imposed.

In order to express the equilibrium equations in terms of the parameters

of Eqs A-119 -A-122, one needs to first find the expressions for the stress

resultants and therefore reference surface strains and changes in curvature

and torsion.

Use of Eqs A-119 and A-120 in the expression for 6 and Eqs A-112

and A-113 yields

L

4 ( 1%'X + +~i)S7 ~ (A -123)

* where

A2 (k , ',) (V Aio (w,,. W)

= -/ A,,,,w,., W,,) f A ,Wa.K, W,.,))3
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Eyy Mai( L4v)S i+iI +4 ~Co,

4 Vz~4 4 Si 4 ta.4 iajSin (A-i24
where

L

*J'L=()A 'J4() + A~i,(~Wa.

A4~ k Wk1. 21 V) +A. 4 3 ~(W, Us))

t CA4ik A 3 c(Waia))

i ti~ R(AXk) (W ,, ) A m (k1 ) . )

4 ,2i z T (~A.,aYk) (w, WI+A13 3~ (4W))

+~~3W h (ALOCgY+, 4A ,ZJ,J))

xy L. xy b-

where ~ *~ I zzJm~(A-/S
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Note that 8 andl are the same as before, or

I (A-,2)
(i)>

The symbols AM (i = 1,2,3,4), A (j 1,2,3,4), A
J(k) j(k) '''IJ(k) =

1,2,3,4), AIJ(k) (j = 1,2,3,4) and Aj2jtk) (j 1,2,3,4) result from the use

of trigonometric identifies, which are employed to change double to single

sums [similar to Eqs A-49 - A-51and symbols defined by Eqs A-52 -A-54; note

that some are common]. The needed trigonometric identities and definition

of symbols are given below.

'61 =1 A',C(,a) Smni
0

4W i=O

(Is a] cE A,'(, (A, a) S;n iO
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T- ['4Sq iTn o=1 A (,coC4683q
. = C' A14 ,,AbAa)S;.tio

zO.O i.
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A~k 4.c4 * AC~i4A)Gi ov*('- 4) c~i
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AU Aqao) z. SL4 + j

A~3~ ( -) 2 .g4 (I PLfl1i j11 3j (a '

AA

'"r

Aau,,. a) K C( 01 31 4 (--1PI i , (A -,.q)

10

AL

L

A', c#a) Si - ¢, , '. +,/,)/. ,.,]a

In order to write the strain-displacement relations in matrix form the fol-

lowing definiltions of olumn maritces (vectors) re needed.
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where

0 0 II

0 Lz~ Lh, Vt p, DOL~

Ila (A -/41)

L 411n 'I 1 ''0j

Note that t- and t4 elements are given by Eqs A-123&. A-124a and A-l25a, while

the a ijand k ijelements are-

iix ii,

S0.N

Mot)I A -/2

Exx I LLL X ) )<y I
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Substitution of the expressions for reference surface strains and changes in

curvature and torsion into the stress-strain relations, Eqs A-115, yields
0p

N,,

* ,, [AICS

or (A-143)

20

+ f )I, 'aj +f: )A. in (A -/44)

where

*MY
- (

0
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. (A -/47)

L [8 DJ

(A -/48)

• fl --J(-I

j m..
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Note that the , vectors result from linear portion of the kine-

matic relations; the jtL and t21 from the coupling between the imperfection

parameter, w , and the displacement components v and w (thus, in a sense, non-

linear relations); and the t and vectors from the nonlinear terms

of the kinematic relations (v and w coupling).

Substitution of all the derived expressions into the equilibrium equations,

Eqs A-116, yields in-plane equilibrium

39i. IX-V+ i

_L2J X* A ,+ ,,. , ',, + *X.,1 + 1*)',,,

i~109

=0 (A-ii

+ W + (AV +Ia

where

-91 R ( itW ae U - -W A)

~~~ 'o7 ( uw(" 7~t) - A'4 w , Dfy)
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- ,(4y L x + xE w,,faaJ(-S4

RW [A A,w(w.2, 71fl~, 4+ A~~('V,,,J

4~~~~~~ 4'A~ (wvon,) A(a, ?)J

S~~ ~~~~ A 1"k C vt A 7 x.,x '?4i A 4 A'w(V(Xt'. 3 ~
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A~ [Ari'(iF4) -y A4'-(V 9 (~~y,

Ro 2(o ,cU1 n;)* 4A3' ., N,,;, 0

4 R (Aici ( x + wz ) n As",?4) +(At-IVS Ix e)o

SA

4 f A 3ca) =W., 0j) 4 4 ( O W .o o (A -39)

where
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4w~ (A72 13

4~~' (1?? (W

4~)(Ajl('i inyyj) A33 re(W,&,)J
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24 -t "(u (w~j,?l m) A 4 jw4w,7g

- IT (A~) -2A A jr4  (g w't)

cogb~ (W2,4~ +A3 4 -t,,n7 5 -24(iVivWt*

A L24(mL) 2 ?ty) J(4v -

+Ai~ (U~fz) + 4(*#,(i 4 ) - A YOJ(afla

L L

-( 7jy)-A l)v' lyd

* A~ w',~4 ~r ,~~J ~~ LAasix??~

- A ca) Wt (A-l. A u(u, i ,1)-Ac)

46r -k ?y lawW~'0+ 4(k
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4 .2 A . (V.,x+ Wv Dx 24 , 3QQ-.I 3 ,,wx ,

4 A:1J9 (WON?,~.,,x) -Avo*)W ,x,) ±2 2Anzm (W-2,01ld;L)

-2 L (W1  L iX,.+Ai ,,c(Wfl ) L "J2A

3 ( i ( ,? ? ALt

- 2(+I, - A i. (123 ,w2, (V

. A o, ( W,x, + WKit 1', a) - A ,Jk,(,a ,. YfX ,)

According to Eqs A-119 subject to the constraint of Eq A-120, there

exist 6k + 3 unknown functions of position . These are the displacement co-

efficients Ulj(X), Vl1(X), Wli(x) for i = 0,1,2,..k, and u21(x), v21(x),

w21(x for i =1,2,3.. .k. Note that if one can solve for the displacement

components the response of the system is fully characterized (deformation

approach).

Next, the Galerkin procedure is employed in the circumferential direction.

The vanishing of the Galerkin integrals leads to (6k + 3) nonlinear algebraic

equations in the (6k + 3) unknowns. These equations are:
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L ,

gi.: -gl;& 4 y-

"0, 1,2,

'~~{iA (A~L 46A 0)~Next the, geerlie Neto' meho (Rf38 sue ordc h

4 g[L J J-L3 *i = 0., ...

j z= A~.,-. (A-/so)
Next, the generalized Newton's method (Ref. 38) is used to reduce the

nonlinear field equations to a sequence of linear systems. This procedure

is similar as the one in section 11.2. Because the final set of equations,

Eqs A-160, contains n's, C's and J's, and because these are in turn functions

of other parameters,then Hq A-72 will be applied to all of the elements, need-

ed in deriving the iteration equations. In so doing, only the nonlinear terms

need be considered. Thus,

wil -A w %*v L*1

.2AILtx)(K,, i) 4 A. W1,w 3 ) (A 161

,--. A W.72,w') A1, ( W,4, W,t. A/
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-L L

' 4 A' a l, x)]
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I, 4 ~A4 9 (L4,W' 2A44" (waxx' Kim) -t A,4xj (wa, K.K.')

-v w w , A:) -2A IM)(Wt,, K) AM( , W1 ,)

+2 + W~ W, u~~(MWs~,wza)J (A-173)
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- I4 L2 (.A , ,, J-2A=,,,(w,, 1,.) -A ZJ(.,,M , .';

+ W-2.xvr . 4, 2) +2Ar3,)(Wj.x, W-21)+W Ala) ( Z, V,..)

4 (A ~ W1,, - A&J Au' W, *")
4 AJ0 x U' ~x,2) 2A tc(7,Vf) 1GV (UW Xu)

-A2 •) ( Z -f' +2 l- A,,, (wX,.7. IW,)

+ A3 + 2 A. 44' ( MI, ,.)] (A-17A)

where m is the number of the iteration step.

Substitution of Eqs A-161- A-1781nto Eqs A-149 and A-150 one may obtain

* the iteration equations for the nonlinear part of the stress and moment re-

sultant vectors (Ln~j and..Lni. In so doing, new symbols are introduced

and defined. The part of the t's or nn,s that is linearized (linear) with

m+- mi- m+l
*respect to the iteration parameters (containing u , v & w ) is denoted

i nL
by superscript L next to n, i.e.1t 1i . The part that only depends on the

m m m
value of the parameters at the previous step (u , v , w ), is denoted by

superscript n next to n, i.e. t nn

A 8 +t'",j. A- f
{?7Z [] D](# ''+f17m

L 1 X+ IL z'~ (A-1

A "6 '+13fn:J [ ~ ~~ ' +(L

41 4 7A
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- {4ff9,: (-

{~~z~~= '[7 L 23+ f2I ,9t'x " ?1,+['j (A -183)

•-" In a very similar manner, the nonlinear terms of the equilibrium equations are
i[[[.also linearized by Newton's method:
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After linearization the equilibrium equations, Eqs A-160, can be written in
matrix form

(CI~71Ij +t }*(E,9Z1 oi rEf 1 1

+ ( 4 + fnfIc.j + I CJ

1821] tn'A ±2 all 172"J + 8, ajn"j f All] fX~+ (A11JfX'X
+1 1 JX}(A-/q3)

where

T

L9XXIL 1Y-11 0/1 ??MiNVi"ry'Lj

T.1 1 L

I yk~ ' Ya.? XyI,)ji X ~yy1 j, tyi~j

L AL

L 9&! Xy~i )tjj XX2i ,Jpi

In Eqs A-145 A-150 It], It I and I(t can be written as:

oi CE4 13i[X,xl+ k 1.)x

[Gil rk2,II.c 4 rk2.)[X
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2' fX,.

(KiXx [ K2, fXj
~fJ K7 [X,vJ K I'vJ1 (Xj + k/,xfX

{LXj 2I tXxji + C k2jJ fX4x + (,k2 ji[Al
*0{ 17j(,k13 '4jtX,.~ +(k41, X4 ]+(/ k X[X 4Kb[j

(k2J +X +LK2~,? ~ 4L )X~ fl3 (A-'94)

* Substitute of Eqs A-145- A-l50, and A-194 into Eq A-193 yields a matrix equation
which only contain the vector of unknown, (x)

[R4)[fX4 4[LR-3)fXa.4 + (R2J{XZE$ + PI)X~ O3 Rl Xi:= [3J (A-1YS)

As in the case of W-F formulation transformation equation are introduced in
order to reduce the order of the linear equations.

IXJ 4X4
By this transformation, Eq A-195 can be written in the f6llowing form:

(RN J (S)I] +T~: (A -NU)
A.3.5 Boundary Condition

Boundary condition AMl7 can be presented in the following form

Either Or

Nx r U Cft.

1M1( 'RX. =0 (A-/17~a)
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.* where

'Q N (w ,x W)4 N4 Y('MYfw ,)-_ us,

4 MXX,x +?MX,.y (A-?)
Obviously, the boundary condition can be written in matrix form (at x = 0, L)

N4Y
LQU + [,1 U

SIW (A -i?1)

where the form of £flIJ and [?J] depends on the type of boundary conditions.

The stress and moment results, and the displacements are represented in series

form.

.,Agc ' )zv f U'i " -R J

ftfl~~~Ji4i 0-YA;)lY .u

LR=O i-oLOY+ . .CAIJCO Q#.ftD Ka
ozo

0= .
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After applying the Galerkin Procedure, the boundary conditions can be written

as:

- 1

- I

0' --

S(4 -200)

where

9Z~1+ ?cxxiL 4 i .

:z 2?cyi -f + ?xlyji t 1?1yILZ

*1 -l-

+ -r (A av (Wx W3 wad~ , -A42 vLr, i~.ay3

(Axra. ;xy + A4X

5 9 xai 4 070&~ji + 9 (xj(-2 0()
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Using the similar procedure as used in sectionII, Eqs 
A-200 can be linearized

and written in matrix form:{ '1 Ix'
+ (J[X L(Nt~tN1NJ4AlX

or gNx 1 SI I N (A - 02 )

where

{N8 -

Substituting of Eqs A-145-A-150, A-194 into Eqs A-202 yields 
the following form

for the boundary conditions

:-- fBG} (A-2o3..

4Wt~
"0
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A.3.6 Solution Methodology - Finite Difference Equations

The linearized iteration equations (equilibrium) assume the form

[ ] q.,J S] 'XJ ] l,~

Note that the true number of unknown is (6k + 3). These are uIV, vli, wli

(i = 1,2...k) and u2i, v21, w21 (i = 1,2...k) [see Eqs (119)]. For conveni-

ence though the number of unknown is treated as (6k + 6) with u2 0, v20 & W20

existing for the count, but subject to the constraint u20 = v20 = w2 0 = 0.

Thus with the transformation, j = the number of unknowns is (12k + 12).

The equilibrium equation, Eqs A-196, are next cast into finite difference

form, by employing the usual central difference formula. Thus at each node

point J, the equations become (in matrix form)

-•C Sl ) ; (A 204)

At each end one fictitious point is used. This requires (12k + 12)

additional equations at each end (j - 1 and N; the fictitious points are de-

noted by j = 0 and J = N + 1). These additional equations come from the

boundary conditions.
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K

Paradoxically, the number of boundary equations is (8k + 8) at each

end. Note that these are either natural (8k + 8 through the Galerkin (pro-

cedure) or kinematic (8k + 8, uli = u2i = 0, v1i = v21 = 0, Wli i w21 0 &

W = w2 x = 0 for i = 0,1,2...k). This necessitates the requirement of
l x 2,x

(4k + 4) additional conditions at each boundary.

The additional boundary terms are given below and they only involve

U lix x  u21,x vli, . v21 , at each boundary. Their existence deriva-
xx xx xx xx

tives with respect to x of the displacement components u and v in the equi-

librium equations. On the other hand, regardless of whether or not the

boundary conditions are natural or kinematic, they do not contain second de-

rivatives of u and v with respect to x.

0+ N2 0

j==q

Z ;2 ,XX "=-i

- Ui,°x 0 C ( oA -2O9)
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Where the constant 1, 12 and 1 3 are assigned to achieve certain goals

(in generating some results 11 = 1 12 = -2 and f -1 1 are used, which implies

that a derivative at a boundary is obtained in a forward manner).

Note that Eqs A-205 are the additional (4k + 4) boundary terms and

that these equations are incorporated in the matrix form shown in Eqs A-203.

This means that [DB) and [DC) are square matrices, [(12k + 12) by (12k + 12)].

These boundary equations, Eqs A-203, are also cast into finite difference form.

where j = 1 or N.

A.3.7 Total Potential & End Shortening

The expression for the total potential for a supported (ss-i, cc-i)

cylindrical shell is given by

UT -5 a xx+Nyyy+NyrD

* -x kx + tyy K, +2 Mxj k.) dxdy

-Y fdcxoy (A -2o7)

or
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jax

4yy kyys C, 4 2 Nxo ) xy +tL 7li I:,x'.i N -

1 2 a .

+ Wxr i kxv i + ??yyi - . 24
4j kxyL -f 9Merj kxv

2 a

4 xPyi )y;yz T'4 /flXYL )Jz A

4.27R Mlx, XGU . !x.U.-UJ+4q, Ir.

0~~1 MI.Woy-.

* where

~+

71 L

* 144



Kxv

a

[Ea4 +1jj2j} 4

It I- U it 11 U 10 10 10
and nxxj, n 1x, , 1  u1 , .v, , are the values at x =L x, n~ 1 xxmxi

10 10 10
ui ,w are the values at x=0
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APPENDIX B

COIPUTER PROGRAM4

B.1 v, F-Formulation

B.2 u, v, v-Formulation

Flow charts and program listing, for both formulations,

will be made available upon request. (Write to Professor

G. J. Simitses).
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APPENDIX C

MODIFICATION AND GENERALIZATION
* OF POTTER'S METHOD.

The behavior of several structural configurations is often fully described

by a set of linear algebraic equations. In general, when these linear equa-
0

tions are put in matrix form, they can be partitioned as shown in Fig. B-l.

The blank spaces in the coefficient matrix are zeroes and [Ci], [B i and

[AE3 are matrices of orders miby mil, mi by mi and mi by mi+1 respectively

Ziis the vector of unknowns, each of order mi by one and there are N such vec-

tors. Let ZL be the common unknown vector. Moreover, g is also a vector of

order mi by one and di is a vector or order mi by one, which includes the co-

efficients of the common unknown.

Note that the presence of vectors di make the whole coefficient matrix

nonbanding and irregular. If, on the other hand, the di-vectors do not exist

then the coefficient matrix is identical to that of Ref C-I. In this case,

the matrix is a banded tridiagonal matrix with zeroes everywhere and with,

at most, three submatrices banded along the diagonal as shown on Fig. C-1.

Therefore, the present case is a bit more general than that of Ref C-1. The

solution procedure, though, is basically the same on that of Ref. C-1.

C.l Description of the Algorithm

The explicit form of the system of linear equations of Fig. C.A is given

by

+A) 4 [del Z 4J
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al * CP CP CP a I * a
Il A* I 

z

N NN NI 14N-
N' Z

E do

4 04

/00

'00I
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wi / L= .2. 3 , N-I

• wih L= L-l, L, L+

* (Cj3(Z.} +L[B8] [Z.1 {SNdJ ZL(U)II (C-i

Note that ZL(i) is one element of the common unknown vector ZL (see Fig C.1).

A short description of the solution procedure is next outlined.

By using Gaussian elimination for the first (L-2) matrix equations, one

may find the equivalent set of equations, which is

L .2, -- , (C-2)
e where

(Pl [13 CB" A,] [E,- Bi{,

and

~,j~ (M -Cl r .-,,f'" A J
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..

t~~~I cB)-C L(p, (di} - (CL) E.jS

- r8  fqj- CL) [X.J C-4)

Note that the order of the various matrices is as follows:

(PL)

(zi), fgi], [dii, (Xj] and (Ei] are all mi by 1

Next, for i = L-1, L, and L+1 the equivalent equations are:

where, for i = L-1

(P~J (8i] 1(Cd(T1,)) ( i-c~]CE.g.

{xiI CC8il - (CO (Ah1Jj, (f&4 (CJl fxi.,})(Cs
'I
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with

0 [E4 0 (C-7)

Note that LEI.. is an mil by mi+I matrix (defined, as shown, for convenience).

and for i = L, L + 1

€ -I

CXL 4L8s) - (Ci(P-.))(($,j-Cd fx.}) (c-i)

Finally, for i = L + 2, L + 3, ....N, before writing the equivalent

equations, .d is eliminated from each matrix equation. The elimination

is accomplished by multiplying {d3 with the appropriate terms of matrix

.pL This leads to a matrix with only one nonzero column (vector), as shown

below

d (a) P, (L, 2)

Ud,}$cpsJ. - 0 0

di(M)pI.cL.Mo (C-9)
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q

Note that the symbol * is introduced to define the operation that leads to

the matrix of Eq (C-9).

Similarly, the symbol 0 is introduced to define an operation that leads

to a column matrix.

VI() Va(I)

V, A) V ()

v, (NF) Va (M1.) (C-to)

With these definitions one may now write the equivalent equations for

i = L+2, L+3, .... N-1. These are

where

C 
-)

with

(Cd] :(Cf - o [-i(D"dd@u (PL,?, ')..... C ., (C-/,j
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and

* ~[ J -X [dJo( x}- 1] [XL.IJ 4 C PI (FP.)[X.j

Cpl., , , + .... +-, .... ,.X ) (C-,f)

Finally, for i = N

Z-I= IjX01 (C-16)
where X," is given by Eq (C-13) with i=N. The recurrince formulae for back-

ward substitution, in order to calculate ZN.l ZN-2,.. Z2, and z1 are

fX~J (Pj[ iijti ; Z N-1, t-2,

* Xil IPO [Ijol - (Ej ZL( ;i L--, ---.2. (C-/)

C.2 Determininant Calculation

in each step of the inversion process, one must calculate the corresponding

0 determinant ei, namely

= d 8 j,)

.e, d4.3 (CLdIP. 3J .2 N (C +
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Thus the determinant, D, of the entire coefficient matrix of the system can

easily be computed by

-D~ rreT", (C-I?)
i I

Reference

C.1 Tene y. Epstein M., and Sheinman I. "A generalization of potters method"
Computer & Structures vol. 4 pp. 1099-1103 1974.
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Appendix D

INSTABILITY OF LAMINATED CYLINDERS IN TORSION

• by

D. Shawt and c. J. Simitsestt
School of Engineering Science and Mechanics

Georgia Institute of Technology, Atlanta, Georgia

Introduction

A Galerkin-type solution, for the buckling analysis of a perfect

geometry, laminated, circular, cylindrical thin shell subjected to pure

torsion, is presented. The torsion is applied through the reference

surface, which is the midsurface of the laminate and the boundaries

are classical simple supports (SS-3). The analysis is based on Donnell-

type nonlinear kinematic relations and linearly elastic material behavior.

It is assumed that a primary state exists and that it is axisymmetric.

This primary state can be obtained by solving the field equations. Through

perturbation of the governing field equation a set of (Linearize4 buckling

equations is obtained, along with the related boundary conditions. A

Galerkin procedure is employed for solving the buckling equations. Thus,

the problem is reduced to an eigen-boundary-value problem. Critical

torsloiLal loads are obtained for several Boron/Epoxy configurations of

symmetric, antisymmetric and asymmetric stacking. Tn addition, approxi-

mate buckling modes are established for both positive and negative torsion.

tGraduate Research Assistant
ltProfessor
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Fig.D.1 Geometry and Sign Convention
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Governing Equations and Solution Procedure

The geometry and sign convention are shown on Fig. 1. The torsion

is positive if applied clockwise at the right end (x = L) and counter-

clockwise at the left end (x - 0). The governing equations for a general

laminated circular cylindrical shell, with or without orthogonal stiffen-

ers, without geometric imperfections, and subjected to a pure torsion, con-

sist of two coupled partial nonlinear differential equations it, the

transverse displacement component w(x,y) and an Airy stress (resultant)

function, F(x,y). One of the equations characterizes transverse equilibrium

and the other in-plane compatibility. These equations are taken from [D.i]

- 0by setting N = q = w (x,y) = 0, where N denotes the uniform axialbsetnNxx q °(') OwerNxx

compression, q lateral pressure and w°(x,y) an initial geometric imperfec-

tion. The two equations are

Equilibrium:

b x 1FXXXX-b31F, xxxy d1 1W, xxxx+ d1 2W, xXzz+ 2d 13w'xxxy

+ 2bl3F,xyyy+ 2b 23Fxxyy + 2b 3 3 F, XXyy+ 2d 31W, xxxy+ 2d 32W, XYYY+ 4d 33W,XXYY

bl2F,yyyy+ b22 F,xxyy- b32 F,xyyy+ d2 1 W,xxyy+ d22 W,yyyy+ d23 W,xyyy

+ F,x+ F, w + 2N w, -=2F w +F, W, 0 1)-I)
+ x yy xx xy xy xy Wxy xx yy

Compatibility:

a11 Fyyy+ a12 F,xyy a13F,xyyy+ b11W,xxyy+ b12W, yyyy+ 2b13 W,xyyy

+ a 2 F,xxyy + a 2 2 F, xxxx a 2 3 F,xxxy+ b21W, xxxx+ b 2 2 wxxyy+ 2 b 23 Wxxxy

a13Fxyyy- a23F,X=y+ a33 Fxxyy" b31W,xxxy" b32W'xyyy" 2b33 Wxxyy

W'XX-- +W, w, W, w. 
(D-2)

R xy xy xx yy
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where
'. ai J=L J[a L...A LB

i[bij= [A ij [Bij

[d = Bi [b I [D) (D-3)
ij i j ij ii

and [A ij, [B ij3 and [D iJ3 are the extensional, coupling and flexural

stiffnesses appearing in the usual lamination theory.

The expressions for the simply supported boundary conditions (SS - 3)

are given below in terms of w and F (at x = 0, L).

W =0 ; F, =0;
yy

b21 F,xx + d1 1 W,xx + 2d 1 3 Wxy - b 31F,xy 31Nii ,

a2 2F," a2 3F, + b2 1w, + 2b2 3 W, N23 D4)

. where N is the applied torsional stress resultant. For more details see

xy

It is assumed that, under the action of pure torsion, a primary state

exists, which is axisymmetric (all three reference surface displacment

components, u, v and w, are independent of the circumferential coordinate y).

Note that for symmetric construction (regular angle-ply or cross-ply with

odd number of plies, for example) a membrane state exists and, therefore,

0 the above is not an assumption. How reasonable this assumption is depends

d% on the nature and magnitude of the coupling stiffnesses [B ij3. Primary

state quantities are denoted by tilda. With this assumption, the field

6 equation becomes

b2 1 F,xxxx + d1 1W,xxxx + F,xx/R - 0 (D5)

A AA

a 22F,xxx x + b 2 1W,xxxx + w,/R = 0 (R6)
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Moreover, the expression for the reference surface hoop strain Co
yy

is given by

e" .- w/R

a xx + a2 3 N xy + b2 1 W'Xx f (D-7)

These three equations, Eqs. D-5, D-5 and D-7, are employed to
A

eliminate F and thus there is only a single field equation. This

resulting equation is:

22 xxxx +  b2 1  a23 - (-
t22

AA

The general solutions for w and consequently [from Eq. D-7J for Fxx

become
AL LV v=B 1 sinh Xl(x- sin 1 2 (x -2)

+ B2 cosh X(x - cos X2 (x - -1)-R a23 N (-9)

A -1 2 2*Fx ;- ( 2 b - 'T 2+ b B X I +2xx 22 21112

B 2 .L
+ "-) cosh X (x - - o 2 (x )

.1 (bB (X- 2 ) 2b B2 XI 2 +
a22 21 1 1 b21

+ -) sinh Xl(x - sin X2 (x - (D- 0 )
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SR 2 d) + (12)(d -12
22 22R 22

b2 L b
!bT 21

= -3 2a2Rb 2 1  d11 )) .- - (b 2 d1'd  (-II)
2 22 22 22

The cnnstents Bl and B2 can be obtained by making use of the

boundary conditions, Eqs. D.4.

Next, the buckling equations are obtained through a perturbation

of the nonlinear governing equations. The dependent variables, w and F,
A 

A

are replaced by the sum of the primary state parameters, w and F, and

small additional quantities, w and F, necessary to represent the buckled

"..state. Moreover, the related boundary conditions for the buckling equations

are also obtained in the same manner. Note that since the additional

quantities can be made small as one wishes, only the linear terms in

w and F are retained.

The buckling equations and related boundary conditions are:

b: b1F! x+ (2 b23- b31)F!, xy+ (b - 2 b3+ b )Fxxy+ (2 b b2)F!

' 23 31 xxxy it 3 22 yy 13 32  Xyyy

+ bl2F, yyyy+ d1 1wxxxx+ (2 d31+ 2 d 13 )Vxxxy+ (d12+ 4d3 +d 21) wxyy

1

+ w 3 + 2yyyy R + F, , yy

A 1 1

+w, 'Fyy + 2  xy w'xy-O(-)

a F, 2 a23F + ( 2 a1 2+ )F! 2 F. +aF
22F2 xxxy 1 33)xxyy- 13 allF1yyyy

+ b2 1w! + (2 b2 3 -b 3 1)W,+ (b11- 2 b3 3 + b22 ) W!xxyy

, .1 6 0

• - , o . - , . . . .. . . . . . . . .



1
, ~ I, +- +w, wW =0 (D-13)

+ (2 b13- b32)W!xyyy+ bl2W!yyyy R W,yy

1 1 1 1
t w = 0 ; b21F, + b3 F!+ dW!xy+ 2d 3 Wy = 0

x = O,L
1I 1

F,yy a 22F!xx+ a23F!xy+ b 1 2 Wxx+ 2b23W!xy = 0

The Galerkin procedure is employed for both equations. The following

approximate series is used for generating the Galerkin integrals. Note

that the boundary conditions are satisfied by each term in the series.

N M
Wl n. 1s;r, ( +

w l inC°s R ins'n=-) [jT s (i+2)T L

N M

= I (CinCsRI+ VinSinR ) FLT .l L +2 x-

Substitution of the above expressions, Eqs. D.15, into the buckling

equations results into a set of systems of linear homogeneous algebraic

equations in Ain' B in Cin and Din for each n (decoupled with respect to n).

Assuming that the lowest eigenvalue corresponds to the critical load,

NxY cr, a computer program has been written to this effect. The Georgia

Tech high speed digital computer CDC - CYBER - 170/760 is used for

generating data. Note that a minimization with respect to n is per-

formed in order to find the lowest eigenvalue.

Numerical Results and Conclusions

The geometries considered in the investigation represent variations

of the one report in D.2. Each lamina is orthotropic (Boron/Epoxy;

AVCO 5505) with the following properties:
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El = 2.0690 x 108 kN/m2 (30 x 1066psi.) ; = 0.21

E2 ' 0.1862 x 108 kN/m2 (2.7 x 10 6psi.); R = 190.5 cm(7.5in.);

8222

-12 ' 0.04482 x 108 kN/m2 (0.65 x 106 psi) ; L= 381 cm (15 in.);

h ply 0.013462 cm. (0.0053 in.) (D-1 6 )

(hply - h k - hk-1 for k - 1,2,3,4 ; four plies)

Five different stacking combinations of the four-ply laminate

comprise the various geometries, I - i, i = 1,2, -- 5. These are

I-1 450/-450/-45/450

I-2 450/-450/450/-450

I - 3 :450/450/-450/450 (D-17)

I - 4 90P/600/300/0

I - 5 00/300/600/900

- where the first number denotes the orientation of the fibers of the

outermost ply with respect to x, and the last of the innermost. A pure

torsion is applied through the midsurface of the four-ply laminate.

Some of the generated results are shown on Table D.l.For each

geometry, the critical torsion (for both positive and negative

application; clockwise and counterclockwise at the end x = L), the

minimizing value of n (full number of circumferential waves), and the

values of the coefficients A in and Bin (normalized with respect to B2n)

* are shown. Note that the Ain and Bin when substituted into the first of

Eqs. D.5 yields the buckling mode. It was concluded that M = 5 suffices

for determining critical loads.
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Note that Geometry I - 1 is symmetric (with respect to the

*midsurface), Geometries 1-2 and 1-3 antisymmetric, and Geometries 1-4

and 1-5 asymmetric. For the symmetric geometry (1-1), the positive

. direction critical torsion is 6987 N/ba (39.9 lbs./in.), while the

negative critical torsion is 13,220 N/m (75.5 lbs./in.). The

respective reported D-g experimental values are 4640 N/m (26.5 lbs./in.)

for the positive direction and 11,508 N/m (65.72 lbs./in.) for the

*negative. This suggest that the geometric imperfection in the testel

cylinder D-2 is such that the configuration is more sensitive to it, when

loaded in the positive direction, than in the negative (the ratio of the

experimental to theoretical value is 0.664 for the former and 0.87 for

the latter). The difference in response is understandable, because of

the anisotropy. The antisymmetric geometries, 1-2 and 1-3, yield the

same response when loaded opposite to each other. Note that the positive

direction critical load for 1-2 is the same as the negative direction

critical load for 1-3 (the same is true for the buckling mode). Also,

observe that the two (t direction) critical loads are very close (9534

N/m. and 9454 N/m.). This is due to the fact that the extensional, [ A ,
ij

and flexural, EDij, stiffness have the same form as if the shell were

isotropic. The difference from isotropy is the existence of some small

(in value) terms in the coupling, [B 3, stiffnesses.
ii

Finally, for the asymmetric configurations, 1-4 and 1-5 the response

*i is completely different when each geometry is loaded in the positive and

in the negative direction. Although the [A and ED 3 stiffnesses, for
ij ij

. the two configurations, are the same and only the signs are different

* in the [B1 j3 stiffness, the geometries behave (radically) differently.

*. The only similarity is that the number of full waves, n, is approximately

" the same (12 and 13).
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