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1. INTRODUCTION

This is an interim technical report in which is outlined the

accomplishments obtained to date by the Department of Electrical

Engineering, University of Mississippi, in an investigation of the

electromagnetic properties of the so-called ground stake antenna

undertaken for the Naval Ocean Systems Center under contract

N66001-82-C-0045. The report describes progress made to date in

three facets of the overall research project: (i) formulation and

numerical analysis of integral equations for the problem of determining

the characteristics of a coax-fed monopole antenna in a lossy medium,

(u.) formulation of the integral equation for a cylindrical antenna

which resides in two contiguous half spaces, and (iii) development of

the measurement apparatus and techniques for the experimental

investigation of the properties of a cylindrical antenna which resides

in two contiguous half spaces.

In Section 2 is presented a detail discussion of the derivation

of the coupled integral equations for a monopole in a lossy medium

that is fed by a coaxial waveguide through a ground plane. The equations

involve integrals whose integrands are singular and infinite series

whose terms contain Bessel functions, so to solve these equations

numerically requires great care. Therefore, in this section several

analyses are described that enable one to render all terms in the

equations amenable to efficient and accurate numerical computations.

Section 3 is devoted to a description of the formulation of the integral

equation for the ground stak? antenna. Because the ground stake

cylindrical antenna is partially in one medium and partially in another.



Sommerfeld integrals are incorporated in Green's functions which appear

in the integral equation. At best, Sommerfeld integrals are difficult

to evaluate efficiently and accurately so significant attention is

given to the developemnt of equations in a form that can be solved

numerically with high efficiency. As opposed to double integration

which one must confront in the Green's functions for the ground stake

antenna when one derives these Green's functions from the traditional

Sommerfeld integrals for an elementary dipole, it has been possible

by taking a fresh approach to-obtain Green's functions possessing only

single integrals. A brief study of this integral equation reveals that

it can be solved numerically rather readily.

In Section 4 is found a detailed description of the apparatus

and procedures presently under development for experimentally studying

the properties of the ground stake antenna. Construction details of

the tank in which the antenna is to be placed for measurements are

presented.. Also, the various pieces of apparatus that have been

constructed for the measurement of the properties of water are described.

Finally, the measurement techniques to be employed are outlined briefly.
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2. FORMULATION AND ANALYTICAL/NUMERICAL PROCESSING OF COUPLED INTEGRAL
EQUATIONS FOR COAX-FED MONOPOLE ABOVE A GROUND PLANE

In this section is found a derivation and an analysis of the

caupled integral equations for a coax-fed monopole above a ground

plane (Fig. 1 ). The monopole resides in a lossy medium of infinite

extent. These equations and the numerical techniques developed for

solving them provide the basis upon which one may found an accurate

analysis of an antenna in a lossy medium.

The monopole antenna illustrated in Fig. 1 is the extension of the

center conductor of a coaxial waveguide whose outer conductor terminates

at the conducting ground plane. The monopole is taken to be a conducting

tube (open-ended) with a vanishingly thin wall. It is fed or driven by a

time-harmonic signal (ej(t) from the coaxial guide and receives its

excitation through the annular aperture where the coax opens into the

ground plane. The monopole is of height h and radius A and it resides

in a semi-infinite, homogeneous medium characterized by (i,E) with

(- E0Er-J 1) allowed to be complex to account for losses. The

radii of the inner and outer coax conductors are a and b, respectively,

and the medium in the annular region between the conductors may be

uniform in which case it is characterized by (1c Ec) or it may be a

gas (u EE ) in which a dielectric (c, Ec) bead of length L is inserted

to provide mechanical support. (See Fig. 2 .) In the former case of

a uniform solid dielectric, L is made to approach infinity. As

suggested in Fig. 2 , the monopole radius may differ from that of the

coax inner conductor.

We wish to calculate the current induced in the monopole and to

determine the load, or admittance, which the monopole presents to the



Monopole --i-"

(±, E)

Aperture A

Fig. 1. Coax-fed monopole above a ground plane.

4



-h

Monopole

2t[ -p. -
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Fig. 2. Cross-section of coax-fed monopole above a ground
plane (for coax filled with uniform solid dielectric,
L o).

5



coaxial line. The known excitation is specified to be a TEM wave

traveling in the positive z direction in the coax, whose field

components are

i E0  -jk z i E0  -jk z
E -- e H e (1)P P , 1 H q p

where k2 =W 2 c E and N2 = c/e c and where E is the known complex ampli-
c c c c c c 0

tude of the TEM electric field incident upon the annular aperture. If

the coax is gas-filled and the center conductor is supported by a

dielectric bead, kc and nc are replaced by k and n , respectively. The

viewpoint taken here is that the monopole can be treated as a scatterer

which is illuminated by the field radiated by the coaxial aperture in

the screen. This approach enables us to apply aperture and scattering

theory to the present analysis and provides the basis for the formulation

of a pair of coupled integral equations for the monopole-coax structure.

As an aid in the derivation of equations, the formulation is partitioned

into three parts: field in coaxial region, field radiated by annular

aperture, field scattered by monopole.

Formulation of Integral Equations

Coupled integral equations are formulated in this section for the

unknowns I and Ea where I is the total axial current on the monopole and
P

E a is the p component of the electric field in the annular aperture A

through which the coaxial guide and monopole antenna are coupled. These

integral equations are derived by requiring (i) that the 0 component

of the H-field in the coax be equal to that in the exterior region when

both'are evaluated in the limit as the points of observation approach

the annular aperture and (ii) that the electric field tangential to the

monopole and to the conducting plane be zero. For this purpose the

6



magnetic field is expressed in the coaxial guide as a function of Ea

0

and of the excitation and in the exterior region as a function of

Ea and I.
P

Magnetic Field in Coaxial Guide

The magnetic field Hc° in the coaxial guide can be written in terms
!a
of the coax excitation of (1) and aperture field Ea as

P

H O(p,z) - Hsc(P,z) + Hc(pz) (2a)

where b

H (p,z) Ea(p')Gc(pz;p')dp '  (2b)

a

and in which

isc E0

H (pz)- 2 cos kcz (3a)

is the so-called short-circuit magnetic field which would exist in the

uniform-dielectric coax if the aperture at z -0 between the coaxial

guideand the exterior region were short-circuited. If the coax is

gas-filled with a bead-supported center conductor, the short-circuit

magnetic field in the region -L < z < 0 would be

sc0 ekgL

H c(p.z) - 2 -. cos kcZ, z E(-L,0). (3b)
P n cos kcL +j rs;ink Lco

9 cc c

In the case of the gas-filled coax, (2a) is valid only in the bead

material (-L < z < 0), and it is assumed that higher order modes excited

at the discontinuity at z -0 are vanishing small at z --L. The

7



Green's function Gc is determined by standard methods [ 1 ] to be

c Z , n jkz 1 r e -j2k c (z+L)

G (kp9- 1 e C -
i

ca 1 + rj

kc , d ,z
- P I q 2 (p) e (4)
T1c q1l q dU q dpq

zC(-L,O)

where

S - nc (5), 1 9 + Tjc

where

q() q N0(ktqa) J0(ktqP) - J6 (k tqa) N0(k tqP) (6)

and where
Av~2 - k2 ,0 k2 < k 2

c tq tq c

Xq " (7)

-jv/k2  - k 2  ,k 2  > k2

tq c tq c

thhin which k tq, q 1929,..., is the q throot of (Pb (b)=-0. In (6), 1 and

N are the vth order Bessel and Neumann functions and the norm N2 in
V q

(4) is

* 2

b 2(
Nd d (p d 4'q (P) - (8)q ft q P f b 2

a 2~

The Green's function Gc of (4) is valid for both the uniform-dielectric

coax and the gas-filled coax with bead-supported center conductor; in

the former case, ris set equal to zero in the first term of (4).

8



Field in Exterior Region

The magnetic field in the exterior region is determined as the sum

Hex, H r +HS (9)

where H is that radiated by the annular aperture in the absence of the

monopole and Hs is that scattered by the monopole. The field incident

upon the monopole is that radiated by the aperture. As an aid in

deriving expressions for the exterior field, the exterior-field

equivalent model of Fig. 3 is introduced. In this figure one sees

that the annular aperture A at z -0 is short-circuited and that an

equivalent surface magnetic current of density M =M _ where ', -

[LEa x -l or M -Ea is placed on the shorted annulus ( 
2 1. This

model and its field are equivalent to the original structure and its

field in the exterior (z >0) region [ 2 ]. By image theory one arrives

at the final model of Fig. 3 which is used as a guide in exterior

formulations.

In the absence of the monopole, the field (Er,Hr) due to the

magnetic current is determined from

Er - VXF (10a)

and

Hr j (kF + VV -F) (10b)

where

ii 2Mp,) e Jkjr-e'l

(r) - 2M dS' ()

A I2
or where F -F, with

9



Monopole - h

Ground (0.0

Plane M4

I L TVVaWoLIMI
Image of M

Image of (11.0E
Monopole "h

(a) (b)

Fig. 3. Exterior-region equivalent models of coax-fed monopole.
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b Pir -jk[z 2 + R ]!

I P'E1,(P')i o*FM(Dz =-2- W[2  2 ddo' (12a)

ar~ K [ 2  R R2 11

in which k2 = W 2 E and n 2 . P/E and

R2 _ (p2 + p,2 - 2pp'cos*'] . (12b)

From (10) and (12) one readily finds that the field components E
r

z
r

and H are

b T -jk[z 2 + R21

r - r P'E(P') I cos,' e d'dp' . (13)Ez ) " 2 0 ' I I [z2 + R21
a -IT+

b eik(z2 + R211

Hr(p,z) - j b' P'Ea (P') cos ' [z2 + R2il d4'dpv. (14)

a -7T

The field (E ,H') due to the total axial current I induced on the

monopole can be determined from

E =j -m - (k2A + V * A) (15a)

and

Hs  IVxA (15b)

where A has only a z-component given by

h 7t -jk[(zmZ')2 + R2]11

A (Pz) JI (z') e-f do'dz' (16)

-h -'n [(z-z')2 +R]

in which R 2 is R2 of (12b) with P' replaced by 4. As is consistent with the

fact that the excitation of the monopole emanating from the aperture

is * independent, the current on the monopole and the resulting

scattered field are also * independent. Expressions for the field

components Es and H; follow immediately:
zI

11|



h IT -jk[(z-z') 2 + R2] (17)

E(z - T' ( + k f I(z') 1 f [(z-z') + d 'dz'

,z)-j ~ 4nk dz2 21T Cfe Z R 2]
-h - ( ) +

h Tr -Jk[(z-z') 2 + R4I

H s(pz) - - - I(z ) e (z-z') 2 +] d4)'dz' (18)

Integral Equations

The final integral equations for Ea and I result from enforcement
P

of boundary and transition conditions. The boundary condition is that

the total electric field tangential to the monopole and ground plane

surfaces be zero. The tangential E-field on the ground plane is

zero by virtue of the use of image theory in the construction of

expressions for Er and ESand that on the surface of the tubular

monopole is made zero by enforcement of the following equation:

E ,(4,z) + E r(,z) _ 0 , zc(-h,h) . (19)z z

The required transition condition is that the magnetic field tangential

to the annular aperture A in the exterior region and that in the coax

be equal when the points of observation approach a common point in 4.

This condition is ensured upon enforcement of

co e

lira H$ (p,z) - lim H x(pz) , pEA
z+0 :40

or of

lim H 0 (p,z) - lir H (p.z) + H (Pz)} , A (20)
ztO z+O

Eqs. (19) and (20) must hold simultaneously and, upon utilization of

(2), (3), and (13)-(18), they lead to the coupled integral equations

12



below for Ea and I:
P

h

-j j - + k 2  I(z') GS(,z;z')dz'

4 7Tk d 2  I
-hLb

+J Ga(pz;p')dp = 0 , zE(-h,h) (21a)

aI
p-it

and
h

b
I(z') G (pO;z')dz' + j 0 W(') Ga(p,O;p')do '

a

b

P (P') GC(PO;p')dp ' - Hc (p.0), PE(ab) (21b)

a

in which

T -ik[(z-z')2 + R2]1
G 4(Pz;z ')  f - J-[ RIe W 2a

27t f [(z-z')2 + R2 (22a)

and
aT e-Jk[Z 2 + R21
G(pz;p') -' -21CO d ' (22b)

f I[z 2 + R2

For subsequent convenience, the integral equations are written below

in operator form:

E:[I;z] + Er(Ea;z] - 0 , zc(-hh) (23a)

and

li(I;p] + Hr (ga;P HcEa.1l - HC (p,0) p pe(aab) .(23b)

13



I and E a(--M )can be determined by solving the coupled integral equations
P 0

and from knowledge of these two quantities the radiated field and the

input TEM reflection coefficient of the coaxial guide can be computed.

Numerical Solution of Coupled Integral Equations

The integral equations for Ea and I are far too complex to be

P

solved by any but a well-conceived numerical method. Due to the

c
presence of G , one must sum an infinite series comprising te-ms

involving derivatives of Pq which depends upon Bessel and Neumann
q

functions whose arguments are determined by a solution of a transcen-

dental equation for each q. In addition the following terms in the

integral equations involve integrals whose integrands may be singular:

E8 ('Lz), E r(,z), lim Hc(p,z), and lim Hex (P,z). A technique has
Z 2 ztO 0z4'O

been developed for solving numerically the integral equations and

schemes to handle all the difficulties enumerated have been devised.

This technique is &tscribed below.

The current I on the monopole and its image as well as pEa in
P

the annulus are represented by linear combinations of pulses Hn of then

forms N
5

I(z)- I n 1a(z) (24a)
n=1

and
N
a

pEa (p) mI V Ha(P) (24b)

n1l

where I and V are unknown constants to be determined, N is then n 5

number of non-zero pulses in the interval (-h,h),and Na is the number

of pulses in the interval (a~b). The pulse functions are defined as

14



1 1, (-AC/2, Cn+AC/2)

IT( ) - (25)

0, otherwise

where Cn is the pulse center and AC is its width. On (-h,h) the

th
n pulse center is at z = -h + nAz and the pulse width Az has value

th
Az - 2h/(Ns+l) while on (a,b) the n pulse center is at pn = a + Ap(n- )

and the pulse width Ap has value Ap- (b-a)/N . In keeping with the

boundary condition I(-h) =0, "half pulses" are placed on the subintervals

(-h,-h+Az/2) and (h-Az/2,h), and their coefficients are set equal to

zero. Eq. (21a) is tested [3] with triangles Am, ml',...,Ns' defined

by

-1z- Z ml zE(z ,zm)

Az 1 +
AM(z) (26)

0 ,otherwise

to obtain

N N
8 a

In Zn + Vn ran- 0 m-1,2...,N (27a)
n-i n-i

where

hh

Z -+ i rl A(Z) + k 1 2 1n (z') K(z-z')dz'dz (27b)
-h -h

and
h b

r -S f Am(z) fl p () (p.z;p•)dp9 dz (27c)

-h

15



In (27b) K(z-z') - GS (k,z!z') is the exact kernel [4 ] of cylindrical

antenna and scatterer theory. Eq. (21b) is tested with delta functions

or is simply enforced at match point - located at the centers of pulses

to arrive at

N Ns a

I ras + I v [ - - Hsc (28a)
nil n m n=l n [ mn i

m -12,..., Na

where Hsc - Hsc (p m 0 ), where pm  a + Ap(m- ), and where

h

r asf i GS(p'O;z')dz ]P m (28b)

-h

b

Ymn M j f J n( ' ) G a(PO;P')dp' , (28c)

a

and

b
y J TI(P') -GC(pm,O;p')dp '  (28d)

a

In view of the properties of the pulse function n of (25) and of the

triangle function A of (26), Z and rsa of (27) can be simplifiedm nl Ml

5 , 6 to

Az/2

Z n J '-kIz - z ) - 2[l- (kz) 2 ] K(z -n 
-

M J 47rkAz f m-1 - n n
-Az/2

+ K(zm_ 1 - zn  )}d (29a)

16



and

A Ap/2

r" [ . f G a (P, I+Z; C +0 )d d. (29b)
-Az -Aoj/2 P=k

Integration by parts twice and the change of variable z' -z +r are

employed to transform (27b) into (29a) while the variable changes

z -z +C and P' = On + are employed to transform (27c) into (29b).mn

Also involved in the conversion from (27b) to (29a) is a very accurate

approximation [ 5, 6 1. By making use of properties of 11 and then

variable changes mentioned above, the expressions of (28) for ras ,

mn

Y , and Y Cncan be converted to

Az/2
as -4 (1'O;Z +)d (30a)

-Az/2 
O=am

= j C a (P'O;pn+ )dE (30b)
-Ap/2

and

Ap/2
Y- f 1 Gc (pmO;pn+&)d (30c)

M Pn+&

-AP12

To facilitate subsequent discussion it is convenient to express

(27a) and (28a) as a single matrix equation of the form

[m][In] [0]

= . (31)

17



Analytical/numerical procedures for computing the matrix elements from

(29) and (30) are presented below.

Analytical Aids in the Numerical Evaluation of Matrix Elements

In this section are presented analytical procedures which greatly

enhance the accuracy and efficiency of methods for numerical evaluation

of the matrix elements of (31). In fact, without the analysis outlined

below it is unlikely that sufficient accuracy of matrix element values

could be attained to allow acceptable numerical solutions. Z ismn

omitted from the discussion below since procedures for its evaluation

can be found elsewhere [ 4,6 ].

As a first step in casting rsa into a form suitable for computation
Mn

we point out that by making use of the analysis presented in [ 7] one

can show that rs a of (29b) can be reduced to
mn

Az Ap/2

rsa f [1- IJAz]I -2- GaQ), C+z ; P +Qd dC
mn f J( + m n

-Az -Ao12

Az

- _[- iI/Az][Ga(4, C+zm; Pn+AP/2)

-Az

G a (1, +z m; pn-Ap/2) d . (32)

Evaluation of (32) is essentially the same chore as evaluation of

matrix elements in cylindrical antenna/scatterer theory and it can be

achieved by methods developed for that purpose. In fact for n-1I,

Ga (4, +zm; pn-Ap/2) - Ga(4, +zm; a) which for A-a is the exact kernel for the

circular cylinder, while for n >1 Ga is bounded. Hence, from the
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simple expression of (32), one can avail himself of any of the numerous

procedures [ 4 , 6 1 developed for cylindrical antenna/scatterer theory

to evaluate rsa
mn

A form of a s suitable for numerical computation is developed
mn

by noting that an interchange of differentiation and integration

in (30a) is valid for p# 4. Since the bracketed expression in (30a)

is evaluated only at points p =p >t+IP, T can be rewrittenm mn

as

h r -jkD m
rm 81 f f TI (z )(l+jkD M)(Pm -tcos4') - T-- 'dz' (33)

-h -Tr

h r
- ~ I 8-- (Z' ) I d( 'dz'
81T2 _ f f n as

-h -Tr

where

Dm = [p2 + rt 2 -2 c o 
' +z,2]"

m m m

The integrand in (33) is bounded and one can evaluate the integral

numerically. Because of the small size of the coax aperture,

however, the observation point may be quite near the cylinder surface

relative to the length of a source segment on the cylinder. Thus

the integrand of (33) may be very highly peaked for the cylinder

source segment in which Iz'I < Az/2. To facilitate evaluation of

(33) in this case the integral is expressed in a form more

appropriate for numerical calculations. We note that

+ P-4 kCos V) F . (34)(as -- m m - 2 MI ) as
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Thus when n (N +1)/2, Fas is expressed as
s mn

Az Az

as 2 T (I i s)d'dz' + I I' do'dz' (35)
mn 8r 2 f Azf as as 8Tr2  Az as

-Az -IT -Az -w
2 2

The highly peaked behavior of the integrand in (33) is then localized

to the integrand of the last integral in (35). Furthermore, integration

with respect to the variable z' can be performed analytically on I'
as

to yield

Az

2 d 'd ' T i o' + - L Tr 2' d '( 6
as 8 J at.4 (6

872 - T -AZ -F IT iT fT2

where

iia [z[(( m-) + t(l-coso')]

s [(Pr)2+2pmr(l-coso')][(p .)2 + 2p '(l-cosO,) + ( (3a
m m m m 2

IVf k2p CS, fZnr '+ [2+ %'-2pmtLcoso' + (z)2] 1
I~ - k2 (p- r cos ) n +[pre

as m 1~2 mm

1 92 £n(p2 + t
2
- 2p mcoso') . (37b)

2 m m

The "integrand I' is slowly varying with respect to o' and can beas

evaluated numerically. The integrand II' , however, is still highly
as

peaked near o' -0. We therefore subtract the small argument behavior

20



of I under the integral sign and add it to the expression for
as

ra s as a separate integral, so that Fa s is finally given by

Az T

ras . I1 2 j (1I' I)d 'dz'-Az -n
2

+ 142 (1I.as - I li d'+ 12 do'

IT f " T

7T

+ Iado' nz (Ns+l)/2 (38)

i -iT

where Is, as, 1as, and 12' are defined in (33)-(37) and where
as' as- as as

, AzI(P -k) + 
2 1

as (P M- 2 + 2 PM[(p%)2  ( )21 [( _ 2 + p ,21

IT li zP7, 
p 3 bJ as do+ (Az 7)21 + M tan -m

-T ( k)2 + P

For n A(N +1)/2, of course, ra s may be evaluated directly from (33)
s mn

via numerical integration.
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To cast Y of (30b) into a form amenable to numerical computation.flun

one first observes from (22b) that the integrand of Ga is unbounded

for m =n and that it can be sharply peaked for other combinations of

m and n. Thus Y must be computed with great care. To this end,mn

we modify the form of this integrand by adding and subtracting

I/R to obtain
mn

-jkR -jkR
cos$b' e mn cost' e -n_1 1(4acs'eJk = CO -k n + (40a)

R R R
mn mn mn

where

R2 . P2 + (Pn+&)2 - 2p (P +)cos P, . (40b)
mn m n m n

The unboundedness is confined to the second term of (40a) while its

first is very slowly varying and can be integrated numerically with

ease. Furthermore, the integral over (-n,r) of the second term can be

expressed as

Tr iT/2
J d* = Of n+4 d (41a)

R U. (P m + ) n V/1-02 sin2 0
-1 0 mn

( n K(8) (41b)
(m+P n+&)

where K is observed to be the complete elliptic integral of the first

kind [ 8] and where

p (pn+ )2 = 4 (P+0 (41c)
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In view of the above, Y of (30b) becomes
mn

Y m R 0 OO+ K() n
-A/2 0 mn m n

Ymn: { J(42)

When m-n, K is unbounded for ;"-O but, fortunately, the small argument

form of K can be integrated. That is,

2 1(
(2p n+0 .) nn 18p1 43

and

AP/2

n _,/2n) n n j

Hence, Y is
nn

+ AP/2 2 7E Kd

f 1 / (2p+~ n G (n) n [ n

+ jR1/21
+ f fcosO' e nn i 'd, (45)

-Ap/2 nn

The unbounded part of the elliptic integral is added to and subtracted

from the integrand of (42). The integral of the added term becomes

the first term of (45) while the subtracted term remains in the integrand

of the first integral of (45). Therefore, both integrals of (45) have

very slowly varying integrands and can be integrated numerically with ease.
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The integration indicated in (30c) can be performed analytically

and, as a result, yc becomes

yC2 .- j2k L L

UM - n 1t Pm L -J2k L
c a+ e

kCs 1 1 2 d_ 4) n+ (46)

n-2  d q m ]

qc ql q qq

in which P =
f a + nAp and pOn- a + Ap(n-l) and in which Sq m

means [I _p ]

The series in YC must be summed efficiently if the numerical

procedure described here is to be practicable. This is particularly

true in regard to YC because of the need to solve a transcendental
Mn

equati3n to determine the transverse eigenvalue k of (6) priortq

to the computation of each series term. To this end Kummer's

transformation [9] is used to accelerate convergence. To employ
th

this technique, one determines the q term for large q of his

series and then finds another series with known sum and the same

th
large-index q term. Even though Kummer's transformation is applied

to the series of the present problem under the condition that the

guide is below cutoff of the higher-order modes, k2<k q, which is

the case of major practical interest, the procedure is immediately

extendable to the cases in which higher-order modes do propagate.

One can show readily that

kq,, (47a)
tq q-"* b-a
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and subsequently that

I d q ±{sinq e,+ sinq Q mn±} (TP- ) (Or  q(Pn q- Cmn+ q 2 -j (47b)

where

b-a j b-a (48a)

"n" Pn± 
]

m+ b- (Pm + n - 2a) = (m+n-l)±;1 (48b)- b-a

and

w7To
ui_±W -t (m - Pn± -Z [(m-n)z)] (48c)

In [10] the series below and its closed-form sum are listed:

X Sq(c) q 6(r), 0<a<2n (49a)

where

Sq(cx) -
q q-l M(49b)qqZ-

and

6(a) - - Ln(2 sin sina, 0<ct<2r . (49c)

Notice that, apart from the factor CM+S , Sq exhibits the form of the

right side of (47b) when q-. Applying Kummer's transformation to the

series in Yc , one arrives at
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L _j 2kcLi

CC

c 1jii~ -d ep (

yC £n b  0m -P + eJ 2--c
c q 2a

+ C -S-I(

ncXNadP 1 (m ) L(n+ )  i (n-_

n Ii d q m q n

IT ~ ~ ~ ~ m- mn+ -(0 A !Q m~

k

+ 7CM11 (6[ M -11 (IQ mn.. I1 (50)

which converges in very few terms. Absolute values are used above

because 0 MA can be negative and, as indicated, (49c) is valid only

for O<a<2Tr. Since, for a<O, sin a- -sin (c(, we can write

sin a -a sin lal for all a (51)

jai2
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This can be used to advantage to rewrite (49) as

singcx ~ ~ si q H F IIsin- 2qa-tn(2 
sin sinlal

q=2 q' I lal q-2 q2 -1 laL

for -27r<a<27 (52a)

or

C S (a) n(2 sin sin lal, -27<a<21T. (52b)
q-2 q ( tlal L
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3. FORMULATION OF INTEGRAL EQUATION FOR GROUND STAKE ANTENNA

The analysis of the behavior of the current and charge on a

straight cylindrical antenna which resides in two contiguous half

spaces is a major portion of this investigation. As a model for

study of the behavior of charge and current everywhere-in particular,

at the wire ends in lossy media and at the interface between the two

half spaces-the current and charge on the structure shown in cross

section in Fig. 1 is studied. This section is devoted to the

formulation of the integral equation for the antenna structure of

Fig. 1. In this figure, one sees a circular cylindrical (tubular)

antenna, partially in one half space and partially in the other,

which intersects perpendicularly the planar interface between the

two media. In general the cylindrical antenna does not meet the

thin-wire conditions and it is driven by the slice generator

illustrated. Due to the symmetry of the structure and excitation,

the current on the perfectly electrically conducting (PEC) antenna is

z-directed and circumferentially independent.

An integral equation for the current on this antenna is

formulated with care that it be amenable to numerical solution.

The equation incorporates the exact kernel and special forms of the

so-called Sommerfeld integrals. The initial phase of the formulation

is the derivation of suitable Green's functions for the magnetic

vector potential in the two-media space of Fig. 1 due to a ring

dipole source. Then the integral equation-actually, coupled

integral equations-is developed by enforcing the condition that

the total electric field tangential to and evaluated on the PEC

surface of the cylindrical tube be zero.



PEC cylndrical - z -h

tube
V -" -z z.

region a 
e

(4a a a Interface

region b 2a,- 2 -

Fig. 1. Cross sectional view of antenna in two contiguous half spaces.
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Green's Functions

In Fig. 2 is illustrated an ensemble of elementary dipoles

all on a circle of radius p' in a plane, all in the same direction

perpendicular to this plane, and each vanishingly close to its immediate

neighbor. This so-called ring dipole is placed in a cylindrical

coordinate system with the center of the ring on the z axis at

z Uz' and with its plane parallel to the z =0 coordinate plane. The

elementary dipoles of the ensemble are z-directed. It should be

clear that such a ring dipole source constitutes a volume current

density I given by

J()= 6(p-p') 6(z-z') . (1)

It should be equally clear that the magnetic vector potential due to

J of (1), with p'-a and with this current in the appropriately

specified physical environment, is the Green's function for the vector

potential due to the current on the cylinder of Fig. 1.

The Green's function needed in the integral equation for the

cylindrical antenna is the magnetic vector potential due the ring

dipole of Fig. 2 in the two-media space of Fig. 1. This vector

potential must be known for z in the interval (-d,h) when the ring

dipole is located in (O,h) and when it is located in (-d,O). To

obtain the vector potential we determine the solution of the wave

equation subject to the radiation condition with the ring dipole in

(O,h) and then with it in (-d,O). We construct the solution as the

sum of a homogeneous and a particular solution, and, in both cases,

we take the particular solution to be the vector potential due to the

ring dipole located in unbounded space, i.e., homogeneous space of

infinite extent. Hence, in what follows immediately below, the wave
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z

Fig. 2. Z-directed ring dipole in unbounded space.
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equation is solved for the vector potential due to the ring

dipole in unbounded space. Next, the appropriate wave equation

is solved for the vector potential due to the ring dipole in

region a and, then, the appropriate wave equation is solved for

the vector potential due to the ring dipole in region b.

The Hankel transform (zero order) is well suited as an aid

in solving the wave equation in cylindrical coordinates and,

therefore, it is employed below. For a given function f(p) the

Hankel transform pair is

00

= f pf(P) J0 (tp)dp (2a)

0

CO

f(p) = f rftr) J0 (p)dt (2b)

0

where fir) is the Hankel transform of f(p).

Green's Function for Ring Dipole in Unbounded Space. For the ring

dipole located in unbounded space characterized by (p,s) (Fig. 2),

the vector potential A = A z(p,z)_ has the single component Az which

satisfies

(V 2 z + k2 ) Az(P,z) = -P6(P-P') 6(z-z') (3a)

or

I (A z ) + k 2 A = - v 6 (0-p') 6(z-z') (3b)

P ap Z aZ AZ z

where k 2 - W2 
PE, and the field computed from A must satisfy thez

usual radiation condition. Taking the Hankel trarsform of the two
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sides of (3b) (or, equivalently, multiplying both sides by QJ0(rp)

and integrating over (0,-)) yields

J { -- (A(z))} J Q)dp + + kj PA (Q,z) J(pd

0 0

=-WP0'J 0 (rp') 6(z-z') (4)

In view of the properties that A must exhibit for p -0 and o--, oneZ

can show by integration by parts twice that

f IP -P(P z(pz) J0Q4p)dp = tfp A z(p,z) JO (tp)dp (5)

0 0

whose right hand side is recognized to be the Hankel transform

A (r,z) of A (p,z). Substitution of (5) into (4) leads to thez z

differential equation

+ 2 A,z) = -jPP' J0 (p') 6(z-z') (6a)

where

B2 - k2 - r2 (6b)

The solution of this differential equation is

-JR~ ~~ -I jL,)e-ez-z' I
(rQ,z) - - 'J (rp')

A'z) 0 a (7)

from which A is found as the inverse Hankel transform of A to bez z

p) J)0 ( r )d4 (8)

0
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The form of the solution (7) of the differential equation (6a)

adopted for A is such that a root B of (6b) can be selected in suchz

a way that A (p,z) of (8) represents a wave traveling away from thez

ring dipole and, in particular, satisfies the radiation condition as

Izl -. The proper branch of Bmaybe defined by means of

Im(a) < 0 . (9)

Branch cuts which are consistent with (9) and which restrict 4 to

the proper sheet in the 4-plane are illustrated in Fig. 3. Also

illustrated in Fig. 3 is the integration path of the integral of (8).

One notes that for k real the path must be deformed into the first

quadrant to avoid the singular point of B at r = k, while in the

lossy-medium case for which k is complex the singular point is not

on the integration path and deformation is unnecessary. The condition

(9) endows the integral (8) with properties which allow one to deform

the integration contour off the positive real axis of the 4-plane.

If k is real and deformation of the path of the integral from the

real line is not to be employed, 5 maybe defined in the simple way

below:

Ak2 - , k 2 > t2

(10)

-JV'--=- , k2 < 42

For some applications, it is convenient to convert (8) to an

integral over (-, ). To do this, one replaces one of the Bessel

functions of (8) by its equivalent [ 1 ] in terms of Hankel functions,
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-plane

Integration path

k

"Z----- Branch cut

(a)

%-plane

-k /_ integration path

k

-Branch cut

(b)

Fig. 3. Branch points (t -±k), branch cuts, and integration
path for (8) in the %-plane (a) lossless case, (b)
lossy case.
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[H (2) H (2) -CtJ0 () 0  0

replaces the integration variable by its negative in one of the integrals,

makes use of J (-) -Jo(C), and combines the two integrals to obtain

-j z O A' (to e/1J0( H (  o)d4 , o>p' (12a)

A (P,z) -

OD k ) ( I ) J (4 o ) d 4 , < ' ( 1 2 b )

The path of integration of the integrals of (12) and the branch cuts

of 8 and H( 2 ) are illustrated in Fig. 4.
0

Green's Function for Ring Dipole in Region A. In this subsection,

we determine the magnetic vector potential due to a ring dipole in

one homogeneous half space which is in contact with a second

homogeneous half space of different electromagnetic properties.

The two half spaces are separated by a planar interface and the

ring dipole of radius p' is above and perpendicular to this plane

as illustrated in Fig. 5, where one observes that the ring dipole

is on the z coordinate axis at z-z'. The upper half space is

designated region a and the lower half space is designated region b;

quantities peculiar to region a carry subscript or superscript "a"

while those peculiar to region b carry "b." In the z direction,
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t-plane

Brrnch cut [Hu2)J Integration path

k

-z___. Branch cut (8)

(a)

P-plane

Branch cut fH02)--\ _ Integration path

kk

II ~~ Branch cut (8)

(b)

Fig. 4. Branch points and cuts of B and H(2) , and integration path
for (12) in Pt-plane: (a) lossless 0 case, (b) lossy case.
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z

Z Z I
region a
( ' a )  -

Fig. 5. Ring dipole on z axis in infinite half space (region a)
radiating in the presence of contiguous infinite half
space (region b).
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region a extends from 0 to - and region b extends from 0 to - ,

while both regions extend from -- to - in the x and y directions.

The vector potential due to the ring dipole is -independent and

it must satisfy the wave equation in each region. In region a the

vector potential designated A a(p,z) satisfies
z

(2  +k 2) a
(Vz a+ A(pz) - - (p-p') 6(z-z'), z>0, z'>0 (13)

while that in region b designated Ab(p,z) satisfies
z

(v2  + 2 b >
(Z k ) Ab(p'z) - 0 , z<0 , z'>0 (14)

From knowledge of Aa and Ab the field components in the two regionsz z

can be determined in the usual way according to

E' - -i A (15a)
p k2 aPaz

f2

E -j IT k Z+ (15b)

and

H - - A . (16)
* Uap

We observe that Eq. (14) is a homogeneous differential equation since

no source exists in region b while the right hand side of Eq. (13)

accounts for the presence of the ring dipole of radius p' at z-z'. The
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field computed from Aa and Ab must safisfy the radiation conditionZ Z

and the components which are parallel to the interface must be

continuous at z 0. These continuity requirements can be stated as

1 32 a 1 32 bkr Ap az z )a"zl Ab  at z =f0 (17a)

and

-A = -' Ab ,at z-0 (17b)
Ia a0 z Pb D z

EqE.(13) and (14), the radiation condition, and the continuity requirements

(17) completely characterize the vector potential in the two regions

due to the ring dipole.

We employ the Hankel transform to solve (13) and (14) subject to

(15) and the radiation condition. Transforming both sides of (13)

and (14) yields, respectively,

+ 2 A (',z) -- ua' J0(4p') 6(z-z'), z>O, z'>0 (18)

and

dz + b) - 0, z<0, z'>0 (19)

where !a and Ab are the Hankel transforms of Aa and Ab and wherez z z z

82 = k2 - 2 (20)

The solution of the differential equation (18) is obviously
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-Oa e-Jal z-z'l
A a ez 2 0 a

via i 8 aZ
-J (AP'J0 (4p') CM() e Ja (21)

where the first term is the particular solution and the second is the

homogeneous solution. C(4) is an unknown function of It to be determined

subsequently. In general, the homogeneous solution contains a term
+a

proportional to e but, if such were added to (21), it would lead

to a term in Aa which would be physically unacceptable in that it %uldz

represent a wave propagating in the negative z direction for z>z'.

Observe, too, that the particular solution is the same as (7) with

i and 6 replaced p and . A a is now obtained by taking the inverse
a a z

Hankel transform of (21):

aa r
Aa(p,z) = -j "- P' f t J 0 (,p') e J 0 (Ap)d4z 2

0 a
(22)

0a J a a

-j -P 0' 4 j 0 (4 0 ,) C(4) J 0 (4p)d , z>O,
0B a z'>O

The first term of (22) is the vector potential due to the ring dipole

in medium 0 Caa), determined as if the medium were of infinite

extent, while the second term is the vector potential of the field

resulting from scattering of the ring dipole field by the interface at

z-0.

Turning to the differential equation (19), we write its solution as
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Ab(tz) _ _j -b Pj 0 ('t,) B(A) e , zZ<0, z'>0 (23)
z 2a

which is clearly a special form of the homogeneous solution of this
-j6 bZ

equation having no term proportional to e The form of (23)

ensures that the final solution in region b represent a wave traveling

b
away from the interface. Thus, A is found from the inverse Hankel2

transform to be

b j~bz

A(pz) 2-j P' f k J 0 (kp') B) e J(rp)d,
0 a

0 z<0, z'>0 (24)

To enforce (17b), one requires

-Th z'oa ZI(25)
B() = C(r) + e a z'>0

which, together with (24), yields

00
b b P' I t f o ' k ) + e j az]e J0b i(Ap)dA (26)'AD(P'Z) - -2- 0 a"

0 ICa

If, in addition, (17a) is enforced, one finds that

Ba - C(4)} - a + C(k) (27)

must be satisfied from which CMi) is determined to be

I -Jhaz'

C r) - I' e a (28a)

where
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a b
E Eb
a b (28b)

€b
a b

Finally, with C(A) of (28) in (22) and (26), one arrives at the

desired vector potentials in the two regions:

00 - aIz z'I
A a za p, t ,) eAa~pz) -j - J(rpJ 0 (LP)d4

z 2Ba
0

"a , , -J a(Z+Z')
-j a pj r 0r' e J0(rp)drt

2 P k' )1 J0Q ) Ba 0
0 a

z>0, z'>0 (29a)

and

(pz) P, -JaZ' J3bZ

Ab . 20 , e a e J0(O0)d'%
0  a

z<0, z'>0 (29b)

The branch points and branch cuts for a and ab, under the conditions

that region a is lossless and region b is lossy, are illustrated in

Fig. 6 where also is shown the path of integration for the integrals

of (29).

By appealing to (11) and the procedure leading to (12), one

can obtain the alternate forms for (29) that appear below.

The path of integration for the integrals of (30) and (31)

is illustrated in Fig. 7.
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t-plane

k b Integration path
ka

k
a kb

Branch cuts

Fig. 6. Branch points and branch cuts for Oa and Sb and
integration path for (29) and (33) in k-plane:
region a lossless, region b lossy.
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t-plane

Branch cut rH(2) _k b1 Integration
t ) -k a  /_ path

F kI
k

Branch cuts

0( )

Fig. 7. Branch points and branch cuts for Ba , Pb, and H(2)

and integration path for (30), (31), (34), and
(35) in It-plane: region a lossless, region b lossy.
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Green's Function for Ring Dipole in Region B

When the ring dipole of radius p' is located at z=z' (z'<O)

on the z axis in region b, the resulting vector potentials in the

two regions satisfy

(V 2  + k 2 ) Aa(PZ) = 0 , z>O, z'<O (32a)

PZ a z

and

(Vz + 2) Ab(,Z) = -1b (P-P') 6 (z-z'), z<0, z'<O (32b)

plus, of course, the radiation condition. Also A and Ab must satisfy
z z

the continuity conditions (17). One may solve (32) subject to the

stated conditions by a procedure paralleling that applied to (13) and

(14). This procedure is not repeated here but the resulting solutions

are recorded below:

Aa(pz) = -j ' J 0 (r0')[l-f] e -JSaZ
Ab e J0 (rp)d 4

0

z>O, Z'<O (33a)
and

b "b 0-jbz-z IA Z(PIZ) = -j 2- P'f t J0(4p,) B 8b j 0 (A)d4

0

b 1'. J b (z+z)
+ 1b - ,- O' r JoQ')r e b jrOd

2 f 0b J0Qpd0

z<0, z'<0 (33b)

The path of integration of the above integrals is the same as that

illustrated in Fig. 6 for the integrals of (29). Alternate forms of
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A a and Ab are given on the next page. The path of integration forz z

the integrals of (34) and (35) is illustrated in Fig. 7.
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Integral Equations

The desired integral equations for the current on the ground-stake

antenna of Fig. 1 now can be constructed. Due to the symmetry of the

structure and the excitation, all quantities are independent of 0,

and, also, the surface current J induced on the PEC cylindrical tube--s

is entirely z-directed (J s=J (z) 2 ). Under these conditions, the

induced current produces an electric field whose component is zero

so the only component of electric field produced by J which isz

tangential to the cylindrical surface of the antenna is the z

component. For convenience, we define the total axial currents

Ia(z) and Ib(z) on the portion of the cylinder in region a and region

b, respectively, as

I a(z) , z E (O,h)

27raJz (z) = . (36)
I b(z) , z E (-d,O)

where, of course, a is the cylinder radius. Furthermore, we define

Eaa and Eab to be the tangential components of electric field inducedz z

on and evaluate at p=a on the surface of the cylinder in region a,

i.e., zEs(O,h), due, respectively, to I and ba bb
a tbo whl E n z

are defined to be the z components of electric field on the cylinder

at p - a in region b, i.e., zc (-d,O),again due, respectively, to

Ia and I . Subject to these definitions, one can express the boundary

condition that the total electric field tangential to and on the

PEC cylindrical surface be zero by the following equations:
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Eaa [I ;z] + Eab [I ;z] -V 6(z-z ), zE (O,h) (37a)z a z b'9

Ebala] + bb
E [a ;zI + Eb [Ib;Z] = 0 , z (-d,0) (37b)

where V 6 (z-z ) accounts for the delta-gap source of strength V at

Z=Zg. By employing the vector potential Green's functions derived

above, one can write (37) as

-_j + kI la(Z) Gaa (z,z')dz' + I (z') Gab (z~z')dz

a0 -d

= -V6 (z-z ), zE (0,h) (38a)g

and

0b d2

-j 4-- k Ia(z' ) G (z,z')dz' + (z') Gb(z,z')dz' =0,

b d J-0 z (~~ -dI

z E (-d,O) (38b)

where

0-i (z+z')

Gaa (z,z') -K a (z-Z') - j 0 4[Joa)] 2 re a dk (39a)

0a

a b
-

( z , z ' ) =-j 0 (A[Jo(M)]2 [1-] e b -JaZd4 (39b)

0b

r e a (39b)
G (z,z') - -j J 4[Jo(a)] 2[l+re e d4 (39c)

0 a
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G" bb K0[2eb (z+z' )

Gbb (z,z') K -(z-z') + j f 2t[J 0 (ra)]2e d4 (39d)
o

in which

TT-jk R
(zz' = I e RP

K (z-z') - I e.R d' , p-a or b, (40a)

with

R2_ (Z-Z') 2 + 4a2 sin2 - (40b)

Fundamentally, the left hand sides of (38a) and (38b) are special

cases of (15b) with appropriate Green's functions used in the vector

potentials. Gaa and Gba are (29a) and (29b), respectively, specialized

to the present structure while Gab and Gbb are specializations of

(33a) and (33b), respectively. The first term in each of (29a) and

(33b) is the vector potential due to the ring dipole in unbounded

space. Ka in (39a) and K. in (39d) account for the first terms,

aa
respectively, of (29a) and (33b). KaanKbo(4)rempyd

here in (39a) and (39d), rather than equivalent terms derived from

the first terms of (29a) and (33b), simply because K a and Kb are

exact kernels of cylindrical antenna theory and computation involving

such kernels has become routine. Of course, the integrals over (0,-)

of (39) could be replaced by integrals over - by appealing to

(30), (31), (34), and (35). Such a replacement would allow one

to convert integrals over the real line from - to - to branch-cut

integrals which in some cases are very attractive from a numerical

computational point of view.
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4. COLLECTION OF EXPERIMENTAL DATA

In this section is found a description of the apparatus and

procedures to be used to obtain data which will support the theoretical

analysis of the foregoing sections. The experimental portion of this

project involves two related efforts:

(1) measurement of the driving point impedance of wire antennas
operated near an air/water interface; and

(2) determination of the electrical properties of the water.

Monopole antennas in various configurations are to be positioned

at various heights above an air/water interface. The antenna driving

point is to be below the water surface in some experiments and is to

be above the water surface, but behind a conducting screen oriented

normal to the water surface, in other experiments. During each

experiment, samples of the water are to be gathered and each sample

is to be subjected to several measurement procedures designed to

determine the electrical properties of the water. The test antenna

configurations and the techniques for determining water properties

are described in detail later in this report.

The experimental effort has been organized into three phases:

PHASE I -Design and construction of apparatus
PHASE II - Experiments involving antenna driving point below

water surface
PHASE III - Experiments involving antenna driving points above

water surface, but behind a conducting screen.

PHASE I - Design and Construction of Apparatus

Water Tank. Design and construction of a suitable water tank represents

the most difficult and expensive task of this phase. Electromagnetic

considerations dictated that the tank should be of non-metallic



construction, should provide a water surface range of approximately

2.5 m (or 5X in air at 600 Mhz), and should provide a water depth of

approximately 1.1 m (or 20X in water at 600 Mhz). When these

considerations were balanced against available space and materials

and the fabrication capabilities of this organization, a general

specification was made for a wooden tank 16 ft by 16 ft by 4 ft - 4 in,

overall. Such a tank would provide a water surface 4.67 m (15 ft -

4 in) by 4.67 m and a water depth of 1.22 m (4 ft). (See Fig. 1)

Before proceeding with tank construction, it was necessary to

verify adequate floor strength and drainage capacity and to modify

the building to provide a high-capacity water supply (2-in line, 90 psi)

and to accomodate suspension of panels of anechoic materials above

and around the water tank. This was done by University of Mississippi

Physical Plant personnel at the expense of the School of Engineering.

Details of tank construction can be seen in Figs. I and 2. An

underlying consideration in the design of the tank was that it be

capable of disassembly for economical storage. Accordingly, the floor

was constructed in four 8 ft by 8 ft sections and each wall was

constructed as a separate section. The framework for floor and walls

is of 2 x 4 pine on 16-in centers with bracing at 16-in intervals.

The decking (3/4-in plywood) and the wall panels (1/2-in plywood) were

nailed and glued to the framework, The floor sections were bolted

to the floor and to adjacent wall sections, using 1/2-i cap screws

with 2-in fender washers at 16-in intervals. Buttresses were added

at the centerline of each wall section to reduce bowing.

In the original design, the tank was to be made watertight by

caulking the seams between pre-fabricated sections with silicon rubber
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(a)

(b)

Fig. 1. Water tank.
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Fig. 2. Construction of floor frame for water tank.
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Fig. 2b.

Fig. 2c.
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and by covering all wooden surfaces with a minimum of 3 coats of poly-

ester resin. In addition, the edges of all plywood panels were coated

with polyester resin before attachment to the framework. This scheme

was not successful, apparently because the polyester resin coating

was fractured by movement within the structure under load of water.

Inspection revealed water penetration into the plywood, particularly

around nail and screw heads (even though the resin coating had been

"built up" in these places) and along the manufacturer's lamination

seams of the plywood. The actual amount of water lost due to leakage

was insignificant but it was feared that continued seepage into the

plywood would cause delamination and render the tank unusable.

An attempt was made to remedy the seepage problem by covering

the "trouble spots" with fiberglass cloth submerged in polyester

resin. A subsequent test revealed that, under load, water penetrated

the cloth also, even though the cloth was under several layers of

polyester resin. At this point, consultation with the technical

representatives for a number of coating manufacturers indicated that

a plywood tank of this size probably could not be made entirely water-

tight using ordinary coatings (varnishes, resins, etc.). The decision

was then made to procure a vinyl liner of the type used in small

swimming pools. A 25-mil vinyl liner is being fabricated, and delivery

is expected presently.

During the tests for watertight integrity, it was determined that

the tank could be filled to full capacity (approximately 26000 1) in

less than one hour. This corresponds to a water level change of

approximately 2.5 cm to 3 cm per minute.
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Filling is accomplished using a 2-in fire hose attached to the

high-capacity water supply (Fig. 3). The original design incorporated

a 2-in deck drain which permitted draining within 1 hours; however,

installation of the vinyl liner will require the use of 1 -in drains.

The draining rate with the 1 -in drain is estimated to be 0.5 cm to

0.8 cm water level per minute. These rates for changing water level are

felt to be entirely adequate for conducting the tests proposed.

Slotted Line Apparatus. References [1] and [2] report favorable results

in measuring the electrical properties of water (c and o) by means ofr

a slotted X-band waveguide apparatus. For this project, a similar

apparatus has been constructed from WR137(RG-50/U) waveguide, which

is conservatively expected to provide an operating band for dominant

(TE10 ) mode from 650 to 900 Mhz when filled with water. This apparatus

is depicted in Fig. 4. At 650 Mhz, the "infinite" section is

approximately 35X in length. Major components were obtained from

salvage or purchased under cost-sharing.

In order to provide for measurement of water properties at lower

frequencies than can be propagated in WR137 waveguide and to have

available independently measured data for corroboration, a more

elaborate slotted coaxial line has been designed and is under

construction. Illustrations of the design details and photographs of

completed parts of the apparatus are included in Fig. 5. The coaxial

line is expected to permit reliable measurements at frequencies as

low as 500 Mhz, at which the length of the "infinite" line is

approximately 20X. Introduction of salt into the water may increase

losses along the "infinite" line to the point where frequencies as low
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Fig. 3. Filling water tank.
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Fig. 4(b). Slotted waveguide apparatus with water trough
in background.

Fig. 4(c). Slotted section in position for submersion.
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To Network AnalyzerTest Channel 
Brass Slide

SMA Connector 
Contact

0O.O3 4-in coax
Probe

-0

TPush Rods
O Teflon

0 Bushing

Brass Frame Bushing

Fig. 5(b). Sliding probe (end view). Fig. 5(c). Sliding probe (exploded view).

Probe
Position

Indicator 4 Attachto push

Reservoir Rod

Seal to

Conductor

Wooden

Stand

Fig. 5(d). Slotted coax apparatus water reservoir.
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Fig. 5(e). Slotted coax; center conductor in foreground.

Fig. 5(f). Slotted coax; close-up of slot and connector flanges.
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as 300 Mhz may be used.

For the TEM propagation mode of a coaxial line, the propagation

constant k is given as

k = jwv7 = -ja

where

0 Or -W

and w, P, E and a have the usual definitions. To determine E and Gr

for the water dielectric, one proceeds as outlined in references [1]

and [2] to calculate ct and B from measured ratios of the E-field at

various positions along the line to the E-field at some reference

position on the line. Since

k2 _ (B-jcL)2 = (B2 -a2) - j2aB

and

k2 = W2UE = W16OCr  jWo

then

a2 - O2

E r W2 02 W _ (x2)

and

2t XO a6

WU0 ri0

Each water sample is to be analyzed using both slotted lines. It

is expected that the results will serve as mutual confirmation of the

validity of the techniques.

Test Antennas. The test antennas to be used in PHASE II are sleeve-fed

monopoles for which the radiating structure is of circular cross-section

and sufficiently small in radius to permit thin-wire analysis. This

68



type of antenna, when mounted above a ground plane, was analyzed by

Butler and Harrison [3] in 1971 using a method of moments (MOM)

solution to the Hallen's equation. As part of this project, a

MOM solution to the Pocklington's equation for the sleeve-fed monopole

has been developed. This work was done, first, to gain a better

understanding of these antennas, second, to obtain baseline data

from which to estimate behavior of the antennas above a nonideal

conducting plane, and, third, to reflect improvements in the MOM

technique. Further, since the performance of each antenna is being

verified by measurements above a ground plane, the Pocklington code

is used to verify antenna performance. Results, to this point, have

been entirely consistent.

For each experiment, three antennas have been constructed, one of

n 108-cm radius, a second of 0.179-cm radius and a third of 0.318-cm

radius. Current plans are to conduct some otherwise identical tests

using each antenna. If the results obtained with the thinner antennas

support the thin-wire assumptions for the 0.318-cm antenna, as '.s

expected, then the preponderance of experimentation will be conducted

using the more rigid 0.318-cm antenna.

The sleeve-fed monopole antennas have been fabricated and are shown

in Fig. 6. Note that the 0.318-cm antenna has detachable extensions

to provide a variety of antenna heights from 6 cm to 25 cm above the

source gap. The other two antennas have fixed heights of 25 cm above

source gap. All antennas have a sleeve length of approximately 90 cm.

These antennas are constructed from 50-ohm semi-rigid coaxial cable

with unjacketed copper outer conductor. The 0.108-cm radius antenna
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Fig. 6(a). Antennas.

Fig. 6(b). Close-up of antenna gaps.
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is fabricated from 0.085-in coax, the 0.179-cm radius from 0.141-in

coax, and the 0.318-cm radius from 0.250-in coax. The radiating

structure above the source gap is a hollow tube obtained by removing

the dielectric and the inner conductor from a section of coax. The

end nearest the gap is plugged with conductor, only to a depth

sufficient to permit soldering to the center conductor from the feed

sleeve. With care in fabrication and handling, it is possible to

have gap widths of approximately 0.5 mm, or about one-half radii for

the thinnest (0.108-cm) antenna to one-sixth radii for the thickest

(0.318-cm) antenna. The driving point is a male SMA connector

attached directly to the feed sleeve.

Straight and bent-wire monopole antennas are required for

PHASE III; materials for these antennas have been procured and the

antennas will be fabricated and tested as needed. These antennas

are also to be constructed from 50-ohm semi-rigid coaxial cable with

a male SMA connector at the driving point. The outer conductor will

be terminated flush with the front side of the conducting screen and

the center conductor will be extended to form the radiating element.

The 0.085-, 0.141- and 0.250-in coax will provide radiating elemeiLts

with radii of 0.0255, 0.0455 and 0.0815 cm respectively.

Ground Plane. A conducting screen is to be used during PHASE III

experiments. The design specifies heavy-gauge aluminum to be clamped

along the top edge and suspended as a curtain along and just inside

one wall of the water tank. This design will allow the aluminum to

be raised from the tank when not in use. A source of salvaged 1/8-in

aluminum panels nominally 8 ft by 16 ft, but damaged along the edges,
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has been located, and procurement is in process. Two of these panels

will be trimmed and seamed to form a ground plane approximately 4.5 m

(14 ft - 6 in) wide by 3 m (10 ft) high.

Instrumentation. The basic instrument for measurement of both the

E-field ratios in the slotted line apparatus and the antenna driving

point impedances is the Hewlett-Packard 8410A Network Analyzer System.

System diagrams for both types of measurements are shown in Fig. 7.

The measurements process has been automated through the use of a

Tektronix 4052 Computer/Controller. Frequency stability is maintained

by a loop containing Hewlett-Packard 5435A Electronic Counter. An

Amplifier Research Model lWI000 Broadband Power Amplifier has been

ordered. Incorporation of this amplifier with its nominal 1 W output

is expected to boost power levels adequately to offset the mismatch

between air-filled and water-filled regions in the slotted apparatus

and to accomodate the extended lengths of antenna feed line required

when the driving point is below the water surface.

PHASE II - Experiments Involving Antenna Driving Points Below Water

Surface

Antenna Configurations and Experiment Geometry. In this phase of the

experiment, the antenna configuration is a straight-tube, sleeve-fed

monopole positioned with its cylindrical axis normal to the air/water

interface and with the source gap in air (see Fig. 8(a)). The

driving point is located as near to the bottom of the tank as is

practical. The water level will be varied to provide different values

of gap height (g), ranging from as small as practical to X/2. This

experiment will be repeated for all three antennas ( a - 0.108 cm,
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Fig. 8(a). Antenna configuration for PHASE II measurements.
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Fig. 8(b). Equipment layout for PHASE II measurements.
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a = 0.179 cm and a = 0.318 cm). For the 0.318-cm antenna, extenders

will be used to provide different lengths of radiating structure (h)

above the source gap. If necessary, these experiments can be repeated

-for the thinner antennas by successively "snipping" the hollow tube

above the source gap.

Equipment Layout and Procedural Considerations. The antenna is to be

mounted to a wooden pedestal such that the driving point will be located

25-30 cm above the tank floor. This distance above the floor is

dictated by the minimum bend radius of the feed line, the length of

connectors and adapter, and the requirement to encase the connection

in a water-proof seal. The feed lie is a -in Spirafil coax

specified to have losses of 0.05 to 0.08 db/m in the frequency range

of interest. Type N connectors are required with the Spirafil coax;

therefore an adapter is required to accommodate the SMA connector

at the antenna driving point. The length of feed line will be

minimized by having the coax exit the tank wall at floor level and by

placing the S-parameter test set of the network analyzer as close as

possible to the tank wall. The calibration technique to be used with

the network analyzer will establish an electrical reference plane

several centimeters above the physical driving point of the antenna

and will thus eliminate connector discontinuities from the final data.

Anechoic materials will be placed around and above the tank at a

range of 2-3 meters from the antenna. The antenna will be located

slightly away from tank center to avoid any degradation of the

experiment due to in-phase reflections from the surroundings. Salt

will be added to the water to assure that the water is sufficiently
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lossy to cause the currents on the outside of the sleeve to decay,

and hence cause the sleeve to appear infinite in length.

A sight gauge located outside the tank will permit accurate

-determination of water level. In addition, phenomena such as

capillary action of the water on the walls of the thin antennas will

be considered.

PHASE III - Experiments Involving Antenna Driving Points Above Water
Surface, but Behind a Conducting Screen

Antenna Configurations and Experiment Geometry. In this phase of

the experiment, the antenna configuration mat be a straight- or bent-

wire monopole positioned above the air/water interface. The driving

point will be located behind a conducting screen which intersects

the water surface at a right angle (see Fig. 9(a)). The water level

will be varied to provide different separations (h) between the antenna

and the water surface. In some cases h will be made as small as

practical, which means that in experiments with bent-wire antennas, h'

may be below the water surface. As in PHASE II, some experiments will

be repeated with antennas of all three radii in order to validate

the thin-wire assumption.

Equipment Layout and Procedural Considerations. The conducting screen

will be suspended as near as practical to one wall of the tank and

lowered until the bottom edge is as near as practical to the tank

floor. The antenna mount will be located as close as practical to the

top edge of the tank wall and offset slightly from the horizontal

center of the screen. The configuration provides screen ranges of

approximately 4.5X horizontally and 3.5X vertically in air, and
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approximately 40X horizontally and 20X vertically in water, at 600

Mhz. Greater screen ranges in air would be desirable, but are not

practical at the frequencies of interest.

The antennas will be constructed so that the driving point is

as close as practical to the rear side of the conducting screen. The

network analyzer will be connected directly to the SMA connector

at the antenna driving point. Again, the calibration technique

will serve to eliminate connector discontinuities.

As in the PHASE II experiments, anechoic materials will be placed

around and above the tank. Fresh water may be used in these experiments

because increased water losses are not required.
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