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BICOLLIMATED NEAR-FIELD GREGORIAN
REFLECTOR ANTENNA

INTRODUCTION

It is known that the bifocal dual reflector antenna (1) and bifocal dislectric lens antennas [2,3]
have wider angle scan capability than their single focus counterparts. We propose a bicollimated near-
fleld Gregorian reflector antenna which has a better scan capability compared to a ciassical near-field
Gregorian reflector antenna [4]. The design presented applies to both symmetric or offset [5]
configurations. However, only the offset conﬂguratlon, which eliminates feed blockage, will be used.

The bicollimated reflector is obtained by firsi designlns a bicollimated cylindrical reflector system
using geometrical optics techniques and then revolving the cross section curves to form a surface of
revolution, Selected parts of these surfaces will form an offset reflector configuration. Figure 1 shows
the cross section of an offset configuration of a bicollimated near-field Gregorian reflector antenna. The
cross sections of the main and subreflector are designed So that when the feed array is scanned to an
angle 8, the main beam is pointed to an angle —a relative to the reflecior axis. These rays are shown,
in Fig. 1, by solid lines. Similarly, when the feed array is scanned to an angle =@, the main beam Is
required to be pointed to an angle a, as shown by the dotted lines in Fig. 1. It is shown later in this
report that only a series of points and slopes (or tangents) at those points on the cross sections of the
reflector can be obtained. Using these data, the reflector cross sections are represented completely by
best fit polynomials. This polynomial representation Is used in computing the aperture phase errors
when the antenna beam is scanned to different angles by scanning the féed array. The results showed
that the bicollimated conﬂsuration has about 45% more scannlng range than the corresponding confocal
parabolic configuration,

SHAPED
MAIN REFLECTOR

Fig. | = Cross section of bicoliimated neur-field
CUregoriun reflector

. St et
Manuscript approved Ootober 8, 1982,

B T

s 'h“'\- ﬂr L u.ﬁ NN "" ‘l"-l K A ,“\- o
)W N W, .N' &’!r\h’t‘t b bh'rv \ j ‘: ﬁ': \ﬂ n\ i K :H 3-”“)-‘\ “J'l



J.B.L.RAO
DESIGN PROCEDURE

Figure 2 shows the cross section in the XZ-plane of an offset, bicollimated, nearfield Gregorian
reflector antenna. The Z-axis is the antenna axis of rotational symmetry. The feed atray is assumed to
be located in the XVY-plane. It is also assumed that the subreflector intersects the Z-axis at Z = P.
From symmetry, it is evident that the subreflector is perpendicular to the Z-axis at Z = P. The
reflected phase front B corresponds to the incident phase front A. For perfect collimation, the path
length between these two phase fronts should be constant and is assumed to be L. Similarly, the path
length between the phase fronts C and D is also equal to L.

Fig. 2 = Geomelry of an offset bicollimated
Gregoriun reflector

Knowing the initial point (X), Z,) and the slope at that point on the subreflector, one can deter-
mine the main reflector point (X, Z .') and the slope at that point by applying geometrical optics princi-
ples. Next, from this known point (X, Z|) and the slope on the main reflector, one can determine a
point (X, Z;) and the corresponding slope on the subreflector. By continuing this process a series of
points and slopes on the reflector surfaces are found in succession. The pertinent results are given by
two sels of formulas. The first gives a point (X;, Z,) and the slope at that point on the main reflector
when a point (X,, Z,) and the corresponding slope on the subreflector are known. The relations
(obtained by tracing the ruys emanating from phase front 4) are:

' Ri=L+Z,W=~Xsina

V4 (0
* W+ cosa ’
' I
X=Xy +(Z, - Z,) tan y;, (2)
Vi + a
(dz'/dx’) 7y, ~ tan l ol (3
2
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NRL REPORT 8658
where
K Ry = 2, cos B + X, sin B, )
' Y= 7k + 28, (5)

and

1 + sin vy, sina

o 6)

" In addition, Z;, X,, and y, are given by Egs. (7), (8), and (11) for k » 2. The Initial values, for
k=1, are Z = Pand X| = 0. From Fig. 2 it can be noted that y, = 8, Therefore, ¥, is not needed
in Eq. (5) to find v,. ‘ |

The' secgnd set'gives a point (Z,.,, Xi+1) and the slope at that point on the subreflector when
point (Xy, Z,) and the slope at the point on the main reflector are known. These relations (obtainc.d
by tracing tho rays emanating from phase front C, Fig. 2) are:

L-R+ZW+Xsing

P Xiwt = X + (Z( = Zy4)) tan oy (8
]
: +
(d?/'d-").r.,H_,,.\',,+l = tan l'z""ﬂi"“@'l. : 0]
where | :
Ry = ~Zj cos a— X, sin . _ - (100
Yirr= vp + 2a, (1
and
+ [}
W - 1+ 8in y48in g L 12)

4
CO8 ¥ k+1

Starting with the initial point (X|, Z|) and the angle y,(= 8), and making use of the first and
then the second set of formulus and continuing the process, a series of points and slopes on each

reflector surfuce can be found in succession.
POLYNOMIAL APPROXIMATION

The design procedure discussed in the previous section gives a finite number of points and an
equal number of slopes on the reflector surfaces. In order td define the reflector surfuces completely, it
i8 necessary to-use an approximation. It is convenient to approximaté the reflector cross sections by
best fit polynomiuls. Since the reflectors are axially symmetric, only even powers are required. The'
reflector cross sections are.represented by the polynomials

Z, - Bo,+ le.,z + B;X,‘ S I (|3)
_ Z, = Ag+ A\XE+ AXE 4., (14)
whers X, und Z, ure the subreflector coordinutes, and X, and Z,, ure the main reflector coordinates,

Il the number of dutu points availuble limits the degree of the polynomiul, the Known slopes on
the reflecior curves can be used (o improve the accuracy,
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o J.B. L.RAO
EQUIVALENT NEAR-FIELD GREGORIAN REFLECTOR

4.

5 To compare the performance of the bicollimated reflector antenna, it is necessary to define an

; equivalent confocal reflector system. The equivalence is established here by making the magnification -

:; M of the confocal reflector equal to 8/a and make the path-length between the incident and the radiat- |-
ing wavefronts equal to L for an on-axis beam for the confocal reflector. In addition, the subreflector is -
assumed to be at the same distance P from the origin as in the bicollimated case. The first condition o
gives the following relationships: \ .

N | '

‘QQ SR ' . Fy/Fy= M = Bla, (15;

“ whiere F,, and F, are the focal lengths of the main and subreflector of an equivalent confocal reflector. £

. _'The second condition gives the following:

:}3 ' : Fy+F= L2 (16)

2. Solving for F,, and F, from (15) and (16), we have

im Fym L2 (M +1),

Fy= ML/2(M + 1),

X " Therefore, the equivalent parabolic subreflector is given by the equation
b 1+M
and the equivalent parabolic main reflector is given by ,
y ' '
| Zoy = (/) ~ P~ LEM 2 (20

P

There are other ways of defining an equivalent confocal reflector. However, there is no need to
find precise equivalence (if there is such a thing) because small changes in the Gregorlan antenna
parameters do not appreciably influence its scanning performance as long as the confocal conditions is
not violated. Another point which should be noted is that at the outset it may appear that an
equivalent confocal reflector can be obtained simply by taking the first two terms in the polynomial
represantation of the bicollimated reflector. However, the main and subreflectors so obtained will not
form a confocal set.

PHASE ERROR ANALYSIS

2y

&

In the classical near-fisld Gregoriun system (5], it Is known that the amplitude distribution applied
to the feed array is reproduced over the main aperture without alteration. For values of a which are of
practical interest, the bicollimated reflector system does not deviate much from an equivalent classical
near-fleld Gregorian system. Therofore, it is reusonable to ussume that the main uperture amplitude
distribution is the same as that of the feed array. However, the aperiure phase errors are different in
the two systems. The purpose of this section Is to analyze the aperiure phase errors und show the
advantages of the bicollimated refleclor system. Figure 3 shows the geomeiry used in analyzing the
aperture phase errors. The aperture phase errors are found by assuming that a plane wave is incident
on the main reflector at an angle # and ¢, which also corresponds to thé mainbeam direction. Path-
length errors on tho uperture are delermined from the path-length between the incident wavefront und
the corresponding feed array wavefront, as discussed in the appendix of this report. Equation (A23)
gives the path-length error on the aperiure. The procedure given in the appendix applies to both bicol-
limated and confocul reflector antennus.
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MAIN
REFLECTOR
i‘; AXIS OF
h ROTATION
‘ ’
PLANAR
i _ PRED ANRAY ;
Fig. 3 ~ Path of general ruy used in 3-D ray
< trucing method
- NUMERICAL EXAMPLE

As an example, a bicollimated reflector antenna is designed with « = 3°, 8 = 9°, and L/P = 2.5,
Table 1 gives computed data points, .

o

projected into the XY-plane. The main aperture is assumed to be completely utilized over the scanning
range of interest. The corresponding illuminated areas of the feed 'array and the subreflector surface
may change with scan angle. For the example under consideration, tlie main reflector diameter D =
1.6P and the main reflector is offset from the Z-akis by 0.3P to eliminate blockage clue to the
subreflector when the beam is scanned below the Z-axis. ,

o Table | — Computed Points on the Reflector
@ Cross Sections o
e Z,/P
. 1. ¥
B 0.985926 | —0.132464 --0 154958 | 0,608434
i 0.938416 | —0.276962 0.057515
‘lz 0.836951 -0.450222 | 049982 l.678324
5 By use of the data polnts shown in Table 1, the reﬂector cross sections are approximated by the
v foliowing best fit polynomial representation:
1 z, = 0999998 ~ 0.8018732 x? ~ 0.01234072 !, - : (21)
v 2, = 0.253768 + 0.26682 x2 + 0.00025741 x4, (22)
¥ . where oo
: Z=2Z/P X, = X,/P, 2,= Z,/P and x,, = X,/P.
{ Reflector surfaces are obtained by rotating the above crcss sections about the Z-axis and choosing
;“ only selected purts. Figure 4 shows the geometry and the antenna parameters of the offset bicollimated
i reflector which is chosen as an example. The main reflector surface is chosen so that it is circular when
.)Y
N

Mg e D

By use of the 3D ray tracing method developed in the appendix, a computer program is devised to
determine the aperture phaie errors when the beam is scanned to different scan angles. Using that pro-
gram, it is possible to obtain path-length errors over the whole aperture, However, Fig. § shows these
errors on the aperture in one plane (XZ-plane) only as the errors are similar in other planes. The solid
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curves belong to the bicollimated reflector. As expected, the aperture errors for 8, = 3° (a = 3°) are
zero. However, for 9, = 0 (on axis beam) the biocollimated reflector has aperture errors whose magni-
tude increases toward the edges of the aperture. For comparison, aperture errors are computed for an
equivalent confocal reflector and are shown as dashed curves in I'ig. 5. For the confocal reflector, the
aperture errors are zero for 6, = 0 and increases with §,, The maximum errors appear towards the
edges of the aperture,
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For each scan angle, the maximum error on the aperture is.determined by using the data shown
in Fig. 5 and similar data obtained for other planes. This maximum path-length error normalized to
aperture diameter is plotted in Fig. 6 as a function of the scan angle when the main beam is scanned in
¢ = 0-plane. For the confocal reflector, the maximum path-length error increases monotonically with
the scan angle whereas the path-length error for the bicollimated reflector decreases with the scan angle
and becomes zero for & = o (3° in the example) and then increasss monotonically with the scan angle.
For a maximum normalized path-length error of 0.0011, Fig. 6 shows that the confocal reflector can be
scanined up to 2,7° and the bicollimated reflector can be scanned up to 4°. Therefore, the bicollimated
reflector has about 48% more scanning range in ¢ = 0 plane than the scanning range of an equivalent
confocal reflector. Figures 7 and 8 show similar results for scanning in ¢ = 90° and 180° planes.
Figure 9 shows the complete scanning ranges, for a maximum normalized path-length error of 0.0011,
for both confocal and bicollimated reflector antennas. The results show that the bicollimated reflector
has about 45% more scanning range than an equivalent confocal reflector,

0.004 —

Flg. 6 — Maximum error on the uperture when
wanned in ¢ = 0 plane

0.004 -

0 1 ] 2713
SCAN ANGLE ¢ IN DRUREES

Fig. 7 « Maximum error on the aperture when
scanned in ¢ = 90° plane
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Fig. 9 —~ Scanning tanges for confocal and bicollimated
tefleciors for maximum normalized path-length error

CONCLUSIONS

A biocollimated dual reflector antenna, which can collimute a beam in two different directions, is
proposed. A design procedure is presented for determining the reflector surfaces. Aperture phuse
errors are analyzed for different scan angles. The results show that the bicollimated reflector has about
45% more scanning range compared to an equivalent near-field Gregorian reflector
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Appendix
THREE-DIMFENSIONAL RAY TRACING PROCEDURE

A ray tracing procedure is used to compute aperiure phase errors for the bicollimated reflector
antenng. Figure 3 of this report is used to illustrate the procedure. First we compute the path length
of u general ray from & point-A on the incident wave front through a point B(X,,,Y,.Z,) on the main
reflector and a point C(X,,Y,,Z,) on the subreflector, and finally to a corresponding point D (X', Y’) in
the feed plane. The equation of the subreflector is assumed to be a sixth degree polynomial and is

given as _
Z,-Bo+ B,p}+82p,‘+83’p:’, : (A1)
where p, = /X7 + Y2,
Similarly, the equation of the main reflector is
Z, = Ag* A1pd + A0 + A3p8, (A2)

where p,, = \/X} + Y,,,i.
The spherical coordinates 8, ¢ define the direction of the general ray incident at a known point
B(X,.Y,,Z,) on the main reflector. This incident ray ‘s parallel to
ab = 7 sin@ cos¢ + J sind sing + k cosé, (A3)
where 7, J, k are the unit vectors parallel to X, ¥, Z coordinates and Iower case letters denote unit vec-
tors.
The length | 4B |, which is needed later to find the aperture phase errors, is given as
| 4B | = X,, sin® cos¢ + Y,, sind sing + Z, cosé. (A4)

To find the unit vector be of the reflected ray, Snell's law is used to relate the incident, reflected,
and normal unit vectors at the point (X,,, Y, .Z,) on the main reflector. This is given as

be = ab — 27, (7, * ab), (AS)

where 7, is the unit normal vector at the point (X,,,Y,,2,) on the main reflector. By using Eq. (A2),
the unit normal #,, is

-IZ -Jjz. +k

Ty ™= —\—/%. (A6)
1+ 25+ 2
9Z,

zZ,. - 37(— - A(2X,) + A,(4X3 + 4X,,¥3)

where

+ A;(6X + 12X Y2 + 6X, Y1),

8z,

2y - EY—--A (27,) + A,(4Y3 + 47, X2)
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1 + A;6YS + 12Y3x2 + 67, X1), (AT
,
. K The unit rormal 7, can be expressed as
*! iy = 18, + J8y + KB, (A8)
“ where

By m-Zy NI+ 2L+ ZL,

8, = l/\/l + Z,,,,! +Z”, ;

Substituting for ab and 7, using Eqs. (A3) and (A8), in Eq. (AS), the unit vector bc is

, be=TR.+] R, +k R, (A9)
where

and

X=ETEL.

i

R, = sing cos¢ — 278,,
Ry = sing sing - 2T8,,
R, = cos ~ 278,, :
and T = 7, - ab = B, sind cosp + 8, sind sing + 8, cosd.

The ray BC is given by
BC = 1(X, = X,) +J(Y, - Y,) + k(Z, - Z,). (A10)
Equating the unit vectors bc = BC/ |BC|, we will have three equations defining a line in spuce, only
two of which are independent; thus,
X=Xy  V=Vu _ Z-2,

R R, R, = R, | (ALD

f
f
{
i
!
(

where R = |BC|.
Equations (A11) and (A1) are solved, as outlined below, to determine the point X,, ¥,, Z, on
the subreflector. The following can be obtained from Eq. (All)
X,= R R, + X,
Y,=RR,+V,,
Z,-RR,+ 2, (A12)

Knowing R, Eq. (A12) can be used to find the point on the subreflector. First, therefore, a solution for
R will be obtained by eliminating X,, Y, and Z, in Eq. (A1) by using Eq. (A12). By doing this, a sixth
order equation (polynomial) in R is obtained as shown below, '

agR® + asR® + a,R* + ayR® + a;R* + a\R + ag =0, (A13)
where
ag™ ¢o+ A\Sy+ A3Ts + A Ey -~ 2,
a;= A8y + AyTy + AyE¢ — R,,
a;= A8, + A;T; + A,E;,
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ay= ATy + AE,,

ay= AsT\ + AyE),

asm= AyE,

ag= A3E,,

E = T\S,

Ey= T8, + TSy,

E; - TJS. + TzS; + T,S,.

E(= TS, + T)Sy + T1S3,

Egwm T8, + T4Sy+ T3S,

“Egm TeSy + TyS3,

Eq= TSy,

T,= S¢, -

T; = 28,8,

Ty= §§ + 25,83,

Tym 28,8, .

Ty = %,

5 = R?+ R},

Sy = 2(Re X + Ry V),
and.

LSy =XI+ TR
Fquation (A13) is used to find R by using & standard routine for solving the roots of a polyno-

mial. In general there will be six roots for a sixth order polynomiil; some are complex and some are
real, with only one correct real root. A procedure is devised, using physical constraints, to select the
correct root, and hence the value of R. Equation (A12) is then used to find the point (X,,Y,,2,) on
the subreflector, : -

Next, the direction of the reflected ray CD and the length |CD| will be determined. Snell's law of
reflection at the point (X,,Y,,Z,) is written us

¢d = be ~ 25,(7, « be). . (A14)
The unit normal at the point of reflection on the subreflector is
iy = Ta, + Ja, + ka, (A15)

where
a, = Z/\T+ ZL + Z3,
ay, = Z,/N1 + Z“! + Z}v.
a, =—1/x/T+ Zl+ Z,"v.

Z,™= -:—i’- = B (2X,) + B,(4X,; + 4X, YD)
8§
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and

Z, -:—";";- = B|(2Y,) + By(4Y} + 4V, X?)

+ By(6 Y2 + 1212X2 + 6Y,X1).

Substituting for bc and 7,, using Eqs. (A9) and (A15) in Eq. (A14), the unit vector cd is
od = (R, — 2Qa,) + J(R, — 2Qa,) + k(R, = 2Qa,), (A16)

where Q= i, - bc = a, R, + yRy + a,R,. Other purameters in Eq. (A16) have been defined previ-
ously, The ray €D can also be cxpreued as

CoO=T(X=X)+J(Y=Y)+k(-2), (ALD

where the array aperture plane is defined as the plane 2’ = 0 and (X, Y') is the point of Intersection D
in the feed array plane.

The equation cd = CD/|CD| yields three equations; only. two. of them are independent, which are
sufficlent to determine the point of intersection (X, Y') in the aperture plune Z' = 0:

X-X _ Y-1 - %
Rx - 20“* Ry - 2Qay R' - 20“, '

"

R
A from which
" " (R, ~ 2Qa,) 2,
y X=X (R, - 2Qa,) ' L (Al8)
R
! -y, = R = 20002, -‘
5 and

Z' =0, (A20)
s the path length |CD| is
!
i |CD) = /(X = X))+ (Y = ¥) +(Z' = Z). (A21)
h The total path length is simply the sum of the component path lengths. Hence,

Lo= |4B| + |BC| + |CD|. (A22)

For an ussumed direction (@, ¢) for the mainbeam it was noted that the direction of the rays
incident on the feed array are not perfectly parallel to each other. However, an optimum phase front
i which minimizes aperture phase errors can be found. Let this phase front be defined by the feed steer-
ing angles 6, and ¢, which are necessary to steer the mainbeam in the direction of ¢ and ¢. Then, one
can show that the aperture path length errors are given by

AL = Lo— X'sing, cosp,— Y'sind, sing, — L. (A2D)

e
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