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BICOLLIMATED NEAR-FIELD GREGORIAN
REFLECTOR ANTENNA

INTRODUCTION

It is known that the bifocal dual reflector antenna (1] and bifocal dielectric lens antennas [2,31
have wider angle scan capability than their single focus counterparts. We propose a bicollimated near-
field Gregorian reflector antenna which has a better scan capability compared to a classical near-field
Gregorian reflector antenna (41. The design presented applies to both symmetric or offset (51
configurations. However, only the offset configuration, which eliminates feed blockage, will be used.

The bicollimated reflector Is obtained by firs, designing a bleollimated cylindrical reflector system
using geometrical optics techniques and then revolving the cross section curves to form a surface of
revolution, Selected parts of these surfaces will form an offset reflector configuration. Figure I shows
the cross section of an offset configuration of a bicollirrated near-field Gregorian reflector antenna. The
cross sections of the main and subrefleptor are designed lo that when the feed array is scanned to an
angle p, the main beam is pointed to an angle -a relative to-the reflector axis. These rays are shown,
in Fig, 1, by solid lines, Similarly, when the feed array is scanned to an angle -P, the main beam is
required to be pointed to an angle a, as shown by the dotted lines in Fig, 1. It is shown later in this
report that only a series of points and slopes (or tangents) at those points on the cross sections of the
reflector can be obtained. Using these data, the reflector cross sections are represented completely by
best fit polynomials. This polynomial representation is, used In computing the aperture phase errors
when the antenna beam is scanned to different angles by scanning the feed array, The results showed
that the bicollimated configuration has about 45% more scanning range than the corresponding confocal
parabolic configuration.
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Ms. I - Cross section or bicollimated near-field
Oregorian reflector
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DESIGN PROCEDURE

Figure 2 shows the cross section in the XZ-plane of an offset, bicollimated, nearfield Gregorian
reflector antenna. The Z-axis is the antenna axis of rotational symmetry. The fted array is assumed to
be located in the XY-plane. It is also assumed that the subreflector intersects the Z-axis at Z - P.
From symmetry, it is evident that the subreflector is perpendicular to the Z-axis at Z - P. The
reflected phase front D corresponds to the incident phase front A. For perfect collimation, the path
length between these two phase fronts should be constant and is assumed to be L Similarly, the path
length between the phase fronts C and D is also equal to L.
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Pis, 2 - Geometry of' in ofTsel bicollimated

Gregorian reflector

Knowing the initial point (XI, Zt) and the slope at that point on the subreflector, one can deter-
mine the main reflector point (Xi, Zj) and the slope at that point by applying geometrical optics princi-
ples. Next, from this known point (X, Z1) and the slope on the main reflector, one can determine a
point (42, Z2) and the corresponding slope on the subreflector. By continuing this process a series of
points and slopes on the reflector surfaces are found in succession. The pertinent results are given by
two sets of formulas. The first gives a point (Xk, k) and the slope at that point on the main reflector
when a point (Qk, Zk) and the corresponding slope on the subreflector are known, The relations
(obtained by tracing the rays emanating from phase front A) are:

Zk - Rk - L + Zk W - Xk sin (I)W + cos a

X - Xk + (Zk - Z, ) tanyA, (2)

•dz'xlz, 4x -- tan IV +a (3)
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where

Rk - Zk Cos 0 + Xk sin #, (4)

Yk - ,' + 2p, (5)
and

I + sin yk sin aWar- (6)
Cos y)k

In addition, Zk, Xk, and yek' are given by Eqs. (7), (8), and (11) for k ;o 2. The initial values, for
k - I, are Z1 - Pand X, - 0. From Fig. 2 it can be noted that 'yI - ,. Therefore, yi is not needed
in Eq. (5) to find y 1.

The second set gives a point (Zk~+, Xk+t) and the slope at that point on the subreflector when a
point (Xk', Zk') and the slope at the point on the main reflector are known. These relations (obtain(
by tracing the rays emanating from phase front C, Fig. 2) are:

-L - Rk' + ZW'+ X sin (
W' + cos P

Xk+I- X, + (Zk'- Z.k+)tan ,'4, (8)

(d/ldx)z txi+1 - tan (9)

where

Rk -- Zk' cos a- Xk sina, (0)

'YkV+l- rk + 2a, (11)
and

1 -,+ sinyk+ sin.fl
W ro A (12)COS 'Vk+|

Starting with the initial point (XI, Z,) and the angle y'(- 8), and making use of the first and
then the second set of formulas and continuing the process, a series of points and slopes on each
reflector surface can be round In succession.

POLYNOMIAL APPROXIMATION

The design procedure discussed in the previous section gives a finite number of points and an
equal number of slopes on the reflector surfaces, In order td define the reflector surfaces completely, it
is necessary to use an approximation. It is convenient to approximate the reflector cross sections by
best fit polynomials. Since the reflectors are axially symmetric, only even powers are required. The'
reflector cross sections are. represented by the polynomials

zj - so,+ six"+ Bzx +..., (13)

Z, - Ao + AI Xl + A2X, +..,, (14)
where X, and Z, are the subreflector coordinates, and X, and Zh, are the main reflector coordinates.

If the number of ditta points available limits the degree of the polynomial, the known slopes on
the reflector curves can be used to improve the accuracy.
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EQUIVALENT NEAR-FIELD GREGORIAN REFLECTOR

To compare the performance of the bicollimated reflector antenna, it is necessary to define an
equivalent confocal reflector system, The equivalence is established here by making the magnification
M of the confocal reflector equal to P/a and make the path-length between the incident and the radiat-
ing wavefronts equal to L for an on-axis beam for the conrocal reflector, In addition, the subreflector is
assumed to be at the same distance P from the origin as in the bicollimated case. The first condition
gives the following relationships:

FmIF - M- Pla, (15)

where F. and F, are the focal lengths of the main and subreflector of an equivalent confocal reflector.

The second condition $Ives the following:

F. + F,- L/2. (16)
Solvilig for F and F, from (15) and (16), we have

F,- L/2 (M + 1),
_ Fol - ML/2(M + 1).

* Therefore, the equivilent parabolic subreflector is given by the equation

Z1. P - I-1 + M X2  (19)2L ,

and the equivalent parabolic main reflector is given by

z4,- QL/2) -P - +M , (20)2L.M X(20

There are other ways of defining an equivalent confocal reflector. However, there is no need to
find precise equivalence (if there is such a thing) because small changes in the Gregorian antenna
parameters do not appreciably influence Its scanning performance as long as the confocal conditions Is
not violated. Another point which should be noted is that at the outset it may appear that an
equivalent confocal reflector can be obtained simply by taking the first two terms in the polynomial
representation of the bicollimated reflector, However, the main and subreflectors so obtained will not
form a confocal set.

PHASE ERROR ANALYSIS

In the classical near-field Gregorian system 151, It Is known that the amplitude distribution applied
to the feed arry is reproduced over the main aperture without alteration. For values of a which are of
practical interest, the bicolllmated reflector system does not deviate much from an equivalent classical
near-field Gregorian system. Therefore, it Is reasonable to assume that the main aperture amplitude
distribution is the same as that of the reed array. However, the aperture phase errors are dilTerent in
the two systems. The purpose of this section Is to analyze the aperture phase errors and show the
advantages of the bicollimated reflector system. Figure 3 shows the geometry used in analyzing the
aperture phase errors, The aperture phase errors are round by assuming that a plane wave is Incident
on the main reflector at an angle 0 and 0, which also corresponds to the mainbeam direction, Path-
length errors on the aperture are determined from the path-length between the incident wavorront and
the corresponding reed array waverront, as discussed In the appendix or this report. Equation (A23)
gives the path-length error on the aperture. The procedure given in the appendix upplies to both bicol-
limated and confocal reflector antennas.

4
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NUMERICAL EXAMPLE

As an example, a bicoilimated reflector' antenna is designed with a - 30, 8 - 9o, and L/P -25.
. Table I gives computed date. points,.

Table I - Computed Points on the Reflector
Cross Sections

Z, lC X, Y61 Z11e,/
100000 0 "0644 ,1969381111ICO

0.985926 .0,0132464 -01!54958 0 6084340.9384J.6 -0.276962 0,05715 1Y079506
0,836951 j-0450222 0,49981 1,678324

By use of' the data points shown in Table 1, the reflector cross sections are approximated by the
f'ol.owin- best fit polynomial representation:

:,- 0.999998 - 0.8o18732 x,2 - 0.01234972 x,', (21)
q m- 0.253768 + 0.26682 xJ +4 0,00025741 x , (22)

t where

z- Z/ P, X. - 2 ,, , - Z.J/P and x,. - / P

Reflector surfaces are obtained by rotating the above cross sections about the Z-axs and choosing
only selected parts. Figure 4 shows the gleometry and the antenna parameters of' the offset bicollimatedreflector which is chosen as an example, The main reflector surface is chosen so that it is circular when
projected into the XY-plane, The main aperture is assuned to be completely utilized over the scanning
range of interest, The corresponding Illuminated areas of the feed 'array and the subreflector surface
may changle with scan anglle. For the example under consideration, the main reflector diameter b -
1.6P and the main reflector is offset from the Z~a~'is by 0.3P to eliminate blockagie due to the
subreflector when the beam is scanned below the Z-axls. '

By use of the 3D ray tracing method developed in the appendix, a computer program is devised to
determine the aperture phaue errors when the beam is scanned to different scan angles. Using that pro.
gram, it is possible to obtain path-length errors over the whole aperture. However, Fig., 5 "shows these
errors on the aperture in one plane (XZ-plane) only as the errors are similar in other planes. The solid

0.346 - .27696 .05S S. .. 5. ... 4 ) .
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Pit. 4 - Cron section o the blollimated reflector
deigned with a - 3, p 9' and L - 2.5 P
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• /
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%-0ag01-00

Pit. - Aperture phasel errrs In XZ.plane

curves belong to the bicoilimated reflector. As expected, the aperture errors for 9, - 39 (a - 3) are
zero, However, for 9, e- 0 (on axis beam) the biocollimated reflector has aperture errors whose magni-
tude Increases toward the edges of the aperture. For comparison, aperture errors are computed for an
equivalent confocal reflector and are shown as dashed curves in P I. 5. For the confocal reflector, the
aperture errors are zero for 0, - 0 and Increases with 0,. The maximum errors appear towards the
edges or the aperture.
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For each scan angle, the maximum error on the aperture is determined by using the data shown
in Fig. 5 and similar data obtained for other planes. This maximum path-length error normalized to
aperture diameter is plotted In Fig. 6 as a Function of the scan angle when the main beam is scanned in
0 - 0 plane. For the confocal reflector, the maximum path-length error increases monotonically with
the scan angle whereas the path-length error for the bicollimated reflector decreases with the scan angle
and becomes zero for e - (3 in the example) and then increases monotonically with the scan angle.
For a maximum normalized path-length error of 0.0011, Fig. 6 shows that the confocal reflector can be
scanned up to 2,7' and the bicollimated reflector can be scanned up to 4". Therefore, the bicollimated
reflector has about 48% more scanning range in 0 - 0 plane than the scanning range of an equivalent
confocal reflector Figures 7 and 8 show similar results for scanning In 4. - 90' and 180' planes.
Figure 9 shows the complete scanning ranges, for a maximum normalized path-length error of 0.0011,
for both confocal and blcollimated reflector antennu. The results show that the bicollimated reflector
has about 45% more scanning range than an equivalent confocal reflector.
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Fig. I - Mnoimumn error on the aperture when
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CONCLUSIONSCOLIMTU

A blocollimated dual reflector antenna, which can collimate a beam In two diff~erent directions, Is
proposed. A design procedure Is presented for determining the reflector surfaces, Aperture phase
errors are analyzed fr different scan angle. The results show that the bicollimated reflector has about
4S% more scanning range compared to an equivalent near-field Gregorian reflector
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Appendix

THREE-DIMENSIONAL RAY TRACING PROCEDURE

A ray tracing procedure is used to compute aperture phase errors ror the bicollimated reflector
antenna. Figure 3 of this report is used to illustrate the procedure. First we compute the path length
of a general ray from a point A on the incident wave front through a point (X., YM,Z,) on the main
reflector and a point C(X,, )',,Z) on the subreflector, and finally to a correspond ing point D(X', Y') in
the feed plane. The equation of the subreflector is assumed to be a sixth degree polynomial and is
given as

Z. - 80 + BIPS2 + R2PS+ B3P , (A)

where p,-fXT , T
Similarly, the equation of the main reflector is

Z- - Ao 4, A p2 +Asp , (A2)

where p. - +1FTTI.

The spherical coordinates 0, 0 define the direction of the general ray incident at a known point
B(Xm,, Ym,Zm) on the main reflector. This incident ray !s parallel to

;b - 7sino cos+ + j7sinG sin# + kpos0, (A3)

where , , k are the unit vectors parallel to X, Y, Z coordinates and lower case letters denote unit vec-
tors.

The length I F I, which Is needed later to find the aperture phase errors, is given as

I I - X,, sine coso + Y,, sine sin6 + Z, cose. (A4)

To find the unit vector F of the reflected ray, Snell's law is used to relate the incident, reflected,
and normal unit vectors at the point (X., Ym,ZM) on the main reflector. This is given as

F- W - 25, (,, - ;-b), (A5)

where W,, is the unit normal vector at the point (U, Ym,Zm) on the main reflector. By using Eq. (A2),
the unit normal 5,, is

-z -jz +k
- I + z +z (A6)

where

z= t- -- A (2Xt) + A 2(4 + 4Xm )

+ A 3(6X,5 + 12X3 Y + 6 , Y,),

Z "' "  A1(2 Y) + A2(4Y3 + 4Y, X2)
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+ A3(6Yms + 12YiX2 + 6ymx4). (A7)

The ,mit normal W. can be expressed as

--,,, -7Ts + Jay + kb,, (A8)

where

a,--z,/ I + zN + Z1.%--z/41 8zY + z',
and

8,- 1/ + Zl + Za,

Substituting for 5'and X,, using Eqs. (A3) and (A8), in Eq. (AS), the unit vector F is

S- T +7j + kit,.(A9)
where

R - sing cos# - 2 8g,

s ing sin - 2 T8y,

- cose - 2M8,,

and 7,, -- - 8, sing cos# + 8y sing sino + 8: cost.

The ray W is given by
Ic -T(xs - x,) +-7(, - W. + W(z, - 4., (A10)

Equating the unit vectors R - Wi/Ii'I, we will have three equations defining a line in space, only
two of which are independent; thus,

X, , X. , - Yo. z, - zM A 1-,= - ,- R, (All)

where R - li'I
Equations (All) and (Al) are solved, as outlined below, to determine the point X,, Y, Z, on

the subreflector. The following can be obtained from Eq. (Al I)

X, - A Rx + x.,
Y - R R, + YV.

Z8 - R R, + ZM. (A12)
Knowing R, Eq, (A12) can be used to find the point on the subreflector. First, therefore, a solution for
R will be obtained by eliminating X,, Y, and Z, in Eq. (Al) by using Eq, (A12). By doing this, a sixth
order equation (polynomial) in R is obtained as shown below,

06R6 + aSR 5 + a4R4 + a3R3 + a2R2 + aiR + ao - 0, (A3)
where

ao - A0 + AS3 + A27'5 + A3E7 - Z,

al - AIS2 + A 2T4 + A 3E6 - R,,

a2 - AtS I + A2T + A 3Es,

II
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a3 -A2 2 + A3 4 ,

44-A2 r T+ A 3EI,
45 w A,

V a6- A3E11
El- S,

E2 - TiS, + TS2,

E3 - T3S, + TAS + TS3,

E4 - TAS + T3S2 + T2S3 -

£5 TS1 + 74S2 + T3S3,

E- TSS 2 + T4S3,
E7us T5S,,

T- 2SIS 2,

T3 -S1+ 2SS 3,

T4 - 2S2S3.

S2 - 2 (Rx XN + nyr,,),

and

S3-XM y2

Fquation (A 13) Is used to find R by using a stand4rd routine for solving the roots of a polyno-.
mial. In general there will be six roots For -a sixth order polynomial-, some are complex and some are
real, with only one correct real root. A procedure Is devised, using physical constraints, to select the
correct root, and hence the value of R. Equation (A 12) is then used to find the point (X,,.Y,PZ,) onl
the subreflector.

z ~ Next, the direction of the reflected ray UD a nd the length ED~ I will be determined. Snell's law or
reflection at the point QX, Y,,Z) is written as

rd-.4-27s(R A

The unit normal at the point oF reflection on the subreflector is
W, - la, + 7a,v + ka (AI5)

where
a 4Il + 4U + Z1

a- -v/% I -+ 4r+ -z7A
+ z",

Z- a B' , 1(2 X,) + 8 2(4 X' + 4 X.,Y,1)

12



NRL REPORT 8658

+ a3 (6X ,+ 12X83Y,2 + 6XY 8
4),

and

ZV S" B 1 (2Y,) + 2 (4Y,3 + 4YX 2)

+ 83(6 Ts + 12 Y,3 X2 + 6 YX X).

Substituting fot K-and Wi, using Eqs4 (A9) and (AIS) in Eq. (A14), the unit vector dis

- 7(R, - 2Qax) + j(R, - 2Qay) + !(R, - 20a,), (A16)

where Q - Ws - - a, 4R Rv + aR,. Other parameters in Eq. (A16) have been defined previ-
ously, The my D can also be expiressed as

0 - 7(x'- x,) + 7'(r -. ) + W(-z,). (AMe

where the array aperture plane Is defined as the plane Z' - 0 and (X Y') Is the point of intersection D
in the feed array plane.

The equation . '/I 1 yields three equations; only two of them are independent, which are
sufficient to determine the point or intersection (X, Y') In the aperture plane Z' - 0:

X, - x8 ,' - ', - z8
R2- 'ax R - 2Qa, R,- 2Qa'

from which

x MX, (R - 2Qav)Z, (A18)(R2 - 2Qa ) '

(R, - 2Qa)Z,
Y'- Y - 20,!.) (A19)

and

Z'- 0. (A20)

the path length I0I is
I'bI - I(x'X- X '" + ('- Y,) + (Z' - Z,). (A21)

The total path length is simpl' the sum of the component path lengths, Hence,

Lo- 1I"I + Ihi + I0'1. (A22)

For an assumed directien (0, 0) for the mainbeam it was noted that the direction of the rays
incident on the feed array are not perfectly parallel to each other. However, an optimum phase front
which minimizes aperture phase errors can be found. Let this phase front be defined by the feed steer-
Ing angles of and 01 which are necessary to steer the mainbeam in the direction or 0 and 0. Then, one
can show that the aperture path length errors are &iven by

AL - L0 - X' sine1 cosof - Y' sine1 sinef - L. (A23)

13
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