
AD-425164 A N RAH 1 P TN(IN AREDNUAN OlSRI6 UAI

MBS ERN E ERNMENTU COMPUTER CORP OF AMERIC CAMBRIDGE

7UNCLS AIE NUGO 9-7-007 4/ /2 N

mhhhmmmhhuo
smmhohhohohmhE
mEEmhhhhhhohEI
smohhhEEohhhE
mhEEomhEEEEI

111 1.0 &0 28 5
jU &j2 12

... ft.- -

U:,'s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARS-1963-A

5I

An Approach to Updating in a Redundant Distributed Data Base
Environment

AD A1 25164

Technical Report J.1. Rothnie
CCA-77-01 and
February 15, 1977 N. Goodman

AppRoVED FOR PUBTC RROW

DIs1RIBU ION U LIMITED

DTIC
,L(SELECTE

LI...I MAR 2 1983

B

A 145
coa~r coronftof & %wim

Computer Corporation of America
575 Technology Square

Cambridge, Massachusetts 02139

A Study of Updating
In a Redundant Distributed

Database Environment

Technical Report
CCA-77-01

February 15, 1977

James B. Rothnie and Nathan Goodman

Computer Corporation of America

This research was supported by the Defense Advanced Research
Project Agency of the Department of Defense. The views and

t conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Defense

Advanced Research Projects Agency or the U.S. Government.

Abstract

This working paper describes an approach to the problem of
updating data that is stored in a redundant distributed data-
base system (RDDBS). The approach that we describe:

a. preserves the consistency of the database; yet

b. avoids excessive delays due to inter-computer syn-
chronization.

The technique exhibits substantially faster response to
updates than methods suggested elsewhere (e.g. (THOb], [ALSI).
In fact the depicted approach offers the same response time
advantages for most updates that an RDDBS offers on retrieval.

- Also, in contrast to the previous work in the field, the
method described here is amenable to "tuning" as part of the
database design process.

Acknowledgments

The authors wish to acknowledge the contributions of Philip A.
Bernstein and Christos Papadimitriou to the results presented
in this report.

Aoo.sl0onl o?

NTSI GRAIDTIC TA1B 5

Uzleannounced 5

I I P1 8t .

Mut

Updating a Redundant Distributed Database
Table of Contents

1. Introduction 1
1.1 Motivation for RDDBSs 3
1.2 Overview of Technical Problems in RDDBSs 10
1.2.1 The Redundant Update Problem 11
1.2.2 Resiliency Despite Component Failure 14
1.2.3 Optimal Resource Allocation 16
1.2.4 Data Access Optimization 18
1.2.5 Storing of the Database Directory 24

2 The Redundant Update Problem in Detail 25
2.1 Example of Updates that Conflict 27
2.2 Locking Solution to the Redundant Update Problem 33
2.3 Voting Solution to the Redundant Update Problem 38
2.4 Primary Site Solution to the Redundant Update Problem . 39
2.5 Overview of CCA Solution to the Redundant Update Problem. 41

3. General System Architecture of RDDBSs 47
3.1 The Network of Data Modules 48
3.2 Physical Database Organizations49
3.3 Materializations. 51

4. Database Consistency 55
4.1 Serializability -- the Global Property.58
4.2 Computing Serializability 60
4.3 The Graphic Technique for Determining Serializability . 62
4.4 Results from the Graphic Technique68
4.5 Conclusion. 81

5. Local Test for Safety 85
5.1 Form of the Local Safety Test.......87
5.2 Constraints on Safe Configurations88
5.3 Examples of Safe Configurations 91
5.4 Examples of Topics to be Explored 94

References96

Updating a Redundant Distributed Database Page -1-
Introduction Section I

1. Introduction

This paper addresses the following problem: how to perform

updates in a Ci1[.ant distributed database system (RDDBS) in

a manner that 4aY preserves the consistency of the database,

yet (bi does not introduce intolerable inter-computer synchro-

nization delays.

We have developed a technique for this problem which permits

most update transactions to exhibit the same highly responsive

behavior which an RDDBS can offer on retrieval. Other ap-

proaches to the problem of updating in a redundant distributed

database environment suffer from substantially slower response

times (in many cases involving clearly intolerable delays) as

well as from problems in system scaling. These approaches are

discussed in Section 2.

The results presented in this paper are preliminary in nature.

They derive from research conducted by CCA in preparation for

a large-scale RDDBS implementation project. This RDDBS imple-

mentation is being performed by CCA on behalf of the Defense

Advanced Research Projects Agency in the context of Navy

command and control applications (CCA]. Through the implemen-

40.
L

Page -2- Updating a Redundant Distributed Database
Section 1 Introduction

tation effort and additional theoretical research we expect to

extend and strength the results presented in this paper.

The body of this paper describes the approach to redundant

updating that we have developed. Also it outlines the theo-

retical questions that we expect to address in future work.

The remainder of Section 1 discusses the general notion of an

RDDBS and the major technical problems such a system presents.

Section 2 focuses on the redundant update problem; it presents

solutions to the problem which have been prepared elsewhere as

well as an overview of the new technique suggested here.

Section 3 provides a more precise formulation of the general

system architecture of the RDDBSs being studied.

Sections 4 and 5 describe in detail the redundant update meth-

odology we are advocating. First, Section 4 explores the

question of database consistency which underlies the update

problem. Then, a graphic technique which simplifies the anal-

ysis of potentially inconsistent database operations is intro-

duced. Finally, in Section 5 the graphic technique is ex-

ploited to describe and analyze the update methodology and

tsome sample results are given.

.1A

:4 +

Updating a Redundant Distributed Database Page -3-
Introduction Section 1

1.1 Motivation for RDDBSs

The advent of inexpensive and easy to use computer networks

has given rise to interest in the concept of distributed pro-

cessing. The database world is no exception to this trend in

computer technology and over the past several years an in-

creasing amount of research and developement has been con-

ducted on distributed database systems. Early work in this

area includes-that of Whitney [WHI], Casey [CAS), and Chu

[CHU]; more recent work has been conducted by AlsberR [ALS],

Thomas [THOb), Stonebraker [STO], Mahrmoud [MAH], Levin (LEVI,

and others.

In the context of this paper, the term "distributed database

system" (DDBS) denotes a database management system consisting

of several geographically dispersed data base modules connect-

ed to each other via a computer-to-computer communication net-

work (see Figure 1.1). The modules are all functionally iden-

tical -- that is, no one of them serves any function which

could not be done by any other. However, in general each data

module serves as a repository for a different portion of the

database. Thus in order to satisfy a user's request to store

F J -

Page -4- Updating a Redundant Distributed Database
Section 1 Introduction

data-
base

data-module

base

moduleodule

d A Dtbase

nodul basel
moodule

A Distributed Database System

Figure 1.1

k

'T

Updating a Redundant Distributed Database Page -5-
Introduction Section 1

or retrieve data, it may be necessary to access more than one

data module.

An example of a multi-module query is illustrated in Figure

1.2. The figure visualizes a query issued at corporate head-

quarters in New York for any employee located at either the

company's Chicago or Atlanta office with a special knowledge

of compilers and who also speaks German. (This person is

perhaps needed for emergency assignment in Hamburg). In the

illustrated distributed database system the query requires

access to both the Atlanta database module and the Chicago

module.

An important nuance in our concept of DDBSs is that this sort

of disoersed data access is handled automatically by the

system. That is, users are permitted to enter database

queries or updates at any database module and the system

itself takes responsibility for locating the desired data

among the distributed network of database modules. Ideally

users are able to interact with the distributed system as

easily as with a conventional, centralized one.

Thus the notion of a distributed database system that we are

addressing is quite analogous to the distributed operating

system concepts being developed today, e.g. by the National

Software Works (SCM], the National Bureau of Standards NAM4

Page -6- Updating a Redundant Distributed Database
Section 1 Introduction

EMPLOYEE CURRE SPECIAL FLUENT

NUMBER NAME STATION SKILL LANGUAGE

123456789 Jones DETROIT COMPILERS GERMAN

234567890 Brown .. CHICAGO NONE FRENCH ...

! This data store

345673901 Smith .. CHICAGO COMPILERS GERMN. toZ'ed at

.\~~ amodusledul

7or al enloees whose

M L O Y E Ew
C URRENTSP AU -S T A T IO N

! I #567890]................ 4eNA, C M IER PN S .

;York DCHICAGO or ATLANTASPECIAL-SKILL

COMPILERS .
and

FLUENT-LANGUAGE=
GERMAN

Print EMPLOYE-NUMBER

and NAME.
(Douston Atlan

This data stored
ul_-odat this module

EMPLOYEE CURRENT SPECIAL FLUENT1
NUMER NAMVE STATION SKILL LANGUAGE ..

456789012 Carter . ATLANTA COMPILERS SPANISH..

567890123 Doe . ATLWA COMPILERS GERIAN

678901234 Gray Au~a COMPILERS GERMAN

A Multi-Module Query
Figure 1.2

Updating a Redundant Distributed Database Page -7-
Introduction Section 1

project EROS], and the Arpanet RSEXEC project [THOa]. These

projects like ours take a collective computing resource dis-

tributed geographically on a computer network and make it

available to users in an integrated, easy to use manner. This

approach in the distributed database area has also been advo-

cated by Thomas [THOb), Stonebraker [STO), and Alsberg [ALS].

Distributed database systems offer advantages over centralized

database systems in many applications.

The database is more reliable in that it is not sus-

ceptible to total failure when one piece of equipment

breaks down or one geographic location becomes inac-

cessible.

By allowing data to be stored near to where it is

used most frequently, DDBSs provide faster access to

the data and reduce communication costs.

A third advantage of DDBSs is that they permit modu-

lar upwards scaling of database systems: DDBSs permit

a very large database to be constructed out of moder-

ate sized database modules instead of a single, very

large centralized site; and when more power is

needed, the user need only add more database modules

in a modular fashion.

I

I
Page -8- Updating a Redundant Distributed Database
Section 1 Introduction

The advantages of DDBSs may often be further amplified by per-

mitting redundant data to be stored in them -- i.e. by permit-

ting copies of some portions of the database to be stored at

two or more database modules. For instance, it may be advan-

tageous to store information on top executives at both the re-

gional database where they are stationed and at corporate

headquarters.

Distributed database systems that permit redundant data are

called redudant~djstibut d!atabase sytm (RDDBSs).

RDDBSs offer the following extra features:

1. Reliability:

Since multiple copies of data are stored, it is poss-

ible for crucial portions of a database to remain ac-

cessible even if a database module fails or becomes

inaccessible due to communication outages.

Basically the RDDBS approach recognizes that data per

se is a valuable property. As many authors Doint out

(e.g. [SIB], [FRY], and [BER]) the major objective

of database management in the first place is to in-

crease the availability of data within an organiza-

tion. It is worth spending time, effort, and money

to increase the availability of the valuable resource

represented by data.

IMa

Updating a Redundant Distributed Database Page -9-
Introduction Section 1

2. Responsiveness:

Both redundant and non-redundant distributed systems

improve the responsiveness of data access by permit-

ting data to be stored near to where it is used.

However, in the non-redundant case, the decision on

where to place a datum is an all-or-nothing choice,

whereas in an RDDBS the decision is subject to

"tuning" by a database administrator.

For example, if some data were accessed equally from

Los Angeles and from New York there might be no good

choice for its location in a non-redundant system.I' In a redundant DDBS, though, the database administra-

tor could freely choose to store the data both places

in order to optimize database performance.

3. Upwards scaling:

The redundant approach allows additional database

modules to be added to accommodate increases in data-

base activity, not just increases in database size.

As more and more database requests are directed at an

area of a database, it could be redundantly stored at

additional database modules thus bringing added com-

puting power to bear in handling the activity.

I ________..............._

Page -10- Updating a Redundant Distributed Database
Section 1 Introduction

As a consequence of these features RDDBS technology appears]

appropriate for many Defense database applications. One area

where the RDDBS approach is extremely beneficial is the

command and control field. Here the requirement for reliable,

continuous operation is paramount and this need cannot be met

under battlefield conditions by simply placing redundant hard-

ware in a single central location. Also the need for rapid

response without excessive communication is clear in the

command and control environment.

1.2 Overview of Technical Problems in RDDBSs

"I As indicated above, RDDBS technology shows great potential for

improving the reliability and responsiveness of many database

applications. Before this potential may be achieved, however,

several technical problems remain to be solved.

Updating a Redundant Distributed Database Page -11-
Introduction Section 1

1.2.1 The Redundant Update Problem

This paper focuses on one large area of difficulty in the

RDDBS field: the problem of updating data that is stored re-

dundantly at multiple database modules. This so-called redun-

dant update problem is in a sense the flip side of the key

RDDBS advantages.

RDDBSs are advantageous on retrieval because they

maintain up-to-date data at many sites; but in order

to keep its copies up-to-date, an RDDBS must ensure

that modifications take affect in all sites in a

timely fashion.

Solutions to the redundant update problem have appeared in the

literature (e.g. (THOb], [ALS]). These solutions, however,

impose a significant and often intolerable delay on the

process of updating the database. These solutions thus remove

one of the key features of RDDBSs -- their responsiveness --

from the update operation. The previous work on the redundant

update problem is discussed further in Sections 2.3 and 2.4.

Page -12- Updating a Redundant Distributed Database

Section 1 Introduction

The approach that CCA will follow in redundant updating

permits most update transactions to run as rapidly in the re-I

dundant distributed environment as in a non-redundant system.

The approach that we pursue has two main foci:

1. We study in precise sense what is meant by "database

consistency" and under what conditions transactions

in an RDDBS can violate the property of "consisten-

cy".

2. We search for local criteril by which to judge each

update transaction in order to determine whether it'K can conceivably violate database consistency. "Local

criteria" are ones that can be evaluated at a single

database module, without requiring interaction with

other database modules.

If based on these local criteria a transaction is

shown to be a~S meaning that it cannot conceivably

cause a violation of database consistency, then the

update can be propagated throughout the RDDBS using a

Simple and efficient protocol called the Z~epoo

Also, from the point of view of the user, safe trans-

actions may be considered as completed as soon as

Updating a Redundant Distributed Database Page -13-
Introduction Section 1

they are entered into the user's local database

module. In other words, the user need not be delayed

while the update is propagated to the rest of the

RDDBS.

With the CCA technique, therefore, RDDBSs may react

responsively to update operations, just as they do to

retrievals.

Only when a transaction that is not safe is entered

into the system, must the user be delayed while the

update is propagated throughout the RDDBS. A major

thrust of this research is the discovery of safe

transaction classes that may be used to advantage in

specific applications; this issue is taken up in

Section 5. As discussed there, several large classes

of such transactions are already identified.

The remainder of this document, starting with Section 2, is

devoted to the redundant update problem. It is important to

keep in mind, though, that other significant problems rem'ain

to be solved in constructing practical RDDBSs. These issues

must be recognized in order to avoid the danger of designing a

redundant update solution which does not fit optimally in the

larger context of a complete RDDBS.

Page -114- Updating a Redundant Distributed Database
Section 1 Introduction

The rest of Section 1 outlines the outstanding problems in the

RDDBS area other than the redundant update problem.

1.2.2 Resiliency Despite Component Failure

In order for RDDBS to be practical they must be capable of

withstanding the failure of individual components. Following

Alsberg EALS1 we term this property "resiliency".

The general problem is to handle failures in such a way that

user service and database consistency is not threatened. This

can be partitioned into the following sub-problems:

a. Recognizing a failure

All active database modules must detect the failure

of another database module so that they can formulate

responses to user requests without attempting to

access the failed module.

b. Recovering a failed database module

When a failed database module is again ready to

provide service, it is necessary to inform the rest

of the database modules that it is available again

Updating a Redundant Distributed Database Page -15-
Introduction Section 1

and to bring its local data up-to-date with the

system-wide database.

c. Recovering transactions affected by the failure

If a database module fails during the processing of a

transaction, a mechanism is necessary to continue

processing without the cooperation of the failed da-

tabase module. Also, the system must ensure that the

partial results obtained while the failed database

module was up do not cause a database inconsistency.

d. Recovering from a partitioned network

The most difficult recovery problem in a database

module network is resynchronizing a set of database

modules which have been partitioned because of com-

munication failure. The problem stems from the pos-

* *sibility of mutually inconsistent databases existing

in the isolated data parts.

I

Page -16- Updating a Redundant Distributed Database
Section 1 Introduction

1.2.3 Optimal Resource Allocation

Many important issues remain to be investigated concerning the

optimal allocation of database module and communication

channel capacities in an RDDBSs. Among these questions are

- where to locate database modules in a large network;

- which data should be stored redundantly, how many

copies of it should be stored, and where should it be

stored;

- the bandwidth of the links in the communication net-

work that inter-connects the database modules, and in

the network that connects the RDDBS to application

hosts.

This area has been studied extensively (e.g by Whitney (WHI],

Chu [CHU], Casey (CASI, and Levin [LEVI) for non-redundant

distributed database systems. Recently Mahmoud (MAH] has in-

vestigated some of these questions for the redundant case,

although in a simplified setting. Much work in this area

remains to be done.

Updating a Redundant Distributed Database Page -17-
Introduction Section 1

Our redundant update solution is geared toward database design

or tuning and hence is compatible with optimal resource allo-

cation concepts. For instance, our approach allows any data

to be stored redundantly but does not require that all por-

tions of the database be so stored.

Further interesting optimuality questions arise out of our

treatment. These concern the effect of the redundant update

algorithm itself on resource allocation. For instance if some

datum will usually be updated via the locking protocol, then

it tends to be better to store it non-redundantly; this is

because the fewer the modules where it is stored the less svn-

chronization overhead there is in updating it. However, if

the datum will usually be updated through the safe protocol,

then it may be better to store it more redundantly in order to

improve the responsiveness of the system.

Page -18- Updating a Redundant Distributed Database
Section 1 Introduction

1.2.4 Data Access Optimization

Transactions in an RDDBS (retrievals or updates) may in

general reference data stored at multiple database modules. A

number of issues arise concerning how to optimize references

to this dispersed data so as, for instance, to minimize the

amount of data transferred between database modules in pro-

cessing the transaction.

Consider the database illustrated in Figure 1.3. The PEOPLE

file contains NAMEs and AGEs of people but does not include

the type of CAR owned by the person. The CAR file contains

that information. The following transaction cross-references

the two files to print the names and ages of the neople who

own red Fords:

I

Updating a Redundant Distributed Database Page -19-
Introduction Section 1

T For any person in the PEOPLE file, let PERSON-NAME: = NAME

and let PERSON-AGE: = AGE

For any car in the CAR file with OWNER = PERSON-NAME

and MAKE = 'FORD'

and COLOR - 'RED'

Print PERSON-NAME, PERSON-AGE

fi PEOPLE

NAME AGE SEX ...

A
person--q Smith 23 M ...

CARS

OWNER MAKE COLOR YEAR ...

Acar Smith FORD RED 1911

Example of Dispersed Data Access
t Figure 1.3

Page -20- Updating a Redundant Distributed Database
Section 1 Introduction

T: For any person in the PEOPLE file,
let PERSON-NAME:=NAME

and let PERSON-AGE:=AGE
For any car in the CAR file

with OWNER=PERSON-NAME
and MAKE='FORD'
and COLOR:'RED'

Print PERSON-NAME, PERSON-AGE

Suppose that the PEOPLE file were stored on one database

module, call it DM-PEOPLE, and that the CARS file were stored

on another module, DM-CARS. Assume also that the transaction

were initiated at the DM-PEOPLE module.

A straightforward way of executing the transaction would have

the entire CARS file transmitted to DM-PEOPLE each time

through the outer loop. If there were nj records in the PEOPLE

file, then the entire CARS file would be transmitted n. times

to the receiving database module. Not only would the cost of

processing the request be affected, but so would the speed.

Compared with local disk transfer times of 6 megabits per

second, the ARPA network is at least 120 times slower (assum-

ing the maximum network bandwidth of 50 kilobits per second).

In order to improve this performance, a number of optimiza-

tions are possible:

Updating a Redundant Distributed Database Page -21-
Introduction Section 1

1. Prior to entering the outer loop, request that DM'-

CARS transmit to DM-PEOPLE all of' those records from

the CARS file which have COLOR =RED and MAKE = FORD.

This greatly reduces communication relative to the

basic looping approach but it requires storage for

the transmitted CARS records in DM-PEOPLE. If the

transmitted set is too large, this alternative is un-

suitable.

2. Enter the outer loop and select a PEOPLE record.

Then, instead of' asking DM-CARS to transmit the comn-II plete CARS file, simply request records which are RED

FORDS and which have OWNER =the NAME of the selected

PEOPLE record. This will further reduce communica-

tions volume relative to improvement 1, if' there are

some RED FORDS whose OWNER's are not in the selected

PEOPLE file.

In this example, each CAR record would be transmitted

only once since each car has only one owner. How-

ever, for queries to files not having this character-

istic, the use of this improvement will result in

multiple transmissions of the same record. Improve-

ment 3 addresses this problem.

Page -22

Saetion- Updating a Redundant Distributed Database
Secton 1Introduction

3. Process as in 2, except maintain in DM-PEOPLE a

buffer containing the last several CAR records trans-

mitted. DM-CARS module keeps track of the records it

has transmitted and never retransmits a record which

is currently in the buffer. The size of the buffer

can be adjusted to reflect the relative costs of

storage vs. communication.

- The above methods address only the low level communication

strategy used to process a transaction. Other, more high

level optimizations are possible as well.

One type of high level optimizations involves saving the

results of the evaluation of the various booleans and feeding

the results of the partial evaluation oack into the remainder

of the reauest execution. These operations, called query

feedback, are discussed by Rothnie [ROT].

The following example illustrates query feedback. Assume we

have a file of ships, containing on board inventories of

various items, and another file which has each possible item

associated with its "importance". Importance identifies

certain items as critical and gives the required amount that

must be maintained on board. We wish to build a list of all

those ships which are short of some critical item and schedule

a call to a supply port. Conceptually, this problem is solved

Updating a Redundant DistribuLted Database Page -23-
Introduction Section 1

by two nested loops over the bships file and the item file.

The first choice that must be made is whether to consider the

item file or the ship file as the "driving loop". For each

record in the driving loop, we will examine all the records in

the other file. Assume we have chosen the item file as the

driver. Naively, then, we would examine every ship once for

each item. If there were _q ships, and M items, this would

require nm references to the ship file. However, since the

purpose of the reau ,t is to build up a list of ships, once we

have determined that a particular ship, say the John F.

Kennedy, is short of any item, we need not examine it again.

To do so would be redundant in this case since if a ship is

short of any critical item it is not necessary to check all

the other items as well.

An important characteristic of the above options is that it is

not possible to choose a single strategy which is always opti-

mal. A strategy which is good in one case can be bad in

another. What must be found are criteria which enable the

system to pick the best strategy on a case by case basis.

Page -24- Updating a Redundant Distributed Database
Section 1 Introduction

1.2.5 Storing of the Database Directory

Some attention has been directed in the literature to the

question of how the database directory is maintained (e.g.

[FRY], [SIB], [STO]). For instance, is the directory stored

in one central location, is the entire directory stored at

each database module, or is there some other, better method?

Our treatment employs a more flexible method. We view the

directory as a normal data file. Therefore it may be stored

in one place, it may be stored redundantly in many database

modules, or it may be stored partially at many different

sites. As we will describe later, our technique for storing

redundant data permits small subsets of a file to be stored at

a database module, without requiring that the entire file be

stored there. Consequently, it is possible to store at each

database module just those portions of the database directory

that are frequently accessed from that module.

Updating a Redundant Distributed Database Page -25-
The Redundant Update Problem in Detail Section 2

2. The Redundant Update Problem in Detail

In this section we explore the redundant problem in more

detail. Two aspects of the problem may be identified:

1. It is necessary to propagate updates from the data-

base module where they are initiated to all other da-

tabase modules that contain redundant copies of the

modified data. This aspect of the problem is not

difficult at today's state-of-the-art: it requires

the presence of a communications channel such as the

Arpanet and a suitable communications protocol.

2. The difficult aspect of the redundant update problei'

is ensuring that update activity does not violate da-

tabase consistenex. And the key component here is

ensuring that concurrent update transactions do not

interfere with each other in ways lead to inconsis-

tent database operation.

Preserving database consistency is of concern to cen-

tralized database systems as well as to RDDBSs and

the problem has been studied extensively in that

Page -26- Updating a Redundant Distributed Database
Section 2 The Redundant Update Problem in Detail

setting (for example by (CHAa,b], [GRA], [ESW]). The

classical solution to the problem in the centralized

case is to lock data that is accessed by a transac-

tion. The locking approach may be extended to the

RDDBS case, but that solution entails a large quanti-

ty of communication between database modules in order

to achieve the required synchronization.

The focus of the redundant update problem, therefore,

is to provide a solution that is better (more effi-

cient) than the straightforward locking solution.

-l

... _ . :K.

Updating a Redundant Distributed Database Page -27-
The Redundant Update Problem in Detail Section 2

2.1 Example of Updates that Conflict

Consider the RDDBS illustrated in Figure 2.1. The figure

depicts an RDDBS containing a personnel file for a nationwide

corporation. For the purposes here let's focus our attention

on the data for one employee, employee SMITH. SMITH's tuple

in the database is as follows:

EMPLOYEE-t EJa NAME POSITION GRADE SALARY ...

123456789 Smith Receptionist IV $8,000

As Figure 2.1 indicates this tuple is stored redundantly in

the New York, Atlanta, and Los Angeles database modules.

Consider also two update transactions that are applied to the

RDDBS at approximately the same time:

Page -28- Updating a Redundant Distributed Database

Section 2 The Redundant Update Problem in Detail

LOYEE
23 8NAE POSITION GRADE SALARY

23456789 SMITH RECEPTIONIST IV $8,000 w

This tuple stored at
these database module

7ia New
York

Los
Angele Atlant

T2: For all employees whose 1: For all employees whose

POSITION-RECEPTIONIST EMPLOYEE-NUMBER

and GRADE - IV = 123456789

Update GRADE to V Update POSITION to SECRETARY

and SALARY to $9,000 GRADE to III

and SALARY to $10,000

Personnel File in a Nation-wide RDDBS
Figuce 2.1

A

Updating a Redundant Distributed Database Page -29-
The Redundant Update Problem in Detail Section 2

1. T1, initiated at New York:
TI: For the employee

whose EMPLOYEE-NUMBER is 123456789

Update POSITION to Secretary,
GRADE to III, and
SALARY to $10,000.

The intent of Ti is to promote SMITH from a

Receptionist, GRADE IV with a salary of $8,000, to a

Secretary, GRADE III receiving a $10,000 salary.

2. T2, initiated at Los Angeles:
T2: For all employees

whose POSITION=Receptionist and
whose GRADE=IV,

Update GRADE to V, and
SALARY to $9,000.

The intent of T2 is to upgrade all GRADE IV

Receptionists to GRADE V with a commensurate increase

in salary, (Possibly T2 is executed by the personnel

department as an automatic "step-raise" procedure).

Figure 2.2 illustrates the state of the database immediately

after Ti and T2 are incorporated into their local database

modules, but prior to their propagation through the distrib-

uted system. Clearly it is obligatory to define a method for

propagating the effects of Ti and T2 throughout the RDDBS;

otherwise the multiple copies of the database would diverge

Page -30- Updating a Redundant Distributed Database
Section 2 The Redundant Update Problem in Detail

EMPLOYEE
NUMBER NAME POSITION GRADE SALARY

123456789 Smith SECRETARY III $10,000

0hicago Yor

O kAnfTler .- - ouston th t

DVLYEE
ANE AME POSITION4 GRADE SALARY!

123456789 Smith Receptionist V I$9,000.

NUMBER NATIE POSITION GRADE SALARY

123456789 Smith RECEPTIONIST IV $8,000

Database After TI and T2 are Incorporated Locally
Figure 2.2

VUpdating a Redundant Distributed Database Page -31 -The Redundant Update Problem in Detail Section 2

over time and would rapidly cease to be identical copies of

each other.

What this propagation protocol must do in essence is merge

together the effects of Ti and T2 so as to come up with the

total effect of the two transactions on the database. Fur-

thermore, the propagation procedure must be deterministic in

the sense that the result of the merge will be identical in

all database modules (otherwise the copies would diverge).

The operation of this propagation activity in and of itself is

not difficult and we present a number of methods for perform-

ing it shortly.

Even assuming that a suitable propagation technique is estab-

lished, however, the example here still poses certain diffi-

culties. Attempts to merge T1 and T2 may result in anomalous

4 database behavior because in a certain sense Ti and T2 contra-

dict each other: Ti is trying to promote SMITH to a

Secretary, GRADE III while T2 is trying to promote him to a

Receptionist, GRADE V.

Page -32- Updating a Redundant Distributed Database
Section 2 The Redundant Update Problem in Detail

There are at least two results Possible from merging Ti and

T2:

EMPLOYEE-NUMBER NAME POSITION GRADE SALARY ...
#1. 123456789 Smith Secretary 111 $10,000

(results if' Ti overwrites T2)

#2. 123456789 Smith Secretary V $9,000
(results if T2 overwrites Ti)

Result #2 is particularly bad because it claims that SMITH is

a SECRETARY, GRADE V although no one intended he be promoted

that far. Furthermore, the SALARY stated for SMITH is no

doubt too low for that POSITION. What has happened is that

the database has lost its internal consistency.

Updating a Redundant Distributed Database Page -33-
The Redundant Update Problem in Detail Section 2

2.2 Locking Solution to the Redundant Update Problem

The preservation of internal database consistency is an issue

in centralized database systems as well as in RDDBSs and many

solutions to the problem are available for that environment.

G~enerally, the solution to the consistency problem in central-

ized database systems may be characterized as follows:

1. Each individual update transaction is pre-checked and

subjected to validation tests before it is accepted

~ by the database system. Only transactions that indi-
vidually do not violate database integrity are

allowed to be executed.

2. After a transaction is deemed acceptable by itself,

the database system determines whether or not the

transaction conflicts with any other concurrent

transactions in the database. Conflict detection

normally utilizes a locking mechanism, wherein the

transaction attempts to place a sharable lock on data

it wishes to read and it attempts to place an exclu-

sive lock on data it intends to modify. In some

Page -34- Updating a Redundant Distributed Database
Section 2 The Redundant Update Problem in Detail

systems the locks are binary variables, in other

systems the locking may employ more complex con-

structs such as semaphores [DIJ] or monitors [HOAI.

If the transaction succeeds in placing all its locks

it is guaranteed not to be in conflict with any con-

current transaction and it may proceed to execute.

By the same token the transaction is assured that no

future transaction that conflicts with it will be

allowed to run until the earlier transaction releases

its locks.

3. When the transaction is completed it releases all the

locks it has set, and other transactions that m~ay

have been blocked by it may now enter the database.

Referring back to the example in Section 2.1, it seems olaus-

ible that Ti and T2 would each have passed step (1); each of

them appears to he okay individually. However, the trans-

actions conflict with each other: T2 reads SMITH's POSITION

while simultaneously Ti is writing that datum; also both

transactions write SMITH's GRADE and SALARY. In the classical

locking protocol for a centralized database, one or the other

transaction would have entered the system first and set its

locks; the other update transaction would have been blocked

k ___A

I

Updating a Redundant Distributed Database Page -35-
The Redundant Update Problem in Detail Section 2

Ly these locks and prevented from running until the first

transaction completed.

A straightforward extension of the locking protocol to the

distributed environment is outlined in Figure 2.3. This

locking protocol operates inefficiently in two respects:

1. The locking protocol requires many inter-computer

messages to be sent in oerforming a transaction. Let

T be a transaction, and let fi= the number of database

modules that contain data affected by T. The number

of messages that must be sent between database

modules in order to execute T is

n - I lock requests
+ n - I lock acknowledges
+ n - I updates
+ n - 1 update acknowledges
+ n - I lock releases

5n - 5 network messages

2. The delay perceived by the apolication process is

lengthy. It is:

the maximum delay encountered in setting the locks
+

the maximum delay encountered in performing the update

In other words, when performing an update transaction

by the locking protocol, the RDDBS appears mj.jfflly

far from all application hosts. The locking solution

IL

Page -36- Updating a Redundant Distributed Database
Section 2 The Redundant Update Problem in Detail

LOCKING PROTOCOL

1. TRANSMIT LOCKS To ALL DATA MODULES,

2. WAIT FOR ALL ACKNOWLEDGEMENTS.

3. TRANSMIT UPDATES To ALL DATA MODULES.

4. WAIT FOR ALL ACKNOWLEDGEMENTS.

5. TRANSMIT LOCK RELEASES To ALL DATA MODULES.

6. TRANSMIT ACKNOWLEDGEMENT To APPLICATION PROCESS.

The Locking Protocol
Figure 2.3

Updating a Redundant Distributed Database Page -37-
The Redundant Update Problem in Detail Section 2

to the redundant update problem thus nullifies one of

the key features of RDDBSs -- their responsiveness --

insofar as update transactions are concerned.

For this reason the classical approach to transaction conflict

detection cannot be applied effectively in RDDBSs, and other

techniques are called for.

Two variations on the classical locking approach to this

problem have appeared recently in the literature. Each of

these solutions has drawbacks, however, which we hooe to

correct in our method. These two solutions are examined in

Sections 2.3 and 2.4 below.

ill

Page -38- Updating a Redundant Distributed Database
Section 2 The Redundant Update Problem in Detail

2.3 Voting Solution to the Redundant Update Problem

Thomas rTHObI has described a solution that cuts down on the

total amount of communication required to achieve the locking.

This solution requires that only a majority of the database

modules approve the lock setting, rather than requiring that

all modules approve. Also, this method piggybacks the "lock

request" step onto the "transmit update"~ § tep thereby elimina-

ting one "transmit message" - "receive acknowledge" sequence

from the protocol. *Thus, the voting solution improves on

the classical locking protocol in terms of total inter-

computer communication required.

However, this method is worse than the classical solution in

terms of perceived delay. In the classical locking scheme the

messages sent from the initiation site to the other database

modules are broadcast in parallel; in the voting method a se-

quential daisy chain of communication is required. Further-

more, even if a broadcast version of this method could be

designed, a significant number of processors -- (n/2 + 1) --

*Hwever, this piggybacking reduces network traffic only in
cases where the "transmit update" messages are relatively
short themselves, and/or there are few lock conflicts.

Updating a Redundant Distributed Database Page -39-
The Redundant Update Problem in Detail Section 2

must respond to each update. We believe that the voting

scheme will perform unacceptably for many update requirements

using either the designed daisy chain approach or a broadcast

version.

2.4 Primary Site Solution to the Redundant Update Problem

A rather different approach has been proposed by Alsberg

[ALS]. This approach requires that all update activity in the

RDDBS be funneled through a single database module called the

i Pprimary site. All locking operations are performed within

that single database module and therefore no additional syn-

chronization communication is required.

Alsberg's approach thus avoids the excessive synchronization

of the locking protocol but it introduces a number of draw-

backs of its own:

a. The responsiveness of the RDDBS to update trans-

actions is no better than the responsiveness of a

centralized database system located at the primary

site. In a large network, some application hosts

will tend to be far away from the primary site and

for these hosts system response is likely to be slow.

Page -I40- Updating a Redundant Distributed Database
Section 2 The Redundant Update Problem in Detail

b. There is no capability for modular upwards scaling of

the system. If the amount of update activity exceeds

the computational capacity of the primary site, the

only recourse is to get a bigger machine. For relia-

bility reasons, the primary site method requires that

all database modules be capable of serving as the

primary site, and therefore, one must upgrade I". da-

tabase modules in order to add an increased capacity

for updating.

c. The notion of having a single site for updating

appears to be a highly inappropriate model in the

world-wide command and control environment that we

are addressing. Imagine a command and control data-

base, portions of which reside on Navy vessels

throughout the world. Where would the update site

for such a database be placed?

The primary site solution may be appropriate in certain

limited applications. But for general use a more flexible ap-

proach is necessary.

Updating a Redundant Distributed Database Page -J41-
The Redundant Update Problem in Detail Section 2

2.5 Overview of CCA Solution to the Redundant Update Problem

Neither the Voting method nor the Primary Site method com-

pletely solves the redundant update problem in a satisfactory

manner. We classify both methods as variations of the classi-

cal locking protocol in that their fundamental basis involves

locking the database for all transactions. Other variations

of the locking protocol are possible, of course. We conjec-

ture, though, that no method whose fundamental basis is globalbf' locking will fare much better than these two approaches.

The approach that OCA intends to pursue is qualitatively dif-

ferent from the methods described so far; our central para-

digm is to avoid global locking by identifying cases where

locking is not required.

The approach that we contemplate is based on the observation

that many update transactions in the real world may be run

concurrently without conflict and without possibility of des-

tructive interference among them. If such transactions are

run via a locking protocol, the effort spent in setting the

locks will always be wasted since the transactions will never

actually conflict. These transactions could instead have been

Page -42- Updating a Redundant Distributed Database
Section 2 The Redundant Update Problem in Detail

run using a quicker and more efficient protocol that does no

global locking.

Consider the RDDBS and the set of transactions illustrated in

Figure 2.4. Each of the transactions in Figure 2.4 is

updating the POSITION, GRADE, and SALARY of a specific employ-

ee. It seems intuitively clear that these four transactions

could be run concurrently without global locking. Of course,

not all transactions may be handled this way; later sections

of this paper (sections 3,14, and 5) are concerned with charac-

terizing those transactions that don't need global locking vs.

those that do. For now, the point is that transactions that

don't require global locking can be handled via an efficient

protocol called the saf protocol-.

The safe protocol is outlined in Figure 2.5.

Comparing the safe protocol to the locking protocol (see

Figure 2.3) we identify two major advantages:

1. The safe protocol requires many fewer network

messages. The locking protocol requires approxi-

mately 5_q messages to propagate an update to a data-

base modules; the safe protocol needs only U

messages.

Updating a Redundant Distributed Database Page -43-The Redundant Update Problem Section 2

For fh- r,-, loyce whose For the employee whose
EAF :'y-rI., IBER= 456789012 EMPLOYEE-NUMBER = 123456789

Uplat PS-KION to MANAGER, Update POSITION to SECRETARY,

'Th0E to VI , GRADE to III,

Lrod .4.% AR'~to $22,500 and SALARY to $10,000

Clhicarnr New

/ i

11 "'r:C,, le: O~f ;tlant [

For t~l. k

For t!r, eripyee whose For the employee whose

= 345678901 EMPLOYEE-NUMBER = 234567890

* U.... POSITIOJ to ANALYST, Update POSITION to SALESMAN,

GRADE to II, GRADE to VIII,

aril ;ALARY to $18,000, and SALARY to $5,000

Four Safe Transactions
Figure 2.4

I ! , , :. , " S

Page -44- ~ Updating a Redundant Distributed Database
Section 2 The Redundant Update Problem in Detail

SAFEPRTOO~L

1. RUN TRANSACTION IN INITIAL DATA MODULE AND PERFORM UPDATES

THERE.

2. WHILE RUNNING TRANSACTION, LOG ALL RECORD CHANGES AND TIME

STAMP WITH TIME OF TRANSACTION.

3. TRANSMIT ACKNOWLEDGEMENT TO APPLICATION PROCESS.

4. TRANSMIT RECORD CHANGE LOG TO ALL DATA MODULES.

5. RECEIVING DATA MODULES MAKE CHANGES IF TIME STAMP OF TRANSACTION

IS MORE RECENT THAN TIME STAMP OF ITEM BEING CHANGED IN

DATABASE,

The Safe Protocol
Figure 2.5

I ____OA

Updating a Redundant Distributed Database Page -45-
The Redundant Update Problem in Detail Section 2

2. The delay experienced by the application host is much

shorter with the safe protocol. This is because the

database module where the transaction was initiated

is able to acknowledge the completion of the transac-

tion , it propagates the transaction to any

other database modules.

In other words, when performing an update transaction

by the safe protocol, the RDDBS appears maximally

close to all application hosts. The safe protocol

thus carries forward one of the key features of RDDBS

-- their responsiveness--and makes that feature apply

to updates just as it applies to retrievals.

Our solution to the redundant update problem is built around

the safe protocol. The database system subjects all trans-

actions to tests that determine if the transaction is safe.

Safe transactions are run via the efficient safe protocol.

Only transactions that are not safe must enco.nter the inef-

ficiency and the delay of the locking protocol.

The goal of our research is to discover characterizations of

transaction classes that permit commonly occurring applica-

tions to utilize the safe protocol frequently and thus run ef-

ficiently. We do not expect this research to result in a uni-

Page -46- Updating a Redundant Distributed Database
Section 2 The Redundant Update Problem in Detail

versally optimal partitioning of transactions into safe vs.

not-safe classes. Instead, we expect this partitioning to be

a part of the database design process, to be performed, anal-

yzed, and improved by a database administrator with knowledge

of the database application.

II

& _ _ __ _ _ _

Updating a Redundant Distributed Database Page -147-
General System Architecture of RDDBSs Section 3

3. General System Architecture of RDDBSs

This section provides a more precise description of the

general system architecture of the data module network. This

description provides the context necessary for understanding

the redundant update mechanisms discussed in Sections 4 and 5.

It should be noted that the architecture discussed here is mo-

tivated both by the requirements of the redundant update

problem and by other aspects of distributed database technolo-

gy (such as needs for retrieval efficiency and robustness)

which are not the main focus of this paper.

Page -48- Updating a Redundant Distributed Database
Section 3 General System Architecture of RDDBSs

3.1 The Network of Data Modules

The redundant distributed database system (RDDBS) we are ad-

dressing consists of a set of data modules which communicate

among themselves and with application hosts over a resource

sharing network such as the Arpanet. A member of the set of

data modules will be designated DOi and an application host

will be referred to as Aiji.

The RDDBS presents each AHi with a view of a single non-

j Iredundant and non-distributed database. That is, when Afi

connects to given data module, DMi, that module will communi-

cate with the rest of the net, as necessary to create the il-

lusion that DMi has a non-redundant copy of the complete data-

base locally resident. For concreteness and simplicity we

will stipulate that the database is relational and in third

normal form (3NF) [COD]. No important conclusions in this

discussion depend on that assumption, however, the presenta-

tion is simplified by use of this constrained data model.

LA

Updating a Redundant Distributed Database Page -II9-
General System Architecture of RDDBSs Section 3

3.2 Physical Database Organizations

The assignment of logical data items to the physical storage

resources of the data modules begins with the partitioning of

the logical database into subsets called fragments (.i). Each

Fi is a rectangular subset of a relation.

The fragment is the unit of assignment of logical data to data

modules. A given fragment is either entirely present or en-

tirely absent from each DMi. A fragment may be stored at more

than one module. The stored representation of a fragment in a

given module is termed a stored fragment and is designated

SFi,j to mean the representation of Fi in D~j Figure 3.1 il-

lustrates the partition of the logical database into fragments

and their assignment to modules. Each arc from the rectangles

representing fragments to the circles representing data

modules corresponds to a stored fragment.

Page -50- Updating a Redundant Distributed Database
Section 3 General System A-chitecture of RDDBSs

F1 F2 F3-_ _

VF5

DM DM D1

ASSIGNMENT OF FRAGMENTS To DATA MODULES

Figure 3.1

i

Updating a Redundant Distributed Database Page -51-
General System Architecture of RDDBSs Section 3

3.3 Materializations

Since each fragment may be stored in more than one data

module, in general there will be more than one way of recon-

structing a complete and non-redundant copy of the logical da-

tabase from the collection of stored fragments. For example,

if fragment Fi is stored on data modules DMi and DMj as Ei,.j

and SFi,k, then there are at least two ways of reconstructing

a complete, non-redundant copy of the logical database - one

4which includes SFi,j and another which includes SFi,k.

A collection of stored fragments which form a complete and

non-redundant copy of the logical database is called a materi-

alization. * At any given time the RDDBS recognizes a speci-

fic set of materializations as "supported". A user logging in

to the RDDBS is given access to the database through a speci-

fic supported materialization and, in general, repeated acces-

ses to the RDDBS will result in assignment to the same materi-

alization.

*The term materialization has been used previously by
Chamberlin et al [CHAb] to refer to the process of construct-
ina the contents of a virtual relation from stored relations.

Page -52- Updating a Redundant Distributed Database
Section 3 General System Architecture of RDDBSs

The concept of supported materializations (called simply ma-

terializations in the remainder of this discussion) is central

to the notion of consistency as defined in the next section.

The logical consistency of the database is preserved within

materializations. That is, the system will enforce a rigid

form of consistency within each materialization and a looser

form of consistency between materializations. As we shall

see, this approach permits each user to see a logically con-

sistent database without incurring excessive synchronization

costs in performing updates

The make-up of each materialization is recorded in a table

such as the one illustrated in Figure 3.2. * Another table

indicates the materialization to which each user is assigned.

The RDDBS will service a user's retrieval requests by access-

ing only the stored fragments listed for his assigned materi-

alization. For updates more interaction between materializa-

tions is required. This will be described in Section 5.

The formulation of a materialization may need to be changed

because of the failure of a supporting data module or because

• All system tables used to define the multi-module structure
of the database are stored as ordinary data so that they may
be stored with arbitrary dispersion and redundancy. Questions
of centralization or decentralization of directories and dic-
tionaries may therefore be delayed until database definition.

--'

Updating a Redundant Distributed Database Page -53-
General System Architecture of RDDBSs Section 3

F1 F2 F3 F4 F5

M1 1 2 3

1'12 1 2 2 3 3

M3 2T 3 3 2 3

TABLE ENTRY IS DM FROM WHICH MATERIALIZATION

MI GETS FRAGMENT FJ.

Table of Fragment Assignments
Figure 3.2

k

Page -54- Updating a Redundant Distributed Database
Section 3 General System Architecture of RDDBSs

load changes make another materialization definition more ef-

ficient. It is important that the redefinition process ensure

the logical consistency of the new materialization. The

specification of a mechanism for ensuring this consistency

will be studied in future research.

Updating a Redundant Distributed Database Page -55-
Database Consistency Section 4I

~4. Database Consistency

A central constraint on any update algorithm in a database

system is the need to ensure that update activity does not

violate the consistency of the database. We examined in a

previous section (Section 2) the classical approach to this

problem in centralized database systems. That approach

entails looking those portions of a database that are affected

by a transaction. We also examined in Section 2 several ex-

tensions of the classical approach that allowed it to be

applied to RDDBSs. However, the locking solutions to the

update problem in the redundant case were shown to be unsatis-

factory in a number of ways.

The basic difficulty with locking schemes is that it is quite

expensive to propagate locking information throughout an

RDDBS. To circumvent this difficulty we suggested a redundant

update solution based on a more efficient, non-locking proto=

col called the &&tpotcl

As we have noted previously not all transactions may be run

via the safe protocol. The constraint on which transactions

can be handled via the safe protocol can be stated simply as

follows:

Page -56- Updating a Redundant Distributed Database
Section 4I Database Consistency

Let T1, 12,... ,Tn be the class of transactions that

are to be handled by the safe protocol. For any Ti

in that class it must not be possible for Ti to in-

terfere with any sub-class of the other T's in a

manner that violates the consistency of the database.

Transaction that can be handled by the safe protocol are

termed safe trnalos

In general there are many ways in which this partitioning of

safe transactions vs. unsafe ones may be carried out. This

topic is addressed in Section 5 below; several interesting

and useful transaction classes are described there.

However no matter how the partitioning is done, one salient

point remains:

In order for the class of safe transactions to be

useful to an RDDBS, it must be possible to define a

preicate that tells whether or not a given transac-

tion is safe. Without such a predicate there would

be no way for a materialization to know when it could

take advantage of the safe protocol, and all trans-

actions would have to be handled via the locking pro-

tocol anyway.

Updating a Redundant Distributed Database Page -57-
Database Consistency Section 14

Furthermore, the predicate must be computable from

data local to a single database module. The value of

the safe protocol lies in avoiding multi-computer

synchronization traffic; this value would be negated

if the safety predicate -- a precursor to the use of

the safe protocol -- were to require global communi-

cation in order to make its decision.

Consequently the study of local tests for the global condition

of database consistency is central to our methodology.

Not surprisingly it turns out that the definition of the local

predicates for transaction safety depends on the precise

notion of the global property, database consistency, that is

required in a given application. Before pursuing the classif-

ication of safe vs. unsafe transactions in detail it is advis-

able to have a clear understanding of the global property that

must be preserved by the safe protocol.

The exploration of this global property is the topic of this

section. The next section, Section 5, delves into the clas-

sification of safe vs. unsafe transactions, and the local

tests that are needed to recognize the transaction classes.

Page -58- Updating a Redundant Distributed Database
Section 4 Database Consistency

4.1 Serializability -- the Global Property

We recall that all update algorithms that we have considered

do consistency maintenance in two steps:

1. First each transaction is pre-checked, validated, and

tested against specified database integrity con-

straints. The purpose of this step is to ensure that

the transaction cannot violate database consistency

by itself.

This pre-checking of integrity conditions may always

be done locally, i.e. within a single materializa-

tion. We shall not be further concerned in this

paper with this step of the consistency maintenance

procedure; hereafter we assume that all transactions

have passed this step and are deemed acceptable indi-

vidually.

2. The second step is to ensure that the transaction

does not or cannot conflij~ with any other concurrent

transaction in a manner that could violate database

consistency. Essentially what this step does is

Updating a Redundant Distributed Database Page -59-
Database Consistency Section 14

specify and enforce extra constraints above and

beyond the integrity constraints that are checked in

step (1). These extra constraints relate to the se-

quencing of transactions through the database that

must hold if the database is to remain a faithful

model of its domain.

A number of researchers have suggested that the correct se-

quencing constraint for many database applications is a pro-

perty called "serializability" (e.g. [GRA], [HEW]).

Serializability dictates that the effect of a set of concur-

rent transactions on a database must be equivalent to some

serial, non-overlapping sequence of those same transactions.

For example, suppose TI, T2, T3, T4 are a set of transactions

that have been run in a database, and that some or all of them

were run concurrently. The effect of the tra sactions is

"serializable" if and only if the state of the database fol-

lowing their completion is equivalent to a state that could

have resulted from a completely one-at-a-time, non-overlapped

sequence of the transactions, e.g.:

TI then T3 then T2 then T4, or

Page -60- Updating a Redundant Distributed Database
Section 4 Database Consistency

T4 then Ti then T3 then T2, etc.

Serializability captures the intuitive notion that concurrent

transactions not interfere with each other; if the result of

some transactions is serializable then it appears that no

transaction hurt the others.

4.2 Computing Serializability

The problem confronting us is that of constructing classes of

transactions that may be run via the safe protocol. If we

select serializability as the sequencing constraint that must

be obeyed by all transactions, then this problem may be

restated as follows:

We must construct classes of transactions, £t, with

these properties:

a. Any transactions in Ct may be run concurrently

without any danger of violating serializabil-

ity; and

b. It is possible to define local predicates that

can tell whether a given transaction is a

member of Ct.

#Ammo&- - -

Updating a Redundant Distributed Database Page -61-
Database Consistency Section 4

Both of these properties involve the computation of serializa-

bility. Property (a) implies that serializability of the

transactions in Ct was computed at some prior time, for in-

stance at database design time. Property (b) requires that

this pre-computation of serializability be accessible at run-

time through local procedures.

We are concerned in this section with the first property; our

task is to investigate methods for verifying whether or not a

class of transactions obeys property (a), i.e. whether or not

it is serializable.

Property (a), however, is not an easy property to verify.

Given an arbitrary class of transactions TI, T2, T3, ... , Tn

computation of their serializability seems to involve a com-

binatorial explosion. It appears that one must enumerate all

the possible combinations in which the transactions may

overlap, and for each combination compute whether the result

is or is not serializable. In addition to the combinatorial

difficulty, it has been observed by Bernstein and

Papademitriou [BERN] that the computation of serializability

for each arbitrary combination is itself an NP-complete

problem (i.e., the computation is likely to grow exponentially

with the number of transactions).

- - - -

Page -62- Updating a Redundant Distributed Database
Section 4 Database Consistency

In order for our redundant update solution to be viable,

therefore, we need to have mathematical tools that aid in com-

puting the serializability of transactions. Also, we need a

technique that allows increased reasoning power so as to help

find new classes of serializable transactions.

4 .3 The Graphic Technique for Determining Serializability

We have developed in conjunction with Bernstein [BERN] a tech-

nique that allows the serializability of a set of transactions

to be determined easily. This technique is based on a graphic

representation of relationships among members of a transaction

class; the graphic representation is described in Figure 4.1.

The central aspects of the graphic representation are as

follows:

1. Each transaction, T, is decomposed into a read-set,

11T, and a write-set, WT. The read-set, RT, is the

set of all data items that T reads; i.e. it is the

set of data items that serve as inputs to T, or that

T uses in computing its results. The write-set, WT,

is the set of all data items that T modifies.

;4,il

Updating a Redundant Distributed Database Page -63-
Database Consistency Section 4

T: RT0 WT

GRAPH OF A SET OF TRANSACTIONS -

1. CREATE NODES FOR THE READ SET AN~D T T ... T
WRITE SET OF EACH TRANSACTION. R R R

W W 4

2. DRAW AN ARC BETWEEN THE READ SET AND T T T

WRITE SET OF EACH TRANSACTION. R R

3. DRAW AN ARC BETWEEN TWO WRITE SETS

IF THE SETS INTERSECT. R R

4. DRAW AN ARC BETWEEN A READ SET AND Tl T .

A WRITE SET IF THE SETS INTERSECT.

Graphir! Representation of Transactions
Figure '4.1

Page -64- Updating a Redundant Distributed Database
Section 4 Database Consistency

For example, consider the PERSONNEL file in Figure

4.2, and the transaction TI:

TI: For the employee
whose EMPLOYEE-NUMBER = 123456789

Update POSITION to SECRETARY,
GRADE to III, and
SALARY to $10,000

T1's read-set, RT1, is the EMPLOYEE-NUMBER of

one particular tuple. T1's write-set, WTI, is

the POSITION, GRADE, and SALARY of that tuple.

12. Each transaction is represented in the graoh by two

f.nodes, one for its read-set and one for its write-

set.

3. Arcs are drawn between nodes in the graoh if and only

if there is a relationship between the nodes such

that the result in the database depends on the order

in which the depicted reads or writes hapoen to

occur. Operatiorally this means that:

' . '

Updating a Redundant Distributed Database Page -65-
Database Consistency Section 4

Personnel

EMPLOYEE-NUMBER NAME POSITION GRADE SALARY ...

123456789 Smith Receptionist IV $3,000

TI: For the employee whose EMPLOYEE-NUMBER = 123456789

U:1date POSITION to Secretary

'I GRADE to III

arid SALARY to $10,000

T2: For all employees whose POSITION = Receptionist

and whose GRADE = IV

Update GRADE to V

and SALARY to $9,000

Personnel File and Two Transactions
Figure 4.2

- - - " :__n____n__ n nn I

Page -66- Updating a Redundant Distributed Database
Section 4 Database Consistency

a. Arcs are drawn between the read-set and write-

set of each individual transaction, since pre-

sumably the values written depends on the

values that were read. (This is step (2) in

Figure 4.1). Such arcs are called vertical

arcs.

b. Arcs are drawn between two write-sets if the

sets intersect. For example, refering to the

sample transaction TI above, WT1 includes the

4 SALARY field of a particular tuple; consider

the transaction T2 in Figure 4.2 whose write-

set, WT2, also includes that SALARY field. In

general one can tell whether AT2 or WT1 hao-

pened last by the value left in the SALARY

field. (This is step (3) in Figure 4.1.)

Arcs drawn in this step are called horizontal

arcs.

c. An arc is drawn between a read-set and a

write-set if they intersect. For instance,

T2's read-set, RT2, includes the POSITION

field of the tuple affected by Ti. The value

of the POSITION field read by T2 depends on

Updating a Redundant Dijtributed Database Page -67-
Database Consistency Section 4

whether RT2 was before WT1 or vice versa.

Since the data written by any transaction

depends in general on the values read, the

results in the database in general will depend

on the ordering of WT1 and RT2. (This is step

(4) in Figure 4.1). Arcs drawn in this step

are called diagonal arcs.

The graphic technique is useful because there are succinct re-

lations between the topology of the graph and the serializa-

bility of the transactions represented therein. The main

results we have developed to date with this technique are re-

irf viewed in the next section.

I

. ° _--- - -.-

Page -68- Updating a Redundant Distributed Database
Section 4 Database Consistency

4.4 Results from the Graphic Technique

In this section we review the main results that we have devel-

oped using the graphic technique introduced in the previous

section. These results relate the topology of a transaction

graph to the serializability of the associated transactions.

Using these results it is possible to determine the serializa-

bility of a set of transactions without incurring the cornbina-

torial explosion that would be experienced without tools of

this sort.

Result 1:

In a non-redundant database, the presence of a cycle

which includes a vertical arc (a V-cycle) in the

transactions graph is a necessary condition for the

transactions to be non-serializable. To state it

conversely, a set of transactions is Z if its

graph contains no V-cycles (see Figure 4.3).

The presence of V-cycles in the graph is not a sufficient con-

dition for non-serializability due to the possibility of dead

trnsactions. A dead transaction is one whose result is

... ' _ '7 - A.1 ' Z - - - - . .

Updating a Redundant Distributed Database Page -69-
Database Consistency Section 4

A SET OF TRANSACTION IS SAE IF ITS GRAPH IS ACYCLIC,

R R R
' SAFE

w 13

R R R

W W II NOT SAFE

THF TRANSACTIONS FROM FImIRF 4.2

T1 T2

R -e- (EMPLOYEE-NUMBER) (POSITI ;,GRADE)

NOT SAFE

(POSIT ION, GRADE, SALARY) (GRADE,SALARY)

Examples of Transaction Graphs
Figure 4.3

__ _ _ __,_ _ _-

Page -70- Updating a Redundant Distributed Database
Section 4 Database Consistency

totally obliterated by some subsequent set of transactions.

Figure 4.4 shows a V-cyclic graph that is serializable because

its cycle contains a dead transaction. In that figure, either

T1 or T3 will be dead depending on the order in which T1 and

YT3 occur. In any execution history, however, one or the

other of them must be dead.

Result 2:

In a non-redundant database without dead trans-

actions, the presence of a V-cycle in the transaction

graph is a necessary and sufficient condition for the

4' transactions to be non-serializable.

Results (') and (2) seem to indicate that the issue of dead

transactions will play a large role in characterizations of

safe classes of transactions. This is not so in many orapti-

cal database applications, however, because of a phenomena

called exhibited transactions.

Exhibited transactions are transactions that both update data

in the database and exhibit information about the read-set to

external observers. Exhibited dead transacticns may be dead

vis a vis their effects on the database state, but they are

very much alive in terms of their effect on the external

world.

A

Updating a Redundant Distributed Database Page -71-

Database Consistency Section 4

ii U

W - (x2) (x_.,x3) (x2)

V-cyclic Graph with Dead Transactions
Figure 4.4

Page -72- Updating a Redundant Distributed Database
Section 4I Database Consistency

As an example of exhibited dead transactions consider the da-

tabase and transactions in Figure 4.5. The database includes

a file that contains the assignments of Navy personnel to

ships. For each tuple in the file, that person is available

for reassignment if the AVAILABLE attribute equals "Yes". The

two transactions in the example may have been initiated by two

personnel officers and are simply trying to find an available

seaman and assign him to a ship. Ti is trying to assign the

seaman to the ENTERPRISE while T2 wishes to assign him to the

JFK.

~ There is of course a V-cycle in the graph of Ti and T2 (see

Figure 4I.6). However, in any execution history one of the two

transaction is assured of being dead; thus running TI and T2

concurrently doesn't violate serializability, and it would

appear that Ti and T2 could be run via the safe protocol.

But if T1 and T2 are run concurrently, anomalous databane be-

havior may result: both personnel officers will think that he

had assigned a seaman to a ship; however only one of them may

have actually succeeded in doing so. The personnel officer

whose transaction became dead will have failed to make the

assignment.

Updating a Redundant Distributed Database Page -73-
Database Consistency Section 4

PERSONNEL

Soc-Sec-Number Name Rank Available Assignment

123456789 Jones Seaman Yes Norfolk, VA.

234567890 Brown Seaman No WASP

345678901 Gray Seaman Yes San Diego, CA.

I
Tl: For any person with RA:4K = SEAMAN,

and AVAILABLE = Yes

Update ASSIGNMENT to ENTERPRISE,

and AVAILABLE to NO.

T2: For any person with RANK = SEAMAN,

and AVAILABLE = YES

Update ASSIGNMENT to JFK,

and AVAILABLE to NO.

Exhibited Dead Transactions
Figure 4.5

Page -74- Updating a Redundant Distributed Database
Section 4 Database Consistency

T l T .2

R-*4 (RANK, AVAILABLE)(RNAAL BE

w - ~ (ASSIGNMENT, AVA ILAB3LE) A S f I N l H11T , AVA ILABILE)

Graph of Transactions in Figure 4.5
Figure 4.6

--- - I-

adating 8Rejundant Distributed Database Pafl-7-aabase Consistency Sec on

fo avoid this anomaly we postulate that data exhibited to ex-

ternal observers is conceptually part of the write-set of the

transaction. We assume that in general information presented

to external observers cannot be obliterated by later trans-

actions. Hence, by including the external observers in the

conceptual database, exhibited transactions can never be dead.

This brings us to ResU1_:

In a non-redundant database where all transactions

are exhibited, the presence of a V-cycle in the

transaction graph is a necessary and sufficient con-

dition for non-serializability.

Result 3 follows directly from Result 2.

It is interestinz to consider at this point the role of re-

trievals in this scheme. We model retrievals in the graphic

representation by transactions called observer transactions.

An observer transaction is one that reads data that may be

read or written by normal transactions, but writes data that

may never be touched by any other transactions. The write-set

of observer transactions represents possibly the terminal of

the user who performed the retri,.val or some other external

record of the retrieval.

Page -76- Updating a Redundant Distributed Database
Section 4 Database Consistency

Arbitrary observer transactions are ones whose read-set

includes arbitrary data items. In particular, the read-set

may intersect the write-sets of all the other transactions.

Arbitrary observer transactions model the most general re-

trievals possible.

Result 4:

In a non-redundant database that permits arbitrary

observer transactions, a diagonal arc is a necessary

condition for non-serializability. That is, a set of

transactions is safe in the presence of arbitrary ob-

server transactions if its graph contains no diagonal

arcs.

'1 The results that we have presented so far apply to non-

redundant databases only. When applied to redundant databases

the results break down due to the possibility of transactions

arriving at a materialization out of order.

Suppose TI and T2 are transactions and that T1 is before T2 in

thie correct global sequencing of transactions. If T2 arrives

at a materialization before Ti does, then to an observer at

materialization, the database may appear to go "backwards".

Updating a Redundant Distributed Database Page -77-
Database Consistency Section 4

An example of this sort is presented in Figure 4.7. The

figure shows two transactions, TI and T2, that are initiated

at arbitrary materializations, and a set of observer trans-

actions, Oi, that are initiated at the materialization, _MO.

TI and T2 each simply sets a corresponding variable, Yi, to

YES, and sets the variable LAST to its own name; LAST thus

reflects the last transactions to set a Vi to YFS. The)i are

observer transactions that print out two types of information:

(1) they print out the value of LAST, and (2) they print out

the names of all Vi that currently equal YES.

A graph of these transactions appears in Figure 4.7. You may

note that this situation conforms to the hypothesis of Result

(4), except that the database here is assumed to be redundant.

A plausible integrity constraint on the operation of this da-

tabase is:

For two transactions Oa and Ob where Oa is before Ob,

if more Vi are YES in the results of 2b then in the

result of Qa, then the value of LAST must be dif-

ferent in the two transactions.

A

Page -78- Updating a Redundant Distributed Database

Section 4 Database Consistency

TI: Set VI: = YES, LAST: = TI.

T2: Set V2: = YES, LAST: = T2.

01: Print LAST, and all Vi that are equal YES.

Ti T2

~1(Vi, LAST)

W -. (i A:) (V2, LAi) e xiernial world

Anomalous Case in Redundant Environment
F J ur-e 4.7

Updating a Redundant Distributed Database Page -79-
Database Consistency Section 4

This constraint simply states that no transaction may set a Vi

to YES without also changing LAST.

In a redundant database, if Ti and T2 are run via the safe

protocol, this integrity constraint may not be maintained.

Suppose that in the cotrect global sequencing of TI and T2, TI

is before T2, but that T2 is received by MO before Ti. It is

possible then that transactions will be run at M0 in the fol-

lowing order:

T2 then Oa then TI then Ob

In this case, Oa would observe the effects of T2 and would

print:

1 LAST:T2, LIST OF YESr'S:V2

Ob wou',d observe the effects of both TI and T2. But since TI

is before T2 in the global sequoncing, the effect of Ti on the

database must not undo any of T2?'s effects. (This is assured

by the time stampinv emploved by the safe protocol).

Thus, althouvi, V1 is set to YFS as a result of T1's arrival at

MC, LAST is not modified at that, time. Consequently what Qb

prints out is:

lI

Page -80- Updating a Redundant Distributed Database

Section 4 Database Consistency

LAST=T2, LIST OF YESES=V1, V2

The LIST OF YESES is longer in Ob than in Oa but LAST is not

changed: the integrity constraint is not upheld.

Result_ :

In a redundant database, the presence of any cycle

(V-cycle or otherwise) is necessary for non-

serializability.

In the example of Figure 4.7, had the write-sets of

TI and T2 not intersected via the variable, LAST, the

anomalous behavior would not have been possible.

'- tell

Updating a Redundant Distributed Database Page -81-
Database Consistency Section 4

4.5 Conclusion

Solutions to the redundant update problem must ensure that the

consistency of the database cannot be violated by update ac-

tivity. To do so the update algorithm must ore-check each

transaction to test whether the transaction by itself violates

any integrity constraints of the database. Then the algorithm

must apply sequencing constraints to the transaction to ensure

that multiple transactions cannot interfere with each other in

a manner that violates database consistency.

For many database applications the necessary sequencing con-

straints is serializability. Consequently in our approach to

the redundant update problem, we need to find classes of

transactions that may be run concurrently without violating

serializability.

Verifying the serializability of arbitrary classes of trans-

actions is a difficult problem, though, that appears to entail

a combinatorial explosion of computation. To circumvent this

combinatorial problem we introduced a graphic representation

of the relations among concurrent transactions. In this

graphic representation the question of serializability is

Page -82- Updating a Redundant Distributed Database
Section ~4 Database Consistency

reduced to simpler questions concerning the topology of the

graph. A number of preliminary results were presented that

relate certain types of graphs to the serializability of

various classes of transactions.

A major thrust of future research will be to explore the use

of this graphic technique further. Among the issues to be in-

vestigated are these:

1. In terms of transaction graphs, what condition is

necessary and sufficient for serializability of a

class of transaction in a redundant database? What

is the condition if arbitrary observer transactions

are allowed? What is it with various classes of re-

stricted observer transactions?

2. How can the graphic technique be modified to permit

better set resolution? As described here, an arc

means merely that there is some intersection between

the sets; at this level of resolution we cannot

reason about practically overlapping Portionis of read

or write sets.

We have already seen one instance where it was neces-

sary to distinguish between total and partial inter-

sections of write-sets. (This was with regard to

Updating a Redundant Distributed Database Page -83-
Database Consistency Section J4

dead transactions). We expect that the need for

finer resolution will recur in other instances.

There are other issues we expect to study in addition to the

graphic techniques per se. Among these are:

3. Throughout our preliminary work we have assumed that

all transactions perform arbitrary computations based

on their read-sets in order to arrive at values for

their write-sets. That is, we have not attempted to

look inside transactions to see what they do. What

can be done to weaken this assumption? What is the

effect of considering limited types of transactions?

Can this be modelled in our graphic representation

and would that be helpful?

J4. Observer transactions add many arcs in the trans-

actions graph representation and thus seem to reduce

the amount of concurrency possitle in a redundant da-

tabase. What can be done to ameliorate this diffi-

culty? One idea is to let observer transactions

advise the system as to whether they really require

totally consistent data. Possibly in certain appli-

cations there are natural measures of the extent to

which the database is not consistent and some obser-

Page -84-~ Updating a Redundant Distributed Database
Section i4 Database Consistency

ver transaction can tolerate up to a certain amount

of' inconsistency.

In the next Section we take up the other side of' the two part

safety problem. That is, given a statement of the condition

which assures that a network-wide set of transactions is safe,

how can a transaction be tested at a single data m~odule to de-

termnine if it is a member of' that set?

Updating a Redundant Distributed Database Page -85-
Local Test for Safety Section 5

5. Local Test for Safety

Having explored the characteristics of the network-wide set of

transactions which can lead to database inconsistencies, we

now move to consider efficient means for controlling the

transaction mutual interference which causes inconsistency.

Specifically we wish to detect a transaction which may violate

the safety of the set of concurrent transactions without actu-

ally knowing what other transactions are executing. We seek a

safety test, Sm(T), which can be applied to a transaction T

initiated in materialization M and which can determine if T

may violate network-wide safety by considering only that data

and those other transactions known currently in M. If am(T)

is true then the results of running T in M can be transmitted

to the other materializations in the system via the safe (un-

synchronized) protocol. Otherwise, a synchronizing protocol

must be employed.

The construction of local safety tests (sm's) is a data base

design activity in which the tests to be applied at all mater-

ializations are established in a coordinated fashion. This

design step permits each materialization to know what trans-

. 4......... . i "

Page -86- Updating a Redundant Distributed Database
Section 5 Local Test for Safety

actions could be running concurrently in other materializa-

tions. Because of this limited global knowledge about the set

of transactions running throughout the network a materializa-

tion may determine that a given transaction could not violate

the safety of the set of concurrent transactions.

In section 5.1 the general forum of _m is described. Then,

section 5.2 describes th proce- of coordinating the tests at

all materializations so tna the set of transaction they

permit to run concurrently is safe. Section 5.3 sketches some

example safety tests and section 5.4 suggests topics in the

area of local safety tests which could be explored in the con-

templated research effort.

. o _ •

Updating a Redundant Distributed Database Page -87-
Local Test for Safety Section 5

5.1 Form of the Local Safety Test

The safety test considered here involve the definition of

classes of transactions as a database design step. Specific

classes are established for each materialization. The safety

test at materialization M simply asks if the transaction in

question is a member of one of M's class. If so, the transac-

tion passes; otherwise it does not.

A class C is defined by a read-set Rc and a write-set jjc. The

class is the set of transaction which reads only from Re and

writes only to Wc. That is

C = T lt Rc and Wt Wc

Classes are defined for each materialization and are denoted

by :i,j to designate the jth class of the ith materialization.

The safety test for materialization M is defined as follows:

Page -88- Updating a Redundant Distributed Database
Section 5 Local Test for Safety

That is, the safety test is passed for a transaction T if T is

a member of one of M's transaction classes. If the test is

passed then the results of running T in M are passed to the

other materializations via the safe protocol.

The set of safety tests defined in a database design is called

the safe configuration for that design. The next section con-

siders what constraints a safe configuration must satisfy in

order to insure that inconsistencies do not arise.

5.2 Constraints on Safe Configurations

The intent of the safety test scheme just described is to lo-

calize transaction conflict within materializations where it

is inexpensive to detect via locking and to avoid conflict

among transactions in different materializations where it is

expensive to detect. Hence, the constraint we define on safe

configurations will permit conflict within a materialization

but will prohibit conflict in sets of transactions executing

in different materializations.

The mechanism for detecting unacceptable conflicts in a safe

configuration is comparable to the graphic technique intro-

duced in section 4 for discovering non-serializable sets of

Updating a Redundant Distributed Database Page -89-
Local Test for Safety Section 5

DETECTING CONFLICT IN A SAFE CONFIGURATION

1, FORM BASIC GRAPH OF SAFE CONFIGURATION.

A. CREATE NODES FOR READ SET AND

WRITE SET OF EACH CLASS. _ C C C

R R R R

W W w w

B. DRAW AN ARC BETWEEN THE READ SET
AND WR IT-E SET OF EACH CLASS. C 1 EJ. C ... C

1 w

C. DRAW AN ARC BETWEEN TWO WRITE SETS
IF THE SETS INTERSECT, C. C N.,

RR

D. DRAW AN ARC BETWEEN A READ SET AND
A "IRITE SET IF THEY INTERSECT. C],2 C 1 ... C

2. ELIMINATE ARCS CREATED IN STEPS C AND

D FOR CLASSES DEFINED FOR SAME
MATERIALIZATION. C CtI

3. CHECK GRAPH FOR CONSISTENCY CONDITION

Graphic Technique for Classes of Transactions
Figure 5.1

Page -90- Updating a Redundant Distributed Database
Section 5 Local Test for Safety

transactions. This method is shown in figure 5.1. A graph is

formed for classes using the algorithm employed for trans-

actions except that no arcs are drawn between classes defined

for the same materialization. Locks employed within the ma-

terialization will prevent transactions with intersections on

either write set from running concurrently. Hence, these

paths of potential conflict cannot be followed.

The graph drawn according to the rules of figure 5.1 repre-

sents a generator for sets of transactions which can exhibit

the same sorts of connections as their parent classes. If we

wish to impose topological restrictions on the transaction

graphs then we hypothesize that it is necessary and sufficient

to impose those same restrictions on the graph of their

't classes. For example, to avoid cyclic transaction graphs it

is only necessary to avoid cycles in the graph produced by

figure 5.1. A similar result applies to avoiding diagonal and

horizontal arcs. Hence, in order to constrain a safe configu-

ration to those class definitions which avoid inconsistencies,

one applies the desired transaction consistency rule to the

class graph. The safe configuration is acceptable if and only

if that consistency rule is not violated

Updating a Redundant Distributed Database Page -91-
Local Test for Safety Section 5

5.3 Examples of Safe Configurations

This section attempts to suggest the power and flexibility of

the local safety test approach by briefly describing examples

of its use.

Primary-site approach - The primary site method of Alsberg et

al [ALS] which was mentioned in section 1 is a special case of

a local safety test in which all transactions pass the safety

test at the primary materializations and all fail the test

elsewhere. Formally:

Cp, 1 Read-set = complete database

'1 Write-set = complete database

where P is primary materialization

Cm,1 : Read-set = 0

Write-set = 0

where M P

The graoh of this configuration has no horizontal or diavonal

arcs since all classes are defined for only one materializa-

tion.

imp_ugdaes - In many prantical database applications the

bu'lk of the updates involve the identification of a record by

-w~---i

Page -92- Updating a Redundant Distributed Database
Section 5 Local Test for Safety

a certain field or fields (e.g. social security number) and

the modification of other fields (e.g. salary, department, job

title). One means of handling this situation as a safe con-

figuration is to have the database designer partition the com-

plete database into two parts, say Rs and Ws. Then the same

class is defined for all mater-alizations. It specifies

transactions which read only from Rs and write only to Ws.

Formally

Cm,1 : Read-set = Rs

Write-set = Ws

for all M

The graph of this configuration contains horizontal arcs but

no diagonals.

Local interests - A phenomenon which is expected to be common

in the use of geograDhically dispersed distributed database

systems is the predominant interest of users in the local por-

tion of a global database. That is, while thee is Fome

reasign tn integrate the data across widely separated group-

rno't tr W' clusters around the local interests of the re-

s.... ivp Zroups. It is clearly desirable to avoid global svn-

'f:":' 'n ,-f these locally oriente " transactions.

r example,, a distributed version of a niv -

. which stored frapmPnt- re; ,o:'..

AD415 N64 41 APPROACH 10 UPDAl1Nil IN A RLDNUANI DISIibUILU UAIABASE ENVIRONMENT(U) COMPUTER CORP OF AMERICA CAMBRIDGE

MA J B ROTHNIE FT AL. 15 FEB 77 CCA 77 01
UNCLASSIFIED N00039-77 C-0074 F/G 9/2 NL

*IND

111181

1.25 01.4 I..

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS.1963-A

. 4AJ

IUpdating a Redundant Distributed Database Page -93-

Local Test for Safety Section5

module (as well as elsewhere). The problem is to define a

safeconfguraionwhich permits direct manipulation of these

loca reordswitoutexternal synchronization.

To acomlis ths, achship (for example, the JFK) will have

tefollowing class defined:

r4JFK,l Read-set all personnel data where

assigned ship is JFK

Write-set same

Page -914- Updating a Redundant Distributed Database
Section 5 Local Test for Safety

5.4I Examples of Topics to be Explored

The concept of local testing of the global consistency condi-

tion is rich in interesting sub-topics and in practical sig-

nificance. We suggest a careful analysis of questions in this

area including the following:

Proof of safe configuration constraint rule - We have hypothe-

sized in this section that a graph constructed as described in

figure 5.1 can be tested for the global consistency constraint

exactly as a transaction graph. This idea is of such central

importance that it requires a formal proof.

Database design - Database design is already a difficult

problem with the variety of indexing and accessing alterna-

tives offered by current systems. Distribution and redundancy

dramatically increase the complexity of that job and the in-

troduction of safe configurations seems likely to place this

task beyond the scope of intuitive methods. We will explore

j means of optimizing (either formally or heuristically) those

portions of the design problem which relate to the redundant

distributed environment. This effort will be aimed at the

construction of a practical tool to aid a designer in this

process.

~~ $4A, 4

Updating a Redundant Distributed Database Page -95-
Local Test for Safety Section 5

Impact of global conditions - The safe configurations which

can be employed for a given data base depend upon the type of

consistency which the system is seeking to achieve. We intend

to explore the impact of the choice of this condition on the

construction of local tests and on database design.

Materialization groups - The presentation in this section

dealt with two levels of synchronization - within a single ma-

terialization and within the complete network of materializa-

tions. It is possible to define a multi-level synchronization

structure in which transactions which cannot be declared safe

within the scope of a single materialization can be declared

safe by synchronizing with several but not all materializa-

tions. We will explore the circumstances under which this is

possible and consider the performance impact of this addition-

al dimension of flexibility.

Overlapping materializations - When two materializations share

a stored fragment there are a number of updating impacts to be

considered. The underlying issue is that updating that por-

tion of one materialization also updates the other one. This

leads to potentially efficiency gains and to potential incon-

sistency problems. We will investigate these impacts in

detail and consider the effects of performance and of database

design.

11*-4

Page -96- Updating a Redundant Distributed Database
References

References

[ALS]
Alsberg, P. A.; and Day, J. D. "A Principle for

Resilient Sharing of Distributed Resources", Report
from the Center for Advanced Computation, University
of Illinois, Urbana, 1976. (Also accepted for pro-
ceedings of the Second International Conference on
Software Engineering.)

[BER]
Berry, J. E.; and Cook, C. M. "Managing Knowledge as
a Corporate Resource", unpublished paoer, May 28,

+ 1976.

(BERN)
Bernstein, P. A.; and Papadimitriou, C. Private com-
munication, November 1976.

[CAS]
Casey, R. G. "Allocation of Copies of a File in an
Information Network", SJCC 1972, AFIPS Press, Vol. 40,
1972.

[CCA]
Computer Corporation of America "A Distributed Data-
base Management System for Command and Control Appli-
cations", proposal submitted to the Advanced Research
Projects Agency, July 12, 1976.

(CHAai
Chamberlin, D. D.; Boyce, R. F.; Traiger, I. L. "A
Deadlock-free Scheme for Resource Locking in a Data-
base Environment", Information Processing 74, Proceed-

Sings AFIPS Conference, North Holland Publishing

Company, Amsterdam, The Netherlands, 1974.

(CHAb]
Chamberlin, D. D.; Gray, J. N.; and Traiger, I. L.
"Views, Authorization, and Locking in a Relational Da-
tabase System", Proceedings AFIPS National Computer
Conference, AFIPS Press, Vol. 44, 1975.

.. ' " : . .o .: - .. . :, ,; V

Updating a Redundant Distributed Database Page -97-
References

[cHU)
Chu, Wesley W. "Optimal File Allocation in a an In-
formation Network", Proceedings 1972 SJCC, AFIPS
Press, 1972.

[COD]
Codd, E. F. "Further Normalization of the Database
Relational Model", in Database Systems (Courant Com-
puter Science Symposium 6, R. Rustin ed.), Prentice-
Hall, 1972, pp. 3364.

[DIJ]
Dijkstra, E.W. "The Structure of 'THE' Multiprogram-
ming System", CACM, Vol. 11, No. 5, May 1968, pp.341346.

[ESW]
Eswaran, K. P.; Gray, J. N.; Lorie, R. A.; Traiger, I.
L. "The Notions of Consistency and Predicate Locks in
a Database System", CACM, Vol. 19, No. 11, November
1976.

(FRY]
Fry, J. P.; and Sibley, E. H. "Evolution of Database
Management Systems", Computing Surveys, Vol. 8, No. 1,
March 1976, pp. 742.

(GRA]
Gray, J. N.; Lorie, R. A.; Putzolu, G. R.; Traiger, I.
L. "Granularity of Locks and Degrees of Consistency
in a Shared Database", Report from IBM Laboratory, San
Jose, California, 1975.

[HEW]
Hewitt, C. E. "Protection and Synchronization in
Actor Systems", Artificial Intelligence Laboratory
Working Paper No. 83, Massachusetts Institute of Tech-
nology, November 1974.

[HOAJ
Hoare, C. A. R. "Monitors. An Operating System
Structuring Concept", CACM Vol. 17, No. 10, October
1974, pp 549557.

lit

Page -98- Updating a Redundant Distributed Database
References

[LEVI
Levin, K. D.; and Morgan, H. L. "Dynamic File Assign-
ment in Computer Networks Under Varying Access Request
Patterns*, Technical Report No. 7504O1, Department of
Decision Sciences, The Wharton School, University of
Pennsylvania, April 1975.

[MA H
Mahmoud, S.; and Riordan, J. S. "Optional Allocation
of Resources in Distributed Information Networks",
TODS, Vol. 1, No. 1, March 1976, pp. 6678.

[eOSI
Rosenthal, R. "A Review of Network Access Techniques
with a Case Study: The Networks Access Machine", NBS.
Technical Note 917, July 1976.

(ROT)

Rothnie, J. B. "Evaluating Inter-Entry Retrieval Ex-
pressions in a Database Management System", Proceed-
ings AFIPS National Computer Conference, AFIPS Press,
Vol. 44, 1975.

(SCH]
Schantz, R. E.; and Millstein, R. E. "The FOREMAN:
Providing the Program Execution Environment for the
National Software Works", BBN Report No. 3266, March
1976.

[SIB]
Sibley, E. H. "The Development of Database Technolo-
gy" Computer Surveys, Vol. 8, No. 1, March 1976, pp.
15.

(STO]
Stonebraker, M.; and Neuhold, E. "A Distributed Data-
base Version of INGRES", unpublished paper, November
6, 1976.

(THOa]
Thomas, R. H. "A Resource Sharing Executive for the
Arpanet", Proceedings AFIPS National Computer Confer-
ence, AFIPS Press, Vol. 42, 1973, pp. 155-163.

£..,• /. -" " "' " • . e -

Updating a Redundant Distributed Database Page -99-
References

(THOb] utpeCp aaae hc ssDsrbtdCn

Thomas, R. H. "A Solution to the Update Problem for

trol", BBN Report No. 33140, July 1975.

Whitney, V. K. W. "A Study of Optimal File Assignment
and Communication Network Configuration in Remote-
Access Computer Message Processing and Communication
Systems" Ph.D. Dissertation, Department of Electrical
Engineering and College of Engineering, University of
Michigan, September, 1970.

