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I. STATEMENT OF WORK

Conduct a theoretical research program to develop quantum mechanical

methods for studying nonadiabatic effects in three-dimensional atom-molecule

interactive collisions.

II. TECHNICAL DISCUSSION

The traditional role of theory in chemistry has been to develop models

that help to correlate large amounts of experimental data. However, because

of the difficulty in obtaining state-to-state data on many systems, there is

growing interest in using the computational methods of ab initio theoretical

chemistry to predict kinetic data. Due to the increase in sophistication and

accuracy of the computational methods available for calculating potential

surfaces and obtaining dynamical information, theoretical studies specifically

designed to predict kinetic data are appearing.

Many areas of military technology are affected by the new developments in

both experimental and theoretical kinetics. The collisional mechanisms of

importance in chemical lasers include the conversion of vibrational energy

into rotational energy (V-RT), conversion of rotational energy into

translational energy (R-RT), exchange of vibrational energy (V-V),

.. intramolecular conversion of rotational energy into vibrational energy (R-V),
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translational to internal energy conversion (T-RV), and the conversion of

3electronic energy to vibrational, rotational, and translational energy (E-

VRT). Also of importance is the transfer of electronic energy from one species

to another. For example, the transfer of electronic energy from 020A) to

atomic and molecular iodine is important in iodine lasers. In interhalogen

lasers such as IF the production of electronically excited IF from F, 12, and

02(1A) is poorly understood.

In the area of plume technology, an important problem is the prediction of

the radiant intensity of rocket exhaust plumes in the upper atmosphere. These

plume signatures are driven by collisional excitation of exhaust gas molecules

or
by ambient atmospheric species, and standard models that predict plume

I radiation require state-to-state cross sections for collisional excitation2 as

input. The necessary cross-sections potentially involve all of the energetic

processes which are also of importance in chemical lasers. Theoretical

methods provide a cost effective and timely means of obtaining data of this

type. For systems which are inaccessible to current experimental techniques,

theoretical methods provide a complementary tool to the experimental

determination of kinetic data.
$r.. •

o°

The dynamical method most widely used for studies of complex systems is

the quasiclassical trajectory method.3  However, many phenomena cannot be

accurately described by a classical approach, and quantal methods are

* required. Present quantum theoretical methods for obtaining transition

probabilities are difficult to apply to problems such as the vibrational

excitation of HF (or even H2 ) because of the large number of internal states

that must be included to converge the calculations.4 There have been several

exact close-coupling calculations reported for inelastic collisions involving

* , light three-atom systems at relatively low energies, mostly involving rigid-

rL-4- -.- . * -. " .-.. .- .. .-... . .... . . . . . . . . .
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rotor models, but ex.:t close-coupling studies of bimolecular reactions have

been limited to H+H2 . Because of the importance of obtaining quantum

mechanical results for collision processes, approximate decoupling methods

have been developed.5'6  Besides greatly enlarging the scope of inelastic

quantum mechanical calculations to include vibrational excitation processes,

implementation of decoupling methods is allowing three dimensional reactive

scattering calculations for systems more complex and of greater interest than

One area of current research that has received considerable attention is

the development of methods for including electronic degrees of freedom in

scattering calculations.8 The usual difficulties of the coupled channel

approach are magnified not only because of the many more states introduced,

but due to complicated angular momentum coupling schemes not present in

S studies on a single adiabatic electronic surface. Thus there are few

instances where actual applications to three dimensional atom-molecule systems

have been made. Progress in this area will involve improvements in techniques

for treating the large number of equations involved, particularly for reactive

systems, where the further complications of difficult coordinate systems

appear.

This report summarizes the progress at Chemical Dynamics to extend the

quantum mechanical approach to molecular dynamics to systems of greater

complexity than previously possible. The emphasis is on obtaining detailed

information on vibrational and rotational nonadiabatic processes in atom-

molecule reactions, and in developing methods for including electronic degrees

of freedom in three-dimensional quantum scattering theory.

'S
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III. RESEARCH OBJECTIVES

The overall objectives of this research program are as follows:

i V Extend current technology to treat the nonreactive, electronically
nonadiabatic collisions of an atom with a diatomic molecule. This

Is involves the development of a code for incorporating the
.4 appropriate electronic basis sets and decoupling schemes.

0 Investigate decoupling approximations suitable for studying
vibronic transitions. Such processes are very important in
understanding the physical processes occurring in many areas of
technology.

'* ,

. Develop strategies for incorporating electronic angular momentum in
molecular collisions.

.  Conduct computational applications to the systems O+H2 and Na+H ,
and other systems appropriate for the development of tie
computational methods. The calculations will involve both
nonreactive and reactive studies.

0 Continue the development of quantum scattering codes to enable more
systems of chemical relevance to be amenable to study by quantum
mechanical means. This development is an important component of
research at Chemical Dynamics, where a major goal is the
development of state-of-the-art methods capable of providing the
best theoretical data for problems of current interest in chemical
kinetics.

In addition to progress in computational techniquzn, the goals of this

program involve furthering our understanding of fundamental processes in

molecular collisions, such as resonance phenomena and energy pathways. Recent

developments in quantum chemistry permit the calculation of accurate potential

energy surfaces for both ground and excited molecular states, and provide new

justification for the search for more powerful methods for studying dynamical

processes.

4'.

.......... . .o.............. .' " " " " .' .' ;.' a'- " "' - " - "' " " - ' - " . " " " " ." ," -. ° '. " " ,'." "- "g '- .'- .' .' . , . - "- . " • " .'- ,' .' " - " '" r.- " . ". " -.
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IV. RESEARCH ACCOMPLISHMENTS

I
During this eighteen month research program, there has been progress in

several areas. These include the development of a computational method for

analyzing three-dimensional reactive scattering wavefunctions as a function of

reaction path and for generating wavefunctions of sufficient accuracy to permit

* the computation of angular distributions for direct comparison with experiment.

Applications to the F+H 2 reaction are providing new insight into energy disposal

during exothermic reactions and into the nature of resonance phenomena (see

Appendix A). The quantal angular distributions show features that appear in

us experimental data, and that are not predicted by classical theoretical methods

* (see Appendix B). Preliminary close-coupling probabilities have been obtained

for this reaction for J>O. These results are presently not sufficiently

S converged, even with the 180 channels so far included, but there is encouraging

agreement between these results and the Jz-conserving probabilities that have

l formed the basis for our previous studies of this system. We should point out

! that these results, obtained under AFOSR sponsorship, are by far the most

sophisticated quantum mechanical studies of chemical reactions to date.

Previous work on this contract included the development of techniques for

treating electronic transitions in molecular collisions using both adiabatic and

diabatic representations. 9 These new methods have been applied to the problem of

the quenching of the resonance state of potassium by hydrogen and muonium.9'10

Huonium (Mu) is an electron-muon pair which behaves as a light isotope of

I.- hydrogen. Because of the extremely light mass of muonium (one-ninth that of

hydrogen) the validity of the Born-Oppenheimer adiabatic separation of nuclear

and electronic motion has been questioned.11 The comparison of cross sections

for the quenching of K by H and Mu has given insight into the applicability of

the Born-Oppenheimer approximation in systems containing Mu.

.. . . .. ...... ... * ......... . o•. . . •...........
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Work is currently in progress to examine the rich resonance features in

this relatively simple atom-atom collision. Plots of the cross sections versus

translational energy for the K + Mu collision show sharp peaks which are
i attributed to shape type resonances at low translational energies. This

characterization of the low energy resonances has been confirmed by showing that

the energies at which the resonances occur correspond to quasibound states of

r7., the effective potential for the first excited electronic state of KMu. Similar

resonance features are expected for the 1E system; however, these resonances are

expected to be much more narrow because of the heavier mass of hydrogen.

Resonances provide a very detailed probe of the potential energy surface.

Comparisons of calculations of these types with spectroscopic observations of

- the resonance states of the "bound" molecule can provided information about the

potential curves in regions previously undefined by tools such as RKR analysis.

An improved Diatomics-in-Molecules (DIM) representation for the lowest

electronic surfaces of Na+H2 has been obtained for use in scattering

calculations.12 13  These surfaces are being used in our current dynamical

studies of this system (see Appendix C).

Significant improvements have been made in the iterative-variational

method for heavy particle scattering (see Appendix D).14 These include the use

of finite-element techniques for greatly reducing the amount of I/O required by

the previous implementation, and the development of a scheme for allowing for

chemical reaction through an efficient implementation of Miller's exchange-

kernal formalism.15'16 To date, development of an inelastic code has been

started, with the implementation of the finite element method complete.

Implementation of an initial iterative scheme has been completed, ad testing on

the problem of HF-HF self-relaxation begun but not fin is... to development

was suspended due to lack of funds. However, we feel that this approach holds
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promise for significantly expanding the number of channels that can be included

in quantum scattering calculations and warrants further development. It is, in

our opinion, the approach most likely to succeed in overcoming the limitation of

- coupled-channel methods imposed by the mass-dependence of many molecular

systems, particularly those with small skew-angles in standard reaction

coordinate theories. The current reaction coordinate methods are intractable

for molecular systems involving masses other than hydrogen, except in a few

cases where decoupling approximations work to an acceptable degree. This

computational method, installed on one of the new generation of supercomputers,

could open new horizons for accurate computation. With their very large

memories and, more importantly for the present application, very rapid and large

-. mass storage, these computers will possess the capacity to apply such algorithms

to scattering problems on the order of thousands of channels. This will enable

S the accurate methods of quantum scattering theory to be applied to situations

* that are presently tractable only to classical methods.

U

I.
9

.5

o .

. -*



8

U

~V. RESEARCH IN PROGRESS

During th1 s program, computational applications to several important

collision collision problems, including studies of nonadiabatic processes in

Na+H2  collisions have been initiated. These calculations incorporate the

Infinite-Order Sudden (IOS) approximation and a new approach to including

electronic coupling. This method allows the economical study of electronic-to-

" vibrational energy processes by eliminating the explicit treatment of rotational

degrees of freedom.

(3
Reactive calculations on 0(P)+H2  are in progress, and, when sufficient

computer time is available, converged cross sections will be obtained. This

system is of interest because of the previous classical trajectory and

. transition state theory treatments, the availability of a reasonable ab-initio

surface, and the existence of experimental rate data. The present three-

U dimensional treatment is tractable because of the relatively small

endothermicity of the system and the presence of hydrogen atoms in both reagent

and product molecules.

PWork is also continuing on the problem of obtaining converged close-

coupling probabilities for the F+H2 reaction. This is an important problem, for

these probabilities are necessary to fully evaluate the reliability of the

decoupling methods that are essential for obtaining complete cross sections. As

of the present time, we have made close-coupling calculations for J - 2 that

involve approximately 180 coupled channels. The basis of rotor functions has

been varied mong the lower vibrational states to study convergence. The

* results compare reasonably well with the converged J z-conserving calculations at

low energies. The latter include up to 140 channels. The total probability for

the process F+H2 (v-O,j-0) -> H+FH(v=2,tj) is 0.39 in the Jz-conserving

calculation compared with 0.43 in the close-coupling calculation. The close-

-------------.-----.-.------------"-.--...--...---.-... .. . , - ..... ,,- --.-.-.-- _;:2 iiC... .... 2;..t.7,.
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coupling result is still unconverged. We are presently in the process of

rewriting the scattering code, using a new partitioning of the Hamiltonian, to

allow many more channels to be included so that the close-coupling calculations

can be converged at least for small J.
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F- VIII. INTERACTIONS

A. MEETINGS

The following meetings were attended, providing valuable interaction with

other scientists and DoD personnel:

Austin Conference on Theoretical Chemistry, March 1981 (M.J. Redmon and
B.C. Garrett)

12th ICPEAC, Gatlinburg, July 1981 (B.C. Garrett)

Gordon Conference on Atomic and Molecular Collisions, Plymouth, N.H.,
July 1981 (B.C. Garrett).

AFOSR Dynamics Contractors Meeting, Albuquerque, October 1981 (N.J.
Redmon)

DoD Plume Visibility Workshop, Huntsville, November 1981 (N.J. Redmon)

AFRPL/AFSD Plume Technology Workshop, Los Angeles, February 1982 (N.J.
*. Redmon)

American Chemical Society Annual Meeting, Las Vegas, Nevada, March 1982
(L.D. Thomas)

* .. Symposium on Theoretical Aspects of Gas Phase Kinetics, University of
Reading, England, March 1982 (B.C. Garrett)

Faraday Disussions on Van der Waals Molecules, Oxford, England, April
1982 (B.C. Garrett)

Workshop on the fundamentals of initiation of chemical decomposition of
- energetic materials, Chester, Maryland, May 1982 (B.C. Garrett)

American Chemical Society Meeting, Kansas City, Missouri, September 1982
(B.C. Garrett)

...... *.-. ............. -- ... . . . .



I' .

13

B. SUPPORT OF OTHER DOD PROGRAMS

5 The techniques investigated under the current program have application to many

areas of DoD interest involving gas-phase chemistry. We have recently

received support form the Rocket Propulsion Laboratory at Edwards Air Force

KF Base to study collisional excitation of various high-altitude exhaust gas

species by atomic oxygen. The quantum scattering calculations will be

performed with methods developed under the current program. The computer

codes developed under the current contract are to our knowledge the only

* i existent codes capable of performing these calculations.

We have also submitted a proposal to perform a theoretical study of

rotational relaxation in iF-IF collisions, a subject of enormous practical

,importance to the Air Force B laser program. This study would involve

application of the iterative-variational method in a close-coupling mode for

3 the low-lying v-i states decaying to the v-O manifold, with decoupling applied

to higher states. There is excellent experimental data available for the low-

lying transitions, allowing a validation of the theoretical methods for low

. v,j states that could then be extrapolated to high v,j states. This

extrapolation could provide reliable data for the prediction of parasitic

* '. lasing processes that can limit the scaling of high-power lasers.

o°.

a. -o. .

x. . . . . . . ..,
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Quantum Dynamics of the Three-Dimensional F+H 2 Reaction I.
Energy Partitioning and Entropy Analysis in the Collision Complex



Quantum Dynamics of Lhe Three-Dimensional F+H2 Reaction I. .
Energy Partitioning and Entropy Analysis in the Collision Complex

by

Joe F. Mclutt and Robert E. Wyatt
Institute for Theoretical Chemistry

,- and
.* Department of Chemistry

University of Texas at Austin
Austin, Texas 78712

and

Michael J. Redmon
Chemical Dynamics Corporation

1550 West Henderson Road
Columbus, Ohio 43220

£
Abstract

Analysis is presented of the quantum dynamics of the three-dimensional F+H2 +
FH+H reaction for total angular momentum J-0. First, the method (coordinates,

SHamiltonian, basis sets, close-coupling method, and boundary conditions) of
") solving the Schrodinger equation is reviewed, with emphasis on numerical

construction of the scattering vavefunction in the region of the collision
complex. Then, four types of analysis of the collision complex are presented:
(1) translational vavefunctions for the dynamically significant channels, (2)
vibration-rotation energy partitioning, (3) vibration-rotation entropies, (4)
variation with position along the reaction coordinate of the total scattering
wavefunction density. Emphasis is placed upon variations in these quantities
as the system passes through a quantum resonance (near total energy 0.36 eV).
In part II of this series, the total scattering wavefunction density and flux
are analyzed in the region of the collision complex.

* Supported in part by grants from the Robert A. Welch Foundation and the
National Science Foundation, and by the Air Force Office of Scientific
Research, U.S. Air Force (AFSC), under contract No. F49620-81-C-0046.

# Current address: Physics Division, Northern Kentucky University, Highland
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Three-dimensional studies of this reaction are necessary to provide a

realistic basis for comparison with experiment. Quantum studies using the

11121 15-17
Born11  distorted-wave Born1 2 -14  and infinite-order-sudden approxi-

h mations have generated energy-dependent cross sections and relative

* probabilities for forming HF products in v'j' states. Coupled channel

studies (within the Jz-conserving approximation) have been presented by

Redmon and Wyatt.1 8- 2 4 Reaction probability surfaces P(E,J) were obtained in

.- these calculations for populating v'-2 and v'-3 from H2 in its ground state

(v-O,j-0). These probability surfaces were sumned over final rotational

states, and plotted as functions of total angular momentum J and total

system energy E. The v-2 surface has a maximum near 0.36 eV (for j-0, hence

a classical impact parameter of b-0 for j-0). For fixed E below this energy,

Ilk P(E,J) shows a monotonic decrease with increasing J. However, at energies

only slightly above 0.36 eV, a maximum appears in the probability cuts at

non-zero J. This maximum appears at increasing values of J as the value of E

increases. The locus of these probability maxima forms a three-dimensional

"resonance ridge" on the probability surface.2 1  In contrast, the v-0 vul

and v-0 v'-3 reaction probability surfaces show slow post-threshold growth

with maximum reactivity at J-0 for all energies studied (up to 0.5 eV). The

shapes of the curves for higher J are similar, but the threshold energies are

shifted to higher E. Recently, Bowman, Lee and Ju developed a method for

- generating three-dimensional probabilities for this reaction from collinear

25
quantum probabilities. These approximate probabilities show features in

good agreement with the explicit three-dimensional calculations, and in

particular, the presence of the resonance ridge for the v'-2 surface. This

feature is completely absent in results obtained within a classical

framework.
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[.::I. INTRODUCTION

~During recent years, interest in state-to-state processes involved in

'.: 'elementary chemical reactions has continued to expand, and many new and

Sinformtive results have appeared. The reaction F+ 2(v,j) .i(v',j')+H has

i been the reaction of greatest experimental and theoretical effort, primarily

-:,

because it is a simple reaction with numerous dynamical features that can be

|!'studied with reasonable accuracy. 1- 3 On the theoretical side, quasiclassical

~trajectory studies on a variety of potential energy surfaces have generated a

wealth of dynamical information. 2 ,3  Quantum collinear calculations show a

number of striking features not predicted by the classical results.4 -6 The

quantum v-0 v'-2 reaction probability curve exhibits a sharp resonance peak

(0.01 eV half-width) slightly above the threshold for reaction, while the v-0

v -3 probability curve exhibits slow but monotonic growth after threshold.

Subsequent collinear studies substantiate and extend these studies , in

'iparticular to investigations of the effect of variations in the topology of

the potential energy surface on the calculated resonance features.

i r In a study of the ollinear reaction, we graphically displayed the

scattering avefunction, nodal patterns, the scattering probability density,

and the flux distribution as functions of the reaction coordinate a In that

study, we showed that ells in the adiabatic vibrational correlation curves

and the completness of the vibrational basis dramatically influence the

resonance shape. Recently, Walk er and Hayesc i have shon that the vsO v' 2

collinear resonance can be destroyed by removing the entrance channel

. .- potential barrier (0.05 eV on the Muckermann surface V). These results

illustrate the importance of potential surface features on th resonance

effects, and provide a measure of the accuracy desired in abini potential

tept i energy surfacesn

Inasuyo heclier ratin egahcll ipae h

scaterin wavefuncti•o noda patterns, the°- scattering o probability density,- .



2

Three-dimensional studies of this reaction are necessary to provide a

realistic basis for comparison with experiment. Quantum studies using the

11 ~12-14157Born11 , distorted-wave Born1  , and infinite-order-sudden' S -L  approxi-

mations have generated energy-dependent cross sections and relative

probabilities for forming HF products in v'j' states. Coupled channel

studies (within the J -conserving approximation) have been presented by

Redmon and Wyatt.18 - 24 Reaction probability surfaces P(E,J) were obtained in

*. these calculations for populating v'-2 and v'-3 from H2 in its ground state

(v=O,j=0). These probability surfaces were summed over final rotational

-states, and plotted as functions of total angular momentum J and total

system energy E. The v'-2 surface has a maximum near 0.36 eV (for j-0, hence

a classical impact parameter of b-O for j-0). For fixed E below this energy,

P(E,J) shows a monotonic decrease with increasing J. However, at energies

only slightly above 0.36 eV, a maximum appears in the probability cuts at

. non-zero J. This maximum appears at increasing values of J as the value of E

incresies. The locus of these probability maxima forms a three-dimensional

"resonance ridge" on the probability surface.21  In contrast, the v-0 v'=l

* and v-0 v'-3 reaction probability surfaces show slow post-threshold growth

with maximum reactivity at J-0 for all energies studied (up to 0.5 eV). The

shapes of the curves for higher J are similar, but the threshold energies are

shifted to higher E. Recently, Bowman, Lee and Ju developed a method for

generating three-dimensional probabilities for this reaction from collinear

quantum probabilities. 2 5 These approximate probabilities show features in

good agreement with the explicit three-dimensional calculations, and in

particular, the presence of the resonance ridge for the v'-2 surface. This

feature is completely absent in results obtained within a classical

framework.
-t
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New results from crossed molecular beam experiments carried out at

Berkeley, when displayed on polar velocity-angle maps, support the

resonance interpretation of the quantum mechanical calculations. At a

center-of-mass energy near 0.08 eV, the product intensity for v'=1,2,3

maximizes at 7 - r (in the direction of the incoming Fluorine atom).

However, when the relative energy is increased to 0.12 eV, the v'-2 intensity

maximizes near e - 1000, while the v'=1,3 components remain predominately

backscattered. This sideways peaking corresponds to nonzero impact parameter

collisions, and directly correlates with the quantum mechanical prediction

that a resonance ridge forms for J>0 when the collision energy exceeds about

0.1 eV.

Differen7i7al reaction cross sections computed from three-dimensional

reactive scattering in the JZ-conserving approximation agree very well 2with

,  recent high-resolution beam data. 28 However, both the quantum mechanical and

experimental results are quite different than the predictions of classical

trajectory calculations. 29  Classically, the v-0  v'-2 differential reaction

cross section remains backwards peaked, even up to 0.5 eV total energy.

30The work presented in this and the following paper (II) provides

the first detailed analysis of the three-dimensional F+112 reaction in the

transition state region. In addition to asymptotic information such as

reaction probabilities and cross sections, we examine the total scattering

wavefunction and quantities calculated with this wavefunction, as a function

of the reaction coordinate. In the present paper, by examining average

vibrational and rotational energies, we follow the partitioning of the

available energy as the system proceeds from reactants to products. To gain

additional insight into the population inversion and resonance phenomena, we

present in II an analysis of the scattering wavefunction probability density

- . . - .. * -, .
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m 3and flux at three total energies: 0.33, 0.36, and 0.40 eV.

In the following section we discuss the coordinates, Hamiltonian, and

the numerical solution of the coupled equations. In section III, we discuss

the method used to construct the three-dimensional scattering wavefunction.

In section IV, the methods used to analyze internal energy disposal are

*presented, and in the final section the insights gained into the fundamental

processes that dominate the dynamics of this important reaction are

* "summarized.

I.,

L

- . . . .
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II. Formulation of the Reactive Scattering Problem

A. Coordinates

For atom-diatom reactions at subdissociative energies there are three

arrangement channels which lead to separated A+BC (channel a), AC+B (product

channel ), or AB+C (product channely ). After removing the center-of-mass

motion, two mass-scaled relative separation vectors describe the three-atom

configuration in each arrangement channel; for example, in the a-channel:

R c- (rc  (Mara+Mbrb)/(Ma+Mb))
r a c a(

a  a  b - c a = ("bc/1abc

Similar expressions apply to the other two arrangement channels. In these

coordinates a single reduced mass

W =MM bM /(M +M b+M) (2)

applies to all three arrangement channels. We now introduce a body-fixed

frame, in each arrangement channel X , with axes oriented relative to the

space-fixed axes with three Euler angles (e0,Ox,). The BF frame is chosen

so that the BF Z-axis is parallel to R for large reactant separations, but

changes smoothly during the course of the reaction so that it is parallel to

-R for the product configuration channel $ . This reorientation of the BF

axes is accomplished with a switching angle a(s) whose value depends upon the

extent of the reaction as measured by the reaction coordinate a. In order to

specify the instantaneous size and shape of the nuclear triangle within the

BF frame, natural collision coordinates (NCC) are used.3 1- 33  The

translational coordinate s varies from -00to +'*as the reaction progresses.

In planes of constant s perpendicular to a reference curve (RC), usually

taken to be a circular arc in the reaction zone, p and y represent

generalized vibrational and bending motion. Asymptotically, P and Y
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correspond to simple diatomic molecule vibration and rotation. Fig. 1

illustrates the KCC for the a and $ channels, and shows a plane of constant

S.

Another useful set of orthogonal internal coordinates, (Zz,m), is

constructed in the following manner. By forcing the BF X-axis to be

perpendicular to the nuclear plane, r and R have BF components (O,ya ,z,)

and (O,Za). Then, by replacing (y,Y,) with polar coordinates (ma),

where m = r siny , y -m cosa , and Y = m sina , we obtain the set (Z,z,m)

shown earlier in Fig. 1.... The m-axis is perpendicular to the collinear plane

*(m=0) and measures the deviation of the nuclear triangle from collinearity.

Bc. ase H2 is a homonuclear molecule, only two of the three possible

arrangement channels discussed above need be considered. The a and B

channels join at s-0 (by definition), forming a surface on which the

wavefunction and derivative for reactant and product channels must match.
3 2

The y channel must also be considered in completely specifying the boundary

conditions, but not in the integration of the coupled equations (for A+B2

systems).

" B. Hamiltonian and Wavefunction Expansion

The NCC Hamiltonian operator can be partitioned into operators

*' representing pure translation, vibration, and rotation, plus the remaining

' coupling terms.
3 2

AA A A A

H - HHtr + Hvib + Hrot + Hcoup (3)

The f operator includes terms coupling translation, vibration, and
crflp

rotation which vanish at large s. Many of these terms are small in systems

for which the reaction passes through a linear intermediate. These terms are

neglected in the present and previous NCC treatments, and this approximation

LI
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prevents this approach from consideration as an "exact" method.

In a similar manner, the electronic potential energy is decomposed

as

V(s,p,y) = Vtr + Vib + Vbend + Vcoup (4)

In this representation, Vtr is the translational potential along the locus of
-Sr

local vibrational minima (defined for straight-line cuts perpendicular to the

collinear RC), Vvib is the local vibrational potential along the cuts, and

o V bend is the bending potential for variations in Y away from the local

vibrational minima along a circular arc of radius r0 in a plane of constant s

(see Fig. 1).

Vibration-rotation coupling is small for points near the RP for the present

surface, and has been neglected in our work on the F+H2 system. This

coupling could, of course, be included without much difficulty.

The empirical surface V of Muckermann is used in this and our

previous studies to obtain the translational and vibrational potentials, with
p.g

a simple functional form fit to the M5 bending potential for small deviations

from linearity. The bending potential is represented with the function

Vbd(Y;s) = (Vo(s)/2)[l - cos 2y] (5)

where Vo(s) is adjusted to represent the original M5 surface for small

deviations from linearity.

The vibrational Ham-ltonian is used to construct locally adiabatic

vibrational eigenvalues and basis functions:

Hvib Xv(o;s) - Ev(s) X (6)

.' .v . v

. . . .. . . . . . . . . . . . . . . . . . . . . . .



, ' : _'. -: - ".- -. • . . . . .. . . . . - •: ' ' ' ' ' "" - ' / ; - i .

c"

8

The vibrational potential in Eq. 4 is usually fit to a Horse potential so

that the basis functions X v(P;s) are Morse oscillators and Ev are Horse

energies. The lowest twelve vibrational energies and the sums Ev(S) + V (S)v tr

are shown in Fig. 2. The wells in these curves near s-0 are produced by

expansion and contraction of the potential valley.

The rotational Hamiltonian is partitioned into terms representing a

symmetric top, an asymmetry term, a Coriolis term (coupling bending motion to

tumbling of the nuclear triangle), and a bending term:32-33,35

H rot = Hat + Hasym + Hcor + H bend (7)

Anticipating the use of locally adiabatic rotational functions, we form a

symmetric top free-rotor diabatic basis by taking products of normalized

symmetric top functions and normalized associated Legendre polynomials,

N JK(eOX) pK(cos y). These product basis functions are eigenfunctions of

H + Hbend (when Vbend' 0), for total angular momentum J with projection K on

the BF Z-axis. Diagonalization of the representation of H asym+ H corin the

free-rotor basis leads to eigenfunctions 9 J. that mix free-rotor functions

differing in K but not j:

+J
-JM J JK

= .N~ 0,~ (8)
I-. K=-J

The free internal rotor function $ are Legendre polynomials multiplied

by terms dependent on k, j, and J. 3 5  Asymptotically, the 6 are eigen-
functions of o and j n

fucton o Hrot' and 2d. are good quantum numbers. However, for
Vbend +0 the matrix representation of Vbend in the Jbasis must be

C., diagonalized. The equation

H tN(exY;s) wJ (s)PJ(ebxy;s) (9)
ro 1.1 J
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defines the hindered asymmetric top functions and energies. The adiabatic

hindered asymmetric top states are36

,,.7= Ig R(y;s) (10)

J191 K

where RJK(Y;s) are hindered internal rotor functions. The j andt values

no longer remain good quantum numbers, but are used to label the rotor states

at all values of s.

In the present study, analysis is restricted to collisions with total

angular momentum J-0. Thus, the orbital angular momentum has only the value

S-.j. Since M-K-0 for these collisions, the symmetric top functions are

independent of the orientation of the three-body triangle. Thus' the local

asyuuetric top function 9(41y;s) depends only on the bending angle Y, and

is proportional to R..(Y;s). It can therefore be represented as a simple
313

expansion over Legendre polynomials

R (y;s) = Cjj(s) Pj,(coa y) (11)

The total scattering wavefunction for input channel vtj can be

expanded as:

IF 'l(016aoy) = (rl/W r) fvj' t (a) Xvi (Qs) R j(Y;s) (12)

t v' 3't'

The coordinate dependent scale factor r /W r simplifies the coupled

equations. The factor n preserves Hermiticity37 , and the factor w-" equals

the scaled atom-molecule separation for large s. The expansion coefficients

f v(s), the translational wavefunctions (TW), measure the amplitude

'- I -. - -vj



10

p for occupying state v'j' . when the reaction was initiated in state v,j,Z.

H C. Solution of the Coupled Equations

Having defined the expansion of the wavefunction, the next step is to

numerically integrate a set of coupled differential equations for the Th. By

the usual separation of coordinates into translational s and internal

degrees of freedom, we can obtain the close-coupled equations for the

Sf (). The set of N simultaneous second-order differential equations

is solved by assuming that, within a small interval, the locally adiabatic

a., basis sets are independent of s; this eliminates from explicit consideration

the first-derivative term in the equations. The actual distortions of the

basis sets with s are included by suitable transformations at the boundaries

between adjacent intervals, or "sectors". Within one sector the coupledB
equations are

d2  3i - ivpf 9 ,, ,, (13)
2 ~v'j't'vjI v'jV~ v. v J1R"v

dev"J "9

where the coupling matrix D has elements
DJ -Aj vJVf,#
DVJ.vIJI t = 66' XvI> + [ E - (Ev+E,)/2

:-. (14)

vote that the couping matrix is diagonal in the rotational indices.

The solution of Eq. (13) via the R-matrix method38 , followed by the

determination of the scattering matrix and the TW can be viewed as a three-

'I., step procedure. First, one solves Eq. (13) as a boundary-value problem (R-

matrix method). Second, asymptotic boundary conditions are applied to define

the scattering matrix S. Finally, the local TW are constructed from the

correct asymptotic conditions defining the appropriate scattering states, by

.....:..... -.. -.- .- s...t/ .9.... .. .. 2... ....:.f........ .. -.. " - " . " " ' ' ' ' " .- ' " ' '. - "
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repeating the propagation with appropriate initial conditions using

propagators assembled and saved during the R-matrix integration. This

process is a new application of the R-matrix method to reactive scattering,

and details will be more fully presented in this and the following sections.

In discussing the method of solution of the coupled equations within

*) an arrangement channel (tube), we will focus on the even-j channels in the

reactant Q -tube. The s-tube is partitioned into two regions: one,

represented in polar coordinates, lies between s= (which locates the c-8

tube match surface ) and a cartesian (large-u) region that is separated from

the interior polar region by another match surface, the polar-cartesian

boundary (PC ). These two regions are further subdivided into small sectors

of width hi. Sector 1 lies between so (s-0) and Sl, sector 2 between sI and

2 . sector m between s_ and Im , with s m taken to be some sufficiently

large value of s. At the center of sector i, a unitary transformation of

:'W produces a diagonal energy-dependent eigenvalue matrix 2(i)(M:

iT(i)D(i)T(i) - 2(i) E (15)

The coupled equations in the new (adiabatic) representation can now be

written as 2N first-order equations

,.:':dd d ( )  = 2 (16)
W (i x2' 1  Q I(1) W

Ld ] [L J L
where the adiabatic TW, IL, are related to the "diabatic" TW, f, through the

!.* equation

M i* f(i)

* A Taylor series expansion of I on the LHS of sector i in terms of j on the

RS of the sector permits us to rewrite Eq. (16) as

.
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U) U) P )" (18)

L d LR
-) f u 38

The local propagators P are given by analytical formulas involving the

sector width h and the eigenvalues A p.

Continuity of the total wavefunction and its derivative along s

requires that at sector boundaries the adiabatic T! meet the following

conditions: (i-1) -(1-l)o0 U-l1i) T(i)_gWi = FZUi'D W.(i

- = = - (19)

'"dg(i-1)= (i'l)o(i'l1i)T(i)dg(i ) =F(i'l"i)dg(i)

.- -

The diabatic overlap 0 (i-l
'i) has elements generated from overlap integrals

involving the basis functions,

0 (vi-) -1) i) (') _ (20)

Although the adiabatic TW are uncoupled within each sector, they mix at the

sector boundaries.

Conservation of flux requires that the matrix product

. T(i-1)O(i-'i)T(i) connecting adjacent sectors be orthogonal; in practice 0

is not orthogonal, but it is still diagonally dominant. To insure the

required orthogonality, we use a Gram-Schmidt procedure at each sector

boundary. The combination of propagation across a sector with matching at

the sector boundary can be expressed as a matrix equation that integrates the

coupled equations from the RHS of sector i to the RHS of sector i-1:

- 1=1 =2

16A 1J L S-l
In addition to the sector matching requirements, there are three

additional matchings, in addition to the arrangement channel matching, that

L
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,40

need to be mentioned. As discussed elsewhere,40 at the boundary between the

polar and cartesian (asymptotic) regions, a transformation accounting for the

differences in coordinates must be performed. In addition, at s-0, the

F (0 '1 ) matrix connecting the reactant and product channel adiabatic TW is set

equal to I1) in order to initiate the propagation sequence at the LY-S of

reactant sector 1. (In our notation, the "zero" sector in the reactant

channel corresponds to sector I in the product channel). This means that we

begin with diabatic TW at the match surface, which facilitates application of

the matching conditions. The o(0 ,1 matrix connecting the diabatic TW at the

matching surface is neglected at this step, but is incorporated into the S-

"* matrix equations. The third matching is required to map the scattering

*' wavefunction onto the asymptotic channels, and is incorporated explicitly by

propagation to sufficiently large s such that all off-diagonal elements of D

vanish and the diagonal elements become independent of s; then g(m) = f(m)

Assembly of the local propagators and F matrices advances the

diabatic f at s-0 to the asymptotic f at s=sm This arrangement channel

.. propagator is formed by sequentially multiplying the F and P matrices:

Mr f
-= I (] (iJ(22)

df 0 j~=1 d

Although this accumulation of local propagators is straightforward, this

method suffers from numerical instabilities due to the closed channels that

* must be included in the basis. The R-matrix integration method can be used

to circumvent these problems, because it is inherently stable to the

.inclusion of closed channels.

-w - ... . . .. +- ._-...'. _ . . . " - . ... .. ,.: . .' : "-i": - - " / i . .
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3 The R-matrix propagation equations may be obtained by rearrangement

of the propagator equations3 8 into the form,

- Ms

The r(i) matrices contain matrix products of the P(i) and F(i-1 'i), and it is
-q =q

easy to show that r and r are symmetric, and that r 3  provided=1 = _ roie

F(il 'i) is orthogonal. Collecting the local r-matrices into an arrangement

channel R-matrix is accomplished not by successive matrix multiplications, as

with the propagator method, but by recursion formulas developed by Zvijac and

Light.4 1 The r(i) are accumulated for each sector beginning with sector I andL. =P

ending with sector m. At sector m we have obtained an arrangement channel R-

matrix that relates the TW f and their derivatives at s-0 and s-s

f 0 df(1)
1ds (24)

f()I df(m)ILi'
When these R-matrices are obtained for each arrangement channel, they are

combined with the appropriate asymptotic boundary conditions to allow

determination of the scattering matrix. For the initial channel vj, the

boundary conditions take the form:

f (vjS)-= k() [1kjs - vj " t -) (25)vj.. V v ! ht vi

For the inelastic channels, the appropriate form is

f. k(.)-,, s(-) I * k -I.) i )(6
;. v ( ) =" v'J v'J' hEkv'j's (26)

while for the reactive product channels the form is

=k(+)" ()h((+)
f vJ '(s)  - M h (k s) (27)v'j' V'J'

.
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The Riccati-Hankel functions have the asymptotic forms

(+ expli(k(±)s - £/2)1, k 2 ao
h) (kS) vj (28)
;. 2

I expt-Ik 'sI - Un r2) , kc <0

while the channel wavenumbers are expressed as

k ( -(+) - -- (29 )

tj (E - J,+. t(-

The superscripts (+) and (-) denote reactive and nonreactive scattering,

* respectively.

In summary, the coupled equations are integrated with the R-matrix

propagation technique to obtain an S-matrix. Then, a second propagation is

performed to obtain the desired TW by using local propagators saved during

" the initial integration. These TW are used in the analysis of the reacton

* dynamics discussed in the remaining sections of this paper and in II.
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i III. The Scattering Wavefunction

A. Translational Wavefunction Assembly

In this section we consider the propagation of the TW and assembly of

I the 3-D vavefunction at each step. To initiate propagation of the TW in the

asymptotic reactant or product regions, the correct initial amplitudes are

obtained by substituting the appropriate S-matrix elements into Eqs. (25)

through (27). With these initial conditiono, the propagation sequence in

-. Eq.(22) is used to generate the adiabatic TW at each s, using local

* .information saved at each s during the initial R-matrix integration. Eq.(17)

is then used to convert the adiabatic g into the diabatic f. For example, at

3' the mth sector we begin with the equation for the even-j I in the a -tube

(odd-j construction proceeds in an analogous manner):

. (rn-i) .F(m-lm)p1r,) F(m-1,)P(M)l ,g(M 1

I .:__ =RnL,(m)L ~ Frn~~m p~rnJ L JR(30)

which takes the adiabatic TW and derivatives in sector m and propagates them

to sector m-i, where they are transformed into the diabatic representation:

f (-1) _ T(--1) (M-i) f,(m-1) T('i) g,(M-1) (31)

Similarly, to calculate 1(m-2)and KI(m- 2) in sector (m-2) we simply relabel

Eq.(30) by changing the superscripts m-i to m-2 and m to m-i, substitute in

the &(m-l) and &!'(m-l) just obtained with Eq.(30), and perform the matrix

multiplication. Successive application of this procedure generates both the

adiabatic and diabatic TW throughout all arrangement tubes. If the numerical

r technique remains stable (remember, this is now an initial value method),

1(0) and ['(0) will satisfy the proper rotor-partitioning (bifurcation)

L'-
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conditions at sO.
24

In the present applications to F+H2  linear dependencies did arise in

the reactant tube in attempts to integrate large basis sets inward form large

values of -S. The source of the linear dependence of the columns of f are

the highly closed channels, with corresponding small asymptotic amplitudes

and large propagator elements. Due to the finite machine precision, the

matrix multiplications at each step introduce local errors that grow and

eventually make the value of f meaningless. Because of this, the vibrational

basis was limited to 10 states in these calculations, and the reactant tube

propagation was started at a modest value of -s. The R-matrix propagation

does not suffer from this problem, and for simply obtaining an S-matrix the

number of vibratonal states and the range of s need not be restricted.

For the results reported here, a 60 channel basis with 10 vibratonal

states and a rotor basis distributed 12/12/12/8/6/2/2/2/2 was employed. The

rotationally averaged results using this basis agree reasonably well with

results obtained using much larger basis sets, 23  and they are adequately

converged for the graphical analysis of the present work. In the actual

propagation, the even- and odd-j states are propagated separately.

Propagation in reactants is initiated at -l.6a0 ; at this value of s the

interaction matrix is essentially diagonal.

B. Assigning Quantum Numbers to the TW

One feature of the TW that we have not discussed is the labeling of

the rows of f and g by quantum number. Considering only J=O (Z=j), this

means associating quantum numbers vj with the elements of the TW. For the

diabatic TW, f, the assignment is straightforward; one simply takes the

assignment used in filling the interaction matrix D. If, for example, (D)n

corresponds to channel (vj), then (f) corresponds to fvj, since D retains
- °



D 3 the same row and column labeling at each s in all tubes. For the adiabatic

", the diagonalization of D in the R-matrix propagation results in an
p: . .

energetic ordering of the locally uncoupled 1. Thus, even asymptotically, it

is not immediately true that (C)m = (M)m, because the diagonal elements of D

are not in energetic order. Therefore, to assign quantum numbers to j, we

$" use information contained in the transformation matrix at the last sector,

T ) . This matrix contains only ones and zeros, where the relative position

of the ones identifies the vj label.

C. TW Phasing Techniques

Our early attempts at generating f produced inconsistently phased TW;

that is, from sector to sector an element (f)m might change sign many times

over a single wavelength. This arbitrary sign switching was due to the phase

- of the eigenvector matrix in sector i being independent of the phase ina
sector i-l; there was no translational phase coherence. To overcome this

difficulty, a phasing procedure previously employed to phase rotor

functions3 5 was used to phase the TW. Since the asymptotic phase of each

u eigenvector is arbitrary, we initially multiply each vector by +1 or -1 so

that the largest (in magnitude) component of the vector is positive. Then at

every subsequent step, we again require the largest component of the vector

to have the same sign as in the previous sector, multiplying the vector by -1

as necessary to achieve this. In phasing the rotor functions used in

* assembling the TW, a similar procedure is employed, but account is taken of

the asymptotic phasing of R. being not arbitrary, but by the fact that

R (y;s) P (y); thus the columns of the rotor eigenvectors are multiplied by

*-1 as necessary to achieve this. This phasing is not necessary during the R-

matrix propagation since all information on absolute phasing is lost in

* forming the rotor overlaps.

' L ', . - . ' -, -, . - . , ' , , " . ' ' . ." . , . -. . . .,,, , ,,= . ,,-,- ,,, .. t
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IV. Translational Wavefunction Analysis and Internal Enery Disposal

A. Diabatic Translational Wavefunctions

This section begins our analysis of the scattering wavefunction by

first examining the diabatic TW and then discussing several

quantities that illustrate the partitioning of internal energy among the

channels during the reaction. Recail that the TW amplitudes squared are

interpreted as local measures of the probability density for the individual

channels. The TW can reveal many detailed facets of the collision process

and they serve as a basis for understanding features of the full 3-D

wavefunction. Of the 60 channels in these calculations, we will present the

real part of f for j=0,2,4, and 6 in the three lowest vibrational levels for

each tube. However, we should mention that the TW amplitudes in the closed

vibrational levels do reach moderate magnitudes in the reaction zone,

although they rapidly decay as the system moves out of this region.

We first examine the a -tube TW, which are shown in Fig. 3(a-c) at

three total energies. For purposes of illustration, we have scaled the a -

tube TW f00  by 0.25 and f02 by 0.50. This scaling amplifies the contrast

between these two dominant channels and the rest of the reactant tube

functions. There are several characteristics common to the TW for all three

energies shown. With input flux in f00  and with IS0012 . 0.40, we expect

this channel to have the largest amplitude of all. This input channel

couples strongest with f0 2 and consequently f02 has the next largest average

amplitude. Within a given vibrational level in the a -tube, the TW tend to

decrease in magnitude as j increases, and as v increases from 0 to 2 the

amplitude of a given j level becomes smaller. Since only the J=0 and 2 states

are asymptotically open in reactants, the wavefunction will show interference
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effects caused by coupling in these two channels, the other T4 amplitudes

becoming vanishingly small.

The next region we will consider is the match surface between the

a and 8 tubes. The rotor bifurcation constraints 24 require that at s=0 the

a c-tube f split into the 8 -tube f" and fa j With fa~ fai and

f vj fvj+l + fvj* Comparing Figs. 3a, 3b, and 3c with 3d, 3e, and 3 f

respectively confirms that these conditions are satisfied. We do not present

8aany of the f +l functions because they appear nearly identical to the f .'
V.]l vi'

which are plotted in Fig.3. Because of the difference in axis scales between

* the a and 8 tube plots and because of the small size of some of the TW at

s-0, it is difficult to visually check the accuracy of the amplitude

partitioning; numerically the agreement is to one part in ten thousand. Note

*- that the phasing remains smooth across the s-O match surface.

U It is in the 8 -tube that we find dramatic evidence of the

..vibrational population inversion and rotational excitation of the HF product

* molecules. At the three energies studied here, all of the channels shown in

U Fig.6(d-f) are asymptotically open, so that at large H-HF separations the f
* - ~vj

wavelengths vary inversely with the channel translational wavenumber.

* Focusing on Fig. 3e for the resonance energy 0.36 eV, we can see how

dramatically the f00 amplitude declines from the very large value it has in

* reactants, so that by s=+l.5 a0 it is negligable. Similar comments hold for

, the other v-0 rotor states.

Examination of the v-1 manifold in Fig. 3e,we see the beginning of

the extensive rotational and vibrational excitation of the product HF

molecule. It is f16 that shows the largest excitation in this figure. The

lower rotors in this manifold build amplitude in the region between s-+0.5 and

s-+1.5, but begin to die out for larger s values. It should be remembered
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that all of these channels are energetically open in HF at these total

energies. An interesting f f and f 6 is that they suddenly

switch on at about s-O.5. From Fig. 3e we can see the population inversion

process occuring, and we can determine the FHH configurations where this

process begins to dominate the dynamics of the reaction.

Comparing the vj functions channel by channel in fig. 3(d-f) we

observe that the magnitudes of the TW for the 0.36 eV resonant energy (again

interpreted as measures of the probability density) are substantially larger

than those at 0.33 eV, while the j'=4 and 6 functions have nearly double the

amplitude of the corresponding 0.40 eV TW. Thus, from an analysis of the TW,

we have gained insight into the characteristics of the vibrational population

inversion process, and of the amplitude growth in v'-2 at the resonance

energy.

B. Vibrational and Rotational Energies in the Collision Complex

A very interesting aspect of chemical reactions concerns the disposal

of energy into the various available channels as the collision proceeds from

reactants to products. Of particular interest are quantities such as average

vibrational and rotational energies and entropies as functions of the

translational coordinate s. One method of calculating the average energies

is to operate on the total scattering wavefunction at each a; however, this

direct approach produces equations that are cumbersome.8 The complications of

this approach arise because of the curvature of the coordinates. As an

alternative approach, we recast the wavefunction of Eq.(12) in terms of

curvature free TW expansion coefficients that eliminate the ni scale factor:

o
= w r vtjt Rj,(y;s) (32)

.. . . .. . . . .. . . .
w r
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where

v"J"
The expansion of a single Ui mixes all of the diabatic fi functions with the

same rotational index, each weighted by the vibrationally averaged curvature

factor. The overlap of T with itself becomes

<v (s)12  (34)
Li vj > V I I

since the 3-D normalization of the vibrational functions requires

r2 dr 6vv (35)

• "The U(s) functions can be utilized to define the local normalized

.* iprobabilities Pvj(S)= IUvj(S)1 2 /rIUvj(S)I 2 where the channels are again

labeled by vj. This set of P .(s) allows us to obtain average values without

" explicitly operating on the wavefunction. Thus the average vibrational

energy is obtained from the expression

< "> = F 'v() Pv (s) (36)
vj

and the average rovibrational energy is obtained from

<E + E = E (S) + Wj(s) Pv(S) (37)

Figure 4 illustrates these quantities for total energies

0.33, 0.36, and 0.40 eV.

Looking first at the average vibrational energies in Fig. 4a, we

. notice that in the asymptotic reactant tube the average vibrational energy is

predominately in v-0, as expected since it is the only open vibrational

level. Approaching s-0, the average energies oscillate, with the frequency

increasing as the total energy increases. As the vibrational energies plunge

. ..,. . . . . . . .
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in energy just before sO, so do the average vibrational energies. However,

the average vibrational energy grows relative to the bottom of the potential

valley (the translational potential Vtr(s) has been added to the average

vibrational and rovibrational energies before plotting). Between s-0 and

s-+2.0, the oscillations in the average energies still reflect the mixing of

the upper vibrational levels, but in contrast to the reactant tube, at all

three energies the oscillating pattern is similar; one minimum occurs very

close to s-0, another minimum occurs at approximately s=+0.4, and a final

minimum occurs near s=+l.O. The amplitude of these oscillations is however

quite different for the three levels because of the increase in the v'=3

transition probability as the total energy rises from 0.33 to 0.40 eV. This

is why at 0.33 eV the asymptotic product average vibrational energy lies

- close to the v-2 energy level, while at 0.36 eV more v'-3 component mixes in,

, so that by 0.40 eV the contribution from v'-3 is sufficiently large that

(Ev > is approximately halfway between the v-2 and v-3 levels.

The average rovibrational energy plotted in Fig. 4b combines the

features contained in Fig. 4a with the effects of local rotational

excitation. These curves have a similar interpretation to those in Fig. 4-a,

with the rotational effects most evident in the reactant tube (due to the

mixing of the two open rotor states). An interesting feature of <Ev + E R>

excitation into the closed channels just prior to s-0, is indicative of the

quantum nature of this reaction. Here, <E v + ER> rises above the system

energy. The main contributor to the tunneling is < Ev . This is not
v

surprising since quantum effects dominate the collinear reaction as well.

'I
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C. Vibrational and Rotational Entropies in the Collision Complex

By studying the local entropies, we can gain a better understanding

of the distribution of probabilities and of the rovibrational disorder during

the reaction. The total entropy at location s (in units of Boltzman's

- constant, k) is defined by:

: ST(s) -: Pv(S) in .() (S)) (38)

vj
Two other entropies, the rotationally averaged vibrational entropy, <Sv> R'

and the vibrationally averaged rotational entropy, < SR> V require averaging

" the Pvj functions in the following manner:

(Sv>V = -P( Pj) Sn( vji: i: <S~v : v n v .
Figure 5 illustrates these three entropies at the energies

0.33, 0.36, and 0.40 eV. Since each type of entropy for these three energies

shows similar behavior, we will not consider their energy dependence, but

instead will emphasize the general. features of each entropy.

Looking first at <SV> R' we see that in asymptotic reactants there

* - is zero entropy because only v-0 is open. But as s-0 is approached, this

entropy rapidly grows and then falls off to a nonzero value for s>l.5. This

shows both the short-lived excitation in the transition state due to the
L.

participation in the scattering of asymptotically closed vibrational levels,

and the uncertainty of the final vibrational state of products. The nonzero

value at large product separation simply reflects the partitioning of amplitude

between v'-2 and v'-3. Considering next the <SR>v plot, we notice that in

reactants there is a small (compared to products) rotational entropy due to

mixing between j'=0 and j'-2. Note that just before 9-O the entropy curves

nearly reach zero. Referring back to Fig.3 , it can be seen that almost all

L~o
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the flux flows through the lowest (j'=O) adiabatic bending channel in this

region. However, due to the large number of available open rotational

channels in products, <SR V becomes quite large for s>l.0.

The ST curves contain features of both <SV> R and <SR> V: nonzero

entropy in reactants and products with the entropy in products greater than

in reactants, and a peak near s-O.

This concludes our analysis of the translational wavefunctions and

their associated average energies and entropies. We have focused attention

on the flow of amplitude through the individual channels as functons of both

the system energy and reaction coordinate.

D. Integrated Density vs Reaction Coordinate

We acquire an additional perspective on the collision process by

compressing information from the wavefunction probability density.

Integration of the total density within planes of constant s then allows

construction of an interesting plot of the integrated density as a function

of the translational coordinate s. The integrated density is defined by the

equation

I(s) ff T (nm;s) T(n.m;s) dndm (40)

The factor w appears in Eq. (40) to prevent the density from decaying asymp-

2-totically as 1/R . Fig.6, illustrates the s-dependence of the integrated

density for the energies 0.33, 0.36 and 0.40 eV. The oscillations in thp

densities are caused by interference between all locally open channels. The

frequency of the oscillations can be correlated to some degree with the fact

that available translational energy increases with increasing total energy.

The decrease in magnitude of the densities past about s-0.1 is a consequence
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of the considerable amount of nonreactive flux in this reaction. The

- resonant curve (the 0.36 eV density) reaches a maximum before s-0, and then

decreases as the system moves into the product region. Thus we might call

this v'-2 resonance an "entrance channel resonance". The vibrational

distributions have mostly settled down by sO.5, and only the rotational

populations show much change after this region of s.

U

I'.

[2.

* ° S*o ~
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V. Conclusions

The quantum dynamics of the three-dimensional F+H2 reaction has been

analyzed f or three total energies, and for total angular momentum J-0. The

energy 0.36 eV is of special significance, since this is close to the J-0

resonance energy for the process F+H (vmO)..H+HF(v'-2). The computational

methods used to obtain the scattering vavefunct ion required for the dynamical

analysis in the region of the collision complex have been presented. This

has been prefaced by a brief review of the coordinates, Hamiltonian, basis

sets, and boundary conditions used in the NCC approach to the reaction

dynamics.

In the dynamical analysis, emphasis vas placed on graphical methods

for illustrating the variation with s of the translational vavefunctions,

-* vibrotor energies, vibrational, rotational and total entropies, and the total

density in planes perpendicular to the reaction coordinate. We will briefly

summarize some of the results from this analysis. In Fig. 6 the

translational wavefunctions f (a) are shown for the j-0-6 rotational states

associated with the v-0-~2 vibrational manifolds. In the F+H2 reactant tube,

the translational wavefunction f 02 has an amplitude which is at most one half

of f. Near s-0, there is a small mount of excitation into the lower

%.rotational levels of the v-0 and I manifolds. In the H.HF product

arrangement, f 00 decays almost completely by s-+l.0 a0 , while amplitude

builds up in the j-n4-6 rotational levels of the v-n0 and I manifolds.

However, the most dramatic effect in the product region is the relatively

rapid buildup between si-0.5 and a-1.5 of amplitude in the j-4-6 rotational

levels of the v-2 manifold. This rotational excitation occurs on the final

part of the turn into the product valley (see Fig. 4).
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The oscillations seen in Fig. 7 of the average vibrational energy

<Ev> and the average rovibrational energy <E V + ER> as s goes from

reactants to products are associated with interference effects among the

vibrational channels. Of more interest than these average energies are thep
average and total entropies shown in Fig. 8. In reactants, the rotationally

averaged vibrational entropy is zero (only v-0 is populated), but the

vibrationally averaged rotational entropy is nonzero (j0-2 are populated).

Near s=0, the rotational entropy is lower than in reactants or products

because of the strong propensity for the lowest bending state of the complex.

In products, the vibrational entropy is about half the peak value in the

collision complex, because flux is leaking out of the temporarily excited

- virtual states (primarily) into the v-2 manifold. Also, the rotational

entropy in products is large (about twice the vibrational entropy), due to

the relatively diffuse rotational excitation through many rotational channels

(but primarily j-4-6).

The variation with s of the total wavefunction density, shown inU
Fig. 9, measures the net tendency of probability to accumulate at position s.

This quantity, I(s), is computed as an integral over a plane of constant s of

the local probability density. The most interesting features of this

*quantity are found to be: the oscillations in reactants due to interference

between incoming and outgoing waves, and the factor of 10-100 drop in I(s) on

*-.. turning the corner into the product valley. However, when comparing plots of

I(s) at the three energies considered in this paper, the region between

s--0.5 a0  (near the entrance channel barrier) and s-O is especially

significant. On resonance (0.36 eV), the density in this regon is about a

factor of two or more larger than for the other two energies, which lie above

and below the resonance energy. The resonance is associated with buildup of

L2
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amplitude between the entrance channel barrier and the turn into products;

thus it is termed an "entrance channel resonance".

In part II of this series30 , density and flux maps obtained from the

total scattering wavefunction will be shown in planes perpendicular to the

reaction coordinate and in planes for bent geometries (m>O) parallel to the

collinear plane. Emphasis will be placed on the behavior of these quantities

as the system goes through resonance.

i-°

.. .
°
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S FIGURE CAPTIONS

1. Natural collision coordinates for 3-D reactive scattering. Z and z
r r

are the components of the mass scaled F-H2 and HH relative separations

on the body-fixed Z-axis. Z and (not shown) are the components of

the corresponding product separations on the BF Z-axis. Nonlinear

geometries are measured with m; the m=0 plane is the collinear plane.

The reaction coordinate s is measured along the reference curve RC. In

the reactant and product Cartesian regions, planes of constant s lie

perpendicular to Zr and Zp, respectively, while in the polar region

constant a planes intersect the collinear plane on lines connecting the

turning center TC and the reactant or product Z-axes. The floating

origin 0 FO for r and y varies with s and is introduced to simplify

U terms in the rotational Hamiltonan. The TC is located at

(7.000, 2.579), and the radius of the circular reference curve is 1.563.

The cartesian-polar boundarier are at s--1.904 and s=+1.740 in reactants

and products, respectively. At large to moderate separations, y is the

geometric angle between the molecule and atom-molecule vectors.

2. Adiabatic energy correlation diagrams (energies in eV). (a) vibrational

energies Ev ; (b) vibrational energies plus the translational potential

Vtr ; (c) hindered asymmetric top energies W. for J-0; (d) the sum of

the translational potential, lowest vibrational energy, and top

ji energies.

-. -
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3. (a)-(f) The real part of the diabatic translational wavefunctions at the

total energies 0.33, 0.36, and 0.40 eV. Only four vibrotor TW in each

of the v=O,l and 2 manifolds for the 60 channel basis are shown.

(a)-(c) are reactant tube TW; (d)-(f) are product tube TW.

4. (a) The average vibrational energy and (b) the average rovibrational

energy. The average energy curves are shown with dots, and the

background curves are the vibrational energy levels.

5. Entropies as a function of s for the three system energies considered

(units are k, Boltzmann's constant).

6. A semi-log plot of the integrated s-plane wavefunction densities for the

total energies 0.33, 0.36, and 0.40 eV.
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ABSTRACT

Velocity-scattering angle intensity maps for the F+H2 (v-0,J-O) *

FH(v'-2,J')+H reaction are predicted from quantum mechanical Jz-conserving

calculations. The shift in the angular distribution from backscattering

at 1.8 kcal/mole to sideways scattering (intensity peak at 1000) at 3.0

kcal/mole is in quantitative agreement with recent high resolution crossed

molecular beam experiments.
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Quantum mechanical resonance structure in the collinear F+H 2 (v-0) -

PH(v'-2)+H reaction was predicted in 1973 and in the three-dimensional

.7. 2
reaction in 1979. In order to illustrate their results, Redmon and Wyatt

plotted the reaction probability surface for v-0 +)-v'-"2 reaction. This is

a surface of total probability for the reaction (v-0,J-O) + .(v'-2,Zj'),

plotted vs. total energy E and total angular momentum J (since J-0 in reac-

tants, J-9., where X is the atom-molecule relative orbital angular momentum;

I is related to the Impact parameter, ijvbmith). This reaction probability

surface is shown In Figure 1; as E is increased at each value of J, the

reaction probability suddenly increases, reaches a peak at the resonance

energy E r(J), and then declines onto a shoulder at higher energy. The

* "resonance ridge" of high reactivity moves to higher E as J increases.

(The J dependence of Er is remarkably well predicted by a new semiclassical
r3

model based upon resonant periodic orbits 3). Up to 0.35 eV, the reaction

probability declines monotonically with J. However, for ES~ 0.37 eV, the

peak reactivity is reached for a nonzero value of J (e.g., at 0.40 eV,

the peak reactivity occurs at about J-10). By way of contrast, the 0+ 3

reaction probability surface decreases monotonically with increasing J,

for E :9 0.50 eV. The purpose of this Letter is to show that these quantum

mechanical results also predict that the 04 2 differential reaction cross

section undergoes a dramatic change when the energy is increased from 0.35

to 0.40 eV.

In their 1979 crossed molecular beam studies of the F+H 2 reaction,

4Sparks et al. found results which are qualitatively consistent with the

quantum mechanical reaction probability surfaces. When the product in-

0 -. .... .: .: ,. - / ; .. .. :. . -; .. ; . .-. -. -- .; .; .# " -- .. ,,. . . . .
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tensity was plotted in terms of velocity-scattering angle intensity maps,

then at a mean relative collision energy of 2.0 kcal/mole, the product

molecules for v'-l, 2, and 3 were all scattered predominately in the

8 - 180* backward direction (i.e, back in the direction from which F

approached the H2 molecule.) However, when the mean collision energy

was increased slightly to 3.2 kcal/mole, the peak in the v'=2 product

distribution moved to a smaller angle - extensive sideways scattering occurred.

By way of contrast, the v'-l and 3 distributions remained primarily back-

scattered at the higher energy. On the basis of the reaction probability

surfaces, and the new quantum results reported here, we interpret the

shift to sideways scattering in the HF(v'-2) product distribution as a

direct manifestation of the quantum resonance.

Before presenting rettults for the F+H2 reaction, we will briefly

review the relevant theory 5 . In an atom-diatom collision at total angular

momentum 3, if we were following the close-coupling (CC) procedure, the

total scattering wavefunction would be expanded in products of local vibra-

tional and rotational basis functions. In our approach, the rotational

basis functions are hindered asymnetric top states , which are labeled by

the asymptotic quantum numbers j and Z. Here j is the rotational quantum

number of the diatom and 9. denotes the atom-molecule relative (orbital)

angular momentum quantum number. The triangle inequality limits the range

of allowed values for Z: IJ-Jl _5 k< J+j (parity selection rules further

limit the number of L's in this interval). Except for very low energies,

the number of vibration-rotation channels (vj2) in a close-coupling cal-

culation at energy E and total angular momentum J is so huge that we are

L..
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prevented from obtaining "exact" solutions of the CC equations. For this

reason, we are forced to use a channel reduction scheme to cut the total

number of channels down to a workable level. In our version of the Jz-con-

8* serving approximation , which was used in all calculations for J> 0, we use

only one asymmetric top function in the wavefunction expansion for each

value of J and J. This special value of Z (denoted L) is selected auto-

matically 8 such that these asymmetric top states produce a maximum concen-

tration of amplitude for near-collinear geometries in the collision com-

plex. The procedure is called "J -conserving" because the asymmetric

top states which are used always concentrate amplitude in the FHH K-O

bending states (K is the angular momentum quantum number for twist about

the z-axis of the complex). Solution of the reduced set of CC equations

then leads to S-matrix elements (amplitudes for outgoing waves) which are

labeled S
VlabLedjL ' or since we are interested here in reactions initiated

from the ground state of H2 (v-O,J-0), we will use a shortened notation for

the S-matrix elements: (where L is determined uniquely by J and J).

Once the S-matrix elements have been computed, we can use them to

construct both differential and total reaction cross sections. The

differential reaction cross section is computed from the helicity amplitude:
.

h v(e;E) = (4'k) - lZ (2j+l) J(e)SvJL(E), (1)vj o 3=0

where k is the reactant channel translational wavenumber (E = I2k2/2r,
0trans o rt

Ur - mA(mB+mC)/(mA4B+ImC)), and where PF(B) is a normalized Legendre polynomial.

The angle e is defined so that 8- 180* corresponds to "backscattering" of FH

in the direction from which F approached the H2 molecule. The differential

reaction cross section is then
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a (e;E) = lh (8;E)1 2 . (2)

vj (e ) vj(2

Finally, the total reaction cross section is given by

Savj (E) I f sinedO J"d qvj (eE)
vj 0

. (2 J+l) ISJ_12. (3)

0

The S-matrix elements are complex numbers whose magnitude and phase enters
the computation of a. (8;E), while only magnitudes enter the total cross

-j

section. ;Equation (3) is the same one that we previously used to obtain

2total cross sections from the S-matrix

The Jz -conserving calculations 9 were performed at two total energies

(measured from the bottom of the F+H2 entrance valley; Etrans - E-0.27 eV),

0.35 and 0.40 eV, which correspond to relative collision energies of 1.8 and

3.0 kcal/mole, respectively. At each energy, Jz-conserving calculations were

n performed for each value of J between 0 and 18. The basis sets always em-

ployed 10 vibrational manifolds, with the following rotor distributions:

16/14/12/12/6/2/2/2/2/2, 0.35 eV;

18/18/18/16/14/12/6/4/2/2, 0.40 eV.

This notation means that a total of 16 hindered rotor states were used

in the v- 0 manifold at 0.35 eV, etc. In spite of the fact that a larger

basis was used at the higher energy (110 channels, vs. 70 at the lower

r energy), the results at 0.40 eV are less converged than at 0.35 eV. Parti-

cularly for J > 10, the S-matrices are not fully converged with respect

to shift-ing rotor basis functions from one manifold to another. In spite

!'.

. • .
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pi of this, we believe that the results presented here have at least "semi-

quantitative" validity.

C. It was mentioned earlier that the helicity amplitude (and hence the

differential cross section) depends upon both mangitudes and phases of

individual S-matrix elements. Lack of convergence in the S-matrix elements

(particularly the phases) can lead to artificial wiggles in the computed

differential cross sections. In order to avoid artificial oscillations in

the cross sections, we carefully examined the "smoothness" of both the

magnitudes and phases of all S-matrix elements, at both energies. Plots

were made of i I L1 vs. J at each value of j for v-2. In addition, if
Jv L

* denotes the phase of an S-matrix element, plots were made of andvj L 1vjLJ+l
JiL - vjL) vs. J (again, for each j at each E). In some cases (usually

higher J values), magnitudes and phases were adjusted "by eye" to produce

smooth looking plots. In spite of the somewhat subjective character in

this procedure, we felt that it compensated to some extent for convergence

errors in the S-matrices.

The differential cross sections for the F+H2 (v=0,J-0) -0 FH(v'-2,J')+H

reaction at 0.35 and 0.40 eV are shown in Figures 2 and 3, respectively.

The results are shown as intensities I(V,O) on velocity-angle maps, where

"velocity" refers to the recoil speed of FH and H in the v'j' final channel,

and where "angle" refers to the reactive scattering angle e in Eqs. (1) and

(2). A contour map, with cross-hatched maxima, is shown in the left panel

of each figure, and a more dramatic perspective plot (viewed from the

"forward" direction) is shown in the right panel. Of course, only specific

final speeds (radii) corresponding to v'j'=(2,O), (2,1), ... are possible,
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but the contour and perspective routines automatically fill in other values

to make continuous functions for plotting. Looking first at Figure 2, the

intensity is clearly peaked at 6 - 180* (backscattering), and the dominant

rotor distribution is for JV'=4-5. There is a smooth, monotonic decline in

I(V,8) as e moves to the forward direction; practically no intensity is

found in the forward hemisphere. Turning now to Figure 3, we note the

dramatic qualitative change in the intensity. The intensity has now shifted

so that it now peaks at 8 - 100, a full 80* off the backward direction, with

I(V, 100-)/I(V, 180*) - 2. In addition, the rotor distribution peaks at J'-3;

the cross-hatched peaks lie at slightly smaller radii (speeds) than the outer

limiting circle (corresponding to v'-2, J'-O). (The rotational distribution

peaks at higher j' values for calculations withother basis sets; this point

5B is under investigation). Also apparent in Figure 3 is the small backward

peak at 8 = 1800; unlike the major peak near 0 = 100, the height of this

, peak is particularly sensitive to phases of the S-matrix elements. At this

3 point, we cannot say definitively that there is really a small ripple in

I(V,8) in the backward direction. We are much more confident in claiming

that the large peak near 100* is a reflection of the dynamics and the under-

lying potential surface.

The sideways shift in the v'-2 quantum mechanical product intensity

map is in agreement with intensity maps from crossed molecular beam experi-

ments. In recent high resolution F+H2 experiments 1 0 (which came several years

-.after the 1979 results that were reported in ref. 4) in which the most probable

collision energy was 3.1 kcal/mole, with a FWHM of only 0.04 kcal/mole, the

product intensity for v'-2 peaked at about 100 °, with a most probable rota-

tional quantum number of about J'-7. In addition, the v'-2 intensity near

100 ° is about a factor of 1.7 higher than in the backward direction. Al-

..•-t .-: •.-. " , ' "-" - " _ o= , --', ,• " . •: " ,"_ .; i L
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though our current calculations underestimate the extent of rotational exci-

tation in the v'-2 manifold, the shift of the intensity peak as the colli-

sion energy is increased from 2 to 3 kcal/mole is in quantitative agreement

with the high resolution beam results!

Comparisons of these results withother theoretical predictions are of

interest. First, quasiclassical trajectory calculations on the Muckerman V

potential surface, even at a ccilision energy of 5 kcal/mole, fail to predict

11
sideways scattering of the HF(v-2) molecules . Classical mechanics com-

pletely misses the sideways shift in the v'-2 intensity that occurs between

0.35 and 0.40 eV! Turning to quantum calculations, OS calculations1 2 have

been performed at selected energies between 0.31 and 0.50 eV on the Muckerman

V potential surface. The v-2 differential reaction cross section at 0.36 eV

is backpeaked, but shows a slight shoulder between 80* and 120 ° . When the energy

is increased to 0.423 eV, the differential reaction cross section has about the same

values at 85* and 180 ° , but is 10% lower at 140, and declines rapidly for 0 e 700.

At 0.50 eV, there is a slight sideways peak at e - 40°; the height at 400 is

40% higher than at 180*. There is clearly a trend toward sideways scattering

at higher energies in the lOS results, but the extent of the angular shift

between 0.35 and 0.40 eV that appears in both the Jz-conserving calculations,

and in the experimental results, is not quantitatively predicted. This is

probably due to an mportant difference between the Jz -conserving and the

OS reaction probabilities; in the Jz-conserving case, for E Z 0.37 eV, the

peak reaction probability in v'-2 occurs for J > 0 (resonance ridge in Figure 1),

while the IOS calculations predict flat reaction probabilities between J-0 and

Jmax (Jmax - 10 at 0.423 eV). Another approximate quantum procedure for gen-

13
erating differential cross sections has recently been proposed . S-matrix

---- . - -- .; ---.- .: .- . . -i ." ? -- -
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elements for v-*v' collinear reactions were used (at shifted energies to

account for both centrifugal effects and the bending energy of the complex)

* in Eq. (2) to generate "rotationally summed" cross sections. In going from

Etran s - 1.0 up to 2.9 kcal/mole, a0.*2 shifts from backpeaked to sidepeaked,

with a maximum near 165*. In addition, the ratio a0.2(165*)/.0 ,2(180*) is

about 2.5 at the higher energy. in this model, the 0-2 reaction probability,

when plotted vs. 3, peaks at J-12 at 2.9 kcal/mole, but monotonically declines

from its value of 3-0 at the lower energy. These trends are in qualitative

agreement with our Jz-conserving results. Finally, IWBA differential reac-

14
,-C, tion cross sections have been computed at several total energies between

0.31 and 0.57 eV. Comparing results at 0.37 eV and 0.57 eV, the peak in

ao.*2 moves forward from 1800 to 1100. Again, we see a trend to sidepeaking,

but neither the onset nor the extent of sideways scattering is as abrupt as

in both the Jz-conserving results and the experimental beam results.

In summary, from quantum mechanical calculations within the Jz-conserving

approximation, product intensity maps have been generated for the F+H2 (v-0,J-0)+

UFH(v'-2,j')+H three-dimensional reaction. The extent of the sideways shift in

the angular distribution is in quantitative agreement with recent high reso-

lution crossed molecular beam results. We believe that this sideways shift

is a directmanifestation of a quantum mechanical resonance in the FHH colli-

sion complex. The nature of this resonanc& (including scattering wavefunction

density and flux maps in the transition state region, entropy and vibrotational

energy analysis along the reaction coordinate, Argand diagrams showing the

energy dependence of selected S-matrix elements, phase shift analysis, time-

delays computed from the energy derivatives of the S-matrix phases, and a

, %kinematic model for the sideways shift in the angular distribution) is explored

in more detail elsewhere
15

L2
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Figure Captions

1. Quantum mechanical reaction probability surface for the F+H(v-O,
J-0) * FH(v'-2,Zj')+H reaction (adapted from -ef. 2). J is the same as
1, the atom-molecule orbital angular momentum quantum number. ETOT is the
total energy, measured from the bottom of the entrance valley.

2. Product intensity for v'-2 in velocity-scattering angle variables.2
The energy is 0.35 eV (the total v-0 0 v'2 reaction cross section is 1.2a .
The left panel shows a contour map of the intensity, with cross hatched
maxima. The right panel shows a perspective view of the intensity, viewed
from 45* off the forward direction.

3. Product intensity for v'-2 in velocity-scattering angle coordinates.
The energy is 0.40 eV. At this energy, the total v-0 - v'-2 cross section
is 2.5a . See the caption to Figure 2 for further details.

0
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The quenodcigoflcrnclyectdNab i rttp o

"" electronic-to-vibrational energy transfer in molecular collisions. This

N process has been widely studied both experimentally I - and

The theoretical interpretation of the quenching process
-" 2B

has focused upon the states of A' symmetry; the lowest state has a2

well and exhibits an avoided crossing with the ground state surface.

Previous dynamical studies indicate that these two electronic states can

6,1
qualitatively describe the quenching process.6 10 A quantitative

description of this process requires accurate ab initio potential energy

surfaces for the electronic states of importance and the nonadiabatic

coupling terms between these electronic states. Ab initio calculations of

the 2A" states have been made;7-9 however, the nonadiabatic coupling terms

have not been reported.

Recently a diatomics-in-molecules (DIN) potential energy surface has

been presented for the three lowest-energy potential energy surfaces of

NaH 10,11 The two lowest-energy surfaces agree well with the work of

7,9
Botschwina and Meyer. A major advantage to using the DIM formalism is

that it provides a global representation of the potential energy surfaces

and the couplings between the surfaces.

There has been a large amount of work on developing methods for the

quantum mechanical treatment of electronic transitions in atom-molecule

12-17 12collisions. The early work of Zinmermann and George compared the

use of diabatic and adiabatic representations. In the adiabatic

representation coupling between different electronic states introduces

first-derivative t'erms in the coupled-channel equations. Zimermann and

George solved the adiabatic coupled-channel equations by transforming the

N second-order differential equations into a set of 2N first-order
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differential equations. Baers approach1 3 to the problem sought to obtain

P coupled channel equations that could be solved using the efficient

computational algorithms developed for second-order differential

equations. In his approach a transforration is made from the adiabatic

Urepresentation to a diabat~c representation in which all coupling arises

through off diagonal elements of the potential matrix. This approach has

been applied to collinear atom-diatomic collisions but is limited to

systems in which only two electronic states are important. More recently

'-: este 14

Rebentrost and Lester have used a similar diabatic transformation to

treat the nonreactive F + H2 problem in three dimensions.

The previous quantum mechanical calculation on Na + H2 by McGuire and

Bellum6 used the two lowest-energy adiabatic potential energy surfaces as

an approximation to the diagonal diabatic potential energy surfaces. The

off-diagonal terms of the diabatic potential were modelled as gaussian

terms centered on the location of the minimum of the energy difference on

- the crossing seam. Cross sections were caluclated within the Infinite-

Order-Sudden (lOS) approximation;1 8 however, the integral over the OS

angle was approximated using only the 90 degree approach of the Na to the

H2 molecule.

In the present calculation we describe a new method for calculating

electronic transition cross sections using adiabatic potential energy

surfaces and the nonadiabatic coupling terms as input. In this approach

we use a mixed adiabatic-diabatic representation in which the motion in

the diatomic internuclear distance is treated diabatically and the motion

in the Na to center-of-mass of H2 distance is treated adiabatically. Ie

use the 1OS approxi=ation and converge the calculations with respect to

the numerical integral over IOS angles.
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In section II we present the details of the new theoretical method

and in section III we present details of the computational procedure.

Section IV contains results of the calculations and section V presents a

discussion.

II. Theory

We consider the collision of an atom A with a diatomic molecule BC,

where R is the distance from A to the center of mass of BC, r is the BC

internuclear distance, and y is the angle between the R and r vectors.
.19

Within the IOS approximation the total Hamiltonian is given by
1 9

"IHJh 2  , 2 +I) 2 92 I+
HO -HJ +m (1)10 S TU_ TR R + -- ,----+ Hn

where p is the reduced mass for the R motion. The Hamiltonian for the

internal motion is given by

h2 D2" h2J (j + l ) ()

H! " r7 r + -- B + H (2)
mnt rFr 1BCr el

where IBC is the reduced mass for the r motion. The Born-Oppenheimer

electronically adiabatic wavefunctions are eigenfunctions of the

electronic Hamiltonian Hel

4 H aA(xrRy) aA .yDiaA (3)
Hel @n - Ry = n (,y) n (,Ry)(3)

Swhere x is the collection of electronic coordinates and Vna(r,R,y) is the

electronically adiabatic potential energy surface for electronic state n.

Within the IOS formalism the internal and orbital angular momenta, j and

., are constants and are not coupled with the electronic angular momenta.
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The total wavefunction for an initial state a0 is expanded in

eigenfunctions of the internal Hamiltonian

'I4l(x~r,R,y) R- 4=xrRy)X RY 4

where

Hj lpbx,r,R,y) =EJ(R,-y) j~(X.rRjy) (5)mnt a aa-

The wavefunctions for the internal degrees of freedom (x and r) are

obtained as follows. For a fixed R and y a transformation is made to a

representation which is P-diabatic17 with respect to the r motion

dA daA4nm(X,Rgy) = udA,(rRY) (xrRy) (6)
n n

This transformation is defined by

yjun.(r,R.,y) = . u t (,R,y) (7Unnln nn '  nr R ' Y  nn,( RY (7)

where

f aA(R)aA 
( 8n n O (qR L I ( r .R , Y ) > (y f )

nfl''. -. 8r ,(xi .Ry X

and the subscript on the matrix element denotes the variables integrated

over. The internal wavefunctions , (x,r,R,y) are expanded in this P-

diabatic basis

tD N. r, R,y) r- -. dA( R)R,(9

-,nx,r,R,y) pr(r) CI (R,y) (9)
nv nvt
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where P (r) is a vibrational basis function. Substituting (9) into (5)

and closing from the left with f dx f dr r2 r-  dA (x,Ry) p*(r)
n V

yields the eigenvalue equation

.H(R.y) CJ(R,y) =-(R.-y) EJ(R,y) (10)

where the matrix elements of the internal Hamiltonian are 2iven by

Hi (R9y) = r 1*(r) h2  3
2

nvn V r 2 BCr 6nn

+ V (r,R,y) Pv}(r) (11)

and the potential matrix V dA is given bynn

dA T aAV (r,R,y) =u(r,R,y) V (r,R,y) u(r,R,y) (12)

The close coupling equations for a fixed y are given by

f dxfr..[j g  
- E] T(xr,R,y) 0 (13)

Substituting equations (1) and (4) into (13) gives

f h2 2 + h (Z (+l)

Lr FJ Ry - .C, (R, y) X2*(R,y) =0 (4

• i al a"

The coupling terns are defined by

FJ(~) <1j,(x~r.R.y) L i~~rR'' (15)

B-R x

C,(R,y) =< ,(x,r,R,y) I x I (×,r,R,y) >xr (16)

S- - _, S



_ ,- -, , . . ... - . , . . . . . ., . , , ,. .. - . . . - . . . . . . . . . . . _--
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Using equation (9) these can be rewritten as

ci. vn n ,'' n'v,~
Jo n v,(Ry)= (R,y) [FJ ,Rgy) C3, (R,y)

+ 6nn C Cnv~(R,y) (17)

where

dA dA a ~dA_F (Ry) =< on (xRpy) J j ,(x.R,y) >(18)

and

GJFA j (R,y) [ GdA (Ry) C+ v,( R(R,y)Ot a nvnnvvan nna

'JaRy + 2 Fd  1) " c (R'y) (19)nn' T Cn'veRY +nn -' n nv,a

where

dA <dA 2_ dGd  (Ry) = ( nx.R a 'O dA (x,R,y) >x (20),'-nn "n n -

The radial wavefunctions Xo (R,y) are subject to the standard

boundary conditions
19

o (R,y) IR-o = 0 (21)

and

SJz (Ry) --- > k - exp -(kR

" Xo R (y') e xp  i (kR - 2R2)(

0

where the asyrmptotic wavenuber is defined by

2u = [E - (R,y) (R23



|~ ~ 1-- -T 7 .--

7

Opacity functions can be defined for each value of j and

-" fdysiny (Y) 12 (24)

Qa 0  aa0 Q

and the total cross section for transition from initial state j, to final

statea 0 summed over all final j's is9

0j PJE(25)

0 J:t=2 0

III. Calculational details

A. Vibrational basis functions

The vibrational basis functions are chosen to be eigenfunctions of

the asymptotic diatomic Hamiltonian. For the Na + H2 system, all of the

electronic states considered Porrelate asymptotically with H2 in its

ground electronic state. Within the DIM formalism, all electronic

coupling vanishes for Na infinitely separated from H2 and therefore the

asymptotic diatomic Hamiltonian is simply that for a vibrating, rotating

diatomic molecule. The vibrational basis function are defined by

S: 2  92  2j(j+l). + VB(r) Pv(r) = pvEv(r) (26)

+ UBrBC

where VBC(r) is the asymptotic BC vibrational potential. The basis

functions are expanded in a harmonic oscillator basis, {hk(r)},

SOv(r) = hk(r) akv
k

All integrals over r are done by Gauss-Hermite quadrature; both for the
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integrals necessary to define Pv(r) and the integrals necessary in

computing 4J,(,r,R,Y). The numerical values of the vibrational basis

functions are. stored on the grid of quadrature points (r to be used in
m M=1

subsequent numerical integrals.

B. P-diabatic transformation

Equation (7) for the transformation matrix u is solved by the Magnus

method.17 The transformation matrix is only needed at the Gaussian

quadrature points and we approximate it as follows

Ry) = exp (r - rm aA [(rm+ur )R. 11(rRy) (2S)

The choice of u at the first grid point is arbitrary and the final results

of the calculations are independent of this choice. The exponential of a

matrix is evaluated by the method of ref. 20.

C. R-matrix propagation

Equation (14) is not solved directly for the radial wavefunctions,

instead we use the R-matrix propagation method 2 1 to obtain a global R

matrix for relating the radial wavefunction and its derivative a large R

values. The S matrix is then obtained from the R matrix. The method for

treating electronic transitions within the R-matrix propagation method

when the input is in an adiabatic representation has been previously

presented. 17 In brief review, the internal basis functions-A. xr,R,y) are

chosen to be independent of the radial coordinate R within each sector.

Propagation across a sector can be easily expressed in terms of the

eigenvalues of the internal iamiltonian, E'(a,'Y). The coupling between the

internal states arises at the sector boundaries in transforming from the

internal basis functions in one sector to those in the adjacent sector.

It is the defintion of this sector transformation matrix which is the most
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difficult aspect of applying the R-matrix propagation method.

The transformation matrix from sector i to sector i+l is defined by

i ~ (x, rRlLy) >x ~ (29)+I7)_A (x,r.Rc ) C a,(x,r,RC  ,Y x,r

where Rc1 is the center of sector i. It has been shown that this can be

approximated by

T (Y) exp (H R1 ) F [(RlC + Rc'),] (30),., "C'Caa C C

where F(R,y) is defined in eq. (17). We use an alternate method to obtain
'.f,i+l(Y-
T'+ (Y) Substituting eq. (9) into eq.(30)

T'() S' CJ (R i y) fdr p*(r fdx ,dA (x, r,R j Y)
TaI vii' nv,a C' j V -nvn v J

dA i+1 i (+ 1
C(x,r, y) pv,(r) C, (R ,y) (31)

dA
However, the P-diabatic basis functions (bn (x,R,y) are, by definition,

independent of r. Using this fact and substituting eq. (6) we obtain

(Y)= CJv, (R',y) Umn (r,RC. Y) Trm ,  (r,y)

''i+l C. 'Ri+l ,

U ,n,(r,R,y) C (32)mn C )n'vc C

Since the l.h.s. of eq. (32) is independent of r we can choose any value

for r in the r.h.s. of this equation. We use eq. (32) where we

approximate the overlap of the adiabatic electronic state between sectors

by

< +aAxr ]._, -A i+l

n (r.y) = < n _rRC,) >  (33)

n n .......... n . ,



T (r~~y) exp )(R i1 
- R ) F' ,[ r,.!(Ri R i+1),y]()

nn c C nc (4
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Figure Captions

S1. Potential energy contours for the three lowest adiabatic potential

energy surfaces V aA(r,RS) of NaH 2 ; parts (a), (b), and (c) are fir

n = 1, 2, and 3, respectively. The energy contours are plotted as a

- function of the H2 internuclear distance r and the distance from Na

to the center of mass of H2 R, for a fixed angle, = 90 degrees.

The contours are evenly spaced at 0.2eV.

2. Adiabatic potential energy curves Vn aA(r,R,6) and diabatic potential

energy curves V dA(r,R,'&) for NaH2. The curves are plotted as a
nm 2

function of the H 2 distance r for fixed Na-to-H2 distance R and for

fixed angle 75 degrees. The diabatic potential curves are

defined by eq. (12) and are diabatic only in the r motion. For parts

(a) and (d) R = 3a0 , for parts (b) and (e) R = 4a0 , and for parts (c)

* and (M) R = 5a0 . Parts (a) - (c) show the three lowest adiabatic

curves (solid lines) and the three diagonal diabatic potential curves

(dashed lines). Parts Cd) - CM) show the off-diagonal diabatic

potential coupling curves: 1,2 (solid); 1,3 (short dashed); and 2,3

(long dashed).

1o
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Fiture Capt ions

1. Potential energy contours for the three lowest adiabatic potential

energy surfaces V naA(r,R,6) of NaH2 ; parts (a), (b), and (c) are for

r: n - 1, 2, and 3, respectively. The energy contours are plotted as a

function of the R2 internuclear distance r and the distance from Na

to the center of mass of R2 R, for a fixed angle, t - 90 degrees.

The contours are evenly spaced at 0.2eV.

2. Adiabatic potential energy curves Vn aA(r,R,) and diabatic potential

energy curves Vn dA(r,R,&) for Nail2 . The curves are plotted as a

function of the H2 distance r for fixed Na-to-H2 distance I and for

fixed angle I - 75 degrees. The diabatic potential curves are

defined by eq. (12) and are diabatic only in the r motion. For parts

(a) and (d) R - 3a0 , for parts (b) and (e) R - 4a0 , and for parts (c)

and (f) I - 5a0 . Parts (a) - (c) show the three lowest adiabatic

curves (solid lines) and the three diagonal diabatic potential curves

(dashed lines). Parts (d) - (f) show the off-diagonal diabatic

potential coupling curves: 1,2 (solid); 1,3 (short dashed); and 2,3

(long dashed).
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APPENDIX D

An Iterative Approach to Reactive Scattering



AN ITERATIVE APPROACH TO REACTIVE SCATTERING

-" This appendix presents the results of research to extend the iterative-

variational method1 ,2 to reactive atom-molecule collisions. The rationale for

Uthis work is the following:

0 The standard reactive scattering methods limited in the number of coupled
equations they can handle (<200), thus limiting accurate close-coupling
treatments to nearly thermoneutral reactions involving hydrogen
abstraction.

0 The standard reaction coordinate methods are limited by the use of mass-
weighted coordinates, and hence are difficult to apply to small skew-
angle systems. This comment does not apply to so-called hyperspherical
coordinate schemes, although the limitation to systems of the order of
100-200 channels does.

0 The standard close-coupling theory (using Cartesian coordinates) contains
nonlocal potentials to account for rearrangement. These nonlocal
potentials arise in the same manner regardless of whether the exchange
involves electrons or nuclei.

0 S Iterative methods have been very successful in treating nonlocal
potentials that arise in electron scattering theory. A similar iterative
method has also been successful in solving large (>500) sets of coupled
equations for inelastic atom-molecule scattering.

These observations suggest that an iterative method might form the basis

for a theoretical approach to reactive scattering that can be applied to a much

wider class of problems than can refinements of current reaction-coordinate

methods. The rest of this section presents a discussion of our preliminary

research in this area.

B.l INELASTIC SCATTERING

This section describes unpublished extensions to the iterative method as

it applies to inelastic scattering. Consider an atom A colliding with a target

molecule BC, with the Hamiltonian (refer to Figurp 1)

H - + V(R,r,y) ()
2u R 2m r +VRry



where the coordinates r and R correspond to the BC internuclear vector and the

vector from A to the BC center-of-mass, respectively. y is the angle subtended

by R and r . The reduced masses are given by

M m (2)
mB+mC

and

='.mA mB c
m(m A+mB +mC)

H is more convenient when the potential is partitioned into a term

corresponding to the BC molecule and an interaction term

VBC = irm V(R,r,y) (4)

so that the moleculear and total Hamiltonians are

BC r BCV +

'A 2

,-2u R DR2B2nH= . 2  + Xi2 +HBC Vint (7)

where L(R) is the orbitrl angular momentum operator. We now seek solutions

for a specific total angular momentum of the form

N
"C f (1)

E Xi R
i =1

where i-{n,j,9., and f={n',j',.'}. X, are chosen to be eigenfunctions of H
BO

and of total and orbital angular momentum.
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A variational principle is used t.- ;btiin the coupled equations

1 = dR f*(H-E) Tf (9a)

=fdR t' U r Ui f  + fdR I, Ui  W (R) U (9b)

IT1 . R U.W R) U 10rk,=f dR 2u rit Uif f ZR Uif Wi(R Ujf -4 lif [if a

W"(R) = U [ii + (BC E)] 

dR+ J di nt Xj (10)

The best solution, the one that leaves I stationary with respect to arbitrary

variations in Uif (endpoints held fixed), is given by the solutions to the

differential equations

Ut(R) = WiJ (R) U(R) (11)

which can be solved by a large variety of numerical methods, provided the

Ur number of coupled equations is limited to less than approximately 200. We

proceed now to cast these equations into a set of algebraic equations, to

dramatically increase the number of equations that can be simultaneously

solved. We introduce a basis for the radial functions, i.e.

N
g

U. (R) = f t(.) Ci (12)

The variation principle then leads to a set of algebraic equations for the

L- - -.,.,: -. - .--" -"-"- -- " -v " -v . " . .. ' '.' ., -. -' .- ."-" . , . ,. ,.. .., : : '' -.,. -,-: '' '". " -., 7'

' :"g " "' 7 :' " " " ? " ' " "a " ? v - .. . . . . ..' 
: .

" = i • . . . . .. . . ., ,



4

coefficients C i. By virtue of equation (9c) the basis functions bi, need only

belong to the class of continuous functions and need not have continuous first

derivatives; i.e. the basis may be peicewise analytic. This last observation

suggests that the finite element method3 can be used to advantage in solving

these equations. We divide the range of R into a grid { R1 < R2 <...< RN) and

choose the i such that

* (0 R S R 1

Oit(R)= 1 R = Ra (13)

0o R R+ 1

With this choice C = Uif(R). Holding the endpoints fixed, the variation

principle gives the NcX(Ng-2) algebraic equations

Nc Ng

,I:~ij B C = 0 a = 2,3, .-. Ng-1 (14)

where

=fdR ~ f i dR 4w (15)

=i'j f wia *Jo *j *ia wii is

K is a symmetric, banded supermatrix (Figure 2) because of our definition

of the in Eq. (13). Each block labeled by (a,$) is of dimensions NcxNc .

Since the solution must be regular at the origin, we know that Cil = 0.Ciig

For any choice of CiN these equations may then be solved.
g

It is important to stress that it is the banded symmetric form of K that

makes this approach attractive. All data may be processed sequentially, thus

avoiding the heavy use of direct access 1/O that characterizes the previous

implementation of the iterative method. Therefore, even when K is too large to

fit in core, the solution of Eq. (14) is of comparable effort to a single

'; ",: ° " " _ " ' ' ' ' . ." " ""_ " " " "I ' _" " " -.... , , , , , , Z. . .,L. . .. , . .-. , . . . . . ,,."-"... "- - ..... ,; - ..
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numerical integration of Eq. (11).

Additional attractive properties of this approach are I) there are no

V stability problems, even for solutions beginning with incorrect boundary

conditions at Uif RN and 2) vith a judicious choice of *(R), as discussed
g

below, the number of grid points N can be considerably reduced over the number

required for standard numerical integration. Thus this approach shares a

desirable trait of the more popular invarient-mmbedding methods in molecular

scattering theory4

The CiN are, of course, not known in advance. However, they can be

expressed in terms of the others

CiN = Uf(R ) = C* 6 C (16)
g g

where

E: k-i exp [i (k.RN -( 

7

! N 2 (17a)

V. .

6z (- E)I i ~1

The S-matrix elements can be expressed as

s = +(1) (&)~ it U d (8

uhere

W =o + ,

X = ? WOX (20)

and

X =(R N j " C iso (21)
x 

- .i .
ill
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Substituting Eq.(18) and Eq.(21) into Eq.(16) leads to

BiN= xif(RN (22)

j=1 3=1
where

B EE.IX. W . ( dr, + 6 (23)
0943i 2 r,

2  i ISigS j

Eqs.(14) and (22) together result in a set of N CX(N -1) equations for Ncx(N -1)

unknowns

= •(24)

where

.,J N = g x((R) (25)

and K' has the structure shown in Fig. 3.

Eq.(24) can in principle be solved directly for Sif in a noniterative

fashion. However, such a solution is unrealistic for large N because Eq.(22)

destroys the banded symmetric nature of K. Therefore, we introduce the

following iterative procedure: Let

O K' = K ,+K' (26)'

where K is banded symmetric and .s zero everywhere except in the last

block of rows (iN ). Let

KGI -e (27a)

and
e (27b)

Let
. di  (28)

i=l

We choose the di by minimizing

I' * jK' ,, - J2 (29)

p-,.;, ,, .. ,-.,', -..,- ." .. - - - .... - .... -,,.%r...-.t' - ', , :,., % ,"."..,- ,.. ..\. ."., \ , -".S...'' .'; ,,
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subject to the renormalization constraint

This leads to

d, =-- (31)
Z d
i

where

d, z Wj (32)
ij j ~3

AKj * (3)
h.;"i

* = K ( - - ) (3k)

~ Equations (27) through (34) are iterated until convergence is achieved.

An excellent choice of basis functions * is obtained by using

eigenfunctions of the equations

0"()= 2 1  W11 (R) 0 C(R) (35)

These equations are solved and the integrals, Eq.(15), are evaluated

numerically by a suitable quadrature. With this choice, our basis functions

always have the correct local behavior, thus improving convergence, and go to

the proper asymptotic limit when

Uii = 0 i*j (36)

This means that at long range the grid spacings may be much larger than the

local wavelength, and that may be kept relatively small, even in the

presence of coulomb interactions.
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B.2 REACTIVE SCATTERING

We now consider an extension of the iterative method described above to

three-atom rearrangements A + BC - AB + C but exclude breakup A + BC A +B +C

since we are still limited by Lippmann-Schwinger boundary conditions. We

V, expand our solutions as5

"" N c

T~ ~ (JM =EXi1(r tR a) OUIBf (3)

a=a,bc i=1 RO

where the arrangements a,b, and c are shown in Fig. 4. The radial functions

have the boundary conditions

Limn U (R) = 6 6 - 6 (38)
$4Ro a M if aB x1 F i ai S

Again, we expand in a peicewise analytic basis, $ai

N

S a(a) C (39)

Variation of the C will lead to the set of equations

Ki'jp c p = 0 o = 2,3, .. N -1 (40)

We use integral expressions for the S-natrix elements to provide an additional

equation for each arrangement channel. The resulting algebraic equations will

be solved iteratively as in Eqs. (27)-(34).

The method discussed for inelastic scattering in the previous section can

be taken over without alteration to the reactive case. There are differences

in application, however, that will now be considered.

First, the matrix elements K loBJP will now form a supermatrix of

supermatrices, the block structure being shown in Fig. 5. The diagonal blocks
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with a= 8 contain identical integrals to the inelastic case in Eq.(15). The

elements of the off-diagonal blocks are more complex, involving overlaps of the

nonorthogonal functions X (r.R,) and X.j(rBRO)  These blocks are not

banded, since the functions$ aQo(R.) will in general have nonzef'o overlaps with

functions for other arrangements. The off-diagonal blocks are obviously the

ri. exchange interactions and are matrix elements of the nonlocal exchange

" kernals5 . The associated expressions for the S-matrix elements are

* consequently more complex than Eqs.(18)-(21).

In addition, the matrix K' of Eq.(26) no longer consists simply of the

boundary condition Eq.(22). Since K' is no longer banded, KO can be chosen by

constructing parallel lines to the diagonal as indicated by the dashed lines in

Fig. 5. The bandwidth can be chosen consistent with the speed and size of the

computer being used. K° will include everything inside the band. KI willU. _

include everything outside the band in addition to the rows coming from the

boundary conditions Eq.(22). It is this aspect of K' which simultaneously

includes the boundary value problem of inelastic scattering and the nonlocal

potential problem of rearrangement scattering that allows its treatment within

a single iterative procedure. Although is more complicated in the reactive

case, the iterative procedure still retains its sequential processing property.

This is extremely important for the development of a computationally tractable

method on the new generation of supercomputers, with their enormous fast-core
memories and core-like (fast) online storage, and vector processors. These

extremely large and fast machines will enable an iterative sequential-access

procedure such as discussed here to handle thousands of coupled equations,

which, particularly with decoupling techniques, will open up a large number of

processes to theoretical investigation that are beyond the consideration of any

existing method.
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FIGURE CAPTIONS

1. Coordinate system for three-atom nonreactive scattering. The origin of

is the center-of-mass of the BC molecule.

2. Schematic representation of the banded supermatrix K.

3. Schematic representation of the matrix K
1.

4. Coordinate system appropriate for rearrangement scattering. The center-

of-mass of each diatomic fragment is the origin of the corresponding

vector to the colliding atom in that channel.

5. Schematic representation of the supermatrix occuring in the extension of

the iterative method to reactive scattering. Each diagonal block is

identical to the corresponding block of the inelastic case. The inelastic

KI block is replaced by the region inside the heavy dashed diagonal lines

and outside the banded region, and is chosen as appropriate for the

problem at hand and the available computer resources.
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