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equations. A version of the method incorporating finite element
techniques has been programmed and prelimirary testing has begun
on HF-HF relf-relaxation. The current code needs refinement and is
presently not programmed to allow for reaction. It is anticipated
that this approach will allow treatment of several thousand coupled
equations on the new generation of supercomputers.

Applications of these numerical methods are being made to several
molecular systems, including rollisions of atomic sodium, oxygen and
fluorine with molecular hydrogen. gular distributions have been
obtained for the fluorine-hydrog eaction., Quenching probabilities
for sodium by hydrogen are providing information on electronic to

vibrational energy transfer. Analysis of reactive scattering wavefunctions

provides amethod for analyzing energy flow during a chemical reaction.
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- I. _STATEMENT OF WORK
F
v Conduct a theoretical research program to develop quantum mechanical
:ﬁ methods for studying nonadisbatic effects in three-dimensional atom-molecule
(™
interactive collisions.
s
ﬁﬁ
- I1. TECHNICAL DISCUSSION
ii The traditional role of theory in chemistry has been to develop models
fj that help to correlate large amounts of experimental data. However, because
L.
of the difficulty in obtaining state-to-state data on many systems, there is
!! growving interest in wusing the computational methods of ab initio theoretical
fm chemistry to predict kinetic data. Due to the increase in sophistication and
2
b accuracy of the computational methods available for calculating potential
oo surfaces and obtaining dynamical information, theoretical studies specifically
i designed to predict kinetic data are appéaring.l
s
i: Many areas of military technology are affected by the new developments in
&
. both experimental and theoretical kinetics. The collisional mechanisms of
gE importance in chemical lasers include the conversion of vibrational energy
s into rotational energy (V-RT), conversion of rotational energy into
E translational energy (R-RT), exchange of vibrational energy (V-V),
CJ'

intramolecular conversion of rotational energy into vibrational energy (R-V),
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translational to internal energy conversion (T-RV), and the conversion of
electronic energy to vibrational, rotational, and translational energy (E-
VRT). Also of importance is the transfer of electronic energy from one species
to another. For example, the transfer of electronic energy from OZ(IA) to
atomic and molecular iodine is important in iodine lasers. In interhalogen
lasers such as IF the production of electronically excited IF from F, Iz, and
Oz(lA) is poorly understood.

In the area of plume technology, an important problem is the prediction of
the radiant intensity of rocket exhaust plumes in the upper atmosphere. These
plume signatures are driven by collisional excitation of exhaust gas molecules
by ambient atmospheric species, and standard models that predict plume
radiation require state-to-state cross sections for collisional excitationz as
input. The necessary cross-sections potentially involve all of the'energetic
processes which are also of importance in chemical lasers. Theoretical
methods provide a cost effective and timely means of obtaining data of this
type. For systems which are inaccessible to current experimental techniques,
theoretical methods provide a complementary tool to the experimental
determination of kinetic data.

The dynamical method most widely used for studies of complex systems is
the quasiclassical trajectory method.3 However, many phenomena cannot be
accurately described by a classical approach, and quantal methods are
required. Present quantum theoretical methods for obtaining transition
probabilities are difficult to apply to problems such as the vibrational
excitation of HF (or even H,) because of the large number of internal states

that must be included to converge the calculations.a

There have been several
exact close-coupling calculations reported for inelastic collisions involving

light three-atom systems at relatively low energies, mostly involving rigid-
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rotor models, but ex 2zt close~coupling studies of bimolecular reactions have

been limited to H+H,. Because of the importance of obtaining quantum
mechanical results for collision processes, approximate decoupling methods

have been developed.s’6

Besides greatly enlarging the scope of inelastic
quantum mechanical calculations to include vibrational excitation processes,
implementation of decoupling methods is allowing three dimensional reactive

scattering calculations for systems more complex and of greater interest than

One area of current research that has received considerable attention is
the development of methods for including electronic degrees of freedom in
scattering calculations.8 The usual difficulties of the coupled channel
approach are magnified not only because of the many more states introduced,
but due to complicated angular momentum coupling schemes not present in
studies on a single adiabatic electronic surface. Thus there are few
instances where actual applications to three dimensional atom-molecule systems
have been made. Progress in this aresa will involve improvements in techniques
for treating the large pumber of equations involved, particularly for reactive
systems, where the further complicstions of difficult coordinate systems
appear.

This report summarizes the progress at Chemical Dynamics to extend the
quantum mechanical spproach to molecular dynamics to systems of greater
complexity than previously possible. The emphasis is on obtaining detailed
information on vibrational and rotational nonadiabatic processes in atom-
molecule reactions, and in developing methods for including electronic degrees

of freedom in three-dimensional quantum scattering theory.
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III. RESEARCH OBJECTIVES

The overall objectives of this research program are as follows:

® Extend current technology to treat the nonreactive, electromically
nonadiabatic collisions of an atom with a diatomic molecule. This
involves the development of a code for incorporating the
appropriate electronic basis sets and decoupling schemes.

® Investigate decoupling approximations suitable for studying
vibronic transitioms. Such processes are very important in
understanding the physical processes occurring in many areas of
technology.

® Develop strategies for incorporating electronic angular momentum in
molecular collisions.

@ Conduct computational applications to the systems O+H, and Na+H,,
and other systems appropriate for the development of the
computational methods. The calculations will involve both
nonreactive and reactive studies.

@ Continue the development of quantum scattering codes to enable more
systems of chemical relevance to be amenable to study by quantum
mechanical means. This development is an important component of
research at Chemical Dynamics, where a major goal is the
development of state-of-the-art methods capable of providing the
best theoretical data for problems of current interest in chemical
kinetics,

In addition to progress in computational techniquan, the goals of this
program involve furthering our understanding of fundamental processes in
molecular collisions, such as resonance phenomena and energy pathways. Recent
developments in quantum chemistry permit the calculation of accurate potential
energy surfaces for both ground and excited molecular states, and provide new

justification for the search for more powerful methods for studying dynamical

processes.
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1V. RESEARCH ACCOMPLISHMENTS

b

During this eighteen month research program, there has been progress in

several areas. These include the development of a computational method for
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analyzing three-dimensional reactive scattering wavefunctions as a function of

"

reaction path and for generating wavefunctions of sufficient accuracy to permit
oy the computation of angular distributions for direct comparison with experiment.

Applications to the F+Hl, reaction are providing new insight into energy disposal
I during exothermic reactions and into the nature of resonance phenomena (see
) Appendix A). The quantal angular distributions show features that appear in
- experimental data, and that are not predicted by classical theoretical methods

(see Appendix B). Preliminary close-coupling probabilities have been obtained

—————
e
g
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for this reaction for J>0. These results are presently not sufficiently

converged, even with the 180 channels so far included, but there is encouraging

agreement between these results and the Jz-conserving probabilities that have

oo
witat ey

formed the basis for our previous studies of this system. We should point out

that these results, obtained under AFOSR sponsorship, are by far the most

%

sophisticated quantum mechanical studies of chemical reactions to date.

Previous work on this contract included the development of techniques for

T
PR

treating electronic transitions in molecular collisions using both adiabatic and

EE diabatic representations.9 These new methods have been applied to the problem of
w3 the quenching of the resonance state of potassium by hydrogen and muonium.g’lo
e Muonium (Mu) is an electron-muon pair which behaves as a 1light isotope of
f hydrogen. Because of the extremely light mass of muonium (one-ninth that of
B hydrogen) the validity of the Born-Oppenheimer adiabatic separation of nuclear
Eé and electronic motion has been queltioned.ll The comparison of cross sections

for the quenching of K by H and Mu has given insight into the applicability of

- the Born-Oppenheimer approximation in systems containing Mu.
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Work is currently in progress to examine the rich resonance features in

this relatively simple atom-atom collision. Plots of the cross sections versus
translational energy for the K + Mu collision show sharp peaks which are
attributed to shape type resonances at low translational energies. This
characterization of the low energy resonances has been confirmed by showing that
the energies at which the resonances occur correspond to quasibound states of
the effective potential for the first excited electronic state of KMu. Similar
resonance features are expected for the KH system; however, these resonances are
expected to be much more narrow because of the heavier mass of hydrogen.
Resonances provide a very detailed probe of the potential energy surface.
Comparisons of calculations of‘these types with spectroscopic observations of
the resonance states of the "bound" molecule can provided information about the
potential curves in regions previously undefined by tools such as RKR analysis.

An improved Diatomics-in-Molecules (DIM) representation for the lowest
electronic surfaces of Na+tH, has been obtained for wuse in scattering
calculations.12’13 These surfaces are being used in our current dynamical
studies of this system (see Appendix C).

Significant improvements have been made in the iterative-variational
method for heavy particle scattering (see Appendix D).14 These include the use
of finite-element techniques for greatly reducing the amount of 1/0 required by
the previous implementation, and the development of a scheme for allowing for
chemical reaction through an efficient implementation of Miller’s exchange-
kernal fornalism.15'16 To date, development of an inelastic code has been
star;cd, with the implementation of the finite element method complete.
Implementation of an initial iterative scheme has been completed, a‘d testing on
the prﬁblcn of HF-HF self-relaxation begun but not fini. ... 18 development

vas suspended due to lack of funds. However, we feel that this approach holds

--------------------
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promise for significantly expanding the number of channels that can be included

in quantum scattering calculations and warrants further development. It is, in

our opinion, the approach most likely to succeed in overcoming the limitation of

AR, . AN

~5
¥ e coupled-channel methods imposed by the mass-dependence of many molecular
! - systems, particularly those with small skew-angles in standard reaction
E “ coordinate theories. The current reaction coordinate methods are intractable
E Eé@ for molecular systems involving masses other than hydrogen, except in a few

cases where decoupling approximations work to an acceptable degree. This
computational method, installed on one of the new generation of supercomputers,
could open new horizons for accurate computation. With their very large
memories and, more importantly for the present application, very rapid and large
mass storage, these computers will possess the capacity to apply such algorithms
to scattering problems on the order of thousands of channels. This will enable
the accurate methods of quantum scattering theory to be applied to situations

that are presently tractable only to classical methods.
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V. RESEARCH IN PROGRESS
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During this program, computational applications to several important

collision collision problems, including studies of nonadiabatic processes in

&
[
o
™
!
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Na+H2 collisions have been initiated. These calculations incorporate the

® Infinite-Order Sudden (IOS) approximation and a new approach to including

| electronic coupling. This method allows the economical study of electronic-to-
vibrational energy processes by eliminating the explicit treatment of rotational

—_ degrees of freedom.

Reactive calculations on 0(3P)+H2 are in progress, and, when sufficient

-% computer time is available, converged cross sections will be obtained. This

system is of interest because of the previous classical trajectory and
transition state theory treatments, the availability of a reasonable ab-initio
surface, and the existence of experimental rate data. The present three-
. dimensional treatment is tractable because of the relatively small
endothermicity of the system and the presence of hydrogen atoms in both reagent
and product molecules.
ll Work is also continuing on the problem of obtaining converged close-

coupling probabilities for the F+H2 reaction. This is an importanmt problem, for
e these probabilities are necessary to fully evaluate the reliability of the
%7 decoupling methods that are essential for obtaining complete cross sections. As
. of the present time, we have made close-coupling calculations for J = 2 that

involve approximately 180 coupled channels. The basis of rotor functions has

been varied among the lower vibrational states to study convergence. The
; . results compare reasonably well with the converged Jz-conserving calculations at

low energies. The latter include up to 140 channels. The total probability for

the process F+H,(v=0,j=0) -> H+FH(v=2,5j) is 0.39 in the J -conserving

V.

calculation compared with 0.43 in the close-coupling calculation. The close-
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coupling result is still unconverged. We are presently in the process of
rewriting the scattering code, using a new partitioning of the Hamiltonian, to
allow many more channels to be included so that the close-coupling calculations

can be converged at least for small J.
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The following scientists were supported on this contract:

M.J. Redmon
B.C. Garrett
L.D. Thomas
The following scientist supported in part by the prior phase of this
research program received a degree during the period of this comntract:
J.F. McNutt Ph.D. Univ. of Texas at Austin, 1981

Thesis: Quantum Dynamics of the Three-Dimensional F+RH reaction:
Wavefunction Analysis and Energy Distribution in the Transition State
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VIII. INTERACTIONS

A. MEETINGS

The following meetings were attended, providing valuable interaction with
other scientists and DoD personnel:

Austin Conference on Theoretical Chemistry, March 1981 (M.J. Redmon and
B.C. Garrett)
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12th ICPEAC, Gatlinburg, July 1981 (B.C. Garrett)

Gordon Conference on Atomic and Molecular Collisions, Plymouth, N.H.,
July 1981 (B.C. Garrett).

. AFOSR Dynamics Contractors Meeting, Albuquerque, October 1981 (M.J.
. " Redmon)

ii DoD Plume Visibility Workshop, Huntsville, November 1981 (M.J. Redmon)

v AFRPL/AFSD Plume Technology Workshop, Los Angeles, February 1982 (M.J.
P Redmon)

!l American Chemical Society Annual Meeting, Las Vegas, Nevada, March 1982
; (L.D. Thomas)

"l Symposium on Theoretical Aspects of Gas Phase Kinetics, University of
Reading, England, March 1982 (B.C. Garrett)

&
' Faraday Disussions on Van der Waals Molecules, Oxford, England, April

1982 (B.C. Garrett)

) Workshop on the fundamentals of initiation of chemical decomposition of

o energetic materials, Chester, Maryland, May 1982 (B.C. Garrett)

e
American Chemical Society Meeting, Kansas City, Missouri, September 1982

R (B.C. Garrett)
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B. SUPPORT OF OTHER DOD PROGRAMS

The techniques investigated under the current program have application to many
areas of DoD intereat involving gas-phase chemistry. We have recently
received support form the Rocket Propulsion Laboratory at Edwards Air Force
Base to study collisional excitation of various high-altitude exhaust gas
species by atomic oxygen. The quantum scattering calculations will be
performed with methods developed under the current program. The computer
codes developed under the current contract are to our knowledge the only
existent codes capable of performing these cslculations.

We have also submitted a proposal to perform a theoretical study of
rotational relaxation in HF-HF collisions, a subject of enormous practical
importance to the Air Force HF laser program. This study would involve
application of the iterative-variational method in a close~coupling mode for
the low-lying v=1 states decaying to the v=0 manifold, with decoupling applied
to higher states. There is excellent experimental data available for the low-
lying transitions, allowing s validation of the theoretical methods for low
v,j states that could then be extrapolated to high v,j states. This
extrapolation could provide reliable data for the prediction of pdrasitic

lasing processes that can limit the scaling of high-power lasers.
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% & Analysis is presented of the quantum dynamics of the three-dimensional F+H, +

FH+H reaction for total angular momentum J=0. First, the method (coordinates,

o Il Hamiltonian, basis sets, close-coupling method, and boundary conditions) of

7o) solving the Schrodinger equation is reviewed, with emphasis on numerical

v construction of the scattering wavefunction in the region of the collision

ARG complex. Then, four types of analysis of the collision complex are presented:

2 (1) translational wavefunctions for the dynamically significant channels, (2)

f vibration-rotation energy partitioning, (3) vibration-rotation entropies, (4)
£t variation with position along the reaztion coordinate of the total scattering

I~ wavefunction density. Emphasis is placed upon variations in these quantities

. . as the system passes through a quantum resonance (near total energy 0.36 eV).

v In part II of this series, the total scattering wavefunction density and flux

~ T are analyzed in the region of the collision complex.
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Three-dimensional studies of this reaction are necessary to provide a

realistic basis for comparison with experiment. Quantum studies using the

ﬁ Bornll, distorted-wave Bornlz-la, and infinite-order-sudden!?17 approxi-~
'l mations have generated energy-dependent cross sections and relative
= probabilities for forming HF products in v°j" states. Coupled channel
q ;; studies (within the J,-conserving approximation) have been presented by
d Redmon and Wyatt.18'24 Reaction probability surfaces P(E,J) were obtained in
) ;g these calculations for populating v'=2 and v =3 from Hzin its ground state
.. (v=0,j=0). These probability surfaces were summed over final rotational
;; states, and plotted as functions of total angular momentum J and total
i system energy E. The v'=2 surface has a maximum near 0.36 eV (for j=0, hence
N a8 classical impact parameter of b=0 for j=0). For fixed E below this energy,
l i‘ P(E,J) shows & monotonic decrease with increasing J. However, at energies
i only slightly above 0.36 eV, a maximum appears in the probability cuts at
E? non-zero J. This maximum appears at increasing values of J as the value of E
Il increases. The locus of these probability maxima forms a three-dimensional
e "resonance ridge" on the probability surface.?l 1In contrast, the v=0 v’=l
g; and v=0 v“=3 reaction probability surfaces show slow post-threshold growth
- with maximum reactivity at J=0 for all energies studied (up to 0.5 eV). The
ﬁi shapes of the curves for higher J are similar, but the threshold energies are
; shifted to higher E. Recently, Bowman, Lee and Ju developed a method for
Ei generating three-dimensional probabilities for this reaction from collinear
quantum probabilities.25 These approximate probabilities show features in
o good agreement with the explicit three-dimensional calculations, and in
;2 particular, the presence of the resonance ridge for the v’ =2 surface. This
= feature is completely absent in results obtained within a classical

;E' framework.
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Analysis is presented of the quantum dynamics of the three-dimensional F+H, +
FH+H reaction for total angular momentum J=0. First, the method (coordinates,
Hamiltonian, basis sets, close-coupling method, and boundary conditions) of
solving the Schrodinger equation is reviewed, with emphasis on numerical
construction of the scattering wavefunction in the region of the collision
complex. Then, four types of analysis of the collision complex are presented:
(1) translational wavefunctions for the dynamically significant channels, (2)
vibration-rotation energy partitioning, (3) vibration-rotation entropies, (4)
variation with position along the reaction coordinate of the total scattering
wavefunction density. Emphasis is placed wupon variations in these quantities
as the system passes through a quantum resonance (near total energy 0.36 eV).
In part II of this series, the total scattering wavefunction density and flux
are analyzed in the region of the collision complex.
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I. INTRODUCTION

During recent years, interest in state-to—-state processes involved in
elementary chemical reactions has continued to expand, and many new and
informative results have appeared. The reaction F+H2(v,j) FH(v",j")+H has
been the reaction of greatest experimental and theoretical effort, primarily
because it is a simple reaction with numerous dynamical features that can be
studied with reasonable accu:mcy.l'3 On the theoretical side, quasiclassical
trajectory studies on a variety of potential energy surfaces have generated a

vealth of dynamical information.2’3

Quantum collinear calculations show a
number of striking features not predicted by the classical results.4® The
quantum v=0 v“=2 reaction probability curve exhibits a sharp resonance peak
(0.01 eV half-width) slightly above the threshold for reaction, while the v=0
v’=3 probability curve exhibits slow but monotonic growth after threshold.
7,8

Subsequent collinear studies substantiate and extend these studies, in

particular to investigations of the effect of variations in the topology of
the potential energy surface on the calculated resonance features.9

In a study of the collinear reaction, we graphically displayed the
scattering wavefunction, nodal patterns, the scattering probability density,
and the flux distribution as functions of the reaction coordinate.8 In that
study, we showed that wells in the adiabatic vibrational correlation curves
and the completness of the vibrational basis dramatically influence the
resonance shape. Recently, Walker and Hayeslo have shown that the v=0 v’ =2
collinear resonance can be destroyed by removing the entrance channel
potential barrier (0.05 eV on the Muckermann surface V). These results
illustrate the importance of potential surface features on these resonance
effects, and provide a measure of the accuracy desired in ab initio potential

energy surfaces,




i' Three-dimensional studies of this reaction are necessary to provide a
2 realistic basis for comparison with experiment. Quantum studies wusing the
ﬁ? Bornll, distorted-wave Bornlz-la, and infinite-order-suddenl5-17 approxi-
) mations have generated energy-dependent <cross sections and relative
b probabilities for forming HF products in v j° states. Coupled channel
tﬁ studies (within the Jz-consetving approximation) have been presented by

Redmon and Wyatt.ls'za Reaction probability surfaces P(E,J) were obtained in

these calculations for populating v'=2 and v =3 from Hzin its ground state

SR —
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(v=0,j=0). These probability surfaces were summed over final rotational
ﬂ; states, and plotted as functions of total angular momentum J and total
v system energy E. The v'=2 surface has a maximum near 0.36 eV (for j=0, hence
. a classical impact parameter of b=0 for j=0). For fixed E below this energy,
ii P(E,J) shows a monotonic decrease with increasing J. However, at energies
only slightly above 0.36 eV, a maximum appears in the probability cuts at
non-zero J. This maximum appears at increasing values of J as the value of E
Il increases. The locus of these probability maxima forms a three-dimensional

"resonance ridge" on the probability surface.?!

In contrast, the v=0 v’=]
- and v=0 v“=3 reaction probability surfaces show slow post-threshold growth

with maximum reactivity at J=0 for all energies studied (up to 0.5 eV). The

f? shapes of the curves for higher J are similar, but the threshold energies are

shifted to higher E, Recently, Bowman, Lee and Ju developed a method for
Ef generating three-dimensional probabilities for this reaction from collinear
: quantum probabilities.25 These approximate probabilities show features in
’ good agreement with the explicit three-dimensional calculations, and in
;2 particular, the presence of the resonance ridge for the v’=2 surface. This

feature is completely absent in results obtained within a classical

e framework.
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New results from crossed molecular beam experiments carried out at
Berkeley,26 when displayed on polar velocity-angle maps, support the
resonance interpretation of the quantum mechanical calculations. At a
center-of-mass energy near 0.08 eV, the product intensity for v°=1,2,3
maximizes at O =T (in the direction of the incoming Fluorine atom).
However, when the relative energy is increased to 0.12 eV, the v =2 intensity
maximizes near 0 = 100°, while the v°=1,3 components remain predominately
backscattered. This sideways peaking corresponds to nonzero impact parameter
collisions, and directly correlates with the quantum mechanical prediction
that a resonance ridge forms for J>0 when the collision energy exceeds about
0.1 ev.

Differen- ial reaction cross sections computed from three-dimensional
reactive scattering in the J,-conserving approximation agree very well27 with
recent high-~resolution beam data.28 However, both the quantum mechanical and
experimental results are quite different than the predictions of classical
trajectory calculations.2? Classically, the v=0 v°=2 differential reaction
cross section remains backwards peaked, even up to 0.5 eV total energy.

30

The work presented in this and the following paper (11) provides

the first detailed analysis of the three-dimensional F+H2 reaction in the

_; transition state region. In addition to asymptotic information such as
éz reaction probabilities and cross sections, we examine the total scattering
2 wavefunction and quantities calculated with this wavefunction, as a function
F;! of the reaction coordinate. In the present paper, by examining average
%i vibrational and rotational energies, we follow the partitioning of the
é; available energy as the system proceeds from reactants to products. To gain

additional insight into the population inversion and resonance phenomena, we

present in II an analysis of the scattering wavefunction probability density

SR
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and flux at three total energies: 0.33, 0.36, and 0.40 eV.

In the following section we discuss the coordinates, Hamiltonian, and
the numerical solution of the coupled equations. In section III, we discuss
the method used to construct the three-dimensional scattering wavefunction.
In section IV, the methods used to analyze internal energy disposal are
presented, and in the final section the insights gained into the fundamental
processes that dominate the dynamics of this important reaction are

summarized.
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I1. Formulation of the Reactive Scattering Problem

A. Coordinates
For atom-diatom reactions at subdissociative energies there are three
arrangement channels which lead to separated A+BC (channel @), AC+B (product
channelB ), or AB+C (product channely). After removing the center-of-mass
motion, two mass-scaled relative separation vectors describe the three-atom
configuration in each arrangement channel; for example, in the g-channel:

=1 \
R, = ¢ (rc - (Mara+Mbrb)/(Ma+Mb);

1)
% (

r
¢

Sy (Tp = T )i oy = (g fugy,
Similar expressions apply to the other two arrangement charnels. In these
coordinates a single reduced mass
po= MMM /(M _+M M ) (2)
applies to all three arrangement channels. We now introduce a body-fixed
frame, in each arrangement channel ) , with axes oriented relative to the
space-fixed axes with three Euler angles (BA,¢X,XA). The BF frame is chosen
so that the BF Z-axis is parallel to ROl for large reactant separations, but
changes smoothly during the course of the reaction so that it is parallel to
--RB for the product configuration channel § . This reorientation of the BF
axes is accomplished with a switching angle a(s) whose value depends upon the
extent of the reaction as measured by the reaction coordinate s. 1In order to
specify the instantaneous size and shape of the nuclear triangle within the

q.31-33

BF frame, natural <collision coordinates (NCC) are use The

translational coordinate s varies from ~® to +® as the reaction progresses.
In planes of constant s perpendicular to a reference curve (RC), usually
taken to be a circular arc in the reaction zone, p and Y Trepresent

geieralized vibrational and bending motion. Asymptotically, 0 and Y

N PR - . - . -4' . .“ . ‘- -. - .. . . T ~>' -‘ ) -- ’ . P . .A " . R
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" correspond to simple diatomic molecule vibration and rotation. Fig. 1l

) illustrates the NCC for the a and 8 channels, and shows a plane of constant

A s.

ll Another useful set of orthogonal internal coordinates, (2,z,m), is
constructed in the following manner. By forcing the BF X-axis to be

! perpendicular to the nuclear plane,'?a and R have BF components (o,x!,za)

B
and (O,Q!,Za). Then, by replacing (yd’Yﬁ) with polar coordinates (mga),

7; where m = r siny , y = -m cos®, and Y = m sina , we obtain the set (Z,z,m)
shown earlier in Fig.1... The m-axis is perpendicular to the collinear plane

;; (m=0) and measures the deviation of the nuclear triangle from collinearity.
o Be . ase HZ is a homonuclear molecule, only two of the three possible
& arrangement channels discussed above need be considered. The o and g
is channels join at s=0 (by definition), forming a surface on which the
r wavefunction and derivative for reactant and product channels must match.32
i§ The Y channel must also be considered in cowpletely specifying the boundary

conditions, but not in the integration of the coupled equations (for A+B2

S
- .
%

systems).

B. Hamiltonian and Wavefunction Expansion
. The NCC Hamiltonian operator can be partitioned into operators

representihg pure translation, vibration, and rotation, plus the remaining

N coupling terms.32
H= Htt * Hejp * Heot * Hcoup (3)
The f operator includes terms coupling translation, vibration, and

crup

rotation which vanish at large s. Many of these terms are small in systems

for which the reaction passes through a linear intermediate. These terms are

neglected in the present and previous NCC treatments, and this approximation




prevents this approach from consideration as an "exact" method.

In a similar manner, the electronic potential energy is decomposed

as

V(s:047) = Vi * Vioib * Vhend * Veoup (4)

» In this representation, V__ is the translational potential along the locus of

tr

} local vibrational minima (defined for straight—line cuts perpendicular to the

g' collinear RC), vvib is the local vibrational potential along the cuts, and
ﬁbend is the bending potential for variations in Y away from the local
vibrational minima along a circular arc of radius Iy in a plane of constant s

(see Fig. 1).

Vibration—rotgtion coupling is small for points near the RP for the present
surface, and has been neglected in our work on the F+H2 system. This
coupling could, of course, be included without much difficulty.

The empirical surface V of Muckermann34 i8 wused in this and our
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previous studies to obtain the translational and vibrational potentials, with

v,

o
v

a simple functional form fit to the M5 bending potential for small deviations

from linearity. The bending potential is represented with the function

’
& 1.8 M . .
PRI RERT

Fn PR AR AN

Voena{vi8) = (Vy(s)/2)[1 - cos 2v] (5)

where V,(s) is adjusted to represent the original M5 surface for small

deviations from linearity.
The vibrational Hamiltonian is used to construct lodally adiabatic

vibrational eigenvalues and basis functions:

Hoib Xy(Pi8) = E (8) X (p;s) (6)




The vibrational potential in Eq. & is usually fit to a Morse potential so
that the basis functions x‘v(p;s) are Morse oscillators and E, are Morse
energies. The lowest twelve vibrational energies and the sums E (s) + Vtr(s)
are shown in Fig. 2. The wells in these curves near s=~0 are produced by
expansion and contraction of the potential valley.

The rotational Hamiltonian is partitioned into terms representing a

symmetric top, an asymmetry term, a Coriolis term (coupling bending motion to

tumbling of the nuclear triangle), and a bending term:32'33’35
l'lrot = Hst * Halym M Hcor * ubend (7)

Anticipating the use of 1locally adiabatic rotational functions, we form a
symmetric top free-rotor diabatic basis by taking products of normalized
symmetric top functions and normalized associated Legendre polynomials,
N;;(9¢x) PX(cos Y). These product basis functions are eigenfunctions of

J

ﬁ;t+ Hy ond (when Vyend™ 0)» for total angular momentum J with projection K on

the BF Z-axis. Diagonalization of the representation of “asym+ Hcori“ the
free-rotor basis leads to eigenfunctions ;: that mix free-rotor functions
differing in K but not j:

E ax ¢30 (®)

The free internal rotor function d>ﬁ§ are Legendre polynomials multiplied

35

by terms dependent on £, j, and J. Asymptotically, the Eig: are eigen-

functions of Hrot’ and j and £ are good quantum numbers. However, for
vbend+o the matrix representation of Vbeng 1P the 5‘;;? basis must be

diagonalized. The equation

M ooxyss) = wj (3)9;§(6¢xv;8) (9)

Hrot 32

T LY T Yy
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defines the hindered asymmetric top functions and energies. The adiabatic

hindered asymmetric top states are36

3 “JM
R (B0xvie) = 30 T E Ny Rig (Yis) (10)
3 je
where jz(Y’S) are hindered internal rotor functions. The j and § values
no longer remain good quantum numbers, but are used to label the rotor states

at all values of s.

H .{:'L.u:]f'%‘; DCFREA
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In the present study, analysis is restricted to collisions with total

angular momentum J=0. Thus, the orbital angular momentum has only the value

ke IR
A Vet
et P

2=j. Since M=K=0 for these collisions, the symmetric top functions are

independent of the orientation of the three-body triangle. Thus, the local

i:(9¢xy;l) depends only on the bending angle Y, and

is proportional to R;;(Y;s). It can therefore be represented as a simple

asymmetric top function Q

expansion over Legendre polynomials
Ry(yis) = 3. Cyy (8) Pyy(cos y) (1)

The total scattering wavefunction for input channel v&j can be

expanded as:

vl Goxeoy) = (nf/ube) D £l L (8) X (0s8) By, Cyie) (12)
‘AR A
!

The coordinate dependent scale factor néﬁn r simplifies the coupled

37 -8

equations. The factor né preserves Hermiticity” ', and the factorw equals

the scaled stom-molecule separation for large s. The expansion coefficients

fv'J'E vJ,L(s), the translational wavefunctions (TW), measure the amplitude
I S I A S Ty T R O D AT
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for occupying state v'j° % ° when the reaction was initiated in state v,j,%.

C. Solution of the Coupled Equations
Having defined the expansion of the wavefunction, the next step is to
numerically integrate a set of coupled differential equations for the TW. By
the usual separation of coordinates into translational s and internal

degrees of freedom, we can obtain the close-coupled equations for the

J
U 'vjl(’)' The set of N simultaneous second-order differential equations

]
is solved by assuming that, within a small interval, the locally adiabatic
basis sets are independent of s; this eliminates from explicit consideration
the first-derivative term in the equations. The actual distortions of the
basis sets with s are included by suitable transformations at the boundaries

between adjacent intervals, or "sectors”. Within one sector the coupled

equations are

2
a_ - J J
2 f{r'j'z'vjz - thjtgvvnjng,n fvn‘-]ng'nvjl (13)
ds fmyngn
viing
where the coupling matrix DJ has elements

J A
Dogavrgrer = ‘5,13'59.1'{0‘v'veff|"v'> *i%[E - (BB )/2

¥y = V)] eI, 0]

rote that the couping matrix 1s diagonal in the rotational indices.

(14)

The solution of Eq. (13) via the R-matrix method38, followed by the
determination of the scattering matrix and the TW can be viewed as a three-
step procedure. First, one solves Eq. (13) as a boundary-value problem (R-
matrix method). Second, asymptotic boundary conditions are applied to define

the scattering matrix S. Finally, the 1local TW are constructed from the

correct asymptotic conditions defining the appropriate scattering states, by
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repeating the propagation with appropriate initial conditions using
propagators assembled and saved during the R-matrix integration. This
process is a new application of the R-matrix method to reactive scattering,
and details will be more fully presented in this and the following sections.
In discussing the method of solution of the coupled equations within
an arrangement channel (tube), we will focus on the even-j channels in the
reactant @ -tube. The ©@-tube is partitioned into two regions: one,
represented in polar coordinates, lies between s=0 (which locates the a-B
tube match surface ) and a cartesian (large-s) region that is separated from
the interior polar region by another match surface, the polar-cartesian
boundary (Pca). These two regions are further subdivided into small sectors

of width h,, Sector 1 lies between 5 (3=0) and 8,, sector 2 between s, and

i.
8,, ... sector m between 8.-1 and 8, > with L taken to be some sufficiently
large value of s. At the center of sector i, a unitary transformation of
b(i)

produces a diagonal energy-dependent eigenvalue matrix AZ(i)(E):

The coupled equations in the new (adiabatic) representation can now be

written as 2N first-order equations

x(i) 0 1 8(i)
d = . (16)
= 2g(il) 52(1) 0 25(1)

ds = ds

where the adiabatic TW, g, are related to the "diabatic" TW, £, through the
equation

A Taylor series expansion of g on the LHS of sector i in terms of g on the

RHS of the sector permits us to rewrite Eq. (16) as
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3
B
- 12
% ) (1) (1)
g SNl | I
- | o= 1 (1) (18)
| ag™ SRS | E
. e L = 3
N i 8 )
= The local propagators gél) are given by analytical formulas3 involving the

sector width h and the eigenvalues ) P
Continuity of the total wavefunction and its derivative along s

requires that at sector boundaries the adiabatic TV meet the following

< conditions: (1-1) ) )

- g - i 1-1)2(1-1.1)Z(i)§£i - g(1-1.1 Eéi) o
-0 1
~ gt 7 (1-1) (1-1,1)g (1) 4, (1) | pli-1,1)4 (1)

. a;a (i 1 , = a—L = a_L

e The diabatic overlap 0''” i has elements generated from overlap integrals
[ ] =

. involving the basis functionms,
;

- i-1,1 1-1)p(-1) ) (1) (1)

. ox(r'j'vj) = <X‘(,v ) §| IX .‘] > (20)

Although the adiabatic TW are uncoupled within each sector, they mix at the
sector boundaries.

Conservation of flux requires that the matrix  product
] F(i-1)gim1, D)4 (1)

connecting adjacent sectors be orthogonal; in practice Q

o is not orthogonal, but it is still diagonally dominant. To insure the
39

- required orthogonality, we wuse a Gram-Schmidt procedure at each sector
= boundary. The combination of propagation across a sector with matching at
the sector boundary can be expressed as a matrix equation that integrates the

coupled equations from the RHS of sector i to the RHS of sector i-l:

E(1-1) F\i -1,3) 0 gfi) ggi) g(i)
FRCELD] B P p-101) o) p(] g 0) (21)
- s

R
In addition to the sector matching requirements, there are three

additional matchings, in addition to the arrangement channel matching, that

.v~-- T M e
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need to be mentioned. As discussed elsewhere,40 at the boundary between the

polar and cartesian (asymptotic) regions, a transformation accounting for the

differences in coordinates must be performed. In addition, at s=0, the
F(0,1)

matrix connecting the reactant and product channel adiabatic TW is set
equal to g(l) in order to initiate the propagation sequence at the LES of
reactant sector 1. (In our notation, the "zero" sector in the reactant

channel corresponds to sector ! in the product channel). This means that we

begin with diabatic TW at the match surface, which facilitates application of

x the matching conditions. The g(o'l) matrix connecting the diabatic TW at the
éi matching surface is neglected at this step, but is incorporated into the S-
a matrix equations. The third matching is required to map the scattering

wavefunction onto the asymptotic channels, and is incorporated explicitly by

propagation to sufficiently large s such that all off-diagonal elements of D
vanish and the diagonal elements become independent of s; then g‘m) = g(m).

Assembly of the local propaga.ors and F matrices advances the

diabatic £ at s=0 to the asymptotic f at 88 . This arrangement channel

propagator is formed by sequentially multiplying the F and P matrices:

g (m)
- f(1) . £
- (i-1,1) (1)
= F P (22)
:; df(1) 121 = = g;(m)
. as ds

Although this accumulation of local propagators 1is straightforward, this
method suffers from numerical instabilities due to the closed channels that
must be included in the basis. The R-matrix integration method can be used
to circumvent these problems, because it is inherently stable to the

inclusion of closed channels.
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The R-matrix propagation equations may be obtained by rearrangement

of the propagator equations38 into the form,

LD ) r gl
- . & (23)
U I IR} B

The 5;1) matrices contain matrix products of the g(l) and F B » and it is

easy to show that ggi) an (1)

pli-1,1)

d r, - are symmetric, and that r,”’ = £§i’, provided
is orthogonal. Collecting the local g—matrices into an arrangement
channel R-matrix is accomplished not by successive matrix multiplications, as
with the propagator method, but by recursion formulas developed by Zvijac and

Light.41

The t(l) are accumulated for each sector beginning with sector 1 and
ending with sector m. At sector m we have obtained an arrangement channel R-

matrix that relates the TW f£ and their derivatives at s=0 and s=s_:

g(1) df(1)
= Ra ds (24)
L I VC)
~ds

then these E—matrices are obtained for each arrangement channel, they are
combined with the appropriate asymptotic boundary conditions to allow
determination of the scattering matrix. For the initial channel v,j, the

boundary conditions take the form:

-3
- (=) (<) g(=)p* (=)
fvj(s)-- ko3 [hl(kvj 8) - Se3 P (k )] (25)
For the inelastic channels, the appropriate form is
-
vjo(s) (v;' (v‘;n h (k(l;ls) (26)

while for the reactive product channels the form is

(+)-2

fagr(8) = <kt s ) n (¥ o) (27)

\ARL vyt g V'Jv
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The Riccati-Hankel functions have the asymptotic forms
() 2,
(+) Iexp{i(kvJ s - an/2)}, K20
hl(kvj s) ~ (+) 2 (28)
lexp{-lkv3 s| - ian/2}, K 4<0
while the channel wavenumbers are expressed as
¢
k%) = [1-?‘5 (E - E (=) - W';,L(too) - vtr(:m))] (29)

The superscripts (+) and (-) denote reactive and nonreactive scattering,
respectively.

In summary, the coupled equations are integrated with the R-matrix
propagation technique to obtain an S-matrix. Then, a second propagation is
performed to obtain the desired TW by using local propagators saved during
the initial integration. These TW are used in the analysis of the reacton

dynamics discussed in the remaining sections of this paper and in II.
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III. The Scattering Wavefunction

A. Translational Wavefunction Assembly

In this section we consider the propagation of the TW and assembly of
the 3-D wavefunction at each step. To initiate propagation of the TW in the
asymptotic reactant or product regions, the correct initial amplitudes are
obtained by substituting the appropriate S-matrix elements into Egs. (25)
through (27). With these initial conditions, the propagation sequence in
Eq.(22) is used to generate the adiabatic TW at each s, using local
information saved at each s during the initial R-matrix integration. Eq.(17)

is then used to convert the adiabatic g into the diabatic ¢
th

For example, at

the m sector we begin with the equation for the even-j g in the a -tube

(odd-j conmstruction proceeds in an analogous manner):

E(m-1) g(m-1,m)g§m) E(m-1.m)g§m) E(m)

= (30)
g,(m--1) g(m-1,m)£§m) g.(m-1.ru)£‘$m) g.(m) o

which takes the adiabatic TW and derivatives in sector m and propagates them

to sector m~l, where they are transformed into the diabatic representation:

g(m-1) | Z(m-1) E(m-1)’ pr(m-1) z(m-1) g (m-1) (31)

(0-2) .(m-2)

Similarly, to calculate g and g in sector (m~2) we simply relabel

Eq.(30) by changing the superscripts m-l to m-2 and m to m-1, substitute in

(m‘l ) and x" (m"l )

the g just obtained with Eq.(30), and perform the matrix
multiplication. Successive application of this procedure generates both the
adiabatic and diabatic TW throughout all arrangement tubes. If the numerical
technique remains stable (remember, this is now an initial value method),

£(0) and £'(0) will satisfy the proper rotor-partitioning (bifurcation)
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conditions at s=0.24

In the present applications to F+H2 linear dependencies did arise in
the reactant tube in attempts to integrate large basis sets inward form large
values of ~s. The source of the linear dependence of the columns of f are
the highly closed channels, with corresponding small asymptotic amplitudes
and large propagator elements. Due to the finite machine precision, the
matrix multiplications at each step introduce local errors that grow and
eventually make the value of f meaningless. Because of this, the vibrational
basis was limited to 10 states in these calculations, and the reactant tube
propagation was started at a modest value of -s. The R-matrix propagation
does not suffer from this problem, and for simply obtaining an S-matrix the
number of vibratonal states and the range of s need not be restricted.

For the results reported here, a 60 channel basis with 10 vibratonal
states and a rotor basis distributed 12/12/12/8/6/2/2/2/2 was employed. The
rotationally averaged results using this basis agree reasonably well with
results obtained using much larger basis sets,z3 and they are adequately
converged for the graphical analysis of the present work. In the actual
propagation, the even-jand odd-j states are propagated separately.
Propagation in reactants is initiated at -1.630; at this value of s the
interaction matrix is essentially diagonal.

B. Assigning Quantum Numbers to the TW

One feature of the TW that we have not discussed is the labeling of
the rows of £ and g by quantum number. Considering only J=0 (¢=j), this
means associating quantum numbers v,j with the elements of the TW. For the
diabatic TW, f, the assignment 1is straightforward; one simply takes the
assignment used in filling the interaction matrix D. If, for example, (2)

m

corresponds to channel (vj), then (f_)m corresponds to fvj’ since D retains
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the same row and column labeling at each s in all tubes. For the adiabatic
g, the diagonalization of D in the R-matrix propagation results in an
energetic ordering of the locally uncoupled g. Thus, even asymptotically, it
is not immediately true that (g_)m = (£), because the diagonal elements of D
are not in energetic order. Therefore, to assign quantum numbers to g, we
use information contained in the transformation matrix at the last sector,

(m)

2 . This matrix contains only ones and zeros, where the relative position
of the ones identifies the vj label.
C. TW Phasing Techniques

Our early attempts at generating f produced inconsistently phased TIW;
that is, from sector to sector an element (f_)m might change sign many times
over a single wavelength. This arbitrary sign switching was due to the phase
of the eigenvector matrix in sector i being independent of the phase in
sector i-1; there was no translational phase coherence. To overcome this
difficulty, a phasing procedure previously employed to phase rotor
functions35 was used to phase the TW. Since the asymptotic phase of each
eigenvector is arbitrary, we initially multiply each vector by +l1 or -1 so
that the largest (in magnitude) component of the vector is positive. Then at
every subsequent step, we again require the largest component of the vector
to have the same sign as in the previous sector, multiplying the vector by -1
as necessary to achieve this. In phasing the rotor functions used 1in
assembling the TW, a similar procedure is employed, but account is taken of
the asymptotic phasing of Rj being not arbitrary, but by the fact that
Rj(y;s)-+Pj(y); thus the columns of the rotor eigenvectors are multiplied by
-1 as necessary to achieve this. This phasing is not necessary during the R-

matrix propagation since all information on absolute phasing is lost in

forming the rotor overlaps.
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1V. Translational Wavefunction Analysis and Internal Energy Disposal

A. Diabatic Translational Wavefunctions

This section begins our analysis of the scattering wavefunction by
first examining the diabatic TW and then discussing several
quantities that illustrate the partitioning of internal energy among the
channels during the reaction. Recaii that the TW amplitudes squared are
interpreted as local measures of the probability density for the individual
channels. The TW can reveal many detailed facets of the collision process
and they serve as a basis for understanding features of the full 3-D
wavefunction. Of the 60 channels in these calculations, we will present the
real part of £ for j=0,2,4, and 6 in the three lowest vibrational levels for
each tube. However, we should mention that the TW amplitudes in the closed
vibrational 1levels do reach moderate magnitudes in the reaction zone,
although they rapidly decay as the system moves out of this region.

We first examine the a -tube TW, which are shown in Fig. 3(a-c) at
three total energies. For phrposes of illustration, we have scaled the a -
tube TW fOO by 0.25 and f02 by 0.50. - This scaling amplifies the contrast
between these two dominant channels and the rest of the reactant tube
functions. There are several characteristics common to the TW for all three
energies shown. With input flux in fOO and with ISOOI2 = 0.40, we expect
this channel to have the largest amplitude of all. This input channel
couples strongest with fo2 and consequently f02 has the next largest average
amplitude. Within a given vibrational level in the  -tube, the TW tend to
decrease in magnitude as j increases, and as v increases from 0 to 2 the
amplitude of a given j level becomes smaller. Since only the j=0 and 2 states

are asymptotically open in reactants, the wavefunction will show interference

——d
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effects caused by coupling in these two channels, the other TW amplitudes
becoming vanishingly small.
The next region we will consider is the match surface between the

@ and B tubes. The rotor bifurcation constraintsza require that at s=0 the

a . . I3
a -tube fvj split into the B -tube f%j+1 and vaj’ with f§j+l = fsj, and
ij = fsj+1 + fsj. Comparing Figs. 3a, 3b, and 3¢ with 3d, 3e, and 3f

respectively confirms that these conditions are satisfied. We do not present
fj§+l functions because they appear nearly identical to the fj;.
which are plotted in Fig.3. Because of the difference in axis scales between
the @ and B tube plots and because of the small size of some of the TW at
s=0, it 1is difficult to wvisually check the accuracy of the amplitude
partitioning; numerically the agreement is to one part in ten thousand. Note
that the phasing remains smooth across the s=0 match surface.

is in the B -tube that we find dramatic evidence of the
vibrational population inversion and rotational excitation of the HF product
molecules. At the three energies studied here, all of the channels shown in

Fig.6(d-f) are asymptotically open, so that at large H-HF separations the fB.

V]
wavelengths vary inversely with the channel translational wavenumbé??x\\\\\
Focusing on Fig. 3e for the resonance energy 0.36 eV, we can see how
dramatically the fOO amplitude declines from the very large value it has in
reactants, so that by s=+1.5 a, it is negligable. Similar comments hold for
the other v=0 rotor states,

Examination of the v=l manifold in Fig. 3e,we see the beginning of
the extensive rotational and vibrational excitation of the product HF

molecule, It is ffz that shows the largest excitation in this figure. The

lower rotors in this manifold build amplitude in the region between s=+0.5 and

s=+1.5, but begin to die out for larger s values. It should be remenmbered
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that all of these channels are energetically open in HF at these total
energies. An interesting feature of f?6’ fga and fg6 is that they suddenly
switch on at about s=0.5. From Fig. 3e we can see the population inversion
process occuring, and we can determine the FHR configurations where this
process begins to dominate the dynamics of the reaction.

Comparing the fsj functions channel by channel in fig. 3(d-f) we
observe that the magnitudes of the TW for the 0.36 eV resonant energy (again
interpreted as measures of the probability density) are substantially larger
than those at 0.33 eV, while the j =4 and 6 functions have nearly double the
amplitude of the corresponding 0.40 eV TW. Thus, from an analysis of the TV,

we have gained insight into the characteristics of the vibrational population

inversion process, and of the amplitude growth in v“=2 at the resonance

energy.

B. Vibrational and Rotational Energies in the Collision Complex

A very interesting aspect of chemical reactions con;erns the disposal
of energy into the various available channels as the collision proceeds from
reactants to products. Of particular interest are quantities such as average
vibrational and rotational energies and entropies as functions of the
translational coordinate s. One method of calculating the average energies
is to operate on the total scattering wavefunction at each s; however, this
direct approach produces equations that are cumbersome.8 The complications of
this approach arise because of the curvature of the coordinates. As an
alternative approach, we recast the wavefunction of Eq.(12) in terms of

curvature free TW expansion coefficients that eliminate the nﬁ scale factor:

1
Yo = EZ Uprgryg ()X fois) By, (ysa) (32)

V'J'
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where

- z : )
Uv'jivj(s) = (xvlln lxvn> Gjlljl fvujnvj(s) (33)
ann
The expansion of a single Ui mixes all of the diabatic fi functions with the

same rotational index, each weighted by the vibrationally averaged curvature

factor. The overlap of ¥ with itself becomes

= 1 2
1 20y “’V-Z;- LB (34)

since the 3-D normalization of the vibrational functions requires

Xyt
f(—%—) (X_:) r2ar = Sty (35)

The U(s) functions can be utilized to define the local normalized

<ty |

- 2 2 .
probabilities ij(s) IUvj(s)l /Z:IUvj(s)l , where the channels are again

labeled by vj. This set of ij(s) allows us to obtain average values without

explicitly operating on the wavefunction. Thus the average vibrational

energy is obtained from the expression

I R
P e {E > = Z E (s) ij(s) (36)
v

and the average rovibrational energy is obtained from

o {E,6 +E> = 2 (Ev(s) + "J(S)) ij(s) (37)

vJ

~ Figure 4 illustrates these quantities for total energies
s 0.33, 0.36, and 0.40 eV.

Looking first at the average vibrational energies in Fig. 4a, we
notice that in the asymptotic reactant tube the average vibrational energy is

predominately in v=0, as expected since it is the only open vibrational

Vi

o increasing as the total energy increases. As the vibrational energies plunge

L

level. Approaching s=0, the average energies oscillate, with the frequency

LIPS URP U S UL TP TR T Uit W W W U Y e W e v
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in energy just before s=0, so do the average vibrational energies. However,
the average vibrational energy grows relative to the bottom of the potential
valley (the translational potential Vtr(s) has been added to the average
vibrational and rovibrational energies before plotting). Between s=0 and
s=+2.0, the oscillations in the average energies still reflect the mixing of
the upper vibrational levels, but in contrast to the reactant tube, at all
three energies the oscillating pattern is similar; one minimum occurs very
close to s=0, another minimum occurs at approximately s=+0.4, and a final
minimum occurs near s=+1.0. The amplitude of these oscillations is however
quite different for the three levels because of the increase in the v =3
transition probability as the total energy rises from 0.33 to 0.40 eV. This
is why at 0.33 eV the asymptotic product average vibrational energy lies
close to the v=2 energy level, while at 0.36 eV more v =3 component mixes in,
so that by 0.40 eV the contribution from v'=3 is sufficiently large that
< Ev> is approximately halfway between the v=2 and v=3 levels,

The average rovibrational energy plotted in Fig. /b combines the
features contained in Fig. 4a with the effects of local rotational
excitation. These curves have a similar interpretation to those in Fig. 4a,
with the rotational effects most evident in the reactant tube (due to the
mixing of the two open rotor states). An interesting feature of <(Ev + ER) .
excitation into the closed channels just prior to s=0, is indicative of the
quantum nature of this reaction. Here, <Ev + ER> rises above the system
energy. The main contributor to the tunneling is <Ev> . This is not

surprising since quantum effects dominate the collinear reaction as well.
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C. Vibrational and Rotational Entropies in the Collision Complex

By studying the local entropies, we can gain a better understanding
of the distribution of probabilities and of the rovibrational disorder during
the reaction. The total entropy at location s (in units of Boltzman’s
constant, k) is defined by:

Sp(s) = -Zj: P y(e) anfe  (s) (38)
v

Two other entropies, the rotationally averaged vibrational entropy, <SV> R’
and the vibrationally averaged rotational entropy, <SR)v require averaging

the ij functions in the following manner:

z (}j: p,) zn(; P,)
sy = 'zj:(; ij) “"‘(}‘-:- ij).

Figure 5 illustrates these three entropies at the energies

(39)

0.33, 0.36, and 0.40 eV. Since each type of entropy for these three energies
shows similar behavior, we will not consider their energy dependence, but
instead will emphasize the general features of each entropy.

Looking first at <Sv> R» Ve see that in asymptotic reactants there
is zero entropy because only v=0 is open. But as s=0 is approached, this
entropy rapidly grows and then falls off to a nonzero value for s>1.5. This
shows both the short-lived excitation in the tramsition state due to the
participation in the scattering of asymptotically closed vibrational levels,

and the uncertainty of the final vibrational state of products. The nonzero

value at large product separation simply reflects the partitioning of amplitude

between v°=2 and v°=3. Considering next the (SR>v plot, we notice that in
reactants there is s small (compared to products) rotational entropy due to
mixing between j“=0 and j“=2. Note that just before s=0 the entropy curves

nearly reach zero. Referring back to Fig.3 , it can be seen that almost all
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the flux flows through the lowest (j“=0) adiabatic bending channel in this
region. However, due to the large number of available open rotational
channels in products, <sR>V becomes quite large for s>1.0.

The S; curves contain features of both {8y> g and {Sp) y: nonzero
entropy in reactants and products with the entropy in products greater than
in reactants, and a peak near s=0.

This concludes our analysis of the translational wavefunctions and
their associated average energies and entropies. We have focused attention
on the flow of amplitude through the individual channels as functons of both

the system energy and reaction coordinate.

D. Integrated Density vs Reaction Coordinate
We acquire an additional perspective on the collision process by
compressing information from the wavefunction probability density.
Integration of the total density within planes of constant s then allows
construction of an interesting plot of the integrated demsity as a function
of the translation;l coordinate s. The integrated density is defined by the

equation

1(s) =wff ‘l'*(n.mzs) ¥(n,m;s) dndm (40)

The factor w appears in Eq. (40) to prevent the density from decaying asymp-
totically as 1/R2. Fig.6. illustrates the s-dependence of the integrated
density for the energies 0.33, 0.36 and 0.40 evV. The oscillations in the
densities are caused by interference between all locally open channels. The
frequency of the oscillations can be correlated to some degree with the fact

that available translational energy increases with increasing total energy.

The decrease in magnitude of the densities past about s=-0.1 is a consequence
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of the considerable amount of nonreactive flux in this reaction. The
resonant curve (the 0.36 eV density) reaches a maximum before s=0, and then
decreases as the system moves into the product region. Thus we might call
this v°=2 resonance an '"entrance channel resonance”. The vibrational
distributions have mostly settled down by s=0.5, and only the rotational

populations show much change after this region of s.
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V. Conclusions

The quantum dynamics of the three-dimensional F+H2 reaction has been
analyzed for three total energies, and for total angular momentum J=0. The
enérgy 0.36 eV 1is of special significance, since this is close to the J=0
resonance energy for the process F+H2(v-0)-ﬂ+nr(v'-2). The computational
methods used to obtain the scattering wavefunction required for the dynamical
analysis in the region of the collision complex have been presented. This
has been prefaced by a brief review of the coordinates, Hamiltonian, basis
sets, and boundary conditions wused in the NCC approach to the reaction
dynamics.

In the dynamical analysis, emphasis was placed on graphical methods
for illustrating the variation with s of the translational wavefunctions,
vibrotor energies, vibrational, rotational and total entropies, and the total
density in planes perpendicular to the reaction coordinate. We will briefly
sumnarize some of the results from this analysis. In Fig. 6 the
translational wavefunctions fvj(') are shown for the j=0-6 rotational states
associated with the v=0-2 vibrational manifolds. In the F+ﬂz reactant tube,
the translational wavefunction fgz has an smplitude which is at most one half
of f;;. Near s=0, there is a small amount of excitation into the lower
rotational 1levels of the v=0 and | manifolds. In the H+HF product
arrangement, fg; decays alwost completely by s=+1.0 a3, while amplitude
builds up in the j=4-6 rotational levels of the v=0 and 1 manifolds.
However, the most dramatic effect in the product region is the relatively
rapid buildup between 5=0.5 and 8=1.5 of amplitude in the j=4-6 rotational
levels of the v=2 manifold. This rotational excitation occurs on the final

part of the turn into the product valley (see Fig. 4).
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il ’ The oscillations seen in Fig. 7 of the average vibrational energy
{Ey)> and the average rovibrational energy (Ev + ER) as s goes from
re#ctants to products are associated with interference effects among the
vibrational channels. Of more interest than these average energies are the
average and total entropies shown in Fig. 8. In reactants, the rotationally
o averaged vibrational entropy is zero (only v=0 is populated), but the

vibrationally averaged rotational entropy is nonzero (j=0-2 are populated).

.o Near s=0, the rotational entropy 1is lower than in reactants or products
E i because of the strong propensity for the lowest bending state of the complex.
! ;2 In products, the vibrational entropy is about half the peak value in the
- collision complex, because flux is leaking out of the temporarily excited

: virtual states (primarily) into the v=2 manifold. Also, the rotational
entropy in products is large (about twice the vibrational entropy), due to

the relatively diffuse rotational excitation through many rotational channels

-
P

(but primarily j=4-6).

The variation with s of the total wavefunction density, shown in

v
By

Fig. 9, measures the net tendency of probability to accumulate at position s.

This quantity, I(s), is computed as an integral over a plane of constant s of

cemee
-,

the 1local probability density. The most interesting features of this

quantity are found to be: the oscillations in reactants due to interference

between incoming and outgoing waves, and the factor of 10-100 drop in I(s) on
turning the corner into the proauct valley. However, when comparing plots of
I(s) at the three energies considered in this paper, the region between

8=-0.5 3 (near the entrance channel barrier) and s8=0 is especially

M T sy

significant. On resonance (0.36 eV), the density in this regon is about a

factor of two or more larger than for the other two energies, which lie above

and below the resonance energy. The resonance is associated with buildup of
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amplitude between the entrance channel barrier and the turn into products;
thus it is termed an "entrance channel resonance".

In part II of this series3o, density and flux maps obtained from the
total scattering wavefunction will be shown in planes perpendicular to the
reaction coordinate and in planes for bent geometries (m>0) parallel to the

collinear plane. Emphasis will be placed on the behavior of these quantities

as the system goes through resonance.
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FIGURE CAPTIONS

Natural collision coordinates for 3-D reactive scattering. Zr and z,
are the components of the mass scaled F-R2 and HEH relative separations
on the body~-fixed Z-axis. Zp and zZ, (not shown) are the components of
the corresponding product separations on the BF Z-axis. Nonlinear
geometries are measured with m; the m=0 plane is the collinear plane.
The reaction coordinate s is measured along the reference curve RC. In
the reactant and product Cartesian regions, planes of constant s lie
perpendicular to Zr and ZP’ respectively, while in the polar region
constant s planes intersect the collinear plane on lines connecting the
turning center TC and the reactant or product Z-axes. The floating
origin40 FO for r and y varies with s and is introduced to simplify
terms in the rotational Hamiltonan. The TC is located at
(7.000, 2.579), and the radius of the circular reference curve is 1.563.
The cartesian-polar boundaries are at s=-1,904 and s=+1.740 in reactants
and products, respectively. At large to moderate separations, y is the
geometric angle between the molecule and atom-molecule vectors.

Adiabatic energy correlation diagrams (energies in eV). (a) vibrational
energies E, ; (b) vibrational energies plus the translational potential
Vip + (¢) hindered asymmetric top energies wj for J=0; (d) the sum of

the translational potential, lowest vibrational energy, and top

energies.
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(a)-(f) The real part of the diabatic translational wavefunctions at the
total energies 0.33, 0.36, and 0.40 eV. Only four vibrotor TW in eack
of the v=0,1 and 2 manifolds for the 60 channel basis are shown.
(a)-(c) are reactant tube TW; (d)-(£f) are product tube TV.

(a) The average vibrational energy and (b) the average rovibrational
energy. The average energy curves are shown with dots, and the
background curves are the vibrational energy levels.

Entropies as a function of s for the three system energies considered
(units are k, Boltzmann’s constant).

A semi-log plot of the integrated s-plane wavefunction densities for the

total energies 0.33, 0.36, and 0.40 eV.
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Quantum Mechanical Differential Reaction Cross Sections
for the F+H2 Reaction
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Quantum Mechanical Differential Reaction Cross
*
Sections for the F+H2(v-0) -+ FH(v'=2)+H Reaction

by
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ABSTRACT
Velocity-scattering angle intensity maps for the F+H2(v-0,j=0) -+
FH(v'=2,j')+H reaction are predicted from quantum mechanical J,-conserving
calculations. The shift in the angular distribution from backscattering
at 1.8 kcal/mole to sideways scattering (intensity peak at 100°) at 3.0
kcal/mole is in quantitative agreement with recent high resolution crossed

molecular beam experiments.
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Quantum mechanical resonance gtructure in the collinear1 FWHZ(V-O) g
FH(v'=2)+H reaction was predicted in 1973 and in the three-dimensional
react:ion2 in 1979. 1In order to illustrate their results, Redmon and Wyatt
plotted the reaction probability surface for v=0 + v'=2 reaction. This is
a surface of total probability for the reaction (v=0,j=0) =+ (v'=2,Ij"),
plotted vs. total energy E and total angular momentum J (since j=0 in reac-
tants, J=2, where £ is the atom-molecule relative orbital angular momentum;
£ 1s related to the impact parameter, uvb=fh). This reaction probability
surface is shown in Figure 1; as E is increased at each value of J, the
reaction probability suddenly increases, reaches a geak at the resonance
energy Er(J)’ and then declines onto a shoulder at higher energy. The
"resonance ridge" of high reactivity moves to higher E as J increases.

(The J dependence of Er is remarkably well predicted by a new semiclassical
model based upon resonant periodic orbitsB). Up to 0.35 eV, the reaction
probability declines monotonically with J. However, for E< 0.37 eV, the
peak reactivity is reached for a nonzero value of J (e.g., at 0.40 eV,

the peak reactivity occurs at about J=10). By way of contrast, the 0-+3
reaction probability surface decreases monotonically with increasing J,

for E $ 0.50 eV. The purpose of this Letter is to show that these quantum
mechanical results also predict that the 0+2 differential reaction cross
section undergoes a dramatic change when the energy is increased from 0.35
to 0.40 eVv.

In their 1979 crossed molecular beam studies of the F+H2 reaction,
Sparks et a1.4 found results which are qualitatively consistent with the

quantum mechanical reaction probability surfaces. When the product in-
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tensity was plotted in terms of velocity-scattering angle intensity maps,
then at a mean relative collision energy of 2.0 kcal/mole, the product
molecules for v'=1l, 2, and 3 were all scattered predominately in the

0 = 180° backward direction (i.e, back in the direction from which F
approached the Hz molecule.) However, when the mean collision energy
was increased slightly to 3.2 kcal/mole, the peak in the v'=2 product
distribution moved to a smaller angle - extensive sideways scattering occurred.
By way of contrast, the v'=l and 3 distributions remained primarily back-
scattered at the higher energy. On the basis of the reaction probability
surfaces, and the new quantum results reported here, we interpret the
shift to sideways scattering in the HF(v'=2) product distribution as a
direct manifestation of the quantum resonance.

Before presenting results for the F+i, reaction, we will briefly
review the relevant theorys. In an atom-diatom collision at total angular
momentum J, if we were following the close-coupling (CC) procedure, the
total scattering wavefunction would be expanded in products of local vibra-
tional and rotational basis functions. In our approach, the rotational
basis functions are hindered asymmetric top states7, which are labeled by
the asymptotic quantum numbers j and 2. Here j is the rotational quantum
number of the diatom and £ denotes the atom-molecule relative (orbital)
angular momentum quantum number. The triangle inequality limits the range
of allowed values for £: [J-j| < 2 < J+j (parity selection rules further
limit the number of 2's in this interval). Except for very low energies,
the number of vibration-rotation channels (vj{) in a close-coupling cal-

culation at energy E and total angular momentum J is so huge that we are
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prevented from obtaining "exact" solutions of the CC equations. For this
reason, we are forced to use a channel reduction scheme to cut the total
number of channels down to a workable level. In our version of the J,-con-
serving approximationa, which was used in all calculations for J >0, we use
only one asymmetric top function in the wavefunction expansion for each
value of J and j. This special value of £ (denoted L) is selected auto-
matically8 such that these asymmetric top states produce a maximum concen-
tration of amplitude for near-collinear geometries in the collision com-
plex. The procedure is called "Jz—conserving" because the asymmetric

top states which are used always concentrate amplitude in the FHH K=0
bending states (K is the angular momentum quantum number for twist about
the z-axis of the complex). Solution of the reduced set of CC equations
then leads to S-matrix elements (amplitudes for outgoing waves) which are
labeled siojoLo*ij’ or since we are interested here in reactions initiated
from the ground state of Hz(v-o,j-O), we will use a shortened notation for

the S-matrix elements: where L is determined uniquely by J and j).

J

Sij (
Once the S-matrix elements have been computed, we can use them to

construct both differential and total reaction cross sections. The

differential reaction cross section is computed from the helicity amplitude:

oy o -1 % 5 cayed
hvj(e,E) (/2—k°) J5:0(2.1+1) PJ(O)Sij(E), (1)

where kb is the reactant channel translational wavenumber (E - hzk:/2ur.

trans
uo= mA(mB+mc)/(mAme+mc)),and where fJ(G) is a normalized Legendre polynomial.
The angle ® is defined so that 6=180° corresponds to "backscattering" of FH
in the direction from which F approached the H, molecule. The differential

reaction cross section is then

e T .y e
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35 Finally, the total reaction cross section is given by
I
T m
[ 0y (B) = /" sin6de 2T SRR
B L J g2
= —— I (2J41)[s . (3)
k2 J=0 Vle
o
The S-matrix elements are complex numbers whose magnitude and phase enters
' the computation of ovj(e;z), while only magnitudes enter the total cross
= section. EEquation (3) 1s the same one that we previously used to obtain
o total cross sections from the S-matrixz.
.
The Jz—conserving calculation39 were performed at two total energies
'n (measured from the bottom of the F4H, entrance valley; Etrans = E-0.27 eV),
N 0.35 and 0.40 eV, which correspond to relative collision energies of 1.8 and
1
o 3.0 kcal/mole, respectively. At each energy, J -conserving calculations were
Il performed for each value of J between 0 and 18. The basis sets always em-

ployed 10 vibrational manifolds, with the following rotor distributions:
ey 16/14/12/12/6/2/2/2/2/2, 0.35 ev;
' 18/18/18/16/14/12/6/4/2/2,  0.40 ev.

?2 This notation means that a total of 16 hindered rotor states were used

. in the v=0 manifold at 0.35 eV, etc. In spite of the fact that a larger

;i basis was used at the higher energy (110 channels, vs. 70 at the lower

{f energy), the re;ults at 0.40 eV are less converged than at 0.35 eV. Parti-
R cularly for J 2 10, the S-matrices are not fully converged with respect

}E to shifting rotor basis functions from one manifold to another. In spite
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of this, we believe that the results presented here have at least "semi-
quantitative" validity.

It was mentioned earlier that the helicity amplitude (and hence the
differential cross section) depends upon both mangitudes and phases of
individual S-matrix elements. Lack of convergence in the S-matrix elements
(particularly the phases) can lead to artificial wiggles in the computed
differential cross sections. In order to avoid artificial oscillations in
the cross sections, we carefully examined the "smoothness" of both the
magnitudes and phases of all S-matrix elements, at both energies. Plots

were made of Is:le vs. J at each value of j for v=2. 1In addition, if

¢3jL denotes the phase of an S-matrix element, plots were made of ¢3jL and
(¢$;i - ¢ijl> vs. J (again, for each j at each E). In some cases (usually

higher J values), magnitudes and phases were adjusted "by eye" to produce
smooth looking plots. In spite of the stimewhat subjective character in
this procedure, we felt that it compensated to some extent for convergence
errors in the S-matrices.

The differential cross sections for the F*Hz(v-o,j-O) + FH(v'=2,j")4HH
reaction at 0.35 and 0.40 eV are shown in Figures 2 and 3, respectively.
The results are shown as intensities I(V,8) on velocity-angle maps, where
"velocity" refers to the recoil speed of FH and H in the v'j' final chanmnel,
and where "angle" refers to the reactive scattering angle 6 in Eqs. (1) and
(2). A contour map, with cross-hatched maxima, is shown in the left panel
of each figure, and a more dramatic perspective plot (viewed from the
"forward" direction) is shown in the right panel. Of course, only specific

final speeds (radii) corresponding to v'j'=(2,0), (2,1), ... are possible,
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but the contour and perspective routines automatically fill in other values
to make continuous functions for plotting. Looking first at Figure 2, the
intensity is clearly peaked at 6 = 180° (backscattering), and the dominant
rotor distribution is for j'=4-5. There is a smooth, monotonic decline in
I(V,9) as © moves to the forward direction; practically no intensity is

found in the forward hemisphere. Turning now to Figure 3, we note the
dramatic qualitative change in the intensity. The intensity has now shifted
so that it now peaks at 6 = 100°, a full 80° off the backward direction, with

I(V, 100°)/1(V, 180°) ~ 2. In addition, the rotor distribution peaks at j'=3;

the cross-hatched peaks lie at slightly smaller radii (speeds) than the outer
limiting circle (corresponding to v'=2, j'=0). (The rotational distribution
peaks at higher j' values for calculations withother basis sets; this point
is under investigation). Also apparent in Figure 3 is the small backward
peak at 6 = 180°; unlike the major peak near 6 = 100°, the height of this
peak is particularly sensitive to phases of the S-matrix elements. At this
point, we cannot say definitively that there is really a small ripple in
I(V,0) in the backward direction. We are much more confident in claiming
that the large peak near 100° is a reflection of the dynamics and the under-
lying potential surface.

The sideways shift in the v'=2 quantum mechanical product intensity
map is in agreement with intensity maps from crossed molecular beam experi-
ments. In recent high resolution F4H2 experimentslo (which came several years
after the 1979 results that were reported in ref. 4) in which the most probable
collision energy was 3.1 kcal/mole, with a FWHM of only 0.04 kcal/mole, the
product intensity for v'=2 peaked at about 100°, with a most probable rota-
tional quantum number of about §'=7. In addition, the v'=2 intensity near

100° is about a factor of 1.7 higher than in the backward direction. Al-
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though our current calculations underestimate the extent of rotational exci-
tation in the v'=2 manifold, the shift of the intensity peak as the colli-
sion energy is increased from 2 to 3 kcal/mole is in quantitative agreement
with the high resolution beam results!

Comparisons of these results withother theoretical predictions are of

interest. First, quasiclassical trajectory calculations on the Muckerman V

potential surface, even at a cciiision energy of 5 kcal/mole, fail to predict
sideways scattering of the HF(v=2) moleculesu. Classical mechanics com- ‘
pletely misses the sideways shift in the v's=2 intensity that occurs between

12 have

0.35 and 0.40 eV! Turning to quantum calculations, I0S calculations
been performed at selected energies between 0.31 and 0.50 eV on the Muckerman
V potential surface. The v=2 differential reaction cross section at 0.36 eV
is backpeaked, but shows a slight shoulder between 80° and 120°., When the energy
is increased to 0.423 eV, the differential reaction cross section has about the same
values at 85° and 180°, but is 10% lower at 140°, and declines rapidly for 6 < 70°.

At 0.50 eV, there is a slight sideways peak at 6 = 40°; the height at 40° is

40% higher than at 180°, There is clearly a trend toward sideways scattering

at higher energies in the IOS results, but the extent of the angular shift
between 0.35 and 0.40 eV that appears in both the J,-conserving calculations,

and in the experimental results, is not quantitatively predicted. This is
probably due to an important difference between the Jz-conserving and the

I0S reaction probabilities; in the J,-conserving case, for i 2 0.37 ev, the

peak reaction probability in v'=2 occurs for J > 0 (resonance ridge in Figure 1),
while the IOS calculations predict flat reaction probabilities between J=0 and

J (Jmax = 10 at 0.423 eV). Another approximate quantum procedure for gen-

erating differential cross sections has recently been proposed13. S-matrix

T i e T e T S S SRS ST T S P N R S W W Sy WE W TPUNE WAL W UL TS Sy e . S




L
) '1"_)13

7 7 r.
.

r- .

.1

'v

Presa

-
;

KA
R A .
NI

..............................................

elements for v+v' collinear reactions were used (at shifted energies to

account for both centrifugal effects and the bending energy of the complex)

in Eq. (2) to generate "rotationally summed" cross sections. In going from

E o ans = 1-0 up to 2.9 kcal/mole, Op»2 shifts from backpe#ked to sidepeaked,
with a maximum near 165°, In addition, the ratio °0+2(165°)/°b+2(18°°) is
about 2.5 at the higher energy. In this model, the 0+2 reaction probability,
when plotted vs. J, peaks at J=12 at 2.9 kcal/mole, but monotonically declines
from its value of J=0 at the lower energy. These trends are in qualitative
agreement with our Jz-conserving results. Finally, DWBA diffe?ential reac-
tion cross sectionsl4 have been computed at several total emergies between
0.31 and 0.57 eV. Comparing results at 0.37 eV and 0.57 eV, the peak in

O, MOVes forward from 180° to 110°. Again, we see a trend to sidepeaking,
but neither the onset nor the extent of sideways scattering is as abrupt as

in both the Jz-conserving results and the experimental beam results.

In summary, from quantum mechanical calculations within the J,-conserving
approximation, product intensity maps have been generated for the F+H2(v-0,j-0)-*
FH(v'=2,§')+H three-dimensional reaction. The extent of the sideways shift in
the angular distribution is in quantitative agreement with recent high reso-
lution crossed molecular beam results. We believe that this sideways shift
is a direct manifestation of a quantum mechanical resonance in the FHH colli-
sion complex. The nature of this resonance (including scattering wavefunction
density and flux maps in the transition state region, entropy and vibrotational
energy analysis along the reaction coordinate, Argand diagrams showing the
energy dependence of selected S-matrix elements, phase shift analysis, time-
delays computed from the energy derivatives of the S-matrix phases, and a
kinematic model for the sideways shift in the angular distribution) is explored

in more detail elsewherels.
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Figure Captions

1. Quantum mechanical reaction probability surface for the F+i(v=0,
j=0) - FH(v'=2,Ij')+H reaction (adapted from -ef. 2). J is the same as
2, the atom-molecule orbital angular momentum quantum number. ETOT is the
total energy, measured from the bottom of the entrance valley.

2. Product intensity for v'=2 in velocity-scattering angle variables.
The energy is 0.35 eV (the total v=0 + v's2 reaction cross section is 1.2a7).
The left panel shows a contour map of the intensity, with cross hatched
maxima. The right panel shows a perspective view of the intensity, viewed
from 45° off the forward direction.

3. Product intensity for v'=2 in velocity-scattering angle coordinates.
The energy is 0.40 eV. At this energy, the total v=0 + v'=2 cross section
is 2.5a°. See the caption to Figure 2 for further details.
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APPENDIX C

The Quenching of Na(32P) by H,: A Quantal 10S
Calculation of Electronic-to—vibra%i.onal Energy Transfer
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I. Introduction

P~ i
L oo est

The quenching of electronicallf excited Na by H, is a prototype for

electronic-to-vibrational energy transfer in molecular collisions. This

process has been widely studied both expe::imentallyl'5 and
theoretically.6-11

The theoretical interpretation of the quenching process
has focused upon the states of 2A' symmetry; the lowest 232 state has a
well and exhibits an avoided crossing with the ground state surface.
Previous dynamical studies indicate that these two electronic states can

qualitatively describe the quenching ptocess.6’1°

A quantitative
description of this process requires accurate ab initio potential energy
surfaces for the electronic states of importance and the nonadiabatic
coupling terms between these electronic states. Ab initio calculations of
the 2A' states have been mzxde;7-9 however, the nonadiabatic coupling terms
have not been reported.

Recently a diatomics-in-molecules (DIM) potential energy surface has

been presented for the three lowest-energy potential energy surfaces of

Nai,, 1011

Botschwina and Meyer.

The two lowest-energy surfaces agree well with the work of
7,9 A major advantage to using the DIM formalism is
that it provides a global representation of the potential energy surfaces
and the couplings between the surfaces.

There has been a large amount of work on developing methods for the
quantum mechanical treatment of electronic transitions in atom-molecule

collisions.12-17 12

The early work of Zimmermann and George ° compared the
use of diabatic and adiabatic representations. In the adiabatic
representation coupling between different electronic states introduces
first-derivative terms in the coupled-channel equations. Zimmermann and
George solved the adiabatic coupled-channel equations by transforming the

N second-order differential equations into a set of 2N first-order

e s B e s e s Bt e e A e o a4 Al mlalale a..mlalala ae.a’aYalata e \j




differential equations. Baers approach13 to the problem sought to obtain
coupled channel equations that could be solved using the efficient
computational algorithms developed for second-order differential
equations. In his approach a transformation is made from the adiabatic
representation to a diabat?c representation in which all coupling arises
through off diagonal elemeﬁts of the potential matrix. This approach has
been applied to collinear atom-diatomic collisions but is limited to
systems in which only two electronic states are important. More recently
Rebentrost and Lesterlé hdve used a similar diabatic transformation to
treat the nonreactive F + H, problem in three dimensions.

The previous quantum mechanical calculation on Na + H, by McGuire and
Bellum6 used the two lowest-eﬁergy adiabatic potential energy surfaces as
an approximation to the diagonal diabatic potential energy surfaces. The
off-diagonal terms of the diabatic potential were modelled as gaussian
terms centered on the location of the minimum of the energy difference on
the crossing seam. Cross sections were caluclated Qithin the Infinite-
Order~Sudden (10S) approximation;18 however, the integral over the I0S
angle was approximated using only the 90 degree approach of the Na to the
H, molecule.

In the present calculation we describe a new method for calculating
electronic transition cross sections using adiabatic potential energy
surfaces and the nonadiabatic coupling terms as input. In this approach
we use a mixed adiabatic-diabatic representation in which the motion in
the diatomic internuclear distance is treated diabatically and the motiom
in the Na to center-of-mass of Hy distance is treated adiabatically. Ve
use the I0S approximation and converge the calculations with respect to

the numerical integral over I0S angles.
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[T U IC SO SSNIE TSNP I WL SRS EUP S AP S SRR S AP A._x-.h_.-s._.g_“.—k-‘-i



In section II we present the details of the new theoretical method
and in section III we present details of the computational procedure.
Section IV contains results of the calculations and section V presents a

discussion,

II. Theory

We consider the collision of an atom A with a diatomic molecule BC,
where R is the distance from A to the center of mass of BC, r is the BC
internuclear distance, and y is the angle between the R and r vectors.

Within the I0S approximation the total Hamiltonian is given by19

-
» .2 _ h? 32 h20(2+1) i
: Hios = ~ =R wz R+ —5mr— * Mine (1)

where u is the reduced mass for the R motion. The Hamiltonian for the

v
o

v
5 e A

u

' RN

internal motion is given by

3 _ _ _h% 3% h23(j+1)
Hine = fuBCr'a—f"z'r + -éuscrz He1 (2)

-
e
0

L
'

where yg. is the reduced mass for the r motion. The Born-Oppenheimer

I

v

electronically adiabatic wavefunctions are eigenfunctions of the

Ok 4
Vo

electronic Hamiltonian Hel

4 Hey ¢:A(§,r,R,Y) = V2A(r,R,y)¢zA(i,r,R,y) (3)

where x is the collection of electronic coordinates and VnaA(r,R,Y) is the

electronicallr adiabatic potential energy surface for electronic state n.

Within the 10S formalism the internal and orbital angular momenta, j and

2, are constants and are not coupled with the electronic angular momenta.




F

The total wavefunction for an initial state %y is expanded in

eigenfunctions of the internal Hamiltonian
wiz(iyrleY) = R-lzw‘l(i’r’R’Y) Xga (R!Y) (4)
° a 0
where
! - ! (5)
Hint W‘l(f_yr,RaY) - EQ(R,Y) 'Ua(_X_oI‘,R,Y)

The wavefunctions for the internal degrees of freedom (x and r) are
obtained as follows. For a fixed R and y a transformation is made to a

17

representation which is P-diabatic™’ with respect to the r motion

dA A
o1 (X,R,Y) = ;uﬁn,(r,R,y) ¢:A(£,P,R,y) (6)

This transformation is defined by

3

37 Ynnt (TIRY) = - }n: Fan (CRY) w0 (r,R, y) (7)
where

£ (FRy) = < o™(x.r.R )| 2y 42A

nn . n (TR g | e (xR, y) >x (8)

and the subscript on the matrix element denotes the variables integrated
over. The internal wavefunctions Wa(ivr-R,Y) are expanded in this P-

diabatic basis

Blxr,Ry) = 0 z 07 (et Ry Y) o, () € Ry (9)
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where Qv(r) is a vibrational basis function. Substituting (9) into (5)
*

- *
and closing from the left with S dx [ dr r? ™! ¢:A (x,R,¥) o, (r)

yields the eigenvalue equation

Hey dey = dey Br,yp (10)

where the matrix elements of the internal Hamiltonian are given bv

j _ * h2 az hz.("‘-l)
Hovonty i (Rey) = ﬁr ov(r){ [-ZJEW + 2JY ]Gnn'

ZuBCr

A
+ Vgn,(r,R,y) } oer) (11)

and the potential matrix vnn’qA is given by
!éA(tpRyY) = ET(F,R,Y) !?A(P!R’Y) E‘P9R9Y) (12)
The close coupling equations for a fixed y are given by
| * i i
fd.’.‘. fdr rzu\lrl,(i,r,R,y) [H%OS' E] ‘l"ao(g_,r,R,y) = 0 (13)
Substituting equations (1) and (4) into (13) gives
1 h? 2 h28(2+1) i .
(L5 & - 22 o,
h? 3 9 h? 3 2
u Fara®Y) 5 - m%-a‘&ﬂ} 2Ry = 0 (14
o

The coupling terms are defined by

Fgua(RyY) = < wg.(i.r.R.?) | 'g_R l wg(i.r..R,y) >£’r (15)

2
Cg.a(R,Y) = < wg|(iyr,R,Y) | gﬁy | wg(i,r,R,y) > (16)




............

Using equation (9) these can be rewritten as

_ J \
Fl, R,y) S e®mn[FLend, @
nvn
+ 8 , % c, @ )]
nn' 3R “n'v,a Al
where
nn'(R’Y) = (X R:Y) l éﬁ :}o\(_x_sRsY) >X
and
dA
G(!'(I(R’Y) = z C av(R’Y) [Gnn|(R9Y) C}]\ v a(RvY)
nvn'
dA 3 J 3?2
*2F 3 Che (R’Y) * St 3Rz €
where
dA a2 dA
nn,(R ) o= <o (R | 3 | 6 (xR, Y) >

Je

The radial wavefunctions Xaa (R,Y) are subject to the standard

(¢}

boundary conditions19

xaa Ryv) lgg = O

and

3 H . ?]
Xaao(R’Y) ';:: kja{ Gmo exp[-i(kj“R am/2)

Sgio(y) exp [i(kjaR - QWIZ)]}

where the asymptotic wavenumber is defined by

Kyg = % [E B Eg(R'Y)] IR-»o;

(17)

(18)

(R,Y)] (19)

(20)

(21)
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Opacity functions can be defined for each value of j and 2

. 2oy o2 (24)
o i s - st |
Paao ) f day siny | %% %

and the total cross section for transition from initial state j, to final

state o summed over all final j”s isl9
oj ™ Z pi (25)
=
aao ija 2 ot

IIT. Calculational details
A. Vibrational basis functions
The vibrational basis functions are chosen to be eigenfunctions of J
the asymptotic diatomic Hamiltonian. For the Na + Hz system, all of the
electronic states considered sorrelate asymptotically with Hz in its
ground electronic state. Within the DIM formalism, all electronic
coupling vanishes for Na infinitely separated from H2 and therefore the
asymptotic diatomic Hamiltonian is simply that for a vibrating, rofating

diatomic molecule. The vibrational basis function are defined by

hz 32 h2j(§+1)- = - (r) (26)
[' Zuge or° ML VBc(”)] p, (1) OvE T

where V,.(r) is the asymptotic BC vibrational potential. The basis

functions are expanded in a harmonic oscillator basis, {hk(r)},

ov(r) = Zk: hk(r) Ay (27)

All integrals over r are done by Gauss-Hermite quadrature; both for the
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integrals necessary to define Dv(r) and the integrals necessary in
computing ﬂh}g,r,R,Y). The numerical values of the vibrational basis
functions are. stored on the grid of quadrature points {rm}:=lto be used in
subsequent numerical integrals.
B, P-diabatic transformation

Equation (7) for the transformation matrix u is solved by the Magnus

method.17 The transformation matrix is only needed at the Gaussian

quadrature points and we approximate it as follows

aA R
l_‘_(rm+1aR1Y) = exp -(rm+1-rm)f- [%(rm+1"'rm)3R! {] E_(rmyRyY)

The choice of u at the first grid point is arbitrary and the final results
of the calculations are independent of this choice. The exponential of a
matrix is evaluated by the method of ref. 20.
C. R-matrix propagation

Equation (14) is not solved directly for the radial wavefunctions,

instead we use the R-matrix propagation method21

to obtain a global R
matrix for relating the radial wavefunction and its derivative a lérge R
values. The S matrix is then obtained from the R matrix. The method for
treating electronic transitions within the R-matrix propagation method
when the input is in an adiabatic representation has been previously
presented.17 In brief review, the internal basis functionS'hmﬁﬁ,r,R,Y) are
chosen to be independent of the radial coordinate R within each sector.
Propagation across a sector can be easily expressed in terms of the
eigenvalues of the internal Hamiltonian, Ei(R,Y). The coupling between the
internal states arises at the sector boundaries in transforming from the

internal basis furctions in one sector to those in the adjaceat sector.

It is the defintion of this sector transforrmation matrix which is the most

(28)




difficult aspect of applying the R-matrix propagation method.
The transformation matrix from sector i to sector i+l is defined by
i+l

Ti&%+1(Y) - < wg(ivrfﬂé’Y) | ¢g'(i’r’Rc ) Y) T (29)

where Rc1 is the center of sector i. It has been shown that this can be
approximated by

i i+l Li+l i i i+l
cn'+ (y) = exp (RC - RC) Fgm,[%(RC + RC ),Y] (30)

where F(R,Y) is defined in eq. (17). We use an alternate method to obtain

Ti’1+1(Y). Substituting eq. (9) into eq,(30)

al
iai+1( ) = Z C"l a(RC’Y) fdr o (r)fdx d)dA (x,r, Rc,y)

a nvn'fv!

i+l.\() Py ,(r) C ty a"Ri+1 Y) (31)

dA
¢nv(_7_‘_’r R
Howvever, the P-diabatic basis functions ¢n (EJR,Y) are, by definition,

independent of r. Using this fact and substituting eq. (6) we obtain

phedeloy cd (Ri,Y) on (0 RL,v) 'ri i"Pl(r,y)
o Y \ nv,o C ) C

nvn mm
1+1 j i+l

u (r,R c »Y) Cnv a‘(RC »Y) (32)

mlnl

Since the 1.h.s. of eq. (32) is independent of r we can choose any value
for r in the r.h.s. of this equation. We use eq. (32) where we
approximate the overlap of the adiabatic electronic state between sectors

by

i A, i+l
nn1o+1(r y) = < ¢;81A(.’.‘.“"RC'Y) | ¢?\"5’r’RC ) >3‘. 3
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Figure Captions

Potential energy contours for the three lowest adiabatic potential
energy surfaces VnaA(r,R,E) of Na,; parts (a), (b), and (c) are for
n =1, 2, and 3, respectively. The energy contours are plotted as a
function of the Hz internuclear distance r and the distance from Na
to the center of mass of Hz R, for a fixed angle, ¥ = 90 degrees.

The contours are evenly spaced at 0.2eV.

Adiabatic potential energy curves VnaA(t,R,t) and diabatic potential
energy curves VnmdA(r,R;A) for NaH,. The curves are plotted as a
function of the H, distance r for fixed Na-to-H, distance R and for
fixed angle ¥ = 75 degrees. The diabatic potential curves are
defined by eq. (12) and are diabatic only in the r motion. For parts
(a) and (d) R = 3ap, for parts (b) and (e) R = 4ajy, and for parts (c)
and (f) R = 5a;. Parts (a) - (c) show the three lowest adiabatic
curves (solid lines) and the three diagonal diabatic potential curves
(dashed lines). Parts (d) - (f) show the off-diagonal diabatic
potential coupling curves: 1,2 (solid); 1,3 (short dashed); and 2,3

(long dashed).




COHPUTFITIONRL STUDV OF NONRDIH ATIC EFFECTS IN

RTON HDLECULE RERCTIVE SCRATTERINGCU) CHENICRL DYNAMICS
CORP COLUMB GARRETT ET AL. 15 Nov

UNCLASSIFIED AFOSR-TR-83- 8082 F49620 -81-C-0846 G 7/4

J

| AD-A125 135

NL

fuug




W TR TN LR e TS o R T R "D Wi g Al A et e
RTINS PLINPIDPA I, L I A R M IS ARSI » LI T T S I, Jart, s s P S

eereefEEEE
FEEE

' NATIONAL BUREAU OF STANDARDS-1963-A . "qi
‘gt

'c..";‘ —‘-g

)  aSum e - w4




h ) _ EaL N AN I A VA T P S ", M S S P Y
o i T N s N S e . At o W v, DM Tl R A P T Y T A S S
oW AL e AL IR ML NP SO AT I A St S I AL A N L PAIL W SR Vol At Sl Sell - R WLt T,

-t A

T
L
[REN
la

[f_ Figure Captions
! 1. Potential energy comtours for the three lowest adiabatic potential

S energy surfaces VnaA(t,R,t) of NaH,; parts (a), (b), and (c) are for

n=1,2, and 3, respectively. The energy contours are plotted as a

—~ov
.
-

function of the Hz internuclear distance r and the distance from Na

LT J

v
e

to the center of mass of “2 R, for a fixed angle, ¥ = 90 degrees.

The contours are evenly spaced at 0.2eV.

",'.'.’
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2. Adiabatic potential energy curves vnaA(r,R,t) and diabatic potential

energy curves vmdA(r,R,t) for NaHz. The curves are plotted as a

TR
D)
~fat

function of the H, distance r for fixed Na-to-R, distance R and for

h fixed angle ¥ = 75 degrees. The diabatic potential curves are

- defined by eq. (12) and are diabatic only in the r motion. For parts
g (a) and (d) R = 3a,, for parts (b) and (e) R = 4ay, and for parts (c)
! and (£) R = 5a,. Parts (a) - (c) show the three lowest adiabatic
curves (solid lines) and the three diagonal diabatic potential curves
é‘- (dashed lines). Parts (d) - (£f) show the off-diagonal diabatic

"_: potential coupling curves: 1,2 (solid); 1,3 (short dashed); and 2,3
lL'; (long dashed).
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APPENDIX D

An Iterative Approach to Reactive Scattering
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AN_ITERATIVE APPROACH TO REACTIVE SCATTERING

This appendix presents the results of research to extend the iterative-
variational methodl’2 to reactive atom-molecule collisions. The rationale for
this work is the following:

® The standard reactive scattering methods limited in the number of coupled
equations they can handle (<200), thus limiting accurate close-coupling
treatments to nearly thermoneutral reactions involving hydrogen
abstraction.

® The standard reaction coordinate methods are limited by the use of mass~
weighted coordinates, and hence are difficult to apply to small skew~
angle systems. This comment does not apply to so-called hyperspherical
coordinate schemes, although the limitation to systems of the order of
100-200 channels does.

® The standard close-coupling theory (using Cartesian coordinates) contains

nonlocal potentials to account for rearrangement. These nonlocal

potentials arise in the same manner regardless of whether the exchange

involves electrons or nuclei.

® Iterative methods have been very successful in treating nonlocal

potentials that arise in electron scattering theory. A similar iterative

method has also been successful in solving large (>500) sets of coupled
equations for inelastic atom-molecule scattering.

These observations suggest that an iterative method might form the basis

for a theoretical approach to reactive scattering that can be applied to a much

wider class of problems than can refinements of current reaction-coordinate

methods. The rest of this section presents a discussion of our preliminary

research in this area.

B.l INELASTIC SCATTERING

This section describes unpublished extensions to the iterative method as
it applies to inelastic scattering. Consider an atom A colliding with a target

molecule BC, with the Hamiltonian (refer to Figure 1)

R a = 2 !ii 2
H Y& - 2 V2t V(R,r,y) (1)

A -t a® . - » " 7. -
hy B S - P N A T T A . S P P P
R . S . T e Y e e e e TR LT T e T e e et

P W N ) i PR RPN RSP 2P L APUN I LSO Wh W )




> >
where the coordinates r and R correspond to the BC internuclear vector and the

vector from A to the BC center-of-mass, respectively. y is the angle subtended

by K and ¥. The reduced masses are given by

m:

and
m, m, m
A
. (3)
mZmA mB+mcs
H is more convenient when the potential is partitioned into a term

corresponding to the BC molecule and an interaction term

V.. = Lim V(R,r,Y) 4
BC ~ pon (4)
vint =V - ae . (5)

so that the moleculear and total Hamiltonians are

- 2 .
Agc = - 28 "r * Ve (6)
o212 o, Lk ;

21 R 9R? 2uR? tHpe + Vi (7)

where L(R) is the orbitzl angular momentum operator. We now seek solutions

for a specific total angular momentum of the form

N
S - A U,g (q)

v = Z xy (1.5 i (8)
1=

R

where i={n,j,%} and £={n‘',j',2'}. X; are chosen to be eigenfunctions of Hon

and of total and orbital angular momentum.
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A variational principle is used t. cbtiin the coupled equations

I-= fd?»dﬁ v (g-E) vf (9a)

=dezi:-2u if if fda Z:Uifw (R)U (9b)

_ nl  w N S 92)
’_[daz.:m'lz deZ” SRV Uge - 50 Usg if g (92)

wiere

v

drdR Xi Vint Xj (10)

—

The best solution, the one that leaves I stationary with respect to arbitrary
variations in Uif (endpoints held fixed), is given by the solutions to the

differential equations

Ui J(R) = & ZW (R) Ujf(R) (11)

which can be solved by a large variety of numerical methods, provided the
number of coupled equations is limited to less than approximately 200. We
proceed now to cast these equations into ; set of algebraic equatioms, to
dramatically increase the number of equations that can be simultaneously

solved., We introduce a basis ‘or the radial functions, i.e.

N
g
Uif.(R) = §1¢m(a) cm (12)

The variation principle then 1leads to a set of algebraic equations for the

------
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coefficients C; . By virtue of equation (9c) the basis functions ¢;, need only
belong to the class of continuous functions and need not have continuous first

derivatives; i.e. the basis may be peicewise analytic. This last observation

suggests that the finite element method3

can be used to advantage in solving
these equations. We divide the range of R into a grid { R, < Ry <...< RN} and

choose the ¢ic such that

| O RsR _,
¢ia(R) = 1 R = Ra (13)
O Rz Ra+1

With this choice Cia = Uif(Ra)’ Rolding the endpoints fixed, the variation

principle gives the NCX(NS-Z) algebraic equations

Ne Ng

. ZZ K C. = 0 = 2 3 eee N o

3 ia, jB 7B a N N _-1 (1
2 j=1 B=1 g 4)
t

v where
!! K - dR LI 1 %

; ia,jB 2t %1 ¢jB 6ij - dR 50 Wij ¢j3 (15)

K is a symmetric, banded supermatrix (Figure 2) because of our definition

of the ¢, in Eq. (13). Each block labeled by (a,B) is of dimensions N XN_.
Since the solution must be regular at the origin, we know that Cil = 0,

For any choice of GiNg these equations may then be solved.

1 it is important to stress that it is the banded symmetric form of K that

3 makes this approach attractive. All data may be processed sequentially, thus

avoiding the heavy use of direct access I/0 that characterizes the previous

: implementation of the iterative method. Therefore, even when K is too large to

. fit in core, the solution of Eq. (14) is of comparable effort to a single
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_ . numerical integration of Eq. (11).
. Addictional attractive properties of this approach are 1) there are no
&
{;: stability problems, even for solutions beginning with incorrect boundary
conditions at U.e(Ry ) and 2) with a judicious choice of ¢iu(R)’ as discussed
g! below, the number of grid points Ng can be considerably reduced over the number
{; required for standard numerical integration. Thus this approach shares a
X desirable trait of the more popular invarient-embedding methods in molecular
?E scattering theory‘.
s
The ciN are, of course, not known in advance. However, they can be
r g
N expressed in terms of the others
*
o Cmg = Uif(nNg) = & bip - €8¢ (16)
[
N
where
‘ 1 .m
= 1”2 i
A = ki exp [i(kiRN -2 )] (17a)
I
! 2 . A, 8C 2 (7%
= ki. ﬁz ( % - ) N )
-
Eg The S-matrix eiements can be expressed as
c =50, + (3) (A W, U, & (“8)
2 1 % Syt (z”nz’%. Y1 iy Tye
wnere
2 g =d gLy
£y X" = 2 o (20)
E ~ hz ~ o~
> and )
- #
oy xif(RNg) =€ 8, - 8], (21)
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!! Substituting Eq.(18) and Eq.(21) into Eq.(16) leads to

E i BiNg.jB cjs xif(RNg) (22) {
’ j=1 8= ;
. where :
T.: B = (5 () Xirs Why, 0., dR + & (23)

”:':.‘ iNg'jB 2 hz i j‘i j'j jB iNgljB :
2 i i

Eqs.(14) and (22) together result in a set of ch(Ns-l) equations for ch(ug-l)
unknowns ‘
| SR (24)
where
& = GBNS Xjf(RNg) (25)

and K has the structure shown in Fig. 3.

Eq.(24) can in principle be solved directly for Sif in a noniterative
fashion. However, such a solution is unrealistic for large Nc because Eq.(22)
destroys the banded symmetric nature of X, Therefore, we introduce the

following iterative procedure: Let
K* = K° +K! (26) -

where K’ is banded symmetric and K' is zero everywhere except in the last

block of rows (iNg). Let

gt =3 (27a)
and
&g =1 .3 (27%)
Let
-~ 1
. " =Y d; g (28)

i=1
We choose the d. by minimizing

i
1 1 I' = |ké". :Iz

(29)
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subject tc the renovmalization constraint
2: o, = 1 (30)
i
This leads to
e 4
q = i (31)
Zdi
i
where
_ -1
q = g: (J )ij (32)
S el ¢
3y = 8 A (33)
dlu .
B#o- g (. (34)

Equations (27) through (34) are iterated until convergence is achieved.
An excellent choice of basis functions ¢ia is obtained by using

eigenfunctions of the equations
_ 2
o1 (R) = = W (R) o, (R) (35)

These equations are solved and the integrals, Eq.(15), are evaluated
numerically by a suitable quadrature. With this choice, our basis functions
alvays have the correct local behavior, thus improving comvergence, and go to
the proper asymptotic limit when

w“ =0 i#) (36)

This means that at long range the grid spacings may be much larger thac the

local wavelength, and that RN may be kept relatively small, even in the
e
presence of coulomb interactions.
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B.2 REACTIVE SCATTERING

e now consider an extension of the iterative method described above to
three-atom rearrangements A + BC + AB + C but exclude breakup A + BC > A +B +C

since we are still limited by Lippmann-Schwinger boundary conditions. We

expand our solutions as5
Noe
Bf _ > ~ U (R )
P = D0 D gy ey Sl (37)
a=a,be i=1 Ry

where the arrangements a,b, and ¢ are shown in Fig. 4. The radial functions

have the boundary conditions

*
8, 8

Lim U, (Ra) €41 S5¢%8 - saiaaiasf (38)

R +o 0i.Bf
@

Again, we expand in a peicewise analytic basis, ¢ ; .»

N
ag
Uai.Bf(Ra) N o§1 d’aio‘Ra) caio (39)
Variation of the caio will lead to the set of equations

B)j% fat0,850 %830 = ° =23 e Ny~ (40)
We use integral expressions for the S-matrix elements to provide an additional
equation for each arrangement channel. The resulting algebraic equations will
be solved iteratively as in Eqs. (27)-(34).

The method discussed for inelastic scattering in the previous section can
be taken over without alteration to the reactive case. There are differences
in application, however, that will now be considered.

First, the matrix elements will now form & supermatrix of

Rata,890
supermatrices, the block structure being shown in Fig. 5. The diagonal blocks
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witha =B contain identical integrals to the inelastic case in Eq.(15). The

elements of the off-diagonal blocks are more complex, involving overlaps of the

—
sl

nonorthogonal functions Xai(;u’Ra) and XBj(;B’RB) . These blocks are not

banded, since the functions¢h10(Ra) will in general have nonzero overlaps with

functions for other arrangements. The off-diagonal blocks are obviously the

exchange interactions and are matrix elements of the nonlocal exchange

CE e e gma g0y o gt

rvTeor
Ve
R

kernalss. The associated expressions for the S-matrix elements are

A

::; consequently more complex than Eqs.(18)-(21).

T In addition, the matrix Ef of Eq.(26) no longer consists simply of the
Es boundary condition Eq.(22). Since 5} is no longer banded, Ef can be chosen by
] constructing parallel lines to the diagonal as indicated by the dashed lines in
&i Fig. S. The bandwidth can be chosen consistent with the speed and size of the

computer being used. ‘5? will include everything inside the band. 5} will

include everything outside the band in addition to the rows coming from the

%2 boundary conditions Eq.(22). It is this aspect of 5‘ which simultaneously
includes the boundary value problem of inelastic scattering and the nonlocal

‘ !! potential problem of rearrangement scattering that allows its treatment within
I §5 a2 single iterative procedure. Although is more complicated in the reactive
; ks case, the iterative procedure still retains its sequential processing property.
ff This is extremely important for the development of a computationally tractable

: method on the new generation of supercomputers, with their enormous fast-core

ti memories and core-like (fast) online storage, and vector processors. These

‘ extremely large and fast machines will enable an iterative sequential-access

X
1y

Pt

procedure such as discussed here to handle thousands of coupled equations,

RN
.

which, psrticularly with decoupling techniques, will open up a large number of
processes to theoretical investigation that are beyond the consideration of any

existing method. .
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FIGURE CAPTIONS

1.

Coordinate system for three-atom nonreactive scattering. The origin of R
is the center-of-mass of the BC molecule.

Schematic representation of the banded supermatrix K.

Schematic representation of the matrix_gl.

Coordinate system appropriate for rearrangement scattering. The center-
of-mass of each diatomic fragment 1is the origin of the corresponding
vector to the colliding atom in that channel.

Schematic representation of the supermatrix occuring in the extension of
the iterative method to reactive scattering. Each diagonal block is
identical to the corresponding block of the inelastic case. The inelastic
5} block is replaced by the region inside the heavy dashed disgonal lines
and outside the banded region, and is chosen as appropriate for the

problem at hand and the available computer resources.
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