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Resonant Prequencies and Damping of a Liquid Drop With a Rigid Spherical Core

by C. A. Morrison

Abstract

Rayleigh's method is used to obtain the resonant frequencies of a liquid
drop with a tigié core. The decay time of the drop is calculated by using
Rayleigh's dissipation function and by assuming that the fluid in the drop and
the external medium are viscous. It is shown that special cases reduce to

known results. o —
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" 1. INTRODUCTION

3, In the formation of small hail within the atmosphere, conditions exist in
'5 which the inner core is ice, with a layer of water on the outside. Such a

fz composite drop has resonant frequencies, and if both the air surrounding the
. drop and the liquid of the drop are viscous, these resonances are damped.

~’ Such resonances and perhaps the damping may be observed by techniques used to
i observe oscillations in completely liquid drops.l”3

S In this report we investigate the resonant frequencies and damping for a
e

o composite drop. Both the liquid of the drop and the external medium (air)

B .
L - will be assumed to be viscous. The technique used is *hat of Rayleigh,“ which
: we have used previously for determining the resonant frequencies of a liquid
:f ) drop in an electric field.® The damping will be treated in a manner similar
"

bt to that used in Morrison et al.5

3

:

'_'_3' 2. KINETIC AND POTENTIAL ENERGY OF THE DROP

=4

The inner rigid core of radius b is surrounded by a fluid of

.

34 density pi and viscosity “1' The exterior of the drop of quiescent radius a
_‘, is surrounded by fluid or air of density Pq and viscosity “o' As in our

i‘j .

' previous analysis,5 we assume that the outer surface of the drop is given/by'
‘l.". '

j r(0,t) =a (t) + ] a (t) P (cos a) , (2,11)
o ‘ o n P n

2

-

g - *Equation numbers containing an | are found by that number in reference (5).
;} Thus, (2.11) is (2.1) in reference (5).

4 .
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where the prime on the sum indicates that the term n = O is missing. The
constraint that the volume of the liquid contained in the outer shell is
constant is the same as in Morrison et al.5 To show this, we see that the

volume of the liquid in the drop is
1 r b3
v-aaL (—;-—3-) a |, (1)
vhere dy = -d(cos 6), and the equilibrium volume is given by
vella®-vh . (2)

If the result in equation (1) is egquated to that of equation (2), the wvolume

of the inner sphere cancels, and the constraint becomes identical to that of a
liquid sphere, giving

2
I N L S
‘O L ‘(1 ‘2. ‘2‘ m + 1) . (2.21)

The energy due to surface interface tension, v, at the ocuter surface is

obvicusly the sams as in Morrison et al,S or

sﬂ- 1!‘“#2! 2]

2(2n + 1) .n . (2.31)

U, = dvy [a2 + E'

R e T R T o T T Mo Co i e e o




s LT oL Lrv s DML S A, VLR SALR KL IR e A M ASASRC AL OUERER D A |

%

We shall assume that the welocity of the fluid in both regions is

.

o
£
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S
O

derivable from a velocity potential, so that

!

'1 . - V’i ) b<r < r(dt)

< AL N
LA

)

P v, =" v’o e(6,t) <z , (3)

s with ¢1 and ¢° given by suitable sclutions to Laplace's equation. The total

kinetic energy is then given by

»

b X 29
PSP S ot 3

LAy

T -% oy J ("1)2 ar ¢-’5 po [ (voo)’dr . )

ad

wvhere the wlume integrals cover the regions given in equation (3). The

volume integrals in equation (4) can be converted to surface integrals by

A '««i, 23

[ (v)2ar = [ o(V8) » 40, (s)

where 40 is the incremsntal surface area directed cutward from the wlume.

% Using this result in the first integral in eguation (4), we get

Ly

1 Yy
2 2 a
[ (v0,)" ar = 2x [ auz®io,e) o, <2 :::(o.u . (6)
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*{ ‘ vhere all the functions in the integrand are evaluated at r(9,t) and vhere we
; have used the condition Vo= 0 atr =b. The second integral in equation (4)

can be evaluated in the same manner to give

£ _

- 1 ¢ ‘

& , 2 - 2 o .

X [ (V9" at = -2x {1au r7(8,t) ¢ 35| rer(o,t) 7
where we have assumed that v, = 0 at r + =,

: The results given in equations (6) and (7) can be used to obtain the

N

A ) kinetic energy in equation (4) once the welocity potentials are determined.

5' The appropriate solutions of Laplace's equation for the two regions are

A o

3 01-2(%1-‘#:3“)?“(0« 8) ,b<r<cre(ot) ,

b nr

.

R c

5 0,'{‘;&1"“‘“‘” s 2(0,t) <2 C®

] nre

Py (8)

"

2 vhere An' 'n' and cn are constants to be determined by the boundary

4 oconditions. Also, in selecting the appropriate solution for the exterior

region, (r > z(0,t)), we have chosen the solution that vanishes at infinity

" because ve assume that the fluid is at vest far from the drop.

b

T T . Tk iy }v"w’?_‘ =y
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Before obtaining explicit expressions for the constants in equation (8),
it is convenient to evaluats the terms in the kinetic energy by using these
expressions. Por the exterior region, we use the second equation (8-) in
equation (7) to obtain

2

c
‘ 2 (n + 1) n
/ [wo) dt = -4:'); W) _az“'" ' (9)

where we have taken r = a in the integrand of equation (7); higher order terms
give corrections of the order a:, vhich we are ignoring. Using equation (8)

in equation (6), we get for the interior region

2 ‘2n+1 . (n + 1)An An
f(v’i) dt = 4w n-——zn rer] [nnn - o ] (g + o 1)_ , (10)

where, as in equation (9) we have taken r(6,t) = a for the same reason as
given in the derivation of equation (9). The results given in equations (9)
and (10) can be used to calculate the kinetic energy once the constants are

2: evaluated.

Since we are assuming the inner sphers to be rigid, we have V= 0 at

r = b, and by using equations (3) and (8) we obtain

) 2n+1

-L
An e 'n . (1)
5

-
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3 At the boundary r = r(6,t), we have the condition that vy = ;(O,t). Then from
f equations (3), (8), and (11), we get

R} _;

X -—n

) | '

vhere
it
g b 2n+1
+ _

7| I'n .- 1 - (‘) . .

"_= ) For the external region, we have from equations (3) and (8) the result

% '

3 I

Cn "G+ % (13)
X

!

A The results given in equations (11) and (12), when substituted into equations
: ( ),

2n+ 1 -nl_ja

£ 2 3 n’n

/ [ (Vo )ar = am” | oy or. (4
+ n n

!

': Similarly, when the result given in equation (13) is substituted into equation
3 v

(9), we get

Fi
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% : 2
3 2 3 %n
J (ve,)" at = 4va E TR RN (15)

Finally, the kinetic energy is given by using equations (14) and (15) in

At a .
Al e Sy

equation (4), or

X

l1

4
3 p,(2n + 1 - or ) P

L 3 ot § n (") 2

3 T = 2m E G nims 1)rn+ TR (16)
T In the absence of losses, the results given in equation (16) and in
’JQ’ .

equation (2.3I) can be used to obtain the equation of motion for the an[L =7

N 4 3L _ 3L

- Uy and 3= s - 3o = 0]s see equation (2.81).

a n

) n .

pi(zn +1-nr) a,

& 2’ nrn —+D]m+ Y(n-1)(n+2)a =0 . (17)
:‘

X The resonant frequency, w for a, is then given by

-

o ! 2 Y(n = 1)(n + 1)(n + 2)aT

] Un = 3 g . (18)
':'i a [pi(Zn +1 - nl‘n) + ponl'n]

%
& Several checks on the validity of equation (18) can now be made. If in

equation (18) we let b = O(T_ = 1) and Py = Or ¥e obtain Rayleigh's result,"

Bodo ot  ALESd

i 2 _Yn - 1)n(n + 2
P Wt =X L (19)
;# n 0 a3
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% Of course, if b = a(I‘n = 0) and there is no fluid to oscillate, consequently
‘ w = 0 results. If we let b = 0 in equation (18), then we obtain the resonant
. frequency of a bubble in a liquid or air as
4
2_yln-1)nln+ Vin+2)

¥ " 33[(n + 1)p, +np_|] ’ 0
. pi o

-1

§ and this is identical to the result given by Lamb.S

:

\1 . 3. LOSSES DUE TO VISCOSITY

Al

'j As in Morrison et al5 we shall calculate the Rayl,:l.gh dissipation factor,
! R, to include losses due to viscosity in the equation of motion for the

N a (t). The form given by Landau and Lifshitz? for the dissipation factor is
N

R=tn [ (W) . de (21)

R

‘_ wvhere n is the viscosity of a particular region and do is the incremental area
F S

i directed ocutward from the volume enclosed by the surface.

8

) We shall consider the region b < r < r(8,t) first. For the surface

]

s rs b' we h‘v‘

by

1

N 8
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oy

~

do = -Zu'rzdu ’ (22)

ey
%
g and since v, = 0 at r = b, we have
TN .
!
2 2, 3%
. dg * Vv = =2%r“ap 5 ° {23)

A.),
’ v i
WA e

n L

Using the result of equation (23) in equation (21), we have

v N
".
wi

o . (2n + ni:
3 [ (+") ¢ ao = 8x ] - ' (24)

n (n+ 1)na2n-2l':

It
2 for the surface r = b, PFor the surface r = r(9,t), we have

¢ as?
[(sz)-ao-a:{—-g-[n-v--"-‘-m-’-ﬁ-r:)] . (25)

n nl n+t
n
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o A EEEAER P NN

R T e A
ERN g A

o et F

B T B 122 7 e T (o O N A P S




TR
P E ¥ IV

a8
LX)

‘Q..‘t

i S it T
3 Vg 4 -
Belofiia . 4.4 .

et

%als

abet 3§ Fu
ot S

HOL-TL-83-3, February 1983 .

The total dissipation factor for the region b < r < r(0,t) is then given by

qembining equations (24) and (25) to give

*2

*2
a 2(2n + 1)a
- n _ 4 _hin +2) - 2 n -
R, =4ama ] {5 [n-1 - (-1 )]+ 3 (V-1 0} .
n nl n(n + 1)I'n
‘ (26)
For the exterior region, we have
2 {n + 2) 2
I(Vv)-da-Swa!}_; e el S (27)
and the dissipative factor for the exterior region is
(n + 2)a2
R, = 4ma ) o 1 . (28)
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The total dissipative factor is given by equations (28) and (27), and if this

is used in Lagrange's equatlions,

a 3L _3L _ _
ac .2 %, 2
n n

’ (29)

with L= T - 0s and R = Ri + Ro' then we have

s Pi(2n #1 -nr ) . P 15 . axy(n - 1)(n + 2{:2
n(n + 1)(2n + 1)1‘n (n+1)(2n+ 1) "n (2n + 1)

(2n + 1)(V =T )
4-

1 nin + 2 2 17y o
- - omafty (- 1~ BELR (o p 2 }a
1 nl‘2 n+1 n ] n(n + I)P: "
8 n+ 2y °
-ema(—3) s, . (30)

If we assume a time dependence of the form e-iut in equation (30), we find

that the decay time (imaginary part of w) is given by

azr
n
T

- —e————— v (31)
n (2n + 1)Dn

vhere b =nf(a®-1-nm+20-1)%+ @m+n0-r1_)}

+ n, ni(n + 2) r: .

The resonant fraquency, w, (the real part of w), is given by

------
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2 2 1 42
“p = U (ni L o) - (Tn) ' (32)

1 2
for T <w(n =n =0)and w(n =n, =0)is given by equation (18).

If in equations (31) and (32) we let "o = Po = 0, we recover the result

given in Morrison et al,5 or

a2
O A
n ni(n - 1)
ana

g ICERIILES (33)

3 ’
p;a

where the latter result is that of Rayleigh" and the decay time is the result
of Lamb.® Because of the large number of parameters in the e#pressions

for w (equation (32)) and the decay tinme, T, (equation (31)), no general
evaluation of the results is possible. Hence, it might be better to use

equations (31) and (32) to calculate T and w, and compare the results with

data taken either in clouds or in a controlled laboratory experiment.
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