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c Resonant Prequencies and Damping of a Liquid Drop With a Rigid Spherical Core

* by C. A. Morrison

Abstract

Rayleigh's method is used to obtain the resonant frequencies of a liquid

-4

drop with a rigid core. The decay time of the drop is calculated by using

Rayleigh's dissipation function and by assuming that the fluid in the drop and

the external sodium are viscous. It is shown that special cases reduce to

known results.
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:: 1 • IICOIXUCTI OM

In the formation of small hail within the atmosphere, conditions exist in

which the inner core is ice, with a layer of water on the outside. Such a

composite drop has resonant frequencies, and if both the air surrounding the

drop and the liquid of the drop are viscous, these resonances are damped.

Such resonances and perhaps the damping may be observed by techniques used to

observe oscillations in completely liquid drops1-3

In this report we investigate the resonant frequencies and damping for a

composite drop. Both the liquid of the drop and the external medium (air)

will be assumed to be viscous* The technique used is #hat of Rayleigh," which

we have used previously for determinLng the resonant frequencies of a liquid

drop in an electric field. 5  The damping will be treated in a manner similar

to that used in Morrison at al.5

2 s UINNIC AND POTERTMA =WAMY 0f TIM DROP

The inner rigid core of radius b is surrounded by a fluid of

density pi and viscosity nL. The exterior of the drop of quiescent radius a

is surrounded by fluid or air of density p aand viscosity in.* As in our

previous analysLs, 5 we assume that the outer surfae of the drop is qven by*

r(O,t) w ao(t) + a ntM Pn(cos a) , (2.1 )

* Equation numers containing an I are found by that number In reference (5).
Thus, (2.11) Is (2.1) In reference 5).

1
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where the prime on the sun indicates that the term n - 0 is missing. The

constraint that the volume of the liquid contained in the outer shell is

constant is the same as in Morrison et al.5 To show this, we see that the

volume of the liquid in the drop is

V - 2 w r b dp
'-1

where du -d(cos 0), and the equilibrium volume in given by

4w 3 3V - ~ 3  - * (2)

If the result in equation (1) is equated to that of equation (2), the volume

of the 'inner sphere cancels, and the constraint becomes identical to that of a

liquid sphere, giving

2

Sa(' - -L f) " (22)
a 2 n +I

The energy due to surface interface tension, y, at the outer surface is

obviously the same a in Norrison et al, 5 or

4 [a 2 + ' (n - 1)(n. 2) 2(2.3)
n 2(2a + 1) n

2
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We shall assume that the velocity of the fluid in both regions is

derivable from a velocity potential, so that

,- -V. b C r C r(8,t)

Sv-- r(,t) 4r (3)
0 #0(3

with 4L and 4o given by suitable solutions to Laplace's equation. The total

kinetic energy is then given by

'F. I v.1 2  )2dT
" Pi f (v,) 6 + % f (VY)# , (4)

where the volume integrals cover the regions given in equation (3) The

volume integrals in equation (4) can be converted to surface integrals by

f (V) 2 4r _ I #(V#) d o. , (5)

where de is the incremental surface area directed outward from the volume.

oing this result in the first integral in equation (4), we get

f (V)i) 2 d 2w f dy r2(of ) a -r1O.()

-1
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where all the functions in the integrand are evaluated at r(O,t) and where we

have used the condition vr.- 0 at r - b. The second integral in equation (4)

can be evaluated in the same manner to give

2 1 rl0 3r I 2 re,t)

where we have assumed that vr - 0 at r * *

The results given in equations (6) and (7) can be used to obtain the

kinetic energy in equation (4) once the velocity potentials are detereined.

The appropriate solutions of Laplace's equation for the two regions are

A
*1  I. 3 _+ r a3) P(co.o ) , b 4r 4r(6,t)

n rp+

C4O-n I -- B Pnl(on 0) , rlO,t) 1C r oc a

(8)

wbete An, Sn, and Ca are constants to be determined by the boundary

conditione Also, in selecting the appropriate solution for the exterior

reglon, (r > r(Ot)), we have chosen the solution that vanishee at infinity

because we assume that Me fluid is at rest far from the drop.

4
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3sf ore obtaining explicit expressions for the constants in equation (8),

it is convenient to evaluate the term in the kinetic energy-by using these

expressions. For the exterior region, we use the second equation (8) in

equation (7) to obtain

n +1) aCn+

where we have taken r - a in the integrand of equation (7); higher order term

give corrections of the order a 3, which we are ignoring. using equation (8)

in equation (6), in get for the interior region

(Vi2 d w a2n+1 [B (n + )A n B+ An(0
2n+ 1 a 2nI n a

where, as in equation (9) we have taken rCet) m a for the same reason as

given in the derivation of equation (9). The results given in equations (9)

and (10) can be used to calculate the kinetic energy once the constants are

evaluated@

Since we are assuming the inner sphere to be rigid, we have v. 0 at

r -b, and by using equations (3) and (8) ws obtain

An n+1 an

I ...... .5
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At the- boundary r -r(B,t), we have the condition that Vi - r(6t). Then from

equations (3), (8), and (11), ye get

-;a
SBn =- (12)

na r

where

mm1 ~~ - 2n+1

For the external region, we have from equations (3) and (8) the result

C. - (13)
C n +1) ;n

'lb. results given in equations (11) and (12), when substituted into equations

(10), give

f (V* 1 9drT - 4wa 3 1 (2 +: - nrn n )! (14)

* Similarly, when the result given in equation (13) is substituted into equation

(9,we get

6
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• 2
a

f (V#0 )2 dr 4ra 3  +)(a+1 *(15)S CV 2 d " 4e 3 n (n + 1)(2n + 1)
n

Finally, the kinetic energy is given by using equations (14) and (15) in

equation (4), or

TPi( ,+ I - nr) 0
n- - tn(n + 1)(2n + 1) n 1,)(2n + ,). a n (16)

In the absence of losses, the results given in equation (16) and in

equation (2.31) can be used to obtain the equation of motion for the an[L - T

U- and -- -L - e], see equation (2.8!).
'1~dt * %

3rP(2n + i - nr) ]

nro (n +1) n
n

The resonant frequency, wn, for an is then given by

y(n- 1)(n + 1)(n + 2)nr2 mA ) (18)n a [ i 2 n + I - ]) + p n

Several checks an the validity of equation (18) can nov be made. If in

equation (18) we let b a or n u 1) and PO - 0, w obtain Rayleigh's result,4

2 Y(n - 1)n(n + 2)
n" 3 (19)

7
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Of course, if b - a(r - 0) and there is no fluid to oscillate, consequentlyn
w - 0 results.* If we let b - 0 in equatiLon (18), then 'a obtain the resonant

frequency of a bubble in a liquid or air as

-2 yn 1)n(a + 1.)(n + 2) (20)
n a3 [(n + ) + np 0]

and this is identical to the result given by Lamb. 6

3. LOSSS DUE TO VISCOSITY

in Horrison et al $ ve shall calculate the Rayleigh dissipation factor,

R, to include losses due to viscosity in the equation of motion for the

an(t). The form given by Landau and Lifshitz 7 for the dissipation factor is

NR - j n f (VV 2 ) . da (21)

where n is the viscosity of a particular region and do is the incremental area

directed outward from the volume enclosed by the surface.

We shall consider the region b 1 r C r(O,t) first. For the surface

r - b, we have

8
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do -- 2 rr2dp (22)

and since vr  0 at r = b, we have

d • vv - -2 2 --t . (23)3r

Using the result of equation (23) in equation (21), we have

(2n + 1);2

f (24) o a
n (n + 1)na2n-2 2 

(24)

for the surface r = b. For the surface r = r(O,t), we have

-2

f ( v) do - ! [-[n - "n* 1 , (C -Fj • (25)
n nr

1U
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The total dissipation factor for the region b 4 r ( r(9,t) is then given by

pombining equations (24) and (25) to give

2 2
a 2(2n + 1)a

i a ~ ~~~n(n + 2) 1 ] 1, 1 ;

R j 4w a .,h a  .. [n n " rn 2] +  -r
i '.n nr2  n+ 1 n(n + 1) 2  n

'.. n n (2

For the exterior region, we have

(n + 2) .2
(vd) "do-Swa I a (27)": n

n

and the dissipative factor for the exterior region is

.2
(n + 2)a

R 4w o n (28)

10
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The total dissipative factor is given by equations (28) and (27), and if this

in used in Lagrange s equations,

d L 8L S(2
dt --- - - , (29)

dt n 'an a n

with L = T- Us and R Ri + Ro , then we have

Pi(2n + I - nr n) +o - 4a - 1)(n + 2)a
4wa 3 [(" + 1)(2n + 1)1' + (n + 1)(2n + 1)] an + On + 1)

SnI(n+ 2) (i (2n + 1)( - r n-)

n(n + inJ 2  n
nI
n 2

S8wn a n (30)

If we assume a time dependence of the form e in equation (30), we find

that the decay time (imaginary part of w) is given by

2

n+ nn 2((n + 2) rn
+ nn +2

The resonant frequency, wn (the real part of W), is given by

*1 1, +. . .. ' . . , " / : . " . , . +' ' ', * ; -% + '. ",,," ." , - . " -" : . . -,,+ . . ; " ' , , ' ' . . ' . ' . . . . . . . . . . " . - '
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.

W2 W2 , 0 (32)
n

for _ < n -. o -o0) and w2 - no - 0) is given by equation (18).n

If in equations (31) and (32) we let no Po 0, we recover the result

given in Morrison et al,5 or

2-!n.- ia 2

n n(n~l
and

2 Yn(n - 111n + 2)n 3
Pi a

where the latter result is that of Rayleigh4 and the decay time is the result

of Lamb.6 Because of the large number of parameters in the expressions

for w (equation (32)) and the decay time, T (equation (31)), no generaln n

evaluation of the results is possible* Hence, it might be better to use

equations (31) and (32) to calculate Tn and w and compare the results with

data taken either in clouds or in a controlled laboratory experiment.

1
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