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ABSTRACT

A stochastic fixed-point theorem is used as a basis for the study
of stochastic convergence properties (in mean-squares sense) of the
adaptive gradient lattice filter. Such properties include conditions
on the stepsize in the adaptive algorithm and analytic expressions for
the misadjustment and convergence rate.

Our results indicate that the limits on the stepsize are stricter
than the ones obtained by considering convergence of the mean of the
reflection coefficients and, therefore, only a slower convergence of the
mean-square error can be obtained. It is shown that faster convergence
is achieved for highly uncorrelated sequences (low S/N ratio) than for
almost deterministic sequences (high SIN ratio). The misadjustment is
shown to be exponentially dependent on the number of stages in the lattice
and is higher for uncorrelated sequences than for almost deterministic
sequences.

This paper has been accepted for presentation and publication in
the Proceedings of 1983 IEEE International Conference on Acoustics,
Speech and Signal Processing, Boston, MA, April 14, 15 and 16, 1983.
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I. INTRODUCTION

Research results in various areas such as speech processing [1],

array processing [2], and adaptive tracking [3] have indicated that the "

gradient-lattice algorithms have superior convergence behavior over

classic time-recursive methods such as Widrow's LMS approach [4]. The

majority of this work, however, has been of a primarily experimental

nature. It is the purpose of this paper to provide a theoretical frame-

work for the convergence study of such gradient-lattice algorithms. Since

the convergence of adaptive algorithms is primarily a stochastic problem,

a mean-square criterion will be considered as opposed to the convergence

of the mean of the reflection coefficients, which is mostly used in the

literature [1,3,5-10].

A stochastic version of a fixed-point theorem, which was developed by

Oza [11-12], will provide the basis in establishing convergence conditions

for the gradient-lattice algorithm. Such an approach has been taken in an

earlier paper [13] to study convergence properties of the LMS algorithm

and is based on the notion of a contraction mapping on a "stochastic"

Hilbert space [13]. In the same framework, expressions for the convergence

rate, conditions on the stepsize, and misadjustment are derived by con-

sidering a "distance" measure in the appropriate space.

II. MATHEMATICAL BACKGROUND

1. The Lattice Filter

The lattice filter, as depicted in Figure 1, will formally be con-

sidered as the cascade of elementary operators Ai (Fig. 2):

N
A wiT Ai  (1)

ill
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b1(n) b(n)

Figure 2. i-th Element in the lattice Filter.

IMME



-7- December 8, 1982
GRLS:cac

where N is the order of the filter. Since the input of each element in

the lattice can be represented by the "augmented" vector:

f f 1 (n)1

1±1(n) - L (2)

b bi-l( n )

Ai will be assumed to be an operator on £2( ), the Hlbert space of zero-

mean, wide-sense stationary stochastic (2xl) sequences with inner product:

<e()gj(.)> E{_T (n) Sei(n )}  (3)

It is also assumed that el(-) has finite average power*. The correlation

matrix at the input of each stage is given by:

E i C i

E{ei(n) ST (n)A (4)
Cl E i

where, by symmetry, the average power of fi(n) and bi(n) (Ei) are equal.

Ai can be written in matrix form as:

I k )9 Tiz -I  
-

k i  z -

1 0 1 k j

0L z lj L k 1 1 1l(n) U Ki La ..(n)( )

The general theory developed in this paper is applicable to non-

Gaussian stochastic processes. However, simple expressions for the
appropriate norms can be obtained if Gaussian assumption is made.

t"-

U i. i - i I
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where z is the unit shift operator, and U and Ki are the matrices

defined by:

U : Ki 1 (6)

0 z - 1 ki 1

where the magnitudes of the "reflection coefficients" k are always taken
i

to be smaller than one. The norm of Ai [14] is given by:

1Al = sup {1UKi a_( ) l (7)

where Jf" denotes the norm induced by the inner product in (Eq. 3).

Since it is straightforward to show that U is a unitary operator, (Eq. 7)

reduces to the simple matrix norm of Ki, which is given by its spectral

radius [14]:

1Aul IXmax l+ Jkj1  (8a)

where Am is the largest eigenvalue of Ai. A lower bound on the output

power can be obtained by replacing sup by inf and using the same proce-

dure. This gives:

(1[kl~l~~l.)I_<IIei.)l _(l~lkij)j,i_l(.)jj (8b)

Note [10] that the lower bound is actually attained when e il( consists

of the actual innovations processes (optimal linear predictor). (Eq. 8b)

was previously obtained by Makhoul using different methods [10].

.4
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t2. The Adaptive Lattice Filter

Thus far, we have considered the lattice filter as a fixed, deter-

. ministic operator on the space X2(Q). If the lattice is used in an

adaptive algorithm, however, two major differences arise. First of all,

if a time-recursive method is used, the operators A. will become time-1

varying and thus the assumption of wide-sense stationarity of the input

is no longer valid. In the sequel, however, we will assume that the

stepsize in the adaptive algorithm is sufficiently small such that the

inputs to successive stages are at least locally stationary. Secondly,

the parameters determining the operators A. will be based on measured1

data, thus resulting in a stochastic operator. Consequently, the

assumption of Gaussian statistics of the input to each stage will be

violated. Again, under the same assumption of a small stepsize, it can

be assumed that the statistics of the sequences ei(-) will be suffi-

ciently Gaussian.

In order to calculate the mean-square norm of the stochastic lattice

element, we can again use (Eq. 5) where now the reflection coefficients

k in the matrix Ki are random variables:

1A1 112 = sup 1 ii 2 }

- up =1 T 2 (9): ,,sup E{E-l(n) Ki e ( )-i9

Under the widely used assumption that the operator K and the sequence

Sl ~ are uncorrelated, (Eq. 9) becomes:
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hAul12 = sup E{e T l(n) E{K2 t l (n))[~i I1-_(') I11

_ IIE{K2}il (10)

(by the Schwarz inequality and the definition of matrix norm).

Because the matrix norm is attained by an eigenvector and since in this

case the equality sign in the Schwarz inequality holds, we have:

2 (11IlAill2 = 11E{KP I (11)

Noting that:

E{K 2 E

i+o i  k i 2F

= (12)
2+-2

i2ki  + i k i

we and i are the variance and mean, respectively, of ki, we can

write bounds for liei() II similarly to (Eq. 8b):
22 < <(3

ii

The following theorem, which forms the basis for the discussions in

the sequel, is a stochastic fixed-point theorem and was used by Oza [11,12]

in a system identification problem. For the proof, we refer to [11].

I
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Theorem

Let Tnn 0 be a sequence of (random) operators on a Hilbert space

H and let T -T where T is a contraction mapping, i.e.n

lir lIT y-T yI =O V y c H (14)
n-Kco

and

IlTy 1 -Ty 2 11 < 11yl-y 211 V Yl Y2 H H (15)

Then the sequence generated by:

Yn+i = Tn Yn

Y0 fixed, but arbitrary in H, converges strongly to the fixed-point of T.

III. CONVERGENCE PROPERTIES

1. The Adaptive Time-Recursive Algorithm

It is well-known [15] that the lattice filter is a natural implemen-

tation of the Levinson algorithm to solve the linear prediction problem.

In the "optimal" case, the reflection coefficients ki are determined in

the Levinson recursion by:

Ei 1 ki = -Ci_ (16)

and the sequences fi(.) and bi(.) are the innovations processes of the

ith-order forward and backward prediction [16]. Practically, however,

neither the average power (Ei) nor the crosscorrelation (Ci) of the

innovations processes are completely known, and an adaptive method then

consists of calculating the reflection coefficients based on estimates
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of C and Ei which are obtained from actual data. A very comon and

simple form of adaptation is achieved when the average values in (Eq. 4)

are replaced by their instantaneous values and the solutions to (Eq. 16)

are obtained time-recursively. This leads to an adaptive algorithm given

by (fr Ref. [3]):

kin+1  kin -ca [Ei-(n) ki ,n + C il(n)] (17)

where

i 1(n) [ 2_ (n)+b 2 (n)] (18)

and

Ci- 1 (n) f i- f ( n ) bi-1 (n) (19)

Note that if the estimates are taken to be the exact values (i.e.,

Wei E i(n) CiI), the sequence in (Eq. 17) converges if
2

O < - , the &ame condition as is obtained for convergence of the meanE- 1

of the reflection coefficients [3].

2. Conditions on the Stepsize (I)

Strictly speaking, an adaptive lattice element Ai,n converges to a

lattice element Ai (the "optimal" operator) if:

lim IIAi, n  i .- Ai (*i)_-A 1  0 (20)
n-Ko

Practically, however, most adaptive algorithms can only result in out-

puts which are within a certain "distance" of the optimal value, i.e.,

li I A i  " A (21)n < i,n giI - i-I M

] 74
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where Mi is the (unnormalized) misadjustment. Using (Eq. 5), the norm

in (Eq. 21) can be written as:

|F
1 (A , - A 112 II()11 2  (22)

k k 0

E-{Ikin ki 1  El_ (23)

Thus, convergence of the adaptive element is determined by convergence

of the reflection coefficients.

In order to obtain limits for the stepsize a, (Eq. 17) can be written

in terms of a stochastic fixed-point theorem as follows: write (Eq. 17) as:

kin+l - ki= (ki,n - ki)[l - a g i-l (n)]

-a[C -1 (n) + ki g.( n )] (24)

and define the stochastic operator Ti,n on the space of Gaussian random

variables by:

Tin k m (1-caEil(n)]k- a[Ei 1 (n) +ki Eii(n)] (25)

for all k. Then, (Eq. 24) can be expressed as a fixed-point problem:

(ki,n+l- ki) = Ti,n (ki,n- k ) (26)

and using the contraction mapping principle of Section 1.3, the recursion

in (Eq. 26) will converge if:

III E [1 - 1 il(n) ](Y, -Y2 ) II < [[yl -Y2 [I (27)

for yl and Y2 fixed but arbitrary.

'4 " -.. .
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Since the norm in (Eq. 27) is given by:

[l - a EAi_l (n) ](yl - Y2) Jl2

= Efl1-a Ei (n) 12 }  II y-Y2 112  (28)

this condition becomes (see Appendix A):

2 2 2
+a [2 Ei+C i_- 2 a Ei_1 <1 (29)

0 < a < 2Ei 

(30)

2E 2 +C 2
i-i i-i

Various interpretations can now be made. First of all, it is easy

to see from (Eq. 30) that the limits obtained in this fashion are stricter

than the ones for convergence of the mean of k ,n . Furthermore, while

previous results showed a dependence of the upper limit on E il_1 only, and

thus the upper limit for a could be made independent of the position in

the lattice by normalizing it with respect to Ei 1 [31, Equation (30)

shows that ot is also dependent on the crosscovariance of f and

bi 1 l(').

Thus, in order to make the limits for the stepsize independent on

the position in the ladder, normalizing with respect to the right-hand

side of (Eq. 30) requires the extra computation of C_ 1. As C 1 is

bounded by the Schwarz inequality as:

0 _ jcill _ Ei_1  (31)

two extreme cases can be considered. If 1Ci-1 1 is very small (input
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sequence extremely random) the upper bound for a in (Eq. 30) becomes

approximately equal to , while if the input sequence is almostE- 1  2 1

deterministic (singular process), the limit for a approaches S E
i-l

This indicates that faster convergence can be obtained for lower signal-

to-noise ratios, a result which seems to be supported by some experimental

work.

3. The Misadjustment

The misadjustment due to the ith stage in the lattice filter is

defined by (Eq. 21). Since (Eq. 23) shows that

Mi . - E,_1  (32)

it is clear that the normalized misadjustment is nothing but the norm in

the fixed-point problem (Eq. 26):

2
2AMi

m2 A E T (klim HIi,n i,ni- i  (33)

The remark can be made that the fixed-point of Ti, the "ideal" contra-

ction mapping given by

Ti k a [1- a Ei-l]k-a[Ci 1 + ki Ei] (34)

has as (only) fixed-point the zero element because

Ti 0 = 0-[Ci- +ki Eu]

F 0 (35)

by the definition of ki (Eq. 16). Thus, zero misadjustment can be obtained

if the estimates in Ei 1 () and Cil(-) converge to the actual values.
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This will be the case if a different estimate is used as:

A1 n2 2
yi-n =2 l [f M i+bi 1 ) (36)

and

1n
Cii(n) Z If [fi 1 (J) bi 1 (i)] (37)

and if the process e(*) is correlation ergodic [18]. Note that in this

case, . satisfies the established conditions for stochastic approximation

[19].

In order to compute the misadjustment of the algorithm (Eq. 17),

the norm of (Eq. 26) is needed.

Ikin+l- ki1 2= IIi,n (ki,n - ki) 2 (38)

This norm is computed in Appendix B and the (normalized) misadjustment

is found to be:

2
2 E, i-1 2C l [Ei~ l C i

M "C2 (39)
2=1 aE __ _ 1 C

This expression indicates that, while the limits on a can be made in-

dependent of the stage i by appropriate normalization of the stepsize,

such normalization will not result in a stage-independent misadjustment.

Again, two extreme cases occur. If the input sequence is extremely random
SEi- 1

(ICi_ll<<Ei_), (Eq. 39) will equal approximately 2(lEil while if

the input sequence is almost deterministic, the misadjustment approaches

zero. Therefore, M is bounded by:
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a 2 
2

0< < i1- (40)
i 2(1- aEi 1 )

In this result, Eui_ is the average power in steady state conditions

at the input of the ith stage. For the usual case where a is normalized

with respect to Ei_1 , the upper bound in (Eq. 40) becomes

0 < 2< E (41)
i 2(1-) i-l

In order to compute the total misadjustment at the output of the

cascade, (Eq. 13) can be used. Essentially, (Eq. 13) corresponds to the

model shown in Figure 3. The total output power in Figure 3 is bounded

2
by (Eq. 13) where a i and ki are (since the lattice converged) equal to

m 2 and ki, respectively:
mi N N

W [M 2+ k-lk il)2JEo S %_5 [M2 + (1+ kil) 2JEo (42)
i -l1 i-1

Since the optimal output power is given in (Eq. 8b), the output mis-

adjustment normalized with respect to the total output power is given by:

JN { m2+(I-IkiI2 JN Fm2+(l+IkI)2

I 11 < 7
7r2 lS 2 - 1 (43)

i-l (1- Ikil) 2  (1m< -- 1k_-,.l,

If the input sequence is very random, Ikil<< I and both bounds approach

the same value. In this case, we will have approximately

N

m (l+m)- (44)
i-I

If a is normalized with respect to El_ 1, which is the case in most

applications, we have from (Eq. 41):

I
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Figure 3. Model for the Total Output Hisadjustment.
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*2 CL (45)
mi ' 2(1 -a)

and finally

m= L2( t).] -1 (46)

Ungerboeck [21] and Widrow [22) showed that for the LMS algorithm,

the misadjustment is linearly dependent on the order N. The exponential

dependence on N for the lattice suggests that, in general, a higher mis-

adjustment can be expected for the lattice filter.

4. The Convergence Rate

In order to compute the convergence rate of the ith adaptive element,

the homogeneous part of the state equation in (Appendix B - Eq. B8) has

to be considered. This is denoted by:

[A -2 aC 1
x(n+l) = I(n) (47)

0 1 - a El I

m M 3(n)

The convergence rate is determined by the smallest eigenvalue of the

matrix M [20]. Since it is straightforward that this smallest eigen-

value is equal to A, the "slowest" mode, which determines convergence of

the squared-error, is given by:

S~An (48)
i,n

Substituting for A using (Appendix A - Eq. A3) and assuming small a,

an approximate expression for mi,n is obtained:
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m i , n 1 I n { 2 a E -a 21 2  E i _1 + C 1 ( 4 9 )

Comparing (Eq. 49) to the expression:

e-tIT =1- +..
T

the time-constant of the adaptation is given by:

Ti = 2 2 2 (50)
2caEt_1 - [2Eii +Ci

In the extreme case of almost deterministic inputs (high signal-to-noise

ratio), this becomes:

1

T 3 (51)
2 a Eil -- !a Ei]

and in case of highly uncorrelated input sequences (low S/N ratio), Ti

becomes:

1Ti = (52)
2 a E ill- a Eil]-2

Thus, a slower adaptation is obtained for deterministic sequences than

for uncorrelated sequences.

*1i

2'11$.
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CONCLUSION

Our results, which are based on a mean-square convergence criterion,

suggest that the usual approach, which consists of the study of conver-

gence properties of the mean of the reflection coefficients, may not be

sufficient for a number of practical applications. The mean-square

approach shows that convergence is only obtained under stricter conditions

than previous studies suggested. The convergence rate of the adaptive

gradient lattice is better for highly uncorrelated input signals (low

signal-to-noise ratio) than for almost deterministic sequences (high

signal-to-noise ratio), but a higher misadjustment can be expected if the

signal-to-noise ratio is low. The total output misadjustuent varies

exponentially with the filter order. Since the output misadjustment for

the basic LHS algorithm varies linearly with the number of taps, the excess

mean-square error for the lattice can be expected to be larger, especially

for higher order filters.

I j

-!'
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APPENDIX AN

Note that:

Ef1-catE.1 (n)I 2

= E{1+ct2 Ig iI(n)i 2 2 ctE1 (n)}

221+at E{JEn) }2 aE i1(Al)

Now, using the well-known expression for 4-th order Gaussian moments [17],

this becomes from (Eq. 18):

- [Ef_ (n +b 4_1(n)}

+ 2 E{f '(n) b i n)]

1 [E2_+ 3 E 2_+2E 2_+4C24[ E~ i- i-i1 1

2 2
=2E _1 +C i 1  (A2)

Substituting this in (Appendix A - Eq. Al), we finally obtain:

E{I1-cLE.(n)J 2} OL2 [2 E2 _ +C2 a Ei (A3)

.- ..1. .l .2
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APPENDIX B

Using (Eq. 25), the following recursion can be written:

Ilki,n+l _ kill =E {I1[I-19Ei-1 (n)](ki,n - ki) -ciil(n) + ki Ei(n)]I2}

12 _ i ) 121E{l[i-ac Ei-1 (n) (ki, n

+ 2 E{elf)k~l ) 2}+ & E { (n) +k i(n)]

2aE{[1l-ai.l(n) [Ei i(n) +kii (n) (ki n-ki)} (BI)

If we assume that the repetition rate of the algorithm is small enough

such that (k. -k.) is uncorrelated with il(n) and il(n), (Appendix B -in 3ii

Eq. Bi) will become:

Ilki,n+l - kil 2 = E{ 11- Ei (n) 12 Ilkin - kill 2

+ a2 E (n) +k (n) 2

2aE{Il[-ctil(n)] [Ci (n) +kiEi (n)]

E{k. -ki (B2)

i,n i

The coefficients in (Appendix B - Eq. B2) can again be computed

using the expression for 4-th order moments of Gaussian processes:

E{[ii (n) + ki i 1 (n)] 2}

= E{ii 1 (n)I 2 }+k^ E{IEi (n) I 2 }+24 i E{ C i l(n) Ei1-(n)) (B3)

In (Appendix B - Eq. B3) we have:
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El 2 2 2

=E 2_+2C 2(B4)

E{Ci 1 (n) ~i(n) } 1- f () n 2_()

+.!E{fii(n) bi..(n) fb1 (n)}

2 1 1 (n b 1 (n)i-

=3 C ii Eu (B5)

Using (Eq. B4) and (Eq. B5) and (Eq. A2), (Eq. B3) becomes:

E{[C (n) +k E (n) ]2}i-i -

=E 2_+2 C 2_+2 k 2E 2_+k2C2

+ 6k C i E i1(B6)

and with the value for the optimal reflection coefficient from (Eq. 16),

(Appendix B -Eq. B6) reduces to:

C4
-~ 2 E 2 C2 +22 l 2

E{LE i(n) +k±iE iI(n)] 1= l Eu _IC +2 + 2- 6C i-

i-i
C4

2 C2 ]2

- - (B7)

Ei
4 W
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The recursion in (Eq. B2) can therefore be written as:

II kin+-kill2 " A Ilki -k 2 +a2 B

i~n~li,n i
-2 ot C E(k i, n - k d (B8)

where A is given by (Eq. A2), and B is given by (Eq. B7). Equation (B8)

can now be considered as a state equation with state variable given by:

Ilk1 - kill2 -]F(n (B9)
E{kin- ki"

Transfer analysis of this state equation [201 and application of the

final-value theorem of the Z-transform lead to an expression for the

(normalized) misadjustment due to the ith stage:

2 c2B
m, =-A (BO)
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