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The Use of the General Rasch Model
with Multidimensional Item Response Data

Latent trait theory has become an increasingly popular area for research
and application in recent years. Areas of application of latent trait
theory have included tailored testing (McKinley and Reckase, 1980), equating
(Marco, 1977; Rentz and Bashaw, 1977), test scoring (Woodcock, 1974), and
criterion-referenced weasurement (Hambleton, Swaminathan, Cook, Eignor, and
Gifford, 1978). While many of these applications have been successful,
they are limited to areas in which the tests used measure predominantly one
trait. This limitation is a result of the fact that most latent trait
models that have been proposed assume unidimensionality. Because of this
requirement, in some situations latent trait models have not been successfully
applied. For example, in achievement testing the goal is not to measure a
single trait, but to sample the content covered by instruction. Therefore,
most latent trait models are inappropriate since tests designed for this
purpose generally cannot be considered to be unidimensional. Even when the
goal is to measure a single trait, if dichotomously scored items are used
no generally accepted method exists for forming unidimensional item sets,
for determining the dimensionality of existing item sets, or for testing
the fit of the unidimensional model to the data.
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An alternative to trying either to construct unidimensional item sets
or to fit a unidimensional model to already existing item sets is to develop
a multidimensional latent trait model. Several such models have been '
proposed (Bock and Aitkin, 1981; Mulaik, 1972; Rasch, 1961; Samejima, 1974;
Sympson, 1978; Whitely, 1980), but little research has been done using
these models. Some work has been completed on the estimation of the parameters
of the Bock and Aitkin model (Bock and Aitkin, 1981), the multidimensional
Rasch model (Reckase, 1972), and the Whitely model (Whitely, 1980), but no
extensive research has been completed on the characteristics and properties
of any of these models. The purpose of this paper is to present the results
of research on the characteristics and properties of the multidimensional
Rasch model. Before presenting these results, however, the multidimensional
models that have been proposed will be briefly discussed, as will the
research that has investigated the characteristics of these models.
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Multidimensional Latent Trait Models

s ¥

Three of the multidimensional latent trait models that have been

f proposed have been extensions to the multidimensional case of the unidimen-
' sional Rasch model (Rasch, 1960). The unidimensional Rasch model is given
b
E v . exp(xij(ej + oi))
. P(xijle ’01) = (1)
3 1+ exp(ej + °i)

. vhere Oj is the ability parameter for Person j, o, is the item easiness

parameter for Item i, and P(xijl Qj,ci) is the probability of response xij

! (0 or 1) to Item i by Person j. The multidimensional model proposed by
1 Rasch (1961) is given by

1 § . -
: P(xijlgj,gi) = ;75;35;7 exp (¢ (x) oy + p(x)o, +8 jz(x)gi +0(x)]  (2)
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where Qj, O.» and P(xij | gj,gi) are as defined above; ¢, ¥, X, and p are
scoring functions which are functions of x only; and y(gj,gi) is a normal-

izing factor necessary to make the probabilities of the response alternatives
sum to 1.0. The scoring functions ¢, Y, and X act as weights for the
parameters, while the p term is used to adjust the scale for different
scoring procedures. Both the scoring functions and the p term depend on

the score obtained by a person on the item. In order to apply this model

to multidimensional data, gj, 9. ¢, and § are defined as column vectors,

!(x)'gj and §(x) ‘0, are inner products of vectors, and X(x) is defined as a

matrix. The terms ¢ and Y now represent vectors of weights for the different
elements in the 0- and 8-vectors. The X matrix is a matrix of weights.
Rasch never attempted to apply this model.

Reckase (1972) tried to apply the generalized Rasch model to real and
simulated item response data with limited success. In this study, the
multidimensional model fit multidimensional data no better than did the
unidimensional Rasch model. However, Reckase did not include the Qj'x(x)gi

term in the model, which may have resulted in the poor fit of the model to
multidimensional data. 1In addition, several methodological problems may
have contributed to the poor results of the study. First, the sample size
used to estimate the parameters of the model was relatively small for the
number of parameters estimated. Second, in addition to estimating the
parameters of the model, Reckase also estimated the values of the ¢ and §
scoring functions. Finally, in order to estimate the parameter vectors,
the dichotomously scored items used in the study were combined into clusters
to form nominal response patterns. The most appropriate way to form the
clusters was not known, which may have caused problems in the estimation of
the parameters. Despite these difficulties, a least squares estimation
procedure was developed which did yield somewhat reasonable parameter
estimates.

Mulaik (1972) also proposed a multidimensional model that is a
generalization of the Rasch model. The model proposed by Mulaik is given

by

iE expl(0,, + 0,.)x,..]
ik © %1x*yy
k=1
P(xyy 124000 5 @
1+

k=1

exp(ejk + °ik)

vhere ejk is the ability parameter for Person j on Dimension k, and O is

the difficulty parameter for Item i on Dimension k. Although Mulaik never
applied this model, he did suggest procedures for estimating the parameters
of the model for three separate cases: when item responses are normally
distributed and have a common variance for all items and subjects; when
item reponses follow a Poisson distribution; and when item responses are
dichotomous.
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%j Samejima (1974) proposed a multidimensional latent trait model that is

a generalization of a different unidimensional model. The model proposed
by Samejima is based on the two-parameter normal ogive model. This model
is given by

2

P(x;,10,,8,,b)) = ola, "(8, - b)) (4)

where ®(x) is the normal distribution function, a, is a column vector of
item discrimination parameters, Ei is a column vector of item difficulty
parameters, and gj is a column vector of ability parameters for Person j.

Unfortunately, the basic derivation of this model used the continuous
response version of the normal ogive model. Therefore, its use with
dichotomous data requires that item scores be translated to the continuous
scale. Since no procedure for translating item scores to the continuous
scale is available, the model cannot at present be applied to dichotomous
data. Like Rasch and Mulaik, Samejima never applied this model, but only
suggested how the parameters might be estimated.

Sympson (1978) proposed a multidimensional model based on the three-
parameter logistic model. The Sympson model postulates that the probability
of a correct response is determined by the product of the conditional
probabilities of a correct response on each of the dimensions being measured.
The three-parameter logistic model is given by

exP[Dai(ej - b,)] )
P(x,,=1 |8 ,,a,,b,,c,) =¢c, + (1 -c,)
1 31Tt 1 i 1+ exp[Dai(Gj - bi)]

where Gj is the ability parameter for Person j, a, is the item discrimination

parameter for Item i, bi is the item difficulty parameter for Item i, c; is

a pseudo-guessing parameter for Item i, and D = 1.7. The three-parameter
logistic model is used to model the conditional probability for each dimension,
although the <4 parameter does not have a separate value for each dimension,

il

but rather is a scalar parameter related to the item as a whole. -The
multidimensional model is given by

v o
3

) f% exP[aik(ejk - bik)xij]
k=1 1 + exp[ai

N

P(xijl?_j.gi.lgi.ci) =c +(l - c, , x = 0,1 (6)

bik)]

! K5k -

.3 where the parameters are as defined above and m is the number of dimensions.
+ Although Sympson has done some work on estimating the parameters of this
i model, no application of the model to multidimensional data has yet been
x attempted.

model. This model, called the multicomponent latent trait model, defines
the probability of a correct response to an item as the product of the
i probabilities of performing successfully on each cognitive component of the
: item. The Whitely model is given by

é The model proposed by Whitely (1980) is somewhat similar to Sympson's

i
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lej’hi) =

where all the parameters are as previously defined. It can be seen that

this model is essentially another extension of the Rasch model. The model
focuses on the different cognitive skills required to perform on an item
rather than the global dimensions hypothesized by Sympson. Estimation
procedures have been developed for the model and some applications have

been made to real data. However, because of the emphasis placed on identi-
fying the different cognitive skills required by an item, the application

of this model is limited to data collected under very restricted experimental
conditions.

Bock and Aitkin (1981) have proposed a multidimensional two-parameter

normal ogive model for use with dichotomously scored response data. This
model is given by
P(x =1 | 8y07g00g) = oLy + oy 8) /o] (8)

where ¥ is the difficulty parameter for Item i, a is a column vector of
discrimination parameters for Item i, Qj is a column vector of ability

parameters for Person j, ¢(x) is the normal distribution function, and o,

is given by o y

-(1_
€ ;;;

2

ik )

g a ¢)]

Bock and Aitkin described a method for estimating the parameters of
this model, and presented the results of the application of the model to
the data for the Law School Admissions Test (LSAT) presented in Bock and
Lieberman (1970). The results of the application of the model to the LSAT
indicated that a two-dimensional solution fit the data better than a one-

dimensional solution. Fit was assessed using a likelihood ratio chi-square
test.

Summary

Six different latent trait models have been proposed for use with multi-
dimensional item response data. Of these six models, two are of little
interest here. The Samejima model is not designed for use with dichotomously
scored item response data, and the Whitely model is appropriate only for
special experimental conditions. Of the remaining four models, only the
Bock and Aitkin model and a special case of the Rasch model have been
applied, and no attempt has been made to extensively investigate the
characteristics and properties of any of the models. The purpose of this
research is to extensively investigate the characteristics of one of those
models, the generalized Rasch model.
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Method

Design

The design of this research was to start with the most simple formulation
of the multidimensional Rasch model, investigate its ability to describe
multidimensional item response data, and if necessary to investigate increasingly
more complex versions of the model until good model/data fit was obtained.
At each level of complexity the properties of the model were investigated,
and the reasonableness and usefulness of the model were explored. This was
done by generating test data to fit the particular form of the model being
investigated, and analyzing that data in an attempt to assess how well the
characteristics of the data matched the characteristics of real data with
multidimensional characteristics.

The most general formulation of the model investigated in this research
is the model described by Rasch (1961), given by Equation 2. The simpler
formulations of the model used in this research were obtained by eliminating
different terms from the model statement by setting the appropriate scoring
functions equal to zero for all item scores.

For each model statement that was obtained, simulated test data were
generated to fit the model. Using the known parameters and model statement,
predictions were made as to the dimensionality of the generated data and
the characteristics of the hypothetical items. Analyses were then performed
on the simulation data in order to test the predictions. If it were found
that a model statement could not be used to generate realistic data, in
terms of either dimensionality or item characteristics, then the model was
rejected, and a different model statement was investigated. This involved
altering the terms of the general model (Equation 2) that were included and
those that were zeroed out. In some cases, all of the terms in a particular
rejected model statement were retained, and one or more additional terms
from the general model were added.

Analyses

The first analysis performed on the simulation data generated using
the models was a factor analysis. Factor analysis, in this case, is not
being used as a means of validating the models, but as a procedure for
determining whether the data generated from the models have characteristics
similar to those of real test data. All of the factor analyses performed
in this research were performed using the principal components method on
phi coefficients. When the obtained and expected factor structures of the
data did not match, follow-up analyses were performed in an attempt to
determine why the obtained factor structure was different from what was
expected.

Follow-up analyses included plotting the true item parameters against
the factor loadings and against traditional item statistics such as proportion-
correct difficulty values and point biserial discrimination values. These
analyses were performed using both the unrotated factor loading matrix and
the factor loading matrix rotated to the varimax criterion. The purposes
of these analyses were three-fold. One purpose was to determine whether
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x the obtained factor structure was a result of the model statement, the

% values used for the model parameters, or both. The second purpose was to

facilitate interpretation of the model parameters, and the third purpose

was to determine whether the model yielded items with reasonable characteris-
tics. In many cases it was necessary to generate additional data, using
different values for the parameters of the model, in order to answer specific
questions about a particular model statement.
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Using the results of all of the analyses performed for a particular
model, a decision was made as to whether the model adequately generated
data similar to real test data. If a model statement were rejected, an
attempt was made to determine from the results of the analyses what changes
in the model would yield a more acceptable model.
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Results
Vector Model

The first model that was investigated was a simple vector parameter
model. The Q.'x(x)gi and p(x) terms were eliminated, yielding the model
given by J

AR AN

P(x,.]8,,0,) = — L exp(e(x) B, + Y(x)0,) (10)
e T T B

R e
A

where all the terms are as defined for Equation 1, and Qj, 9., ¢ and § are

vectors. For this model the scoring functions all took on values of one
for a correct response and zero for an incorrect response. This model was
selected first because it appeared to be a straightforward extension of the
unidimensional Rasch model (Rasch, 1960) to the multidimensional case. The
expectation was that data generated according to this model would have a
dimensionality that would vary with the number of elements in the parameter
vectors. For instance, when data were generated using two elements in both
the item and person parameter vectors, it was expected that the data would
yield a two-factor solution when factor analyzed. This was not the case,
however. Regardless of the number of elements in the parameter vectors,

e this model yielded one predominant factor. This was true regardless of the
p actual values of tbe parameters or the values that were used in the scoring
' functions.

¥
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; Table 1 shows the first two eigenvalues from a typical principal

* component solution for the vector model. As can be seen, there is a dominant
¢ first factor, with one minor factor. Table 1 also shows the unrotated
factor isading matrix obtained for these particular data, as well as the
proportion-correct difficulty and the inner product of the item parawmeter
vector and scoring function for each item (sum of the item parameters). As
can be seen, there is little variation in the loadings on the first factor,
while the minor factor is related to item difficulty. Factor II generally
has positive loadings for easy items and negative loadings for hard items.
Once it was ascertained that the vector model would not yield multi-factor
- data, it was not difficult to determine why. Equation 8 can be written as

i 2P K

P(xijlgj,gi) - exp(o, + 8,) (11)
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TABLE 1

Principal Component Factor Loadings Based on
Phi Coefficients with the Sums of the Item Parameters

and Observed Proportion Correct for
Two-Dimensional Vector Rasch Model

e fmElm BN meerr mewen
1 .89 +65 -37
2 -.89 .33 .52
3 43 .58 -36
4 2.02 .80 -47
5 .59 .60 .59
6 -.91 .33 .52
7 -1.44 .24 .51
8 47 .58 .56
9 -1.05 .30 .51

10 -1.76 .20 -48
11 .98 -64 -8
12 2.58 .88 -43
13 -1.31 .25 .50
14 1.22 71 .53
15 -.64 .39 .55
16 .05 .48 .36
17 -2.33 .15 -46
18 -.54 .39 -54
19 -.60 .38 .53
20 2.26 .82 .43
Eigenvalues 5.42
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where a = ¢(x) 6 and B, m(x)'gi. Equation 11 is the unidimensional

Rasch model w1th inner products of vectors as parameters. Therefore,
regardless of the values of the model parameters, as long as the inner
product remains the same, the probability of a response is the same.
Therefore, the dimensionality of the vectors is unimportant, only the
product is critical. The model is still a unidimensional model. The !
factor analysis results typified by the solution shown in Table 1 serve as |
an empirical demonstration that the vector model is a unidimensional model.
It can also be empirically demonstrated that the inner products of the
scoring function and parameter vectors serve as parameters for the model.
Figure 1 shows a plot of proportion-correct difficulty by the inner product
of the scoring function and item parametér vectors, which for this case is
just the sum of the item paramaters. As can be seen, there is an almost
perfect relationship between the inner products and the proportion-correct
scores. When data were generated using the unidimensional Rasch model,
with the inner products from the two-dimensional model as parameters,
exactly the same plot was obtained.

Figure 1

e Relationship Between the Proportion Correct and the Sum
2 of the Item Parameters for the Two-Dimensional
4 Vector Model
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Product Term Model

It was clear from the results just reported that using parameter
vectors in an otherwise unidimensional model did not make it a multidimensional
model. Therefore, the vector model was rejected as a multidimensional
model. The next model that was investigated contained only the gj'x(x)gi

term. This was the next model investigated because it involved more than
simple inner products of scoring and parameter vectors, but was simpler
than using both inner products and the gj X(x)gi term.

When Qj and g, are vectors, X(x) must be a matrix. The product ngi’

represents a matrix of products of all possible pairs of the elements in
the Bj- and 0, -vectors. For two-dimensional Oj- and 0, -vectors,

.
0101 010'2|

8.0.” = (12)

Tt 189 809

The x(x) matrix is a scoring matrix having an element for each element
of the ngi' matrix. If the x(x) matrix for the matrix in Equation 12 were

1 0
x(x) = (13)
0 1
for a particular response x, then the numerator of the model statement for
that response would be exp(0,0; + 8202). The nonzero elements of the Y(x)
matrix indicate which elements of the ngi' matrix are included in the

exponent. It is clear from this that by selectively using zeros in the
X(x) matrix, various products of Qj and g, elements can be selected.

Varying the values of the nonzero elements in X(x) assigns different weights
to different combinations. Thus, the product term model, given by

POy i18400)) = exp(8°, x(x)g, ] (14)

Y(Qj,gi)

is a very rich model in terms of the number of alternative formulations of
the exponent of the model that are available. Unfortunately, when data
were simulated using some of these alternatives, it was discovered that
this model had an inconvenient property. Regardless of which formulation
of this model was used, and regardless of what values were taken on by the
item parameters, the item proportion-correct difficulties were all approx-
imately equal to each other. A closer examination of the product term
model indicates why this occurred. Using the item parameters shown in
Table 2, data were generated using

—
o

x(x = 1) = (15)




for a correct response, and
X(x = 0) = (16)

for an incorrect response. This yields a model givean by

exp(ej1 9, * szoiz) a7

P( = llgj,gi) -

xij
1 + exp(8,1947 * 855%;))

where the ejk and osk terms are elements in the 6- and o-vectors. From

Equation 17 it can be seen that the item parameters are similar to the
discrimination parameter in the unidimensional two-parameter logistic (2PL)
model presented by Birnbaum (1968) since they are multipliers of the person
parameters. In fact, if written as
P(xij = llgj.g ) = —1— exP[oil(ejl +0) +0,,(8,, + 0)] (18)
Y(9,,0.)
-j’~1

the model is essentially a two-dimensional two-parameter logistic model
with both of the difficulty parameters equal to zero for all items. Because
the data used for Table 2 were generated using a bivariate N(0,1) with
p = 0 distribution of ability, difficulty parameters of zero yielded a
predicted proportion-correct difficulty of .5.

5

A principal components analysis of phi coefficients yielded evidence
that the use of two item parameters resulted in a two-dimensional model.
The first three eigenvalues obtained for the data generated using the item
parameter values in Table 2 were 4.0, 2.4, and .9. The role of the item
parameters as discrimination parameters in this model is indicated by
comparing the item parameters shown in Table 2 with the rotated factor
loading matrix, also shown in Table 2. The correlations between the item
parameters and the factor loadings indicated that there was a strong linear
relationship between the item parameters and factor loadings (r = .98 for
03 with Factor II, r = .99 for 0, with Factor I), supporting the conclusion
that 0y and 0, are acting as discrimination parameters.

Vector and Product Term Model

The vector model that was investigated first was essentially a uni-
dineqsional model that contained a difficulty parameter (the inner product
P(x) oi) as the only item parameter. The product term model is a multidimensional

model that contains discrimination parameters as the only item parameters.
In order to obtain a multidimensional model which contained a difficulty
parameter, the vector and product term models were combined. A combination
of these two models is given by
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TABLE 2

Item Parameters, Proportion Correct Item Difficulty and Factor Loadings

from a Varimax Rotated Principal Components Solution on
Phi Coefficients for the Product Term Model

Item 01 02 P Factor 1 Factor 11
1 0.150 1.150 .48 «52 .11
2 1.280 0.200 .50 .08 .56
3 0.260 1.350 .51 57 .09
4 1.000 0.300 .52 14 «52
5 0.250 1.050 49 A7 .09
6 1.040 0.100 Sl .03 .57
7 0.110 1.150 47 .52 -.01
8 0.200 1.200 49 .57 .09
9 1.400 0.300 .50 12 .58

10 0.300 1.200 .48 .54 .07
11 1.550 0.150 .51 .08 .59
12 0.400 1.200 .50 .53 14
13 1.150 0.250 .50 .0l «52
14 0.150 1.300 49 .61 .04
15 1.000 0.250 .51 .11 ' 49
16 0.100 1.400 .46 .61 .04
17 1.350 0.150 .50 -.01 «59
18 1.250 0.100 .52 -.03 -1
19 0.200 1,500 A48 .62 .03
20 1.150 0.500 .51 .25 46
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';;- P(xy | 8y094) = Y—@j-la)‘ exp [y (x)7g; + 8, x(x)g,]. (19)
'i; As can be seen in Equation 19, the ¢(x) 6 term was eliminated when the two
o models were combined.

<
‘ia Table 3 shows the item parameters used to generate data to fit the
’ vector and product term model. These data were generated using two-dimensional
3 parameters. The scoring functions were also two-dimensional and were

&{ vectors of ones for a correct response and vectors of zeros for an incorrect
L response for all elements. Table 3 also shows the rotated factor loadings
b obtained for the first two factors from the principal components analysis

o of phi coefficients obtained for that data. The first three eigenvalues

o from the solution are 5.26, 2.28, and 1.07. Initial analyses indicated
‘\, that this model could be used to model multidimensional data, and that item
xf difficulties were not constant (see Table 3). However, these analyses also
3 indicated that it was not realistic to use the same item parameters in both
" the parameter vectors and the product term. The problem is indicated by

Y the magnitude of the correlation of the item proportion-correct difficulties
a with the item point biserials. Because of the double role played by the
b item parameters, the proportion-correct scores and point biserials had a

E: correlation of r = .94. That is not a very realistic situation. Therefore,
>y this model was also rejected as a reasonable method for describing multi-

{i dimensional item response data.

: Reduced Vector and Product Term Model

N Since the analyses of the vector and product term model indicated that
- the same item parameters should not appear in both the parameter vectors
2 and the product term, the item parameter vector and the scoring functions

B were altered so that parameters appeared in one or the other, but not both.
s In order to facilitate this, two additional elements were inserted into the
- item parameter vector. For a correct response the first two elements were
2, zeroed out of the product term, while the last two were elements were
fj zeroed out of the vector term. This procedure results in the first two
) item parameters acting as difficulty parameters and the last two parameters
Lo

acting as discrimination parameters. Although four item parameters were
used, only two dimensions were modelled in this case. For an incorrect
response all of the parameters were zeroed out. All nonzero elements in

L the scoring functions were set equal to one. The resulting model is given
. by

B 1
. P(x,, 1|gj,ai) Y8, o5 explog) + 04y + 044047 +0,,0,,] (20)
si where the 6 and 0 terms are elements of the corresponding vectors.

The first three eigenvalues obtained from the principal components
a analysis for this model are 5.39, 1.30, and .99. Table 4 shows the item
- parameters that were used to generate the data, as well as the factor




...... L ICIAATAS ST '-‘O‘_:.“‘

LA 5 TN
NSRRI RN e i R N TN TR I NS M AR D S

TABLE 3

Item Parameters, Proportion Correct Item Difficulty,
and Rotated Factor Loadings for
the Vector and Product Term Model

Item o

1 9y P Factor I Factor II

1 .230 .190 .56 .63 12

2 .880 2.180 .77 .73 -.10

3 .900 -1.920 .35 .08 n

“ 4 -.900 -.110 .32 .39 -.22
-_;3 5 -.640 .830 .52 .58 -.35
i 6 -.540 -1.040 .16 .10 a1
i 7 1.730 -1.350 .54 .34 .65
8 .940 .630 .69 .69 21
9 .030 -.110 .46 .56 a1

10 -1.610 -.570 13 .01 -.37

11 -1.170 1.260 .74 .75 .05

12 -.550 -1.070 .17 .04 .22

13 -.420 -.480 31 Y -.01

14 .220 -.070 .53 .60 15

15 ~.020 -1.670 .21 -.04 .55

16 2.420 .370 .78 .61 .40

17 1.230 .400 .69 .68 .28

18 .250 .410 .58 .65 .08

19 .140 .760 .64 .67 -.10

20 -1.770 .550 .30 .27 -.60

T e e T S T T e e e T T e e e )
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5 TABLE 4

- Item Parameters and Rotated Factor Loadings

o for the Reduced Vector amd Product Model

2

2N Item oy 9, 9y A Factor I Factor II
L

X 1 206  -.503 .373 .997 .51 .01
2 2 -.164 .888 1.205 1.832 .60 .32
o 30. 3 .6‘8 L) 261 [ 766 Y 87 6 . 34 . 36
5 4 814 -.008 1.321 1.714 .55 .34
5 5 111 -.908 1.344 1.216 41 .42
:‘, 6 ~.947 .044 1.758 1.694 .46 .51
y

Y 7 -.490 111 .687 .738 .40 .24
>

57 8 .553 -.502 347 1.4564 .61 .07
" 9 ~.344 .639 1.307 127 -.06 .64
3 10 -.257 .303 851 .824 .26 .39
W n -.069 -.542 472 404 .22 .25
12 779 432 .392 .656 .30 .13
N 13 -.611 .571 .578 1.252 .59 .13
a
N 14 -.140 -1.032 .334 1.066 .60 -.04
-~ 15 -.705 .081 .821 .480 .07 44
4

o 16 -.386 ~.164 1.912 . 244 .03 1
A
e 17 -.154 044 1.193 .537 .16 .56
-~ 18 474 .249 1.385 1.287 .49 44
i 19 438 -.210 1.320 1.110 42 .45
- 20 .294 .190 1.634 1.492 .45 .49
i
.I
2
o

e S T e e I T D e I T T D
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loadings obtained from a varimax rotation of the first two principal components.
The item parameters that were used as multipliers (03 and 04) were all
positive in order to avoid having items with negative discriminations.

The results of the factor analysis of these data indicate that a
dominant first factor is present. However, there was a second component
present in the data which was strongly related to the item parameters
(r = .87 fer o3 and Factor II, r = .87 for 04 and Factor I). The item
parameters in the product term were related to the factor loadings, while
the sum of the item parameters in the vector term were found to be related
to the proportion correct difficulty. The correlation between the sum of
the parameters in the vector term and the proportion correct difficulty was
r = .98, indicating that the sum of the vector parameters act as difficulty
parameters. There was not a significant correlation between the item
difficulty and point biserial values (r = .12). The sum of O3 and 04 had a
correlation of r = .96 with the item point biserials.

many desired characteristics. The rotated factor loadings are highly
related to the item parameters in the product term, the item difficulty is
highly correlated with the sum of the item parameter vector elements, and
there is no correlation between item difficulty and item discrimination.

0 The analyses of the model set out in Equation 20 indicate that it has

One problem that does exist with the data that were generated is that
the factor analysis results indicated that the data had only one predominant
factor. One possible reason for this is that so many of the items had
large values for both of the item parameters in the product term. In order
to test this, data were generated for the set of item parameters shown in
Table 5. The eigenvalues from the principal components analysis for these
data are 2.49, 2.28, 1.05, and 1.03. As can be seen, when using the item
parameters from Table 5 to generate data, there are two factors of approxi-
mately equal magnitude present in the data.

Item Cluster Model

:; Although the reduced vector and product term model appears to adequately

5 model multidimensional data, the presence of the product term complicates
parameter estimation, since the separation of the item and person parameters

by is not possible through techniques of conditional estimation. Because of

b this, one more model that does not have a product term was investigated.

This model is the item cluster model.

One of the reasons the item vector model, given by Equation 10, does
not adequately model multidimensional data is that no information about the
! different dimensions is preserved in the item score when the item is dichoto-
mously scored. The elements for the different dimensions are summed, and
the sums are treated as parameters. If it were possible to score the
o dimensions separately, then the vector model might be able to model multi-

L

.., dimensional data. This requires, however, polychotomous item scoring.

N
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b TABLE 5
¥
o Item Parameters for the Reduced
:_ Vector and Product Model
i Item % % %3 %
"
- 1 977 .258 1.000 .000
W 2 .359 .728 .000 1.000
- 3 -.322 .377 1.000 .000
o
¥ 4 -1.289 1.128 .000 1.000
XA
o 5 -.613 .219 1.000 .000
. 6 1.299 .797 .000 1.000
7 .029 -.213 1.000 .000
8 -.360 -.862 .000 1.000
X4 9 0769 -0“87 1.000 .000
o
0 10 -1.447 2.092 | .000 1.000
11 -1.252 -.243 1.000 .000
12 -.778 -1.426 .000 1.000
% 13 .668 -1.860 1.000 .000
14 2.102 -.025 .000 1.000
- 15 -.724 .968 1.000 .000
o3 16 1.230 -.535 .000 1.000
17 .260 -1.216 1.000 .000
§ 18 -1.092 -.432 .000 1.000
19 -.994 1.479 1.000 .000
20 -.206 -.525 .000 1.000

.
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Scoring an item on each dimension would require 2" response categories,
where n is the number of dimensions. Unfortunately, most test data are not
scored polychotomously.

g An alternative to having polychotomous item scoring is to consider
g more than one item at a time. If two dichotomously scored items are clustered
o) together, and the cluster is treated as a single unit, then the cluster has

22 or 4 response categories - (0,0), (0,1), (1,0), and (1,1). The model
given by Equation 10 can then be applied, with the exception that the
o-vector now represents a cluster rather than a single item, the scoring

o functions now take on values for 4 response categories instead of 2 and the
. response x is a vector with two elements. Further, the number of elements

s in the 0 vector need not be the same as the number of items in the cluster,
- but rather should reflect the dimensionality of the cluster.

The procedure by which this model was investigated is as follows. For the
two-dimensional case, item parameters were selected for 20 items. The
- items were paired so that Items 1 and 2 formed Cluster 1, Items 3 and 4
formed Cluster 2, and so on until 10 clusters were formed. For each cluster
there were four response categories, which were scored as follows:

a) ¢(x) = P(x) = [§] for x equal to both items incorrect;

b) ¢(x) = P(x) = [9] for x equal to the first item incorrect, the
second item correct;

c) ¢(x) = y(x) = [}] for x equal to the first item correct, the second
2 item incorrect;
i and d) ¢(x) = §(x) = [}] for x equal to both items correct.
; For any one cluster two responses were generated, one for each dimension,

using the parameters shown in Table 6. Table 6 also contains the unrotated
factor loadings for the first two factors from a principal components

. analysis of phi coefficients obtained for these data. The first four

3 eigenvalues were 3.61, 3.06, 1.33, and 1.21.

- As can be seen, for the factor analysis the simulation data were
» treated as 20 items, rather than as 10 clusters. The eigenvalues listed
above indicate that there were two roughly equal components in the data.

' Table 6 shows that the first component was defined by the items that were
placed first in the cluster, and the second component was defined by the
items that were in the second position in the cluster. Consistent with the
scoring functions, there were two equal independent factors.

In order to demonstrate that the factors need not be independent. the
same item parameters were used to generate data using the following scoring
functions:
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TABLE 6

Unrotated Factor Loadings on First Two Principal Components
for the Two-Dimensional Item Cluster Model

Independent Model Dependent Model

Item Par:;::ers Factor 1 Factor II Factor I Factor Il
1 .893 .56 .00 .40 .21
2 ~.850 .02 .65 .33 -.36
3 ~.892 .66 -.02 .38 .24
4 .690 .01 .66 .33 -.33
5 .430 .64 .00 41 .20
6 3.200 .02 .19 .25 -.24
7 2.016 .36 ~-.04 .36 .16
8 -3.310 .07 .22 .10 -.35
9 .594 .61 -.05 .40 .33
10 470 .00 .69 .26 -.39
11 -.913 .66 .01 47 .30
12 1.220 .06 «55 .32 -.38
13 -1.437 .58 -.01 : .37 .20
14 -1.260 .00 .58 .32 ~.43
15 467 .65 -.07 45 .28
16 .880 .04 .62 .28 ~.36
17 -1.048 .66 -.04 44 .28
18 -.970 -.02 .64 .28 -.37
19 -1.760 .56 .07 43 .10
20 -2.140 .01 42 .20 -.31

.......................
.......
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a) ¢(x) = ¢(x)

b) ¢(x) = P(x) ['1] for x equal to the first item incorrect,
the second item Correct;

[8] for x equal to both items incorrect;

c) ¢(x) = P(x) = ['g] for x equal to the first item correct,
the second item’incorrect;
and d) ¢(x) = $(x) = [}] for x equal to both items correct.
The principal components analysis of phi coefficients for the data

generated according to this model yielded six factors with eigenvalues
greater than one [2.46, 1.83, 1.09, 1.08, 1.01, 1.00]. Table 6 shows the

unrotated factor loadings.

As can be seen, there are still two factors

present in the data.

However, the factors are no longer defined only by

the items in the corresponding position in the cluster. The first component
is a general factor, while the second componment indicates the position of
the item in the cluster. Clearly these two sets of items are not independent
in this case.

Discussion

The use of simulation data to study the characteristics of a model
before selecting it for application is perhaps atypical of research on
latent trait models. Usually a model is adopted, estimation procedures are
derived, and the model is applied without ever going through the process
this study has employed. In this study this approach has been taken for
two main reasons. First, it was felt that when dealing with multidimensional
latent trait models much of the acquired wisdom concerning latent trait
models might no longer apply. It was felt that considerable research was
necessary in order to gain an understanding of how these models work and
what the model parameters represent before they could be applied. This
belief has been borne out several times in this study by findings indicating
that the models were not behaving in the anticipated manner.

A second reason for taking this approach was that it seemed impractical
to attempt to develop estimation procedures for some of these models.
Specifically, the general model set out by Rasch has a very large number of
parameters. It seemed impractical to try to estimate all of them, and it
was hoped that research on the model could help simplify the estimation
process by eliminating some terms from the model and by discovering restrictions
on the range of values for the parameters. With these considerations in
mind, the results of this study will now be discussed.

Vector Model

The simplest formulation of the general model that was investigated
was the vector model. This model is simply the unidimensional Rasch model,
but with vectors for parameters instead of scalars. This model was found
to be totally inadequate for modelling multidimensional data. When data
were generated according to this model, the resulting data were unidimen-
sional, with item characteristics determined by the inner product of the
item parameter vectors and scoring functions. From this it follows that

this model would fit multidimensional data no better than a unidimensional
model having parameters equal to the inner products from the vector model.
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Product Term Model

Because of its slight similarity to Birnbaum's two-parameter logistic
model, it was felt that the product term model would be better able to
model multidimensional data. It was anticipated that the item parameters
in the product term would behave as discrimination indices, and that is how
they did behave. Unfortunately, without the vector terms in the model
there were no terms playing the role of difficulty parameters. The data
generated for this model had items of constant difficulty. From this it
was concluded that this model would be useful only for modelling items of
constant difficulty, and when items have varying difficulties this model is
inappropriate.

L
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Vector and Product Term Model
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Based on the findings for the vector model and the product term model,
it was hypothesized that a combination of the two models would be necessary
to model items that were both multidimensional and of varying difficulty.
Analyses of the vector and product term model indicated that it would model
multidimensional data, and that it would model items of varying difficulty.
However, it was also found that, as long as the item parameter vector
elements appeared both in the vector terms and in the product term, the
item difficulties and disciminations would be highly correlated. Since
this is rarely the case in real test data, it was concluded that this model
would be useful only in a very limited number of circumstances.
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Reduced Vector and Product Term Model

In order to overcome the deficiencies of the vector and product term
model, it was clear that a given item parameter vector element should
appear only in the vector term or the product term, but not both. It was
anticipated that similar problems might exist if the person parameter
vector elements occurred in both the vector term and the product term, so
the same restriction was placed on the person parameters as was placed on
the item parameters.

ALUNCRUAE A

The resulting model appears to be quite successful at modelling realistic
multidimensional data. It is capable of modelling correlated as well as
- independent dimensions, and the item parameters are readily interpretable.
- The only real problem there seems to be with this model is with the estimation
. of the parameters. Although there are fewer parameters to estimate than is
<
X

A -'_'f W -

the case with the general model, there are still a fair number to estimate.
Moreover, there are no observable sufficient statistics for the parameters

in the product term. These problems do not make estimation of the model

’ parameters impossible, and probably not even impractical. However, they do
& make estimstion more difficult.

; Item Cluster Model

The item cluster model was proposed as an alternative to the vector
! model. This model does not involve a product term, but it still can
& successfully model multidimensional data. However, it Joes involve clustering

.t
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items, which gives rise to a number of new problems. For instance, as yet
it is unclear what the effect is of forming different combinations of
items, or whether all items should be clustered with the same item.
Preliminary investigations seem to indicate that the optimal clustering
procedure is to cluster all items on a subtest with one item taken from a
different subtest. Another alternative, which has not been explored, is to
apply the model only in situations where items are already clustered, such
as is the case with passage units. Clearly more research is needed on this
type of application of the item cluster model.

Summary and Conclusions

The purpose of this study was to investigate the application of the
general Rasch model to multidimensional data. Several formulations of the
model, varying in complexity, were investigated to determine whether they
could successfully model realistic multidimensional data. Also investigated
was whether the parameters of the models could be readily interpreted. The
models investigated included: a) the vector model; b) the product term
model; c) the vector and product term model; d) the reduced vector and
product term model; and, e) the item cluster model.

Of the models investigated, all but the reduced vector and product
term model and the item cluster model were rejected as being incapable of
modelling realistic multidimensional data. The item cluster model appears
to be a useful model, but its applications may be limited in scope. Of the
models studied, the reduced vector and product term model was found to be
the most capable of modelling realistic multidimensional data. Although
the estimation of the parameters of the reduced vector and product term
model may be more difficult than it would be for other models, this model
appears to be the model that is most worth pursuing.
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