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will deviate considerably from the usually assumed oblate spheroids.
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The Shape of a Liquid Drop in the Flow of a Perfect Fluid
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\V Abstract D

A method of analysis previously used to determine the shape of a liquid

by Clyde A. Morrison

drop in an electric field has been applied to determine the shape of a drop in
the flow of a perfect fluiad. .'rhe surface of the drop is expanded in a series
of Legendre polynomials with arbitrary coefficients. Minimization of the
total energy with respect to the coefficients then gives equations for their
determination. Due to the similarity of the equations for determining the

coefficients to previous results, it is expected that the. shape of the drops
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. 1. INTRODUCTION
fi In this report we determine the shape of a liquid drop in the flow of an
ﬁ ideal fluid (no viscosity). The drop is assumed to be held together by the

Ny

interface surface tension between the liquid inside the drop and the external

fluid. In previous analyses of this problen, the'shapOl of the drops have

been assumed to be oblate spheroids with a minor axis parallel to the
direction of flow of the external fluid.l’2 1In our earlier analysis of the
M shape of liquid drops in an electric field, the commonly accepted assumption
that the drops formed prolate sphercids with the major axis parallel to the
electric field was shown to be generally invalid.3:% fThe spheroidal

approximation for drops was only vali” for small drops or low electric fields.

2O

Since the spheroidal approximation was invalid for drops in an electric

SASAY

field, we suspected that perhaps the same approximation would be invalid for
12 falling liquid drops in air or other fluids. We have made the assumption that

- the external fluid has no viscosity; otherwise, the problem is extremely

: complicated. Here we shall use the technique used in our previous

ﬁ analysis.“ That is, we express the total energy of the system, the kinetic

A

Y energy of the external fluid, and the potential energy due to surface tension,

in terms of the coefficients, a., in the expansion

[ ]
r(6) =a_ + mzn anPn(cOl 8) (1)
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which relates an arbitrary point on the surface of the drop to the angle 6

measured from the direction of the fluid flow (z axis). In equation (1) the

RAEN

e,

Pn(cos 0) are Legendre polynomials. Minimizing the total energy with respect
to the an's gives a set of equations for these coefficients. The solutions of
£ this gset of equations then are used in equation (1) to determine the shape of

i: the arop.

. 2. THEORY
In equation (1), we have made the physically realistic assumption that
“‘3 the drop is symmetric about the direction of the external fluid flow. In
3 . standard texts on fluid mechanics, 5’6 it is shown that the welocity in a
perfect incompressible fluid can be derived from a velocity

[+ potential, ¢, which is a solution of Laplace's egquation. That is,

"

N
.-D

o

o1 @I icn et LAY

v2¢ = 0 (2)
ve -v’ . (3)

The solution to equation (2) appropriate for the region external to the drop

is
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P
¢=] =2 v, , (4)
n

vhere we have dropped the arguments of the Legendre polynomials
[Pn = P _(cos 8)] and assumed that far from the drop the velocity of the

external fluid is given by

vs= o'v . (S)

and LR is a unit vector in the £ direction.

As in our previous analyses3’“ we shall rewrite equation (1) as
r(0) =a_ +3§] a® (6)

where § is an order parameter. We then expand thoAn in equation (4) in

powers of § as

A =9l

2.(2)
n N n An * o0 o (7

and retain the terms through 62.
The An of equation (4) are determined by the boundary condition, which,

for a perfect incompressible fluid, is that the velocity normal to the
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_f,‘: surface, A\ must vanish., The velocity normal to the surface is given by

equation (3.13) of Morrison et al* or .

3 o
% vn.-[%_.ﬁ__uﬂ‘..a_]’ , (8)

where y = cos 0 and r is given by equation (6). Using equations (6) and (?7)

-3 in equation (9) and letting v, = O we obtain

- val
(0) -2
n 2 an‘l

o n+1
& AL -31.9——2 c, .<ix|n>?
3 \ n an + 1) £ % “in,x

n (9)

:: _ al? (-]

n -a(n+1).k (2l-c ) [

m,n

2 2
L aa <1x|2>“<taln> Cygx

- . vhere <tk |n> are Clebsch-Gordan coefficients'’ (In Rose,’ the

Ty Y
C 3

..C(2xn;00) = <x|n>), the Cap,c’ are given by

o
0

f.:’f_. [

; cab,c a a(a+1) + b(b+1) - c(c+1) .

e and Gm is the Kronecker delta function.
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3. ENERGY

For the change in the kinetic energy of the external fluid, we use

r-[%pvz ar - | -'2-pv2dr . (10)
vhere the first integral covers the region r(8) < r < Ro' and the second
integral covers the region 0 < r < Ro, and in the end result we let Ro become
infinite. When equation (4) is used in equation (10), we obtain (R, + =)
a2, (11)
3 ™M
Thus, we need only A1 through second order to obtain the change in kinetic
energy. All the Clebsch-Gordan coefficients appearing in equation (9) are

simple for n = 1, and algebraic expressions for them can be found in Rose.’

Thus,
3 h 12
Va 3Va n n SvVa
A== 2 L I+t 2 Egnﬂan‘m-z'
(12)
vhere
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o dn = 1)4§g?+ 2537- 2n + 3)
B (2n - 1)(2m + D320 + 3)

’

h

- nzgn + 1)
In " - 1)(zn + (20 + 3)

To obtain the result given in equation (12), we have used the constraint of

constant volume as given in Page.5,

(13)

The surface energy of the drop is simply the product of the surface tension,
Y, and the surface area of the drop and is given by

2
(n~1)n+ 2)an

us = 2ny g 2n + 1 '

(14)

and the constraint given in equation (13) was used in Page’ to obtain this

result. We now have the total energy of the system expressed in terms of the

lno

4., THE EQUATIONS FOR a,
The condition for ainimum energy can be written
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]
% (T + U') =0 . (15)

The derivative of U, is simple; from equation (14), this is

322'. 4ny(n - 1)(n + 2)an

da (2n + 1) -
n

(16)

Using equation (12) in equation (11), we have the kinetic energy; from this

result, we obtain

aT

.4 azv2 2 3
%_ = —2——5 § , - 2voav [hnan <3 (9

n+1%ne2 * gn—1anf2)] *

(17)

If the results given in equations (16) and (17) are substituted into equation
(15), we get

[(n=1(n+2) -y n ]

n_ 3 i 4
X, +2Y [qn+1xn+2 + qn-1*n-2] =2 6n,2 '

2n + 1
(18)
a vz
vhere x =— and y -'23; N

The result given in equation (18) can be used to determine the X, in the same

manner as was used in Pag..s The resulting x, can then be used in equation
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v

(1) (an = axn) to determine the shape of the drop as a function of fluid
velocity, V. Because of the similarity of equation (18) to the corresponding
equation in Page,d it is expectad.that the drop will deviate considerably from

an oblate spheroid for moderate fluid welocities or for large drop radii a.
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