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The Shape of a Liquid Drop in the Flow of a Perfect Fluid
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"I ( Abstract D

A method of analysis previously used to determine the shape of a liquid

drop in an electric field has been applied to determine the shape of a drop in

the flow of a perfect fluid. The surface of the drop is expanded in a series

of Legendre polynomials with arbitrary coefficients. inimization of the

total energy with respect to the coefficients then gives equations for their

determination. Due to the similarity of the equations for determining the

coefficients to previous results, it is expected that the shape of the drops

will deviate considerably from the usually assumed oblate spheroids.
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1 I ODMUCTION

In this report we determine the shape of a liquid drop in the flow of an

ideal fluid (no viscoity). The drop is assumed to be held together by the

interface surface tension between the liquid inside the drop and the external

fluid. In previous analyses of this problem, the shapes of the drops have

, been assumed to be oblate spheroids with a minor axis parallel to the

direction of flow of the external fluid. 1 ' 2  In our earlier analysis of the

shape of liquid drops in an electric field, the commonly accepted assumption

that the drops formed prolate spheroids with the major axis parallel to the

electric field was shown to be generally invalid.3"' The spheroidal

approximation for drops was only valt- for small drops or low electric fields.

Since the spheroidal approximation was invalid for drops in an electric

field, we suspected that perhaps the same approximation would be invalid for

falling liquid drops in air or other fluids. We have made the assumption that

the external fluid has no viscosity, otherwise, the problem is extremely

complicated* Here we shall use the technique used in our previous

analysis.4 That is, we express the total energy of the system, the kinetic

energy of the external fluid, and the potential energy due to surface tension,

in term of the coefficients, an, in the expansion

a
r (0) - a + aP n lcs O) ,1(1)

*ri1
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which relates an arbitrary point on the surface of the drop to the angle 8

measured from the direction of the fluid flow (z axis) in equation (1) the

P n(coo 8) are Legendre polynomials* Minimizing the total energy with respect
to the a's gives a set of equations for these coefficients. The solutions of

this set of equations then are used in equation (1) to determine the shape of

the drop.

2. THEORY

In equation (1), we have made the physically realistic assumption that

the drop is symmetric about the direction of the external fluid flow. in

standard texts on fluid mechanics,56 it is shown that the velocity in a

perfect incompressible fluid can be derived from a velocity

potential, #, which is a solution of Laplace's equation. That is,

V2 0 o(2)

and

-.(3)

The solution to equation (2) appropriate for the region external to the drop

44i

2
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-Vrl? 1 , (4)

n rn+

where we have dropped the arguments of the Legendro polynomals

(Pn = Pn(Cos 0) ] and aumed that far fron the drop the velocity of the

external fluid is given by

3A arecti(5)

and e is a unit vector in the 3 hrreetw)on.

As in car previous analyses 3o we shall rewrite equation (1) a

r() - a + a anPn  (6)

where 6 is an order parameter. We then expand the An in equation (4) in

powers of 8 as

A a A(0) + 8A (1) + 62A(2) + (7)
nt n n..

2
and retain the term through 

6

The An of equation (4) are determined by the boundary condition, 
which,

for a perfect incompressible fluid, is 
that the velocity normal to the

3
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surf ace, vn, wst vanish. The velocity normal to the surface is given by

equation (3.13) of Morrison et al4 or

0 - u2 dr (8)n ""[Lr r2 duS.u(

where p - coo 8 and r is given by equation (6). Using equations (6) and (7)

in equation (9) and letting v - 0 we obtain
-

,n 2 'n1

3Van+1
Am-0 c lkln>2

n 4(n + 1) Clnkk
k

Wan (9)
A(2) 3a

A (2) 0 T) aa ikjX 2 *31n>2C (21 - C
n 8(n +. 1 I1, fta

where <Ikin> are Clebsch-Gordan coefficients " 7 (In Rose, 7 the

....C(AknOO). - <Akln>), the Cab,€, are given by

Cab,c - a(a+l) + b(b+1) - c(c+1)

and 6ni is the Kronecker delta function.

* 4
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3. IUG

For the change in the kinetic energy of the external fluid, we use

T a f j pV2 dT - f -1 ,V2 dT (10)

where the first integral covers the region r(8) C r < Ro , and the second

integral covers the region 0 4 r . R , and in the end result we let Ro become

infinite. When equation (4) is used in equation (10), we obtain (R .. )

2WOV (11)
.43 1

Thus, we need only A, through second order to obtain the change in kinetic

energy. All the Clebech-Gordan coefficients appearing in equation (9) are

simple for n - 1, and algebraic expressions for them can be found in Rose. 7

Thus,

A 1  2 + 1 2 nlanan +2

(12)

where

-,
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~(n- 1) G+ n ,+ 3)
hn " O(n - 1) (2n + 1)2 (2n + 3)

'a

gn1 n- 1 ) 1(2 + 1) On + 3)

"To obtain the r e sult given in equation (12), we have used the constraint of

5constant volume as given in Page.5,

a- (13
V: a = a -- O[ n 013)

0? a in + I

The surface energy of the drop is simp'ly the product of the surface tension,

y, and the surface area of the drop and is given by

(n - M1n + 2)a ()

n

and the constraint given in equation (13) as used in Page 5 to obtain this

result. We now have the total energy of the system expressed in term of the

aa1

2 4. IM SQ $TIONS POR a.

The condition for minimum energy can be written

0 .6

I - b* ' .~*'.. * .... " ... . . . ., ,,. .
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V;.

(T + U) 015
n

The derivative of Us is simple; from equation (14), this is

;Us  4ry(n - 1)1n + 2)a

a 1On + 1)n

Using equation (12) in equation (11), we have the kinetic energy; from this

result, we obtain

3T 2 wpaV 2 [ (g a a
T - IaV2 - 2 [hnan 2 n+lan+2 + gn-an-2)]

If the results given in equations (16) and (17) are substituted into equation

(15), we get

[(n - 11n + 2) - y h] 3

2n + 1 Xn + [n+n+2 + gn-lxn-2]  " 2 n,2
:" (18)

a n V2
where xn - and y- 2" a 2y

The result given in equation (18) can be used to deteraine the xn in the same

manner as was used in Page .5 The resulting xn can then be used in equation

7

-** * . ** . ° . . . . . .- . .
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(1) ( , ax to determine the shape of the drop as a 'function of fluid(n an )

velocity, V. Because of the similarity of equation (18) to the corresponding

equation in Page,5 it is expected that the drop will deviate considerably from

an oblate spheroid for moderate fluid velocities or for large drop radii a.

LITERATURE CITED

(1) A. W. Green, J. Appl. Meteorology 14 (1975), 1578.

(2) A. F. Spilhaus, J. Meteorology 5 (1948), 108.

(3) C. A. Morrison, R. P. Leavitt, and D. E. Wortman, The Extended Rayleigh

Theory of the Oscillation of Liquid Droplets, Harry Diamond Laboratories,

HDL-TR-1924 (May 1980).

(4) C. A. Morrison, R. P. Leavitt, and D. E. Wortman, J. Fluid Mech. 104

(1981), 295.

(5) L. Page, *Introduction to Theoretical Physics" (New Yorks D. Van

Nostrand, 1952).

(6) L. D. Landau and E. 4. Lifshitz, Fluid Mechanics. Volume 6 of a Course

of Theoretical Physics (New York: Pergamon Press 1959).

(7) H. E. Rose, Elementary Theory of Angular Momentum New York: John Wiley

and Sons (1957).

'4

-2, .: . 2. .:-,-,,. ,-.. .... - . . . . . . . . , . . . . ...


