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OPTIMAL LOT-SIZING IN ACYCLIC
MULTIPERIOD PRODUCTION SYSTEMS

\' ~ ABSTRACT
This paper presents constructive, network—b#sed proofs for the Wagner- .
Whitin property and a generalized Nested Schedule prépergy for optimal ﬁro-
duction schedules in acyclic hierarchical multipefiod produétion systems.
Algorithms for obtaining schedules with these properties and described and

illustrated with examples.
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, " INTRODUCTION
4 i . This paper addresses the problexﬁ of lot-sizing in hierarchical pro-
:é - duction systems. Specifically, we use a constructive, network based methed
% iﬁ to establish the Wagner-Whiteﬁ (WW) property and a generalization of the
;-. ' nested schedules (NS) property for optimal production schedules in unca-
- pacitated acyclic multistage systems. In establishing these properties,
% §E we use a generalized network flow model similar to that of Steinberg and
" " - Napier [4].
g S In the problem we address here, there are N production stages requiring
§ 5} production decisions for each of T period? in the planning horizon. For
: o any stage i, P(i) in the inde# set for predecessor stages and S(i) is the
g é? index set for successor stages. If S(i) = ¢, then stage i corresponds to
% a fingl product, and if P(i) = ¢, theh stage i corresponds to the initial
. ii processing of raw material. Define F = {iIP(i) = ¢}, the set of initial
% 3 (or first) production stages and L = {1|S(i) = ¢}, the set of final (or
: = last) stages. The production of one unit at'stage Jj> 3 £_F, requires'Kij
- ' units from stage i, 1 eP(j) where K:I. 5 is a positive integer. For stages
c 1 ¢L, the demand 1n period t is D,,. |
§ i: The decisions required are denoted by xit,‘representing the nugber of
1 mj units to produée at stage 1 in period t. The end of period inventories
E N are denoted by Iit' The.costs associated with production aﬁa inventory are
5 ;% assumed to be concave function and are denoted by cit(xit) and nic(lit)
: respectively. Note that cit(xit) can incorporate a fixed, or setup cost.
i . We adopt several standard assumptions, namely:
i o (1) initial inventories and production lead times are zero at
(%]

each stage;




(2) transfer times between stages are zero;

(3) backlogging or lost sales are not permitted; and

(4) there are no capacity limits on productioh or ianventory.

Also, for convenience, we assume that if j € S(i), then j > i: Let P de-

note any problem having the structure just described.

THE NEIWORK MODEL
Figure 1 illustrates the logical structure of a five stage acyclic
problem and Figure 2 illust;ates the corresponding netwo;k model fof a
four period ‘horizon. 1In the network there are two nodes for each stage-

period combination. The first, referred to as a collector node, corresponds

to obtaining units from the predecessor stages, while the second, referred

to as a distributor node, corresponds to disposition of current production:- -

and the inventory from the previous period. Production arcs join collector

nodes to distributor nodes,. and their flows correspond to xit‘ Inventory . -
arcs join distributor nodes, and their flows«qp:respona to I,,. Transfer .
2rcs join distributor nodes to collector nodes, aﬁd their flows correspond

to Ky Xo0s 3 € P(4).

The nodes in the flow network are numbered in a particular order, which
is used later in the proofs. At each stage, all the collector nodes have
consecutive indices, and all the distributor nodes haye.consecutive indices
with smaller indices corresponding to earlier time periods. Moreover, a
production -arc starting .at collector node i will terminate at distributor
node i + T. The first collector node for stage n will have index 2(n-1)T + 1

and the last distributor node will have index 2nT.
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: = For arc (m, n) in the network, the notatiom is:
i . X(m, n) = flow on the arc

I K(m, n) = arc multiplier.

: a3 C(m’ n) (X(@, n) = cost of arc flow.

. l In addition, for node m in the network,

1(m) = the stage corresponding to node m

:‘ t(m) = the period corresp-onding to node m.

) = A flow in the network is feasible provided:

’ ;J (1)' at each distributor node, total incoming flow is equal to

a total outgoing flow; and

' - y' (2) at each collector node, the incoming flow on an arc is

' . equal to the arc multiplier (Ki j) multiplied by the

" . outgoing flow.

J a There is an obvious correspondence between feasible flows in the network

: 2 and feasible pfoduction schedules. For any problem, P, let N(P) be the

’ . corresponding network.

, i Steinbérg and Napier [4) first utilized a network model like this as

. the basis for a MIP formulation of the problem. Subsequently, Mcciain et al.,

: [3) demonstrated a more parsimonious mathematical formulation, but did not
C perform any computational assessment. Our objective is to use the network
" N(P) to .establish two conditions th#t are satisfied by some 'éptimal solution -
to P.
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THE WAGNER-WHITIN PROPERTY

The Wagner-Whitin property was first established for single-stage
problems [7]}, and later extended to acyclic production systems by Zangwill
[8) and ﬁeinot: [5]. In essence, it says there is at least one optimal
solution for which production and incoming inventory are not both positive
in any stage~period. Yet another proof fof the property is offered here
because: (1) our proof is constructive and network-based, thus more in-
tuitive than the analytic proofs of [5] and [8]; and (2) the flow adjustment
operation used in the proof is also required in our proof of a genefalized

nested schedules property.
Theorem 1. There exists an optimal solution to any problem satisfying

X, I

and t=1’.'o,T

Theorem 1 can be restated in terms of the petwork N(P) as follows:

Theorem 1N: - There exists an optimal flow:-in N(P) such that at most one T

arc entering each distributor node has a non-zero fluw.

We shall prove the metwork version of the theorem. Our method of proof is

similar to that used by Wagner [7], i.e., we assume that an optimal flow is

given- which-violates..the theorem and show how. to. modify it ﬁo;nhtain a flow . .

satisfying the theorem without increasing the cost.

To start with, we have a given feasible flow that does not satisfy the
WW property. We consider the distributor nodes in the order of incregsing
index, and stop with the first one violating the WW property. For this node,

let the incoming flow on the production arc be U units and that on the in-
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ventory arc be V units. We consider two alternatives for adjusting the

flow: (1) to adjust the flow such that the flow on the production arc van-

ishes and that on the inventory arc becomes U+V, or (2) to adjust the flow
such that the flow on the inventory arc vanishes and that on thg production
arc becomes U+V.

The flow adjustment is accomplished by creating an adjusting-flow pat-
tern which is itself feasible at every node. The cost associated wifh the
pattern will be concave, thus one of the two alternatives will yield a cost
less than or equal to the original cost.

The operation of adjusting the flow at a given node which violates the
WW property is called "operation-WWA". 1In addition to yielding a WW-flow at
that node, the operation must ensure that the adjusted flow is feasible, and
that the nodes which satisfied the WW property before the operation must con-
tinue to satisfy the property after the operation.

Suppose we are adjusting the flow at distributor node J. The adjusting
flow,- since it -must be feagible, should‘corresp6nd'to ;'"generaltzed cycle -
of flow". It will be necessary to identify not only the set of arcs in this
generalized cycle, but also the direction of adjusting flow in each arc. We
constfuct, to serve this purpose, two subgraphs, Pl(J) and rz(J), as a part
of 6peration WWA. rl(J) contains all the arcs .in the network whose flows
contribute to the flow on the production arc at J and similaily, PZ(J) con-
tains the arcs whose flows contribute to the flow on the inventory arc at J.
The two subgraphs need not be disjoint.

In a given feasible flow if we want to introduce changes in the inflow

at J, corresponding changes have to be introduced on arcs in Pl(J) and T,(J)

in order that feasibility of flow is maintained. To satisfy feasibility,
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the changes in the production arc and ﬁhe entering inventory arc at J are
always equal in magnitude and opposite in sign. Changes in these two arc
flows induce changes in Fl(J) and FZ(J) respectively.

The example network of Figure 2 will be used to illustrate these
notions. .Table 1 presents a set of arc costs, and Figure 3 contains a fea~
siblé flow thch violates the WW pro;erty at node 23, The subgraphs, P1(23)
and‘r2(23) are shown in Figure 4. It should be evident from this figure
that the changes to arc flows can be computed "backward" in Pl(23) and P2(23)
starting with the inventory or production.arc and using the arc multipliers.
Figﬁre 5 shows the adjusted flow.

The algorithm for constructing a W& flow is given in Appendix A. The
algorithm makes use of a set of labels, zi(m, n) defined for arcs
(m, n) s‘ri(J).~ A flow change of A4 on arc (J-T, T) -induces a change of - ¢4
zl(m, n) - A for (m, n) ¢ Pl(J) and -lz(m, n) * A for (m, n) ¢ PZ(J). Note
that,- as long as the WW property is satisfied at all distributor nodes with-=. . u%
indices smaller than J, if an arc (m, n) is in both rliJ) and PZ(J) then -
zl(m, n) = Ez(m, n). Thus, the net flow change for such an arc will be zero. {
Also, the adjusted flow cost is computed by: ’

F(4) = c (X(m, n) + (2,(m, n) - 2,(m, n))A)
(m, n) E (D) v T (D) (m, n) 1\ 2

Thus, F(0) is tle current cost for arcs in the two subgraphs.

Proof of Theorem 1N

Let J be a distributor node such that the WW property is violated by J.'
and is satisfied by every distributor node less than J. Then operation WWA,

when applied at J adjusts the flow such that:
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1. In the adjusted flow, the WW property holds at node J and
also at all distributor nodes with index less than J.

2. The adjusted flow at nodes greater than J is the same as the

flow at those nodes before the application of the operation.

3. The adjusted flow is feasible.

4. The cost of the adjusted flow is less than or equal to the

original cost.

The first two of the above four properties are obvious and hence we omit
a formal proof for those properties.

The third property follows from the fact that the adjusting-flow in sub-
graph Pl(J) u rz(J) is feasible. Therefore, the adjusted flow which is the
sum of the ofiginal and the adjusting-flows should be feasible also.

To establish the fourth property, we compute the cost changes in
rl(J) u PZ(J) and show that the total cost along those arcs either decreases
or remains the same as the original cost.

First, note that C n)(X) is a concave function of X, therefore

(m,

C(m n)(k + y) is a concave function of y for fixed k. Thus F(A) is a sum
2
of concave functions and therefore also concave. From the propert&es of

concave function, we have:

F(1) > F(0) => F(-U) < F(0) and

F(1) < F(0) => F(V) < F(0).

It follows that the cost of the adjusted f£low will not exceed the cost of

the original flow. Q.E.D.
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THE NESTED SCHEDULE PROPERTY

A nested schedule property has been studied by Love [2] for pure series
systems and by Crowston and Wagner {1] for pure assembly and general acyclic
systems. For acyclic systems, a nested schedule is a production schedule for
which production at any stage 1 £ L and any period t is always accompanied
by production in period t at some immediate successor of stage {i.

Crowston and Wagner limited their discussion to the case of unit inter-
stage multipliers and linear inventory holding costs. We allow general in-
teger valued multipliers and concave inventory costs, and offer a network-

based proof.

Theorem 2. An N-stage, T—period problez, P, has at least one optimal solution
-. that simultaneously satisfies the Wagner-Whitin and nested sched-
ules properties provided:
- 1. .The production costs-forheverymstagé-pericd are non-negative,
concave, and zero for zero productfon.
2. Hithin a stage the production costs are nonincreasing in
time. That is .

Cy, I(X)'Z'C'i' 2 (X2 ... 2 Cy, -1%) 2 Cy, (%)

for all 1
3. The inventory holding cost for a stage-period is non-negative
and concave with respect to the end-of-the-period inventory,
and zero when the end-of-the-period inventory is zeré.
4. The inventory holding costs are non-decreasing in stages,

and, additionally, satisfy the following property:

14
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H x) 2 H (K,, X)
i, t j?::P(i) j, t “ji

for i £ F, all t.

This theorem can also be restated in terms of the network model:

[ 2B PR3
L

Theorem 2N: Under conditions (1)-(4) of Theorem 2, there is at least one

o

optimal flow in the network which satisfies the Wager-Whitin
property and in addition, whenever there is positive flow in

a production arc (J-T, J), there is positive flow on at least

g? one tranfer arc originating at J.

X Our proof of this theorem will be similar to the proof 6f Theorem 1N; a flow

B adjustment procedure will be described which yields the desired charactefis-

- tic without increasing total cost.

) Initially we adjust the flow, if needed, to satisfy the WW property by

ii applying Algorithm 1. At this phase in our procedure, if there are some

- distributor nodes that do not satisfy the nesting property, then to enforce
:s'ézua »o .. nesting we apply a f£flow adjustment opezation,_openatioAyNSA. .However, while .. . = -

!I enforcing one desirable property , nesting, we should not disturb the other

j desirable property, namely the W property, which the flow already satisfies.

ﬁ} . Therefore, in case the WW property is distrubed by operation NSA, it will b;
o restored by another operation, operation NSB.

’ We consider nodes from 2NT to 0 consecutively in decreasing order of in-

E' . - dex; when a node that does not satisfy nesting is encountered we apply first

. NSA at that node to satisfy nesting, and then NSB, if needed to recover the

WW property. When we finish considering node 0, we will have a nested, WW
.- flow at hand. |
&

Suppose we find in applying the above procedure that we need to apply

E 15
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Qiiﬁ operation NSA at node J. Since J violates nesting, J must have incoming flow
(:‘_ on its production arc and must not have outgoing flow on any of its transfer
2

:}3: arcs. Also, since we are considering nodes in the descending order, all

-:Ej nodes greater than J must satisfy nesting, and the WW property. Since J

— violates nesting, and since the flow is feasible, J cannot belong to the

first period nor to the last period of the planning horizon, but to some in-

termediate period. Therefore, there exists a future period t such that pro-

duction can be shifted from node J to node Q, where Q is the distributor

‘y?j node for the stage under considerationAin period t.
%iié Such- a shift of production-flow from J to Q necessitates flow changes
t“A - in several arcs. The arcs along which changes are to be made are contained
:;g ian subgraph o(J), the construction of which is described in Algorithm 2.1. * . |
j:§ The proposed shift in the production from J to Q is obﬁained by sending an
ijuf adjusting flow around the subgraph o(J). The adjusting flow is so computed
;§§ that the resulting flow satisfies the following properties: (i) the node J
‘?ﬁ} as-well as all distributor nodes-greater than J satisfy nesting and WW prop- = -
;§}. erties, (ii) all nodes satisfy the feasibility conditions, (iii) spe cost
?i;{.--.“-, .. — of the resultant. flow. is not greater than that of the original flow. .. ... ....{
E;i However, in the resulting flow, some nodes with indices less than J
" may not satisfy the WW property after changing the flow. Therefore, we
Z%E '-f~coasidem-nddes;from 1 throagh J~1- consecutively, applying operation WWA at‘n‘?:aﬁ
;{35 those nodes .where WW property is distrubed by operation NSA. Such consecu- {
::%; tive application of operation WWA from 1 through J-1 is referred to as ap-
§S3E plication of operation NSB at J. As the operation NSB does not distrub the
‘;%2 flow beyond node J-1, after its application at J, the WW property holds
;;f throughout the network. The complete statement of the algorithm for ob-
aii taining a nested schedule is given in Appendix B.
16
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To illustrate the procedure for obtaining a nested schedule, consider
again the feasible flow shown in Figure 5. This flow satisfies the WW prop-
erty, but the nested schedules property is violated at node 23. Operation
NSA identifies the next period in which there is a positive flow on a trans-
fer arc out of this stage (3), and then shifts production to that period.
Shifting the production means that flows oan the transfer arcs must also be
shifted, resulting in (possibly additional) iaventory carrying at the pred-
ecessor stages. Figure 6 shows the subgraph 0(23) associated with the nec-
essary flow changes.

After this flow change, the WW property will be violated at node 16.
Applying operation WWA at node 16, wé find that node 7 violates nesting.
After. applying operation NSA at node 7,. the desired result is achieved.

This flow is shown in Figure 7.

Proof of Theorem 2N

.:.:In-a. given feasible flow-satisfying..the WW properfy let J be a distri-
butor node that does not satisfy the nesting property. Then application of
operation NSA at J results in an adjusted-flow which (1) is feasitle, (2)
satisfies WW property at distributor nodes greater than or equal to J,

(3) satisfies nesting property at J and at all distributor nodes greater
than J, (4) has a cost less than or equal to the cost of flow prior to ad-
Justment.

Of these four properties, the first three are easy to see; the last
property is not so obvious and hence we will offer here a proof for it.

Note that in the operation NSA we shift production in the stage under
consideration to a future period. As the production costs are non-increasing
in time, the production costs are not going to increase as a tesulé of this

adjustment.
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- Thus, the inventory. cost reduction in each period at stage. i(J) exceeds the ..

The inventory costs remain to be considered, however. In the subgraph
6(J), for every inventory arc of stage i(J) there is one corresponding in-
ventory arc in the same period for each immediate predecessor of i(J). The
flow in the inventory arcs of i(J) decreasss by U units and that in the in-
ventory arcs of the predecessors increases by K(.)U where K(.) refers to
the interstage multiplier between i(J) and the predecessor stage under con-
sideration.

Consider a particular inventory arc (J+K, J+K+1l). This arc represents
inventory at stage j = i(J) and period t = t(J+K). Because the inventory

costs are concave, nondecreasing, we have:

, Hgt(ngxjt) - Hgt(o) 2 Hgt(ch + ngxjt) - Hgt(xgt) ve t and
j € s(g)
Also, condition 4 of Theorem 2 gives
Hie®ye) = Lo Beeay¥yo-
Because Hjt(o) = 0 for all j and t, it follows that
H, (X; ) -H (0) 2 ) H_ (K X, )-H (O} ~— -~ v
Jeije jt g € P(J) gt gl jt gt
: 2-8 Effj) (Mo (Rop + KoXe0) = B (X)) | ..

inventory cost increase at the predecessor stages. Hence, operation NSA

does not increase total costs. Q.E.D.
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CONCLUSION

.We have given constructive proofs of the Wagner-Whitin and Nested Sched-
ule properties for optimal solutions to acyclic production systems with gen-
eral integer multipliers and concave costs of production and inventory.

These proofs are Important for two reasons. First, since they are network-
based, they provide greater intuition and insight into this complex problem.
Second, because they are consﬁructive, they provide a simple, efficient meth-
od for obCaihing a local optimum, given any trial solution.

These results can be extended in an obvious way to allow backlogging at
the final stages. The existance of initial inventories is difficult to for-
malize, but only affects these results in the early periods, until the ini-
tial inventories are consummed. The case of constant, identical lead times
is trivial; proving these properties with nonidentical lead'times will pro-

bably require stricter assumptions on the cost structures.
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APPENDIX A

: Algorithm 1: (To establish the Wagner-Whitin Property)
N BEGIN
. FOR J = 1 to 2NT DO

IF J is a distributor THEN
IF J violates WW property THEN
* Apply operation~WWA at J (Sea Algorithm 1.1)
- ENDIF
ENDIF
ENDFOR

- END
Algorithm 1.1 (Cperation-WVWA at a given node J)

i BEGIN

* Construct the subgraph ?l(J) (Algorithm 1.1.1)
* Compute the labels Ll(m) for each node of Pl(J)
_ and labels ll(m, n) for each arc of Fl(J)
. (Algorithm 1.1.2)
» Construct the subgraph FZ(J) (Algorithm 1.1.3)
* Compute labels Lz(m) for each node of PZ(J) and
labels 12(m, n) for each arc of PZ(J)
- (Algorithm 1.1.4).

IF F(1) ¢ F(0) THEN
* Adjust the flow in Pl(J) u FZ(J) as below:

X(J-1, J) « 0
X(J-T, J) + U+V

X(m, n) + X(m, n) +t11(m, n) - Ly(m, M)V
) for all other (m, n) ¢ ?l(J) v FZ(J)
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ELSE
» Adjust the flow in Pl(J) 0] FZ(J) as below:

X(J-1, J) <« U+v
X(J-T, J) « 0O

X(m, n) « X(m, n) + (11(m, n) - lz(m, n)) (-U)
for all other (m, n) ¢ Fl(J) ] FZ(J)
ENDIF

END

Algorithm 1.1.1 (Constructioa of Pl(J))

BEGIN

* Unmark all the arcs of the network
* Mark the arc (J-T, J)
« FORP = J-T to 0 DO

* IF at least one outgoing arc of P is marked AND

-there is at-least one unnarkxed incoming arc
with a positive flow THEN
« Mark all incoming arcs of P which have a
positive flow
+ ENDIF
« ENDFOR
* Include all marked arcs and their nodes in Pl(J)
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Algorithm 1.1.2 (Construction of labels in I‘l(J))

BEGIN

4

Ll(J) 1

FORm =J to 1 DO
. IFme r,{J) THEN
IF Ll(m) is not yet computed THEN
FOR each citgoing arc of m, (m, n), in Pl(J) Do
IF (m, n) is a transfer arc THEN
ll(m, n) <« K(m, n) - Ll(n)

ELSE
ll(m, n) <« Ll(n)
ENDIF

ENDFOR

Ll(m) * z ll(m’ n)

(m.n)el‘l(J)
ENDIF
ENDIF
ENDFOR

END

Algorithm 1.1.3 (Construction of T,(J))

BEGIN

"+ Unmark all arcs in the network
* Mark the inventory arc (J-1, J)
* FOR p = J-1 to 0 DO

END

IF there is at least one outgoing arc of P which is marked
AND there is at least one incoming arc of P with a
positive flow THEN

* Mark all incoming arcs of P which have a positive flow

ENDIE

ENDFOR

Include all marked arcs in T,(J).

.......
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uuuu R B Send guatad
--------

........




il "~ Algorithm 1.1.4 (Construction of labels in TI'.(J))

-0 A
BEGIN

i L) 1

FOR m = J to 0 DO
IF Lz(m) is not yet computed THEN
FOR each outgoing arc of m, (m, n), in I'Z(J) Do
IF (m, n) is a transfer arc THEN

1,(m, n) « K(m, n) * L,(n)

ELSE
12(m, n) « Lz(n)
ENDIF
ENDFOR
Sl Lz(m) + z lz(m, n)
T (m,n)<el, (3)
i ENDIF
N ENDFOR
END
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APPENDIX B

Algorithm 2: To establish the Nested Schadule Property

BEGIN

FOR J = 2NT TO 1 DO

IF J is a distributor node THEN
IF J violates nesting property THEN
Apply operation NSA at node J (See Algorithm 2.1)
Apply operation NSB at node J (See Algorithm 2.2)
ENDIF
ENDIF

ENDFOR

END

Algorithm 2.1 (To apply operation NSA at a distributor node J) .

'BEGIN

...............
D

Let U « X(J-T, J)

Find- the distributor node Q in staze 1(J) such that

(1) @ > (D

(ii) At least one outgoing transfer arc of Q has
a positive flow.

~(iii) The nodes between J and Q do not have flows

on their outgoing transfer arcs.
Include inventory ares (J, J+1), (J+1, J+2), ... ,
(Q-1, Q) and their end nodes in the subgraph o(J). -
Let the adjusted flow in arcs (J, J+1), (J+1, J+2),
eee 5 (Q-1, Q) be zero, that is

X(J+n, J+n+l) =0 for n=0,1, ... , Q-J-1

Include arc (J-T, J) and node (J-TI) in o(J)
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END

» Let the adjusted flow on (J~T, J) be zero, that is
X(J-T, J) = 0

* Include arc (Q-T, Q) and node (Q-T) im 5(J).
* Let the adjusted flow on (Q-T, Q) be

X(Q-T, Q) + X(Q-T, Q) + U

- IF 1(J) ¢ F THEN
FOR each distributor node m which is connected to
(J-T) with a transfer arc (m, J-T) DO
* Find the distributor node r in stage i(m) such

that transfer arc (r, Q-T) exists.

* Include transfer arc (m, J-T) in o(J). .
» Let X(m, J-T), the adjusted flow on (m, J-T),
be zero.

-+ Include the tramnsfer arc (r, Q-T) in o(J)
- » Let the adjusted flow on (r, Q-TI) be

X(r, Q‘T) + X(r, Q<T) + U - K(r: Q‘T)

-+. Include' inventory arcs (m, w+l), (m+l, m+2), ... ,
.{r=-1, r) and the nodes m, mtl, ... , r in o(J)

»'Let- the: adjusted flow along the inventory arcs . C
between n and r be

X(mén, mkn+l) « X(o+n, ma+l) + U « K(m, J-T)

forn=0,1, ... , r-m-1

ENDFOR
ELSE
-~ Include transfer arcs (0, J-T) and (0, Q-T) and
node 0 in o(J)
Let X(0, J-T) <« 0 : e
Let X(0, Q-T) « X(0, Q-T) + U

|
{
|
|
i
i




.
;4

‘e
Sy

.‘-':: r-‘

Algorithm 2.3 (Application of operation NSB at a given node J)

BEGIN

FOR r = 0 to J-1 DO
IF r is a distributor node THEN
IF r does not satisfy the WW property THEN
Apply operation WWA at r (see Algorithm 1.1)
ENDIF
ENDIF
ENDFOR

END







