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OPTIMAL LOT-SIZING IN ACYCLIC

* MULTIPERIOD PRODUCTION SYSTEMS

* ABSTRACT

This paper presents constructive, network-based proofs for the Wagner-

-Whitin property and a generalized Nested Schedule property for optimal pro-

C duction schedules in acyclic hierarchical multiperiod production systems.

Algorithms for obtaining schedules with these properties and described and

Illustrated with examples.
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INTRODUCTION

3This paper addresses the problem of lot-sizing in hierarchical pro-
duction systems. Specifically, we use a constructive, network based method

c.- to establish the Wagner-Whiten (WW) property and a generalization of the

p nested schedules (NS) property for optimal production schedules in unca-

pacitated acyclic multistage systems. In establishing these properties,

..... we use a generalized network flow model similar to that of Steinberg and

Napier [4].

In the problem we address here, there are N production stages requiring

production decisions for each of T periods in the planning horizon. For

any stage I, P(i) in the index set for predecessor stages and S(i) is the

index set for successor stages. If S(i) = *, then stage i corresponds to

a final product, and if P(i) = *, then stage i corresponds to the initial

U processing of raw material. Define F - {ilP(i) = *}, the set of initial

(or first) production stages and L - {iIS(i) 01, the set of final (or

last) stages. The production of one unit at stage J, j £ F, requires K
units from stage , here is a positive integer F stages

i L, the demand in period t is Dit.

The decisions required are denoted by X1t, representing the number of

units to produce at stage i in period t. The end of period inventories

are denoted by I it. The costs associated with production and inventory are,it

assumed to be concave function and are denoted by C (Xt) and H (I:.,,Cit(Xit) it(it)

respectively. Note that Cit(X t) can incorporate a fixed, or setup cost.

SWe adopt several standard assumptions, namely:

* "(1) initial inventories and production lead times are zero at

each stage;

• ................................. '4 - . . .
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(2) transfer times between stages are zero;

(3) backlogging or lost sales are not permitted; and

(4) there are no capacity limits on production or inventory.

Also, for convenience, we assume that if j e S(i), then j > i. Let P de-

note any problem having the structure just described.

THE NETWORK MODEL

Figure 1 illustrates the logical structure of a five stage acyclic

problem and Figure 2 illustrates the corresponding network model for a

four period-horizon. In the network there are two nodes for each stage-

period combination. The first, referred to as a collector node, corresponds

to obtaining units from the predecessor stages, while the second, referred

to as a distributor node, corresponds to disposition of current production-

and the inventory from the previous period. Production arcs join collector

nodes to diatributer nodes, and their flows correspond to Xt. Inventory.

arcs join distributor nodes, and their flows correspond to I Transfer _.

arcs join distributor nodes to collector nodes, and their flows correspond

to KiXit, j E P().,

The nodes in the flow network are numbered in a particular order, which

is used later in the proofs. At each stage, all the collector nodes have

consecutive indices, and all the distributor nodes have consecutive indices

with smaller indices corresponding to earlier time periods. Moreover, a

Vproduction-arc starting .at collector node i will terminate at distributor

node i + T. The first collector node for stage n will have index 2(n-l)T + 1

and the last distributor node will have index 2nT.
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For arc (m, n) in the network, the notation is:

X(m, n) - flow on the arc

K(m, n) = arc multiplier

C (X(m, n) - cost of arc flow.

In addition, for node m in the network,

iim) the stage corresponding to node m

t(m) - the period corresponding to node m.

A flow in the network is feasible provided:

(1) at each distributor node, total incoming flow is equal to

total outgoing flow; and

(2) at each collector node, the incoming flow on an arc is
equal to the arc multiplier (K) multiplied by the

, outgoing flow.

N There is an obvious correspondence between feasible flows in the network

and feasible production schedules. For any problem, P, let N(P) be the

corresponding network.

Steinberg and Napier [4] first utilized a network model like this as

the basis for a HIP formulation of the problem. Subsequently, McClain et al.,

[31 demonstrated a more parsimonious mathematical formulation, but did not

perform any computational assessment. Our objective is to use the network

N(P) to establish two conditions that are satisfied by some optimal solution

to P.

P 5
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THE WAGNER-WHITIN PROPERTY

The Wagner-Whitin property was first established for single-stage

problems [7], and later extended to acyclic production systems by Zangwill

[8] and Veinott [5]. In essence, it says there is at least one optimal

solution for which production and incoming inventory are not both positive

in any stage-period. Yet another proof for the property is offered here

because: (1) our proof is constructive and network-based, thus more in-

tuitive than the analytic proofs of [5] and [8]; and (2) the flow adjustment

operation used in the proof is also required in our proof of a generalized

nested schedules property.

Theorem 1. There exists an optimal solution to any problem satisfying

1.. 0 for i=i...,N

and t = ,..., T

Theorem 1 can be restated in terms of the network N(P) as follows:

Theorem lN:'- There exists an- optimal flow- in N(P) such that at most one

arc entering each distributor node has a non-zero fluw.

We shall prove the network version of the theorem. Our method of proof is

similar to that used by Wagner [7], i.e., we assume that an optimal flow is

given- which..violates...the theorem and show how.,to.imod fy it to obtain a flow

satisfying the theorem without increasing the cost.

To start with, we have a given feasible flow that does not satisfy the

WW property. We consider the distributor nodes in the order of increasing

index, and stop with the first one violating the W property. For this node,

let the incoming flow on the production arc be U units and that on the in-

;-.;.
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ventory arc be V units. We consider two alternatives for adjusting the

flow: (1) to adjust the flow such that the flow on the production arc van-

ishes and that on the inventory arc becomes U+V, or (2) to adjust the flow

such that the flow on the inventory arc vanishes and that on the production

arc becomes U+V.

The flow adjustment is accomplished by creating an adjusting-flow pat-

tern which is itself feasible at every node. The cost associated with the

pattern will be concave, thus one of the two alternatives will yield a cost

: > :less than or equal to the original cost.

The operation of adjusting the flow at a given node which violates the

WW property is called "operation-WWA". In addition to yielding a W-flow at

" ithat node, the operatioh must ensure that the adjusted flow is feasible, and

that the nodes which satisfied the WW property before the operation must con-

tinue to satisfy the property after the operation.

Suppose we are adjusting the flow at distributor node J. The adjusting

f-lowi" since- it- must be- feasible, should -correspond -to a "generalized cycle'

of flow". It will be. necessary to identify not only the set of arcs in this

* - generalized cycle, but also the direction of adjusting flow in each arc. We

construct, to serve this purpose, two subgraphs, r1(J) and r2(J), as a pari

of operation WWA. r1(J) contains all the arcs -in the network whose flows

contribute to the flow on the production arc at J and similarly, r2(i) con-

tains the arcs whose flows contribute to the flow on the inventory arc at 3.

The two subgraphs need not be disjoint.

-. In a given feasible flow if we want to introduce changes in the inflow

at 3, corresponding changes have to be introduced on arcs in rI(J) and r

in order that feasibility of flow is maintained. To satisfy feasibility,

• ,. ..*- .*. .'S* . . . .-.. - -. 5 5_""* 5. . .. - -. S , - . - .5
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the changes in the production arc and the entering inventory arc at J are

always equal in magnitude and opposite in sign. Changes in these two arc

flows induce changes in rI(J) and r2 (J) respectively.

The example network of Figure 2 will be used to illustrate these

notions. -Table 1 presents a set of arc costs, and Figure 3 contains a fea-

sible flow which violates the '.W property at node 23. The subgraphs, r1 (23)

and r2(23) are shown in Figure 4. It should be evident from this figure

that the changes to arc flows can be computed "backward" in r1 (23) and r2 (23)

starting with the inventory or production arc and using the arc multipliers.

Figure 5 shows the adjusted flow.

The algorithm for constructing a VJ flow is given in Appendix A. The

algorithm makes use of a set of labels, li(m, n) defined for arcs

(m, n) E ri(J). A flow change of A on arc (J-T, T) -induces a change of

II(m , n) - A for (m, n) c rI(J) and -12(m, n) - A for (m, n) c r2(J). Note

that,-as long as the VWW property is satisfied at all distributor nodes with.- .

*.4z" indices smaller than J, if an arc (m, n) is in both r1(J) and r2 (J) then

ZI (m, n) - L2 (m, n). Thus, the net flow change for such an arc will be zero.

Also, the adjusted flow cost is computed by: "

F(A) - [ C(m, n)(XMm. n) + (I (m, n) - 2(m, n))A)
(m, n) e rl(J) u r2(J) "

Thus, F(O) is tle current cost for arcs in the two subgraphs.

Proof of Theorem IN

Let J be a distributor node such that the WW property is violated by J,

and is satisfied by every distributor node less than J. Then operation W"A,

when applied at J adjusts the flow such that:

8:: ;".
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1. In the adjusted flow, the Wi property holds at node J and

3 malso at all distributor nodes with index less than J.

2. The adjusted flow at nodes greater than J is the same as the

flow at those nodes before the application of the operation.

* 3. The adjusted flow is feasible.

4. The cost of the adjusted flow is less than or equal to the

original cost.

The first two of the above four properties are obvious and hence we omit

a formal proof for those properties.

The third property follows from the fact that the adjusting-flow in sub-

graph r1 () u r2(J)is feasible. Therefore, the adjusted flow which is the

sum of the original and the adjusting-flows should be feasible also.

To establish the fourth property, we compute the cost changes in

r1(J) u r2 (J) and show that the total cost along those arcs either decreases

or remains the same as the original cost.

First, note that C (X) is a concave function of X, therefore
(in n)

3 C (k + y) is a concave function of y for fixed k. Thus F(A) is a sum
(m,n)

of concave functions and therefore also concave. From the properties of

concave function, we have:

F(l) > F(O) => F(-U) < F(O) and

F (1) -< F (0) = > F (V) 5F (0).

It follows that the cost of the adjusted flow will not exceed the cost of

the original flow. Q.E.D.

1
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THE NESTED SCHEDULE PROPERTY

A nested schedule property has been studied by Love [2] for pure series

systems and by Crowston and Wagner [1] for pure assembly and general acyclic

systems. For acyclic systems, a nested schedule is a production schedule for

which production at any stage i j L and any period t is always accompanied

by production in period t at some immediate successor of stage i.

Crowston and Wagner limited their discussion to the case of unit inter-

stage multipliers and linear inventory holding costs. We allow general in-

teger valued multipliers and concave inventory costs, and offer a network-

based proof.

Theorem 2. An N-stage, T-period problem, P, has at least one optimal solution

that simultaneously satisfies the Wagner-Whitin and nested sched-

ules properties provided:

.............. .. The production costs -for.. every stage-period are non-negative,

concave, and zero for zero production.

2. Within a stage the production costs are nonincreasing in

time. That is

ci, l(x) Ci, 2(x)" ... >ci, T1(x) > cbT(X)

for all i

3. The inventory holding cost for a stage-period is non-negative

and concave with respect to the end-of-the-period inventory,

and zero when the end-of-the-period inventory is zero.

4. The inventory holding costs are non-decreasing in stages,

and, additionally, satisfy the following property:

14
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Hi, t(X) Hj, t (K jiX)
j P(i)

for i J F, all t.

This theorem can also be restated in terms of the network model:

Theorem 2N: Under conditions (l)-(4) of Theorem 2, there is at least one

. - optimal flow in the network which satisfies the Wager-Whitin

a. property and in addition, whenever there is positive flow in

a production arc (J-T, J), there is positive flow on at least

one tranfer arc originating at J.

Our proof of this theorem will be similar to the proof of Theorem IN; a flow

adjustment procedure will be described which yields the desired characteris-

tic without increasing total cost.

Initially we adjust the flow, if needed, to satisfy the W property by

applying Algorithm 1. At this phase in our procedure, if there are some

distributor nodes that do not satisfy the nesting property, then to enforce

nesting we apply a -flw adjustment operation, operation-NSA. However, while

enforcing one desirable property , nesting, we should not disturb the other

desirable property, namely the W property, which the flow already satisfies.

Therefore, in case the W property is distrubed by operation NSA, it will be

L" restored by another operation, operation NSB.

We consider nodes from 2NT to 0 consecutively in decreasing order of in-

.-dex; when a node that does not satisfy nesting is encountered we apply first

NSA at that node to satisfy nesting,, and then NSB, if needed to recover the

WW property. When we finish considering node 0, we will have a nested, 14W

flow at hand.

Suppose we find in applying the above procedure that we need to apply

[Z is



operation NSA at node J. Since J violates nesting, J must have incoming flow

on its production arc and must not have outgoing flow on any of its transfer

arcs. Also, since we are considering nodes in the descending order, all

nodes greater than J must satisfy nesting, and the W property. Since J

violates nesting, and since the flow is feasible, J cannot belong to the

first period nor to the last period of the planning horizon, but to some in-

termediate period. Therefore, there exists a future period t such that pro-

duction can be shifted from node J to node Q, where Q is the distributor

node for the stage under consideration in period t.

Such-a shift of production-flow from J to Q necessitates flow changes

in several ar.cs.. The arcs. along which changes are to be made are contained

in subgraph a(J), the construction of which is described in Algorithm 2.1.*

The proposed shift in the production from J to Q is obtained by sending an

-*adjusting flow around the subgraph .o(J)-. The adjusting flow is so computed

that the resulting flow satisfies the following properties: (I) the node J

as -wel-l as all distributor uodes-greater than J satisfy nesting and W prop-

erties, (ii) all nodes satisfy the feasibility conditions, (iii) the cost

S-............ .of. the- resultant.. flow.is mot..,r.ar than that of the original ow. .

However, in the resulting flow, some nodes with indices less than J

may not satisfy the WW property after changing the flow. Therefore, ye

........ coasider nodesi from I thrbagh J-1-. ctnteciktively, applying operation WA at

those nodes.where 1W property is distrubed by operation NSA. Such consecu-

tire application of operation WA from 1 through J-1 is referred to as ap-

plication of operation NSB at J. As the operation NSB does not distrub the

flow beyond node J-l, after its application at J, the W property holds

throughout the network. The complete statement of the algorithm for ob-

taining a nested schedule is given in Appendix B.

16
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To illustrate the procedure for obtaining a nested schedule, consider

U again the feasible flow shown in Figure 5. This flow satisfies the W prop-

erty, but the nested schedules property is violated at node 23. Operation

NSA identifies the next period in which there is a positive flow on a trans-

fer arc out of this stage (3), and then shifts production to that period.

Shifting the production means that flows on the transfer arcs must also be

shifted, resulting in (possibly additional) inventory carrying at the pred-

!ecessor stages. Figure 6 shows the subgraph o(23) associated with the nec-

essary flow changes.

After this flow change, the WW property will be violated at node 16.

Applying operation WA at node 16, we find that node 7 violates nesting.

After applying operation NSA at node 7,. the desired result is achieved.

This flow is shown in Figure 7.

Proof of Theorem 2N

: -a.In.- given feas-b flo .at tn .the WW property let J be a distri-

butor node that does not satisfy the nesting property. Then application of

operation NSA at J results in an adjusted-flow which (1) is feasible, (2)

satisfies W property at distributor nodes greater than or equal to J,

L(3) satisfies nesting property at J and at all distributor nodes greater

than J, (4) has a cost less than or equal to the cost of flow prior to ad-

justment.

Of these four properties, the first three are easy to see; the last

property is not so obvious and hence we will offer here a proof for it.

Note that in the operation NSA we shift production in the stage under

consideration to a future period. As the production costs are non-increasing

in time, the production costs are not going to increase as a result of this

adjustment.

1. . . . . .
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The inventory costs remain to be considered, however. In the subgraph

u(J), for every inventory arc of stage i(J) there is one corresponding in-

ventory arc in the same period for each immediate predecessor of i(J). The

flow in the inventory arcs of i(J) decreases by U units and that in the in-

ventory arcs of the predecessors increases by K(.)U where K(.) refers to

the interstage multiplier between i(J) and the predecessor stage under con-

sideration.

Consider a particular inventory arc (J+K, J+K+l). This arc represents

inventory at stage j = i(J) and period t = t(J+K). Because the inventory

costs are concave, nondecreasing, we have:

Hgt(KgjXjt) - H t(O) k Hgt(Xgt + KgjXjt) - Hgt(Xgt) V g, t and

j £ S(g)

Also, condition 4 of Theorem 2 gives

Hj t (Xj ) z H (Kg X t)•
g P(j) gt

Because Ht (0) - 0 for all j and t, it follows that
* -t

" Zh' Hj(X t)- HjtCO) ( Hgt(K Xjt)- _ g(0)}.,
itit it g cP(J)

b . :,. .. .. > [ {H(X t +lgX) - Hg(X)}

i!.gctp(J) gt t gt t t

Thus, the inventory, cost reduction in each period at.stage.i(J) exceeds th

inventory cost increase at the predecessor stages. Hence, operation NSA

does not increase total costs. Q.E.D.

20
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CONCLUSION

3 We have given constructive proofs of the Wagner-Whitin and Nested Sched-

.- ule properties for optimal solutions to acyclic production systems with gen-

* i eral integer multipliers and concave costs of production and inventory.

U These proofs are important for two reasons. First, since they are network-

based, they provide greater intuition and insight into this complex problem.

. Second, because they are constructive, they provide a simple, efficient meth-

qod for obtaining a local optimum, given any trial solution.

These results can be extended in an obvious way to allow backlogging at

the final stages. The existance of initial inventories is difficult to for-

malize, but only affects these results in the early periods, until the ini-

tial inventories are consummed. The case of constant, identical lead times

* , is trivial; proving these properties with nonidentical lead times will pro-

bably require stricter assumptions on the cost structures.

-21
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APPENDIX A

Algorithm 1: (To establish the Wagner-UWhitin Property)

BEGIN

m FOR J --1 to 2NT DO

IF J is a distributor THEN

IF J violates W property ThEN

- Apply operation-V.A at J (See Algorithm 1.1)

ENDIF

ENDIF

ENDFOR

END

Algorithm 1.1 (Operation-1VA'.k at a given node J)

* BEGIN

" Construct the subgraph rl(J) (Algorithm 1.1.1)

" Compute the labels LI(m) for each node of rW(J)

and labels 11 (m, n) for each arc of r1 J)

N (Algorithm 1.1.2)

* Construct the subgraph r2(J) (Algorithm 1.1.3)

Compute labels L2 (m) for each node of r (J) and2 2
labels 12 (m, n) for each arc of r2(J)

(Algorithm 1.1.4).

IF F(l) < F(O) THEN

- Adjust the flow in rl(J) u r(J) as below:

X(J-I, J) 0

X(J-T, J) U+V

X(m, n) 4- X(m, n) +(1(m, .n) - 12 (n, n))V

for all other (m, n) W -l(J) u r2(J)

2 23
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ELSE

Adjust the flow in r (J) u r2(J) as below:

X(J-l, J) - U+V

X(J-T, J) - 0

X(m, n) ( X(m, n) + (l(m, n) - 12(m, n))(-U)

for all other (m, n) c rI(J) u r 2(J)

ENDIF

END

Algorithm 1.1.1 (Construction of r.(J))

BEGIN

" Unmark all the arcs of the network

" Mark the arc (J-T, J)

" FOR P - J-T to 0 DO

* IF at least one outgoing arc of P is markedAND

there is at:least one unmarked incoming arc

with a positive flow THEN

* Mark all incoming arcs of P which have a

positive flow

* ENDIF

" EDFOR

* Include all marked arcs and their nodes in r1(J)

END

24
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Algorithm 1.1.2 (Construction of labels in r,(j))

BEGIN

" ~ ~ L(J) 1

FOR m J to 1 DO

IF m c r,(J) THEN

IF LI(m) is not yet computed THEN

FOR each citgoing arc of m, (m, n), in r 1 (J) DO

IF (m, n) is a transfer arc THEN

1 (m, n) - K(m, n) * Ll(n)

ELSE

11 (m, n) Ll(n)

ENDIF

ENDFOR

L1 (m) 
1
1 (m, n)

(m,n) r1 (J)
~ENDIF

ENDIF

ENDFOR

END

Algorithm 1.1.3 (Construction of r.(J))

BEGIN

• Unmark all arcs in the network

- Mark the inventory arc (J-1, J)

-•FOR p - J-1 to 0 DO

IF there is at least one outgoing arc of P which is marked

*AND there is at least one incoming arc of P with a

positive flow THEN

. Mark all incoming arcs of P which have a positive flow

ENDIF

ENDFOR

Include all marked arcs in r2(j).

END
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Algorithm 1.1.4 (Construction of labels in r2()

BEGIN

L2 (J) + 1

FOR m J to 0 DO

IF L2 (m) is not yet computed THEN

FOR each outgoing arc of m, (m, n), in r2(J) DO

IF (m, n) is a transfer arc THEN

.12(m, n) K(m, n) • L2 (n)

ELSE

12(m1, n) L (n)

ENDIF

ENDFOR

L2 (m) + 12(m, n)

(m, n) sr2 (J)

ENDIF

ENDFOR

END

.-
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APPENDIX B

Algorithm 2: To establish the Nested Schedule Property

BEGIN

FO __J 2NT TO DO

IF J is a distributor node THEN

IF J violates nesting property THEN

Apply operation NSA at node J (See Algorithm 2.1)

- Apply operation NSB at node J (See Algorithm 2.2)

ENDIF

ENDIF

S:"ENDFOR

END

Algorithm 2.1 (To apply operation NSA at a distributor node J).

BEGIN

Let U + X(J-T, J)

.-Find-the distributor node Q in stage 1(J) such that

(i) t(Q) > W)
(ii) At least one outgoing transfer arc of Q has

."'. ... a positive flow.

" .(iii) The nodes between J and Q do not have flows

-.on their outgoing transfer arcs.

" Include inventory arcs (J, J+1), (J+l, J+2),

(Q-1, Q) and their end nodes in the subgraph o(J).

' Let the adjusted flow in arcs (J, J+1), (J+l, J+2),

... , (Q-1, Q) be zero, that is

X(J+n, J+n+l) = 0 for n - 0, 1, Q-J-1

Include. arc (J-T, J) and node (J-T) in o(J)
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Let the adjusted flow on (J-T, J) be zero, that is

X(J-T, J) - 0

Include arc (Q-T, Q) and node (Q-T) in a(J).

• Let the adjusted flow on (Q-T, Q) be

X(Q-T Q) X(Q-T, Q) + U

IF i(J) i F THEN

FOR each distributor node m which is connected to

4 (J-T) with a transfer arc (m, J-T) DO

- Find the distributor node r in stage i(m) such

that transfer arc (r, Q-T) exists.

- Include transfer arc (m, J-T) in a(J).

- Let X(m, J-T), the adjusted flow on (m, J-T),

be zero.

S- :Include the transfer arc (r, Q-T) in o(J)

' Let the adjusted flow on (r, Q-T) be

X(r• Q-T) *- X(r, Q-T) + U * K(r, Q-T)

.-Include: inventory arcs (m, i+l) , (ie+l, m+2), ...

_.(r-1, r) and the nodes m, in+l, ... , r in o(J)

.- * -, :Let- the; adusted. flow along the inventory arcs

between m and r be

X(m+n, m+n+l) + X(m+n, m+n+l) + U * K(m, J-T)

for n = 0, 1, r-m-l

ENDFOR

- 'ELSE

Include transfer arcs (0, J-T) and (0, Q-T) and

node 0 in a(J)

Let X(O, J-T) 0

Let X(O, Q-T) • X(O, Q-T) + U

ENDI V

END
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Algorithm 2.3 (Application of operation NSB at a given node 3)

BEGIN

FOR r -0to J-1 DO

IF r is a distributor node THEN

* IF r does not satisfy the UV property THEN

* -Apply operation UT1A at r (see Algorithm 1.1)

* ... ENDIF

* .. ENDIF

- ENDFOR

END

.29



Popp*_________


