

UNLIMITED DISTRIBUTION

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

SUFFIELD MEMORANDUM NO. 1077

THE DISTRIBUTION OF AEROSOL PARTICLES DOWNSTREAM IN A TURBULENT FLUID JET (U)

by

Kathy I. Leary^{*} and Stanley B. Mellsen

PCN No. 13E10

December 1982

* Chemistry Section Research Assistant, Summer 1982

WARNING The use of this information is permitted subject to recognition of proprietary and patent rights".

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

SUFFIELD MEMORANDUM NO. 1077

THE DISTRIBUTION OF AEROSOL PARTICLES DOWNSTREAM IN A TURBULENT FLUID JET (U)

by

Kathy I. Leary and Stanley B. Mellsen

ABSTRACT

A mathematical model has been developed to predict the downstream distribution of particles in a fluid jet. The particles were initially assumed to be evenly dispersed over a cross-section of the circular jet, near the source of the jet, and, with computer-aided methods, the co-ordinates of the particles at a specified distance downstream were determined. The computer program was also built in such a manner that the paths of specific particles, from their initial upstream position to their final position downstream, could be completely followed. Some graphical results of these paths are presented for various particle sizes.

UNCLASSIFIED

(Ü)

TABLE OF CONTENTS

Page No.

ABSTRACT

.

4

LIST OF FIGURES

NOTATION

1.	INTRODUCTION	1
2.	DEFINITION OF THE PROBLEM	2
3.	PARTICLE MOTION	3
4.	THE TURBULENT CIRCULAR JET	4
5.	COMPUTER METHODS OF SOLUTION	7
6.	RESULTS AND DISCUSSION	9
7.	CONCLUSIONS 1	1
8.	REFERENCES 12	2
	FIGURES	

APPENDIX

NOTATION

b1/2	half the width of a circular jet at half depth, cm
d	particle diameter, cm
D	jet diameter where particles are initially positioned in flow stream, cm
k	kinematic momentum of circular jet, $k = 2\pi \int_{0}^{\infty} u^{2}y dy$
L	jet radius where particles are initially positioned in flow stream, cm
t	time, seconds
u	local fluid velocity, cm s ⁻¹
u,	axial component of fluid velocity, cm s ⁻¹
u <i>,</i>	radial component of fluid velocity, cm s ⁻¹
U	center-line velocity of fluid at any distance downstream, cm s ⁻¹
U,	center-line fluid velocity at x_0 , cm s ⁻¹
Xo	axial distance from point source of jet where particles are initially positioned in flow stream, cm
х	co-ordinate of particle position parallel to center-line flow direction; axial co-ordinate, cm
у	co-ordinate of particle position perpendicular to center-line flow direction; radial co-ordinate, cm
σ	particle density, g cm ⁻³
μ	absolute viscosity of fluid, poise
ę	fluid density, g cm ⁻³
εο	virtual kinematic viscosity of turbulent flow, poise
The follow	ing are dimensionless:

- C_D drag coefficient for spheres
- K particle inertia parameter

- Re spherical particle slip Reynolds number
- Reo spherical particle Reynolds number in free stream

NOTATION (Cont'd)

Ttime tU/L \overline{u}_x axial component of fluid velocity u_x/U_0 \overline{u}_y radial component of fluid velocity u_y/U_0 \overline{v}_x $d_{\overline{X}}/dT$, parallel component of particle velocity \overline{v}_y $d_{\overline{y}}/dT$, transverse component of particle velocity η parameter used in calculation of fluid velocity ϕ parameter formed by combining Re₀ and K

LIST OF FIGURES

Figure 1.	Co-ordinate system for a circular, turbulent free jet, illustrating the pattern of streamlines.
Figure 2.	Illustrating the idea of x_0 with respect to $b_{1/2}$ and the jet diameter D to be studied.
Figure 3.	Paths of the particles in the fluid, for a particle diameter of 100 microns.
Figure 4.	Paths of the particles in the fluid, for a particle diameter of 50 microns.
Figure 5.	Paths of the particles in the fluid, for a particle diameter of 20 microns.
Figure 6.	Calculated radial co-ordinate of outside particle as a function of its inertia parameter, for the jet width resulting when $AF = 1.0$.
Figure 7.	Calculated radial co-ordinate of outside particle as a function of its inertia parameter, for the jet width resulting when $AF = 0.5$.

APPENDIX

Listing of the Computer Program with a Sample Solution.

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

SUFFIELD MEMORANDUM NO. 1077

THE DISTRIBUTION OF AEROSOL PARTICLES DOWNSTREAM IN A TURBULENT FLUID JET (U)

bу

Kathy I. Leary and Stanley B. Mellsen

INTRODUCTION

Previous studies have been made (Mellsen, 1978 and 1979) involving streams of suspended particulates in such a way that impaction forces of airborne particles and collection efficiencies of specific samplers could be determined. The flow considered in the present study is of this same type; that is, it involves a fluid flow with suspended particles moving along with the flow. As a result, the same mathematical equations as were previously used may be used here to describe the motion of the particles in the fluid. In doing so, the velocity, as well as the position of each particle at any distance downstream can be determined.

The specific flow which is to be studied here is that of a turbulent circular jet with particles suspended across a cross-section of the jet. By developing a mathematical model, the radial and axial co-ordinates of the particles at a specific downstream distance will be determined, thus the actual particle distribution will be known. Also, the model is to be devised in such a fashion that the paths of particular particles may be completely followed from their initial upstream position to their final downstream position.

The information as revealed by this model will prove to be of some value from the chemical defence point of view in that it is of interest to know how particulate agents, i.e., irritants, such as CS and CR disperse in a flow field such as that described by a circular jet. The solution may also be applied to situations involving fluid-particle mixtures flowing from smoke stacks and/or exhaust pipes.

DEFINITION OF THE PROBLEM

When a jet leaves a small circular opening it causes surrounding fluid to be drawn in and mixed with the jet itself (Fig. 1). This results in an increase of volume of flow with distance from the orifice and a downstream cross-section of the flow field which is much larger than a cross-section nearer the source of the jet.

The problem to be considered here involves putting particles into a circular jet flow somewhere upstream and determining their positions downstream. We would like this situation to simulate a fluid-particle flow from a tube, with particles initially distributed across the mouth of the tube, however the mathematics describing the flow field assumes the jet as coming from a point source. In order to account for this, the particles are put in the flow, at the velocity of the flow, a short distance downstream from this issuing point. Their paths are then followed from this initial point onwards.

The distance from the source where the particles are initially distributed uniformly across the cross-section is defined by how much of the jet velocity profile is to be studied. It has been found that a distance, x_0 of 5.896D from the point source encompasses the width of the jet at half depth (Schlichting, 1968). That is, for this x_0 value the velocity of the particles which are located on the circumference of the circular cross-section will be one-half that of the center-line velocity (Fig. 2).

By increasing x_0 , a smaller amount of the jet angle is covered and the velocity of the particles on the circumference will be more than one-half of the center-line velocity. When the value of x_0 is less than that of 5.896D the opposite situation arises; a larger amount of the jet angle is covered and particle velocity on the circumference becomes smaller.

Thus, the basic problem is to choose an appropriate x_0 according to the portion of the jet angle to be studied, and thereby establish the starting point of the particle paths. Having done this, the paths are to be traced to a specified distance downstream where the co-ordinates of each particle are to be determined.

PARTICLE MOTION

The motion of an individual spherical particle has been found (Batchelor, 1967) to be defined by the following ordinary differential equations:

$$\frac{d\overline{v}_{\nu}}{dT} = \frac{C_{\nu}Re(\overline{u}_{\nu} - \overline{v}_{\nu})}{24K}$$
(Eq. 1)

$$\frac{d\overline{v}_{x}}{dT} = \frac{C_{D}Re(\overline{u}_{x} - \overline{v}_{x})}{24K}$$
(Eq. 2)

where $\operatorname{Re} = \operatorname{Re}_0[(\overline{u}_y - \overline{v}_y)^2 + (\overline{u}_x - \overline{v}_y)^2]^{1/2}$ (Eq. 3)

$$K = \frac{\sigma d^2 U_o}{18 \mu L}$$
 particle inertia parameter (Eq. 4)
(Stokes number)

$$Re_o = \frac{U_o d\varrho}{\mu}$$
 free stream Reynolds number (Eq. 5)

The variables are defined on the notation pages at the beginning of this report and the basic geometry of the flow system is illustrated in Figure 1.

Both Equations 1 and 2 involve the term $C_{D}Re$. This presents a slight problem because C_{D} , the drag coefficient of the sphere, has been found to be a function of the Rcynolds number Rc. For example,

$$C_D = \frac{24}{Re}$$

for a situation involving Stokes flow. However, since both C_p and Re contain a velocity term it is more convenient to use

$$Re = \frac{C_D Re^2}{24}$$

when considering Stokes flow. This is because the velocity squared term contained in the denominator of the definition of C_p is cancelled by the velocity squared term in Re² and C_p Re may then be found by dividing C_p Re² by Re.

As a result, the general expression becomes $Re = f(C_D Re^2)$ and in actual fact the drag coefficient is available in the form of explicit empirical equations. These equations, are (Davies, 1945):

$$Re = -\frac{C_{D}Re^{2}}{24} 2.3363 \times 10^{-4}(C_{D}Re^{2})^{2} + 2.0154 \times 10^{-4}(C_{D}Re^{3})^{3} - 6.9105 \times 10^{-9}(C_{D}Re^{3})^{4}$$
(Eq. 6)
for Re < 4 or $C_{D}Re^{2} < 140$

$$log_{10}Re = -\frac{1.29536}{1.235} + 9.86 \times 10^{-1}(log_{10}C_{D}Re^{3}) - 4.6677 \times 10^{-2}(log_{10}C_{D}Re^{2})^{2} + 1.1235 \times 10^{-3}(logC_{D}Re^{2})^{3}$$
(Eq. 7)
for 3 < Re < 10⁴, or 100 < C_{D}Re^{2} < 4.5 \times 10^{7}

The assumptions that must be made when using any of the equations which were introduced in this section include —

- (a) negligible effects of gravity and/or electrostatic forces,
- (b) monodisperse spherical particles with diameter very small as compared to the diameter of the initial upstream cross-sectional area, and
- (c) free stream flow that is steady, incompressible and irrotational.

THE TURBULENT CIRCULAR JET

The velocity components of a turbulent circular jet have been defined (Schlichting, 1968) as:

$$u_{x} = \frac{3}{8\pi} \frac{k}{\epsilon_{0}x} \frac{1}{(1 + \frac{1}{4}\eta^{2})^{2}}$$

$$u_{y} = \frac{1}{4} \sqrt{\frac{3}{\pi}} \frac{\sqrt{k}}{x} \frac{\eta - \frac{1}{4}\eta^{2}}{(1 + \frac{1}{4}\eta^{2})^{2}}$$
(Eq. 8)
where $\eta = \frac{1}{4} \sqrt{\frac{3}{\pi}} \frac{\sqrt{k}}{\epsilon_{0}} \frac{y}{x}$

UNCLASSIFIED

/4

The curve which results from these equations has been found to agree quite favorably with the first theoretical consideration of a circular jet as done by W. Tollmien and the experimental results of H. Reichardt (Figure 24.8, Schlichting).

In applying Equations 8 to the problem considered here it is necessary to find numerical values for particular constants such as the empirical constant, \sqrt{k}/ϵ_0 , and/or the constant kinematic momentum, k. In order to do this, the theory as presented (Schlichting) must be employed to modify the equations of u_x and u_y to more suitable forms. These modifications are now to be introduced.

Due to measurements obtained by H. Reichardt, half the jet width at half the depth of the velocity distribution at any point x is given by $b_{1/2} = 0.0848x$. This is actually half the width of the jet at the point where, for each distribution, the minimum velocity in the x direction is one-half of the maximum velocity which occurs.

According to Schlichting, the point at which the fluid velocity is one-half the maximum fluid velocity, $\eta = 1.286$ and $b_{1/2} = 5.27 x \epsilon_0 / \sqrt{k}$. By equating these two expressions of $b_{1/2}$, the result is

$$\frac{\epsilon_0}{\sqrt{k}} = 0.0161$$

so that \sqrt{k}/ε_0 , which occurs in u, and η , is 1/0.0161.

The equations we now have are:

$$u_{x} = \frac{3}{8\pi x} \left(\frac{1}{0.0161}\right) \frac{1}{(1 + \frac{1}{4}\eta^{2})^{2}} \sqrt{k}$$
$$u_{y} = \frac{1}{4} \sqrt{\frac{3}{\pi}} \frac{1}{x} \frac{\eta - \frac{1}{4}\eta^{2}}{(1 + \frac{1}{4}\eta^{2})^{2}} \sqrt{k}$$
$$\eta = \frac{1}{4} \sqrt{\frac{3}{\pi}} \left(\frac{1}{0.0161}\right) \frac{y}{x}$$

It can be seen that for any co-ordinate consisting of an x and y value, η can be found and the only unknown quantity left to be determined is \sqrt{k} found in u_x and u_y .

UNCLASSIFIED

/5

It has been derived from substitution that

$$\sqrt{k} = 1.59 b_{1/2} U$$

or $\sqrt{k} = 1.59(0.0848x)U = 0.1348xU$

where U is the center-line velocity at any distance x. Not knowing this value, it appears that it would be more convenient to express \sqrt{k} in terms of U_0 — the velocity of the fluid at x_0 , where x_0 is the distance downstream from the issuing point of the jet that is considered the starting point of the solid particles.

It is known that for a free turbulent circular jet the center-line velocity U is proportional to x^{-1} therefore

$$U = \frac{c}{x}$$

and $U_0 = \frac{c}{x_0}$ where c is an arbitrary constant.

By obtaining an expression for x_0 , then, knowing U_0 , the constant can be found as can the appropriate value of U for any x.

Assuming the situation as illustrated in Figure 2, then $b_{1/2} = 0.5$ D. Also, $b_{1/2} = 0.0848 x_0$ as was previously introduced. Thus

$$x_0 = \frac{0.5 D}{0.0848} = 5.896 D$$
 (Eq. 9)

and

$$c = 5.896 D U_0$$

The velocity U at any downstream distance x may now be expressed in terms of U_0 , D and x:

$$U = \frac{5.896 D U_o}{x}$$

and the simplified expression for \sqrt{k} becomes

 $\sqrt{k} = 0.795 DU_0$

By substituting this into u, and u, the resulting fluid velocity components are:

$$u_{x} = \frac{3}{8\pi x} \left(\frac{1}{0.0161}\right) \frac{1}{(1 + \frac{1}{4}\eta^{2})^{2}} (0.795 D U_{0})$$

$$u_{y} = \frac{1}{4} \sqrt{\frac{3}{\pi}} \frac{1}{x} \frac{\eta - \frac{1}{4}\eta^{2}}{(1 + \frac{1}{4}\eta^{2})^{2}} (0.795 DU_{0})$$

Thus, for any constants D and U₀ (which are analogous to OD and UF of the computer program used to solve the problem), and for any x and y co-ordinate, η may be calculated as well as can u_x and u_y.

Each fluid velocity component was normalized in the solution to the center-line fluid velocity which prevailed at x_0 . This was done so that the initial velocity in the x direction of the fluid at the center, and thus the center particle, was always 1.0. All other velocities could easily be compared to this value.

Finally, as an overall conclusion to these μ revious substitutions and derivations, the normalized equations which were actually used to find the velocity components of a turbulent circular jet for the situation of this problem are:

$$\overline{u}_{x} = \frac{u_{x}}{U_{0}} = \frac{3}{8\pi x} \left(\frac{1}{0.0161} \right) \frac{1}{(1 + \frac{1}{4}\eta^{2})^{2}} \quad (0.795 \text{ D})$$

$$\overline{u}_{y} = \frac{u_{y}}{U_{0}} = \frac{1}{4} \sqrt{\frac{3}{\pi}} \frac{1}{x} \frac{\eta - \frac{1}{4}\eta^{2}}{(1 + \frac{1}{4}\eta^{2})^{2}} \quad (0.795 \text{ D}) \quad (\text{Eq. 10})$$

where, as before

$$\eta = \frac{1}{4} \sqrt{\frac{3}{\pi}} \left(\frac{1}{0.0161} \right) \frac{y}{x}$$

COMPUTER METHODS OF SOLUTION

The computer program which was built to solve the problem considered here consists of various subprograms incorporated into the main program itself. Each of these subprograms are briefly described in the program listing and the whole program is documented in such a way that the step-by-step procedure may be quite easily followed. Refer to the Appendix for a listing of the program and a sample solution.

A total of fourteen constants are to be supplied by the user and these are read in as input data. Each of these variables, as well as most of the others used throughout the

program are described at the beginning of the listing so that they may be easily referred to while running the program.

In order to establish the initial upsream starting point, a constant AF is to be read in and used in the statement $XZ = 5.896 \cdot OD/RADZ \cdot AF$. The value of AF provided by the user depends upon the angle of the jet velocity profile to be studied. With AF = 1.0 the jet encompasses the jet width at half the depth of the profile. See Figure 2 for an illustration of the situation resulting when AF = 1.0 and refer to the previous section entitled "Definition of the Problem" for a more complete description of this value of x₀. When AF is less than 1.0, then a different value of x₀ results and a wider portion of the velocity profile is covered; when AF is greater than 1.0, a smaller jet angle than that at half depth is covered. Thus by varying the input value of AF different portions of the jet velocity profile may be studied according to the user's preference.

One of the most important subroutines which was built into the solution program is that of SUBROUTINE SBM22. As is described in the listing, this uses the fourthorder Runge Kutta method to integrate a specified number of ordinary differential equations. In this case, the ordinary differential equations which are to be solved by SUBROUTINE SBM22 are

$$\frac{d\overline{v}_{z}}{dT}, \frac{d\overline{v}_{z}}{dT}, \frac{d\overline{v}_{z}}{dT}, \frac{d\overline{v}}{dT}$$

which are analogous to DG(1), DG(2), DG(3) and DG(4) respectively of the computer program. By integrating these equations, the velocity and position of the particle is obtained (note that DG(1) and DG(2) represent Equations 1 and 2).

The values of Re and K of Equations 1 and 2 are easily found for each new step by direct substitution of previously determined values into Equations 3, 4 and 5. However, the value of CDRE is found by the subprogram FUNCTION CDRE. This is done by calculating, for each step, the 1. merical solution of the definitive empirical equations (Eqs. 6 and 7). By using Newton's method for finding the zero of a function, these numerical solutions are determined and the value of CDRE can be obtained.

This subprogram, FUNCTION CDRE, presents the only visible error of the whole program. The procedure used involves an iterative process which is terminated only when a certain condition is met, namely, that

$$\left|\frac{X_{k+1}-X_k}{X_{k+1}}\right| \leq \varepsilon$$

where ε is any small number. When this condition is not met then a message of NO CONVERGENCE is printed by the computer and the value of CDRE is taken to be what was previously stored there. Although the number of iterations (100) is quite high, there are some situations where the initial estimate doesn't converge and the message is printed out. In these cases, the true value of CDRE is, in fact, not what it is taken to be and a small amount of error is introduced into the calculations by assuming an incorrect value. However, since the actual computed values of CDRE change very little from one time increment to the next, then this error is assumed to be negligible and the message may be, for practical purposes, ignored.

The program was written for a large number of diverse situations however one limitation which was discovered is that the smallest particle diameter which could be input is 20 μ . At a diameter of 10 μ , an overflow problem in the computer calculations resulted so no solution could be obtained. Other limitations of the program have not yet been discovered.

As a small addition to the solution, the average number of particles per unit area (cm^2) at the initial cross-section is computed, as it also is at the cross-section downstream. It may be noted that the upstream concentration is in fact the actual number of particles per square centimeter since they (the particles) are uniformly distributed over the cross-section. However, upon reaching the downstream distance, the particles will no longer be uniformly dispersed and the resulting concentration represents an average of particles per square centimeter.

RESULTS AND DISCUSSION

A sample solution for one set of input data is shown after the program listing in the Appendix. Many more calculations were made using this program to produce the graphical results shown in Figures 3 to 7.

The plots of Figures 3, 4 and 5 are those of the actual particle paths for particle diameters of 100μ , 50μ and 20μ . It can be seen that the downstream distribution does not vary much with particle size, however, the larger particulates tended to become distributed a bit further away from the center of the flow. Even though the difference is small it indicates that the larger particles were less inclined to be influenced by the surrounding fluid which is drawn in as the jet spans out downstream. If this is the case, the momentum of these larger particles would cause them to flow out and away from the

UNCLASSIFIED

/9

center more than the smaller particles and as a result, they would have greater y co-ordinates. It must be noted that these graphs were plotted for a value of AF equal to 0.3217 which was choosen so that most of the velocity profile was covered (this was determined for v, of the outside particle equal to 0.0 at the initial position).

There are no experimental results available to compare with the mathematical results presented in Figures 3, 4 and 5. Since the model contains many assumptions, including steady, irrotational flow and the starting location of the particles, the results should be tested by experiment to establish their validity. Some errors, however, could possibly have been introduced into the solution by computer round-off but these are assumed to be negligible.

The graphs of Figures 6 and 7 are families of curves showing the radial coordinate of the outside particle as a function of the inertia parameter K. (The outside particles are those which are located on the circumference of any circular cross-sectional area of the jet which engulfs all particles.) These curves are plotted for a series of values of ϕ , a dimensionless parameter independent of particle size and equal to Re_0^2/K .

Figure 6 shows the results for AF = 1.0 which means that all of the particles are assumed to be distributed across the width of the jet at half the depth of the velocity profile. At this point, as was previously mentioned, the initial velocities of the outside particles (in the x direction) are one-half the velocity of the center particle. Figure 7 shows the results for AF = 0.5 which covers a wider portion of the jet angle than when AF = 1.0. At this angle, the velocities of the outside particles are found to be about 0.14 times that of the center particle thus confirming that a wider portion of the profile is indeed covered.

In these two figures each curve was fitted by eye through several data points obtained by applying the computer program to various particle diameters. As a result, by knowing the particles' free stream Reynolds number Re_0 and the inertia parameter K then by studying the appropriate curve, the radial co-ordinates of the outside particles at a specific distance downstream may be estimated. Also, for any value of ϕ which falls between those plotted in the figures, the method of interpolation provides a means of approximating the downstream radial co-ordinate.

As a last point to note, the recelts as given in the Appendix indicate that although both the particles and the fluid have the same initial velocity, the velocity of the fluid tends to decrease faster than the particles as they are observed downstream. This can be explained by considering the effect of the fluid on the particles in the following way:

In the presence of a fluid which is continually decreasing in velocity, as is the case here, particles moving in the same direction as the fluid will have a drag force acted upon them. Although the particles will begin to slow down very quickly they will still have a greater velocity than the fluid because of the inertia effects which they experience. As the distance downstream is increased however, the difference between particle velocity and fluid velocity is narrowed (refer to columns of VX' and UX' of the solution given in the Appendix). This is due to the fact that the fluid velocity is changing more slowly as the downstream distance is increased.

CONCLUSIONS

In some situations it may be of interest to know how particulates disperse in a fluid-particle circular jet. As an attempt to find some answers a mathematical model has been developed which predicts the distribution of particles, by specifying their radial and axial co-ordinates, at any distance downstream. This model also enables the paths of specific particles to be completely followed from their initial upstream position to their downstream position.

A computer program was written to provide quick and easy solutions to this mathematical model. Also, the computer solution was devised in such a manner that a wide variety of flow situations can be considered; this depends only on the data which is provided as input by the user. However, the output of this program should be validated by experimental data since the model contains many assumptions.

REFERENCES

100.00

Batchelor, G.K.	1956	"Surveys in Mechanics". Cambridge University Press.
Batchelor, G.K.	1 96 7	"An Introduction to Fluid Dynamics". Cambridge University Press.
Carnahan, Brice, H.A. Luther and James O. Wilkes	1969	"Applied Numerical Methods". John Wiley and Sons.
Davies, C.N.	1945	"Definitive Equations for the Fluid Resistance of Spheres". Proc. Roy. Soc., Vol. 57, Part 4.
Friedlander, S.K.	197 7	"Smoke, Dust and Haze". John Wiley and Sons.
Mellsen, S.B.	1978	"The Impaction Force of Airborne Particles on Spheres and Cylinders (U)". Suffield Technical Paper No. 486. UNCLASSIFIED.
Mellsen, S.B.	1979	"Determination of Theoretical Sampling Efficiencies for Aspirated Particulate Matter Through a DRES Sampling Probe in Anisokinetic Flow (U)". Suffield Technical Paper No. 499. UNCLASSIFIED.
Schlichting, H.	1 9 68	"Boundary Layer Theory". Sixth Edition. McGraw-Hill Book Company.

UNCLASSIFIED

/12

Figure 3. PATHS OF THE PARTICLES IN THE FLUID, FOR A PARTICLE DIAMETER OF 100 μ

UNCLASSIFIED

1.1.1

and the second second

SM 1077

•

.

-

•

Concession of the local division of the loca

.

••

Figure 1. PATHS OF THE PARTICLES IN THE FLUID, FOR A PARTICLE DIAMETER OF 50 μ

5.

•

73.7078.72

.

0

UNCLASSIFIED

2.0

RADIAL CO-ORDINATE Y'

1.6

5.2

3.6

and the design of the state of a far the far the state of the state of

30

SM 1077

.

.

UNCLASSIFIED

.

SM 1077

í

CLES 000133399 AM.ILLE UD013599 00013599 00013599 00014019 0004005 00040059 00040059 00040028 000400059 00040028		E:'/4UX.00150050 FF:'/4UX.00150050 FF:001560150 AF:00176050 AF:00172099				- 13/4000112099 - 13/4000112010 9.3/4012.00511099 0.3/4012.00511099	/ 40% 00314454 00314454 1.40% 00144565 1.40% 00144655 1.20%. 0014495 1.20%. 0014499 1.21%. 00115199 00115199 00115199	IEA 001155499 LEA 001155199 LP1.COM-001155199	00115899 00115912 00115912	
 A/ = AIAL DISTANCE FROM ISSUING POINT OF JETTENDED A/ = AIAL DISTANCE FROM ISSUING POINT OF JET WHERE PAKT A/ AVIAL UISTANCE FROM INFORM SINEAM CM A/ INTITALLY FUSTILION UNTER-LINE UNTERFERENCE A/ INTITALLY FUSTILION UNTERFERENCE A/ INTITALY FUSTILION UNTERFERENCE A/ INTITALY FUSTILION UNTERFERENCE A/ INTITALY A UNTITOP UNTERFERENCE 	、 メEAL(5.8) しい。ゲリ、メオロ。SIGXA。メメリ。UF。AFIIA(24K2)441・ビン・メロン・モロン・オロン・モロン・オロン・マン・マン・マン・マン・マン・シン・シン・シン・マン・マン	<pre>/************************************</pre>	WEADIS.A) AMAXD.DIAU.IIML.ML.ML.MI.WJ.JENP	VI=1.14159265 Nau2=UU/2.U Az=5.edfauU/kaU2aaf U07=1.0/([17L-1)/2.U) Anark=anar0/kau2	CAMA LALCULATE TUTAL PARTICLES AND THE INITIAL PARTICLE DENSIT Areazeptanauzane LIP=11PLanL-(mL-1) LunzeitP/area/	<pre>nullEleoSU]1FL.ML.1TF.M</pre>	<pre>En.a. PHEPAME UUTPUT TABLE. SS FUHATION: 90x, THE CUMPLETE SULUTION UF CHOSEN PARTICLES 1</pre>	CONTRACTOR AND	CAMA UUIPUI THE RESULTS. ANTIFE(0.00) CONLAMAXU.CON	UNCLASSIFIED
						1				1

ŧ

ł 1

1. 1.

		1				2
7 7					·	t in the second s
NCLAS		. ·				
r L N				•	-	* * *
46£				· .		1
د ب د ب د ب	:	τ.				
5 191						
- 55. 4 15 km		•	3	:	1	
11111111111111111111111111111111111111	ł	; ;		; ;		1
		! : •		, ,		
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1				
	ŕ	-				
		•		۰. !		
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					VSSIF	
01511 214.00 214.00				•	JNC	5
Γ.» «Ξ Γ.» ΧΓ Τ.« ΔΟ Πζε Χ ΧΛ «ΙΔ			1		· · · · · ·	i 1
20 X2 4 X20 U4 701 744		•	5 0 1	ı		
14 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1			: t			•
222 222 223 233 234 234 234 234 234 234			i . 1			r
دید میں ۲۹۵۰ میں ۲۹۵۰ میں			•			• •
						1
						; ;
2.44 D - 7 47 - 742.44 NJE 7- 144 NJE 7- 144 NJE 7- 144			:			
			1			:
ביניאי היניאי ג מיש- ככ נט			1		;	•
					I	
			i i			,
			i			
		,				ł

USY 300 LONG TATE TO THE TAIL OF THE TAIL TO THE TAIL	38/12.55.42 PAGE 1 S ANSF TERN IBN FLAG(1)	UNCL 2000 2000 2000 2000 2000 2000 2000 20	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩		000 100 231 331 531 531 1455 1456 10 10 10 10 10 10 10 10 10 10 10 10 10		
USYSAU FURIER (UNITED STATES) FURTER UNITED STATES OF AN ANY AND	DATE 82.2		00000000000000000000000000000000000000	01-1200 01-1200 01-1200 001-120 00-120 00-100 00-120 00-120 00-120 00-120 00-120 00-120 00-120 00-120 00-120 00-120 00-120 00-120 00-100 000-100 00000000	A R C A C C C C C C C C C C C C C C C C		•
	USZBO FORTRAN MEXTENDED Municastriastsuptio) Mantenasts autoriau Suurestsastsuptinusts municau sizermat mogusime mux-	L SUCHALLITER NINUDATER. ITPAR, UNPAUALAR 20XMANI.N2.4MAXMATEL CONTRACTION NINUSANAXU.MUUTALANAUA CONTRACTAR SUPELATION THE AVERAGE NUMBER UF PARTICI CONTRACTAR SUPPLIED VISTANCE DUMASTREAN AND TIS CIRCUL CONTRACTAR SUPPLIED VISTANCE DUMASTREAN AND TS CIRCUL CONTRACTAR AND AND CONTINE AND AND AND TO CONTRACTAR AND AND AND AND AND AND AND AND TO CONTRACTAR AND AND AND AND AND AND AND AND AND CONTRACTAR AND AND AND AND AND AND AND AND AND CONTRACTAR AND	72=-UTP 72=-UTP Comments IN FEGNATION FOLLOWING THE PUSITION OF EACH PANTICLE Comments Fride 1 15 at Very Center UF STHEAM.) Comments From Pring Intitiat CONDITIONS. Comments FOURT OF PRING INTITIAL CONDITIONS. Comments POURT OF PRING INTITIAL CONDITIONS. POURT OF PRING INTITIAL POURT OF PRING INTO POURT OF PRING INTO POURT OF PRING INTO POURT OF POURT OF PRING INTO POURT OF POURT O	<pre>1 (11.0+1.074.0+4.0+4.0+4.0+2)442140.79444 (00/RAD7)446 (11.0+2) + (11.0+1.074.0+4.0+6.0+2)443 (00/RAD7)446 (12.0+1.0+2) + (12.0+1.0+1.0+1.0+1.0+1.0+1.0+1.0+1.0+1.0+1</pre>	CANNE STARAM. FINU THE CIRCULAR AREA WHICH ENGULFS IMEM. AND CAI- Canne Culate the Average Number up particles in that area. Madded(a) Area: Plahauan2 Area: Plahauan2 Courtiv/Area Reiturn Reiturn Reiturn Reiturn Rud Rud Source Statements Source Statements Couplea I.GM Arana Couplea I.GM Arana Couplea I.GM Arana Couplea I.GM Arana	UNCLASSIFIED	

. ··.·

٠

a....

· · ·

main an antistan

UNCLASSIFIED	SM 1077				
P.SS.A2 PAGE					
UATE 82.23A/1	7 X X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y			00120120	7 7
US/360 FOMFAN M EXTENDED UUS/360 FOMFAN M EXTENDED UUTIMIZE LINECUMMIADU SIZE(MAX) AUTUORLINUE	<pre>(f 358n281()] au.0] au.an.00.fc (.ux.Ur.huP.m].M2.an cultre flacts (fut math the Paritcles UP 0m fusting the an uutputs the value fluid velocity t usting an uutputs the values at a uustance uis intilles at any value of anaxo can be of frinke willles at any value of anaxo can be of frinke willles at any value of anaxo can be of frinke willles at any value of anaxo can be of frinke willles at any value of anaxo can be of frinke willles at any value of anaxo can be of frinke willles at any value of anaxo can be of frinke willles at any value of anaxo can be of frinke willles at any value of anaxo can be of the now willles the matine of anaxo the fulle. In the parit of a value of the fricter of an unstance. The parit of the fricter of an unstance. I u the maximum cumusike nulls unstance. cut u.cu(q)</pre>	<pre>//// Kuita Subruuline. ??(4.6.04.1au.01au.1Runu.m) </pre>	<pre>FLUID VELUCITY a! PARTICLE PUSITION. **.0*5487(3.02P1)*!.070.0161#1.076(41/6(3)) *.0*54846(6)101*070.00 *0*5587(3.07P1)*1.076(3)*(AMEU-1.074.0*AMEU**2)/ *0*5587(3.07P1)*1.076(3)*(AMEU-1.074.0*AMEU**2)/ *1.0*1.074.0*AMEU**2)**2)*0.799&*(00/K4D2)**F *1.0*1.0*1.00*0*AMEU**2)**2)*0.799&*(00/K4D2)**F **********************************</pre>	LI. ANAIN) GO FO BE IF REQUIRED.	
		C C C C C C C C C C C C C C C C C C C	CC A C C A C C A C C A C C A C C C C C C C C C C C C C C C C C	Case Integrat	· · ·
LEVEL 2-5 (TAUD) READESTED LETEO	N A¥0 3 333 3 333 3 333 3 345 2 323 2 32 2 323 2 323 2 32 2 32 2 3 2 32 2 32 3 2 32 3 3 3 3		87 0	15K 0029	
				ر پ پ	

			1		!	ļ	1	:	Î		
ACLASSIFIED SM 1077			· · ·		!	1					
5 ~					:		:	:		-	
PAGE (1)										•	
55.42 5.42 1.41 1.44 1.44		•						;	•	•	
2010 2010		•		:	•		•	:			
U A I F 0001 00000 00000 00000 00000 0000000 000000		:	: 		,			1		, , 1	
1 2. CCAN 2. CCAN Het Nut Het Het SC				:	ı :			:	8	•	
TENDFO TNT FXAC TV TV TV TV TV TV TV TV TV TV	•		, , ,					• • •	CLASSIFIE		
ТАК К К К К К К К К К К К К К К К К К К			•		•	·	• • •		3	•	
0 FUHT							1	1			
CS/SC CS/SCS											
							ţ	,		:	
A SOME A SOME SOME SOME SOME SOME SOME SOME SOME			•				!			•	
			1 , , ,				i	:			
			-				1				
					ı		!		J		

•

ب مان المراجع الم

HEL 2.3 (FAUD)	15: 4UDECN-101 151,001(U)	5/360 FURIMAN M EXTENDED	UATE 82.238/12	.55.43 PAGE	-
IUNS IN EFFE	CIE MAREEMALE MUNTEN EN LINELUE SUUNLE FOLUTÉ MULIST MUNECA L	INT (60) STZE (MAX) AUTUDRI (4UNF Juject Numap Nuformat Nugustri	E) I NOXKEF NUALC NUANSP	TERM JUM FLAG(1)	UNCLASSIFIED
ISN BUUL	C SUMMUUILIE SBAZZ(A.).F.X.F LATA MIS S' RAUJINE USES THE F CATA IN: EGALIC A FINST-UNCEN UP CATA TO ESE IN CULO.C.S TU BE SU CATA CASE. THE U.U.C.S TU BE SU CATA CASE. THE U.U.C.S TU BE SU	1. LRUNG, M) 	00 10 01 10 02 130457 02 130457 02 130457 00 10057 00 10077 00 100777 00 10077 00 10077 00 10077 00 100777 00 100777 00 100777 00 100777 00 100777 00 100777 00 1007777 00 1007777 00 10077777 00 100777777777777777777777777777777777		SM 1077
15h 4445	L UINEASIUN PHICULASAVY(SU) L LE LL L'ELLASAVY(SU)	. r (5a) . f (5u)	00311237 00331337 00331439	·	
1000 ACI	CALA PASS 1 CALA PASS 1 2 INUNEEI METUNEEI	•	00111517 00111657 00111872017 001121872017		
1100 1000 1000 1000 1000 1000 1000 100	C**** PASS 2 5 UU 22 J=1.0 5 SUV1(J)=1(J) 7 M1(J)=1(J) 22 T(J)=5SNT(J)+0.5AMAF(J) 22 T(J)=5ANT(J)+0.5AMAF(J) 184651 184651				
100 0014 100 0014 100 0015 100 0010 100 0010	Case Pass 3 	· · · ·			· .
1357 0022 1557 0020 1557 0022 1557 0022 1557 0022 1557 0022 1557 0022	Canna PASS 4 				
8200 VSI 8200 VSI 8200 VSI 8200 VSI	C PASS 5 C PASS 5 b UU 55 J=1.N 55 T(J)55 V(J)+(FH1(J)+F(J) RUNG=2 HETURN	0-4/4-0			
130 0029 PT1085 IN EFF PT1085 IN EFF 1411511CSs . 1411511CSs .	C EN ECT=NAME (MAIN) NOOPTIMIZE LIMECU ECT=SQUARCE EBECOIC MULIST NODECK SQUARLE STATEMENTS = U UIAGNUSTICS GENERALEU OMPILATIUN APAAAR	INT(60) SIZE(MAX) AU/UDBL(WOM) DBJECT NOMAP NOFORMAT NOEOSTA NUGRAM SIZE # 1600 SUBPR 40GRAM SIZE # 1600 SUBPR	E) E) I norref mualc noansf Deban name e Sun22 Betts of core not usen	TERN 18N FLAG(1)	, İ , .
		UNCLANGUTED			
. ,					
		-, -,			

FIED	-			:			-		0	•
ISSA	11011				1			-	IEILIIS	:
I NCI	SN				į			•	SVI	,
-					1				25	1
PA				:	• •		1			
					· .			· · ·	ı	
.55. TERH				i				!	•	
8/12 NSF	*** \$\$\$\$\$\$\$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			11111111111 000000		00000		000	:
2.25 NUA	2002 200 200 200 200 200 200 200 200 20	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			2000 2000 2000 2000 2000 2000 2000 200					
	00000000	000000000000000000000000000000000000000			333536 333556 1		00000		000	
LF N(. 1	•	: !	1		
JH Y OF	ş									
NE)	TH AN			5*1				1 1		11
ט ר (א0 6 ט צ ן	C LE V			1 I mi	,		Ĩ		!	
E N UF 1 UUH 1 NO	EFF1 Aky			NO	•	;	ION		1	
ExT D. AU	LE SS			ERAT			ERAT		:	
N N N N	DKAL			, , , , , , , , , , , , , , , , , , ,	. .			8	i	
174	ES.				* *					
1 × 0	40001 11001		IAL.	(MA)	4		IONA .			
	ح تر ج م م م م		N N N N	101			POL :	2 ALO	•~	
SO LOS				ERAT 2220		•	THER	M# ## ##	.22.	
L 145	به ۲ د ۲ د ۲		C Li K F	E .			0 2 2 2 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2		2	
ي م	1110 1110 1110	1 7 6 V 2 7 6 V	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	1041	+ 3 - C	E P S]	E F(4 9 9	
1110		10 101 10 10 101 10 10 101 10	84		NVE	- (x)			XX)- X/Rt	
200	5 4 1 C		1 C C C C C C C C C C C C C C C C C C C			E L	ES L	AXOC I	24 24 040	
	1202			8 U.1 0			104' 104'			
• 4 • 1 J				101 × 1	(0.1412); 0.2.12.10 2.4.2.10 2.4.2.12				PSE DRE	
		J14440000			5252J. 1	≕033 ^ ^			20-07	
····	4 4 4 4 4 4 4 4 4 4 - ریاں یاں ا	۔ * تر								
1101		⁻						•		
4.7.4 4.7.4 7.7.4	20	1156-271 2000-000	11 211	5 0	210	~~~~~	286	04000	5070	
51cU 81cU	5 7 2	00000000000000000000000000000000000000	2 330 2 222	0 30 2 2	2222 A	35555	363 422	55656 42242	553 222	1
202	lsı	222222222	2 I S I S I S I S I S I S I S I S I S I	S 1 S 1		20000	555 1 1	58556	9997 9997	

ī

n

🔆 🖌 🖌 👌 🖌 🖌 🖌 🖌 🖓 🕹 🕹 👘 🖓 🕹 👘 🖓 🖓 🕹 👘 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓	
00-00300- 4U Vinninin 02 - 133383832 20 C	
10000000 U 0000000 U	
	Ť
	1 1
	i .
	1
	:
3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	

IN UP PANTICLES IN A CINCULAR JET DOWNSTREAM FRUM A JET OPENING Isabarararararararararararararararararara	- VIKEAN AKE - VUC	IITL # 11 MI # 5 MI # 51 MI # 51 MI # 51 MI # 51 MI # 55 MI # 755.000 MI # 11.79200 MI # 11.79200			UNCLASSIFIED
	HISILAL PANALLILES IF INL FLU	ELESSANT UATA FUA IMIS AUR IS		:	

herets included by

-

UNCLASSIFIED **SM 1077** THE CUMPLETE SOLUTION OF CHUSEN PARTICLES

INE CU-UNUIMATES AND VELUCITY UF ALL PARTICLES AT THE NEW TREW UISTANCE DUANSIMEAN

(ALL VALUES ARE HURMALIZED: SAUETUZK+X'=AZK+Y'=YZR+VX'=YX/UF+VT'=YYZUF+UX'=HXZUF+UY'=UYZUFJ

COKE	<pre>swawnubuunuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu</pre>	
311	00000000000000000000000000000000000000	0.007674 •8-008215 •••
1		0.967187 0.628272
• • • • • • • • • • • • • • • • • • • •	00000000000000000000000000000000000000	URE 0.007674
¥		0.967147 DDWNBTREAN.4
H		RETCLE ARES 0.200000 16.05 75.00
-11	1 1 1 <td>S UF 1415 PA 11.792 11.792 150.034.</td>	S UF 1415 PA 11.792 11.792 150.034.
2		AL CUNDITION CONDITION 649.00
	PARTICL THE TINE THE TINE THE TINE THE TINE	PARIJCLE THE INJTE INE EINAL

;

.

ł

ì

.....

1

ł

ł

i

:

i

:

•

÷

UNCLASSIFIED

ŝ, . .

ł

:

: .

1

and the second sec

.

•

• •.

• • •

.:

	SM 1077 UNCLASSIFI		·	UNCLASSI					
	·			~9000-4			100104040		
Minute Minut <thminut< th=""> Minut</thminut<>				0499404 0494004 0494004 0494004 04940000 049400000	10000100000000000000000000000000000000				
Mitt Ling Mitt Ling <t< td=""><td>- 042990-0-</td><td>u.015541</td><td>0.015735 .0.000048</td><td>0.0014377 0.0074801 0.005731 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.00558585 0.00558585 0.00558585 0.005585585 0.00558585 0.00558585585 0.00558585 0.00558585 0.00558585 0.00558585 0.005585585 0.00558585 0.005585585 0.005585585 0.005585585 0.005585585 0.005585585585 0.005585585 0.0055855855855855855855855855855855855855</td><td>00000000000000000000000000000000000000</td><td>100000 1000000</td><td>00000000000000000000000000000000000000</td><td>0.0000000 0.0000000 0.0000013 0.0000013 0.000161 0.000165 0.000165 0.000165</td><td>-0.000 Jao</td></t<>	- 042990-0-	u.015541	0.015735 .0.000048	0.0014377 0.0074801 0.005731 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.0054835 0.00558585 0.00558585 0.00558585 0.005585585 0.00558585 0.00558585585 0.00558585 0.00558585 0.00558585 0.00558585 0.005585585 0.00558585 0.005585585 0.005585585 0.005585585 0.005585585 0.005585585585 0.005585585 0.0055855855855855855855855855855855855855	00000000000000000000000000000000000000	100000 1000000	00000000000000000000000000000000000000	0.0000000 0.0000000 0.0000013 0.0000013 0.000161 0.000165 0.000165 0.000165	-0.000 Jao
П. С	0.879127 0.022567	0.757.00	0.624625	0000 000 0000 000 000 000 000 000 000		0.111115 0.111115 0.101115 0.101115 0.0000155 0.0000155 0.0000155 0.0000155	0.0924644 0.092464 0.092497 0.092497 0.098586 0.0886812 0.08868812 0.08868882 0.08868882 0.08868882 0.08868882 0.08868882 0.08868882 0.08868882 0.08868882 0.08868882 0.08868888 0.08868882 0.08868882 0.08868888 0.08868888 0.08868888 0.08868888 0.08868888 0.088688888 0.088688888 0.08868888 0.088688888 0.088688888 0.0886888888 0.08868888 0.08868888 0.08868888 0.08868888 0.088688888 0.08868888 0.08868888 0.08868888 0.08868888 0.08868888 0.08868888 0.08868888 0.08868888 0.08868888 0.08868888 0.088688888 0.08868888 0.088688888 0.08868888 0.08868888 0.08868888 0.08868888 0.0886888888 0.088688888 0.088688888 0.088688888 0.088688888 0.0886888888 0.088688888 0.08868888 0.08868888888888		.a. 62661
Idia Lundul fruiks ur frais Partifict, Art: Babboli Uruss. at 11.7% Partifict, Art: Logue Combonic Uruss. at 11.7% Description Idia Lundul fruiks. ur fruits. Prartifict, Art: Babboli Uruss. at 11.7% Description Description Idia Lundul fruiks. ur fruits. Prartifict, Art: Babboli Uruss. at 11.7% Description Description Idia Cumul fruiks. Uruss. at 11.7% Partifict, Art: Description Description Description Idia Cumul fruiks. Uruss. Uruss	ANE 0.0012992 ANE 0.000404	U.015541	0.U15735 Akei 0.000670	00000000000000000000000000000000000000				0.000100 0.000000 0.000000 0.000000 0.000000 0.0000100 0.000100	000 Jee -
IAL LUNUL FLUXS IT TYS D. 400000 IAL LUNUL FLUXS IT TYS D. 400000 IAL CUMPALIT D. 500000 D. 600000 IAL D. 11 TYS D. 600000 IAL D. 50000 D. 60000 IAL D. 70000 D. 700000 IAL D. 70000 D. 700000 IAL D. 70000 D. 75000 IAL D. 75000 D. 75000 IAC D. 75000 D. 75000 I	0.879127 UU#NS18EAH.	U. 757620 DUWNSTREAM. 0.076445	n. n24623 Oumnstream. 0.07390	000000 00000000 00000000 0000000000000		0 111 465 0 113 465 0 110 7918 0 110 7918 0 100 72337 0 100 72337 0 100 740	00000000000000000000000000000000000000		· 0.076146
	AHI ICLE AKE: 0.400000 MCE UF 7509950	AN 1 1CLE ANE: 0.600000 NLE UF 75.00	ARTICLE ARE: 0.800060 MCE UF 75.00	AHIILLE ARF: 1.000000 1.03344449 1.03344449 1.0389449 1.0384935 2.0394935 2.131449		2.6599998 2.7599998 2.7599998 2.7599998 2.7599998 2.759799 2.825874 2.825874 2.825874 2.825874 2.825874	2000 2000 2000 2000 2000 2000 2000 200	100022	3.260970
	4.5 (15 11.742 11.742 5. al a DISTa	11.757	145 UF 1415 P 11.742 b 1.42 US14	0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10000000000000000000000000000000000000	111.555 103.027 103.027 103.027 103.027 103.027 113.553 113.553	110-00-00-00-00-00-00-00-00-00-00-00-00-	140-212 140-250 140-502 140-502 140-502 140-502 140-507 140-507 140-507	150.051
- 그 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	TIAL LUNUI FLU	1146 - CHAULIG 1146 - CHAULIG 1466 - CO 146 - CO 146 - CO 140 - CHAU 140 - CHA	L	114 124 124 124 124 124 124 124		1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000000000000000000000000000000000000		AL COULLAN. 971.00

.

...

÷.,

ήÔ

wie weinen aber ben vertreten Benten er atherer er einer er einen der der eine an eine er einer er einer er ein

	R - 4	UNCL	ASSIFIED
	······	This Sheet S	ecurity Classifica
DC (Security classification of title, body of at	CUMENT CONTROL DAT	A - R & D ust be entered when t	he overall document is class
1 ORIGINATING ACTIVITY		2a. DOCUME	NT SECURITY CLASSIFIC
DEFENCE RESEARCH ESTABLISHMENT	SUFFIELD		
3 DOCUMENT TITLE			
The Distribution of Aerosol Par	ticles Downstream in	a Turbulent F	luid Jet (U)
4. DESCRIPTIVE NOTES (Type of report and	inclusive detes)		
Suffield Memorandum	No. 1077		·····
Leary, Kathy I and Mellser	, Stanley B.		
5. DOCUMENT DATE December 1982	7a. TOT.	25	7b. NO. OF REFS
. PROJECT OR GRANT NO.	9a. ORI	INATOR'S DOCUME	T NUMBER (S)
13E10			
-	Suff	eld Memorandur	n No. 1077
D CUNTRACT NO.	9b. OTH	en DOCUMENT NO.(ed this document)	3) (Any other numbers the
D. DISTRIBUTION STATEMENT			
Un]imited			
1. SUPPLEMENTARY NOTES	12. SPON	SORING ACTIVITY	
3. ABSTRACT			
A mathematical model has	been developed to public particles were in:	edict the down	stream distributi
)t particles in a fluid iet. T		ource of the f	et. and. with com
of particles in a fluid jet. T over a cross-section of the cir	cular jet, near the s	ource or the T	
of particles in a fluid jet. T over a cross-section of the cir ided methods, the co-ordinates	cular jet, near the s of the particles at	a specified di	stance downstream
of particles in a fluid jet. T over a cross-section of the cir iided methods, the co-ordinates letermined. The computer progr specific particles, from their	cular jet, near the s of the particles at am was also built in initial upstream posi	a specified di such a manner tion to their	stance downstream that the paths of final position do
of particles in a fluid jet. T over a cross-section of the cir lided methods, the co-ordinates letermined. The computer progr specific particles, from their stream, could be completely fol	cular jet, near the s of the particles at am was also built in initial upstream posi lowed. Some graphica	a specified di such a manner tion to their l results of t	stance downstream that the paths of final position do hese paths are pr
of particles in a fluid jet. To over a cross-section of the cir ided methods, the co-ordinates letermined. The computer progr specific particles, from their tream, could be completely fol for various particle sizes.	cular jet, near the s of the particles at am was also built in initial upstream posi lowed. Some graphica (U)	a specified di such a manner tion to their l results of t	stance downstream that the paths of final position do hese paths are pr
of particles in a fluid jet. T over a cross-section of the cir ided methods, the co-ordinates determined. The computer progr specific particles, from their tream, could be completely fol or various particle sizes.	cular jet, near the s of the particles at am was also built in initial upstream posi lowed. Some graphica (U)	a specified di such a manner tion to their l results of t	stance downstream that the paths of final position do hese paths are pr
of particles in a fluid jet. T over a cross-section of the cir ided methods, the co-ordinates letermined. The computer progr pecific particles, from their tream, could be completely fol for various particle sizes.	cular jet, near the s of the particles at am was also built in initial upstream posi lowed. Some graphica (U)	a specified di such a manner tion to their l results of t	stance downstream that the paths of final position do hese paths are pr
of particles in a fluid jet. To over a cross-section of the cir- ided methods, the co-ordinates letermined. The computer progr specific particles, from their tream, could be completely fol- for various particle sizes.	cular jet, near the s of the particles at am was also built in initial upstream posi lowed. Some graphica (U)	a specified di such a manner tion to their l results of t	stance downstream that the paths of final position do hese paths are pr
of particles in a fluid jet. T over a cross-section of the cir ided methods, the co-ordinates letermined. The computer progr specific particles, from their tream, could be completely fol for various particle sizes.	cular jet, near the s of the particles at am was also built in initial upstream posi lowed. Some graphica (U)	a specified di such a manner tion to their l results of t	stance downstream that the paths of final position do hese paths are pr
of particles in a fluid jet. T over a cross-section of the cir ided methods, the co-ordinates letermined. The computer progr specific particles, from their tream, could be completely fol for various particle sizes.	cular jet, near the s of the particles at am was also built in initial upstream posi lowed. Some graphica (U)	a specified di such a manner tion to their l results of t	stance downstream that the paths of final position do hese paths are pr
of particles in a fluid jet. T over a cross-section of the cir ided methods, the co-ordinates letermined. The computer progr specific particles, from their tream, could be completely fol for various particle sizes.	cular jet, near the s of the particles at am was also built in initial upstream posi lowed. Some graphica (U)	a specified di such a manner tion to their l results of t	stance downstream that the paths of final position do hese paths are pr
of particles in a fluid jet. T over a cross-section of the cir ided methods, the co-ordinates letermined. The computer progr specific particles, from their tream, could be completely fol for various particle sizes.	cular jet, near the s of the particles at am was also built in initial upstream posi lowed. Some graphica (U)	a specified di such a manner tion to their l results of t	stance downstream that the paths of final position do hese paths are pr
of particles in a fluid jet. T over a cross-section of the cir ided methods, the co-ordinates letermined. The computer progr specific particles, from their tream, could be completely fol for various particle sizes.	(U)	a specified di such a manner tion to their l results of t	stance downstream that the paths of final position do hese paths are pr
of particles in a fluid jet. To over a cross-section of the cir ided methods, the co-ordinates letermined. The computer progr specific particles, from their itream, could be completely fol for various particle sizes.	cular jet, near the s of the particles at am was also built in initial upstream posi lowed. Some graphica (U)	a specified di such a manner tion to their l results of t	stance downstream that the paths of final position do hese paths are pr

This Sheet Security Classification

KEY WORDS

Aerosol

たち 大学 見てみたい シャン 一般 いたたたたい

İ

Į

1

Turbulent Jet

Particulate Dissemination

INSTRUCTIONS

a harden in seinen wie einen seinen seinen seinen seinen seinen seinen seinen seinen vorreiter seinen s

- ORIGINATING ACTIVITY Entry the name and address of the organization issuing the document.
- 2n DOCUMENT SECURITY CLASSIFICATION Enter the overall security classification of the document including special warning terms whenever applicable.
- 26 GROUP. Entry security reclassification group number. The three groups are defined in Appendix 'M'of the DRB Security Regulations.
- 1.1.1)(CUMENT TITLE finite the complete document title in all capital letters. Titles in all cases should be uncleasified. If a sufficiently descriptive title cannot be selected without classification, show title classification with the usual one-capital-letter appreciation in parentheses immediately following the title.
- 4 DESCRIPTIVE NOTES Enter the category of document, e.g. technical report, technical nois or technical letter. If appropriate enter the type of document, e.g. interim, progress, summary, simulation final. Give the inclusive dates when a specific reporting period is covered.
- 5 AUTHORISE Enter the numeral of authorial as shown on or in the document. Enter last name, first name, middle initial. If initiary, show rank. The name of the principal author is an absolute minimum requirement.
- 6 DOCUMENT DATE Enter the date (month, year) of Establishment approval for publication of the document.
- Jii T()TAL NUMBER OF PAGES The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 76 NUMBER OF REFERENCES Enter the total number of subminutes cred in the document.
- 86 PROJECT OR GRANT NUMBER If appropriate, enter the auglisiable research and development project or grant number under which the document was written.
- 86 CONTRACT NUMBER It appropriate, anter the applicable analyser under which the document was written.
- 9a ORIGINATOH'S DOCUMENT NUMBER(S) Enter the official document minibility which the document will be observed and controlled by the originating activity. This manufact minist be unique to this document.

- 95. OTHER DOCUMENT NUMBER(S). If the document has been assigned any other document numbers (either by the originator or by the sponsor), also enter this number(s).
- DISTRIBUTION STATEMENT. Entur any limitations on further dissemination of the document, other than those imposed by security classification, using standard statements such as:
 - (1) "Qualified requesters may obtain copies of this document from their defence documentation center."
 - (2) "Announcement and dissemination of this document is not authorized without prior approval from originating activity."
- 11. SUPPLEMENTARY NOTES Use for additional explanatory notes.
- SPONSORING ACTIVITY. Enter the name of the departmental project office or laboratory sponsoring the research and development. Include address.
- 13 ABSTRACT: Enter an abstract giving 6 brief anti factual summery of the document, even though it may also appear elsewhere in the body of the document isself. It is highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shell end with an indication of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (TS), (S), (C), (R), or (U).

The length of the abstract should be limited to 20 single-spaced standard typewritten lines, 7% inches lang.

14 KEY WORDS. Key words are technically meeningful terms of short phrases that characterize a document and could be halpful in cataloging the document. Key words should be sale ted so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context.