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process, step by step, reflecting the research nature of the program. On the ﬁg

other hand, the ITERATE command allows the iterations to be automatic. Once
a STOP command is given, the run will be terminated.

<

Printed output generated by FEARS consists of summary data after each v
iteration step. The user also has the option to reprint initial input and/or E
detailed information sbout the solution process during the iteration. The :
formats of these printouts are described in Chapter-4. In addition, the DUMP <
command generates a dump-file of the data structure which can be used as input, ~
either for FEARS itself, or for various post-processors. The format of this dump- -
file is described in Section 4.7. g

Chapter 5 gives the computer dependent control statements necessary g
to run FEARS on the UNIVAC 1100 computer. The program is supplied with a &

dummy subroutine giving zero values for the bilinear matrices E and D,
(see Section 2.7). 1If these matrices are coordinate dependent, the user must
supply the appropriate subroutine replacing the supplied dummy routine. This
preparation must be performed prior to the use of FEARS.

v
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\\‘\\,Sl_ Introduction
:) The FEARS program normally takes the problem's descriptive data from

the run-stream. This input data is composed of the Geometry'%Chapter“t7-’£2\~

"and of the Bilinear/Error matrices;%Ghapeer—gi. Alternatively, this data

2R

b

X

can be read froﬁTE‘“bUMP-file » which has been generated by a previous

A o)
= execution of FEARS.(Seceton—3v13)! Once the initial data is read, FEARS
H
;ﬁ enters into a command-mode. In the command-mode, the user must input a

command (with some parameters) instructing the progrgp_gygut the next step

to be taken.” The available commands are given in Chapter ;TXNThis mode allows

q ES

the user to have complete control over the iteration process, step by step,

i
RS
t.' Joal)

reflecting the research nature of the program. On the other hand, the

1

ITERATE command allows the iterations to be automatic. Once a STOP

o

command is given, the run will be terminated.

3

ners
Wells'

Printed output generated by FEARS consists of summary data after

each iteration step. The user also has the option to reprint initial

input and/or detailed information about the solution process during the

e

iteration. The formats of these printoﬁts are described in Chapter 4.

In addition, the DUMP command generates a dump-file of the data structure

-

which can be used as input, either for FEARS itself, or for various post-
processors. ~The format of this dump~file is described in Section 4.7.
<:::;;;:;::i)5 gives the computer dependent control statements necessary

to run FEARS on the UNIVAC 1100 computer. The program is supplied with a

b

P %3

e

5

dummy subroutine giving zero values for the bilinear matrices E and D,

!

A

/53 —(see—SectIon—2:7+ If these matrices are coordinate dependent, the user

s

must supply the appropriate subroutine replacing the supplied dummy routine.

e

This preparation must be performed prior to the use of FEARS.
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Chapter I. Geometry Input

1.1 Introduction -- 0-D, 1-D, and 2-D domains

The domain D, on which the problem is to be solved, must be initially
broken up into subdomains. Each subdomain is a generalized quadrilateral,
having 4 corner points and 4 sides, with each side being either a straight
line or an arc of a circle. Since a unit quare will be mapped onto each
of these subdomains, they should not be "degenerate" or "singular". For
example, the.angles formed at the vertices should not be too near 0° or
180°, the domains should not be nearly triangular, and no overlapping of
the sides is allowed. Thus, it is good practice to avoid subdomains as

shown in Figure 1.1.

Figure 1.1. Subdomains to be avoided.

Figure 1.2 illustrates how a disk, and triaugular and pentagonal

domains may be substructured into generalized quadrilaterals.

2 &

Figure 1.2. Subdomain structuring for a disk, triangular

domain, and pentagonal domain.

. e T [ R oot s R R R L A I S IR JC SRR SO A SRR UL IO S SIS SR S SRt AL S S AR SR TR
¥, AT A e Ta % S R N I I I S NN L g T S R T W S A AT S AT S Tl Sl I

i L i T £ 9 S ST AP N SRS WAL W AR SS OV I SOACF ISP PR IO T AT et e e T T e T

LT Y




5 R

—
P oy

3PN

iz et ey ¢

L 74

j L e O W g W,

i i T oy

"

=0 I

R

;

BN

sr‘J_'j 3 E-

B33 |

_"““..""
w2

o

A
LIRS

e
«
.

F iy

TE

o T

i e o LA R et e R S G R BTN M M T TR S U AN T LR B DN L L P NG

Because FEARS uses blending functions to map the unit square onto
each generalized quadrilateral (see FEARS Mathematical Descriptiom,
Chapter I), domains having boundaries composed of circular arcs are
represented exactly and are not approximated by isoparametric elements.
Therefore, the approximations of the geometry and the exact solutions
are not mixed, when using FEARS.

The corner points of the subdomains are simply called points or

0-D domains (zero dimensional domains). These are denoted by

0
vk k 1.2..-.“0.

The open line segments {oining the points are called lines or 1-D domains,

and are denoted

vi k=1,2,...Nl.

Finally, the open subdomains, each with 4 lines and 4 points forming its

boundary, are called 2-D domaing, and are denoted

p2

k

k.l,z, L) oNZo

For example, the disk can be structured and labeled as in Figure 1.3,

Figure 1.3. The substructuring and labelire of . Disk.




In the geometry input the following information must be supplied:

(1) the number of points, lines, and 2-D domains,

(11) the global coordinates of the points,

X g (1i11) the end point indices for each line,
'_“ a0 (iv) the radius of each line,
3N (v) the boundary conditions for each line and point,
\- ; and (vi) the cornerpoint indices of each 2-D domain.
\‘" % 1.2 Format
2 i
2 The format for the geometry input is as follows:
pri .
::é: .‘;'-
"-, NO 9
P2 E 1’ xl’ yl’ bl’ v1’ wl
P 2 b
25 . » X3» Y30 D0 Var ¥ .
.-:.l‘ {S . points
Ar R
IT'QJ .
: g %0, Xvo* Yno* Pwo* VNo* ¥No U
! 3 5
of E.; N1
: Lg 1’ Plo q1’ Bls pl
3 :_' 2, Pzt qz: 32’ 92 }
gy - . lines
:.'5 w3 )
L o] é;. y
& ~ N, Py1r W10 e Pm J
Mt
,, g‘ﬁ
;, Eﬂ +N2 .
1% 1 2 3
%‘ 1, Ty W Ty LB
g 2 1 1r2 173 114
» g s T s Ty » T > 2-D domains
) :
AR .
1l 2 3 4
- ﬁ | N2, "N2s "N2* "N2® "N2 ]
5
g 4
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1.3. Description of the Format

NO is the number of points (0-D's). The data, 1i,x b

i’ Yi’

describe the points as follows:

i = the index of D7, i=1,...,N0,
(xi,yi) = the x-y global coordinates of D;,

bi = the boundary condition at D:, where
8 N

0 =>Au1 free, u, free,

1 => u, fixed, u

1 free,

2

2 => uy free, u, fixed,

2

L3 => uy fixed, u, fixed JE and

(vi,wi) = the solution value (ul,uz) at D;{ These must be given
even if the boundary condition is free, in which case

any value for V4sWy may be given.

---------

..............

1 Vi Yy

N1 is the number of lines (l-D's)‘. The data j, Pj, qj’ Bj, pj

describe the lines as follows:

§ = the index of D}, § = 1,...,N1,

(pj,qj) = the index numbers of the endpoints of the line 0: . 0° ’

Bj = the boundary conditions of line D;, where

rO => uy free, u, free, -

1l => u1 fixed, u2 free,

2 = uy free, u, fixed,

Bj-< 3 = uy fixed, u, fixed, >
5 => U,y linear, u, free
6 => uy free, u, linear

. 7 => uy linear, u, linear. J

5

i Y
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e




1f a component uy, OF u, is fixed or linear, then the same component

(o

must be fixed at the endpoints Dq » and D

(o]
i Py

fixed then the two values given at these endpoints must be identical.

. Furthermore, if it is

pj = % 1/R3 is the signed reciprocal of the radius of the are

segment D; . The orientation determines the sign of the radius as shown

in Figure 1l.4.

Py = l/Rj py = -1/Rj

Figure 1l.4. Orientation of the arecs.

N2 is the number of 2-D domains. The 2-D domains are prescribed by
the 4 corner point indices if N2 is not preceded by a minus sign, and by
the 4 boundary line indices if N2 is preceded by a minus sign.
The first input in each line after N2 is k = the index of 02, k=1,...,N2,
1 2 3 4

When no minus sign precedes N2, Tes Tes Tps Ty = the index numbers of the 4

cornerpoints of Di » in the order shown in Figure 1.5.

2 4

14 3

Figure 1.5. Order of the 4 cornerpoint indices for a 2-D domain.

The user should be careful not to change this orientation. For example,

the indices cannot be input in the order as displayed in Figure 1.6.
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Figure 1.6. 1Illegal ordering of the 4 cornerpoint indices for a 2-D domain.

1 2 3 4

When a minus sign precedes N2.wk, LIRS the index numbers of the 4

boundary lines of D: in the order shown in Figure 1.1Z.

4

J=
loo

3

Figure 1.7. Order of the 4 boundary line indices for a 2-D domain.
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Chapter II. Bilinear and Error Matrices Input

2.1. Introduction

In the previous section, it was seen that FEARS works on a substructured
domain, which allows a simple input and a more accurate representation of the
geometry. The substructuring has another advantage, namely, it also allows

for a different set of material properties (bilinear matrices) to be described

on each 2-D domain.

2.2. Variational Form

The variational problem, solvable by FEARS, can be put in the general

form: find U in Ml’ such that

N2 T T
v 11 T, |3U v . T
L [ {[az] Ai[az] +V Bi[az] + [az] B,U + vcit}dx dy
i=1 02
i
N T N2 f | vt T N1
+ Z Vy,U ds= % | D(x,y) + VE(x,y){dx dy + £ | ¢.(s)V ds ,
3 3z i
j=1 Dl i=1 j=lvl
j 02 i
for all V din M2 » Where M1 and M2 are the appropriate finite
dimensional trial and test spaces (see FEARS Mathematical Description).

Here, we have used the notation

U={y U [-aul-ﬂ
9z 9x

Y2 ’ =— | , and analogously for %%- and V .

Also,

Ai is a 4 x 4 symmetric matrix,

Bi is a 2 x 4 matrix,

LI R - v . - - . - . ..
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E ci is a 2 x 2symmetric matrix
Di(x,y) is a 4 x 1 vector valued function, and

_- Ei(x,y) is a 2 x 1 vector valyed functiom, for 1 <1i<N2.
Yj is a 2 x 2 symmetric matrix, and

€,(s) is a 1 x 2 vector valued function for 1 < j < N1 .

b

2.3 Error Norms
The error is approximated in the norm Ill'lllzp » where *
1/2p
il -'1;2] aulr,\ [l o 2.1
- iz | *e), |32 v (2.1)
02

The value P is a global value which is input before we input the

geometry and bilinear forms. The values pj are to be specified for each
. " 2-D domain. Normally Py " Py ™ =Py =P> which will correspond to a

global sz estimate. The corresponding L_ norm (2,2), is used when P = 0.

S

" Hiulfi ’é,)- sup |[§‘z’] (AE)j%’-I (2.2)

dYE 4

(ft)j is a 4 x 4 matrix, and usually, (AE)j = (A.)j .

2.4 General Format

The format for the input of the bilinear, error, and cutput matrices is

as follows:

*That |]]°|]|| is a norn and not a seminorm for the error e , follows
from the fact ggat e = 0, the e must be constant. Since the
approximate solution is biline%g the exact solution must be bilinear as
well. Because of quasi-optimality of the finite element solution, e=0 .




5 NB
; g r Jyng, ki ky 5oy K ) (Bilinear and Error
i ;:_. j 1 2 nj
Matrices)
) N %0 Byr Yye 850 8
‘: . (A)j (if oy ¥ 0) (This packet is repeated
SIS (B)j (if Bj * o) NB tmes’ j-l,...,m;)
G 1 ©, (1£ v, 4 0) >
s D if &
5 (D) j ( j ¥ 0)
E if
(E) j (if € 3 ¥ 0)
3 (),
()
¥ 3
_' | . (s)j J (Output Matrix)
f ! 'N'L
‘: ::;‘ [ i, ni, £,, !'2’””""1 3 (Line Integration
Matrices)
~ Byr &
2 < S (This packet is repeated
'; "'. (Y)i NL times’ 1.1. e e ,NL.)
i
oY
. (e)y J
: 2.5 Description of Bilinear and Error Matrices
S
. LE NB is the number of different packages of bilinear and error matrices.
Each different package must then be listed. In each package
j = the index number of the package,
E n:l = the number of 2-D domains for which the package of matrices applies,
% kl,...,kn = the indices of the 2-D domains for which the package applies.
..:‘. j

10




SR AT A NCNE PR IO TG S D AR DR

E °j’ 8 4 Yj’ é §° € §° are integers which indicate whether or not the
> matrices (A),,(B),,(C),,(D), (E) are zero, in which
S 37379 3

cagse its corresponding input line is not present.

i ! 0 => (A) j is zero, no (A) j input line,
4 .. cj ) {1 => (A)j 40, (A)j line is present,
| &
PR 0 = (B)j =0, no (B)j input line,
?} : 1% 11> ® 4 #0» (B) line is present,
3
{0 => (C)j =0, no (C):l input line,
Yy =
J 1= (C)j 40, (nb)j line is present,
0 => (D)j =0, no (C)j input line,
51 .{ 1= (D) j $# 0, D is constant and is defined in the (D) j line,

=1 => (D) j ¥ 0 , D is coordinate dependent and must be defined
in a subroutine; dummy values must be supplied

in the (D), line,

k|

0 = (E).'I =0, no (E)j input line,

€y = 1=>(E), ¥0, E is constant and is defined in the (E) I line,

b

-1 => (E) j $ 0 , E is coordinate dependent, and must be defined
in a subroutine and some dummy values must

be input in the (E) j line,

Note: If § 5 = -] or € 1 = -1. a subroutine must be defined. This is
described in Section 2.7.

The (A) j line should contain the coefficient values of the 4 x &
matrix (A) j in the following order,

11
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1 3 1 9 11
2 4 | 10 12
S 7 13 15
6 8 ' 14 16

in free format. The appropriate matrix A , when using plane stress or
plane strain elasticity, is given in the Appendix (A.2).

The (B)j line should contain the matrices B and BT, where

(1 P
B=[B,, B, and B-bn' *12 j=1,2
P2 % 17 ,@ @ 2
21 “22
4
The matrices should be input in the form
1 T
Bl | Bl
T T T » the components
B, | B:
2 2

of this matrix being input in the same order as with (A)j .

The (C)j line should contain the coefficient values of the 2 x 2

L

line should contain the coefficients of the 2 x 2 matrix (D)j

matrix (C)j in the order

The (D)j

The (E)i line should contain the entries of the 1 x 2 vector (E)j in

the order
€» & -
The (AE) line should contain the entries for the 4 x 4 error matrix
h
(AE ) 1in the same order as the entires for the matrix (A)j'
J
The (Nc) line is a line where we input 4 parameters for the rum,
3

pj )rj ’wj !xj d
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! Ea Py - the p norm for the domains (see 2.1).

% %2 If S Py < then our indicators will be based on an szj

“ . estimate over these domaips. The value pj-o , corresponds to

; N an L based error estimate.

g és Ty - the weight for the residual part of the error indicator which is
i ;j computed through an integration instead of a derivative jump.

g E; See FEARS Mathematical description for more details on this. For
g i most cases set 1=l .

| = wj = a parameter which was formerly used in the residue computation.

E gf Always set wi.l .

. xj = a free parameter. Input anything here. This value is overwritten
t! in the program.
-

b ll At the end of each packet we must input the matrix for output generation

i (S)4+ (S); 1s a 5 x 6 matrix and should be input in the order

r _

- (1.2 3 4 5 &

| = 78 9 10 11 12

o2 1314 15 16 17 18

D W 19 20 21 22 23 24

: 3 | 2526 27 28 29 30 |

1 §$ In the output FEARS will compute the product

¥ : U

: %; [S]j 9Z | for 2-D domain j .

, U

L

! gj The appropriate formulas Sj , needed to yield the five values Uss Uy,

-

- Oxx’ %y’ Oxy’ for the plane strain and plane stress assumptions of elasticity

are given in the Appendix (A.2).

A

t
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2.6 Line Integration Boundary Conditions

NL is the number of different packages of line integral matrices. These
line integrals arise from boundary conditions in which traction or pressure
forces are present. These forces can be either globally defined, if the force
is in a fixed global direction, or locally defined, if for example, the force
is normal to the boundary as with a hydrostatic force. The vector ¢ should
give the magnitude of the force in the x and y directions, if the force
is global, and in the tangential and normal directions, if the force is locally
defined. The 2 x 2 matrix y is present whenever the force depends on the
displacement (eg. a spring force).

Mathematically the boundary conditions allowed are of the form

[A%:-] + YU = ¢ , where

On_O
!30 - By y U
an ‘é n On ] ['5;] » vhere
x y
U

(nx,ny) is the outward normal to the boundary and [%Z] is defined in Section

2.2.

In terms of stresses the boundary conditions are of the form
T+yYyU=¢,

vhere

T T | M

'rx] [on M o+o nyﬂ
T= - +

g
LY Xy x yy Y.

= [force in x direction]

= |force in y direction]| .
When the forces are specified locally they are transformed into global forces,
which change in direction and possibly magnitude, with respect to the arc

length of the boundary line.

PR Tt TR IR N - - D T T N .
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After NL is specified, each of the NL packets of line integrals must
be specified. In the line following NL, we must input
i = the index number of the package,
n; = the number of 1-D domains to.which this package applies,

zl,...,zni = the indices of the 1-D domains to which the package applies.

The next line contains indicators By» & vhere

g = (0 , (¥); = 0 but dummy values in the data line for (v),
< must be input,

L1, (), %0,

eq4 = -1 , (e)i ¥ 0 and the values of (e)1 describe a local force
on the boundary,

0, (e); = 0 but dummy values for the data line (e); must

be input,

1, (e)i ¥ 0 and the values of (e)i describe a global force

L on the boundary.

The (Y)i l1ine should contain the entries of the 2 x 2 matrix Yy in the

(z 3)

The (e)1 line should contain the four entries el(p), ez(p), el(q), ez(q),

order

wvhere p and q are the endpoints of the boundary line. If the force is
described globally then € is the force in the x direction and €, is
the force in the y direction. If the force is described locally then él
and ) denote the forces in the tangential and normal directions
respectively, to the boundary.

For example, suppose we wish to prescribe a force of magnitude M which

makes an angle of a with the tangent. Then the appropriate values for ¢
15
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should be

Mcos a, M sin a, M cos a, M sin «.
Furthermore, the angle and magnitude can be changed linearly (with respect to
the arc length) from o and 8 and M, to M, , respectively by inputting

0 1

Mo cos a, Mo sin a, Ml cos B8, Ml gin B for € .

2.7 Subroutines for the functions E(x,y), D(x,y).

1f Gj or €y » the indicators for the vectors D and E , are equal
to -1, we must supply a fortran subroutine to define these functions.

The subroutines will read in the values (x(1),x(2)), the global (x,y)
coordinatesof a point and then compute and return the values

S(1) = the exact solution u(l) (if knowm),

S(2) = rthe exact solution u(2) (if knowmn),

D(1)

D(2) ) the 4 scalar functions coﬁprising the components of the

D(3) ) vector D,

D(4)

E(1) L.

£(2) = {bthe 2 scalar functions comprising the components.of the vector E,

W(1) = 52D(1) + 520(3)

3 3 the derivatives needed for the residue computation.
W(2) = 32D(2) + 57D(4)

The subroutine actually has 4 entry points, returning the values S, D, E,
and W, respectively. The calling sequence is

SUBROUTINE ZPMTRU(X,S)

DIMENSION X(2), S(2)

(returns the exact solution S(1), and S(2),

16
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E COMMON/FUPAR/NSUP,, FUP(12)
) (Common block of function parameters. NSUP=the number of parameters,
:;: and FUP(12)=the function parameters--as dimensioned NSUP < 12. These
parameters are input at the onset of the program (see Section 5.2.)
= ENTRY DMATX(X,D)
' DIMENSION D(4)
=~ (returns the components D(1), D(2), D(3), D(4)),
: ENTRY EMATX(X,E)
H DIMENSION E(2)
Ei (returns the values E(1), and E(2))
and
E ENTRY DMATXD(X,W)
o DIMENSION W(2)
Z (returns the values W(1l), and W(2)) .
! This subroutine must be compiled and mapped with the main program. This
; is briefly discussed in Chapter 5.
i
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t; Chapter III. Commands and Strategies

3.1 Introduction--Overview of Strategies

Before describing in detail the various options and commands available

'! to the user, we give a brief overview of how FEARS operates. We hope this
will help clarify what each instruction actually does. '

e Let us assume that the geometry and bilinear matrices have been input.

Rt An initial subdivision is then performed by the program, and a solution is

obtained on this initial mesh. Error indicators are then computed from the

5; solution values. A status message or REPORT is then printed out for this
£ .- initial solution.
SN
S
.~ After this initial step, the user has many options for subsequent sub-

dividing (refining) and resolving. In FEARS this iterative process of

subdividing and resolving is continued until either the solution obtained

P
A

is within a specified tolerance of the true solution, or the user runs out

of computer resou' :es (money, time, or storage). Each REPORT message contains

¥

the approximate relative error as part of its output.

~ Ideally we would like to employ some optimal strategy which will obtain

L

for us the desired accuracy with the least computer expense. On: one hand,

an "optimal mesh" is always desired, that is, a mesh which will yield the

&y

smallest error in the solution for a fixed number of degrees of freedom. On

51

A’

the other hand,we would not like to spend too much money in order to maintain
an optimal mesh at each level. For example, it would be very expensive and
wasteful if we subdivided only:one or two elements at a time and then

Eé recomputed the entire solution after each subdivision. Thus, even though we
t? may get a better mesh by subdividing only one element at a time, it would be
a better strategy to refine a larger number of elements, even though the

[é mesh obtained may be only "nearly optimal". It has been shown *(1l) that

1
- #(1)Babuska, I., and Rheinboldt, W. Analysis of finite-element meshes in R .
7 Math Comput. 33 (1979), 435-463).

18
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(at least for one dimensional problems) a mesh which deviates slightly from
the optimal mesh 1s nearly optimal in the sense that the solution with this
mesh 1is nearly as accurate as the solution on the optimal mesh.

Furthermore, one may ask if it is necessary to resolve the problem
globally after each subdivision. For example, there may be circumstances
where only one or two elements will get subdivided, or all the elements to
be subdivided are concentrated in one region. Perhaps it would be acceptable
to resolve the problem locally--either within each element, or only within
a 2-D domain where some subdivision has occurred. The FEARS program allows
us these options.

For example, we can specify that when some element-gets subdivided, all
previously obtained solution values will remain fixed, and a new solution
will be obtained only for the node created at the center of the element by
the subdivision. This is referred to as a SHORT path solution. Error
indicators are recomputed for only the 4 new elements. SHORT path solutions
are fast and cheap and are recommended when only a few elements are to be
subdivided.

Likewise we may specify some set of 2-D domains, for example, only

those where subdivision has occurred, and then obtain .. new soiution values

only for those 2-D domains. The boundary conditions on the boundary of
the subdomain are taken to be fixed, with displacement values determined
from the previous solution. This type of solution path is in between a

SHORT path and full solution in both expense and accuracy.

Although the usercan control the refinement procedure by specifying

which elements are to be subdivided before each solution path FEARS also has

a built in recommended refinement strategy. This strategy is enacted through

the command AUTO (short for automatic). Each time this command is given,
19
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all those elements with error indicators larger than some computed threshold
value (see Appendix A3) are subdivided and a new solution is computed. The
type of solution path performed must be supplied by the user. For example,
(AUTO/1) will refine and recompute the solution globally, and (AUTO/4) will
refine and then perform a SHORT path solution on each refined element only.

For many problems, particularly those in which there are no singularities,
a sequence of (AUTO/1) commands. is the best strategy for obtaining an accurate
solution cheaply. However, when solving problems with singularities, it is
often the case that an AUTO command will refine only one or two elements.

If the mesh already has a large number of elements, producing a new global
solution in this case is not only costly, but also unnecessary. In this
case we would prefer performing a SHORT path solution with an (AUTO/4)
instead of a new global solution with (AUTO/1). If the program is being
run interactively, then the user can decide which type of solution should
be performed, since after each REPORT the approximate number of elements
to be subdivided by the next AUTO command is printed.

Unfortunately, if the program is being run as a batch job there is no
a-priori way to determine when an (AUTO/1) or (AUTO/4) should bg performed.
FEARS also has the ability to make this choice automatically with the ITER
(ITERATE) command. The ITER command performs n solution paths composed
of (AUTO/1) or (AUTO/4) commands, the choice depending on whether the number
of elements in the new mesh is a certain percentage over the number in the
old mesh (after the last (AUTO/1)). This cut-off percentage must be supplied

by the user, but a 30% increase is recommended.

The user also has control over what information is printed out, after
a solution path is performed. For example, with the PRINT command, informa-
tion about the solution at the nodes and a list of elements with their a-

posteriori error indicators may be printed. The OUTPUT command will give a

20
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r: list of stresses and solution values at the center of each element.
Two other useful commands are the DUMP command and the CHANGE command.

The DUMP command will cause all information about the problem, eg. geometry,

bilinear matrices, solution values, and data structures for the mesh, to

VOO R S0l S S S AT e e

e,

s be saved on a’'permanent file. The user may then restart the program where

he/she 1left off at any future time.

2T T T

The CHANGE command causes small changes in the initial problem. This
is useful if one is interested in the effect of perturbing either the
ale geometry or material properties of the prolem. 1Imn this case, the refined
Ly mesh for the original problem will be almost topologically equivalent to
the refined mesh for the ;ext problem. Therefore, instead of using a lot
f: of computer time by iteratively subdividing and resolving for the new problem,
the refine? mesh for the original problem could be used and a final solution
obtained immediately.
ll Now that the general format has been presented, we describe the user
commands in detail. The computer will always acknowledge that it is ready

o to receive a user command by printing the line

- #kx% COMMAND:

o 3.2 PRINT Command

i The PRINT command is designed to print out information about the
o points - Dg » j=1,...,N0, the

* lines - } , j=1,...,N1, and the

E; 2-D domains - § s J=1,...,N2 .

e The format for the PRINT command is

PRINT

E a,b,c
21
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The value, a, determines the dimension of the domaing to be printed.

[0 => print about

1 => print about

a =
=> print about

[-1

=> print about

-1 print all

k

For example, the command
PRINT

-1,-1’3

the command mode and print

{?} = k , print about
b=

p2

........

0
D 1
j 8

1,
Dj s

2
D 1
j 8

DO

; s and Dz'

's, Dl' j

3

The value, b, determines which index k of D:(a#-l) is to be printed.

a
Dk only.

The value, ¢, determines how much information is to be printed.
P

only print data about the nodal points of the 2-D domain(s).

only print data about the elements of the 2-D domain(s).

0 print only headings
1

c= -ﬁz
3 print all information
.

discussed in detail in Chapter 4.

**%% COMMAND .

22
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will cause all information about each 0-D, 1-D and 2-D domain to be

printed. The format of the printed data and its interpretation are

After the execution of a PRINT command the computer will return to

.....................




3.3 REPORT Command

The REPORT command accomplishes two things. First of all, it computes
statistical information about the error indicators and sorts the elements
in the order of decreasing indicators. Thus, a REPORT should be performed
before each PRINT command to ensure that the elements are listed in order.
Secondly, it prints out a status report on the full domain giving informa-
tion on the number of elements, total energy, error estimator, percentage
of error, number of elements recommended for subdivision, etc. This message

is described in detail in Chapter 4-Output.

3.4 SUBDIVIDE Command

The SUBDIVIDE command is used to subdivide elements. It has the

following format:

computer *k%* COMMAND:

user SUBDIVIDE

computer SUBDIVISION, 2-D PROCESS INDEX:
user J1

computer Q=ALL, GT.0.=CUT OFF VALUE,

LT.0. = GIVE ELEMENT LIST
user Xl

computer [ ELT LVL R LOCAL COORD ERR.IND PREV ERRIND )

. . . . .
- L] L] L]

ELEMENT TO BE SUBDIVIDED

L IF X, < 0

user el

computer ELEMENT TO BE SUBDIVIDED:

23

- - R T R D W N N W W oo T N ¥ " v —— -
...-u‘JL-«-f-L.t.n‘..--z.-.-;.(‘..\...-....-‘.a..-..- L I A R N N N O A SR A N T L .]

...............




»
-

:'.l.,"“

¥ e

e

RN
PPLNET W T Wade B

51

AFE IR LI -

AL i iF gnd Wiy

S NLAA iy

i@ -
B
Ko’

LA A QUSROG VA SRS AR IO G A AR A R AR ARAC A ACSE AL U MO CR N SRS ACR RO
E user e
. computer ELEMENT TO BE SUBDIVIDED: IF xl <0
- user 0 ’ (zero)

b e 7|
F At

-4

e

o
"

RS

2P AR
LR

o
-
Py

v,
Y
»?

4

=43

OO R L I N B I S R U ] LIPS 1 - . - "t ~, - o < em
RO AR R RS Ll R A RN v, IS T W T L L I R e e s .
ddadd S W WY LN R AR AL AN AN A RS A TN VYL AR ot ol e T Y

computer SUBDIVISION 2-D PROCESS INDEX:

user Jz

camputer 0 = ALL, GT.O. = CUT OFF VALUE,

LT.0. = GIVE ELEMENT LIST.

user xz

computer SUBDIVISION, 2-D PROCESS INDEX:
user ' 0 (zero)

computer **xx* COMMAND:

The values Jl’ JZ""’ give the indices of the 2-D domains in which

the subdivision will occur.

The values Xl, Xz,..., determine which elements get subdivided.

X, = [ 20 => subdivide all elements in 2-D domain J, with
an error indicator > X
< 0 => give an element list and ask for aneindex of an
element to be subdivided. The program will
continue to ask for an element until the user

returns Q0 (zero).

The user may get out of the SUBDIVIDE loop with a 0 (zero).

3.5 DOMAIN Cosmmand

The DOMAIN command is used to set up the subdomain on which a solution

path is to be performed. The subdomain defined may be any subset of the
2
D.'s .
J
24
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The format is either

%é (1) DOMAIN
¢
SIS or
K]
N (11i) DOMAIN
N
E:_ kl'...’ku .
e In case (i) the subdomain defined is the full domain, and in case (ii) the
-
subdomain consists of the N 2-D domains kl’ kyseenylyy - After the command
gf DOMAIN is returned to the computer, the message
, SUBSET OF 2-D'S: NUMBER OF 2-D'S (§ = ALL) 1
I! will be printed by the program.
z
. 3.6 LONG Command

The LONG command will obtain new solution values for each node in the

Il

subdomain specified in the DOMAIN command. If the subdomain defined with

F% DOMAIN is a proper subdomain of the full domain then any points (Dg's)
- which are external to this subdomain, but are internal in the full domain
é: are considered as fixed with the values prescribed by a previous solution
;3 path. Also, error indicators of elements which are not in the subdomain
fj‘ are not recalculated.
” Eﬁ The format for this command is simply
1 LONG .
i
. 3.7 SHORT Command
5: The SHORT command performs a subdivision and a short path solutiom
"f on each element specified. When an element e is specified, it is sub-
£ divided into 4 sub-elements, and solution values are obtained for only

ke
o the new node formed in the middle of ea . This solution is computed by

25
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solving the problem on the 4 sub-elements with linear boundary conditions
on the boundary of ej determined by the 4 cornerpoint solution values

previously determined on ea .

2 4 2¢—9 44
_— 7 8
1 3 16— —

Figure 3.1. Short path subdivision of element ej'

In the figure we solve for the circled node in the center having the
previously obtained solution values at 1, 2, 3, and 4 and the values at
S, 6, 7, and 8 are obtained through interpolation. The new error indicators
for ghe four new elements created are computed in the following way.

Let F denote the father element (to be subdivided) and Sl, S,» S3,

and S, the four sons generated from subdividing F. Let E(F) denote the

4
error indicator for the father element, and P(F) the predicted error

indicator for the four sons of the father (see Figure 3.2). Appendix A.3

describes how this predicted error indicator is computed.

Figure 3.2. A father element subdivided into four sonms.

We then compute the error for each son E(Si) by the formula

E(si) = min(aE(F) , P(F)), where

a = .55 by default, but can be changed by the user with the SHEF command
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(see Section 3.16), or at the start of the program (see Chapter 5).

The format for the SHORT command is similar to the SUBDIVIDE command.

computer *k&k* COMMAND

us@r SHORT

computer 2-D DOMAIN PROCESS INDEX:

user 3

computer ELT LVL R LOCAL COORD ERR.IND PREV.ERR.IND.
e h 1 ® Wl 31

computer ELEMENT TO BE SUBDIVIDED AND SOLVED

z.tser e

computer ELEMENT TO BE SUBDIVIDED AND SOLVED

user @EOF

camputer 2-D DOMAIN PROCESS INDEX:

uger Jz

user @EOF

computer 2-D DOMAIN PROCESS INDEX:

user @EOF

computer  *** COMMAND

3.8 AUTO Command

The AUTO command, short for automatic, is a powerful and useful user
command. It performs the subdivision, sets up the subdomain, performs a

solution path, and prints a new report.

27
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The format for the AUTO command 1is

AUTO
J
X (if J < 0)
If J >0 each element having an error indicator which is greater

then or equal to a computed threshold value is subdivided.

X '.l.‘]

e

l?‘.l

=
2,

If J

< 0 another value X must be input and all elements having an

error indicator greater than or equal to X will be subdivided.

The value of J determines which type of solution path to take.

J =%

1 => Obtain a new solution for the full domain.

. J = 3+ 2 => 0Obtain a new solution for the subdomain composed of those
t! 2-D domains where subdivision occurred.

T J =+ 3 => Obtain a new solution for each 2-D domain individually

= where subdivision occurred.

!. J = % 4 => Perform a short path solution for each element subdivided.
’ Thus, i1f we wish to subdivide all elements of our full domain and

55 resolve the problem globally we could use the command

- AUTO

- -1

A 0.

-~ The same effect could be accomplished with the sequence of commands:

o SUBDIVIDE

e 1

- 0.

i 2

g 0.

: 2
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When using the AUTO command, it is important to understand how the
threshold value is computed. Appendix A.3 contains a detailed explanation.
Actually we compute a threshold for each 2-D domain and then use a global
threshold being the maximum of all the 2-D domain thresholds. All elements

above the global threshold are then subdivided in the AUTO command (if

J > 0).

3.9 ERROR Command

The ERROR command recalculates all error indicators using the solutions
last obtained and generates a new report. It should be used after repeated

short path solutions in order to obtain more accurate error indicators.

3.10 DEBUG Command

The DEBUG command was initially used as a debugging aid, and this
option is still available. However, the user may find it more important
in its ability to print a list of subdivided elements and/or its comtrol
of the output.

The format for the DEBUG.command is

computer *%&k% COMMAND:

uger DEBUG

uger IPR(1) , IPR(2),...,IPR(8)

Where IPR(1),...,IPR(8) deal with the following:
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: IPR(1) - subdivision element 1list, short path debug,

' ": IPR(2) - debug error calculation,
7 . . IPR(3) - debug matrix assembly,

* IPR(4) - debug matrix decomposition,.
\ -' IPR(S5) - debug matrix solution,
-- \ IPR(6) - debug back substitution,
: : IPR(7) - echo input,

: C&: IPR(8) - automatic elemental output control.

_ @ The values IPR(1l)...IPR(8) should be specified as follows:
IPR(1) = ¢ 0 do nothing,

‘. 1 print a list of the elements which were subdivided
; ﬁ before each solution path,

. 4 2 print out short path solution debugging information
. -k record the subdivision element list on file with FORTRAN
=) ' unit number k . File k must have been properly
: o . assigned tc the run.

:C : IPR(]) = (0 do not print,

v - ) 1 print only summary, (For § = 2;...,6.)
' (2 print all informatiom,

:;: IPR(7) = 0 do not echo input,

-,. ; {1 echo input,

7'-'5 IPR(8) = 0 no print, no file write,

4 1 print, no file write,

4 2 <

v 2 no print, file write,

: 3 print, file write.

-"( The parameteLr IPR(8) causes the listing of the OUTPUT information
" E (see Section 4.6) to be, either printed, or written on FORTRAN unit number !
.- s 17, after each AUTO command.
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The program also asks for the values IPR(1),...,IPR(8) at the beginning
of each run, and'the DEBUG command offers a way to change the initial values

of these parameters.

3.11 OUTPUT Command

The OUTPUT command will have the effect of temporarily changing the
parameter IPR(8) and immediately performing the file write and/or print as
desired. The format is '

computer **%% COMMAND:

user OUTPUT

user n (=1, 2 or 3)

This effect is only temporary. If a new AUTO command is performed the
print and/or file write will be done as specified by either the last DEBUG

command, or by the initital value given IPR(8) at the start of the program.

3.12 DUMP Command

The DUMP command allows us to save the present data structures, mesh,
solution values, etc. in some file so that the problem can be restarted
from where we left off at some later time. The format is

DUMP

F
where F 1s an integer indicating some fortran unit number. Since units
10-17 are already used in the program, units 18 and up may be used here.
These files should all be initially assigned before the program run, and

this is described in Chapter 5.

3.13 RESET Command

The RESET command will restart the problem from the time just before

the last DUMP was executed. The format is
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. | where F 1is the same unit number used with the DUMP command. If you were

C3o

i presently running another problem the RESET command will destroy your present
ji run unless you DUMP it onto some other unit number. .

LS 3.14 ITERATE Command

The ITERATE command causes the program to take iteration steps,
composed of AUTO/J command, automatically, with built in termination. These
steps will be either LONG solutions (J=1) or SHORT solutions (J=4).

The format for the ITERATE command is:

g computer A%4% COMMAND:
user ITERATE
- user n, B t, a

where n(>0) is integer valued, 8, t, a (>0) are real valued inputs. The
ot value n determines the maximum number of AUTO/J commands to be performed

in the sequence.

.y
RLERSA

The value of B 1is used in the decision strategy to determine the

value of J(=1 or 4). The decision value works in the following way. Let

EL be the number of elements after the last LONG solution (AUTO/1). Let ES
be the estimated number of elements in the mesh when the next refinement
occurs. Then if ES < (1+8) EL, the AUTO/4 command (SHORT) is performed,
without changing the value of EL. Otherwise, if the estimated increase in
elements is 8% or more, an AUTO/1 (LONG) is performed which also changes
EL to the new number of elements. Exception to this rule is at the last
step of the iteration steps, when the program always generates an AUTO/1
(LONG solution).

The value t is the maximum allowed time in seconds. The program
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assumes that the time needed for an AUTO/1 (LONG) step is linearly dependent
on the number of elements E ;

T1=C*E,
where the factor C 1is derived from a previous AUTO/1 step. If T1 and the
previously accumulated time of the iteration process is equal or greater tham
the given t value, then a last step, AUTO/1, is performed to assure a LONG
solution before returning to the user's next command.

The value a 1is the required relative accuracy. Again, if a has
been achieved in the sequence of AUTO/J steps, the program assures that the
last step has been a LONG solution before returning to the user's next
command.

During the sequence of AUTO/J steps, it may happen that the available
data storage area is exhausted due to the increasing number of elements. The
required storage areas are also estimated by assuming linear dependency on
the number elements, although this may not be very accurate.

Thus, an ITERATE command causes a sequence of AUTO/J steps, where the

number of steps is determined by one of the four factors:

(1) n = given maximum number of steps (no message 1s printed)
(ii) time allowance (t) is exhausted
(i11) accuracy (a) achieved

(iv) storage is exhausted

If one of the last 3 cases occure, the appropriate message is printed.

3.15 CHANGE Command

The CHANGE command allows the user to make modifications in either the

bilinear form, geometry, or function parameters, while keeping the mesh generated

from solving the original problem. This command is useful, if for example, the

problem of optimal design is of interest.
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A problem is solved with some initial geometry using the FEARS program
and an optimal mesh is created for this problem. It may be of interest, for
example, to determine how the maximum stress is altered by making a perturbance
of the geometry. With the CHANGE command, this perturbed problem can be solved
with just one solution pass, using the final mesh of the original problem. '
Suppose that the final mesh of the original problem was saved onfile
k by using the DUMP command. After calling the FEARS program (see Chapter 5)
you will first be asked to supply the 8 DEBUG parameters IPR(1)-IPR(8).
After supplying these values the computer will respond:
computer PROGRAM INPUT DATA IS ON
FILE NUMBER =
to which you should input
user k
k is the file number on which the 0ld mesh was stored.
You will then be in the command mode as the computer will
respond
**xx*x COMMAND: .
To use the CHANGE command the user's response is
user CHANGE
The program will then shift back into the input mode and
ask for the function parameters ID Number of the problem,
P-NORM for the full domain, and then the geometry and
bilinear forﬁé. Here the data should be prepared with
the appropriate changes, and input. The program will then
immediately obtain a solution for the new problem using the
previously saved mesh. A REPORT will be given and the

program will return to the command mode,
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3.16 SHEF Command

SHEF stands for short path error factor. This command allows the user
|| to prescribe the value of « which is used in the short path error calcula-

tions (see Section 3.7). The format for the SHEF command is

j computer ¥k COMMAND )
RN user SHEF

e user a

f: where a > 0 1is real. If this command is not used the default value for

- a 1is 0.55.

3.17 STOP Command

tﬁ The STOP command causes the termination of the program execution, thus
it should be the last given command:
computer **** COMMAND

‘user STOP

3.18 ERIT Command

:é The ERIT command changes the way one of the error terms is calculated
Lo for elements adjacent to internal 1-D domains. This error term is based

on the difference of derivatives of the solution across the interfacing
1-D domain. Initially in the normal (ON) position, the difference of
derivatives is computed form the two adjacent 2-D domains; while in the OFF
i: position, the difference of derivatives are estimated internally in the

appropriate 2-D domain. The format of the ERIT Command is

I..“
f computer **%% COMMAND
user ERIT
tj which causes the change of position, from ON to OFF, or OFF to ON. This
command is particularly useful when the problem contains an interface
:;:: separating two 2-D domains with vastly different material properties.
35
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3.19 MESH Command

The MESH command is similar in purpose to the CHANGE command, i.e., to
get solutions for a slightly changed (in geometry or material constants)
problem. The use of the MESH command requires that the subdivision element
list of the original problem has been saved by the DEBUG command

DEBUG

TN
during the iteration . process on file k , where k is a Fortran unit
number properly assigned to the run. If this has been done, one can use the
MESH command after the initial input (geometry, bilinear forms) to recreate
the saved mesh structure for the modified problem by

computer **xk% COMMAND

user MESH

user k
Note, that the MESH command only recreates the mesh according to the data
stored on file k and does not obtain a solution on it. Then it should
be followed by a LONG command if the user wishes to obtain solution on the

recreated mesh.

3.20 INIT Command

The INIT command reinitializes the program and expects initial input

as a new start without asking for the output option.

............
..............
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CHAPTER IV. THE OUTPUT

4.1 Introduction-Global and Local Coordinates

Recall that FEARS takes a unit square and maps it onto each 2-D domain.
All computations and mesh refinements are actually computed on this unit .

square under the appropriate transformation. The coordinates (£,n) on the

unit square are called the local coordinates and the corresponding values

(x,y)=(x(&,n), y(E,n) are the global coordinates.

A e ;
" (1,31)/1“-_)__} i

(&,n) y

(x,y) = (x(g,n),y(E,n))

!

(0,0) 3 x

Figure 4.1. Local and Global coordinates for a 2-D dgmain.

Inside this unit square all refinements, element ordering, etc., takes place.

4.2 Numbering the Mesh of a 2-D Domain

In order to help read the printout, a description of how the elements and
nodes are indexed is given. This will be a great aid in reconstructing the
mesh and hence in locating elements and their neighbors.

The initial subdivision is numbered in the following way:

Figure 4.2. Numbering for initial subdivision.
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The nodes and elements are numbered together--the index 1 corresponding to
the node in the center and the indices 2, 3, 4, and 5 number the 4 elements.

Suppose that element 2 gets subdivided. Then index 2 will correspond
to the node formed at the center and the next available indices 6, 7, 8, and
9 will be used to number the 4 new elements created (see Figure 4.3a). Note
that the two circled points aré not numbered. These points are irregular
points without degrees of freedom, whose solution values are obtained through
interpolation. Generally, regular points (nodes) are those which lie at.the
corner of 4 elements and are always numbered. Irregular points lie at the
corner of only 2 elements and on the side of some other element and are not
nunbered.

Suppose next we subdivide element 3. Then index 3 is a point and the
next 4 indices 10, 11, 12, 13 number the 4 new elements created (see Figure
4.3b). However, note that the point with local coordinates (.25, .5) is.now
a regular point and hence gets the next available index 14.

Finally we present the numbering after elements 4 and 5 get subdivided

in Figure 4.3c.

11 13 21 23

12 10 12 20 22

-~
ﬂl:
Y-
H
~
%1
j
Y]
=
[y
-]

.......
.........

Figure 4.3. Numbering of refined meshes.
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A listing of the elements subdivided at each level will be output if

the parameter IPR(1) is set to 1 with the DEBUG command (see Section 3.10).

'! 4.3 The PRINT output

SUTSN R AGOWTRG A T N AN

g .. The PRINT command will cause data to be printed about the points (Dg's),
s Y .

£y

lines (D;'s), and 2-D domains (Dj's) .

4.3.1. Printing the Points (0-D ‘démains)

The format for the data about the 0-D domains of the geometry is as

follows:

<<< 0-D COORDINATES SOLUTION ERROR BDRY EXT
1l R4 uy v, eu, ev, b1 ex,
2 Xy ¥, u, v, eu, ev, b2 ex,
% *xono “No'No ®YNo%VNo ®yo XNo

The information under the heading
0-D -~ gives the index number of the point,

COORDINATES - gives the global (x,y) coordinates of the point as specified

by the geometry input,

SOLUTION - gives the computed solution values of the point,

ERROR - gives the error between the computed and exact solution if
the exact solution is known and supplied in the subroutine
ZMPTRU,

BDRY - gives the boundary conditions of the point as specified by
the geometry input, and

EXT - indicates if the point is internal (0) or external (1) to

the full domain.
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4.3.2 Printing the lines (1-D domains)

1 9 X Y1 Y Vp ey evy
P ey *p Yp Yp Vp U €
On the top line the value after
B: gives the boundary condition of the line as specified by
the geometry input,
E: indicates if the line is internal (0) or external (1)
1/Rs - gives the signed reciprocal of the radius as specified by the

arising from the mesh is printed. The data under

~ R B e R A A NP O AT . . o7 .
A A R P B L .. B I I

“
[ I

The format of the information about the line with index J 1is

<<< 1-D INDEX: J B: b, E: ex, 1l/R: Py
FROM ay TO bJ PTS: p, R-PTS: rp
p POINTS:

PT R LOCAL GLOBAL COOR SOLUTION ERROR

geometry input,

FROM_TO_: gives the two indices of the 0-D domains forming the endpoints
of the line,

PTS: gives the number of points on the interior of the line
arising from the mesh, and

R-PTS: gives the number of regular points.

Next, a list of data about the points lying in the interior of the line

PT - gives an index of the point in the order it was formed,

R indicates if the point is regular (3) or not (0, 1 or 2),

gives the local coordinate of the point on the line--the

LOCAL

0-D a; has a local coordinate 0 and bJ has a local coordinate 1.
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GLOBAL COORDINATE - gives the global (x,y) coordinate of the point,
SOLUTION - gives the computed solution values at the point, and
; - ERROR - gives the error between the computed and exact solutions if
e S
” the exact solution is known.
y = 4.3.3 The 2-D Domdin Printout
] (The format for the printout of 2-D domain J 1is
<<<2-D INDEX:J CORNERS:CICZC304 NUMBER OF POINTS:NP ELEMENTS:NE ENERGY:
| = S SMALL
EL'I‘.SIZES.8182838485568788, SMALLER SIZES.ig-,MAX.ADJ.RATIO.
N ERROR INDICATORS,TOTAL:  _, MAX:__, MEAN:__, THRESHOLD:_
. HEAD-< DISTR. BELOW MEAN (): _ - _ _ _ _ _ _
' t ING
=2 |DISTR. ABOVE MEAN (_): _ _ _ _ _ _ _ _
o DISTR. ABOVE PRED ( ): _ _ _ _ _ _ _ _
T TIME, ASM& DEC: , BCK: ', THR: , TOTAL:
! ﬂ fromcz, MEMORY : , AUXILIARY:
h 22 PNT LOCAL COORD GLOBAL COORD SOLUTION ERROR
P & m X 4 b D T T
L 3 Pxp ‘e "p e T Y o eV
s
m ELT H R LOCAL COORD ERROR IND. PREV.ERROR.IND.
S El Hl Rl El n ERRI PERRl
; - . 3 L) ) ] e 3 .
'F‘" . » . ; . . . .
- Exe Hye Ree NE "NE ERRyE PERR\g
T
N In the top line the value(s) after
E CORNERS: gives the 4 cornerpoint indices as specified by the
~ geometry input,
. 41
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_E: ) NUMBER OF POINTS: gives the number of regular points (NP) of the mesh in the
i§ Eﬁ 2-D domain J,
(‘* - ELEMENTS: gives the number of elements (NE) in the mesh, and
;;3 = ENERGY: gives the energy of 2-D domain J.
éi; i In the next line
“; . ELT. SIZES: gives the number of elements in the domain having a side
7;% ﬁ; of length 2-1, 2-'2,'...,2"8 respectively,
ﬁ%é e SMALLER SIZES: . gives the number of elements smaller than 2-8, and
u - MAX.ADJ.RATIO: gives (in power of 2) the maximum of ratiés of sizes

of two adjacent elements in the 2-D domain.

bl .
o B

The next line gives the sum, maximum, mean, and threshold value for the

error indicators of the elements in the 2-D domain.

P AR Y
LR RIS .
1

The following three lines give statistical information on the error

'3
*

L4
‘...n
o

.

indicators. The value in parenthesis gives the total, and the following 8

numbers give the number of elements in 8 standard deviations from the mean

a et el
TSN
’

O

or maximum predicted value.

f} ;? The line which gives the TIME breakdown is discussed in Section 4.4.
%3 ;_ After the storage requirements are printed, a list of th; nodal points
i} ;Q of the mesh in the 2-D domain are given. Included are the index of the point
sh :{ as determined from the numbering order described earlier, as well as the
Eg " point's local coordinates, globgl coordinates, computed solution values,
51 ?; and the error of the computed sélution (if the exact solution is known and
fi - defined in ZMPTRU). Only regular points are listed.

- After the nodal points are listed, the elements are listed in order

[: of decreasing error indicators. The indices of the elements are determined

ES ) through the same numbering system as the nodal points and this numbering
S

order was described earlier. Also included are
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H - indicating the size of the element (2

-H+i)’

R - indicates the regularity of the cornerpoints of the element, e.g.

R=3 corresponds to all regular cornerpoints (see Section 4.2),

LOCAL COORD - the local coordinates of the center of the element,

ERROR

PREV.ERR.IND. - the previous error indicator.

IND. - the error indicator for the element, and

further details on the previous error indicator.

4.4

The TIME:

breakdown

FEARS uses substructured solving, obtaining solutions first for those

See Appendix A.3 for

nodes on the 1-D and 0-D domains and then backsolving to obtain solutions

for the nodes in the interior of each 2-D domain.

In order to better

understand the TIME breakdown, write the assembled global stiffness matrix

in the form:

_ - .-
A By X
A, B, X,
A, B, ) -
Az Py e
T T T
B, B, Ba € ann
. - -

where xi

the unknowns for the 0-D and 1-D domains.

—

With the 2-D domain print command, the line starting with TIME lists

ASM & DEC:

TOTAL:

.....
..............
P SRS SR

the time for the assembly and LU decomposition of Ai

correspond to the unknowns in the interior of 2-D domain i, and th

the time for the backsubstitution for the unknowns in 2-D domain i.-

the time for computing the error indicators, and

the sum of the above three times.
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The REPORT print lists

EXECUTION TIME:

SUBDIVISION: the time of subdivision for the full domain,

2-D MATRIX SOLUTION: the sum of the ASM & DEC times described above for
each 2-D domain,

BDRY MATRIX SOLUTION: the time for solving C - X'BD = Ypp where C , Yg,

are C, Y modified by the 2-D partial decompositions.

BD
2-D ERROR CALCULATION: The sum of the THR times.

At the end of an AUTO command the ***AUTO TIME gives the sum of the 4

execution times plus overhead.

4.5 The REPORT printout

The REPORT has the format
*k%xkkx FULL DOMAIN X%k
NUMBER OF POINTS: NP NUMBER OF ELEMENTS: NE
ENERGY NORM: NM ENERGY: ENG
ERROR ESTIMATOR: EST RELATIVE ERROR: REL
MAX.ERROR INDICATOR: MAX BY 2-D INDEX __ THRESHOLD: TH
APPROXIMATE NUMBER OF ELEMENTS TO BE SUBDIVIDED:

2-D NO. OF ELEMENTS

1 Sl

2 82

N2 SN2

TOTAL T

STORAGE SIZES; MAX, CORE= » TOTAL= » NO RECORDS=

BDRY MATRIX =

EXECUTION TIME:, SUBDIVISION: ’ 2-D MATRIX SOLUTION:




2
i
:
R
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BRDY MATRIX SOLUTION: ___,  2-D ERROR CALCULATION:
Here
NUMBER OF POINTS: gives the number .of nodes in the 0, 1 and 2-D domains
have at least one degree of freedom,
NUMBER OF ELEMENTS: gives the total number of elements in the full domain,
ENERGY NORM: N = \JENG vhere
ENERGY: ENG
ERROR ESTIMATOR: gives the error estimate for the full domain,
RELATIVE ERROR: REL = NM/EST.
The next line gives the maximum error indicator, the 2-D domain it is in,
and the threshold value for automatic refinement.
Next is a list of the number of elements in each 2-D domain which will
be subdivided if the threshold value is used for subdivision.
Storage size information is then given and finally a breakdown of the

times as discussed in the previous section.

4.6 The OUTPUT printout

In this section we describe the data either printed or file written,
with either the OUTPUT command or by previously setting IPR(8) in the DEBUG
command or at the program start. .The data printed will be a list with the
headings.

2-D ELT H LOCAL COORD GLOBAL COORD ERR.IND OUTP(1l) . . . OUTP(S)

The column headed with

2-D - gives the index of the 2-D domain that the element is inm,

ELT - gives the index of the element,
-H+1)'

LOCAL COORD GLOBAL COORD ~ gives the local and global coordinates at the

H -~ indicates the element size (=2

center of the element,
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;? ' ERRIND - gives the error indicator of the element,

ﬁ ' OUTP(1). )

. - OUTP(2)

A OUTP(3) b will give the stresses O’ ayy’ oxy’ and solutions U, u, at

center of the element. if S was given for the elasticity problem.

T T
PP RIAS

- OUTP (4)

OUTP(5) J

. -
P
oY

> e

a7

- .

.

v

.

.

These last 5 values are determined by the output matrix S given in the bilinear

matrix input. The 5 values printed are determined by

U OUTP (1
S 13z =
5x6 [

u OUTP (5)

6x1 . 5x1

The appropriate S for elasticity problems is given in the Appendix.

- 4.7 DUMP-File output

i ll A sequential binary DUMP-file is generated by the DUMP command. This
é A file can be used as input for FEARS (see Sections 3.13 and 3.20), or as input

for various postprocessors. The order of the binary records on the file are

as follows:

-
% 1. Summary record of the problem (16 words)

| 2. Last long path history record (40 words)

J 3. Function parameter record (N+l words where N is the number of
Ei parameters)

~ 4. 0-D summary/records (8 words/records, N, records)

=

5. 1-D summary records (£8 words/records, Nl records)

21 6. 2-D Summary records (25 words/records, N2 records)
7. For each 1-D domain with non-fixed boundary condition:

7.1 1-D data record (8k words, where k 1is the number of points

LASad B e S e |
R
| ™

on the 1-D)

A aa a )
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7.2 1f +y,e matrices were defined for the 1-D then vy,e data
record (13 words)
8. For each 2-D domain
8.1 2-D data record (4k words, where k -is the number of points
and elements in the 2-D)
8.2 Bilinear form data record (125 words)

Details on the fields of records can be found in the Program Documentation.
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CHAPTER V. STARTING THE FEARS PROGRAM

This chapter describes the UNIVAC 1100 EXEC control cards necessary
to run the FEARS program. There are two elements and one file which are

of concern:

Absolute element: CKM*FA.A
Relocatable file: CKM*RE.
Map element: CKM*SE.MAP

The names of the above elements (file) may change by the actual installation.
The absolute element contains the absolute program with dummy, zero valued,
function routine for E(X,Y),D(S,Y) which can be run if that routine is
satisfactory by
@xQT,F CKM*FA.A

Otherwise, section 5.2 describes how to set up an absolute program with the
help of the Relocatabl: file and Map element to incorporate the user's
supplied function routine.

Section 5.1 explains the necessary file assignments to be included prior
to the run of the program. Section 5.3 describes the necessary initial
inputs for FEARS before the geometry, bilinear matrices and command inputs

are given as described in chapters 1, 2 and 3, respectively.

5.1 File Assignment

FEARS uses six temporary files (11 to 16) with all runs which should be

assigned by

@ASG,T 11.
@ASG,T 12.
@ASG,T 13.
@ASG,T 14.
@ASG,T 15.,///512
@ASG,T 16.

Four other files may be used depending on the actual run and commands given
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- for the run. These files should be catalogued files with user's given names.

These names should be associated with the fortran unit number by @USE:

- @ASG, A file name.
% . @USE n., file name.
é S; where n is the FORTRAN unit number. The four files are as follows:
(i) Output file - If the OUTPUT command is used, see 3.11, or IPR(8) was
given as 2 or 3 in either the DEBUG command (see 3.10)
:; or initially (see 5.3), the file should be assigned with
4 n=17 . At the termination of the run, the file will
Ei contain the stresses as described 4.6.

(ii) Mesh file - This file is generated as output file if IPR(1l) = -n as
given for the DEBUG command (3.10), it is used as input
file for MESH command (3.19; It is recommended to use
n = 18.

s (iii) Dump file - This file is generated by the DUMP command (3.12). Since

L present and future postprocessors use this file as input

file, most of the use of FEARS is anticipated to use this

3 ;: file. Recommended n = 20.
; :. (iv) Reset file - This input file is assumed to be generated by a DUMP
, Ei command in previous run of FEARS. The file is used either
;: initially (5.3) or by the RESET command (3.13). Recommended
: i n = 21,
f:

5.2 Preparation for Execution

When the user has to incorporate his/her function routine (see 2.7), then

a new absolute program of FEARS must be generated. The recommended steps to

s

be taken are as follows:
(1) Write the function routine according to the speficication given in 2.7,

Compile the symbolics using the ASCII FTN compiler to generate the
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relocatable element. For further on, it is assumed that F.FXY is
element name of this relocatable element.
Using the editor,
@ED CKM*SE.MAP,M
change the Map element into M
uger *N
computer @MAP,IN ,CKM*FA.A
uger ' *C  /CKMXFA/F/

eomputer @MAP, IN »F.A

uses *N 2
computer IN CKM*RE.FUNC
user *C  /CKM*RE.FUNC/F.FXY/
computer IN F.FXY
user *@
computer editor signs off
user @DD M
computer MAP ... .
END MAP. ERROR = 0 ...
The above sequence places the new absolute element F.A in the users
file.
After the appropriate assign statements, see 5.1, the run can be
initiated by

@XQT,F F.A
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' Note:
Eg The geometry and matrix inputs can be prepared separately in file
:‘ elements, e.g. in INP.G1 and INP.MX1l , respectively. In this case,
;3 the user simply applies the UNIVAC commands
@ADD INP.G1
@ADD INP.MX1
in the above 'input stream as input for the geometry and bilinear, error
j - and output matrices. This technique is especially useful when FEARS is

used interactively.

It SRary ¢ PR OINER R
R TR RENRT PRV R
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5.3 Execution of FEARS

After the program execution has been initiated by @XQT,F, the computer

will respond

*kkkk F E A R S *kkhk

2-D FINITE ELEMENT PROGRAM
UNIVERSITY OF MARYLAND. 1981.

MAXIMUM ALLOWED SIZES

NUMBER OF 0-D, 1-D, 2-D: 34 49 16

NUMBER OF POINTS ON A 1-D: 31

NUMBER OF POINTS AND ELEMENTS IN ONE 2-D: 482
MATRIX STACK SIZE FOR ONE 2-D: 8800
BOUNDARY MATRIX SIZE: 14000

SHORT PATH ERROR-FACTOR = .55000

PRINT CONTROL INTEGERS (8):

IPR(1) - PRINTS DURING SHORT PATH, SUBDIV.
NEG. K - RECORD SUBD. ELEMENTS ON FILE K

IPR(2) ~ PRINTS DURING ERROR CALCULATION

IPR(3) - PRINTS DURING ASSEMBLY

IPR(4) - PRINTS DURING DECOMPOSITION

IPR(5) - PRINTS DURING MATRIX SOLUTION

IPR(6) - PRINTS DURING BACKSUBSTITUTION

IPR(7) - REPRINTS INPUT

IPR(8) AUTOMATIC ELEMENTAL OUTPUT CONTROL

IPR(J) ,J=1,...,8:

The user now should input the 8 integer values IPR(1) - IPR(8) as discussed
in the DEBUG command, e.g.
0,0,0,0,0,0,1,0
Next the computer will respond
PROBLEM INPUT DATA IS ON
FILE NUMBER :
The user should input zero:
0
if this is a new problem, or the Reset file number, e.g.
21
on which all the data at some stage of a problem was saved by the DUMP command.

In this case, the computer will respond N
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- #kkk COMMAND
and the program will be in the command mode.

-l Otherwise (in case of a new problem), the computer will respond

= . FUNCTION PARAMETERS: N,Pl,...,PN(N>0):

and the user should input an integer N>0 , and N parameters for use in the

user defined functions routine (see section 2.7). If no parameters are

7
L

iy required, the dummy values 1,0,may be input.
e
; The computer will then respond

ID - NUMBER OF THE PROBLEM:

and any integer response from 1 to 999999 will suffice.

E ’ The next computer response is

P-NORM FOR THE FULL DOMAIN:

The P requested here is the same one as in (2.1). If amn L norm is cf

O N N N

. FX)

(L A

8 8. " & B 8

2p
. interest in measuring the errors then the value P>.5 should be input. An
- L, norm will be used if O. is input. Usually P=1 which corresponds to

,, j the standard I.2 energy norm.

'. ” The computer will then respond

AR PROBLEM ID:

o DATE:

" P-NORM:
E:‘ GEOMETRY:

s At this point the geometry should be input in the format described in chapter
?n 1, {.e., starting with number .of 0-D domains and ending with the last 2-D
l:'; domain description line.

If no errors are detected the computer will respond
{: GEOMETRY ACCEPTED

BILINEAR, ERROR, AND OUTPUT MATRICES:

o B al's ¥
P
,




At this point, these matrices should be input in the format described in
Chapter 2.
l !l The computer should then respond
: MATRICES ACCEPTED
; e INITIAL SUBDIVISION, 1 OR 2:
! - The value 1 will cause each 2-D domain to have 4 elements and the value
| 2 will cause each 2-D domain to have 16 elements for the initial mesh.
= Finally the computer will respond
! INITIAL SUBDIVISION ( ) FOR 1-D PERFORMED
E o INITIAL SUBDIVISION ( ) FOR 2-D PERFORMED.
The program will then obtain an initial full solution path on the entire
domain, print a REPORT and respond
*xk*x COMMAND
signifying that it is ready for user commands.

Once 1n;gomman& mode, further actions are governed by the user's

commands as described in Chapter 3.

........................................
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APPENDIX A
A.1 Sample Geometry
In this appendix sample domains and their FEARS geometry input are
presented.

Example 1: Quarter Ring - 1 - subdomain

Figure A.1. Quarter Ring

The geometry input for Figure A.1 is:

4
1,0.,.5,1,0.,0.
2,0.,1.,1,0.,0.
3,.5,0.,2.0.,0.
4,1.,.0.,2,0.,0.

4
1,1,3,0,2.
2,2,4,0,1.
3,1,2,1,0.
4,3,6,2,0.

1
1,1,2,3,4

Note that the boundary condition on line index 1 is specified as free. The

force present (indicated by arrows) is specified in the bilinear matrix

input.
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Figure A.2. Unit Square

The geometry input for Figure A.2 is:

i,o.,o.,a,o.,o. 4,5,8,0,0.
2,0.,.5,3,0.,0. 5,1,2,3,0.
3,0.,1.,3,0.,0. 6,4,5,0,0.
4,.5,0.,0,0.,0. 7,7,8,3,0.
5,.5,.5,0,0.,0. 8,2,3,3,0.
6,.5,1.,0,0.,0. 9,5,6,0,0.
7,1.,0.,3,1.,0. 10,8,9,3,0.
8,1.,.5,3;1.,0. 11,3,6,0,0.
9,1.,1.,3,1.,0. 12,6,9,0,0.
12 _ 4
1,1,4,0,0. 1,1,2,4,5
2,4,7,0,0. 2,2,3,5,6
3,2,5,0,0. 3,4,5,7,8
4,5,6,8,9
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Example 3:

Disk

Figure A.3.

8
1,-.4,0.,0,0.,0.
2,0.,.4,0,0.,0.
3,.4,0.,0,0.,0.
4,0.,~.4,0,0.,0.
5.-1.,0.,2,0.,0.
6,0.,1.,0,0.,0.
7,1.,0.,3,0.,0.
8,0.,-1.,0,0.,0.
12
1,1,2,0,0.
2,2,3,0,0.
3,1,4,0,0.
4,3,4,0,0.

......

Disk with hydrostatic force.

5,5,1,0,0.
6,6,2,0,0.
7,3,7,0,0.
8,4,8,0,0.
9,8,5,0,1.
10,5,6,0,1.
11,6,7,0,1.
12,7,8,0,1.

5

1,1,2,3,4
2,5,1,8,4
3,5,6,1,2
4,2,6,3,7
5,8,4,7,3

P

W,

....................
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Notice the boundary conditions at points 5 and 7. For this problem,
additional boundary conditions are necessary to ensure uniqueness of a
solution by eliminating rotations and translations of the solution. Point
7 was picked arbitrarily as the stationary point (u1=u2=0). To prevent
rotations the vertical displacement, u,, was set to zero at point 5. It
would be equivalent to fixing the vertical displacement at either point 1

or point 3 as well.
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10
1,0.,0.,0,0.,0.
2,0.,.5,3,0.,0.
3,0.,.5,0,0.,0.
4,0.,1.,0,0.,0.
5,.5,0.,0,0. ,0.
6,.5,.5,3,0.,0.
7,.5,1.,0,0.,0.
8,1.,0.,0,0.,0.
9,1.,.5,0,0.,0.
10,1.,1.,0,0.,0.

13
1,1,5,0,0.

2:2:6:3»0-

Figure A.4.

.
5

3
Cracked Square.

3,3.6,0,0.
4,4,7,0,0.
5,5,8,0,0.
6,6,9,0,0.
7,7,10,0,0.
8,1,2,0,0.
9,5,6,0,0.
10,8,9,0,0.
11,3,4,0,0.
12,6,7,0,0.
13,9,10,0,0.
4 or

1,1,2,5,6
2,3,4,6,7
3,5,6,8,9
4,6,7,9,10

-4
1,1,2,8,9
2,3,4,11,12
3,5,6,9,10
4,6,7,12,13



Notice that points 2 and 3 have the same coordinates and thus lines

2 and 3 lie on top of each other.

crack.

A.2 Bilinear and Error Matrices

A.2.1. The Matrix A Arising From Elasticity

This represents the two edges of a

The principle of virtual work for the elasticity equations yields

an integral of the form f (GE)TC§ , where

. Faul

3 exx x
u

€ = 2

yy 3y

exy aul

4

D

auz

9x _

and C

is the 3 x 3 stress-strain matirx such that

(*}

xx
=10 -
~ yy

g

xy

matrix C 1is given by

and for the plane stress assumption

c

where E is Young's molulus and v is the Poisson ratio.

- e
(I+) (1-v)

Catem b e e aleamll

1-v v
v 1-v
0 0
1 v
v 1
0 0

60

the plane strain assumption the




{y]

-[z]

A=

A

Therefore,

T U

9z

pPcpD.

E

) (1-2v)

For the plane strain assumption

-
1-v

0

the plane stress assumption

1

0

o O
o K+ O
L]

0o o

1-2v 1-2v
2 2

1-v 1-v
0 =3 2
0 0
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DT C D[——] from which we have the relationship
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(A.1)
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A.2.2 The Error Matrix AE.

vvvvvv

For elasticity problems the matrices (C)j described in Section 2.3

are zero, and so, from (2.1) the error

N2
I

[ ulll, =
2p j=1

3

To obtain error estimates for the energy norm, simply take (AE) = (A)

[T, )

is approximated in the norm
P,

3 i

Suppose, however, that our interest is concentrated on the error in

one of the stresses, say g ° Since

2

o =-0T1[l 0 o]o-
xx - -
0
0
ey 0 0 |ce
0 0
0 0 o
4T
= rau]® 1T
[-37_ D C 1 0
0o 0
0 o

akx’[l 0 0]g s

T

]l 0 O o

0 cn[gg]

0

where C is the 3 x 3 stress strain matrix, and D is defined by (A.1).

Let Q= 1 0
0 0
0 o1.

we should take

AE = DT CT QCD .

For example, using the plane strain assumption with an error in 0

E 1Plaw? o o
A [T (l-v)] o o o
0 0o o0
v{1l-v) 0 O
L

Then, if the error o
xx

is our main concern,

v(l- v)
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._ E For the error in ayy take Q i1in (A.2) to be
}Z%} - -
R =10 00
- 0 1 o
C N ] Lo 0 0], and
. for axy’ take Q to be i
REgRE: Q=|0 o o
0O 0 O
1 0 0 *
SRR R
f:ij:: A.2.3 The Output Matrix S
: -
\
ol For the OUTPUT printout (see Sections 3.11 and 4.6) the vector printed
"-::fff R is obtained from the multiplication
U S | 38U | where 3U and U are
.. E Y Y3
- v
AT
:_?j- evaluated at the center of each element. In order for a printout of
; 4 n Te? cyy, axy’ uss U, the matrix S shouli be
=3 s= |55 o o v| o o
o ="y o o 1| 0 o
N 1~v 1-v
| - 0 3 2 0o 0 0
YR 0o o 0 o0 1 0
x o 0 0 o0 o0 1
~H .. under the plane stress assumption, and
: s=[ E v 0o o v]o o]
g (1+9) (1-2v) 0o o0 1v| 0o o
co 1-2v  1-2v
- 0 3 2 0 0 0
- 0 0 0 0 1 0
R i o o o o o0 1.
a E under the plane strain assumption.
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A.2.4 Sample Inputs

Qf Example 1: A-Matrix: Laplacian
" » Error norm: H! seminorm.

i | Packages: One package for one 2-D domain.

- aul 3u2 3u2 3u1
_.} Output Matrix: X’ ay s T3y + oJay » ul’ uz .

Line Integrations: None.

e
<X “ 4

1l

N

¥ 1, 1, 1

r

E.

1, 0, 0, 0, 0

1., 0.,0.,1., 0., 0., 0., 0., 0., 0., 0., O., 1., 0., O., 1.
1., o., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,1., 0., O., 1.
1., 1., 1., 1.

1., 0., 0., 0., 0., O.

0., 0., 0., 1., 0., O.

0., .5, .5, 0., 0., O.

0., 0., 0., 0., 1., O.

0., 00’ 0-, Oo, 00’ 10
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Example 2: A Matrix: Plane Strain Elasticity
Error Norm: L2 Energy
Packages: Two packages for 4 2-D domains.
Package 1: 2-D domains 1 and 2, v = 0.0, E = 1.0
FZ " Package 2: 2-D Domains 3 and 4, v = 0.3, E = 1.0.
Output Matrix: O x? ayy, °xy’ Uy, U,.

Line Integrations: Local normal force on line 4.

2
1, 2,1, 2,0.,1,0,0,0,0
1;, 9., 0., .5, 0., 0., .5, 0., 0., .5, 0., 0., .5, 0., O., 1.
i, o., o., .5, 0., 0., .5, 0., O., .5, 0., O., .5, 0., O., 1.
1., 1., 1., 1.
1., 0., 0., 0., 0., O.

o., 0., 0., 1., 0., O.

0., 05, 05’ 0-, 0., 00

;‘.E’ ft::. 00' 0" 00’ o-’ 1., 0.
ﬁ; -

: 6., 0., 0., 0., 0., 1.
| =

S 2,2, 3, 4

£

g .;- 1’ 0, 0, 0, 0

1.3461538, 0., 0., .38461538,0.,.57692308, .38461538, O.
0., .38461538, .57692308, 0., .38461538, 0., 0., 1.3461538
1.3461538, 0., 0., .38461538, 0., .57692308, .38461538,0.
0., .38461538, .57692308, 0., .38461538, 0., 0., 1.3461538
., 1., 1., 1.
1.3461538, 0., 0., .57692308, 0., O.
.57692308, 0., 0., 1.3461538, 0., O.
0., .38461538, .38461538, 0., 0., O.

00’ o., 0-. 0.' 1., 0.
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0., 0., 0., 0., 0., 1.
1
o 1, 1, &
0, -1
0., 0., 0., O.

»‘:‘_' 0., 10’ 0., 1.

Example 3: A-Matrix: Plane strain
L Error Norm: L for ayy' | |
Gt Packages: One package for one 2-D domain, v = 0.0, E = 1.0,
N Output Matrix: cxx’ °yy’ axy’ uy,u,

t‘ Line Integration: None

)
1, 1, 1
1, 0, 0, 0, 0
1., 0., 0., .5, 0., 0., .5, 0., 0., .5, 0., 0., .5, 0., O., 1.
- 0., 0., 0., 0., 0., 0., 0., 0., O., 0., 0., 0., O., 0., O., 1.
: 0., 1., 1., 1.
1., 0., 0., 0., 0., O.
0., 0., 0., 1., 0., O.
0., .5, .5, 0., 0., O.
0., 0., 0., 0., 1., O.
0., 0., 0., 0., 0., 1.
0
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A.3 Computation of the Threshold Value

When using the AUTO command or the ITERATE command (the ITERATE command
causes a sequence of AUTO commands to be performed), it is important to
understand how the threshold value is computed. Recall that with the AUTO
command, all elements having error indicators above a certain threshold
are subdivided. Because of the remarks made in Section 3.1, we seek a mesh
in which all error indicators are nearly equal.

The most naive way to equalize the indicators would be to simply sub-
divide the element with the largest error indicator before each solution
path. Suppose that the elements in the initial mesh are labeled

1, 2,...,N
in order of decreasing error indicators. Following our "naive" strategy,
we sould subdivide element 1 into four subelements--1.1, 1.2, 1.3, and
1.4. After resolving and recomputing the error indicator our new list might
be

2, 3’...J1’ 1‘1’ J1+1,...’J2’ 1.2’ J+1’...’N L]

2
Next, element 2 gets subdivided into 2.1, 2.2, 2.3, 2.4, etc. Suppose element

1.1 has the largest indicator of the first 4J1 subdivided elements. That is,

L J

E(lnl) lE(ioj) for i - 2.-0.,.’1, and j = 1,000,4 .

Then our strategy would have subdivided the first J1 elements one at a time,

obtaining a new solution between each subdivision. Clearly, it would be more

efficient to subdivide all Jl elements at once before obtaining a new

:
? solution. The cufoff at Jl could easily be determined if we know what the
g Ei maximum error indicator would be for the next level of subdivided elements
i - (in this case E(1.1)). The following procedure is used to approximate this
E: cutoff value.
KA
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Suppose that a father element F 1is to be subdivided into its four

o sons——F.1, F.2, E.3, and F.4. (see Figure A.5)
n F.2|Fh
co F- /__-——.,

FA|F3
)
qu
3 Figure A.S.

Tbe error indicator for the father element, E(F) is then saved as the
previous error indicators for the four sons. It is then assumed that the
errors arising from subdividing the sons ‘F.1l, F.2, F.3, and F.4 will

decrease by the same ratio as from the previous subdivision. That is, we

PRESENT
PREVIOUS

indicator for each of the four sons is computed by the formula

use the recipe: PREDICTION = x PRESENT. Thus, the predicted error

P(F.1) = E(F.4)%/E(F) , for i=1, 2, 3, 4 .
In order to ensure that the predicted error is smaller then the present

error we add the condition-—-

T o e g L - gt g alah saas s up el Sl a2 a4 FIWE TP ¥ GBS LIS PSP Nl
» LT rI.'-_', T, PR |
.‘ LR 2’ LI S

P(F.1) = min/P(F.1) ,{(.9)2PE(F.1) 1f p> .5

H - (.9)E(F.1) ifp=0 } ’
B vhere p 1is the p-norm for the 2-D domain as input in the (Nc) line of
Eé bilinear and error matrix input. 3

If an element is not a son of some father element, that is, the element
also belongs to the initial mesh, then no previous error indicator is

available. In this case, we make a prediction for the error indicators

g A

upon subdivision of this element f » by the formula

AP )
.

K E(F) = {(/z—/z)zpz(r) if p> .5
r (V272)E(F) 1f p=0.

The threshold T is then calculated by the formula
g 68
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T

as T ranges over all elements in the mesh.
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APPENDIX B

FEARS Element Postprocessor

The purpose of the Postprocessor is to allow flexible computations of
various functionals on the approximate solution. The functionals can have
various atructures and can be used for the effective computation of the stress
intensity factors in fracture mechanics etc. At the present the functionals
are on the level of 2-D domains, but will be extended in the future to deal
with functionals on the 1-D domains also.

A FEARS Postprocessor frame has been set up in the file CKM*ELTOUT.

Both symbolic and relocatable elements for an Element Postprocessor has
been established in the file. To produce an executable absolute element,
the user must write some subroutines and combine it with the above file.

The FEARS Element Postprocessor reads the RESET file generated
by the FEARS program using the DUMP command. The Postprocessor requires a
user's written subroutine (with 5 entries). The purpose of the Postprocessor
frame 1s to relieve the user of the cumbersome task of setting up the data
structure from the RESET file and setting the individual element informatioms
needed for his/her calculations. The frame allows it to process all elements,
or only those which are in certain 2-D domains designated as active 2-D

domains by the user.

Frame algorithm:

The main program of the Postprocessor frame has the following algorithm:
1. Read the RESET file and set up internal data structure.
2. Clear activity tags MD1TMP(j) and MD2TMP(k) of all 1-D and
2-D domains, repectively.
3. Call ELTO(MSARY) calls user's initialization routine.

4. DO I=1 to MSP2 (number of 2-D).

5. IF MD2TMP(I)=0 THEN GOTO Next I




----------------------------
..........................................

.......................................................

Set up core sto-age for 2-D index I.
7. CALL ELT1(MD2ARY).
call user's 2-D initialization routine
8. DO J=1,M2SXE (number of elements in the 2-D)
9. CALL ELTX(K,N,X,C)
call user's processing routine
10. Next J
11. CALL ELT1E(MD2ARY)
call user's 2-D summary routine
12. Next I
13. CALL ELTO(MSARY)
call user's final summary routine

14. STOP

User's supplied subroutine(s):

The user must swpply the following five subroutines, or subroutine(s)
with the appropriate entries. Note that the procedures, ZMS, ZMDO, ZMD1l
and ZMD2 may be used in these routines. These procedures define data areas,
summary records of the problem. The user may also use procedures ZP2T,
ZP20S, ZP21S and ZP2B, which give the data area (restored) for a given 2-D
domain. For proper use of these data, the user should consult FEARS program
documentation.

1. SUBROUTINE ELTO(MSARY)
INCLUDE ZMSs
INCLUDE ZMD1
INCLUDE ZMD2
This routine is called as an initialization. The user must set the

active 2-D domains by setting MD2TMP(j) to non-zero with j being the
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active 2-D domain indices. These indices may be obtained by user's

defined input, or in case of all 2-D's, through a simple loop on j=1,MSP2,
where MSP2 is defined in procedure ZMS (summary array of the full domain)

and MD2ARY is defined in procedure ZMD2 (summary records of 2-D ddmains).
user may also mark the 1-D domains, if needed in later calculations. This
can be done by storing integer values in MD1TMP(k) where k is the index

of the 1-D, and MD1ARY 1-D summary records are defined in procedure ZMDl. On
subsequent processing, these integer values may be tested.

The user may define further storage areas needed for subsequent
calculations, also perform any input needed, outputs such as headings, etc.
2. SUBROUTINE ELT1(MA2)

DIMENSION MA2(26)

This routine is called in the beginning of all active 2-D domains where
the array MA2 is the summary array of the 2-D domain with MA2(1l) containing
the index of the 2-D, MA2(26) the activity non-zero tag set by the user.

3. SUBROUTINE ELTX(K,N,X,C)
DIMENSION X(2),C(2,4)

This routine is called for each element in the active 2-D domains where
the user must perform his own calculations. The arguments are input arguments
as follows:

K = index of the element

N = level number of the element in the transfered unit square,

side length h=2%*(-N-1)
X(1),X(2) = local (unit-square) coordinate values of the middle

point of the element
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c(1,3),C(2,3) = solution values at the j'th cornerpoint of the
element where j is defined in order:

2-—4

1-—3
Fu;thermore, the following function/subroutines are also available for use:
H = FUTH(N)
side length of the element
CALL ZP2XY(X,Z)
gives the global coordinates Z(1),Z(2)
corresponding to the local coordinates X(1),X(2)
CALL ZP2TRX(X,T,D)
gives transformation matrix T and its determinant D at the
local coordinates X(1),X(2):
T(1) = d(Z(1))/da(X(1))
T(2) = d(z2(1))/d(X(2))
T(3) = d(z2(2))/d(X(1))
T(4) = d(z(2))/d(X(2))
4, SUBROUTINE ELT1E(MA2)
DIMENSION MA2(26)

This routine is called after all elements of an active 2-D domains
have been processed by the ELTX routine. This entry allows the user to
print any summary for the 2-D domain, MA2 array is the same as for the
subroutine ELTI.

5. SUBROUTINE ELTO(MSARY)

DIMENSION MSARY(16)
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This routine is called after all elements of all active 2-D's have
been processed to allow the user to print any summary of his/her

calculations.
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