

NOTICE

PLEASE DO NOT REQUEST COPIES OF THIS REPORT FROM HQ AFESC/RD (ENGINEERING AND SERVICES LABORATORY). ADDITONAL COPIES MAY BE PURCHASED FROM:

NATIONAL TECHNICAL INFORMATION SERVICE 5285 PORT ROYAL HOAD SPRINGFIELD, VIRGINIA 22161

FEDERAL GOVERNMENT AGENCIES AND THEIR CONTRACTORS REGISTERED WITH DEFENSE TECHNICAL INFORMATION CENTER SHOULD DIRECT REQUESTS FOR COPIES OF THIS REPORT TO:

DEFENSE TECHNICAL INFORMATION CENTER CAMERON STATION ALEXANDRIA, VIRGINIA 22314

DEDNOT NYTHERY AT I	ON BACE	READ INSTRUCTIONS
DEFORT NUMBER	12 GOVT ACCESSION NO	BEFORE COMPLETING FORM
ESL-TR-82-38	6036	
TITI E fand Subtitio)	ADAINOUS	C TYPE OF REPORT & PERIOD COVERED
		Final Report: November
High Altitude Jet Fuel Photoche	emistry	1980-September 1982
		6. PERFORMING ORG. REPORT NUMBER
· · · · · · · · · · · · · · · · · · ·		
Author(*) Arthur M Uiner Pocer Atkineor	- 174114.m D T	B. CONTRACT OR GRANT NUMBER(S)
Carter. William D. Long, Sara)	1, WIIIIam r. L. M Aechmann and	TRAE_E08635_80_C_0359
James N. Pitts, Jr.		USAr-F0005J-00-0-0555
PERFORMING ORGANIZATION NAME AND ADDR	ESS	10. PROGRAM ELEMENT, PROJECT, TASK
Statewide Air Pollution Research	ch Center	DECOGNIE
University of California		ION19002029
Riverside, California 92521		
CONTROLLING OFFICE NAME AND ADDRESS	_	12. REPORT DATE
AIR FORCE ENGINEERING AND SERVI	CES CENTER	October 1982
Tyndall Air Force Base, Florida	a 32403	13. NUMBER OF PAGES 162
MONITORING AGENCY NAME & ADDRESS	ferent from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
	· · · · · · · · · · · · · · · · · · ·	1
Approved for public release; di	stribution unlimit	ed.
Approved for public release; di	stribution unlimit	ed . om Report)
Approved for public release; di	stribution unlimit	ed. wn Report)
Approved for public release; di	stribution unlimit	ed. om Report)
Approved for public release; di DISTRIBUTION STATEMENT (of the ebetrect ento SUPPLEMENTARY NOTES	stribution unlimit	ed. ven Report)
Approved for public release; di . DISTRIBUTION STATEMENT (of the ebetrect entr SUPPLEMENTARY NOTES Availability of this report is	specified on rever	ed. wen Report) se of front cover.
Approved for public release; di . DISTRIBUTION STATEMENT (of the ebetrect entry . SUPPLEMENTARY NOTES Availability of this report is	specified on rever	ed. om Report) se of front cover.
Approved for public release; di DISTRIBUTION STATEMENT (of the ebetrect entr SUPPLEMENTARY NOTES Availability of this report is	specified on rever	ed. wm Report) se of front cover.
Approved for public release; di DISTRIBUTION STATEMENT (of the ebetrect entry SUPPLEMENTARY HOTES Availability of this report is KEY WORDS (Continue on reverse eide if necessar	stribution unlimit ered in Block 20, if different in specified on rever	ed. wen Report) se of front cover.
Approved for public release; di . DISTRIBUTION STATEMENT (of the obstract entry . SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse side if necessar Ozone Formation	stribution unlimit ered in Block 20, if different in specified on rever y and identify by block number n-Alkanes	ed. we Report) se of front cover.
Approved for public release; di . DISTRIBUTION STATEMENT (of the ebetrect entry . SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse eide if necessar Ozone Formation Atmopheric Reactivity	ered in Block 20, if different in specified on rever y and identify by block number n-Alkanes Aromatics	ed. om Report) se of front cover.
Approved for public release; di . DISTRIBUTION STATEMENT (of the obstract onto . SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse olde if necessar Ozone Formation Atmopheric Reactivity Aviation Fuels	specified on rever y and identify by block number Aromatics	ed. we Report) se of front cover.
Approved for public release; di . DISTRIBUTION STATEMENT (of the ebetrect entry . SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse eide if necessar Ozone Formation Atmopheric Reactivity Aviation Fuels . 1	stribution unlimit ared in Block 20, if different in specified on rever y and identify by block number n-Alkanes Aromatics	ed. wer Report) se of front cover.
Approved for public release; di Approved for public release; di DISTRIBUTION STATEMENT (of the obstract onto SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse side if necessar Ozone Formation Atmopheric Reactivity Aviation Fuels Aviation Fuels	ered in Block 20, if different in specified on rever y and identify by block number n-Alkanes Aromatics	ed. wm Report) se of front cover.
Approved for public release; di DISTRIBUTION STATEMENT (of the ebetrect entry SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse side if necessar Ozone Formation Atmopheric Reactivity Aviation Fuels Military jet aircraft fligh	specified on rever y and identify by block number n-Alkanes Aromatics y and identify by block number) t procedures make	ed. om Report) se of front cover.) 1: necessary to jettison
Approved for public release; di . DISTRIBUTION STATEMENT (of the ebetrect entry . SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse eide if necesser Ozone Formation Atmopheric Reactivity Aviation Fuels Military jet aircraft flight Kcess fuel in the event of cert.	ered in Block 20, if different in specified on rever y and identify by block number n-Alkanes Aromatics , and identify by block number) it procedures make ain in-flight oper	ed. om Report) se of front cover.) it necessary to jettison ational situations. These
Approved for public release; di DISTRIBUTION STATEMENT (of the ebetrect entry SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse eide if necessar Ozone Formation Atmopheric Reactivity Aviation Fuels Military jet aircraft fligh tcess fuel in the event of cert. iel expulsions can be sizable,	ered in Block 20, if different in specified on rever y and identify by block number, n-Alkanes Aromatics , and identify by block number, it procedures make ain in-flight oper- and in the pres	<pre>it necessary to jettison ational situations. These ence of sunlight and NO_x</pre>
Approved for public release; di Approved for public release; di DISTRIBUTION STATEMENT (of the obstract entry SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse side if necessar Ozone Formation Atmopheric Reactivity Aviation Fuels Automation Fuels Military jet aircraft flight tcess fuel in the event of cert. Issions from engine exhaust the	ered in Block 20, if different in specified on rever y and identify by block number n-Alkanes Aromatics , and identify by block number) it procedures make ain in-flight oper and in the pres here exists the p	it necessary to jettison ational situations. These ence of sunlight and NO, otential for formation of
Approved for public release; di Approved for public release; di DISTRIBUTION STATEMENT (of the ebetrect entry SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse elde if necesser Ozone Formation Atmopheric Reactivity Aviation Fuels AVIATION Fuels Military jet aircraft flight tcess fuel in the event of cert. 1919 101 101 101 101 101 101 101 101 101	ered in Block 20, if different in specified on rever y and identify by block number, n-Alkanes Aromatics , and identify by block number) it procedures make ain in-flight oper. and in the pres here exists the pr of photochemical	it necessary to jettison ational situations. These ence of sunlight and NO, otential for formation of smog. Since these fuel-
Approved for public release; di Approved for public release; di DISTRIBUTION STATEMENT (of the obstract entry SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse side if necessar Ozone Formation Atmopheric Reactivity Aviation Fuels Autor for fuels Autor for a from engine exhaust the ione and other manifestations imping procedures are carried coperties involved are significa	ered in Block 20, if different in specified on rever y and identify by block number n-Alkanes Aromatics , and identify by block number it procedures make ain in-flight oper and in the pres here exists the pr of photochemical out at elevated in ntly different from	it necessary to jettison ational situations. These ence of sunlight and NO, otential for formation of smog. Since these fuel- altitudes the atmospheric m those at ground level.
Approved for public release; di Approved for public release; di DISTRIBUTION STATEMENT (of the obstract entry SUPPLEMENTARY NOTES Availability of this report is KEY WORDS (Continue on reverse side if necessar Ozone Formation Atmopheric Reactivity Aviation Fuels Autor fuels Autor for a from engine exhaust the ione and other manifestations imping procedures are carried PORM 1473 EDITION OF 1 NOV 65 IS OB	specified on rever y and identify by block number n-Alkanes Aromatics r and identify by block number it procedures make ain in-flight oper and in the pres here exists the pr of photochemical out at elevated in ntly different from	it necessary to jettison ational situations. These ence of sunlight and NO, otential for formation of smog. Since these fuel- altitudes the atmospheric m those at ground level.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20. (concluded)

In order to evaluate the potential for photochemical oxidant formation under simulated conditions of elevated altitudes a 2-year investigation has been carried out using a 5800-1 thermostatted, evacuable and Teflon -coated environmental chamber and solar simulator facility. This 2-year program consisted of the following studies:

• Irradiations of a series of $JP-4/NO_x/air$ mixtures at simulated ground level, 10,000 ft and 20,000 ft altitude, together with the associated chamber characterization experiments.

• Irradiations of $JP-4/NO_x/air$ mixtures, at atmospheric pressure over a range of temperatures and at room temperature over a range of pressures, to study separately the effects of temperature and pressure on the reactivity of this mixture.

• Irradiations of JP-8/NO_x/air mixtures at simulated ground level and 20,000 ft altitude.

• Determination of alkyl nitrate yields from irradiated npentane/NO_/air and n-heptane/NO_X/air mixtures as a function of total pressure (60-740 torr) and temperature ($\sim 284^{\circ} - \sim 337^{\circ}$ K). In addition, biacetyl yields from o-xylene and benzaldehyde and o-cresol yields from toluene were determined as a function of pressure (60-740 torr) at room temperature. These studies were carried out in order to obtain mechanistic data concerning the effects of temperature and pressure on the product distributions of the representative major constituents of JP-4 and JP-8 fuels.

The experimental data from the fuel/NO $_x$ /air irradiations show that both JP-4 and JP-8 are photochemically unreactive when compared to commercial fuels such as unleaded gasoline. The data, when used in conjunction with data from the corresponding NO $_x$ /air chamber characterization experiments, indicate that the reactivities of JP-4/NO $_x$ /air mixtures measured in terms of their NO oxidation rates were essentially independent of temperature but increased with decreasing pressure. These data indicate that the reactivity of JP-4 and JP-8, with regard to NO oxidation rates, will increase with increasing altitude, although the maximum ozone yields may be only slightly affected.

These conclusions concerning the effects of temperature and pressure on the fuel reactivities are consistent with other data obtained in this investigation showing that the alkyl nitrate yields from n-pentane and n-heptane decreased with decreasing pressure and increasing temperature, while the yields of benzaldehyde and o-cresol from toluene, and of biacetyl from oxylene, exhibited little or no pressure dependence.

UNCLASSIFIED

PRE FACE

This Report was prepared by the Statewide Air Pollution Research Center (SAPRC) of the University of California, Riverside, California 92521, under Contract Number F08635-80-C-0359, Program Element G2601F, with the Air Force Engineering and Services Center, Air Force Engineering and Services Laboratory, Tyndall Air Force Base, Florida 32403.

The work was performed between November 1980 and September 1982 under the direction of Dr. Authur M. Winer, Assistant Director of SAPRC and Principal Investigator, Dr. Roger Atkinson, co-investigator, and Dr. James N. Pitts, Jr., Director of SAPRC and co-investigator. Dr. William P. L. Carter, Ms. Sara M. Aschmann, Mr. William D. Long and Mr. Frank R. Burleson were members of the research staff of this program. Appreciation is expressed to Mr. Joseph P. Lick for assistance in processing the data and to Ms. Christy J. LaClaire, Ms. I. M. Minnich and Ms. Miriam Peterson for assistance in the preparation of this report.

Dr. Daniel A. Stone, AFESC/RDV, was Project Officer.

This report has been reviewed by the Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for public release.

DANIEL A. STONE. GS-13

Project Officer

ml

RONALD E. CHANNELL, Maj USAF Chief, Environmental Chemistry Branch

MICHAEL J. RYMA, Lt Col, USAF, BSC Chief, Environics Division

FRANCIS B. CROWLEY III, Col, USAA Director, Engineering and Services Laboratory

Acces	ssion Fo:	r /
NTIS	GRA&I	
DTIC	TAB	
Unan	nounced	
Just	ification	1
Ava	ilabilit;	y Codes
	Avail a	nd/or
Dist	Speci	al
R		
F 1		

(The reverse of this page is blank)

TABLE OF CONTENTS

Section			Title	Page
I. INT	TRODUCT IO	N		•••••1
II. EFI Rea JP-	PECTS OF ACTIVITY -8/NO _x /AI	SIMULATED OF IRRADIA R MIXTURE	ALTITUDE ON THE PHOTOCHEMICAL ATED JP-4/NO _X /AIR AND S	•••••3
2.1	l Introd	uction and	1 Background	3
2.2	2 Experi	mental		8
	2.2.1	Reaction	Chamber	9
	2.2.2	Analytica	al Techniques Employed	10
		2.2.2.1	Total Pressure	10
		2.2.2.2	Temperature	10
		2.2.2.3	Ozone	10
		2.2.2.4	Oxides of Nitrogen	13
		2.2.2.5	Organic Reactants and Products	13
		2.2.2.6	Formaldehyde	16
		2•2•2•7	Light Intensity and Spectral Distribution	16
	2.2.3	Operating	g Procedures	16
		2.2.3.1	Procedures for Filling the Evacuable Chamber	16
		2.2.3.2	Experimental Protocol	•••••17
2.3	8 Result	8		19
	2.3.1	Matrix of Irradiat	E JP-4/NO _x /Air and JP-8/NO _x /Air Lons	19
	2.3.2	Light In Used at ((Ground)	tensities and Spectral Distributions the Three Simulated Altitudes Level, 10,000, and 20,000 Ft)	•••••20
	2.3.3	Environme	ental Chamber Experiments	•••••20
		2.3.3.1	Chamber Characterization Runs	

TABLE OF CONTENTS (Concluded)

~

. .

.

Secti	on	Title	Page
		2.3.3.2 Results of Fuel/NO _x Runs	••32
	2.4	Discussion	••37
	teme From	ERATURE AND PRESSURE EFFECTS ON ALKYL NITRATE FORMATION I THE NO _x PHOTOOXIDATIONS OF n-PENTANE AND n-HEPTANE	••43
	3.1	Introduction	••43
	3.2	Experimental	• • 44
	3.3	Results	• • 45
	3.4	Discussion	••52
IV.	effe Oxid	CTS OF PRESSURE ON PRODUCT YIELDS IN THE NO _x Photo- ATIONS OF SELECTED AROMATIC HYDROCARBONS	• • 62
	4.1	Introduction	••62
	4.2	Experimental	• • 64
	4.3	Results	••66
	4.4	Discussion	••72
		4.4.1 Benzaldehyde and o-Cresol from Toluene	••72
		4.4.2 Biacetyl from o-Xylene	••76
		4.4.3 Conclusions	••78
۷.	RECO	MMENDATIONS FOR FUTURE RESEARCH	• • 79
REFER	ENCES	;	• • 80
APPEN	DIX A	L	• • 87

LIST OF FIGURES

Figure Title Page Variation of the NO₂ Photodissociation Rate Constant, 1 kphot, with Altitude for Selected Zenith Angles......4 2 SAPRC 5800-L Evacuable Chamber and Solar Simulator Facility..... 3 SAPRC 25-KW Solar Simulator..... Technique for Injection of JP-4 into the 5800-2 Chamber.....18 4 5 Transmission Spectra of 0.24-, 0.32-, and 0.64-cm Pyrex Panes..... Transmission Spectra of the Solar Simulator Output Through 6 0.64-cm, 0.64-cm + 0.32-cm, and 1.27-cm Thick Pyrex Panes.....23 7 Plots of the Combined 2- and 3-Pentyl Nitrate Yields Against the Amount of n-Pentane Consumed in CH20NO/NO/n-Pentane/air (or 0_2) Irradiations at $300\pm 2^{\circ}K$ at 56, 154±1, 505, and 740 Torr Total Pressure..... 8 Plots of the n-Pentyl Nitrate Yields as a Function of Temperature and Pressure..... 59 9 Plots of the n-Heptyl Nitrate Yields as a Function of Temperature and Pressure..... 10 Plot of the Benzaldehyde and o-Cresol Yields from Irradiated Toluene/CH₂ONO/NO/Air (or 0_2) Mixtures as a Function of Total Pressure at ~303°K. The Error Bars are the Two Least 11 Plot of the Biacetyl Yields from Irradiated o-Xylene/CH₂ONO/

LIST OF TABLES

۰.

÷.,

Title

Table

1	Matrix of JP-4/NO _x /Air and JP-8/NO _x /Air Irradiations Carried Out
2	NO ₂ Photodissociation Rate Constants k _{phot} as a Function of Altitude and Zenith Angle24
3	Chronological Order and Conditions of Experiments Carried Out for this Program25
4	Conditions and Selected Results for NO _x /Air Irradiations Grouped by Temperature and Pressure Conditions
5	Photochemical Reactivity of JP-4/NO _x /Air Irradiations at Simulated Ground Level, 10,000 Ft, and 20,000 Ft Altitude, and of JP-8/NO _x /Air Irradiations at Simulated Ground Level and 20,000 Ft Altitude, and Selected Results of Associated NO _x /Air Irradiations
6	Photochemical Reactivity of JP-4 (100 ppmC)/NO _x (0.5 ppm)/ Air (\leq 5% RH) Mixtures as a Function of Temperature and Pressure, and Selected Results of Associated NO _x /Air Irradiations
7	Experimental Data for the CH ₃ ONO/NO/n-Pentane/Air (or 0 ₂) Irradiations46
8	Experimental Data for the CH ₃ ONO/NO/n-Heptane/Air (or 0 ₂) Irradiations
9	Pentyl Nitrate Yields from the Irradiation of CH ₃ ONO/ n-Pentane/NO/Air (or O ₂) Mixtures
10	Heptyl Nitrate Yields from the Irradiation of CH ₃ ONO/ n-Heptane/NO/Air (or 0 ₂) Mixtures
11	Experimental Data for the Toluene/CH ₃ ONO/NO/Air (or 0 ₂) Irradiations
12	Experimental Data for o-Xylene/CH ₃ ONO/NO/Air (or 0 ₂) Irradiations at 301±2 [°] K58
13	Benzaldehyde and o-Cresol Yields From the NO _x Photooxidation of Toluene71
14	The Fraction of the OH Radical Reaction with o-Xylene Yielding Biacetyl as a Function of Pressure at 301±2 ⁰ K74
15	Comparison of the Present Benzaldehyde and o-Cresol Yields at ~303 ⁰ K from the NO _x Photooxidation of Toluene with Previous Literature Values74

SECTION I INTRODUCTION

Military jet aircraft flight procedures make it necessary to jettison excess fuel in certain in-flight operational situations. These fuel expulsions can be sizable (of the order of 5,000 lbs min^{-1}) (Reference 1), and in the presence of sunlight and NO, emissions from engine exhaust can add to formation of ozone and other constituents of photochemical smog. Since these fuel dumping procedures are carried out at elevated altitudes, generally between 5,000 and 30,000 ft (Reference 1), the atmospheric properties involved are significantly different from those at ground level. For example, at 10,000 ft altitude the temperature and pressure are (References 2 and 3) 245-284°K and 502-533 torr, respectively, while at 20,000 ft altitude the temperature and pressure are 228-266°K and 330-365 torr, Furthermore, with increasing altitude the solar flux respectively. increases in intensity, with a corresponding shift towards a shorter wavelength cutoff (References 4 and 5), leading to enhanced photochemical activities (References 6 and 7).

To evaluate the combined effects of these atmospheric parameters on the potential for photochemical oxidant formation, the United States Air Force funded the Statewide Air Pollution Research Center (SAPRC) of the University of California at Riverside to carry out an environmental chamber study, using the SAPRC 5800-& thermostatted, evacuable and Teflon[©]-coated chamber and solar simulator facility.

This 2-year program consisted of the following studies:

• Irradiations of a series of $JP-4/NO_x/air$ mixtures at simulated ground level, 10,000 ft and 20,000 ft altitude, together with the associated chamber characterization experiments.

• Irradiations of a $JP-4/NO_{\chi}/air$ mixture at atmospheric pressure at varying temperatures, and at room temperature at varying pressures, to study separately the effects of temperature and pressure on the reactivity of this mixture.

• Irradiations of JP-8/NO_x/air mixtures at simulated ground level and 20,000 ft altitude.

• To obtain mechanistic data concerning the effects of temperature and pressure on the product distributions of the representative major

constituents of these fuels, alkyl nitrate yields from irradiated n-pentane/NO_x/air and n-heptane/NO_x/air mixtures were determined as a function of total pressure (60-740 torr) and temperature (~284-~337°K). In addition, biacetyl yields from o-xylene and benzaldehyde and o-cresol yields from toluene were determined as a function of pressure (60-740 torr) at room temperature.

The data from these program elements provide empirical and mechanistic information concerning the chemistry occurring under the temperature and pressure conditions pertaining to the elevated altitudes encountered in jet fuel dumping. In the following sections the experimental procedures and the results obtained are described and discussed in detail.

SECTION II

EFFECTS OF SIMULATED ALTITUDE ON THE PHOTOCHEMICAL REACTIVITY OF IRRADIATED JP-4/NO_X/AIR AND JP-8/NO_X/AIR MIXTURES

2.1 INTRODUCTION AND BACKGROUND

As noted in Section I, the need to jettison excess fuel in the event of in-flight operational situations leads to the potential for photochemical air pollution formation. Since these fuel dumping procedures are carried out at elevated altitudes, the atmospheric properties involved are significantly different from those at ground level. The important physical atmospheric parameters are:

• Total pressure, which decreases with increasing altitude, and is in the range 502-533 torr at 10,000 ft and 330-365 torr at 20,000 ft altitude, depending on latitude and season (References 2 and 3).

• Temperature, which also decreases with increasing altitude in the troposphere (References 2 and 3) and is in the range $245-284^{\circ}K$ at 10,000 ft and $228-266^{\circ}K$ at 20,000 ft altitude, depending on latitude and season.

• Solar flux, which increases in intensity with increasing altitude with a corresponding shift towards a shorter wavelength cutoff (References 4 and 5), leading to enhanced photochemical activities (References 6 and 7).

Figure 1 shows, as an example, the variation of the calculated NO_2 photodissociation rate constant with altitude (0-14,000 ft) and zenith angle (Reference 5). This shows (a) the marked effect of altitude on the NO_2 photodissociation rate constant, and (b) that the major effect of zenith angle is for zenith angles >40°, with little effect for zenith angles between 0-40°.

To evaluate the combined effect of these atmospheric parameters on the potential for photochemical oxidant production, the chemical transformations of the jet fuels in question must be examined under conditions which closely approximate those at elevated altitudes. Although a considerable amount of experimental and computer modeling work has been carried out on the various aspects of air pollution at ground level, including studies of representatives of the various classes of compounds present in these jet fuels (References 8-15), and of the jet fuels themselves (Reference 16), no information is available as to the chemical transformations of these fuels under the atmospheric conditions at high altitudes.

Figure 1. Variation of the NO_2 Photodissociation Rate Constant, k_{phot} , with Altitude for Selected Zenith Angles (from Reference 5).

The ambient troposphere is well mixed at elevated altitudes (e.g., 10,000-20,000 ft) and contains low levels of both hydrocarbons and NO_x . The hydrocarbon levels are ~1.6 ppm of methane (Reference 17), ~1 ppb of ethane, ~0.3 ppb of acetylene (Reference 18), with lower concentrations of higher hydrocarbons. Nitric oxide levels are <60 ppt (References 19-21) and while NO₂ levels are not accurately known they are certainly less than 1 ppb (Reference 22). Thus, the large quantities of hydrocarbons (HC) from dumping, in association with oxides of nitrogen (NO + NO₂ = NO_x) from the exhaust, could represent a significant local perturbation on the atmospheric concentrations of HC and NO_x at high altitudes, relative to the background levels cited.

The primary distinction between the jet fuels and the hydrocarbons emitted into urban airsheds is that the latter include substantial quantities of alkenes and light alkades, as well as aromatics. In contrast, the two jet fuels studied were complex mixtures comprised mainly of long chain alkanes and aromatics (Reference 16).

The aliphatic alkanes are known to react in atmospheric systems almost exclusively by hydroxyl (OH) radical attack. For the lower molecular weight alkanes this results in radical propagation reactions leading primarily to the formation of lower molecular weight aldehydes and ketones (References 11 and 23). However, fcom previous studies performed in our laboratories (References 11 and 24-26), for the $>C_4$ alkanes the following two additional reaction schemes have been shown to be important:

(1) In the case of alkanes with carbon chains longer than four, rapid isomerization of alkoxy radicals via intramolecular H-abstraction gives rise primarily to bifunctional products (References 11 and 24). For example;

In the case of higher molecular weight alkanes, these bifunctional products, having low vapor pressures, will probably end up in the aerosol phase. Thus, formation of organic aerosols, which are rich in hydroxyl and carbonyl groups but contain relatively few carboxylic acid groups, is predicted to be one important reaction channel for high molecular weight alkanes in the fuel mixtures.

(2) Studies in our laboratories (References 25 and 26) have shown that the higher molecular weight peroxy radicals formed following the reaction of OH radicals with alkanes in the presence of 0_2 have a significant tendency to react with NO via a radical chain termination reaction forming organic nitrates

$$RO_2 + NO + RONO_2$$
(1)

as opposed to the radical propagation reaction converting NO to NO_2

$$RO_2 + NO + RO + NO_2$$
 (2)

which is the dominant pathway for the lower molecular weight alkanes. Thus at 740 torr and $299\pm2^{\circ}K$ the rate constant ratios $k_1/(k_1 + k_2)$ increase monotonically from <0.01 for ethane to ~0.30-0.35 for n-heptane and noctane (Reference 26). This process results not only in significant yields of alkyl nitrates, but also in a considerable amount of radical inhibition, tending to reduce rates of ozone formation and hydrocarbon consumption. In addition, the formation of alkyl nitrates removes active NO_X from the system, tending to reduce maximum ozone yields. The effects of temperature and pressure on these alkyl nitrate yields were also studied in this program for two n-alkanes and the data are described in detail in Section III.

The aromatic content of the fuel is expected to react differently than the aliphatics in atmospheric systems. Although formation of oxygenated aromatics and organic aerosols occurs to some extent (References 14 and 27-29), recent studies in our laboratories (References 14 and 30) and by others (References 31-33) have indicated that fragmentation is probably the major process. Among the products observed to be formed (References 30 and 31) are a-dicarbonyls, some of which are highly photoreactive. The photolysis of the a-dicarbonyls constitutes a significant radical source in

aromatic NO_x/air photooxidations. Again, the effects of pressure on certain product yields in the NO_x photooxidation of two representative aromatic hydrocarbons (toluene and o-xylene) were studied in this program and the data are described in detail in Section IV.

However, the available mechanistic information cited above was obtained at ground level atmospheric pressure and temperature (740 torr, 300° K); the atmospheric conditions at elevated altitudes will have the following effects:

(1) A decrease in temperature will decrease many of the reaction rates involved in the atmospheric chemistry of these jet fuels. While for many reactions the changes will not be major (Reference 15), the formation of peroxynitrates [pernitric acid (HO_2NO_2) , alkylperoxy nitrates (RO_2NO_2) , and acylperoxynitrates (RCO_3NO_2)] will become much more important, since their thermal decomposition rate constants

 $HO_2NO_2 + HO_2 + NO_2$ $RO_2NO_2 + RO_2 + NO_2$ $RCO_3NO_2 + RCO_3 + NO_2$

are markedly temperature dependent (References 35-39). Such peroxynitrates will act as sinks for NO_x and hence reduce O_3 formation rates (Reference 11).

(2) A decrease in total pressure will affect those reactions which are either third-order (e.g., $0 + 0_2 + M + 0_3 + M$) or are in the fall-off region between second and third order kinetics, such as the NO_x removal and radical termination reactions (References 38, 40 and 41):

$$0H + NO_2 + HNO_3$$
$$HO_2 + NO_2 + HO_2NO_2$$

Hence, a reduction in total pressure may be expected to lead to a reduction in radical combination rate constants, and an enhanced photochemical activity. (3) The increased solar light intensity and shift of the short wavelength cutoff to shorter wavelengths with increasing altitude (References 4 and 5) will increase the photodissociation rates of 0_3 and of aldehydes and ketones leading to increased photochemical activity (References 6 and 7).

Some effects tend to enhance reactivities, while others reduce them, and it is not clear, <u>a priori</u>, which effects are more important. To assess these effects, sophisticated chamber experiments were carried out under temperature, pressure, light intensity and spectral distribution conditions closely simulating those characteristic of altitudes where the dumping of jet fuels takes place. To elucidate the influence of chamber wall effects, manifested by a variety of phenomena such as radical fluxes (References 11, 42 and 43), HNO_x wall adsorption and/or offgassing, etc. (Reference 44), it was also necessary to carry out detailed and carefully controlled characterization experiments under the same conditions of temperature and pressure.

The experimental techniques, the matrix of irradiations carried out, and the results obtained are described in detail in the following sections.

2.2 EXPERIMENTAL

2.2.1 Reaction Chamber

The reaction chamber used for this study was the 5800-2 SAPRC Teflon[®]-coated thermostatted evacuable environmental chamber equipped with a 25-KW solar simulator (Figure 2). The characteristics and operating procedures of this environmental chamber-solar simulator facility have been described in detail previously (Reference 45), and only the pertinent details will be discussed here.

The chamber is cylindrical, 3.96 m in length, 1.37 m in diameter, with an interior surface of FEP Teflon[®]-coated aluminum. The end-windows each consist of 16 quartz windows (30.5 cm x 30.5 cm x 2 cm) sealed to an aluminum grid structure by Viton O-rings (Reference 45). The exterior walls of the chamber are thermostatted via an external heating/cooling system to $\pm 1^{\circ}$ K over the temperature range 253-373°K. In practice, with the solar simulator irradiating the chamber, the temperature variations are expected to be significantly higher and a useful lower temperature limit under such conditions is ~260-265°K.

The solar simulator, employing a 25 KW point-source Xenon arc (Figure 3) provides a well-collimated light beam which, to a large extent, does not illuminate the chamber walls, thus minimizing surface photochemistry. In all experiments reported here, a Pyrex³ pane (see Section 2.3) was placed in front of the quartz front window to obtain a spectral distribution applicable to that in the lower troposphere. The light intensity within the chamber was routinely monitored by measuring the rate of photolysis of NO₂ in N₂ (k_{phot}) by the method described by Holmes, et al. (Reference 46) with updated rate constants (Reference 47).

Between irradiations the chamber was evacuated overnight to $\sim 2 \times 10^{-5}$ torr (Reference 45).

2.2.2 Analytical Techniques Employed

Inorganic species, physical parameters, selected reactant hydrocarbons and selected organic products were monitored by the appropriate techniques, which are summarized below.

2.2.2.1 <u>Total Pressure</u>. The total pressure in the chamber was monitored by a Wallace and Tiernan Model 61A-1D-0800, two-turn, 0-800 torr absolute pressure gauge.

2.2.2.2 <u>Temperature</u>. The chamber gas temperature was monitored with a radiation-shielded iron-constant thermocouple. The leads from the thermocouple junction were sealed in a glass probe that projects into the dark space at the center of the chamber. A Doric Model DS-350 Thermocouple Indicator provided data in degrees Fahrenheit ($^{\circ}F$) with an accuracy of $\pm 0.3^{\circ}F$. Good gas-phase temperature control ($\pm 0.5^{\circ}K$) was maintained during photolyses with a setting of the controller 2-3 $^{\circ}K$ below the desired temperature. Some radiation heating of the thermocouple probe occurred, although it was located in the dark space in the center of the chamber, and was further shielded with a foil cover. This heating has been estimated to be about 1 $^{\circ}K$ by measuring the immediate temperature increase when the solar simulator is unshuttered.

2.2.2.3 <u>Ozone</u>. Ozone was monitored for the majority of experiments by two instruments: a Dasibi Model 1003AH ultraviolet absorption monitor at atmospheric pressure and a Monitor Labs Model 8410 chemiluminescence instrument at both atmospheric and reduced pressure. In addition, for a few irradiations a Meloy Labs chemiluminescence ozone analyzer was also used. The Dasibi ultraviolet absorption instrument cannot operate

Figure 3. SAPRC 25-KW Solar Simulator.

with a negative pressure differential between the chamber and the ambient atmosphere, and thus could only be used at atmospheric pressure. This instrument, which was routinely calibrated by the California Air Resources Board against a longpath ultraviolet absorption primary standard apparatus, was used in turn to calibrate the Monitor Labs chemiluminescence analyzer and the Meloy Labs ozone analyzer at atmospheric pressure.

The Monitor Labs instrument was calibrated against the Dasibi Model 1003AH instrument at atmospheric pressure. For reduced pressures (i.e., 350 torr and 500 torr total pressures for simulated 10,000 ft and 20,000 ft altitudes) the Monitor Labs instrument, which operates by monitoring the chemiluminescence from the ozone-ethane reaction, was calibrated by (a) introducing and monitoring ≤ 1 ppm of 0_3 into the reaction chamber at atmospheric pressure, (b) numping the chamber to 500 torr total pressure and noting the Monitor Labs chemiluminescence reading, and (c) pumping to 350 torr total pressure and again noting the chemiluminescence response. Under these conditions, if the Monitor Labs instrument readings are R_{740} , R_{500} , and R_{350} at 740, 500, and 350 torr total pressure (and the instrument is calibrated correctly at 740 torr total pressure), then the (multiplicative) correction factors F_{500} and F_{350} are given by:

$$F_{500} = \frac{500}{740} \frac{R_{740}}{R_{500}}$$

 $F_{350} = \frac{350}{740} \frac{R_{740}}{R_{350}}$

and

Values for F_{500} and F_{350} of 1.28 and 1.52 were obtained from such calibrations. A similar calibration was carried out for the Meloy Labs ozone analyzer.

The Dasibi Model 1003AH ultraviolet absorption analyzer yielded a small positive response to JP-4, and a larger response to JP-8, at the concentrations used in this study, in agreement with previous observations by Carter, et al. (Reference 16). No such interferences were observed by the Monitor Labs chemiluminescence instrument, which was used for the majority of the JP-4/NO_x/air and JP-8/NO_x/air irradiations carried out in this study.

2.2.2.4 Oxides of Nitrogen. Nitric oxide (NO) and total NO_x were monitored by a TECO Series 14 NO-NO_x chemiluminescence analyzer. With this instrument, NO is monitored directly, but total NO_x is measured by conversion to NO with a molybdenum catalyst. NO_2 is read as the difference between the two readings. This instrument was calibrated routinely, using an NBS calibration gas of known NO concentration. The gas was diluted to appropriate concentrations and the analyzer was then adjusted to give the correct reading. The instrument normally did not deviate more than 5% between calibration checks.

The analysis of NO_2 and NO_x is complicated by the fact that the converter has been shown (Reference 48) to convert PAN, organic nitrates, and HNO_3 to NO and, that such species give a positive interference in the NO_2 analysis (the NO data are unaffected). The conversion of PAN and organic nitrates has been shown to be essentially quantitative (Reference 48), and hence, in principle, NO_2 can be corrected by subtracting the measured PAN and organic nitrate concentrations. Although PAN was monitored in these experiments, organic nitrates could not be monitored with the techniques employed. Organic nitrates are known to be formed in significant yields in NO_x/air irradiations of the larger alkanes (Reference 26), which are present in JP-4 and JP-8 (Reference 16), and can be expected to cause significant interferences. For this reason, no attempt was made to correct the NO_2 data for these interferences. Thus, the NO_2 data obtained (NO_2 -UNC) must be considered to be upper limits to the true NO₂ values.

As mentioned above, HNO_3 , which is believed to be a major sink for NO_x in NO_x/air photooxidations, also interferes with NO_2 readings, although this interference is, in general, not quantitative (Reference 48). A nylon filter, which is known to efficiently remove gas phase HNO_3 (Reference 49), was thus placed in the sample line of the $NO-NO_x$ monitor. This $NO-NO_x$ analyzer was calibrated for operation at reduced pressures in a manner totally analogous to the ozone analyzer, as described in Section 2.2.2.3.

2.2.2.5 <u>Organic Reactants and Products</u>. Gas chromatography (GC) was used to monitor fuel components, background trace organics present in the pure matrix air, and a limited number of products. Except as noted below, flame ionization detection was used. For runs at atmospheric pressure, samples were taken (using 100 ml syringes) directly from the chamber. For runs at reduced pressure, samples were taken from a ~5 t Pyrex[®] bulb which had been evacuated to $\leq 10^{-3}$ torr and which was then opened to the chamber and filled to atmospheric pressure by ultra-high purity N₂. In each case samples were injected manually into the various GC instruments. The syringes were flushed with the air being sampled at least two times prior to taking the analysis sample. Brief descriptions of each of the GC systems, the compounds monitored, and (where applicable) special procedures associated with them are given below.

The <u>C₅+ hydrocarbon fuel components</u> were monitored by capillary column gas chromatography employing a 30 m SE-52 coated fused silica capillary column. The procedure for injecting the gas sample onto the capillary column was very similar to that described by Carter, et al. (Reference 16). The 100 ml gas sample was flushed through an ~10 cm³ silylated Pyrex[®] loop, and the contents of this loop were then transferred over a 12 min time span to the head of column which was held at 183° K. The GC oven temperature then rose to 223° K over a 1.5 min time period, and was temperature programmed from $223-473^{\circ}$ K at 8° K min⁻¹. This system was capable of monitoring most of the individual C_5-C_{13} components of the two fuels studied in this program. However, because of the large number of individual components of the fuels, only concentrations of selected fuel components are reported.

Calibration factors for the various alkane and aromatic fuel components were obtained as follows. Stock calibration solutions were made by syringing the desired compounds into a weighed vial. Exact concentrations were obtained by weighing the vial on an Ainsworth Type 10 balance after the addition of each compound. In general, each stock solution was made up of six compounds. One microliter of each stock solution was added to a 46.75 ½ glass carboy. The carboy was cleaned before each calibration by heating it with a heat gun for 20 min on hot and 15 min on cool, then flushing the carboy with nitrogen for 1 hr. The compounds were added to the carboy the evening before a calibration so that the compounds would be completely mixed for the next morning. Calibration samples were then taken directly from the calibration carboy with a 100 ml all-glass gas-tight syringe.

Capillary column GC analyses of the fuel components were performed prior to the irradiation in each run and once an hour during the irradiation.

Aromatic hydrocarbons and C_2 + oxygenates were monitored using a 10 ft x 0.125 in stainless steel (SS) column packed with 10% Carbowax-600[®] on C-22 Firebrick[®] (100/120 mesh) operated at 343-348^oK, with an N₂ flow rate of 50.5 ml min⁻¹. Samples were taken using cryogenic trapping techniques as described previously (Reference 9). Using this system, samples were taken prior to fuel injection only. Although this system was capable of monitoring the simpler C_2 - C_5 aldehydes and ketones, in practice it could not be used for this purpose during fuel runs because of the interferences by larger hydrocarbon fuel components having similar retention times. For that reason, oxygenate data from this system are not reported for fuel runs. The primary use of this system was to assure that there was no significant oxygenate contamination in the pure air used in the runs in this study.

<u> C_1 and C_2 hydrocarbons</u> were monitored before fuel injection using a 5 ft x 0.125 in SS column packed with 100/120 mesh Porapak N,[®] held at 333^oK and with an N₂ flow rate of 30 ml min⁻¹. This system was used primarily to determine that there were no significant contaminants in the matrix air, and, except for selected control and characterization runs, data are not reported. The sampling technique, calibration procedure, and discussions of the accuracy of this technique are given elsewhere (Reference 9).

<u>C₃-C₆ hydrocarbons</u> were monitored using a 34 ft x 0.125 in SS column packed with 10% 2,4-dimethylsulfolane (DMS) on C-22 Firebrick[®] held at 273[°]K, in series with 2 ft x 0.125 in stainless steel "soaker" columns containing 10% Carbowax-600[®] on C-22 Firebrick[®] (30/60 mesh). The N₂ flow rate was 26 ml min⁻¹. Again, because of problems with the long retention times of the fuel components, this GC system was only employed prior to fuel injection using the cryogenic trapping technique (Reference 9). However, this column was used to quantitatively analyze the propane and propene tracers introduced in the NO_x/air irradiations in order to monitor OH radical levels in the chamber, with samples being taken every 15 min (Reference 43).

<u>Peroxyacetyl nitrate (PAN)</u> was monitored using electron capture detection and an 18 in x 0.125 in Teflon[®] column of 5% Carbowax-400[®] on Chromasorb G[®] (80/100 mesh) operating at ambient temperature (Reference 9). Analyses were carried out by flushing a 1.95 ml loop with the sample and then injecting the contents of the loop onto the column. The calibration of this system and factors affecting its accuracy are described elsewhere (Reference 9). For the majority of the runs, PAN data are reported on an hourly basis. In most fuel runs, other GC peaks were observed in the PAN chromatograms. These were probably alkyl nitrates, for which this system is also sensitive. However, because the exact identities of the compounds causing these peaks were not established, they are not reported on the data sheets.

2.2.2.6 Formaldehyde. Formaldehyde was monitored hourly during the irradiations using an improved chromatropic acid technique (References 9 and 45). Samples were taken at the rate of $1 \ \text{min}^{-1}$ in a single bubbler containing 10 ml of distilled water. The developed solutions were read on a Beckman 35 spectrometer. A more detailed discussion of this technique, as it is employed in our laboratories, is given elsewhere (Reference 9).

2.2.2.7 <u>Light Intensity and Spectral Distribution</u>. The light intensity was monitored as the photolysis of NO₂ in N₂ (k_{phot}), as described by Holmes, et al. (Reference 46) and Winer, et al. (Reference 45). These NO₂ photolysis rate constants k_{phot} were determined periodically during this program. The light intensity was also monitored by an EG&G Model 550 radiometer fitted with an interference filter having a center wavelength of 350 nm, and between actinometry experiments the light intensity, as monitored by this radiometer, was held constant to \pm 0.02 mW cm⁻². Spectral distributions were recorded, normally once each run, using a calibrated monochromator-photomultiplier tube system.

2.2.3 Operating Procedures

2.2.3.1 <u>Procedures for Filling the Evacuable Chamber</u>. For the majority of the experiments the chamber was initially filled to ~10 torr total pressure with dry N₂, and then NO and NO₂ in a ~5 \pounds Pyrex[®] bulb attached to the vacuum line were flushed into the chamber by a stream of ultra-high purity nitrogen. The NO was purified by passage through a trap containing activated Linde Molecular Sieve 13X, while NO₂ was prepared by reaction of this purified NO with O₂ which had also been passed through activated Molecular Sieve 13X.

For the experiments where this injection procedure was not used, the NO and NO₂ were flushed into the chamber from the $\sim 5 \ \ell$ Pyrex[®] bulb by a

stream of ultra-high purity N_2 either during the filling of the chamber with pure air, or after the chamber had been filled with pure air.

The jet fuels JP-4 and JP-8 (petroleum derived, supplied by the Fuels Branch, Fuels and Lubrication Division, Aero-Propulsion Laboratory, Wright-Patterson Air Force Base, Ohio) were injected using the procedures developed during a previous USAF-funded SAPRC program (Reference 16). For JP-4, the desired quantity of the liquid fuel (21 µl for 5 ppmC to 430 µl for 100 ppmC in the chamber) was placed in an $\sim 1 \$ bulb (Figure 4), fitted with high-vacuum greaseless stopcocks. The bulb was then flushed for ~15 min with N₂ at a flow rate of 5 $l \min^{-1}$, while being heated with a heat gun. After this time, all of the liquid fuel had disappeared, and tests (Reference 16) showed that reasonably complete and reproducible injections were obtained using this technique. Previous work in these laboratories (Reference 16) had shown that this technique was not satisfactory for less volatile fuels including JP-8, and that a different technique was necessary. A technique similar to that developed for this previous U.S. Air Force-funded program (Reference 16) was used. This consisted of heating a U-tube containing the required amount of the liquid JP-8 to ~323°K while passing a stream of N₂ through it at ~5 $l \min^{-1}$ for ~15-30 min, while the chamber was under vacuum.

The chamber was filled with purified matrix air (Reference 50) to the desired pressure. For the two runs where the diluent gas was not air, but a synthetic N_2/O_2 mixture, the requisite pressures of ultra-high purity N_2 and O_2 were introduced into the chamber from cylinders.

For the NO_x/air irradiations involving the use of two organic tracers (propane and propene), the NO and NO_2 were injected as described above, while the desired amounts of the organic tracers propane and propene were introduced into the chamber from the vacuum gas handling system or via injection using all glass gas-tight syringes.

2.2.3.2 <u>Experimental Protocol</u>. After the chamber fill, samples were taken for background analyses of potential contaminants on the DMS, Porapak[®] columns, and on the PAN analyzer prior to irradiation. Providing that no anomalously high background levels of common contaminants in the pure air system (ethene and propene being the most reactive of these C_2-C_4 alkanes and alkenes) were detected, then gas samples were taken just

· ·..

111

- !

prior to the start of irradiation for analyses on all the gas chromatographic columns described above. A 20 λ gas sample for formaldehyde analysis was also taken prior to irradiation. Hourly samples were then taken during the irradiations.

For irradiations carried out at reduced pressure, samples were introduced from the chamber into an evacuated ~5 ℓ Pyrex[®] bulb, which was then pressurized to atmospheric pressure with ultra-high purity N₂. For the formaldehyde analyses, the gas from the chamber was pumped (at 1 ℓ min⁻¹ at atmospheric pressure) through the bubbler (Reference 9) and the bubbler was then pressurized to 1 atm.

The solar simulator was brought to the desired power at least 10 min prior to the start of irradiation.

2.3 RESULTS

2.3.1 Matrix of JP-4/NO_/Air and JP-8/NO_/Air Irradiations

In order to investigate the photochemical reactivity of JP-4 under conditions pertaining to elevated altitudes, the following sets of irradiations were carried out:

• Irradiations of $JP-4/NO_x/air$ mixture: were conducted under temperature and pressure conditions designed to simulate ground level, 10,000 ft and 20,000 ft altitude. The relative light intensities and spectral distributions (see later) were adjusted to correspond to these altitudes at a zenith angle of 0° .

• An irradiation of a $JP-4/NO_x/air$ mixture (100 ppmC JP-4, 0.5 ppm NO_x) was carried out at simulated 20,000 ft altitude, with the light intensity and spectral distribution adjusted to correspond, on a relative basis, to a zenith angle of 70° .

• A set of $JP-4/NO_x/air$ irradiations was carried out at constant light intensity as a function of total pressure at 303° K, and as a function of temperature at 740 torr total pressure. The temperatures and pressures chosen were those used in the various simulated altitude experiments (i.e., 265, 284, and 303° K, and 350, 500, and 740 torr total pressure). These runs were designed to determine the effect of independently varying the total pressure and temperature on the photochemical reactivity.

• Three irradiations of JP-8/NO_x/air mixtures were carried out at simulated ground level and 20,000 ft altitude to ascertain that the effect

of simulated altitude on the photochemical reactivity of JP-8 paralleled that of JP-4.

The matrix of $JP-4/NO_x/air$ and $JP-8/NO_x/air$ irradiations carried out is given in Table 1.

2.3.2 Light Intensities and Spectral Distributions Used at the Three Simulated Altitudes (Ground Level, 10,000 and 20,000 Feet)

In order to study the effects of elevated altitudes, it is also necessary to simulate the changes in light intensity and spectral distribution between ground level, 10,000 ft and 20,000 ft altitudes. For photochemical purposes the most direct measure of light intensity is the NO_2 photodissociation rate constant k_{phot} , and Figure 1 shows the variation of k_{phot} with altitude for selected solar zenith angles, as taken from Peterson (Reference 5). The NO_2 photodissociation rates obtained at the various altitudes are given in Table 2. Since the evacuable chamber solar simulator cannot achieve NO_2 photodissociation rate constants in excess of 0.5-0.6 min⁻¹ for prolonged periods of time, these photodissociation rate constants were scaled by a factor of 0.6 to yield the values shown in Table 1.

The most important aspect of the spectral distribution of the photolyzing radiation is the short wavelength cutoff. From Peterson (Reference 4), the effect on the short wavelength cutoff of increasing altitude from ground level at 0° zenith angle is small, with, for instance, the ratio $I_{332.5 \text{ nm}}/I_{412.5 \text{ nm}}$ increasing by only 30%. In view of the relatively large effect on the short wavelength cutoff of using Pyrex[®] panes of differing thicknesses (Reference 6 and Figure 5) it was decided to use the 0.64 cm Pyrex[®] pane to simulate all runs carried out at 0° zenith angle, and to insert an additional 0.32 cm Pyrex[®] pane along with the 0.64 cm Pyrex[®] pane for the 70° zenith angle irradiation at simulated 20,000 ft. The spectral distribution of these two filters, uncorrected for monochromator-photomultiplier response, are shown in Figure 6, together with that for an unsolarized 1.27 cm Pyrex[®] pane.

2.3.3 Environmental Chamber Experiments

A chronological listing of the runs carried out, the initial concentrations, the relevant physical parameters and a description of the run type are given in Table 3. For the NO_x/air and jet fuel/ NO_x/air irradiations simulating ground level, the pure matrix air was humidified

TABLE 1. MATRIX OF JP-4/NO_X/AIR AND JP-8/NO_X/AIR IRRADIATIONS CARRIED OUT.

BC Run	Initial Conc	teatration	Temperature	Total Pressure	k Antor	Comments
. No.	JP-4 or J P-8 (ppmC)	(mqq) _x 0N	(₀ K)	(torr)	(min ⁻¹)	
4-9L						
489,492	50	0.5ª				
490	8	1.0	EUE	740	0. 11	Simulated ground level
491	~	1.0	2	2		0° zenith angle
515	100	0.5				
506	50	0.5				
508	2	1.0	284	200	0.44	Simulated 10,000 ft altitude,
509, 510	100	0.5				0° zenith angle
498.502	20	0.5				
497	50	1.0	265	350	0.47	Simulated 20,000 ft altitude,
500	001	0.5				0° zenith angle
517	20	0.5	265	150	0. 35 ^b	Simulated 20,000 ft altitude.
	}				•	70° zenith angle
575	100	0.5	303	740		
578	100	0.5	303	500		To investigate separately the
580, 581	001	0.5	303	350	0.475	effects of pressure and
588	8 1	0.5	284	740		temperature on photochemical
587	001	0.5	265	740		reactivity
JP-8						
592	3	0.5	EVE	076	76 0	Simulated ground level
165	100	0.5	2	ł	5	0° zenith angle
595	100	0.5	265	350	0.43	Simulated 20,000 ft altitude
						0° zenith angle

-Duplicated for test of reproducibility. ^bShort wavelength spectral distribution moved to the red to simulate 70° zenith angle. · • •

Figure 5. Transmission Spectra of 0.24, 0.32, and 0.64 cm Pyrex[®] Panes. (The 0.64 cm Pane had been Red-Shifted by ~10 nm Due to Prolonged Use Prior to the Spectrum Being Taken.) From Reference 6.

.

Figure 6. Transmission Spectra (Uncorrected for Detector Response) of the Solar Simulator Output through 0.64 cm, 0.64 cm + 0.32 cm, and 1.27 cm Thick Pyrex Panes. (The 0.64 cm Pyrex Pane has been Red-Shifted Substantially by Prolonged Irradiation.)

Altitude (ft)	NO2 Photodissociation Ra	te Constant k phot_(min ⁻¹)
	0°	70 ⁰
0	0.57	0.23
10,000	0.79	0•44
20,000	0.84	0.52

TABLE 2.NO2 PHOTODISSOCIATION RATE CONSTANTS k
photAS A
FUNCTION OF ALTITUDE AND ZENITH ANGLE.

(Reference 50) to ~50% RH since this approximates ambient atmospheric conditions. For the irradiations simulating 10,000 and 20,000 ft altitudes, dry (\leq 5% relative humidity based on 300°K) matrix air was used as the diluent gas.

Since chamber wall effects are known to be non-negligible in atmospheric simulation experiments, and since such effects may, in general, depend on temperature and pressure, a matrix of chamber characterization experiments was required to allow these effects to be taken into account. In general, chamber effects depend on the past history of the chamber as well as upon the conditions under which the experiments are carried out (Reference 43). However, our previous extensive experience with the SAPRC evacuable chamber has shown that reproducible results are obtained as long as the prior experiment in the chamber has been another hydrocarbon/NO_x/air photolysis. In this case no additional treatment of the chamber is required between experiments other than evacuation to $\leq 2 \times 10^{-5}$ torr. Therefore, following NO2 actinometry runs, evacuated bakeouts, experiments in other SAPRC programs, exposure of the interior of the chamber to unusual contaminants, or other nonstandard chamber conditions, a "dummy" propene/NO_x/air conditioning run was performed to bring the chamber into a standard condition. These runs consisted of irradiating ~0.5 ppm propene and 0.5 ppm NO. at 1 atm and 303°K for at least 4 hrs, followed by evacuation of the chamber to $\leq 2 \times 10^{-5}$ torr.

TABLE 3. CHRONOLOGICAL ONDER AND CONDITIONS OF EXPERIMENTS CARRIED OUT FOR THIS PROCRAM.

<u>.</u>

	Initial	Concent	ration	Average	Total				
BC Kun	ђ-дГ	9	N02	Temperature	Pressure	k phot	Radiometer	. Description	
Ko.	(ppec)	(add)	(ædd)	(y ₀)	(torr) ^b	(ata ⁻¹) ^c	(eli cm ⁻²)		
487						0-294	0.073	k . deterstnation ^d	
488		0.372	0.137	302.4	740 ^f	0.33	0.081	WD_/air irradiation ^d	
489	8	0.368	160-0	303.9	7405	0.33	0.081	JP-4/NO/atr irradiation, ground	d level
490	8	0.715	0.183	303.9	740 ^E	0.33	0.079	JP-4/NO_/air irradiation, ground	d level
491	Ś	0.717	0.192	302.9	740 ^E	0.33	0.080	JP-4/NO_/air irradiation, ground	d level
492	8	0.391	0.102	304.8	740 ^E	0.33	0.081	JP-4/NO_/air irradiation, ground	d level
693		0.388	0.106	302.5	740 ^E	0.33	0.080	NO_/air irradiation ^e	
494						0.351	0.083	k_har determination.	
495						0.465	0.125	kthe determination d	
496		0.363	0.092	204.5	350	0.47	0.125	ND_/air irradiation ^e	
165	8	0.735	0.178	266.7	350	0.47	0.124	JP-4/NO./atr irradiation, simula	ated 20,000 ft
498	8	0.361	0.086	265.9	350	0.47	0.125	JP-4/NO_/air irradiation, simula	ated 20,000 ft
667		0.803	0.197	263.8	350	0.47	0.124	NO_/air irradiation ^C	•
500	1 00	0.392	0.082	266.9	350	0.47	0.126	JP ² 4/NO_/air irradiation, simula	ated 20,000 ft
501								Aborted after high ethese contai	mination
								observed, repeated as EC~502	
502	ŝ	0.354	0.069	268.0	350	0.47	0.125	JP-4/NO_/air irradiation, simula	ated 20,000 fi
503		0.380	0.084	267.4	350	0.47	0.125	NO_/air irradiation	
ğ						0.390	0.103	k _{nho} r determination ^d	
505		0.449	0.120	282.1	8	0.44	0.112	NU_/air irradiation ^e	
206	8	0.417	0.100	283.8	80	0.44	0.113	JP-4/NO_/air irradiation, simule	ated 10,000 fi
507		0.814	0.191	283.3	Š	0.44	0.112	NO_/air irradiation ^e	
508	8	0.786	0.210	283.3	ŝ	0.44	0.113	JP-4/NO_/air irradiation, simula	ated 10,000 fi
509	100	0.419	0.112	285.7	202	0.44	0.112	JP-4/NO_/air irradiation, simula	ated 10,000 fi
510	100	0.419	0.112	283.4	80	0.44	0.112	JP-4/NO ² /air irradiation, simula	ated 10,000 fi
511		0.397	0.114	281.2	ŝ	0.44	0.112	NO_/air frradiation ^e	
512						0.465	0.115	k _p hot determination	
TABLE 3. CHRONOLOGICAL ORDER AND CONDITIONS OF EXPERIMENTS CARRIED OUT FOR THIS PROCRAM (CONTINUED).

	Initial	Concent	ration ⁸	Average	Total			
EC Run No.	JP-4 (ppeC)	(add)	N0 ₂ (ppm)	Temperature (⁰ K)	ressure (torr) ^b	k _{phot} (∎ia ^{−1}) ^c	Radiometer (m cm ⁻²)	Description
513		017 0		302	Jurr	0.310	000.0	knhot determinationd whot determinationd
515	001	0.415	0.104	303.1	740F	0.31	0.081	P-4/NG/Air Aireutou P-4/NG/Air Airaidigtion, ground level b- Arenetariary 0.44 - 4 0.22 - 5.54
010								"phot seremanation ; vioy cm 7 0.32 cm rytex" filter panes in place
517	8	0.352	0.079	271.3	350	0.35	0-074	JP-4/NO_/air irradiation, simulated 20,000 ft
518		0.365	060.0	268.8	350	0.35	0.073	/U ⁻ zenich angle NO _X /air irradiation ^e
112-615	A Series	of NO _x -A	ir and NO	x-Isoprene, h	e -hylvinylketo	ne or Methad	colein-Air I	rradiations Carried Out on Other Programs
572						0.522	0.097	kphot determination, followed by NO_/propene/ai conditioning run, followed by a dark O3 decay
573		0.402	0.085	304.4	740 [£]	0.475	0.082	vita rate = v.vuu45 min - NO_/air irradiation ⁶
574		0.441	0.126	305.3	740	0.475	0.082	NO ^C /air irradiation ^e
575	100	0.412	0.079	306.4	740	0.475	0.082	JP-4/NO _x /air irradigtion
576		r. 480	0.070	305.1	ų	0.475	0.082	k phot determination why are introduced and a second
578	100	0.470	0.084	304.4	89	0.475	0.082	JP-4/NO./air irrediation
579		0.464	\$60.0	303.8	350	0.475	0.082	NO_/air irradiation
580	001	0.451	0.070	304.7	350	0.475	0.082	JP-4/NO_/air irradiation
185	0 01	0.419	0.105	304.5	350	0.475	0.082	JP-4/NO [°] /air irradiation
20,0		0 357	0 006	306 4	(200 N ₂ + 150 0	2) 0 476	0.087	Successful and the second s
700		700.0	040.0		COC	0.470	700.0	X/WIX/WILL TELEGITOD
				-	V W N2 T 13V V	2)		

۰.

.

TABLE 3. CHRONOLOGICAL ORDER AND CONDITIONS OF EXPERIMENTS CARRIED OUT FOR THIS PROGRAM (CONCLUDED).

1-25	NO	NO ₂	Tesperature	Pressure	k phọt	Radiometer	Description	
(bbec)	(wdd)	(mdd)	(೫°)	(torr) ^b	(ata ⁻¹) c	(eti cm ⁻²)		
					0.473	0.082	k_has determination ^d	
	0.456	0,119	283.5	740	0.475	0.080	MU. Vair irradiation ^e	
e e	0.156	0.056	285.3	740	0.475	0.082	JP-4/NO_/air irradiation - Malf	functioning
<u> </u>				<u>.</u>			NO, analyzer meant this was 1 100 nnmc JP-4, ~1.0 ppm NO, r	really a run
	0.391	0.139	269.9	740	0.475	0.082	NO_/air irradiation	
100	0.402	0.051	271.7	740	-0.478	-0.088	JP ⁻⁴ /NO _r /air irradiation	
12	0.367	0.096	285.0	740	0.475	0.082	JP-4/NO_/air irradigtion	
3					0.346	0.060	k _{nho} determination ^d	
	0.427	0.114	302.5	740 ^f	0.34	0.059	NOT/air irradiation	•
001	0.476	0.098	303.9	7405	0.34	0.060	JP-8/M0_/air irradiation, groum	nd level
5	0.419	0.158	304.3	740 ^f	4C.0	0.060	JP-8/NO_/air irradigtion, groum	nd level
R					0.436	0.081	k _{sho} r dêtermination ^d	
	0.419	0.086	269.9	350	0.43	~0*080	NU,/air irradiation	
9 01	0.419	0.077	273.1	350	0.43	0.080	JP28/NO _x /air irradiation, simul	lated 20,000 ft

^aRaferenced to 303⁰K and 740 torr total pressure. ^bFor reduced pressure, nominal value; see data sheete for more detail. ^cBetween k_{nhot} determinations, interpolated using radiometer readings.

^cBetween k_{ph} drollowed by

"Between Kphot deferminations, interpolated using requester reaches. defined by No./propens/air conding itradiation. defined by levels of propage and propens tracers present to monitor OH radical concentrations. f-50% relative humidity. All other runs used dry air or dry 0₂/N₂ mixtures. Sproblems encountered with condensation on the chamber end-windows.

. ·_-

The detailed data sheets for the $JP-4/NO_x/air$ and $JP-8/NO_x/air$ irradiations are given in Appendix A. These data, and the results of the associated chamber characterization runs, are discussed in the following sections.

2.3.3.1 <u>Chamber Characterization Runs</u>. The most important chamber effects concern rates of ozone dark decay, chamber radical sources, and offgassing of reactive organics. The rate of ozone destruction on the chamber walls was measured following a propene/NO_x/air conditioning run (EC-572), and was found to be 0.00048 min⁻¹, in reasonable agreement with previous ozone decay rates measured in our chamber (Reference 11). The rates of offgassing of reactant organics and the chamber radical source were measured by conducting NO_x/air irradiations, which are described below.

In order to determine the extent of radical initiation from unknown sources, an effect which is known to be important in smog chamber systems (References 11, 42 and 43), and to obtain additional information about contaminant offgassing, at least one NO_x/air irradiation was carried out under the conditions employed for each of the altitudes and zenith angles to be simulated. These experiments consisted of adding ~0.4 ppm NO, ~0.1 ppm NO_2 and traces (~10 ppb) of propene and propane to pure air at the desired relative humidity and irradiating for 2 hrs. Since this system is almost completely unreactive in the absence of such effects (References 42 and 43), it is extremely sensitive to chamber effects related to radical initiation and to contamination effects related to reactive organics.

Radical initiation rates were obtained by equating the initiation rates to termination rates due to the OH + NO_2 reaction [the major termination mechanism in this system (Reference 43)], with the rate of the latter being estimated (Reference 43) from the known OH + NO_2 rate constant at the temperature and pressure of the experiment (References 15 and 47), and the measured NO_2 and OH radical levels. The OH radical levels were monitored by measuring the relative rates of decay of the two organic tracers (propene and propane), which were consumed essentially entirely by reaction with OH radicals except in certain experiments in which consumption of propene by reaction with O_3 and $O(^3P)$ had to be taken into account.

OH + propene + products

(3)

$$0_1 + \text{propene} + \text{products}$$
 (4)

$$O(^{3}P) + propene + products$$
 (5)

If propene and propane are the tracers, the relevant kinetic differential equations are:

$$dln[propene]/dt = -k_3[OH] - k_4[O_3] -k_5[O(^{3}P)]$$
(I)

$$dln[propane]/dt = -k_{6}[OH]$$
(II)

where k_3 and k_6 are the respective rate constants for the reaction of propene and propane with OH radicals, k_4 and k_5 are the rate constants for the reaction of propene with 0_3 and $0({}^{3}P)$ atoms, respectively, and the 0_3 and $0({}^{3}P)$ concentrations can be estimated based on the following assumptions. Since $0({}^{3}P)$ is formed primarily from NO₂ photolysis and is consumed primarily by its rapid reaction with 0_2 , it can, to a very good approximation, be considered to be in photostationary state governed by these two reactions, and thus:

$$[0({}^{3}P)] \stackrel{\sim}{=} \frac{\frac{k_{phot}[N_{2}]}{k_{7}[0_{2}][M]}}$$
(III)

where k_{phot} and k_7 are the rate constants for the photolysis of NO₂ and for the third-order reaction of $O({}^{3}P)$ atoms with O₂ respectively:

$$NO_2 + hv + NO + O(^{3}P)$$

 $O(^{3}P) + O_2 + M + O_3 + M$ (7)

Similarly, 0_3 is also formed by NO_2 photolysis and under the conditions of our experiments was consumed primarily by its rapid reaction with NO; thus it also can be assumed to be in photostationary state.

29

$$[0_{3}] = \frac{k_{\text{phot}}[NO_{2}]}{k_{8}[NO]}$$

IV)

where k_8 is the rate constant for the reaction of 0_3 with NO.

$$NO + O_3 + NO_2 + O_2$$
 (8)

Equations (I) through (IV) can be combined and rearranged to yield

$$[OH] = (k_3 - k_6)^{-1} \frac{d}{dt} (\ln \frac{[propane]}{[propene]}) - k_{phot} [NO_2] (A + \frac{B}{[NO]})$$
(V)

where

$$A = \frac{k_5}{(k_3 - k_6) k_7 [0_2] [M]}$$

and

$$B = \frac{k_4}{(k_3 - k_6)k_8}$$

It can be seen from equation (V) that the correction for consumption of propene by reaction with 0_3 and $0({}^{3}P)$ atoms increases with [N0₂] and [N0₂]/[N0], respectively.

The radical flux, R_u , required to fit the data for a given run can be estimated from the fact that radical initiation and radical termination rates must balance. Since the only significant radical termination processes in this system are the reactions of OH radicals with NO and NO₂, and since HONO is in photoequilibrium after ~60 min of irradiation (Reference 43), then

$$R_u = k_9 [OH] avg [NO_2] avg$$

where k_0 is the rate constant for the reaction of OH radicals with NO_2 ,

$$OH + NO_2 + HNO_3$$
(9)

and $[OH]_{avg}$ and $[NO_2]_{avg}$ (the average OH radical and NO_2 concentrations for t>60 min) are experimentally determined. It should be noted that, in general, the OH radical levels were approximately constant after the first hour.

The radical input rates estimated in this way for the second hour of the various runs are summarized in Table 4 along with the initial conditions and the observed OH radical concentrations. Since these rates are TABLE 4. CONDITIONS AND SELECTED RESULTS FOR NOV AIR IRRADIATIONS GROUPED BY TEMPERATURE AND PRESSURE CONDITIONS.

RC Run	k phot	F	Presente	Init	ial tration	10 <u>-6 - r</u>	wi (3,	Radical	NO Oxidation
No.	(n fn ⁻¹)	(ju) ()	(torr)	(mdd) ON	NO2 (ppm)	0-60 min	60-120 min	(ppb min ⁻¹)	(ppb min ⁻¹)
488	0.33	302.4	740 ^b	0.372	0.137	2.3	2.6	0.23	6.0
493	0.33	302.5	740 ^b	0.388	0.104	1.6	2.2	0.17	0.4
514	0.31	302.5	740 ⁵	0.410	060-0	2•5	2.9	0.24	0.7
590	0.34	302+5	740 ⁰	0.427	0.114	3.7	3.7	0.40	6•0
573	0.475	304.4	740 ^D	0.402	0.085	3.4	5.4	0.38	0.5
574	0.475	305.0	740	0-441	0.126	1.8	2.0	0.16	0.2
577	0.475	305.1	500	0.480	0.079	1.5	2.1	0.10	0.5
579	0.475	303.8	350	0•*04	0.094	1.4	2.2	0.11	0.4
582	0.475	304.4	350 ^c	0.352	0.096	1.8	1.5	0.07	0.3
584	0.475	283.5	740	0.456	0.119	0.6	0.9	0.08	0.1
505	0.44	282.1	500	0 - 449	0.120	1.4	1.3	60.0	0.2
507	0.44	283.3	500	0.814	0.191	0.3	. 6•0	0.10	0.4
511	0.44	281.2	500	0.397	0.114	1.0	1.1	0.07	0.2
586	0.475	269.9	740	0.391	0.139	0.5	0.2	0.03	0.2
496	0.47	264.5	350	0.363	0.092	1-0	1.0	0.05	0.2
499	0.47	263.8	350	0.803	0.197	0.5	0.5	0.05	0.1
503	0.47	267.4	350	0.380	0.084	1.3	1.1	0.05	0.2
518	0.35	268.8	350	0.365	060.0	0.6	0.6	0.03	0.1
594	0.43	269.9	350	0.419	0.086	0•3	1.8	60.0	0.1
^a Correc b~50% r c200 to	ted for elative rr N ₂ +	0(³ P) atom hummidity. 150 torr (a and 0 ₃ All oth 0 ₂ .	reactions er irradia	(see text). tions were	carried ou	it with dry (s	5%) RH) watr	ix air.

·. •

۰.

.

one to three orders-of-magnitude greater than the maximum rates of the known homogeneous radical initiation processes, such as 0_3 or oxygenate photolysis or the reactions of propene with 0_3 or $0({}^{3}P)$ atoms (Reference 43), these values of R_u can be considered to measure the radical flux from unknown sources.

While some scatter exists in the data, the radical source normalized to the NO₂ photolysis rate constant k_{phot} (Reference 43) is reasonably consistent for irradiations carried out at similar initial NO_x concentrations, and under similar temperature and pressure conditions. Comparison of runs EC-574 through EC-582 (~303^oK, dry air) and the irradiations at ~284 and 265^oK reveals no significant effect of total pressure on the radical source. Of most interest, however, is the observation that the radical source decreases with decreasing temperature, by approximately a factor of 2-3 from 303^oK to 265^oK.

In addition to measuring the radical source, NO_x/air irradiations are also useful for determining whether there is any significant contamination by reactive organics. If such contamination existed, then NO oxidation would occur via the following reactions:

> wall \Rightarrow organics organic + OH $\stackrel{0}{\xrightarrow{-2}}$ RO₂ RO₂ $\stackrel{NO}{\xrightarrow{+}}$ products + OH NO₂

whereas if no such contamination existed, then the NO oxidation rate would be small, due primarily to reactions of the propene tracer and the CO present in the matrix air (Reference 43). The NO oxidation rates observed in these experiments are shown in Table 4. The rates observed are well within the range previously observed in the SAPRC evacuable chamber, and indicate that offgassing of reactive organics was not significant in these experiments (Reference 43).

2.3.3.2 <u>Results of Fuel/NO_x Runs</u>. Detailed data tabulations for all of the fuel/NO_x runs performed in this program are given in Appendix A. Selected relevant results of the simulated ground level, 10,000 ft and 20,000 ft $JP-4/NO_x/air$ and $JP-8/NO_x/air$ runs are summarized in Table 5, and selected results of those experiments where the temperature and pressure were varied separately are given in Table 6. The specific results summarized include the maximum ozone concentration and the time at which the maximum occurred (for those runs where a maximum ozone level was reached), the NO oxidation rate (-d[NO]/dt) observed in the first hour of the irradiation, and the average OH radical concentration, estimated from the relative rates of decays of o-xylene and n-hexane observed in these runs. For comparison purposes, the OH radical levels and the radical input rates for the corresponding NO_x/air control irradiations are also given in these tables.

The experimental data shown in Table 5 indicate that the apparent reactivity of the fuel/NO_x mixtures, whether measured by the ultimate ozone yields or by the initial rate of oxidation of NO, decreases significantly with increasing simulated altitude, despite the fact that the overall light The intensity increases. results shown in Table 6 indicate that temperature is the dominant effect, since all aspects of reactivity decrease significantly when the temperature is decreased at constant pressure, while when the pressure is decreased at a constant temperature, the NO oxidation rate actually increases (although the maximum ozone yield decreased slightly).

The dominant effect of temperature observed in these experiments may be primarily due to the importance of temperature in determining the chamber-dependent radical input rate (Reference 43), since the decreased radical input rates caused by decreasing temperature would account for the reduced reactivity observed in these fuel/NO_x runs. Clearly, this must be considered when analyzing the results of these experiments in terms of their implications concerning the reactivity of these fuel/NO_x mixtures in the ambient atmosphere, where such chamber effects are presumably absent. On the other hand, the total pressure does not appear to be an important factor in determining radical input rates caused by chamber effects (Reference 43). Thus, our results may be of more direct applicability in assessing the effect of total pressure on fuel reactivity. Our data concerning the effects of temperature and pressure, and thus altitude, on the reactivity of fuel/NO_x mixtures are discussed in the following section.

TABLE 5. PROTOCHEMICAL REACTIVITY OF JP-4/MOX/AIR RRADIATIONS AT SIMULATED GROUND LEVEL, 10,000 PEET AND 20,000 FEET ALTITUDE, AND OF JP-8/NOX/AIR IRRADIATIONS AT SIMULATED CROUND LEVEL AND 20,000 PEET ALTITUDE, AND SELECTED RESULTS OF ASSOCIATED NOX/AIR IRRADIATIONS.

	Nominal	Initial			Approx.	-d [NO] dt	-d[N0]/R c		Associated N	0 <u>*/Air^d</u>
Run No.	Concent Fuel (ppmC)	tration NO (ppm)	03 ma Conc. (ppn)	Time (hours)	Estimated ² [ON] (10 ⁶ cm ⁻³)	(0-60 min) (ppb min ⁻¹)	(nim 00-0)	Run No.	[08] (10 ⁶ cm ⁻³)	R _u (ppb ∎ía ^{−1})
ż	JP-4, Simu	lated gr	ound lev	ele						
489	50	0.5	0.47	5.25	0.4	4.7	21	488	2.5	0.23
492	50	0.5	0.52	5.0		4.5	21	493	1.9	0.17
515	100	0.5	0.61	3.0	0.0	6.4	28	514	2.7	0.24
491	Ś	1.0	ι	>6.0	1.0	1.8	80			
490	50	1.0	ı	>6.0	0.6	5.2	20			
e.	JP-4, Sim	ilated 10	,000 fee	ſţ						
506	S S	0.5	ı	>6.0	0.3	3.4	43	505	1.4	0.09
509	100	0.5	0.42	6.0	0.1	4.2	54	511	1.1	0.07
510	100	0.5	0.45	26.0	0.5	4.5	56			
508	õ	1.0	ı	>6.0	0.8	2.9	29	507	0.6	0.10
:	JP-4, S1m	ilated 20	,000 feel	ts,h						
498	50	0.5	ı	>6.0	0.3	1.8	36	496	1.0	0.05
502	õ	0.5	۱	>6.0	0.1	1.8	36	503	1.2	0.05
200	100	0.5	ŧ	>6.0	0.2	3.8	76			
517	8	1.0	۲	>6.0	-0.0	2.6	52	499	0.5	0.05

-

-

۰.

.

۰.

.

٠.,

<u>.</u>;

. .

٠.

· • • •

;

÷

.

7

TABLE 5. PHOTOCHEMICAL REACTIVITY OF JP-4/MO₄/AIR LREADIATIONS AT SIMULATED GROUND LEVEL, 10,000 FEET, AND 20,000 FEET ALTITUDE, AND OF JP-8/MO₄/AIR LREADIATIONS AT SIMULATED GROUND LEVEL AND 20,000 FEET ALTITUDE, AND SELECTED RESULTS OF ASSOCIATED MO₂/AIR LREADIATIONS (CONCLUDED).

	Mominal	Initial		•	Approx.		<u></u>		Associated	0./Air ^d
ងក្តីទំ	Conceal Puel (ppmC)	retion NO (ppm)	Bpa:	Time (hours)	Estimated ^u [0H] (10 ⁶ cm ⁻³)	(0-60 min) (ppb min ⁻¹)	(0-60 min)		(10 ⁶ cm ⁻³)	(ppb =10^-1)
	JP-4, Stee	ilated 2	0,000 fee	t, 70 ⁰ zen	itch angle8.1					
517	8	0.5	ı	>6.0	0.0	1.3	43	518	0.6	0.03
	JP-8, Simu	ilated gi	round lev	el ^e						
592	00 100	0.5	- 0.49	>6.0 5.0	ŧŧ	2.1 3.2	∽ œ	590	1.6	0.40
	JP-8, Simu	ilated 2	0,000 fee	t 8, j						
595	100	0.5	ı	>6.0	ł	0.5	v	594	1.1	60 •0
F	me given 14	to Del	rest 0.25	hour.	" indicates a	o maximum 03	/leld attaine	d durte	g the irradi	t tog.

"stimated from glope of plot of d(ln[o-xylene]/[n-bexame])/dt uging k(OH + o-xylene) = 1.5 x 10⁻¹¹ cm³ molecule⁻¹ sec⁻¹ and k(OH + n-bexame) = 1.7 x 10⁻¹¹ exp (-650/RT) cm³ molecule⁻¹ sec⁻¹ (Reference 51). The uncertainty in absolute concentrations is approximately 0.5 x 10⁻⁶ cm⁻³.

CR = raical input rate, taken from the results of the associated NO_x/air irradiations, except for the simulated ground level runs, where R was taken from regressions of plote of R_u vs [NO₂]avg using a much larger set of MO_x/air irradiations (Reference 43). droit a more complete summary of the results of these runs, see Table 4. droit a lot corr, 3030t, 50% relative humidity; NO₂ photolysis rate 20.44 min⁻¹. MO₂ honoinal 300 torr, 2840t, 53% relative humidity; NO₂ photolysis rate 20.44 min⁻¹. MO₂ photolysis rate - 0.47 min⁻¹. MO₂ photolysis rate - 0.43 min⁻¹. MO₂ photolysis rate - 0.43 min⁻¹.

٠.'

(0.5 ppm)/AIR (552 RH) MIXTURES AS A FUNCTION OF Is of Associated NO_X/AIR IRRADIATIONS. amc)/10 PHOTOCHERICAL REACTIVITY OF JP-4(100) TEMPERATURE AND PRESSURE, AND SELECT TABLE 6.

					ABDTOX.	TON) P	-4[NO]/R c		Associated W	0 /4154
ក្នុងស្	Tangar atura (II)	Pres- sure (torr)	Conc. (add)	Hexteen ⁴ The (bours)	[otimeted ^b [oti] (10 ⁶ cm ⁻³)	dt (0-60 min] (ppb min ⁻])	dt 'u (0-60 min)	N 2 8	(10 ⁶ cm ⁻³)	(ppb min ⁻¹)
56	272	740	•	>6.0	0.7	1.0	6	586 266	4.0	0.03
588	285	740	r	>6.0	0.7	4.7	5	584	9.8	0.08
575	303	740	0.72	2.75	0.0	6.4	04	574	6.1	0.16
578	303	500	0.58	2.5	0.3	11	105	577	1.8	0.10
580	303	350	0.52	2.25	4-0	15 ^t	132	579	1.8	0.11
581	303	350 ⁸	0.42	2.5	0.2	13 ^f	139	582 ⁸	1.7	0.07
e l'I	given is	to neares	t 0.25	ы. 	ndicates no ma	mimum 0, vield	attained dur	rine the	irradiation.	

molecule⁻¹ acc⁻¹ and k(OH + n-hexane) - 1.7 x 10⁻¹¹ exp (-650/RT) cm³ wolecule⁻¹ acc⁻¹ and k(OH + n-hexane) - 1.7 x 10⁻¹¹ exp (-650/RT) cm³ wolecule⁻¹ sec⁻¹ (Reference 51). The uncertainty is absolute concentrations is approximately 0.5 x 10⁻⁶ cm⁻³. C_m^{-1} = radiations is the concentrations is approximately 0.5 x 10⁻⁶ cm⁻³. C_m^{-1} = radiations is a special of the associated M0_x/air irradiations except for the simulated ground level tune, where R_w was taken from regressions of plote of R_w vs [M0₂]_{avg} using a much larger set of M0_x/air tradiations (Reference 51). d_{TOT}^{-1} = wore complete summary of the results of these runs, ase Table 4. d_{TOT}^{-1} = wore complete summary of the results of these runs, ase Table 4. d_{TOT}^{-1} = 0-35 min only; significant 0₃ formation occurred after 45 min. f_{TOT} t = 0-35 min only; significant 0₃ formation occurred after 30 min. me) = 1.5 x 10⁻¹¹ cm³ sec⁻¹ (Reference 51). The President of plot of d(ln(o-rylene)/{n-perane})/dt molecule¹ aec¹ and k(OH + n-hexane) = 1.7 x 10⁻¹ exp (-650/

2.4 DISCUSSION

The release of aircraft fuels at high altitudes or near ground level may have a number of potentially significant atmospheric impacts in addition to ozone formation, such as the formation of toxic organic oxidation products and/or aerosol production (Reference 16). However, in this discussion we shall only consider reactivity relative to ozone formation, since this is the only aspect of reactivity which our present data address.

The direct cause of the formation of ozone in atmospheric systems is the photolysis of NO_2

$$NO_{2} + h\nu (\lambda < 400 \text{ nm}) \xrightarrow{\text{kphot}} NO + O(^{3}P)$$
$$O(^{3}P) + O_{2} + M + O_{3} + M$$
(7)

and, according to our current understanding of atmospheric chemistry, there are no other significant primary sources of 0_3 . If no other species are present, relatively little 0_3 is formed, since 0_3 reacts rapidly with NO

$$0_3 + N0 + N0_2 + 0_2$$
 (8)

with the result that at the photostationary state 0_3 is determined by the $[NO_2]/[NO]$ ratio.

$$[0_{3}] \simeq \frac{k_{\text{phot}} [NO_{2}]}{k_{g} [NO]}$$
(IV)

In the presence of reactive organics, such as those in the aircraft fuels JP-4 and JP-8, intermediates are formed which convert NO to NO_2 and thus cause the $[NO_2]/[NO]$ ratio to increase, which in turn causes ozone formation to occur.

The major constituents of the two fuels studied here are the higher alkanes and aromatics, both of which are consumed in the atmosphere almost exclusively by reaction with hydroxyl radicals (Reference 51). The mechanisms for the atmospheric reactions of alkanes (References 11 and 15) and aromatics (References 14 and 15) are rather complex and, particularly for the aromatics, somewhat uncertain. However, the major overall processes in both cases can be represented as indicated below:

(fuel constituent) $+ OH + RO_2$

$$RO_2 + \alpha_1 NO + \beta_1 NO_2 + \gamma_1 OH + (products)$$

where α_1 is the efficiency of the <u>i</u>th fuel component in oxidizing NO and thus causing 0_3 formation, $(\alpha_1 - \beta_1)$ is its efficiency in removing active NO_x from the system, which has the effect of decreasing the maximum amount of 0_3 which will be formed (since NO_x is required for 0_3 formation), and $(1-\gamma_1)$ is the efficiency of the fuel component in removing radicals from the system, which, if significant, will tend to decrease the overall rates of fuel consumption, NO oxidation and 0_3 formation.

However, a large number of individual fuel components are present in JP-4 and JP-8, and their individual reactivity parameters are, in general, not known. Furthermore, because secondary reactions of some of the fuel oxidation products may also contribute to the observed reactivity, it is more useful to consider the overall process as indicated below.

$$fuel + OH + -\alpha NO + \beta NO_{2} + \gamma OH$$
(10)

The results of our experiments can then be examined in terms of the overall reactivity parameters $\alpha_1(\alpha-\beta)$, and $(1-\gamma)$.

One important aspect of reactivity concerns the tendency of the reactions of the fuel to either inhibit or enhance radical levels. In particular, if the fuel components are oxidized to a significant extent to form species which undergo rapid photodecomposition to form radicals, or which react with ozone to form radicals, γ may be greater than 1. Thus, in principle, it is possible for a fuel to enhance radical levels. For example, toluene and other aromatics present in the fuels are known to form products which rapidly photolyze to produce radicals (References 14 and 15 and Section IV), and this obviously would tend to lead to higher radical levels. On the other hand, alkyl nitrate formation via the radical-terminating reaction,

$$RO_2 + NO + RONO_2$$
 (1)

is known to be important in the NO_{π}/air photooxidations of the heavier alkanes present in the fuels (References 25 and 26 and Section III), and this tends to lead to reduced radical levels. Since JP-4 and JP-8 contain both aromatics and heavier alkanes, it is difficult to predict, <u>a priori</u>, which of the above effects will be more important.

The estimated average OH radical levels observed in the JP-4/NO_/air smog chamber experiments (Tables 5 and 6) are highly scattered, but can be seen in most cases to be ~2-10 times lower than those observed in the corresponding NO_x/air irradiations performed with the same initial NO_x levels and reaction conditions (temperature, pressure, etc.). Thus it can be concluded that the presence of JP-4 in NO_{x}/air mixtures tends to reduce radical levels below what they would be if the fuel were absent, i.e., γ is significantly less than one. Because the major components of JP-8 have a carbon number too high for reliable monitoring with the GC techniques employed in this study (Reference 16), we could not obtain estimates of the OH radical levels in the runs containing JP-8. However, the fact that JP-8 is less reactive than JP-4 under all conditions studied, along with the fact that it contains similar types of constituents (although of higher molecular weight), strongly suggests that γ is also less than one for this The OH radical levels in the fuel runs are suppressed to such low fuel. values that their estimates are uncertain by at least a factor of two, and conclusions concerning the precise values of Y, or the effect of temperature and pressure on this parameter cannot be derived from the present data.

A better indication of the effect of temperature and pressure on the reactivity of the fuels can be obtained by examining their effects on the initial rates of NO oxidation, -d[NO]/dt, which are summarized in Tables 5 and 6. If, for the purposes of discussion, we (a) consider the fuel to consist of a single compound which reacts with OH radicals with a rate constant of k_f according to reaction (10), (b) assume reaction of the fuel is the major cause of NO oxidation, and (c) restrict our consideration to the initial period of the irradiation when $[NO] >> [O_3]$ (and thus NO oxidation is manifested primarily by NO consumption rather than O_3 buildup), then we can write:

 $\frac{-d[NO]}{dt} \stackrel{\sim}{=} \alpha k_{f} [fuel] [OH]$

If we further assume that the major radical source in these fuel/NO_X/ air irradiations is the chamber radical source, represented by

wall +
$$hv + OH$$

(which occurs with a rate of R_u), and that the major radical sink, other than reactions of the fuel components [reaction (10)], is reaction of OH with NO₂,

$$OH + NO_2 + HNO_3$$
(9)

then a steady state analysis for [OH] gives

$$[OH] \stackrel{\sim}{=} \frac{\underset{k_{9}[NO_{2}]}{R_{u}} + (1-\gamma)k_{f}(fuel)}$$

and, therefore, we can derive

$$\frac{-\frac{d[NO]}{dt}}{R_{u}} = \frac{\alpha k_{f} [fuel]}{k_{9} [NO_{2}] + (1 - \gamma) k_{f} [fuel]}$$
$$= \left\{ \frac{(1-\gamma)}{\alpha} + \frac{k_{9}}{\alpha k_{f}} - \frac{[NO_{2}]}{[fuel]} \right\}^{-1}$$
(VI)

Equation (VI) shows that the initial NO oxidation rate can be normalized by dividing by the chamber-dependent radical input rate (obtained from the corresponding NO_x/air irradiations) to obtain a quantity which does not depend on chamber effects, but rather depends only on the fuel reactivity parameters a, γ , and k_f , and the $[NO_2]/[fuel]$ ratio. This then allows us to factor out, at least approximately, the effect of the chamber radical source.

The quantity $(\frac{-d[NO]}{dt}/R_u)$, which can be considered to be a measurement of the efficiency of the fuel in oxidizing NO and thus in forming ozone, is tabulated in Tables 5 and 6 for all the fuel/NO_x/air runs. Since the radical input rates generally show a \pm 50% scatter, these quantities must be considered to be uncertain by at least that amount. Despite these uncertainties, Table 5 indicates that the efficiency of both JP-4 and JP-8 in

oxidizing NO increases with the $[fuel]/[NO_x]$ ratio, as predicted by equation (VI). Table 5 also indicates a progressive increase in the efficiency of JP-4 in oxidizing NO upon going from simulated ground level to simulated altitudes of 10,000 ft and 20,000 ft. It can also be seen from Table 5 that JP-8 is far less efficient in oxidizing NO than JP-4, and that there does not appear to be a significant change in efficiency of JP-8 in going from simulated ground level to simulated 20,000 ft altitude.

An indication of the effects of total pressure and of temperature, when varied independently of each other, can be obtained from the data in Table 6. The results of EC runs 575, 588, and 587 reveal that the NO oxidation efficiency does not depend strongly on temperature, and that the strong temperature dependence on overall reactivity observed in our chamber experiments can be attributed almost entirely to the temperature dependence of the chamber radical source. This suggests that in the atmosphere, in the absence of these chamber effects, the rate of ozone formation from fuel/NO_x mixtures may actually be relatively insensitive to temperature, contrary to what would be concluded from examining our data without due consideration of the role of chamber effects.

The data in Table 6 also indicate that the NO oxidation efficiency of JP-4 significantly increases when the pressure is decreased. This is because radical termination caused by formation of alkyl nitrates in the oxidation of the heavier alkane fuel constituents becomes less important as total pressure decreases. This is clearly shown by our direct measurements of the pressure effects on the alkyl nitrate yields discussed in Section III of this report. This suggests that in the troposphere, in the absence of the overwhelming effect of chamber radical sources, the rate of NO oxidation and ozone formation in fuel/NO_x mixtures will increase with altitude, primarily as a result of the pressure (as opposed to temperature) effects.

The above discussion has been concerned primarily with factors influencing the rate of ozone formation in fuel/NO_x irradiations, as opposed to the ultimate maximum O_3 yields which would be obtained if the irradiation were allowed to proceed for a sufficiently long time. Although the conditions in a majority of our experiments were such that the rate of NO oxidation and O_3 formation were too slow for the maximum ozone yield to be obtained in one day of simulated irradiation, several runs were sufficient-

ly reactive for ozone maximums to be observed. These runs reveal that despite significant differences in reactivity as defined by NO oxidation rates or NO oxidation efficiencies, the maximum 0_3 yields from ground-level simulations in NO_x/air irradiation of JP-8 do not differ greatly from those obtained in corresponding runs employing JP-4. The maximum 0_3 yield from JP-4/NO_x/air irradiations seems to decrease slightly with increased simulated altitude (Table 5) and with decreasing pressure at constant temperature (Table 6), but the effect is relatively small, compared to the effects of varying these parameters on rates of NO oxidation and 0_3 formation.

As indicated above, no ozone maximums were obtained in a majority of the experiments reported here; thus, the maximum Og yields obtained during those irradiations were determined primarily by how rapidly NO was oxidiz-In the atmosphere, where there are (presumably) no unknown radical ed. sources, radical levels may be lower than even the relatively low levels observed in our fuel/NO_x runs, and O_3 yields are expected to be limited by its rate of formation under an even larger set of conditions than those observed in our environmental chamber. Therefore, unless the fuels are dumped under extremely NO₂-poor conditions, the ozone-forming potentials of these fuels in the open atmosphere are expected to be determined primarily by factors such as their NO oxidation efficiency, as opposed to their maximum 0, yield potential. Finally, it should be stressed that both JP-4 and JP-8 are photochemically unreactive when compared to commercial fuels such as unleaded gasoline (Reference 16), or to other anthropogenic organics which are typically emitted to the atmosphere.

SECTION III

TEMPERATURE AND PRESSURE EFFECTS ON ALKYL NITRATE FORMATION FROM THE NO_X PHOTOOXIDATIONS OF n-PENTANE AND n-HEPTANE

3.1 INTRODUCTION

The higher alkanes are important constituents of JP-4, JP-8 and other military and commercial fuels (Reference 16). Until recently, based on analogy with the reactions of the lower alkanes (Reference 15), the NO_x/air photooxidations of the higher alkanes have been thought to proceed primarily via the reaction sequence

$$OH + RH + {P_2}^{O_2}H_2O - RO_2$$

$$RO_2 + NO + RO + NO_2$$

$$RO - {P_2}^{O_2} + OH + Products$$

$$NO_2$$

which exhibits essentially 100% radical propagation and involves no loss of NO_x from the system. However, Darnall, et al. (Reference 25) observed relatively high yields of alkyl nitrates in environmental chamber studies of the NO_x/air photooxidations of n-butane, n-pentane and n-hexane, which could only be attributed to their formation by the reaction pathway

$$RO_2 + NO + [RO_2NO] + RONO_2$$
 (1)

(2)

This reaction represents both a radical and a NO_x sink, and could account for the relatively low radical levels observed in our chamber studies of JP-4 and JP-8 (Section II).

Recent investigations in our laboratories (Reference 26) have shown that the yields of alkyl nitrates formed in the NO_x/air photooxidations of the homologous series of n-alkanes ethane through n-octane at $299\pm2^{\circ}$ K and 735 torr total pressure increase monotonically with the carbon number of the n-alkane from ≤ 1 % for ethane to ~ 33 % for n-octane, with the yields apparently approaching a limit of ~ 35 % for the larger n-alkanes. The reaction pathway leading to alkyl nitrate formation is exothermic by ~ 57 kcal mole⁻¹ overall (Reference 52) and probably involves a three-member transition state. The available data are consistent with the following mechanism (Reference 26)

where the asterisk denotes vibrational excitation. Hence, it may be expected that the alkyl nitrate yields from the NO_x photooxidation of the n-alkanes would exhibit pressure (and possibly temperature effects) with the yields decreasing with decreasing pressure.

Since the jet fuels JP-4 and JP-8 contain a large fraction of n-alkanes, a study of the temperature and pressure dependence of alkyl nitrate yields provides important information concerning the behavior of the fuels at elevated altitudes. Accordingly, the alkyl nitrate yields from the NO_x photooxidations of n-pentane and n-heptane have been determined as a function of both temperature (284-340°K) and total pressure (56-740 torr).

3.2 EXPERIMENTAL

As in the previous study from these laboratories (Reference 26), RO_2 radicals were formed in the presence of NO by the photolysis at >290 nm of methyl nitrite/NO/alkane/air (or O_2) mixtures with typical initial reactant concentrations being CH₃ONO ~(0.1-1.6) x 10¹³ molecule cm⁻³; NO ~(2-3) x 10^{13} molecule cm⁻³; and the alkane (n-pentane or n-heptane) ~(2-3) x 10^{13} molecule cm⁻³.

Irradiations were carried out in the SAPRC 5800 \cdot Teflon[®]-coated evacuable, thermostatted, environmental chamber with irradiation being provided by the 25-KW solar simulator (Reference 45). Prior to each irradiation the chamber was evacuated to $\leq 2 \times 10^{-5}$ torr. Methyl nitrite, prepared as described previously (Reference 53), and NO were introduced into the chamber from a vacuum gas handling system. The chamber was then filled to the desired pressure with dry purified matrix air (References 45 and 50) or ultra-high purity 0₂. Known quantities of n-pentane or n-heptane were flushed into the chamber from a ~1 \pounds Pyrex[®] bulb by a stream of ultra-high

purity N₂. The chamber was maintained at the desired temperature by means of the chamber's heating/cooling system.

The n-alkanes were quantitatively analyzed by gas chromatography with flame ionization detection (GC-FID) using a 20 ft x 0.125 in stainless steel (SS) column of 5% DC703/C2OM on 100/120 mesh AW, DMCS Chromosorb[®] G, operated at 333° K without sample preconcentration. The pentyl nitrates were analyzed by GC-FID using a 10 ft x 0.125 in SS column of 10% Carbowax[®] 600 on C-22 Firebrick[®] (100/110 mesh), operated at 348° K, while the heptyl nitrates were analyzed by GC-FID using a 5 ft x 0.125 in SS column of 5% Carbowax[®] 600 on C-22 Firebrick[®] (100/110 mesh), also operated at 348° K. For these alkyl nitrate analyses 100 ml of gas sample was preconcentrated in a ~1 ml SS loop at liquid argon temperature prior to injection onto the column. Gas chromatographic retention times and calibration factors were determined as described previously (Reference 26).

Gas chromatographic analyses of the n-alkanes and of the alkyl nitrates were carried out prior to and during the irradiations. The irradiations were of ~60 min duration with gas chromatographic analyses being carried out every 15 min during this time period.

3.3 RESULTS

The temperature, pressure, initial reactant concentrations, and the observed amounts of n-alkane consumed and alkyl nitrate formed, as measured at various times during the irradiations, are given in Tables 7 and 8 for the $CH_3ONO/NO/n$ -pentane/air (or 0_2) and the $CH_3ONO/NO/n$ -heptane/air (or 0_2) irradiations, respectively.

These tables show that, within the experimental uncertainties, alkyl nitrate formation was observed without any apparent induction period, and that it increased linearly with the amount of n-alkane consumed. Furthermore, Tables 7 and 8 reveal that the alkyl nitrate yields are pressure and temperature dependent, decreasing with decreasing pressure and increasing temperature. These results are discussed in more detail in the following section. TABLE 7. EXPERIMENTAL DATA FOR THE CH₃ONO/NO/n-PENTANE/AIR(OR O₂) IRRADIATIONS.

	Temerature	Total Pressure	10-1	3 x Init	tal Conc. cm ⁻³)	0 ⁻¹² x -∆[n-Pentane] (molecule cm ⁻³)		10 ⁻¹¹	x Nitra Polecule	te Yjeld	
. of	(x)	(torr)	CH ₃ ONO	ON	n-Pentane		2-Pe Obe	entyl Corr ^a	3-Pe Ob s	taty1 Corrª	Total (Corr) ^a
692	300±2	740	1.56	2.39	2.24	2.41	1.74	1.79	1.17	1.19	2.98
						3.60	2.60	2.69	1.76	1.81	4.50
						4.34	3.05	3.19	2.24	2.31	5.50
						4.76	3.31	3.50	2.33	2.41	5.91
693	300±2	352	1.42	2.42	2.13	2.41	·0.88	06.0	0.67	0.68	.58
	I					4.29	2.22	2.33	1.50	1.55	3.88
						4.91	2.26	2.41	1.67	1.74	4.15
						5.38	2.55	2.74	1.83	1.91	4.65
694	300±2	1 55 b	1.36	2.36	2.30	4.57	1.41	1.48	0.86	0.88	2.36
						6.38	1.93	2.10	1.31	1.38	3.48
						1.57	2.29	2.52	1.48	1.57	4.09
695	300±2	202	1.42	2.36	2.25	2.86	1.36	1.41	1.00	1.02	2.43
						4.07	2.29	2.38	1.64	1.69	4.07
						5.19	2.57	2.74	1.93	2.00	4.74
						5.86	2.95	3.17	2.05	2.14	5.31
969	300±2	153	0.61	2.36	2.28	1.95	0.64	0.65	0.40	0.40	1.05
						3.64	1.12	1.16	0.83	0.86	2.02
						4.19	1.10	1.14	0.86	0.88	2.02
						5.29	1.52	1.62	1.02	1.07	2.69
697	300±2	56 ^b	0.36	2.36	2.27	4.12	0.64	0.67	0.50	0.52	1.19
						5.34	1.02	1.10	0.69	0.72	1.82
						6.65	1.00	1.10	0.71	0.76	1.86
						8.03	1.26	1.41	0.91	0.98	2.39

_^.

. -

٠.

. . . <u>.</u>

÷.,

TABLE 7. EXPERIMENTAL DATA FOR THE CH₃UNO/NO/n-PENTANE/AIR(OR O₂) IRRADIATIONS (CONTINUED).

EC kun	Temperature	Total Pressure	10 ⁻¹³	x Init	ial Conc. cm ⁻³)	l0 ⁻¹² x -Δ[n-Pentane] (molecule cm ⁻³)		10-11	x Nitra olecule	ite Yjeld	
ко.	(^a k)	(torr)	CH ₃ ONO	0N	g-Pentane		2-Pe Obs	antyl Corr ^a	3-Pe Ob e	utyl Corr ^a	Total (Corr) ^a
869	300±2	576	0.28	2.39	2.19	2.22	0.52	0.53	0.48	0.48	1.01
		1				3.62	0.81	0.84	0.52	0.53	1.37
						4.65	0.88	0.93	0.71	0.74	1.67
						5.50	0.98	1.05	0.69	0.72	1.17
669	328±2	740	1.30	2.15	2.38	3.62	1.45	1.50	1.02	1.05	2.55
	1					5.26	2.14	2.26	1.38	1.43	3.69
						6-17	2.55	2.74	1,74	1.81	4.55
						6.65	2.76	3.00	1.88	1.98	4.98
200	327+2	151	0.56	2.18	2.32	2.74	0.67	0.69	0.52	0.52	1.21
						5.07	1.10	1.17	0.81	0.83	2.00
						6.46	1.26	1.36	0.91	0.95	2.31
						16.7	1.60	1.76	1.19	1.26	3.02
10/	326±2	400	1.26	2.19	2.31	3.36	1.17	1.21	0.74	0.76	1.97
						5.57	1.62	1.72	1.12	1.17	2.99
						6.36	2.05	2.22	1.38	1.45	3.67
						6.86	2.31	2.52	1.55	1.62	4.14
111	284±1	740	1.26	2.49	2.17	2.19	1.62	1.67	1.17	1.19	2.86
						3.26	2.52	2.62	1.86	1.91	4.53
						3.84	3.10	3.24	2.26	2.33	5.57
						4.12	3.50	3.69	2.57	2.64	6.33
118	284±1	356	0.72	2.52	2.12	1.45	0.86	0.88	0.60	0.61	1.49
						2.55	1.55	1.60	1.12	1.14	2.74
						3.31	2.02	2.10	1.52	1.57	3.67
						4.00	2.12	2.22	1.57	1.62	3.84

۰. ۲

٠.

--

.

٠., ۲

•

·

TABLE 7. EXPERIMENTAL DATA FOR THE CH₃ONO/NO/n-PENTANE/AIR(OR 0₂) IRRADIATIONS (CONCLUDED).

ն Ձան	Temosrature	Total Pressure	10 ⁻¹³	w Init	ial Conc. cm ⁻³)	<pre>10⁻¹² x -& [n-Pentane] (molecule cm⁻³)</pre>		10-11	x Mitra molecule	te Tjeld	
¥o.	(M ⁰)	(torr)	CH ₃ UNO	ON	n-Pentane		2-P	antyl Corr ^a	3-Pe Obe	entyl Corrª	Total (Corr)
719	284±1	155	0.51	2.52	2.13	1.86	0.50	0.50	0.36	0.36	0.86
						2.95	0.93	0.95	0.67	0.68	1.63
						3.76	1.29	1.36	0.95	0.98	2.34
						4.10	1.45	1.52	1.07	1.10	2.62
720	337±3	740	0.74	2.12	2.52	3.31	1.26	1.31	0.81	0.83	2.14
						4.95	1.91	2.00	1.29	1.33	3.33
						5.93	2.36	2.52	1.55	1.60	4.12
						6.41	2.60	2.79	1.74	1.81	4.60

.

• *

TABLE 8. EXPERIMENTAL DATA FOR THE CH₃ONO/NO/D-HEPTANE/AIR(OR O₂) IRRADIATIONS.

								1					
		Total	10-13	x Int	tial Conc.	10 ⁻¹² x -A[n-Heptane]	1	0-11 [.] ×	Nttrat	e Yield	10 m) 8	ecule c	- ³)
EC Run No.	Temperature (⁰ K)	Pressure (torr)	CH ₃ ONO	olecul NO	e cm ⁻³) a-Heptane	(molecule cm ⁻³)	2-H Obe	eptyl Corr ^a	3-H Obs	eptyl Corr ^a	4−He Obe	ptyl Corr ^a	Total (Corr)
702	300±2	740	1.36	2.38	2.28	3.29	2.60	2.74	01.4	4.26	1.79	1.86	8.8 86
	ł					4-95	4.03	4.38	6.07	6.48	2.67	2.83	13.69
						6.00	5.05	5.62	7.57	8.22	3.36	3.62	17.46
						6.53	5.41	6.07	7.96	8.72	3.50	3.81	18.60
203	300±2	353	1.00	2.36	2.17	2.86	1.83	1.93	2.72	2.81	1.21	1.26	6.00
						4.60	3.12	3.38	4.53	4.84	2.05	2.17	10.39
						5.96	3.74	4.19	5.48	5.98	2.55	2.76	12.93
						6.07	4.17	4.67	1.11	8.48	2.83	3.07	16.22
704	30042	160	0.58	2.36	2.22	2.57	1.00	1.05	1.48	1.52	0.67	0.69	3.26
						4.55	1.76	1.91	2.72	2.88	1.29	1.36	6.15
						5.26	2.36	2.60	3.60	3.86	1.57	1.67	8.13
						6.26	2.57	2.88	4.19	4.60	1.81	1.95	9.43
202	30042	56 ^b	0.28	2.36	2.19	2.48	0.67	0.69	0.95	0.98	0.43	0.44	2.11
						4.26	1.26	1.36	1.86	1.98	0.83	0.88	4.22
						5.84	1.69	1.88	2.50	2.72	1.10	1.19	5.79
						6.88	1.93	2.19	3.19	3.53	1.36	1.50	7.22
206	32342	740	1.32	2.21	2.46	4.84	2.57	2.76	3.81	4.05	1.72	1.81	8.62
						7.05	3.81	4.29	5.48	6.00	2.43	2.64	12.93
						8.19	4.55	5.24	6.57	7.36	2.93	3.24	15.82
						6.84	5.12	6.00	7.46	8.43	3.36	3.76	18.19
101	32442	356	0.67	2.21	2.31	3.53	1.31	1.38	1.83	1.91	0.83	0.86	4.15
						5.26	2.57	2.81	3-45	3.69	1.52	1.62	8.12
						6.36	3.8	3.36	4.24	4.62	1.93	2.10	10.08
						7.36	3.26	3.74	4.74	5.26	2.12	2.33	11.33

TABLE 8. EXPERIMENTAL DATA FOR THE CH₃OMO/MO/n-HEFTAME/AIR(OR 02) IRRADIATIONS (CONTINUED).

ď

		Total	10-13	x Intl	tial Conc.	10 ⁻¹² x -A[a-Hepțene]	1	0 ⁻¹¹ ×	Mitrat	* Yield	lom) el	ecule c	- ³)
BC Run No.	Temperature (⁰ K)	Pressure (torr)	сы ₃ оно	olecule NO	<u>e cm^3)</u> n-Heptane	(molecule cm ³)	2-H Obs	eptyl Corr ^a	3- <u>H</u> Obe	ptyl Corr ^a	4-He Obs	ptyl Corr ^a	Total (Corr) ^a
708	324±2	156	0.40	2.21	2.36	3.10	0.76	0.81	1.10	1.14	0.48	0.50	2.45
2		•	}			5.84	1.60	1.76	2.33	2.52	1.02	1.10	5.38
						7.00	2.05	2.31	3.24	3.57	1.30	1.50	7.38
						8.89	2.50	2.95	3.79	16.4	1.60	1.79	9.05
60/	321±2	9 ⁶⁵	0.28	2.21	2.40	3.69	0.60	0.62	0.95	1.00	0.43	0.45	2.07
I)					7.53	14.1	1.60	2.24	2.48	0.98	1.07	5.15
						10.08	1.69	2.05	2.86	3.33	1.21	1.38	6.76
			•			12.17	2.10	2.72	3.43	4.19	1.48	1.76	8.67
110	31942	q09	0.14	2.23	2.36	2.26	0.31	16.0	0.55	0.57	0.24	0.24	1.12
						4.72	0.95	1.02	1.55	1.64	0.64	0.67	3.33
						6.77	1.29	1.45	2.26	2.48	0.93	1.00	4.93
			·			8.41	1.72	2.00	3.00	3.38	1.26	1.41	6.79
711	284±1	740	1.41	2.49	2.30	2.95	2.02	2.12	3.48	3.60	1.60	1.64	7.36
	I					4.48	3.62	3.91	5.86	6.22	2.69	2.83	12.96
						5.38	4.50	4.93	7.15	7.67	3.19	3.41	16.01
						5.91	5.12	5.67	8.08	8.74	3.64	3.91	18.32
712	285±1	349	1.08	2.49	2.14	2.76	1.52	1.60	2.50	2.60	1.12	1.17	5.37
	•					3.72	2.55	2.72	3.98	4.19	1.61	1.91	8.82
			-			4.79	3.48	3.79	5.38	5.76	2.50	2.67	12.22
						5.62	3.93	4.36	6.22	6.74	2.81	3.03	14.13
713	28341	159	0.75	2.52	2.18	2.50	0.98	1.02	1.69	1.74	0.76	0.79	3.55
						4.34	1.91	2.05	3.12	3.31	1.41	1.48	6.84
						5.41	2.55	2.81	4.12	4.45	1.85	2.02	9.28
						6.46	2.91	3.29	4.72	5.19	2.14	2.33	10.81

TABLE 8. EXPERIMENTAL DATA FOR THE CH₃OMO/NO/n-HEPTANE/AIR(OR 02) IRAADIATIONS (CONCLUDED).

1		Total	10_1) × Ini	tial Conc.	10 ⁻¹² x -Å[n-Hepfane]	Ī	0-11 ×	NI Crat	e Yleld	10 1	ecule c	[] []
BC Run No.	Temperature (^o K)	Pressure (torr)	CH ₃ ONO	NO	e ce ') n-Heptane	(molecule cm ⁻¹)	8 8 8	eptyl Corr ^a	obe 0	eptyl Corr ^e	edo abe	cy i Corr ^a	Total (Corr)
114	284±1	4 ⁸ 2	0.35	2.48	2.11	2.43	0.64	0.67	1.02	1.05	0.45	0.48	2.20
						4.12	1.29	1.38	2.00	2.12	16.0	0.95	4.45
						5.19	1.60	1.76	2.62	2.83	1.14	1.21	5.80
•						5.88	1.95	2.19	3.24	3.55	1.41	1.52	7.26
715	33942	740	1.05	2.09	2.58	5.53	2.22	2.41	3.33	3.55	1.52	1.62	7.58
						1.17	3.26	3.69	4.98	5.48	2.26	2.41	11.58
						16.9	3.81	4.45	5.72	6.46	2.60	2.91	13.82
						10.41	4.67	5.60	6.24	1.19	2.81	3.19	15.98
716	342±2	091	0.64	2.07	čč.2	6.03	1.36	1.50	2.00	2.14	0.91	0.98	4.62
						10.58	2.36	2.86	3.31	3.84	1.48	1.69	8. 39
						13.27	2.81	3.67	4.00	4.93	1.81	2.19	10.79
						15.03	3.19	4.43	4.67	6.03	2.10	2.64	13.10

. Corrected for secondary reactions with OH radicals (see text). $b_{0_2}^{\rm b}$ diluent gas.

•

• .

3.4 DISCUSSION

As discussed previously (Reference 26), the major reactions occurring in the $CH_3ONO/NO/n$ -alkane/air photolysis system can be represented as follows:

$$RONO_2 + OH + products$$
 (14)

In this system, the n-alkane and the alkyl nitrates are consumed essentially solely by reaction with OH radicals [Reactions (11) and (14)]. Reaction with NO, forming either the corresponding alkyl nitrate [Reaction (1)] or the alkoxy radical [Reaction (2)], is the only significant sink for the alkyl peroxy radicals formed from the reaction of OH radicals with the n-alkanes, since the reactions of alkyl peroxy radicals with NO₂ forming alkylperoxy nitrates

NO,

 $RO_2 + NO_2 \neq RO_2NO_2$

are insignificant due to the rapid back-decomposition of the alkylperoxy nitrates (References 11, 39 and 54).

In this system the formation of alkyl nitrates can occur either from the reaction of alkyl peroxy radicals with NO [Reaction (1)] or from the reaction of alkoxy radicals with NO₂ [Reaction (12)]. However, alkoxy radicals can also react with O₂ (References 15 and 55-62), decompose (References 15, 56-58 and 63), or isomerize (References 15, 24, 56 and 64-66) to ultimately give rise to products other than alkyl nitrates [shown overall as Reaction (13) above].

Upper limits for the contribution of Reaction (12) to the observed alkyl nitrate yields for these experiments can be estimated from the rate constants for the reactions of alkoxy radicals with NO_2 and O_2 , and the NO_2 and 0_2 concentrations. Alkoxy radicals react with NO_2 with a rate constant at atmospheric pressure of $k_{12} \simeq 1.5 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ sec}^{-1}$, approximately independent of temperature (Reference 15). The rate constants for the reactions of alkoxy radicals with 0, have received little direct attention, but Gutman, et al. (Reference 62) have recently determined absolute rate constants for the reaction of methoxy radicals with 0, over the temperature range 413-608°K, and of ethoxy radicals with 0, at 296 and 353°K. Furthermore, from thermochemical considerations, Gutman, et al. (Reference 62), estimated rate constants for other selected alkoxy radicals with 0_2 . For secondary alkoxy radicals the estimated rate constants are ~3 x 10^{-14} cm³ molecule⁻¹ sec⁻¹, independent of temperature over the small range studied here. Assuming that all of the initially present NO and CH₃ONO form NO₂, the maximum yield of secondary alkyl nitrate formation from the reactions of RO radicals with NO_2 can be calculated to be 0.4% at 740 torr of air and 1.7% at 160 torr total pressure of air (the latter being the conditions most favoring nitrate formation from the reaction of RO radicals with NO₂). Since all of the initial nitrogenous species are not converted to NO2 during NOx/organic/air irradiations (Reference 11) and because the larger $(>C_4)$ alkoxy radicals undergo significant decomposition and isomerization reactions (References 15, 24, 56-58 and 63-66), it may be concluded that less than 1% of the observed alkyl nitrate yields are due to the reaction of alkoxy radicals with NO2 in the CH20NO/NO/n-alkane/air (or 0_2) irradiations carried out in this study. This is negligible for these n-alkanes.

The conclusion that alkyl nitrate yields from the RO + NO₂ reactions are minor is supported by the excellent agreement in the pentyl nitrate yields observed from EC-696 (300 K, 153 torr total pressure of air) and EC-694 (300 K, 155 torr total pressure of O_2).

Clearly, the major source of alkyl nitrates observed in the present experiments is Reaction (1), and the observed alkyl nitrate yields should reflect the rate constant ratio $k_1/(k_1 + k_2) = \alpha$, since alkoxy radical formation [Reaction (2)] is the only significant process competing with Reaction (1) in the alkane photooxidation chain. However, to derive α from the observed alkyl nitrate product yields, a correction must be made for the secondary reactions of the alkyl nitrates. This was carried out as described below.

The sole loss process of the n-alkanes and the alkyl nitrates is via reaction with the OH radical, and hence

$$d[RH]/dt = -k_{11}[OH][RH]$$

$$d[RONO_2]/dt = \alpha k_{11}[OH][RH] - k_{14}[OH][RONO_2]$$

where k_{11} and k_{14} are the rate constants for reactions (11) and (14), respectively, and α is the fraction of the reaction of RO₂ + NO yielding alkyl nitrates. Under conditions where the OH radical concentration is constant, these equations can be integrated to yield

$$[RH]_{t} = [RH]_{o} e^{-k_{11}[OH]t}$$
 (VII)

and

$$[RONO]_{t} = [RH]_{o} \frac{\alpha k_{11}}{(k_{11}-k_{14})} \left[e^{-k_{14}[OH]t} - k_{11}[OH]t \right] (VIII)$$

where $[RH]_0$ is the initial n-alkane concentration, [OH] is the constant hydroxyl radical concentration, and $[RH]_t$ and $[RONO_2]_t$ are the alkane and alkyl nitrate concentrations, respectively, at time t. Equations (VII) and (VIII) may be combined to yield

$$a = F\left\{\frac{[RONO_2]_t}{\Delta[RH]_t}\right\}$$
(1X)

where

$$\mathbf{r} = \left(\frac{\mathbf{k}_{11} - \mathbf{k}_{14}}{\mathbf{k}_{11}}\right) \left\{ \frac{1 - \left(\frac{[\mathrm{RH}]_{t}}{[\mathrm{RH}]_{o}}\right)}{\left(\frac{[\mathrm{RH}]_{t}}{[\mathrm{RH}]_{o}}\right)^{\frac{\mathbf{k}_{14}}{\mathbf{k}_{11}} - \left(\frac{[\mathrm{RH}]_{t}}{[\mathrm{RH}]_{o}}\right)} \right\}$$
(X)

and Δ [RH]_t = ([RH]_o - [RH]_t).

Equations (IX) and (X) were used to correct each of the data points for each alkyl nitrate isomer given in Tables 7 and 8. F was calculated using the experimentally observed amounts of n-alkanes consumed and the values of k_{11} and k_{14} obtained from recent kinetic studies in these laboratories (References 67 and 68). The largest correction corresponded to a value of F of 1.39 for the 2-heptyl nitrate yield at 59% heptane reacted (Run EC-716, Table 8); in most cases these corrections were relatively minor.

Typical plots of the total corrected alkyl mitrate yields against the amount of n-alkane reacted are shown in Figure 7 for several n-pentane/CH₃ONO/NO/air (or 0_2) irradiations at $300\pm2^{\circ}$ K. It can be seen that, consistent with our assumption that the alkyl mitrates are a primary product in the n-alkane photooxidations, straight line plots with zero intercepts were obtained. Tables 9 and 10 list the least squares slopes obtained from such plots, which can be identified with the fraction, a, of the n-alkane reacted yielding the observed alkyl mitrates. In all cases the intercepts were within two least squares standard deviations of zero.

The yields of the 2- and 3-pentyl nitrates and of the 2-, 3-, and 4heptyl nitrates determined here $(0.125\pm0.003$ and 0.287 ± 0.016 , respectively) at $300\pm2^{\circ}$ K and 740 torr total pressure are in excellent agreement with the values 0.117 ± 0.013 and 0.293 ± 0.042 determined in our previous study (Reference 26) at $299\pm2^{\circ}$ K and 735 torr total pressure. Since these two studies were carried out in reaction chambers of greatly differing volume, 75 & (Reference 26) versus the present 5800 %, this excellent agreement indicates that the formation of the alkyl nitrates does not involve surface or heterogeneous effects. Furthermore, this agreement between the two sets of

Figure 7. Plots of the Combined 2- and 3-Pentyl Nitrate Yields (Corrected for Secondary Reactions, See Text) Against the Amount of n-Pentane Consumed in CH₃ONO/NO/n-Pentane/Air(or O_2) Irradiations at $300 \pm 2^{\circ}$ K at 56, 154 \pm 1, 505 and 740 Torr Total Pressure (O, Δ - Air Diluent; $\bullet, \blacktriangle - O_2$ Diluent).

Temperature ([°] K)	Total Pressure (torr)	Diluent Gas	Pentyl Nitrate Yield ^a
284±1	155	air	0.064±0.010
	356	air	0.101±0.014
	740	air	0.150 1 0.016
300±2	56	0 ₂	0•029 ±0•00 5
	57	02	0.032±0.008
	153	air	0.050±0.006
	155	0 ₂	0.054±0.003
	352	air	0.089±0.013
	505	air	0.092±0.010
	740	air	0.125±0.003
327±3	151	air	0.037±0.004
	400	air	0.058±0.008
	740	air	0•074±0•005
337± 3	740	air	0.071±0.004

TABLE 9. PENTYL NITRATE YIELDS FROM THE IRRADIATION OF CH₃ONO/n-PENTANE/NO/AIR (OR 0₂) MIXTURES.

^a2- + 3-pentyl nitrates. Corrected for secondary reactions of the alkyl nitrates (see text). Error limits are two standard deviations of the least squares slopes of plots such as those shown in Figure 7.

data shows that systematic errors are likely to be small, since completely independent n-alkane and alkyl nitrate gas chromatographic calibrations were carried out for each study.

As shown in Tables 9 and 10 and Figures 8 and 9, the alkyl nitrate yields are both pressure and temperature dependent, with the yields increasing with increasing pressure and with decreasing temperature. While this is an expected result from the reaction pathways involved (see

Temperature (^O K)	Total Pressure (torr)	Diluent Gas	Heptyl Nitrate Yield ^a
284±2	58	02	0.121 ±0. 018
	159	air	0.170±0.016
	349	air	0•257±0•038
	740	air	0•308±0•036
300±2	56	0 ₂	0.105±0.008
	160	air	0.152±0.018
	353	air	0.220±0.014
	740	air	0•287±0•016
322±4	59	0,	0.071±0.006
	60	02	0.081±0.012
	156	air	0•105±0•014
	356	air	0.159±0.024
	740	air	0 .199±0.024
341±4	160	air	0•085±0•008
	740	air	0.153±0.010

 TABLE 10.
 HEPTYL NITRATE YIELDS FROM THE IRRADIATION OF CH₃ONO/n-HEPTANE/NO/AIR (OR 0₂) MIXTURES.

^a2- + 3- + 4-heptyl nitrates. Corrected for secondary reactions of the alkyl nitrates (see text). Error limits are two standard deviations of the least squares slopes of plots such as those shown in Figure 7.

introduction above), the temperature dependence of the alkyl nitrate yields are more extreme than may be expected, <u>a priori</u>, based on a simple chemical activation mechanism, and indicate that reactions of thermalized peroxynitrites (ROONO) may be significant.

The present data allow an assessment to be made of the effect of alkyl nitrate yields, and of the photochemical reactivities of the n-alkanes, as a function of altitude. Since the alkyl nitrate yields decrease with

.

· .

Figure 8. Plots of the n-Pentyl Nitrate Yields as a Function of Cemperature and Pressure.

`**.** •

Figure 9. Plots of the n-Heptyl Nitrate Yields as a Function of Temperature and Pressure.

decreasing pressure, but increase with decreasing temperature, it is evident from Tables 7 and 8 that these yields will remain approximately constant with increasing altitude at least up to $\sim 20,000$ ft. Hence the influence of altitude on this reaction pathway will not have any significant effect on the photochemical reactivity of these n-alkane constituents of military jet fuels.
SECTION IV

EFFECTS OF PRESSURE ON PRODUCT YIELDS OF NO_X PHOTOOXIDATIONS OF SELECTED AROMATIC HYDROCARBONS

4.1 INTRODUCTION

Despite numerous studies of gas phase chemistry of the aromatic hydrocarbons (References 14, 27-34 and 69-74), the reaction pathways and product yields occurring after initial hydroxyl radical attack on aromatic hydrocarbons are still very poorly understood (References 14, 15, 34 and 51). The major atmospheric fate of aromatics, reaction with the OH radical, proceeds via two routes (References 15 and 51): H atom abstraction, mainly from the substituent methyl groups [Reaction (15)], and OH radical addition to the aromatic ring [Reaction (16)], which becomes reversible at elevated temperatures (References 51, 75 and 76). For example, for toluene the reactions are:

By analogy with the reactions of alkyl radicals (Reference 15), it is anticipated that under atmospheric conditions the benzyl-type radicals formed in reaction (15) will yield predominantly the aromatic aldehydes (References 14, 15, 27, 34, 51 and 74), while product and modeling studies (References 14, 15, 27, 30, 31, 34 and 74) have postulated that the hydroxycyclohexadienyl radicals formed in Reaction (16) will react with O_2 to yield phenolic compounds or add O_2 (Reference 14) to ultimately lead, at least in part, to ring cleavage. Again, taking the toluene system as an

HO₂ + CH₃COCHO

Three temperature dependent kinetic studies (References 75-77) have derived rate constant ratios $k_{15}/(k_{15}+k_{16})$ at 298^oK for a series of aromatic hydrocarbons, with values of $0.16_{-0.05}^{+0.07}$ (Reference 75) and $0.04_{-0.02}^{+0.06}$ (Reference 76) for toluene, while Kenley, et al. (Reference 74) have determined this rate constant ratio for several aromatic hydrocarbons from a

product analysis study carried out at low (6-12 torr) total pressure. From that (Reference 74) and other product studies (References 27, 28 and 71), reported benzaldehyde yields from toluene have ranged from 2.5% (Reference 28) to ~50% (Reference 71). Clearly, there are significant discrepancies in the previous data for toluene concerning the importance of the H-atom abstraction pathway [Reaction (15)], and also concerning the yield of benzaldehyde under atmospheric conditions.

Furthermore, the relative importance of Reaction (18) has not been determined with certainty. Kenley, et al. (Reference 74) observed ~85% yields of the cresol isomers (mainly o-cresol) at 6-12 torr total pressure, and concluded that under their low pressure conditions the addition of O_2 to the OH-aromatic example results in the exclusive formation of phenolic products with Reaction (18) being negligible under these conditions. However, product studies at atmospheric pressure (References 14 and 28) have shown much lower yields of o-cresol [5% (Reference 28) to ~21% (Reference 14)] indicating alternate reaction pathways.

The observation of significant yields of α -dicarbonyls from o-xylene (References 30, 31 and 78) and other aromatic hydrocarbons (Reference 78), and of unsaturated 1,4-dicarbonyls from toluene (Reference 32) and 1,2,4-trimethylbenzene (Reference 33) also shows that ring cleavage, possibly via reaction (18) (References 14, 15 and 30) or its analogues, does indeed occur under atmospheric conditions. Thus, either there are discrepancies between the results of Kenley, et al. (Reference 74) and the other previous studies (References 27, 28 and 71), or there are significant pressure dependencies on the aromatic product yields.

In order to determine whether pressure effects could account for these divergent data, we have determined the yields of benzaldehyde and o-cresol from toluene, and of biacetyl from o-xylene, over the pressure range ~60-740 torr total pressure.

4.2 EXPERIMENTAL

Hydroxyl radicals were generated by the photolysis of methyl nitrite at ≥ 290 nm in the presence of 0_2 :

 $CH_3ONO + hv + CH_3O + NO$

$$CH_{3}0 + 0_{2} + HCH0 + H0_{2}$$

 $H0_{2} + N0 + 0H + N0_{2}$

In order to minimize 0_3 and hence $N0_3$ formation, NO was also added to the reaction mixtures, which had initial concentrations of: toluene or o-xy-lene, $\sim (2-3) \times 10^{13}$ molecule cm⁻³; CH₃ONO, $\sim (2-5) \times 10^{12}$ molecule cm⁻³; and NO, $\sim (2-3) \times 10^{13}$ molecule cm⁻³. Air or 0_2 were used as diluent gases. Irradiations of mixtures of toluene (or o-xylene), CH₃ONO, and NO in air (or 0_2) were carried out in the SAPRC 5800 \pounds Teflon[©]-coated evacuable, thermostatted, environmental chamber with a 25 KW solar simulator (Reference 45). Prior to each irradiation the chamber was evacuated to $\leq 2 \times 10^{-5}$ torr. Methyl nitrite, prepared as described previously (Reference 53), and NO wer: introduced into the chamber from a vacuum gas handling system. The chambe: was then filled to the desired pressure with dry purified matrix air (References 45 and 50) or ultra-high purity 0_2 . The known quantities of toluene or o-xylene were flushed into the chamber from a $\sim 1 \pounds$ Pyrex[®] bulb by a stream of ultra-high purity N_2 . The chamber was maintained at the desired temperature by its heating/cooling system.

Toluene and o-xylene were quantitatively analyzed by gas chromatography with flame ionization detection (GC-FID) using a 10 ft x 0.125 in stainless steel (SS) column of 10% Carbowax[®] 600 on C-22 Firebrick[®] (100/120 mesh), operated at 348°K, with 100 ml of the sample being preconcentrated in a ~1 ml (SS) loop at liquid argon temperature prior to injection onto the column. Biacetyl was monitored by gas chromatography with electron capture detection using an 18 in x 0.125 in Teflon[®] column of 5% Carbow ix[®] 400 on Chromasorb G[®] (80/110 mesh) operated at 300°K, without sample preconcentration. For these species, 100 ml gas samples were withdrawn into all-glass, gas-tight syringes from the chamber directly (for atmospheric pressure runs), or for runs at reduced pressure, from ~5 Å Pyrex[®] bulbs which had been evacuated to $\leq 10^{-3}$ torr and which were then opened to the chamber and then filled to atmospheric pressure by ultra-high purity N₂.

Benzaldehyde and o-cresol were monitored by GC-FID using a 6 ft x 0.25 in glass column packed with 80/100 Carbopack[®] C/0.1% SP-1000, temperature programmed from $423-523^{\circ}$ K at 20° K min⁻¹. Gas samples from the chamber of ~0.1 to 1 \pounds volume were drawn through 0.25 in x 3.25 in glass traps packed with Tenax[®] GC 50/80 mesh. This sample was then transferred by the carrier gas at 523[°]K from this trap to the column head which was at 423[°]K, followed by the temperature programming of the column as noted above.

For the o-xylene/CH₃ONO/NO/air system, irradiations were of 80 min duration with analyses being carried out every 20 min. For the toluene-CH₃ONO/NO/air system however, because of the time involved in sampling via the Tenax[®] packed traps (~10-15 min), four 10 or 15 min irradiations of the same mixture were carried out during each experiment, with GC analyses being conducted at the end of each irradiation period.

4.3 RESULTS

Irradiations of toluene/CH₃ONO/NO/air (or 0_2) and o-xylene/CH₃ONO/NO/ air (or 0_2) mixtures were carried out at ~303°K over the pressure range ~60-740 torr total pressure, and a toluene/CH₃ONO/NO/air irradiation was also carried out at $323\pm2^{\circ}$ K and 740 torr total pressure. The initial reactant concentrations and the observed amounts of aromatic hydrocarbon consumed and product species formed, as measured at various times during the irradiations, are given in Tables 11 and 12 for the toluene and o-xylene systems, respectively.

In addition, irradiations of biacetyl/NO/air and biacetyl/CH₃ONO/NO/ air mixtures were carried out at 303°K and 740 torr total pressure to determine the photolytic lifetime of blacetyl under the experimental conditions employed in the aromatic hydrocarbon/CH₂ONO/NO/air irradiations. During these irradiations the biacetyl decays were strictly exponential, with first order decay rates of $(1.30\pm0.07) \times 10^{-4} \text{ sec}^{-1}$ for the biacetyl/ $CH_2ONO/NO/air$ experiment and $(1.26\pm0.04) \times 10^{-4}$ sec⁻¹ for the biacetyl/NO/ air experiment (where the error limits are two least squares standard deviations of the slopes of the plots of ln[biacetyl] against irradiation Since the presence of CH₃ONO in one of the reactant mixtures is tíme). expected to significantly increase the OH radical concentrations, the excellent agreement of the biacetyl decays for these two irradiations shows that reaction with OH radicals is a minor loss process for biacetyl in the CH3ONO/NO/air system. Thus the only significant loss process of biacetyl in these systems is via photolysis. This is consistent with the fact that

TABLE []. EXPERIMENTAL DATA FOR THE TOLUENE/CH30NO/NO/AIR(OR 02) IRRADIATIONS.

であるない

Temperature (⁰ K)	Total Pressure (torr)	10 ⁻¹³ x (aolec CH ₃ 0ND	Initial Tule cm ⁻ NO	, Conc .3) Toluene	l0 ⁻¹² x -A[Tolyene] (molecule cm ⁻³)	10 ⁻¹¹ x [Be (molecul Obs	uzaldehyde] a cm ⁻³) Corr ⁶	10 ⁻¹¹ × (molecul. Obs	o-Cresol) e cm ⁻)
306±2	740	0.49	2.40	2.39	3.07	2.29	2.62	2.38	×.e
					3.95	2.55	3.05	2.83	5.07
·					4.74	2.91	3.62	3.29	6.65
302+2	360	0.49	2.37	2.26	1.43	1.33	1.42	1.73	2.16
					2-57	2.22	2.50	2.84	4.24
					3.33	2.70	3.16	3.56	5.99
•					4.22	3.06	3.76	3.97	7.67
30342	168	0.24	2.36	2.33	1.55	0.83	0.89	0.78	0.99
					2.64	1.19	1.34	0.81	1.20
					3.07	1.82	2.10	1.82	2.91
					3.24	2.03	2.36	1.82	2.98
302±1	62	0.24	2.35	2.42	2.12	1.08	1.18	1.12	1.52
1					3.57	1.88	2.20	1.98	46.6
•					4.19	2.34	2.83	2.57	4.76
					5.62	2.71	3.53	2.94	6.73
302±2	740	0.50	2.43	2.53	1.76	1.21	16.1	1.05	1.33
					2.91	1.88	2.12	1.76	2.64
					4.19	2.33	2.81	2.33	4.19
					4.65	2.64	3.24	2.48	4.76
302±1	161	0.24	2.37	2.41	0.83	96.0	1.01	0.79	0.89
				·	2.26	1.38	1.52	1.38	1.92
					2.83	2.17	2:46	2.33	3.54
					3.38	2.17	2.53	2.29	3.75
32342	740	0.47	2.24	2.55	1.93	1.81	1.95	1.93	2.52
			•		3.38	2.83	3.26	3.12	4.98
					4.36	3.43	4.14	3.60	6.60

•

2

٠.

·. · · ·

۰.

Accrrected for reaction with OH radicals (see taxt). bullwant gas was $\mathbf{0}_2$ in this irradiation.

EC Run Nò.	Total Pressure (torr)	10 ⁻¹³ (mc CH ₃ ONO	x Ini plecule NO	tial Conc cm ⁻³) o-Xylene	10 ⁻¹² x -Δ[o-Xylene] (molecule cm ⁻³)	10 ⁻¹¹ x (molec Obs	[Biacetyl] ule cm ⁻³) Corr ^a
721	740	0.48	2.35	2.53	4.36	5.96	6.55
					7.17	7.41	9.05
· .					8.67	9.15	12.10
					9.79	9.36	13.77
722	347	0.24	2.37	2.34	2.95	4.29	4.62
					6.12	6.88	8.08
		•			7.69	7.96	10.29
	٢.				8.89	8.89	12.51
723	160	0.25	2.35	2.40	3.48	4.05	4.38
					6.29	6.19	7.31
					8.17	7.10	9.24
					10.41	7.88	11.17
724 ^b	67	0.25	2.34	2.43	5.55	5.53	6.03
					9.15	8.08	9.62
					12.03	9.36	12.24
					14.41	10.43	14.84

TABLE 12. EXPERIMENTAL DATA FOR $o-XYLENE/CH_{3}ONO/NO/AIR$ (OR O_{2}) IRRADIATIONS AT $301\pm2^{\circ}K$.

^aCorrected for photolysis (see text). ^bDiluent gas was 0₂ for this irradiation.

the reaction of OH radicals with biacetyl is very slow [with a rate constant of $(2.4^{+0.8}_{-0.6}) \times 10^{-13} \text{ cm}^3$ molecule⁻¹ sec⁻¹ at 298°K (References 30 and 51)], corresponding to a biacetyl lifetime due to reaction with OH radicals of ~100 hr at the OH radical concentrations (~1 x 10^7 cm⁻³) encountered in the o-xylene/CH₃ONO/NO/air irradiations.

Since biacetyl photolyzes rapidly (Reference 30) and benzaldehyde and o-cresol react with OH radicals more rapidly than toluous does (References 15 and 51), corrections must be made for these secondary reactions to derive the fraction of the OH radical reaction with the aromatics yielding biacetyl, benzaldehyde, and o-cresol. These corrections were made as described below.

Under the experimental conditions employed in the present study, the predominant loss process for benzaldehyde is via reaction with the OH radical, with photolysis (Reference 79) contributing $\leq 5\%$ of the OH radical reaction in consuming benzaldehyde. Similarly, the major loss process for o-cresol is also via reaction with the OH radical, reaction with 0_3 (Reference 80) and the NO₃ radical (Reference 81) being of very minor importance under the experimental conditions employed. Since these two products from the NO_x photooxidation of toluene, benzaldehyde and o-cresol, are formed and lost via OH radical reactions, then

$$-d[toluene]/dt = (k_{15} + k_{16})[0H][toluene]$$
(XI)

and

 $d[product]/dt = \alpha(k_{15} + k_{16})[OH][toluene]$ (XII) -k₁₉[OH][product]

where a is the fraction of the OH radical reaction with toluene yielding the product under consideration (either benzaldehyde or o-cresol), $(k_{15} + k_{16})$ is the overall rate constant for the reaction of OH radicals with toluene, and k_{19} is the rate constant for the reaction of OH radicals with benzaldehyde or o-cresol.

$$OH + \begin{cases} benzaldehyde \\ o-cresol \end{cases} + products$$
(19)

Under conditions where the OH radical concentration is constant, equations (XI) and (XII) can be integrated to obtain:

$$[toluene]_{t} = [toluene]_{o} e$$
 (XIII)

and

$$[product]_{t} = [toluene]_{0} \left[\frac{\alpha(k_{15} + k_{16})}{[(k_{15} + k_{16}) - k_{19}]} \right] \left[e^{-k_{19}[0H]t} - e^{-(k_{15} + k_{16})[0H]t} \right]$$
(XIV)

where $[toluene]_{0}$ is the initial toluene concentration, [OH] is the constant hydroxyl radical concentration, and $[toluene]_{t}$ and $[product]_{t}$ are the toluene and product concentrations, respectively, at time t. Equations (XIII) and (XIV) can be combined to obtain

$$\alpha = F \left\{ \frac{[\text{product}]}{\Delta[\text{toluene}]_t} \right\}$$
(XV)

where $[product]_t$ is the observed product yield at time t, $\Delta[toluen_2]_t$ is the amount of toluene consumed at time t, and F is the correction factor for reaction of the product with OH radicals:

$$\mathbf{F} = \left(\frac{(\mathbf{k}_{15} + \mathbf{k}_{16}) - \mathbf{k}_{19}}{(\mathbf{k}_{15} + \mathbf{k}_{16})}\right) \left\{\frac{1 - \left(\frac{[\text{toluene}]_{t}}{[\text{toluene}]_{t0}}\right)}{\left(\frac{[\text{toluene}]_{t}}{[\text{toluene}]_{t0}}\right) \frac{\mathbf{k}_{19}}{\mathbf{k}_{15} + \mathbf{k}_{16}} - \left(\frac{[\text{toluene}]_{t}}{[\text{toluene}]_{t0}}\right)\right\}}$$
(XVI)

Equation (XVI), which has been shown to be applicable even when the OH radical concentrations vary with time (Reference 26), was used to correct each of the data points for benzaldehyde and o-cresol in Table 11. F was calculated using the experimentally observed amounts of toluene consumed and the rate constant ratios $k_{19}/(k_{15} + k_{16}) = 7.0$ for o-cresol and 2.0 for benzaldehyde, both independent of temperature over the small temperature range employed in this study (302-323^{.3}K) (References 15 and 51). These correction factors were relatively minor for benzaldehyde (F<1.30) but were much larger for o-cresol, with F being as high as 2.29 for the highest toluene conversion employed. For o-cresol, an uncertainty in the $k_{19}/(k_{15})$ + k_{16}) ratio of ±1 (i.e., 7±1) led to a ±10% effect on the magnitude of F at the highest toluene conversions. Plots of the corrected benzaldehyde or o-cresol yield against the amount of toluene consumed yielded good straight lines, and Table 13 lists the least squares slopes obtained from these plots at the various temperatures and pressures employed. In all cases the

Temperature	Total Pressure	Diluent	Yie	1d [#]
(°K)	(torr)	Gas	Benzaldehyde	o-Cresol
306±2	740	air	0.077±0.009	.0•136±0•020
302±2	740	air	0.068±0.005	0.104±0.013
303±2	360	air	0.090±0.007	0•184 ±0 •016
302±1	168	air	0.068±0.020	0.087±0.047
302 ± 2	161	air	0.073±0.020	0•112 ±0 •029
302± 1	62	02	0.065±0.007	0•1 21±0 •027
323±2	740	air	0•095±0•003	0.162±0.018

TABLE 13.BENZALDEHYDE AND O-CRESOL YIELDS FROMTHE NO. PHOTOOXIDATION OF TOLUENE.

^aCorrected for secondary reactions with OH radicals (see text). Indicated errors are two standard deviations of the slopes of plots of the corrected yields against the amount of toluene consumed.

least squares intercepts of such plots were within two standard deviations of zero.

For the case of biacetyl formation from o-xylene, equation (XVI) does not apply since, as noted above, the major biacetyl loss process is photolysis rather than reaction with the OH radical. In this case

$$\frac{d[biacetyl]}{dt} = \alpha(k_{15} + k_{16})[OH][o-xylene] - k_{20}[biacetyl] (XVII)$$

where α is the fraction of the OH radical reaction with o-xylene forming biacetyl, and k_{20} is the experimentally determined photolysis rate constant for biacetyl (1.28 x 10^{-4} sec⁻¹).

biacetyl +
$$hv$$
 + products (20)

Integration of both sides of equation (XVII) leads to the expression

$$[biacetyl]_{t} + k_{20} \int_{t_{0}}^{t} [biacetyl]dt = \alpha \Delta[o-xylene]_{t} \quad (XVIII)$$

where [biacety1]_t and Δ [o-xylene]_t are the observed biacety1 yields and the amount of o-xylene consumed, respectively, at time t. The quantity $\int_{1}^{\infty} [biacety1]dt$ was obtained from the biacety1-time concentration profiles. Each of the data points in Table 12 was corrected in this way for the biacety1 photolysis. Table 14 lists the fractions, α , of the reaction of OH radicals with o-xylene yielding biacety1, these being the least squares analysis of plots of the corrected biacety1 yields against the amounts of o-xylene consumed. Again, in all cases the least squares intercepts of such plots were within two standard deviations of zero.

4.4 DISCUSSION

4.4.1 Benzaldehyde and o-Cresol from Toluene

The benzaldehyde and o-cresol yields determined in this work are plotted as a function of total pressure in Figure 10. Within the experimental uncertainties they are seen to be independent of pressure, with weighted least squares mean values of 0.073 ± 0.019 for benzaldehyde and 0.131 ± 0.066 for o-cresol (where the error limits are two weighted least squares standard deviations). Inclusion of the uncertainties in the gas chromatographic calibration factors leads to benzaldehyde and o-cresol yields of 0.073 ± 0.022 and 0.131 ± 0.072 , respectively, where the indicated errors are again two standard deviations.

Our results are compared with literature data in Table 15. For benzaldehyde the present datum is in between the reported values of O'Brien, et al. (Reference 28) and Kenley, et al. (Reference 74), with the benzaldehyde yield reported by Spicer and Jones (Reference 71) obviously being much too high. For o-cresol the present yield is in reasonable agreement with that derived from the environmental chamber-computer modeling study of Atkinson, et al. (Reference 14). However, the data of Kenley, et al. (Reference 74), which indicate that at low pressures and at high $0_2/NO_x$ ratios the reaction of OH radicals with toluene yields ~15% benzaldehyde and ~68% o-cresol (together with ~17% of the other two cresol isomers), are in apparent conflict with our determination that the o-cresol yield is ~13%, independent of pressure over the range 62-740 torr. This discrepancy is possibly caused by the problems of sampling under the conditions employed by Kenley, et al. (Reference 74), since they report only a ~10%

TABLE	14.	THE	FRACTIO	N OF	' THE	OHS	ADIC	AL	REACTI	ON	WITH	O-XYLENE
Y	IELDI	NG B	IACETYL	AS /	A FUN	(CTIO	N OF	PR	ESSURE	AT	301±	2 ⁰ K.

Total Pressure (torr)	Diluent Gas	Biacetyl Yield ^a
740	a.r	0.137±0.016
347	a .r	0.135±0.012
160	ar	0.108±0.009
67	0 ₂	0.102±0.004

^aCorrected for photolysis of biacetyl (see text). Error limits are two least squares standard deviations of the slopes of plots of the corrected biacetyl concentrations agianst the amount of o-xylene consumed.

TABLE 15.	COMPARISON OF THE	PRESENT BENZALDEHYDE AND o-CRESOL
YIELDS	AT ~303°K FROM THE	NO, PHOTOOXIDATION OF TOLUENE
	WITH PREVIOUS	LITERATURE VALUES.

Yield	(%)	
Benzaldehyde	o-Cresol	Reference
~25-35		27
15±2 ^a	68 ^{a,b}	74
~5		71
12 ^c	~21	14
2.5	5	28
7.3±2.2 ^d	13.1±7.2 ^d	This work

.

^aAt 6-12 torr total pressure. ^bAt high $0_2/N0_2$ ratios (>2 x 10^5). ^cValue obtained by using $k_{15}/(k_{15} + k_{16})$ ratio of 0.156 from the literature (References 74 and 75) and assuming 25% benzyl nitrate formation from the $C_6H_5CH_2O_2$ + NO reaction.

dIndependent of pressure over the range 62-740 torr.

74

sampling efficiency. However, further work at <50 torr total pressure is obviously necessary to definitely resolve this discrepancy.

While the reported benzaldehyde (and o-cresol) yields of Hoshino, et al. (Reference 27) and O'Brien, et al. (Reference 28) are in disagreement with the present data, the ratios of the o-cresol/benzaldehyde yields of 2.1 (Reference 27) and 2.0 (Reference 28) obtained in these studies are in good agreement with the ratio of 1.8 obtained in the present study. Under atmospheric conditions the benzyl radical is expected to react via the reaction sequence:

$$c_6 H_5 CH_2 + 0_2 + c_6 H_5 CH_2 0_2$$
 (21)

$$C_{6}H_{5}CH_{2}O_{2} + NO + C_{6}H_{5}CH_{2}O + NO_{2}$$
 (22a)

$$M + C_{6}H_{5}CH_{2}ONO_{2}$$
 (22b)

$$C_6H_5CH_20 + 0_2 + C_6H_5CH0 + H0_2$$
 (23)

$$C_6H_5CH_20 + NO_2 + C_6H_5CH_2ONO_2$$
 (24)

(reaction of benzoyl radicals with NO to form benzyl nitrite is of negligible importance due to the expected rapid photolysis of benzyl nitrite). At high $0_2/NO_x$ ratios (>2 x 10^5) benzyl nitrate formation via reaction (24) is negligible (Reference 74). Hence, under these conditions benzyl radicals will ultimately form benzaldehyde and benzyl nitrate via reaction (21), (22), and (23).

The fraction of reaction (22) forming benzyl nitrate is not known, but since the ratio $k_{22b}/(k_{22a} + k_{22b})$ is expected to decrease with decreasing pressure (Section III), the lack of a pressure dependence for the benzaldehyde yield indicates that benzyl nitrate formation is not a major process. This is in agreement with the data of Hoshino, et al. (Reference 27) which show that at atmospheric pressure the benzyl nitrate yields are ~12% of the benzaldehyde yields. Thus, the observed benzaldehyde yields should be close to, but somewhat lower (by ~10-15% due to benzyl nitrate formation) than the primary rate constant ratio $k_{15}/(k_{15} + k_{16})$ for the initial OH radical reaction with toluene (see Section 4.1). Indeed, the present benzaldehyde yield of 0.073±0.022 is in between the $k_{15}/(k_{15} + k_{16})$

 k_{16}) ratios at 298°K of $0.16^{+0.07}_{-0.05}$ (Reference 75) and $0.04^{+0.06}_{-0.02}$ (Reference 76) reported from kinetic studies.

At $323\pm2^{\circ}K$, the benzaldehyde yield was observed to be somewhat higher than at $\sim 303^{\circ}K$, although any increase is probably within the experimental errors. Such an increase in the benzaldehyde yield with increasing temperature is expected from the results of kinetic studies (References 51, 75 and 76), which indicate that the rate constant ratio $k_{15}/(k_{15} + k_{16})$ increases with temperature. The o-cresol yields do not, within the wide experimental uncertainties, appear to slow any significant temperature dependence in the range $303-323^{\circ}K$.

4.4.2 Blacetyl from o-Xylene

The fraction of the OH radical reaction with o-xylene yielding biacetyl of 0.137 ± 0.016 determined in the present work is in good agreement with the value of 0.18 ± 0.04 obtained previously in these laboratories by Darnall, et al. (Reference 30), and is in agreement, within the large experimental error limits, with the value of 0.260 ± 0.102 reported by Takagi, et al. (Reference 31). Both of these previous studies employed the irradiation of o-xylene/NO/air mixtures. Thus, it is evident that at atmospheric pressure and $\sim 300^{\circ}$ K ~ 15 X of the overall reaction of OH radicals with o-xylene yields biacetyl and previous work (Reference 30) has shown no effect of temperature on this biacetyl yield over the range $283-323^{\circ}$ K.

However, the present data do suggest a small pressure effect, with the biacetyl yield decreasing by ~25% in going from 740 torr to 67 torr total pressure (Figure 11). If there is a pressure effect on the biacetyl yield, as these data suggest, then the specific reaction or reactions responsible for this pressure dependence are difficult to determine at this time, since several reactions in the sequence leading to ring cleavage could potentially be pressure dependent. For instance, the reaction of the OH-o-xylene adduct with 0_2 to form the bicyclic intermediate (I) via Reaction (18) may be pressure dependent (but this is not the case for the formation of o-cresol from toluene), with Reaction (18) becoming more important at higher pressures. The possible formation of bicylic nitrates via reaction path (a) is also likely to be pressure dependent, but would be contrary to the observed trend of increasing biacetyl yields with increasing pressure.

 $HO_2 + CH_3COCOCH_3$

Obviously much further work concerning the temperature and pressure dependencies of the individual elementary reactions is needed before any conclusions can be drawn as to the reactions responsible for any effects of pressure or temperature on observed final product yields.

4.4.3 Conclusions

The present data have determined the yields of benzaldehyde and o-cresol from toluene and of biacetyl from o-xylene as a function of pressure at $\sim 300^{\circ}$ K. These data, which show no pressure dependence over the range 62-740 torr for benzaldehyde and o-cresol formation, and only a weak dependence for biacetyl formation over a similar pressure range, can now serve as much needed inputs to chemical kinetic computer modeling studies of the NO_x photooxidations of toluene and o-xylene.

SECTION V.

LECOMMENDATIONS FOR FUTURE RESEARCH

From the data presented and discussed in Sections II, III, and IV above, it is eviden: that the most direct and time- and cost-effective approach to assessing the effects of altitude on the photochemical reactivity of military just fuels is to investigate the atmospheric chemistry of individual fuel components, in a program analagous to the approach used in the investigations described in Sections III and IV above.

In particular, the following studies should be carried out:

• The yields of alkyl nitrates from the NO_{χ}/air photooxidations of other n-alkanes as well as from representative branched and cyclic alkanes should be determined as functions of both temperature (~250-350[°]K) and pressure (≤ 50 torr to atmospheric pressure or greater).

• The products formed and reaction pathways occurring in the NO_x/air photooxidations of the important aromatic constituents of the military jet fuels should be studied again as a function of pressure and temperature.

From studies such as these, the detailed atmospheric chemistry of representative fuel components will be understood and can then be modeled using chemical kinetic computer models. Use of such models would provide cost- and time-effective predictive capabilities concerning the effect of altitude on the photochemical reactivity of present day or future fuels.

REFERENCES

- 1.: Clewell, H. J., III. <u>Fuel Jettisoning by U. S. Air Force Aircraft</u>, Volume 1. Summary and Analysis Report ESL-TR-80-17.
- U. S. Standard Atmosphere. Committee on Extension to the Standard Atmosphere, U. S. NASA, U. S. Government Printing Office, December 1962.
- 3. U. S. Standard Atmosphere Supplements. Environmental Science Services Administration, NASA, U. S. Government Printing Office. 1966.
- Peterson, J. T. <u>Calculated Actinic Fluxes (290-700 nm) for Air Pollu-</u> tion Photochemistry Applications. BPA Publication No. 600/4-76-025, June 1976.
- 5. Peterson, J. T. "Dependence of the NO₂ Photodissociation Rate Constant on Altitude," <u>Atmos. Environ., 11</u>, 689. 1977.
- 6. Winer, A. M.; Breuer, G. M.; Carter, W. P. L.; Darnall, K. R.; and Pitts, J. N., Jr. "Effects of Ultraviolet Spectral Distribution on the Photochemistry of Simulated Polluted Atmospheres," <u>Atmos.</u> <u>Environ.</u>, <u>13</u>, 989. 1979.
- 7. Akimoto, H.; Sakamaki, F.; Hoshino, M.; Iuone, G.; and Okuda, M. "Photochemical Ozone Formation in Propylene-Nitrogen Oxide-Dry Air Systems," <u>Environ. Sci. Technol.</u>, <u>13</u>, 53. 1979.
- 8. Pitts, J. N., Jr.; Darnall, K. R.; Winer, A. M.; and McAfee, J. M. <u>Mechanisms of Photochemical Reactions in Urban Air, II. Smog Chamber</u> <u>Studies</u>, EPA Publication No. 600/3-77-014b, February 1977.
- 9. Pitts, J. N., Jr.; Darnall, K.; Carter, W. P. L.; Winer, A. M.; and Atkinson, R. <u>Mechanisms of Photochemical Reactions in Urban Air</u>. EPA Publication No. 600/3-79-110, November 1979.
- Hendry, D. G.; Baldwin, A. C.; Barker, J. R.; and Golden, D. M. <u>Com-</u> <u>puter Modeling of Simulated Photochemical Smog</u>. EPA Publication No. 600/3-78-059, June 1978.
- 11. Carter, W. P. L.; Lloyd, A. C.; Sprung, J. L.; and Pitts, J. N., Jr. "Computer Modeling of Smog Chamber Data: Progress in Validation of a Detailed Mechanism for the Photooxidation of Propene and n-Butane in Photochemical Smog," <u>Int. J. Chem. Kinet</u>., <u>11</u>, 45. 1979.
- 12. Whitten, G. Z.; Hogo, H.; Meldgin, M. J.; Killus, J. P.; and Bekowies, P. J. <u>Modeling of Simulated Photochemical Smog with Kinetic Mecha-</u><u>nisms</u>. 701ume 1, Interim Report, EPA Publication No. 600/3-79-001a, January 1979.
- 13. Whitten, G. Z.; Killus, J. P.; and Hogo, H. <u>Modeling of Simulated</u> <u>Photochemical Smog with Kinetic Mechanisms</u>. Volume 1, Final Report, EPA Publication No. 600/3-80-028a, February 1980.

- 14. Atkinson, R.; Carter, W. P. L.; Darnall, K. R.; Winer, A. M.; and Pitts, J. N., Jr. "A Smog Chamber and Modeling Study of the Gas Phase NO_x-Air Photooxidation of Toluene and the Cresols," <u>Int. J. Chem.</u> <u>Kinet.</u>, 12, 779. 1980.
- 15. Atkinson, R. and Lloyd, A. C. "Evaluation of Kinetic and Mechanistic Data for Modeling of Photochemical Smog," <u>J. Phys. Chem. Ref.</u> <u>Data</u>, in press. 1982.
- 16. (arter, W. P. L.; Ripley, P. S.; Smith, C. G.; and Pitts, J. N., Jr. <u>Atmospheric Chemistry of Hydrocarbon Fuels</u>. Volume 1, Experiments, Results and Discussion, USAF Final Report ESL-TR-81-53, November 1981.
- 17. Fabian, P.; Borchers, R.; Weiler, K. H.; Schmidt, U.; Volz, A.; Ehhalt, D. H; Seiler, W.; and Muller, F. "Simultaneously Measured Vertical Profiles of H₂, CH₄, CO, N₂O, CFCl₃ and CF₂Cl₂ in the Mid-Latitude Stratosphere and Troposphere," <u>J. Geophys. Res.</u>, <u>84</u>, 3149. 1979.
- Cronn, D., and Robinson, E. "Tropospheric and Lower Stratospheric Vertical Profiles of Ethane and Acetylene," <u>Geophys. Res. Lett.</u>, <u>6</u>, 641. 1979.
- 19. Schiff, H. I.; Pepper, D.; and Ridley, B. A. "Tropospheric NO Measurements up to 7 km," J. Geophys. Res., 84, 7895. 1979.
- 20. McFarland, M.; Kley, D.; Drummond, J. W.; Schmeltekopf, A. L.; and Winkler, R. H. "Nitric Oxide Measurements in the Equatorial Pacific Region," <u>Geophys. Res. Lett.</u>, <u>6</u>, 605. 1979.
- 21. Kley, D.; Drummond, J. W.; McFarland, M.; and Liu, S. C. "Tropospheric Profiles of NO.," J. Geophys. Res., <u>86</u>, 3153. 1981.
- 22. Noxon, J. F. "Tropospheric NO2," J. Geophys. Res., 83, 3051. 1978.
- Demerjian, K. L.; Kerr, J. A.; and Calvert, J. G. "The Mechanism of Photochemical Smog Formation," <u>Adv. Environ. Sci. Technol.</u>, <u>4</u>, 1. 1974.
- 24. Carter, W. P. L.; Darnall, K. R.; Lloyd, A. C.; Winer, A. M.; and Pitts, J. N., Jr. "Evidence for Alkoxy Radical Isomerization in Photooxidations of C₄-C₆ Alkanes Under Simulated Atmospheric Conditions," <u>Chem. Phys. Lett.</u>, <u>42</u>, 22. 1976.
- 25. Darnall, K. R.; Carter, W. P. L.; Winer, A. M.; Lloyd, A. C.; and Pitts, J. N., Jr. "Importance of RO₂ + NO in Alkyl Nitrate Formation from C₄-C₆ Alkane Photooxidations Under Simulated Atmospheric Conditions," <u>J. Phys. Chem.</u>, <u>80</u>, 1948. 1976.
- 26. Atkinson, R.; Aschmann, S. M.; Carter, W. P. L.; Winer, A. M.; and Pitts, J. N., Jr. "Alkyl Nitrate Formation from the NO_-Air Photooxidations of C₂-C₈ n-Alkanes," <u>J. Phys. Chem.</u>, <u>86</u> 4563. 1982.

- 27. Hoshino, M.; Akimoto, H.; and Okuda, M. "Photochemical Oxidation of Benzene, Toluene, and Ethylbenzene Initiated by OH Radicals in the Gas Phase," <u>Bull. Chem. Soc., Japan, 51</u>, 718. 1978.
- 28. O'Brien, R. J.; Green, P. J.; and Doty, R. M. In <u>Chemical Kinetic</u> <u>Data Needs for Modeling the Lower Troposphere</u>, Eds. J. T. Herron, R. E. Huie and J. A. Hodgeson, National Bureau of Standards Special Publication 557, pp. 92-95, August 1979.
- 29. Grosjean, D.; Van Cauwenberghe, K.; Fitz, D. R.; and Pitts, J. N., Jr. "Photooxidation Products of Toluene-NO_x-Mixtures Under Simulated Atmospheric Conditions," 175th National American Chemical Society Meeting, Anaheim, CA, March 12-17, 1978.
- Darnall, K. R.; Atkinson, R.; and Pitts, J. N., Jr. "Observation of Biacetyl from the Reaction of OH Radicals with o-Xylene. Evidence for Ring Cleavage," J. Phys. Chem., 83, 1943. 1979.
- 31. Takagi, H.; Washida, N.; Akimoto, H.; Nagasawa, K.; Usul, Y.; and Okuda, M. "Photooxidation of o-Xylene in the NO-H₂O-Air System," <u>J.</u> <u>Phys. Chem.</u>, <u>84</u>, 478. 1980.
- 32. Takagi, H.; Washida, N.; Akimoto, H.; and Okuda, M. "Observation of 3-Hexene-2,5-Dione in the Photooxidation of 1,2,4-Trimethylbenzene in the NO-H,O-Air System," <u>Spectroscopy Lett.</u>, <u>15</u>, 145. 1982.
- 33. Besemer, A. C. "Formation of Chemical Compounds from Irradiated Mixtures of Aromatic Hydrocarbons and Nitrogen Oxides," <u>Atmos. Environ.</u>, <u>16</u>, 1599. 1982.
- 34. Killus, J. P., and Whitten, G. Z. "A Mechanism Describing the Photochemical Oxidation of Toluene in Smog," <u>Atmos. Environ.</u>, <u>16</u>, 1973. 1982.
- 35. Hendry, D. G., and Kenley, R. A. "Generation of Peroxy Radicals from Peroxy Nitrates (R0₂N0₂). Decomposition of Peroxyacyl Nitrates," <u>J.</u> <u>Amer. Chem. Soc.</u>, <u>99</u>, 3198. 1977.
- 36. Cox, R. A., and Roffey, M. J. "Thermal Decomposition of Peroxyacetylnitrate in the Presence of Nitric Oxide," <u>Environ. Sci. Technol.</u>, <u>11</u>, 900. 1977.
- 37. Graham, R. A.; Winer, A. M.; and Pitts, J. N., Jr. "Temperature Dependence of the Unimolecular Decomposition of Pernitric Acid and its Atmospheric Implications," <u>Chem. Phys. Lett.</u>, <u>51</u>, 215. 1977.
- 38. Graham, R. A.; Winer, A. M.; and Pitts, J. N., Jr. "Pressure and Temperature Dependence of the Unimolecular Decomposition of HO₂NO₂," <u>J. Chem. Phys., 68</u>, 4505. 1978.

39. Edney, E. O.; Spence, J. W.; and Hanst, P. L. "Synthesis and Thermal Stability of Peroxy Alkyl Nitrates," J. Air Pollut. Control Assoc., 29, 741. 1979. 40. Anastasi, C., and Smith, I. W. M. "Rate Measurements of Reactions of OH by Resonance Absorption. Part 6 - Rate Constants for OH + NO (+M) + HNO₂ (+M) Over a Wide Range of Temperature and Pressure," <u>J. Chem.</u> <u>Soc. Faraday Trans., II, 74</u>, 1056. 1978.

- 41. Cox, R. A., and Patrick, K. "Kinetics of the Reaction HO₂ + NO₂ (+M) = HO₂NO₂ Using Molecular Modulation Spectroscopy," <u>Int. J. Chem.</u> <u>Kinet.</u>, <u>11</u>, 635. 1979.
- 42. Carter, W. P. L.; Atkinson, R.; Winer, A. M.; and Pitts, J. N., Jr. "Evidence for Chamber-Dependent Radical Sources: Impact on Kinetic Computer Models for Air Pollution," <u>Int. J. Chem. Kinet.</u>, <u>13</u>, 735. 1981.
- 43. Carter, W. P. L.; Atkinson, R.; Winer, A. M.; and Pitts, J. N., Jr. "An Experimental Investigation of Chamber-Dependent Radical Sources," <u>Int. J. Chem. Kinet.</u>, <u>14</u>, 1071. 1982.
- 44. Pitts, J. N., Jr.; Winer, A. M.; Carter, W. P. L.; Doyle, G. J.; Graham, R. A.; and Tuazon, E. C. <u>Chemical Consequences of Air Quality</u> <u>Standards and Control Implementation Programs</u>. Final Report, ARB Contract No. A7-175-50, June 1980.
- 45. Winer, A. M.; Graham, R. A.; Doyle, G. J.; Bekowies, P. J.; McAfee, J. M.; and Pitts, J. N., Jr. "An Evacuable Environmental Chamber and Solar Simulator Facility for the Study of Atmospheric Photochemistry," <u>Adv. Environ. Sci. Technol.</u>, 10, 461. 1980.
- 46. Holmes, J. R.; O'Brien, R. J.; Crabtree, J. H.; Hecht, T. A.; and Seinfeld, J. H. "Measurement of Ultraviolet Radiation Intensity in Photochemical Smog Studies," <u>Environ. Sci. Technol.</u>, 7, 519. 1973.
- 47. Hampson, R. F., Jr., and Garvin, D. <u>Reaction Rate and Photochemical</u> <u>Data for Atmospheric Chemistry - 1977</u>. National Bureau of Standards Special Publication, May 1978.
- 48. Winer, A. M.; Peters, J. W.; Smith, J. P.; and Pitts, J. N., Jr. "Response of Commercial Chemiluminescent NO-NO₂ Analyzers to Other Nitrogen-Containing Compounds," <u>Environ. Sci. Technol.</u>, <u>8</u>, 1118. 1974.
- 49. Joseph, D. W., and Spicer, C. W. "Chemiluminescence Method for Atmospheric Monitoring of Nitric Acid and Nitrogen Oxides," <u>Anal. Chem.</u>, <u>50</u>, 1400. 1978.

- 50. Doyle, G. J.; Bekowies, P. J.; Winer, A. M.; and Pitts, J. N., Jr. "Charcoal-Adsorption Air Purification System for Chamber Studies Investigating Atmospheric Photochemistry," <u>Environ. Sci. Technol.</u>, <u>11</u>, 45. 1977.
- 51. Atkinson, R.; Darnall, K. R.; Lloyd, A. C.; Winer, A. M.; and Pitts, J. N., Jr. "Kinetics and Mechanism of the Reaction of the Hydroxyl Radical with Organic Compounds in the Gas Phase," <u>Adv. Photochem.</u>, <u>11</u>, 375. 1979.

52. Benson, S. W. <u>Thermochemical Kinetics</u>, 2nd ed. Wiley, New York, NY, 1976.

- 53. Atkinson, R.; Aschmann, S. M.; Winer, A. M.; and Pitts, J. N., Jr. "Rate Constants for the Reaction of OH Radicals with a Series of Alkanes and Alkenes at 299 ± 2 K," <u>Int. J. Chem. Kinet.</u>, <u>14</u>, 507. 1982.
- 54. Bahta, A.; Simonaitis, R.; and Heicklen, J. "Thermal Decomposition Kinetics of CH₃O₂NO," <u>J. Phys. Chem</u>., <u>86</u>, 1849. 1982.
- 55. Barker, J. R.; Benson, S. W.; and Golden, D. M. "The Decomposition of Dimethyl Peroxide and the Rate Constant for CH₃0 + 0₂ + CH₂0 + H0₂," <u>Int. J. Chem. Kinet.</u>, 9, 31. 1977.
- 56. Baldwin, A. C.; Barker, J. R.; Golden, D. M.; and Hendry, D. G. "Photochemical Smog. Rate Parameter Estimates and Computer Simulations," <u>J. Phys. Chem.</u>, <u>81</u>, 2483. 1977.
- 57. Batt, L. "Reactions of Alkoxy Radicals Relevant to Atmospheric Chemistry," Proceedings of the 1st European Symposium on the Physico-Chemical Behavior of Atmospheric Pollutants, Ispra, Italy, 16-18 October 1979, Eds. B. Verdino and H. Ott, Commission of the European Communities. 1980.
- 58. Batt, L. "The Gas-Phase Decomposition of Alkoxy Radicals," <u>Int. J.</u> <u>Chem. Kinet., 11</u>, 977. 1979.

- 59. Batt, L., and Robinson, G. N. "Reaction of Methoxy Radicals with Oxygen. I. Using Dimethyl Peroxide as a Thermal Source of Methoxy Radicals, <u>Int. J. Chem. Kinet.</u>, <u>11</u>, 1045. 1979.
- 60. Golden, D. M. "Organic Free Radicals," In <u>Chemical Kinetic Data Needs</u> for <u>Modeling the Lower Troposphere</u>, Eds. J. T. Herron, R. E. Huie and J. A. Hodgeson, National Bureau of Standards Special Publication 557, pp. 51-61, August 1979.
- 61. Cox, R. A.; Derwent, R. G.; Kearsey, S. V.; Batt, L.; and Patrick, K. G. "Photolysis of Methyl Nitrite: Kinetics of the Reaction of Methoxy Radical with 0₂," <u>J. Photochem.</u>, <u>13</u>, 149. 1980.
- 62. Gutman, D.; Sanders, N.; and Butler, J. E. "Kinetics of the Reactions of Methoxy and Ethoxy Radicals with Oxygen," <u>J. Phys. Chem.</u>, <u>86</u>, 66. 1982.
- 63. Choo, K. Y., and Benson, S. W. "Arrhenius Parameters for the Alkoxy Radical Decomposition Reactions," <u>Int. J. Chem. Kinet.</u>, <u>13</u>, 833. 1981.
- 64. Baldwin, A. C., and Golden, D. M. "Alkoxy Radical Reactions: The Isomerization of n-Butoxy Radicals Generated from the Pyrolysis of n-Butyl-Nitrite," <u>Chem. Phys. Lett.</u>, <u>60</u>, 108. 1978.

- 65. Cox, R. A.; Patrick, K. F.; and Chant, S. A. "Mechanism of Atmospheric Photooxidation of Organic Compounds. Reactions of Alkoxy Radicals in Oxidation of n-Butane and Simple Ketones," <u>Environ. Sci.</u> <u>Technol.</u>, <u>15</u>, 587. 1981.
- 66. Niki, H.; Maker, P. D.; Savage, C. M.; and Breitenbach, L. P. "An FT-IR Study of the Isomerization and O₂ Reaction of n-Butoxy Radicals," <u>J. Phys. Chem.</u>, 85, 2698. 1981.
- 67. Atkinson, R.; Aschmann, S. M.; Carter, W. P. L.; Winer, A. M.; and Pitts, J. N., Jr. "Kinetics of the Reactions of OR Radicals with n-Alkanes at 279 ± 2 K," <u>Int. J. Chem. Kinet.</u>, <u>14</u>, 781. 1982.
- 68. Atkinson, R.; Aschmann, S. M.; Carter, W. P. L.; and Winer, A. M. "Kinetics of the Gas-Phase Reactions of OH Radicals with Alkyl Nitrates at 299 ± 2 K," <u>Int. J. Chem. Kinet.</u>, <u>14</u>, 919. 1982.
- 69. Heuss, J. M., and Glasson, W. A. "Hydrocarbon Reactivity and Eye Irritation," <u>Environ. Sci. Technol.</u>, <u>2</u>, 1109. 1968.
- 70. Altshuller, A. P.; Kopczynski, S. L.; Lonneman, W. A.; Sutterfield, F. D.; and Wilson, D. L. "Photochemical Reactivities of Aromatic Hydrocarbon-Nitrogen Oxide and Related Species," <u>Environedic Scientechnole</u>, <u>4</u>, 44. 1970.
- 71. Spicer, C. W., and Jones, P. W. "The Fate of Aromatic Hydrocarbons in Photochemical Smog Systems: Toluene," <u>J. Air Pollut. Control Assoc.</u>, <u>27</u>, 1122. 1977.
- 72. Akimoto, H.; Hoshino, M.; Inoue, G.; Okuda, M.; and Washida, N. "Reaction Mechanism of the Photooxidation of the Toluene-N0₂-0₂-N₂ System in the Gas Phase," <u>Bull. Chem. Soc., Japan, 51</u>, 2496. 1978.
- 73. O'Brien, R. J.; Green, P. J.; Doty, R. A.; Vanderzenden, J. W.; Easton, R. R.; and Irwin, R. P. "Interaction of Oxides of Nitrogen and Aromatic Hydrocarbons Under Simulated Atmospheric Conditions," In <u>Nitrogenous Air Pollutants</u>. Ed. D. Grosjean, Ann Arbor Press, Ann Arbor, MI. 1979.
- 74. Kenley, R. A.; Davenport, J. E.; and Hendry, D. G. "Gas-Phase Hydroxyl Radical Reactions. Products and Pathways for the Reaction of OH with Aromatic Hydrocarbons," J. Phys. Chem., 85, 2740. 1981.
- 75. Perry, R. A.; Atkinson, R.; and Pitts, J. N., Jr. "Kinetics and Mechanisms of the Gas-Phase Reaction of OH Radicals with Aromatic Hydrocarbons Over the Temperature Range 297-473 K," J. Phys. Chem., 81, 296. 1977.
- 76. Tully, F. P.; Ravishankara, A. R.; Thompson, R. L.; Nicovich, J. M.; Shah, R. C.; Kreutler, N. M.; and Wine, P. H. "Kinetics of the Reactions of Hydroxyl Radicals with Benzene and Toluene," <u>J. Phys. Chem.</u>, <u>85</u>, 2262. 1981.

- 77. Nicovich, J. M.; Thompson, R. L.; and Ravishankara, A. R. "Kinetics of the Reactions of the Hydroxyl Radical with Xylenes," <u>J. Phys.</u> <u>Chem.</u>, <u>85</u>, 2913. 1981.
- 78. Nojima, K.; Fukaya, K.; Fukui, S.; and Kanno, S. "The Formation of Glyoxals by the Photochemical Reaction of Aromatic Hydrocarbons in the Presence of Carbon Monoxide," <u>Chemosphere</u>, <u>5</u>, 247. 1974.
- 79. Carter, W. P. L., and Atkinson, R. Unpublished data. 1982.

- 80. Atkinson, R.; Aschmann, S. M.; Fitz, D. R.; Winer, A. M.; Pitts, J. N., Jr. "Rate Constants for the Gas-Phase Reactions of 03 with Selected Organics at 296 K," <u>Int. J. Chem. Kinet.</u>, <u>14</u>, 13. 1982.
- Carter, W. P. L.; Winer, A. M.; and Pitts, J. N., Jr. "Major Atmospheric Sink for Phenol and the Cresols. Reaction with the Nitrate Radicals," <u>Environ. Sci. Technol.</u>, <u>15</u>, 829. 1981.

APPENDIX A

APPENDIX A

Detailed data sheets for the Fuel/NO $_{\rm X}$ /air irradiations carried out in this program.

The legend for the organics monitored is as follows:

PAN	Peroxyacetyl nitrate
нсно	Formaldehyde
N-C5	n-Pentane
N-C6	n-Hexane
N-C7	n-Heptane
N-C8	n-Octane
N-C9	n-Nonane
BENZENE	Benzene
TOLUENE	Toluene
C2BENZ	Ethylbenzene
M-XYL	m-Xylene
I-C3-BZ	Isopropylbenzene
0-XYL	o-Xylene
N-C3-BZ	n-Propylbenzene
124TMEBZ	l,2,4-Trimethylbenzene
Mecyc-c6	Methylcylohexane
N-C10	n-Decane
N-C11	n-Undecane
C2-N	Bthyl nitrate
ME-N	Methyl nitrate
M+P-XYL	m- + p-Xylene
N-C12	n-Dodecane
N-C13	n-Tridecane
N-C14	n-Tetradecane

As discussed in the text, NO_2 -UNC refers to the NO_x -NO data uncorrected for contributions due to PAN and other organic nitrates.

ti-489 Je 4 (PET) - Ground LEVEL 1981 - FEB 9

UB20: MD2 INTO E.C. 0831: M0 INTO E.C. 0835: Begin Sox R.M. Pure Air Fill. 0443: Start 215 Microliters (50 PPMC) JP-4 Flush.

1=0 AT 1000 PSI

1-NIN 0:330 MIN-1

TRIBUTION

CIRAL DISI	RELATIVE	TISN3TN1	424 1 4	1.163	1 1.016	0.825	0.717	0.588	0.500	0.368	0.245	0.109	0.034	0.000	•
		' WN	200	0114	104	380	370	360	356	04 N	926	320	310	305	
	UNITS		DEG C												
	S. DEV		0.1		UNIT8		PPh	MAA							
	AVERABE	VALUE	30.7		INITIAL	CONC.	0.348	0.091							
	INST.		DORIC-1		INBT.		1 148-3	T 14B-3							
	01		-		16		ON	ND2-UNC							

INSTRUMENTS USED

					Ľ	32			ŝ	
					t	Ĩ			P	
	2			a	Ê	ž			×	
	۰.		2	ដ	1	£	•		Ĩ	2
	ē		E	â	ž	Ξ	Ξ		Ę	Ξ
	7		۵	ş	õ	Ξ	۲	¥	Ž	Ī.
	ž	2	Ę	ż	E	ž	ā	E	2	~
	ž	5	ĕ	ŝ	3	ž	à	3	ž	Ŧ
	ä	-	ŝ	Ë	ð	2	Ē		2	-
	5	× v	5	2	ñ	ĝ	2	ž	ŵ	Ξ
	101	Z	Ξ	N	ģ	5	ê	Ž	ŝ	ž.
_	2	8	닅	•	Ē	-	7	2	88	ä
₫	3	2	Ξ	3	ň	Ϊ	E	5	2	2
Ē	1	=	2	1		₹	F	-	ő	Ē
2	ä	12	ä	÷.	ä	9	E	8	Ξ	Đ.
ä	ż	ž	붋	ŝ	ż	Ĕ	ğ	ž	ē	3
ā	•	-	-		Ň	•		-	-	-
	-			_	ŗ	1	1	2	ī	
ũ	ę	7	2	Ξ	ñ	Ŧ	Ĩ	2	Ĩ	
ŝ	2	Ż	ä		ġ	-	ā	å	ê	5
	0	õ	2	0	2	2	2	2	2	2
8	in the second se	22	22	š	5	5	ĕ	5		Ř
		-								

2

21-061-32 Fage 1

. 89

EU-489 JF-4 (FET): GROUND LEVEL 1981: FEB 9

21-0CT~82 FAGE 2

3,	004	ELAPSED	UZONE	- 020ME	2	NU2-UNC			7 A N	NCNU	5 1 1 1 1 1	N-C/	-100 -100
- Ye	ž ž		B-1790	N03-8410	1 148-3	1-8-1	1 14B-3	DORIC-1	ECD-1	Ēs	SE-52C-2	SE-52C-2	SE-52C-
-	30	-70								8 1 8 8 8 8	0.1917		0.0007
	000	e			0, TAB	0.001	0.441	10.7				0.2670	0.2514
	002	• •								E10.0			
• •	010	30			0.241	0.202	0.446	29.9	0.001				
-	100	9			0.089	EEE O	0.423	2005	200.0	6.02J	0.1681	0.2545	0.2465
	061	96		*****	0.051	0.350	0.382	30.7	0.010				
-	100	120 -	8 8 8 8 8		0.021	0.316	0.346	30.7	0.017	0.047	0.1237	0.2480	0.2353
1	230	150			0.017	0.280	0.300	30.7	0.023				
1	00F	180			0.017	0.245	0.264	30.7	0.026	0.054		0.2422	0.2265
1	330	210	0.488		0.017	0.211	0.230	30.9	250.0				
1 1	400	240	0.515		0.020	0.190	0.209	4.0E	0.037	0.070		0.2352	0.2201
	130	270	0.498		0.020	0.175	0.196	30.9	0.039			* • • • •	
1	500	00F	0.444		0.020	0.167	0.187	30.9	0.041				
1	515	315	0.471	0.471									
1	530	330	0.479	0.469	0.020	0.162	0.183	30.9	0.035				
1	543	345	0.479	0.461				***			1 1 1 1		
1	550	920								0.076			
-	600	360	0.449	0.452	0.021	0.158	• 180	31.0	920.0			0.2072	0.1885
5	OCK	ELAPSEB	N-C9	TOLUENE	C2BENZ	M-XYL	1-03-82	0-XVL	N-C3-B2	124THEBZ	NECYC-C4	M-C10	N-C11
-	INE	TINE	Wdd	NGG	PPN	Mgg	Ndd	MAA	PPN	Mgg	Ngg	Ndd	PPN
EAY	¥.	(NEN)	SE - 5 2C-2	SE-52C-2	SE-52C-2	8E-52C-2	SE-52C-2	8E-52C-2	SE-52C-2	SE-52C-2	3E-52C-2	3E-52C-2	SE-52C-
-	920	-70	0.0007		0.0009	9.0014	0.0012	0.0013	0.0011	0.0020		0.0013	0.0023
1	000	•	2661.0	0.3027	0.0263	0.0878	0.0179	0.0310	0.0318	0.0582	0.1861	0.0870	0.0652
-	100	4	0.1308	0.2964	0.0271	0.0858	0.0180	0.0309	0.0332	0.0612	0.1808	4260.0	0.0756
	200	120	0.1225	0.2877	0.0250	0.0784	0.0141	0.0274	E010.0	0.0518	0.1753	0.0843	0.074
1	00E	180	0.1188	0.2745	0.0245	0.0750	0.0161	0.0272	0.0106	0.0500	0.1676	0.0835	0.0767
-	400	240	0.1140	0.2666	0.0245	0.0728	0.0147	0.0277	0.0300	0.0493	0.1630	0.0823	0.0796
-	600	360	0.1047	0.2021	0.0212	0.0632	0.0135	0.0245	0.0292	0.0428	0.1415	0.0718	0.0530
	1	NO DATA	TAKEN										

JP-4 (PET), GROUND LEVEL 1981, FED y EC-464

•1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
C2-N PPN ECB-1	0.000 0.0000 0.0000 0.0000 0.000000
ELAPSEB 1 INE (M I M)	40 40 150 150 150 150 150 150 150 150 150 15
CLOCK TINE DAT HR.	

NO BATA TAKEN -----

MOTES

- , ۱ •.•

DASIBI DATA PRIOR TO 1=210 MIN. IS INCORRECT DUE TO MALFUNCIJON. Tolueme bata may be migh on be-52C-2 decauge of interference. Eitmer C2-M or C3-M-2 دهع

21-001-8. FAGE

EC-490 JP-4. (PET), GROUMB LEVEL 1941, FEB 10

21-0CT-82 PAGE 1

> UBIA: BEBIN PURE AIR FILL MITH "49% R.H. 09401 215 Microliters (50 PPMC) JP-4 Flusher Into ec uia Sample Port. 0952: 510P JP-4 Bulb Flush.

1=0 AT 1000 PSI

	SPECTRAL DISTRIBUTION	RELATIVE	xx. INTENSITY	500 1.474	430 1.171	403 0.990	380 0.824	370 0.710	360 0.592	350 0.500	340 0.376	330 0.229	320 0.116	310 0.036	300 0.000
		UNI TS		DEG C											
		S.DEV		0.6		SLIND		W44	171						
		AVERABE	VALUE	30.7		LHITIAL	COMC.	0.715	581.0						
1-NIN 06		INST.		DORIC-1		INST.		F 148-3	1 148-0						
kl = 0.3		I.D		•		10		Ę	NDUNC						

INSTRUMENTS USED

ID LABEL DESCRIPTION 2920 10'C-600 RN-1211 10' 101 CARDUMAX-4001 FIU 2000 ECD-1 RN-1211 10' 101 CARDUMAX-4001 FIU 2000 BHG-1 RN-1211 DIMETHYLSULFOLAMEJ FIU 2100 PN-1 RN 1211 POROPAK H J FIB 2750 SE-52C-2 RH-1211 30H SE-52 GUARTZ CAPILLARYJ FID 1530 7 140-3 FECO 140-3 MO-MOX WYLOW FILTER AMALYZER 100 DD DD TC-1 DORIC TEMP JWDICATOM S M 41479 1790 D-1790 DASIDI 1790 020ME MONITOR 8410 MO3-9410 MM3IDM LAB9.CHEMLUN 03 AMALYZER ND 8410 3000 CA CURDUNDIROPIC ACID NCHO AMALYZER ND 8410 .

٠. .

F1-450 18-4 (FE1)+ GROUND LEVEL 1981) FEB 10

Ŀ

21-001-82 Fage 2 ٩

×.

						•						
CLOCK	FLAPSED	DZONE	UZDHE	Q	ND2-UNC	NUX-UNC	-	PAN	HCHO	1-C5	N-C6	N-C.7
1 INE	TIKE	292	r 74	r 99	299	FPH	DEG C	Ngg	NGG	PPA	PPn	444
DAY HR.	(HEN)	N03-8410	B-1790	148-3	M-941 1	1 148-0	DORIC-1	ECD-1	C.A	0MS-1	SE-52C-2	SE52C
1 835	-) 				0.000		0.000		
504 1	-55				1				*		8	
1 1000	•	0.000	0.002	0.715	0.183	0.898	29.5	0.000			0.1981	0.256
1 1006	•								0.018			
1 1030	0ñ	0.002	0.000	0.571	0.285	0.856	29.6	0.001	*	*		
1 1100	9	0.010	0.000	0.405	0.429	0.834	30.0	0.002	0.026		0.1942	0.246
1 1130	•	0.022	0.032	0.244	0.561	0.803	30.5	0.004		1 1 1 1 1 1 1 1 1 1 1 1 1		
1 1200	120	0.058	920.0	0.112	0.444	0.761	30.7	0.008	0.049		0.1830	0.241
1 1230	150	0.142	0.124	0.058	0.454	0.712	30.9	0.014				
1 1300	100	0.232	0.215	450.0	0.427	0.441	31.0	0.021	0.070	****	0.1836	0.230
0111 I	210	0.313	0.303	0.024	0.571	0.595	30.9	0.028		F 8 8 8 8 8		
1 1400	240	142.0	982-0	0.022	0.510	0.529	31.1	450.0	0.081	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.1855	0.224
1430	270	0.469	0.474	0.020	0.441	0.461	31.2	0.041				
1 1455	245								0.089			
1 1500	80	0.537	0.542	0.015	0.376	542.0	31.1	9.048			0.1723	0.216
1 1530	330	0.501	242.0	0.015	0.327	0.341	31.1	0.054]		
1 1400	941	0.405	0.420	0.015	0.288	0.305	31.1	0.058	0.095		0.1601	0.195
1 1430	945	0.415	0.630	0.015	0.266	0.275	31.2	8			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
CLOCK	ELAPSED		M-C9	BENZENE	TOLUENE	C2BENZ	N-XYL	I-C3-BZ	0-X7L	NECYC-C6	N-C10	N-C3-
	1146	I	X dd	244	E L	Hdd	NGG	MAA	¥dd	HLd	NG	144
WA HE	(MIN) .	\$6-520-2	5E-5 2C-2	\$E-52C-2	5E-52C-2	\$6 -52C-2	\$E~52C-2	\$E-52 C-2	SE-52C-2	\$E-52C-2	8E-52C-2	8E-52C
504 E	-55				•		4 					
1 1000	•	0.2417	0.1227	0.0879	0.2758	0.0249	0.0830	0.0140	0.0285	0.1855	0.0811	0.029
1 1100	\$	0.2322	0.1208	0.0841	0.2817	0.0250	0.0795	0.0159	0.0282	0.1771	0.0849	0.032
11200	120	0.2225	0.1159	0.0823	0.2712	0.0243	0.0750	0.0157	0.0260	0.1474	0.0818	0.031
		0.2115	0.1104	0.0791	0.2591	0.0231	0.0496	0.0154	0.0262	0.1615	0.0786	0.02
	*	0.2040	0.1052	0.0743	0.2509	0.0224	0.0455	0.0145	0.0251	0.1554	0.0709	0.028
			0.1003	0.0735	0.2390	0.0214	0.0418	0.0137	0.0236	0.1478	0.0701	0.027
			1240.0	4990.0	0.2284	0.0190	0.0539	0.0112	0.0203	0.1322	0.0423	0.024

2 2

ND DATA TAKEN

· · · · · ·

-

÷.,

EC-490 JP-4 (PET), GROUND LEVEL 1981, FEB 10

C2-N PPN ECU-1		0.0001	0.0004	0.0010	0.0010	0.0010	0.0010	0.0010	0.0008	0.0007	0.0008	0.0007.
1-40 66-1	0.000	0.000	0.0000 0.0000	0.0001	0.0001	. 2000.0	0.0003	0.0004	0.0004	0.0004	0.0004	0.0004
N-C11 PPN SE-52C-2	0.0016	0.0684	0.0466		0.0670	0.0715		0.0649		0.0597		0.0466
1247NED2 PPN SE-52C-2	0.0010	0.0536	0.0549		0.0522	0.0494	******	0.0392		0.0398		0.0351
ELAPSED TIME (MIN)	មា មាម 	0	0 0	90	120	80	210	240	270	001	330	360
CLOCK TINE MAY HR.	835	1000	1030	1130	1200	0001	OEEI	1400	1430	1500	1530	1600

-- NO DATA TAKEN

NOTES

94

TOLUEME DATA ON SE-526-2 MAY DE HIGH DECAUSE OF INTERFERENCE.

21-0CT-82 PAGE 3

EC-491 JP-4 (PET), GROUMD LEVEL J983 FED, 11 9805; FILL TO "10 TORR WITH M2. URIS: NO2 FLUGMED IMTO EC WITH W2 TO "20 FORR. 0828: Mo FLUGMED IMTO EC. UBJ2: Pure Air Fill DeGum. Wet Bulb: 72 F! Dry Buld: 04 F! 52% R.H. 0930: 21 Microlifers (5 PPMC) of JP-4 imjected into EC.

NI = 0.330 MIN-1

CTRAL DISTRIBUTI	RELATIVE	INTENSITY	1.481	1.165	1.004	0.852	0.753	0.412	0.500	0.371	0.236	0.120	0.019	0.000
346		Ĩ	000	004	104	380	370	340	0950	340	OFF	320	OTE	905
	UNITS		DE8 C											
	S.DEV		29.5		UNIT8		271	Hdd						
	AVERAGE	VALUE	57.5		INITIAL	CONC.	0.717	0.192						
	INST.		DORIC-1		. IMBT.		1 148-3	1 148-3						
	10		-		10		OH	MO2-UNC						

ð

INSTRUMENTS USED

		Ξ				ZEI		Ī		
		ž				F		g		
	FI	L'A	_			ŧ		Ľ	8	60
	:0	1 I I			5	TEN		LYZ	-	181
	- 6	2	3		3	717	4	ž	ŝ	Ă
	XAN	RT2	E	â	ā	ā	110	10	×	< 0
		ş	Ē.	-	ŝ	M	N OF	5		HUH
	Š	2	3	*	EN	ă	쀻	H	C AR	8
	102	ÿ	THY	Ž		2	020	ŝ	20	¥
Ŧ	2	5	i Will	0 KO	Ä	ž	8	88 V		PIC
110	Ē	m -			TEN	ţ	Š	ت س		TRO
. AIR	121	121	121	121	័្ឋ	à	Ĩ	110	121	2
ESCI		ż		ž	ğ	TEC	DAS	Ž		
ā	8	ñ	-			-17	-	2	-	-
Ц	- U	Ś	7	-	2	Ì	200	ş	7	
	10	j, Ma	BNA	Ŧ	ğ	ä F	I	10 H	Ċ	S
-	8	8	8	8	8	ŝ	00	0	00	8
8	5	2	Ň	ã	ě	10	Ň	-	Ň	ň

21-0CT-82 PAGE 1
EU-491 JP-4 (PET), GROUND LEVEL 1901 FEB, 11

21-0CT-82 FAGE 2

CLOCK TIME	ELAPSED	020NE PPh	0ZONE PPN	0 4 4 0 4 4	NO2-UNC PPh	NOX-CNC	T DEA C	4 4 4 4 4 4 4 4 4	HCHO	N-C6	N-C7 698	80-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PAY HR.	(NIN)	N03-8410	B-1790	1 148-3	T 148-3	T 148-3	DORIC-1	ECD-1	5	SE-52C-2	SE-52C-2	SE-52C
920	50					****		0.000				
822	00											
922	-20			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			* * * *		0.014			1 1
1 1015	•	0.000	0.000	0.717	0.192	0.898	29.1	0.000		0.0201	0.0257	0.024
1 1045	010	0.002	0.000	0.661	0.222	0.871	85.6	0.000				
1115	60	0.002	0.002	0.407	0.258	0.841	30.9	0.000	0.016	0.0195	0.0245	0.022
1 1145	96	0.000	0.002	0.554	0.292	0.832	87.8	0.000			* * * * *	2378
1 1215	120	0.002	0.005	0.507	0.319	0.812	31.5	0.000	0.024	0.0186	0.0233	0.021
1 1245	150	0.012	0.007	0.458	0.346	0.793	88.3	0.001		1		3 1 1 1 1
1 1315	180	0.007	0.005	0.412	0.373	0.771	4.1E	0.001	0.033	0.0168	0.0200	0.019
1 1345	210	0.012	0.007	0.373	0.385	0.747	88.6	0.001				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 1415	240	0.012	0.010	0.336	0.402	0.725	31.8	0.001	0.041	0.0170	0.0208	0.018
1445	270	0.020	0.010	0.300	0.412	0.703	89.1	0.001				3 1 1
1 1515	300	0.017	0.010	0.266	0.427	0.478	32.0	0.002	0.044	0.0155	0.0176	0.016
1 1545	330	0.024	0.022	0.236	0.432	0.656	89.3	0.002				
1 1405	350			• • • • • • • • • • • • • • • • • • • •					0.051	* * * * *		
1 1415	360	0.022	0.020	0.212	0.432	0.432	32.1	0,002		0.0155	0.0182	0.015
CLOCK	ELAPSED	N-C9	BENZENE	BENZENE	TOLUENE	C2BENZ	N-XYL	0-X1L	MECYC-C6	N-C10	1-C3-B2	N-C3-
TINE	1 INE	Mgg	Hdd	HAA	MAG	777	Mgg	NGG	APA	Wdd	MAG	NGG
LAY HR.	(NIN)	SE-52C-2	10°C-400	\$E-52C-2	SE~52C-2	8E-52C-2	8E-52C-2	8E-52C-2	SE-52C-2	SE-52C-2	8E-52C-2	SE-52C
1 850	-85		0.0000					1 + + + + + + + + + + + + + + + + + + +				
1 855	-80	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		• • • • • • • • • • • • • • • • • • • •	•	7 5 7 7				0.0011)
1 1015	0	0.0121		0.0091	0.0259	0.0024	0.0091	4E00.0	0.0182	0.0040	0.0012	200.0
1 1115	99	0.0114		0.0081	0.0253	0.0025	6.0082	0.0030	0.0173	0.0081	0.0013	100°0
1 1215	120	0.0191		0.0078	0.0230	0.0025	0.0074	0.0060	0.0160	0.0073	0.0014	0.002
1 1315	180	0.0077		0.0075	0.0242	0.0020	0.0043	0.0021	0.0140	0.0069	0.0009	0.002
1 1415	240	0.0092		0.0069	0.0208	0.0021	0.0059	0.0025	0.0140	0.0066		0.002
1 1515	006	0,0083		0.0064	0.0180	0.0017	0.0049	0.0111	0,0120	0.0054		0.002
1 1415	360	0.0079		0.0064	0.0146	0.0018	0.0048	0.0021	0.0121	0.0054		0.002
	NO BATA	TAKEN										

EL-491 JP-4 (PET)+ GROUMD LEVEL 1981 FEB, 11

0000	000.0	000000000000000000000000000000000000000	000.0	000 0	000	000	000 0	0.000	
0.0024		0.007	0,0040	0.0040	5500 0	0.0041		0.004	
0.0015	0.0661	0.0053	0.0044	. 7500.0	0.0032	0:00.0		0.0027	TAKEN
	°ņ	9 0 4 F	120	100	240	007	330	360	NO DATA
856 855	1015	1115	1215	1315	5141	1515	5457	1415	:
	850 -85 -100 0.0015 0.0024	850 -85 0.0000 855 -80 0.0015 0.0024 1015 0 0.0061 0.0088 0.0000 1045 30 0.0000	R50 -B5 0.000 855 -80 0.0015 0.0024 1015 0 0.0051 0.0068 0.0000 1045 30 0.0053 0.0073 0.0000 11155 90 0.0053 0.0073 0.0000	B30 B30 B35 B35 <td>B50 -B5 0.000 355 -B0 0.0015 0.0024 1015 0 0.0015 0.0024 1115 0 0.0053 0.00073 0.0000 1115 60 0.0053 0.00073 0.0000 1115 10 0.00073 0.00073 0.0000 1115 10 0.00073 0.00073 0.0000 1115 12 0.0004 0.00073 0.0000 1115 12 0.00173 0.0004 0.0000 1115 12 0.00173 0.0004 0.0000 1245 120 0.0037 0.0040 0.0000 1245 130 0.0037 0.0040 0.0000</td> <td>B30 -B5 10 0.0015 0.0024 0.0000 355 -30 0.0015 0.0024 0.0000 1015 0 0.0015 0.0024 0.0000 1115 0 0.0053 0.0073 0.0000 1115 40 0.0053 0.0073 0.0000 1115 90 0.0033 0.0073 0.0000 1115 90 0.0033 0.0004 0.0000 1115 130 0.0033 0.0040 0.0000 1215 130 0.0037 0.0040 0.0000 1315 180 0.0037 0.0040 0.0000 1315 210 0.0037 0.0040 0.0000 1345 210 0.0037 0.0060 0.0000 1345 210 0.0037 0.0060 0.0001 1415 270 0.0037 0.00659 0.0001</td> <td>B30 -B5 10 0.0015 0.0024 0.0000 355 -30 0.0015 0.0024 0.0000 1015 0 0.0015 0.0024 0.0000 1115 0 0.0053 0.0073 0.0000 1115 40 0.0053 0.0073 0.0000 1115 90 0.0033 0.0073 0.0000 1115 90 0.0033 0.0040 0.0000 1115 190 0.0037 0.0040 0.0000 1116 1315 180 0.0037 0.0040 0.0000 1315 180 0.0037 0.0040 0.0000 0.0000 1315 270 0.0037 0.0040 0.0005 0.0000 1415 270 0.0037 0.0040 0.0005 0.0000 1415 270 0.0037 0.0040 0.0000 0.0000 1415 270 0.0037 0.0040 0.0000 0.0000</td> <td>B30 -B3 00 0.0015 0.0024 0.0000 B55 -40 0.0015 0.0024 0.0000 1015 0 0.0015 0.0024 0.0000 1115 10 0.0053 0.0073 0.0000 1115 90 0.0033 0.0073 0.0000 1115 90 0.0033 0.0073 0.0000 1115 120 0.0033 0.0073 0.0000 1115 120 0.0033 0.0073 0.0000 1115 120 0.0033 0.0073 0.0000 1215 120 0.0033 0.0040 0.0000 1315 180 0.0033 0.0040 0.0000 1315 230 0.0033 0.0040 0.0000 1415 2340 0.0033 0.0040 0.0000 1415 230 0.0033 0.0041 0.0000 1515 300 0.0033 0.0041 0.0000 1415 230 0.0033 0.0041 0.0000 1515 300 0.0033 0.0041 0.0000 1515 0.0033 0.0041 0.0000 1515 0.0033 0.0041</td> <td>H50 -B5 0.000 H55 -d0 0.0015 0.0024 0.000 1015 0 0.0061 0.006 0.000 1115 0 0.0053 0.0073 0.000 1115 60 0.0033 0.000 0.000 1115 60 0.0033 0.000 0.000 1115 120 0.0044 0.0040 0.000 1115 120 0.0040 0.0000 0.0000 1115 120 0.0044 0.0040 0.0000 1115 120 0.0040 0.0000 0.0000 1245 120 0.0037 0.0040 0.0000 1315 210 0.0037 0.0040 0.0000 1415 240 0.0037 0.0040 0.0000 1415 240 0.0037 0.0041 0.0000 1415 240 0.0037 0.0041 0.0001 1415 240 0.0037</td>	B50 -B5 0.000 355 -B0 0.0015 0.0024 1015 0 0.0015 0.0024 1115 0 0.0053 0.00073 0.0000 1115 60 0.0053 0.00073 0.0000 1115 10 0.00073 0.00073 0.0000 1115 10 0.00073 0.00073 0.0000 1115 12 0.0004 0.00073 0.0000 1115 12 0.00173 0.0004 0.0000 1115 12 0.00173 0.0004 0.0000 1245 120 0.0037 0.0040 0.0000 1245 130 0.0037 0.0040 0.0000	B30 -B5 10 0.0015 0.0024 0.0000 355 -30 0.0015 0.0024 0.0000 1015 0 0.0015 0.0024 0.0000 1115 0 0.0053 0.0073 0.0000 1115 40 0.0053 0.0073 0.0000 1115 90 0.0033 0.0073 0.0000 1115 90 0.0033 0.0004 0.0000 1115 130 0.0033 0.0040 0.0000 1215 130 0.0037 0.0040 0.0000 1315 180 0.0037 0.0040 0.0000 1315 210 0.0037 0.0040 0.0000 1345 210 0.0037 0.0060 0.0000 1345 210 0.0037 0.0060 0.0001 1415 270 0.0037 0.00659 0.0001	B30 -B5 10 0.0015 0.0024 0.0000 355 -30 0.0015 0.0024 0.0000 1015 0 0.0015 0.0024 0.0000 1115 0 0.0053 0.0073 0.0000 1115 40 0.0053 0.0073 0.0000 1115 90 0.0033 0.0073 0.0000 1115 90 0.0033 0.0040 0.0000 1115 190 0.0037 0.0040 0.0000 1116 1315 180 0.0037 0.0040 0.0000 1315 180 0.0037 0.0040 0.0000 0.0000 1315 270 0.0037 0.0040 0.0005 0.0000 1415 270 0.0037 0.0040 0.0005 0.0000 1415 270 0.0037 0.0040 0.0000 0.0000 1415 270 0.0037 0.0040 0.0000 0.0000	B30 -B3 00 0.0015 0.0024 0.0000 B55 -40 0.0015 0.0024 0.0000 1015 0 0.0015 0.0024 0.0000 1115 10 0.0053 0.0073 0.0000 1115 90 0.0033 0.0073 0.0000 1115 90 0.0033 0.0073 0.0000 1115 120 0.0033 0.0073 0.0000 1115 120 0.0033 0.0073 0.0000 1115 120 0.0033 0.0073 0.0000 1215 120 0.0033 0.0040 0.0000 1315 180 0.0033 0.0040 0.0000 1315 230 0.0033 0.0040 0.0000 1415 2340 0.0033 0.0040 0.0000 1415 230 0.0033 0.0041 0.0000 1515 300 0.0033 0.0041 0.0000 1415 230 0.0033 0.0041 0.0000 1515 300 0.0033 0.0041 0.0000 1515 0.0033 0.0041 0.0000 1515 0.0033 0.0041	H50 -B5 0.000 H55 -d0 0.0015 0.0024 0.000 1015 0 0.0061 0.006 0.000 1115 0 0.0053 0.0073 0.000 1115 60 0.0033 0.000 0.000 1115 60 0.0033 0.000 0.000 1115 120 0.0044 0.0040 0.000 1115 120 0.0040 0.0000 0.0000 1115 120 0.0044 0.0040 0.0000 1115 120 0.0040 0.0000 0.0000 1245 120 0.0037 0.0040 0.0000 1315 210 0.0037 0.0040 0.0000 1415 240 0.0037 0.0040 0.0000 1415 240 0.0037 0.0041 0.0000 1415 240 0.0037 0.0041 0.0001 1415 240 0.0037

---- NO DATA TAK

NOTES

97

TOLUENE DATA ON SE-520-2 MAY DE NIGH DECAUSE OF INTERFERENCE.

21-001-82 Page 3

EC-492 JP-4 (PET)+ GROUND LEVEL 1981 FEB+ 12 UBO2: EC FILLED TO "IO TORR WITH N2. Obo8: MO2 FLUSHED INTO EC WITH M2. UB21: MO FLUSHED INTO EC WITH M2. U928: Puke Air Into EC. Wet Buld Temp: 70.5 fi Dry Buld Temp: 85 f. 50% r.H. 0924: 215 Microlifers (50 PPMC) JP-4 injected into EC.

T=0 AT 1015 PST

ht = 0.330 MIN-1

TRAL DISTRIBUTION	RELATIVE	INTENSITY	1.468	1.135	0.977	0.799	0.723	0.590	0.500	0.364	0.237	0.113	0.017	0.000	
SPEC		. LN	500	024	20¥	380	370	360	350	340	330	320	310	300	
	UNITS		DEG C												
	S.DEV		1.4		211ND		Ndd	Mgg							
	AVERABE	VALUE	31.7		INITIAL	CONC.	195.0	0.102							
	INST.		bORIC-1		INST.		1-841	T 146-3							
	11		-		61		Q	ND2-UNC							

INSTRUMENTS USED

ID LABEL DESCRIPTION 1790 D-1790 DASIDI 1790 OZOME MONIJOK 1790 D-1790 DASIDI 1790 OZOME MONIJOK 1810 M03-8410 MONITOR LABS 8410 D3 AMALYZER (CHEMIL.) 1830 T 14D-3 TECO 14D-3 MO-MOX AMALYZER (CHEMIL.) 2750 SE-52C-2 RW-121! 30M SE-52 GUARYZ CAP, GC! FID 2100 PW-1 RH-121! JOH SE-52 GUARYZ CAP, GC; FID 2200 DMS-1 CHAMPID DIMETHYLGULFOLAME GC; FID 2200 DMS-1 CHAMPID DIMETHYLGULFOLAME GC; FID 2000 ECD-1 RM-121! 12' 5X CARBOUAX-600 GC; FID 2000 ECD-1 RM-121! 12' 5X CARBOUAX-600 GC; FID 2000 ECD-1 RM-121! 12' 5X CARBOUAX-600 GC; FID 2000 CG CHAMPIDE AND CANDAX-600 GC; FID 2000 CG CHAMPIDE AND CANDAX-600 GC; FID 2000 CG CHAMPIDE AND CANDAX-600 GC; FID 2000 CA CHAMPIDE AND CANDAX-600 GC • .

٠...

EC-492 19-4 (PET), GROUND LEVEL 1981 FEM, 12

.

21-001-82 Page 2

				!						10-1		0.J-7
11 OCK	ELAPSED TIME	D UZONE	020NE	0 A 4	NUZ-UNC PPA	PPA PPA	DEG C	2 H J J	Neg	1111	244	PPn PPn
DAY HR.	(NIN)	H03-8410	0-1790	T 148-3	T 148-3	T 148-3	DORIC-1	ECD-1	5	SE-52C-2	SE-52C-2	SE-52C-
1 845	9 6 -							0.000				
1 1005	-10								0.014	8		
. 1015	c	0.000	0.000	0.391	0.102	0.494	27.3	0.000		0.2073	0.2627	0.2440
	ç	0.007	0.005	0.271	0.207	0.477	31.1	0.001				
	9	0.024	0.014	0.118	0.338	0.454	31.0	E00.0	0.025	0.2003	0.2550	0.2293
	6	0.110	0.092	40.034	0.386	0.423	31.4	0.005			1111	
1 1215	120	0.220	0.205	0.017	0.363	0.382	32.0	0.015	0.046	0.1961	0.2462	0.2191
1 1245	150	0.310	0.290	0.012	0.332	0.344	32.0	0.020				
1 1315	180	195.0	0.376	0.010	0.295	202.0	32.3	0.027		0.1884	0.2326	0.2067
1 1325	06T							8 1 1 1	0.060			
1 1345	210	0.454	0.451	0.009	0.260	0.269	32.8	0.030	***			
1 1415	240	0.505	544.0	0,001	0.229	0.238	32.5	0.037	0.068	0.1829	0.2251	0.200
1 1445	270	0.522	0.515	0.007	0.207	0.214	32.1	0.041				
1 1515	001	0.525	0.517	0.007	0.195	0.202	31.7	0.044	0.070	0.1809	0.2196	0.1973
1 1545	OFE	0.508	0.505	0.007	0.186	0.196	32.1	0.045]	
1 1605	350								0.077			
1 1615	360	0.496	0.488	0.007	0.183	141.0	33.2	0.043		0.1634	0.2006	0.11.0
CLOCK	ELAPSEL	00-W-C9	DENZENE	DENZENE	TOLUENE	C2DENZ	H-XYL	1-C3-B2	0-XYL	28-00-2	12454554	PPA PPA
DAY HR.	(NIN) .	SE-52C-2	10'C-600	SE-52C-2	5E-52C-2	8E-52C-2	8E-52C-2	SE-52C-2	SE-52C-2	8E-52C-2	SE-52C-2	8E-52C
			0.0002		1							
	04-							*****		# 	0.0013	
								0.0161	0.000	0.0204	0.0522	0.185
1 1015	0	0.120		0740.0						0.00.0	0.0485	0.177
1115	09	0.1170				0.0244 0.0250			0.0245	0.0277	0.0492	0.171
	021				2112 Q			0110	0.0245	0.0259	0.0446	0.141
	081					0.0013		0.0110	0.0241	0.0247	0.0431	0.155
		0.101.0		0.0744	0.2448	0.0215	6E90'0	0.0133	0.0237	0.0250	0,0442	0.152
1 1415	360	0.0867	*****	0.0696	0.1969	0.0186	0.0557	0.0106	0.0202	0.0127	0.0337	0.138
		. TAKEN										

21-0CT-82 PAGE 3

0	LOCK	ELAPSED	N-C10	N-C11	N-34
	JUIT	TINE	MAA	PPN	899 8
ā.	Y HR.	(NIN)	SE-52C-2	SE-52C-2	ECD-1
-	845	06-			0.0000
-	505	-70		0.0007	
-	1015	0	0.0815	0.0659	0.0000
-	1045	0E			0.000
-	1115	60	0.0767	0.0665	0.0000
-	1145	6			0000.0
-	1215	120	0.0788	0.0653	0.000
-	1245	150			0.000.0
-	1315	180	0.0711	0.0570	0.000
-	1345	210			0.000
-	1415	240	0.0680	0.0580	0.001
-	1445	270			0.0001
-	1515	OOE	0.0711	0.0765	0.0001
-	1545	330			0.001
-	1615	360	0.0569	4240.0	0.0001
			;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		

----- NO DATA TAKEN

NOTES

A TOLUENE DATA MAY BE HIGH BECAUSE OF INTERFERENCE.

EC-497 JP-4 (PET), SIMULATED 20,000 FEET 1981, FEB 24

0738: "0.2 PPM M02 INTO EC. 0754: "0.8 PPM M0 INTO EC. 0758: Degim Driest Pure Air Fill. 0829: 215 Ml. (50 PPMC) OF JP-4 Flushed INTO EC.

EC DILUTION SCHEDULE

I INE	FK (TORK) BEFORE	PR(TORR) AFTER	TOUT	COOLANT
1006	341	352	22.4 F	2.9
1112	243	353	20.5 F	- 6 * 5 -
1239	344	353	16.6 F	-12.0
4461	347	353	14.7 F	-10.1
1515	347	353	14.4 F	-11.7
1548	350	727	15.7 F	-12.0

T=0 AT 1000 PST

KI = 0.470 HIN-1

SPECTRAL DISTRIBUTION	RELATIVE	MN. INTENSITY	500 1.543	430 1.171	564-0 204	360 0.810	370 0.711	0.50 0.590	350 0.300	340 0.357	330 0.232	320 0.107	310 0.023	300 0.000
	UNITS		DEG C											•
	S.DEV		1.2		UNITS.		NGG	NGG						
	AVERAGE	VALUE			INITIAL	COAC.	0.735	0.178						
	INST.		DORIC-1		.18M1		E-441 1	1 148-3			•			
	10		-		10		2	NO2-UNC						

INSTRUNENTS USED

03 AMALYZER MD 8410 ILLARYS FID DX NYLON FILTER AMALYZER 510 IAX-4001 ECD LYSIS IN 6147 . 12° SX CARDO CATOR RN-1219 8 103-841 148-1 1530 T 148-1 1500 BORIC-8410 M03-841 3000 CA 2000 ECP-1 DRIC-LABEL 18 2750 2750 2750 2750

21-0C1-82 PAGE 1

SINULATED 20.000 FEET 1961 - -

21-001-82 PAGE 2

1

CLOCK TIME	ELAPSED Time	0ZONE PPK	020	NO2-UNC	NOX-UNC	T DEG C	7 4 4	HCH0	10 10 21 2	N - C.6	8-C7	11 00 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
BAT MK.	(111)	M03-8410	1 148-3	T 148-3	1 148-3	DORIC-1	ECD-1	e J	SE-52C-2	DMS-1	SE-52C-2	SE-52C-2
1 901	-54					1			6621.0	0.1597	0.2333	0.2160
1 930	- 30							0.001				
1 1000	0	-0.007	0.735	0.178	0.906	-7.8			0.1799		0.2341	0.2180
1 1015	15	-0.004	0.498	0.202	0.898	6.1.						
1 1030	0n	0.000	0.647	0.223	0.849	19.4-						
1 1045	ų	0.000	0.610	0.236	0.846	-4.1	***					1
1 1100	60	0.000	0.578	0.253	0.833	-4.7	1	0.012	0.1730		0.2246	0.2087
1 1115	5	0.000	0.554	0.279	0.833	-3.0						
1 1130	06	0.000	0.535	0.279	0.811	-8.7						
2411 1	105	0.000	0.511	0.292	0.801	-6.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	****				
1 1200	120	0.004	0.492	0.296	0.790	-6.4		0.026	0.1670		0.2161	0.2011
1 1215	135	0.004	0.479	0.301	0.780	-6.6						
1 1236	150	0.004	0.466	0.305	0.769	-7.0						
1 1245	165	0.004	0.453	0.312	0.762	-7.2						1
1 1306	180	0.004	0.440	0.312	0.752	-7.3			0.1619		0.2101	0.1945
1 1310	190							150.0	517514			
1 13:	195	00°0	0.428	0.314	0.741	-7.3		+ 2	1			
1 1330	210	0.004	0.415	0.318	0.732	-7.4						
2451 1	222	0.007	0.402	0.320	0.723	-7.6						
1 1400	240	0.007	0.393	0.318	0.711	-7.6		0.037	0.1568		0.2026	0.1870
1 1415	255	0.000	0.382	0.322	0.704	-7.0					* * * * *	
11261	270	0.000	0.372	0.331	0.702	-4.0					* * * * * *	
1 1445	285	0.000	545.0	0.331	0.492	4.9-		****				
1 1500	300	000.0	0.348	0.335	0.480	•••		0.039	0.1365		0.2023	0.1864
1 1505	30E						E00.0				8 8 8 9 9 1	
1 1515	315	0.000	0.339	0.329	0.448	-7.4						
1 1530	910	0.000	0.329	0.329	0.457	-7.6						
1 1545	1912 1	0.000	0.320	0.329	0.444	-7.7		0.041				
1 1606	360	0.000	0.312	565.0	0.444	-4.4	0.007		0.1518		0.1955	0.1797
	NO DATA	TAKEN										

EC-497 JP-4 (PET): SINULATED 20.000 FEE1 1981: FEB 24

21-001-82 Page 3

CLOCK TIME DAY HR.	ELAPSED TIME (NIN)	N-C9 PPM SE-52C-2	DENZENE PPN SE-52C-2	10LUENE PPN SE-52C-2	TOLUENE PPM 10 ° C-600	C2BENZ PPH SE-52C-2	M-XYL PPN 8E-52C-2	1-C3-B2 PPN 8E-52C-2	0-XYL FFN \$E-52C-2	м-С3-82 РРн SE-52С-2	124THEBZ FFn SE-52C-2	MECYC-C6 PPN SE-52C-2
1 901	-59	0.1132	0.0298	0.2650 A	0.0482	0.0239	0.0774	0.0158	0.0279	0.0272	0.0517	0.1667
1 1000	0	0.1137	0.0304	0.2635	0.0517	0.0238	0.0744	0.0160	0.0277	0.0279	0.0520	0.1672
1 1100	9	0.1094	0.0298	0.2542		0.0230	0.0728	0.0152	0.0265	0.0274	0.0494	0.1606
1 1200	120	0.1055	0.0285	0.2458		0.0218	0.0481	0.0148	0.0255	0.0262	0.0459	0.1550
1 1300	180	0.1017	0.0275	0.2378	0.0438	0.0216	0.0452	0.0142	0.0245	0.0251	0.0437	0.1499
1 1400	240	0.0974	0.0270	0.2292		0.0208	0.0547	0.0137	0.0233	0.0237	0.0410	0.1443
1 1500	300	0.0965	0.0263	0.2291		0.0193	0.0400	0.0130	0.0227	0.0234	0.0381	0.1438
1 1600	340	0.0935	0.0240	0.2205	0.0508	0.0200	0.0581	0.0133	0.0219	0.0233	0.0353	0.1381
CLOCA FINE BAY MR.	GLAPSED TIME (MIN)	N-C10 PPN SE-52C-2	N-C11 PPN SE-52C-2	XE - X PPA ECD-1				·				
106 1	-59	0.0770	0.0760	1								
1 1000	0	0.0779	0.0793									
1 1100	90	0.0752	0.0749									
1 1200	120	0.0729	0.0498									
1 1300	180	0.0445	0.0647									
1 1400	240	0.0447	0.0444									
1 1500	000	0.0450	0.0640									
1 1505	305		C 2 1 5 5 5 5 5 5 5 5 5	0.0007								
0091 1	360	0.0433	0.0620	4000.0								
	NO DATA	TALEN										

NOTES

€

TOLUENE DATA ON THE SE-52C-2 MAY BE MIGH BECAUSE OF INTERFERENCE.

EC-498 JP-4 (PET): SINULATED 20.000 FEET 1981. FEB 25

0704: ~0.1 PPM MO2 INTO EC. 0717: ~0.4 PPM MD INTO EC. 07211 Pegim Priest Pure Air Fill to 350 Torr. Coolant: 12.5 Tout: 32.0 07271 Coolant: 10.4 F Tout: 40.8 F 08001 215 ML. (50 PPMC) JP-4 Flusmed Into EC.

EC DILUTION SCHEDULE

DUT CODLANT	0.011 1.0.0 1.1.1 1.	5.0 F -15.2 F
PR(TOKK) AFTER T		353 1
 PR(TORK) BEFORE	17 4 4 4 4 4 4 1 10 1	349 930 PST
TINE	1035	1448 [=0 AT

h1 = 0.470 MJM-1

SPECTRAL DISTRIBUTION	RELATIVE	MM. INTENSITY	500 1.571	430 1.215	403 1.008	380 0.833	370 0.701	360 0.596	350 0.500	340 0.368	330 0.230	320 0.117	310 0.025	300 0.000
	UNIT8		DEG C											
	S.DEV		1.2		UNITS		FPN	FPN						
	AVERAGE	VALUE	-7.3		INITIAL	CONC.	0.341	0.086						
	INST.		DORIC-1		1 M 87.		1 148-3	1 14B-3						
	10		-		91		NO X	NO2-UNC						

INSTRUMENTS USED

2200 DMS-1 RM-1211 DIMETHYLSULFOLAMEI FID 2750 SE-52C-2 RM-1211 DIMETHYLSULFOLAMEI FID 1530 T 14B-3 TECO 14D-3 NO-NOX NYLON FILTER ANALYZER 1500 DORIC-1 DORIC TENP INDICATOR, 9N 61479 3000 CA DAALYSIS 9410 NO3-B410 MDMITOR LABS/CHEMLUN 03 ANALYZER MD 8410 2000 ECD-1 RM-1211 12° 5% CARBOWAX-4001 ECD DESCRIPTION 1211 LABEL 1D 2100

۰.

21-0CT-82 PAGE 1

EC-478 P-4 (PET), SIMULATED 20,000 FEET 981, FLB 25

21-0CT-82 PAGE 2

CLOCK TIME BAY HR.	ELAPSED TIME (MIN)	UZDME PPH M03-8410	MO PPN 1 148-3	NO2-UNC PPN T 148-3	NOX-UMC PPR T 148-3	T DEG C DORIC-1	PPN PPN ECD-1	HCHO FPH Ca	N-C6 PPN SE-52C-2	N-C7 PPN SE-52C-2	N-C8 PPN \$6-520-2	R-C9 86-52C-1
1 820 1 856	- 70 - 34							800.0	0.1709	0.2253	0.2108	8601.0
1 930	0	0.000	0.341	0.086	0.446	-11.4			0.1664	0.2217	0.2082	0.1044
1 945	15.	0.004	0.342	0.097	0.440							
1 1000	0 M	0.004	0.312	0.120	414.0	-5.7						
1 1015	45	0.007	0.284	0.140	0.422	-4.0						
1 1030	90	0.007	0.253	0.159	0.412			0.013	0.1634	0.2154	0.2034	0.1072
1 1045	22	0.011	0.228	0.176	0.403	4.41		1				
1 1100	06	0.019	0.208	0.185	0.392	- 4 - 7						
1 1115	105	0.022	0.189	0.195	0.382				* * * *			4 1 1 1 4 1 1 1 1 1 1
0611 1	120	0.026	0.174	0.202	0.376	6.9-	0.002	0.024	0.1410	0.2129	0.1998	0.1049
1 1145	135	010.0	0.159	0.206	0.465	-7.0		1 0 1 1 1 1 0				
1 1200	150	0.033	0.148	0.208	0.356	-7.2						
1 1215	165	0.033	0.137	0.215	945.0	-7.4						
. 1 1230	180	0.037	0.129	0.215	545.0	-7.7	0.004	0.029	0.1573	0.2078	0.1942	0.1020
1 1245	195	0.037	0.120	0.215	0.334	-7.6			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 - 2 - 1 - 1
1 1300	210	0.044	0.114	0.215	0.328	-7.6						
1 1315	225	0.044	0.107	0.215	0.322	-7.8		•				
0221 1	240	0.048	0.101	0.215	0.315	0.0	0.007	0.029	0.1545	0.2048	0.1905	0.1005
1 1345	255	0.048	0.097	0.215	0.309	0.8-	8	1 0 1 0 1				
1 1400	270	0.052	0.088	0.215	0.304	-8.0					* * * * *	
1 1415.	285	0.059	0.086	0.213	9.248	0.81		f	1 1 1 1			
1 1430	300	0.059	0.079	0.213	0.292	-8-1	0.009	0.044	0.1504	0.2053	0.1837	0.0959
1 1445	315	0.063	0.077	0.211	0.285							
1 1500	021	0.043	0.073	0.208	0.201	0.81						
1 1515	345	0.067	0.069	0.208	0.274	-7.0		0.031				8 9 9 9 9
1 1530	340	0.074	0.044	0.213	0.276	.	0.010		0.1481	0.1940	0.1796	0.0938
	AL DATA	TAKEN										

SIMULATED 20,000 FEET JP-4 (PET), 5 1981, FEB 25 EC-491

21-0CT-82 PAGE 3

HE - K FPH E CD-1			1	0.0000	0.0001	0.0002	0.0003	£000°0	
N-C11 PPH SE-52C-2	0.0750	0.0790	0.0791	0.0727	0.0714	0.0697	0.0645	0.0665	
N-C10 FFM 86-52C-2	0.0739	0.0752	0.0747	0.0727	0.0707	E070.0	0.0457	0.0648	
MECYC-C6 PPM SE-52C-2	0.1618	0.1575	0.1549	0.1526	0.1488	0.1461	0.1409	0.1380	
124TMEBZ PPM SE-52C-2	0.0521	0.0519	0.0496	0.0473	0.0450	0.0438	0.0398	0.0398	
N-C3~BZ PPM 8E-52C-2	0.0270	0.0267	0.0274	0.0266	0.0258	0.0252	0.0243	0.0238	
0-XYL PPM SE-52C-2	0.0273	0.0269	0.0260	0.0253	0.0246	0.0236	0.0230	0.0223	
I-C3~BZ PPH SE-52C-2	0.0156	0.0151	0.0151	0.0149	0.0145	0.0141	0.0137	0.0134	
M-XYL PPM SE-52C-2	0.0749	0.0741	0.0714	0.0689	0.0664	0.0560	0.0414	0.0520	
C2BENZ PPH SE-52C-2	0.0230	0.0227	0.0224	0.0220	0.0214	0.0200	0.0202	0.0194	
BENZENE PPH SE-52C-2	0.0289	0.0276	0.0268	0.0267	0.0262	0.0260	0.0251	0.0251	TAKEN
ELAPSED TIME (MTN)	-70	•	60	120	180	240	001	360	NO DATA
CLOCK TIME Day HR.	1 820	1 930	1 1030	0211 1	1 1230	1 1330	1 1430	1 1530	

EC-500 JP-4 (PET): Simulateb 20:000 feet 1981: Mar 3

21-0CT-82 PAGE 1

•

UBÓBI MOZ INTO EC "0.1 PPM 00141 MO INTO EC "0.1 PPM 00251 430 Microliters (100 PPMC) JP-4 Imjected 00301 filled With Driest Pure Air to 350 Tork

T=0 AT 1100 PST

N1 = 0.470 MIN-1

SPECTRAL DISTRIBUTION Dei Attue	NN. INTENSITY	500 1.410	430 1.221	403 1.038	380 0.845	370 0.718	240 0.593	350 0.500	340 0.374	330 0.220	320 0.112	310 0.024	300 0.000
		DEG C	Mgg										
į	2.5	1.0	0.013	•	ET INU		PPH	111					
	AVERAUL VAL INE		0.034		INITIAL	COMC.	0.392	0.082					•
-	• 18M1	DORIC-1	V	;	T#ST.		T 148-3	T 148-3					
	2	***	MCHD		16	2	0W	MD2-UNE					

INSTRUMENTS USED

ALYZER ND 8410 APILLARY FID -4001 FID CHRONOTROPIC ACID MCMO ANALYSIS ANEI FID 41479 IECO 149-3 M DESCRIPTION H-1214] NON TOR M-121 it-12] LLD LABEL DES 2200 PHG-1 RM 22200 PHG-1 RM 2220 FG-2 RM 22750 SE-52C-2 RM 1530 F 140-3 T4 11000 D0LC-1 V 8410 M03 B410 M0 8410 M03 B410 M0 8410 M03 B410 M0 - .

.

•

•

JP-4 (PET), SIMULATED 20,000 FEET 1981, MAR.3

200

21-0CT-82 Page 2

PAY NR. 1 1 850 -	INE .	PPN	0N 0N	NO2-UNC PPN	NOX-UNC PPN	T DEG C	HCHO PPN	80-8 793 793	10-E	2 - C - C - C - C - C - C - C - C - C -	A-C9 PPN	BENZEN PPN
1 850	(NIN)	N03-8410	E-441 1	1 14B-3	T 146-3	BORIC-1	CA	SE-52C-2	SE-52C-2	8E-52C-2	SE-52C-2	SE52C
1 1000	-130				1			0.3677	0.4681	0.4577	0.2378	0.0614
	-60						0.006	8	• • •			
0011 1	0	-0.004	0.392	0.082	0.480	4 . 8 1		0.3387	0.4492	0.4214	0.2194	1 7 1 1 1
1115	15	0.000	0.334	0.124	0.466	-3.9						
0E11 1	30	0.004	0.257	0.180	0.444	1.4.						
1 1145	45	0.015	0.206	0.212	0.425	-5.1						
1 1200	90	0.026	0.165	0.234	0.406	-5.1	0.032	0.3302	4374	0.4088	0.2153	2E20.0
1 1215	75	0.037	0.130	0.253	191.0	4.8-						
1 1230	06	0.048	0.111	0.257	0.376	9.5-	****	****				
1 1245	105	0.052	0.096	0.260	0.363	-6.2				* - • • •		
1 1300	120	0.043	0.084	0.240	0.352	-6.2	0.042	0.3174	0.4184	0.3883	0.2030	0.0519
1 1315	135	0.070	0.075	0.257	0.337	-6.0		* * * * *			1	
1 1330	150	0.078	0.064	0.257	0.326	- 6 .4			***		*****	
1 1345	165	0.085	0.058	0.253	0.318	-6,3				***	* * * * * *	
1 1400	180	0.093	0.051	0.251	60E.0	-6.6	0.040	0.3061	0.4032	0.3740	0.1953	0.0521
1 1415	195	0.096	0.045	0.246	0.298	-6.7					* * * * * *	
0241 1	210	0.108	E40.0	0.245	0.292	- 4.7						
1 1445	225	0.111	0.037	0.236	0.281	- 9 - 7						
1 1500	040	0.119	0.034	0.236	0.276	-6.9	0.040	0.3023	0.3970	0.3664	0.1888	0.0504
1 1515	255	0.130	010.0	0.231	0.246	-6.9						
1 1530	270	0.133	0.028	0.225	0.260	-7.0						
1 1545	285	0.137	0.026	0.223	0.253	-7.2		1 1 1 1 1 1 1				
1 1600	00 E	0.148	0.021	0.216	0.245	-7.2	0.041	0.2999	1462.0	0.3647	0.1891	0.0510
1 1615	315	0.152	0.019	0.212	0.238	-7.0				***		
1 1630	OFF	0.156	0.019	0.206	0.231	-7.2						
1 1445	545	0.167	0.017	0.202	0.225	-7.0						
1 1647	347						0.036				,	
1 1700	360	0.174	0.015	0.200	0.219	- 4.0		0.2959	0.3881	0.3602	0.1868	E440.0

EC-500 JP-4 (PET), SIMULATED 20,000 FEET 1981, Mak J

21-0CT-82 Page 3

CLOCK TIME DAY HR.	ELAPSED TIME (MIN)	TOLUENE PPN SE-52C-2	TOLUENE PPN 10'C-600	C2BENZ PFN SE-52C-2	Н-ХҮL РРн SE-52C-2	I - C3- B2 PPA SE-52C-2	0-XYL FPM SE-52C-2	N-C3-B2 PPN 8E-52C-2	124TMEBZ FFM 8E-52C-2	NECYC-C6 PPN SE-52C-2	N-C10 PPN \$E-52C-2	N-C11 PPN 86-520-2
1 850	-130	0.5527 A	0.1048	0.0484	0.1622	1110.0337	0.0575	0.0408	0.1151	0.3472	0.1659	0.1679
1 1100	•	0.5095	8640.0	0.0458	0.1315	0.0312	0.0536	0.0571	0.1071	0.3212	0.1540	0.1584
1 1200	•	0.4965		0.0449	0.1427	0.0315	0.0515	0.0581	0.1035	0.3130	0.1531	0.1527
1 1300	120	0.4738		0.0422	0.1319	0.0296	0.0487	0.0536	0.0949	0.2990	0.1428	0.1372
1 1400	180	0.4573	0.0858	0.0404	0.1251	0.0281	0.0467	0.0513	0.0889	0.2887	0.1357	0.1294
1 1500	240	0.4500		0.0400	0.1236	0.0263	0.0451	0.0511	0.0820	0.2638	0.1292	0.1155
1 1600	300	0.4458		0.0401	0.1223	0.0272	0.0451	0.0494	0.0835	0.2810	0.1295	0.1178
1 i700	360	0.4400	0.0874	0.0397	0.1200	0.0272	0.0445	0.049J	0.0822	0.2748	0.1287	0.1145
	NO DATA	TAKEN										

NOTES

TOLUEME BATA MAY BE HIGH DUE TO INTERFERENCE.

۰.

•

EC-502 JP-4 (PET): SINULATED 20,000 FEET 1981. Mar 9

21-0CT-82 PAGE 1

0714: "0.1 PPM MOZ IMTO EC. "0.4 PPM MO IMTO EC. DKY PURE AIR TO 350 TORR 0615: 215 Microliters (50 PPMC) JP4 imjected. 0945: T=0 Pressure: 351 torr

COOLANT EC DILUTION SCHEDULE PR. BEFORE

TINE	PR. BEFORE	FK. AFTER	COOLANT	1001
1238	440	353		
1338	349	253	-3.2	22.8
1512	349	353	ç	24.3
T=0 AT	945 PST			

K1 = 0.470 HIN-1

SPECTRAL DISTRIBUTION	RELATIVE	NA. INTENSITY	500 1.610	430 1.221	403 1.013	380 0.845	370 0.742	340 0.616	350 0.500	340 0.374	330 0.242	320 0.112	310 0.024	300 0.000
	STINU		DEG C											
	S. DEV		2.0		UNL 15		Ngg	MAd						•
	AVERAGE	VALUE	-5.2		INITIAL	CONC.	0.354	0.049						
	INST.		DORIC-1		INST.		E-841 1	5-841 L						
	01				16	ı	NO	NO2-UNC						

INSTRUMENTS USED

DESCRIPTION LABEL

R ND 8410 ALYZER ARYS FID AX-600; FID NX-4001 FID CHROMOTROPIC ACID HCHO ANALYSI FILT ECO 148 BORIC-1 M03-8410 C-600 5-27 è 118 22200 22750 22750 22900 21900 11530 11530 34410 34410 34410

•

٠. · . '

٠. ۰. ۰.

SINULATED 20,000 FEET EC-502 JP--4 (PE 1981, MA

21-0CT-6 PAGE 2

BENZEN PPh SE-52C-	0.0725		10/0.0				0.0693				0.0445					0.0667				0.0656			1	0.0636					0.0435	
N-C9 PPN SE-52C-2	0.1086		0.1000				0.1049				0.1015					0.1024				0.0981				0.0955			1		0.0944	
N-C8 FPN SE-52C-2	0.2114		0.2047				0.2020				0.1949					0.1932				0.1887	1			0.1835				•	0.1812	
N-C7 FPH SE-52C-2	0.2284		0.2201				0.2184		* * * *		0.2122					0.2080				0.2045	*****			0.2008					0.1983	
N-C6 PPN 8E-52C-2	0.1780		0.1.0				0.1695		t		0.1444					0.1414				0.1401				0.1559	• • • • • •			8 8 8 8	0.1543	
NCNO PPN Ca		coo•o	C10.0									0.020				0.033				920.0				0.041				0.038		
T DEG C PORIC-1				- 4.7	4.4-	4.4-	- 4 - 2	-4.0	49° 191	-6.2	-4.4		4.4-	4.4-	• · · ·	-3.4	0.01	-4.7	M. 4-	M . T -	••••	9.5-	-3.3	-3.2	-3.2	-2.7	-2.7		-2.7	
NDX-UNC FPA 1 148-3			0.4.D	0.416	0.412	104 · 0	24E.0	985.0	0.378	0.349	0.361		841.0	0.346	412.0	111.0	0.328	0.322	0.318	402.0	101.0	0.270	0.294	0.285	0.276	0.275	0.244		0.260	
NO2-UNC PPN T 148-3			40.0	0.082	0.100	0.127	0.150	0.145	0.180	0.191	0.197		0.202	0.210	0.215	0.216	0.223	0.225	0.227	0.227	0:230	0.230	0.230	0.227	0.225	0.225	0.223		0.221	
m	,																													
NO 7 7 7 1 4 8 7			105 · 0	6 .533	0.309	0.275	0.245	0.219	0.195	0.178	0.141		0.146	0.133	0.124	0.114	0.103	0.094	.088	0.079	E40.0	0.047	0.040	0.056	0.049	0.045	0.041		0.037	
020NE NO PPN PPN H03-8410 T 148			+C5.0 /00.0-	EEE 0 000.0	0.000 0.309	0.000 0.275	0.007 0.245	0.011 0.219	0.015 0.195	0.019 0.178	0.022 0.161		0.030 0.146	0.033 0.133	0.037 0.124	0.041 0.114	0.044 0.103	0.044 0.094	0.054 0.088	0.057 0.079	0.067 0.073	0.074 0.047	0.078 0.040	0.082 0.056	0.087 0.049	0.093 0.045	0.104 0.041		0.108 0.037	
ELAPSED OZOWE NO TIME PPN PPN (MIN) A03-9410 T 149	59-			15 0.000 0.333	30 0.000 0.309	45 0.000 0.275	60 0.007 0.245	75 0.011 0.219	90 0.015 0.195	105 0.019 0.178	120 0.022 0.161	125	135 0.030 0.146	150 0.033 0.133	165 0.037 0.124	180 0.041 0.114	195 0.044 0.103	210 0.044 0.094	225 0.054 0.088	240 0.059 0.079	255 0.067 0.073	270 0.074 0.047	285 0.078 0.040	300 0.082 0.056	315 0.089 0.049	330 0.093 0.045	345 0.104 0.041	320	360 0.108 0.037	

EC-502 JF-4 (PET), SINULATED 20,000 FEET 1981, MAR 9

21-0CT-82 PAGE 3

N-C11 .FPh 8E-52C-2	0.0789	0.0736	0.0770	0.0718	0.0780	0.0710	0.0721	0.0683	
М-С10 FPM SE-52С-2	0.0707	0.0707	0.0716	0.0700	0.0749	0.0702	0.0681	0.0677	
MECYC-C6 PPN SE-52C-2	0.1641	0.1583	0.1565	0.1514	0.1492	0.1469	0.1429	0.1408	
1247MEB2 PPM SE-52C-2	0.0499	0.0493	0.0469	0.0472	0.0478	0.0446	4240.0	0.0432	
N-C3-92 PPN SE-52C-2	0.0296	0.0289	0.0251	0.0266	0.0274	0.0259	0.0252	0.0254	
0-XYL PPH SE-52C-2	0.0276	0.0262	0.0250	0.0243	0.0244	0.0241	0.0229	0.0225	
1-C3-B2 PPN 8E-52C-2	0.0159	0.0154	0.0147	0.0144	0.0149	0.0145	0.0130	0.0141	
М-ХҮL РРМ 8E-52C-2	0.0735	0.0715	0.0621	0.0659	0.0461	0.0642	0.0603	0.0592	
C2BENZ PPN 8E-52C-2	0.0227	0.0217	0.0213	0.0206	0.0214	0.0213	0.0195	0.0194	
TOLUENE PPM 10'C-600	0.0527	0.0517			0.0455			0.0444	TAKEN
ELAPSED TIME (MIN)	9 9-	•	6 0	120	180	240	00E	360	NO DATA
CLOCK TIME DAY HR.	1 840	1 945	1 1045	1 1145	1 1245	1 1345	1 1445	1 1545	

EC-506 JP-4 (PET), SIMULATED 10,000 FEET 1981, MAR 10

21-0CT-82 PAGE 3

0730: "0.1 PPM MO2 FLUSMED INTO EC 0740: "0.4 PPM MO FLUSMED INTO EC 0743: DRY PURE AIR FILL TO 500 TORR 0757: 215 ML (50 PPMC) JP-4(PET) INJECTED.

EC DILUTION SCHEDULE

PR(TORR) AFTER		502	502	502	502	502	
PR(TORR) BEFORE		492	495	264	564	567	
r i nE	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1112	1152	1306	1356	1447	

T=0 AT 945 FST

K1 = 0.440 MIN-1

SPECTRAL DISTRIBUTION Relative	MM. INTENSITY	500 1.646	430 1.240	403 1.029	380 0.847	370 0.734	340 0.600	350 0.500	340 0.362	330 0.217	320 0.098	310 0.024	300 0.000
21 I ND		DEG C	1						•				
S. DEV		1.0	•	LMI TS		Ndd	PPN		•				
AUERAGE	VALUE	10.6		INITAL	CONC.	0.417	0.100						
1241		BOB1C-1		TNGT.		E-Wat I							
5		٣	•	10	5		N07-11NC						

INSTRUMENTS USED

ALYZER ND 8410 LTER AMALYZER TZ CAPILLARY! FID MAX-4001 FID LANE1 FID CHRONOTROPIC ACID HCHO ANALYBIS N 6147 1 12" 54 TENP IB LABEL DESCRI 2920 DH9-1 RH-12 2100 PH-1 RH-12 2750 DE-52C-2 RH-12 2750 DE-52C-2 RH-12 2000 DCR1C-1 DCR1 1910 H03-9410 H0411 1530 T 140-3 TCC01 3000 CA 140-3 TCC01 DESCRI Ï

EC-506 JP-4 (FET), SIMULATED 10,000 FEET 1981, Mar 10

21-001-82 PAGE 2

2 s,

CL.OCK	ELAPSED	DZONE	Q¥	ND2-UNC	NOX-UNC	Ŧ	PAN	HCHO	N-C6	N-C6	N-C7	N-CB
TIME	TINE	PPM	Ndd	PPA	NGG	DE8 C	MAA	Hdd	Maa	PPN	PFN	44d
BAY MR.	(NIN) .	N03-8410	T 148-3	1 148-3	T 14B-3	DORIC-1	ECB-1	CA	SE-52C-2	1-SMG	SE-52C-2	SE-52C-2
1 815	06-								0.1789	0.1679	0.2373	0.2215
1 945	•	-0.003	0.417	0.100	0.519	6.3			0.1736		0.2293	0.2136
1 948	-1						1111	0.005				
1 1000	15	0.000	0.378	0.135	0.513	6.7						
1 1015	30	0.003	0.324	0.180	0.504	10.1						
1 1030	8 4	0.006	0.275	0.219	0.495	10.5						
1 1045	60	0.015	0.214	0.265	0.482	10.5		0.017	0.1694		0.2227	0.2073
1 1100	75	0.024	0.145	E0E.0	0.469	10.6			****			
1 1115	96	0.036	0.127	0.328	0.458	11.2					*****	
0111	105	0.051	0.095	0.341	0.438	10.5						
1 1145	120	0.066	0.072	0.354	0.427	10.5	0.000	0.029	0.1655		0.2188	0.2030
1 1200	135	0.084	0.057	0.356	0.414	10.5		*****				
1 1215	150	0.105	0.044	0.358	0.405	10.4						
1 1230	165	0.123	0.037	0.356	462.0	10.8						
1 1245	180	0.141	0.031	0.353	0.385	10.4	0.000	0.000	0.1611		0.2122	0.1953
1 1300	195	0.159	0.025	0.348	0.373	10.9						
1 1315	210	0.183	0.021	545.0	0.366	10.9						
1 1330	225	0.207	0.017	0.336	0.354	11.0	* - * * *					
1 1345	240	0.222	0.014	0.328	E4E.0	10.9	0.022		0.1549		0.2037	0.1881
1 1400	255	0.243	0.011	0.320	0.334	10.9						
1 1415	270	0.258	0.010	0.313	0.324	10.9						
1 1430	285	0.276	0.010	0.307	0.318	11.0						
1 1445	300	0.294	0.006	0.302	0.309	10.9	0.026	550.0	0.1445		0.1914	0.1771
1 1500	315	0.312	500.0	0.293	001.0	11.0			1			
1 1515	OEE	0.327	0.005	0.284	0.292	11.0						
1 1530	94D	0.351	0.004	0.279	0.284	11.0						
1 1535	350				*			0.023				
1 1545	340	0.343	0.004	0.270	0.275	11.0	0.000	/	0.1498		0.1942	0.1788
	ND DATA	TAKEN										

EC-504 JP-4 (FET), SIMULATED 10,000 FEET 1981, MAR 14

21-0CT-82 FAGE 3

Q

CLOCK	ELAPSED	N-C9	BENZENE	TOLUENE	TOLUENE	C2BENZ	M-X7L	I-C3-B2	0-XYL	N-C3-B2	124TMEB2	14F - XYI
TINE	TINE	PPN	MAA	NGG	MAA	PPN	Ndd	NGG I	NGG	Ndd	NGG	244
DAY HR.	(NIN)	SE-52C-2	SE-32C-2	SE-32C-3	10,C-900	SE-52C-2	8E-32C-3	SE-32C-3	SE-52C-2	5E-52C-2	SE -52C-2	10, C-90
1 815	06-	0.1145	0.0305	0.2700 A	0.0543	0.0241	0.0789	0.0134	0.0291	0.0307	0.0575	0.0579
1 945		0.1119	0.0282	0.2630	0.0464	0.0231	0.0763	0.0159	0.0275	0.0303	0.0540	0.0495
1 1045	6 0	0.1075	0.0286	0.2528		0.0228	0.0632	0.0153	0.0242	0.0282	0.0519	
1 1145	120	0.1055	0.0274	0.2487		0.0223	0.0693	0.0147	0.0252	0.0295	0.0472	
1 1245	180	0.1007	0.0245	0.2401	0.0514	0.0222	0.0581	0.0194	0.0230	0.0446	0.0522	0.0473
1 1345	240	0.9451	0.0258	0.2311		0.0206	0.0424	0.0115	0.0235	0.0267	0.0416	
1 1445	300	0.0927	0.0249	0.2169		0.0198	0.0513	0.0110	0.0219	0.0222	0.0413	
1 1545	360	0.0914	0.0247	0.2207	0.0429	0.0198	0.0503	0.0126	0.3221	0.0254	0.0394	0.0410
CLOCK	ELAPSED TIME	NECYC-C4	N-C10	N-C11								
BAY HR.	(MIN)	SE-52C-2	SE-52C-2	\$E-52C-2								
1 815	06-	0.1705	0.0803	0.0794								
1 945	0	0.1447	8640.0	0.0772								
1 1045	90	0.1601	0.0774	0.0748								
1145	120	0.1560	0.0744	0.0724								
1 1245	180	0.1508	0.0753	0.0820								
1 1345	140	0.1447	0.0482	0.0440								
1 1445	300	0.1349	0.0666	0.0725		•						
1 1545	360	0.1381	0.0447	0.0696								
	NO DATA	TAKEN										

NOTES

¢

TOLUENE BATA ON SE-52C-2 MAY DE HIGH BECAUSE OF INTERFERENCE.

LL-SOR JP-4 (PEI): SIMULATED 10:000 FEE) 1981: Mak 18

U716: 0.2 PPM OF MO2 INTO EC 0729: 0.8 PPM OF MO INTO EC 0/37: begin Pupe Air Fill To 500 Tork, AT 10% R.H. 213 Dickoliters JP-4 Injected. UM50: Filled fo 500 Torr.

PR(TORK) AFTEK EC MANEUP AIR DILUTION SCHEDULE T ME

K1 = 0.440 MIM-1 I = 0 M

					SPECT	RAL DISTRIBUTION	
41	INST.	AVERABE	9. DEV	UNI TS		RELATIVE	
		VALUE			AN.	INTENSITY	
	DORIC-1	10.1	1.3	DE6 C	300	1.587	
					430	1.207	
41	INST.	INITIAL	UNITS		103	1.001	
		CONC.			380	0.820	
9	1 148-3	0.786	299		370	0.708	
D2-UNC	1 148-1	0.210	Mdd		360	0.600	
) 				350	0.500	
					04E	0.362	
					OPE	0.217	
					320	0.098	
					310	0.026	
					300	0.000	

· · ·

٠.

· . · . ÷

. ÷., 1 -_^

-, '

INSTRUMENTS USED

2.200 1 14B-3 TECO 14B-3 ND-NOX NYLON FILTER AMALYZER B410 ND3-B410 MONITOR LABD-5 HERLUN 03 AMALYZER HD 8410 2200 DNS-1 RN-1211 DIMETHYLBULFOLANEI FID 1800 DORIC1 DNTL TENP INDICATOR, SN 41479 2000 ECD-1 RN-1211 12° SX CARDUMAX-4001 ECD 2100 PN-1 RN-1211 10° 10X CARDUMAX-4001 ELD 2750 96-55CC-2 RN-1211 30N 96-52 DHAAX-6001 FID 3000 CA CUMANANAO1 FID

22-001-82

•

ĽĽ-508 JP-4 (PET), SIMULATED 14.000 FEET 1981, mar 18

.

22-0CT-82 Fage :

CLOCK	ELAPSED	UZOME	07	NO2-UNC	NOX-LUNC	F	FAN	HCHO	8-0-8	N-C.6	N-C 7	H-C8
TINE	11ME	6 77	r Pn	FP3	PPn -	0EG C	FFR	8 F N	R P R	PPn	FFN	699
BAY HR.	(NIN)	n03-8410	1 148-J	[146-3	1 148-3	DORIC-1	ECD-1	C.	SE-52C-2	DHS-1	SE-52C-2	SE-52C-
1 805	y ∩ 89 1					*****			0.1781	0.1499	0.2414	0.2261
1 822	99-					f		0.006				
026 1	0	0.000	0.780	0.210	0.986	5.0	0.000		0.1474	*****	0.2245	0.214
1 945	15	E00.0	247.0	0.240	0.968	4.7						
1 1000	OM	600.0	0.702	0.275	0.959							
1 1015	ŝ	0.003	0.653	0.312	0.950	•••						
1 1030	9	0.009	0.610	0.352	0.942	9.4	0.000	0.017	0.1654		0.2233	0.210
1 1045	5	0.009	0.567	0.37 3	0.924	9.7				* * * * *		
1 1100	90	0.009	0.522	0.412	0.915	10.0						
1 1115	105	0.012	584.0	814.0	106.0	10.2			*****	****		
1 1130	120	0.012	0.449	0.459	0.898	10.2	0.000	0.023	6451.0		0.2156	0.201
1 1145	135	0.012	0.412	0.488	088.0	10.4						, , , , , , , , , , , , , , , , , , ,
1 1200	150	0.021	0.382	0.502	0.874	10.3				8 8 9 9 9 9		
1 1215	145	0.021	0.356	0.517	0.862	10.4	****					
1 1230	180	0.021	0.328	0.534	0.853	10.5	0.06		0.1524		0.2057	0.1913
1 1245	195	0.021	0.303	0.550	0.842	10.5						
1 1300	210	0.023	0.263	0.558	0.829	10.4						;
1 1315	225	0.029	0.260	0.571	0.818	10.8				****		
0621 1	240	0.035	0.234	0.574	0.801	11.0	0.000		0.1513		0.2030	0.190
1 1335	245					/		450.0				
1 1345	255	0.038	0.219	0.574	0.781	11.2	1					1
1 1400	270	0.041	0.200	0.577	0.749	11.2						
1 1415	285	0.044	0.180	0.582	0.752	10.1						;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
1 1430	000	0.050	0.147	0.000	0.737	11.0	0.000	0.045	0.1483		0.2004	0.166
1 1445	315	0.039	0.152	0.580	0.722	11.0						
1 1500	910	0.059	0.137	0.580	0.708	11.2						
1 1515	542	0.047	0.127	0.574	0.472	10.7						
1 1520	350		1			*****		0.042				
1 1530	940	0.073	0.114	0.571	0.474	10.5	0.00		0.1404		0.1706	0.178

ÉC-508 JP-4 (PET), SINULATED 10,000 FEE1 1981, Mar 10

22-0CT-82 PAGE 3

124THEBZ N+F-XY PPN PPN 86-52C-2 10°C-60	0.0586	0.0567 0.1123 0.1123 0.0497 0.0443 0.0443 0.0443 0.0443 0.0443 0.0443 0.0443 0.0443 0.0443 0.0443 0.0443 0.0384		
N-C3-B2 PPN SE-52C-2	9620.0	0.0286 0.0285 0.0283 0.0278 0.0278 0.0278 0.0250		
0-XYL FPN SE-52C-2	0.0297	0.0280 0.0270 0.0257 0.0282 0.0238 0.0238		
I - C3-92 PPN SE-52C-2	0.0194	0.0187 0.0187 0.0189 0.0188 0.0188 0.0165		• •
n-XYL PPN SE-52C-2	0.0809	0.0745 0.0612 0.0612 0.0635 0.0548 0.0548		
C2BENZ PPN SE-52C-2	0.0246	0.0233 0.0230 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220 0.0220		
FOLUENE PPN 10°C-600	0.0569	0.0544		
TOLUENE PPN SE-52C-2	0.2750 A	0.2561 0.2555 0.23555 0.2355 0.2356 0.2339 0.2284	N-C11 PPN SE-52C-2 0.0815	0.0854 0.0900 0.0837 0.0837 0.0837 0.0738 0.0738
BENZENE PPh SE-52C-2	40E0 . 0	0.0280 0.0283 0.0273 0.0257 0.0253 0.0253	N-C10 PPN SE-52C-2 0.0838	0.0805 0.0896 0.0786 0.0712 0.0627 0.0712 0.0711
N-C9 PPN SE-52C-2	0.1184	0.1142 0.1116 0.1051 0.0050 0.0050 0.0050 0.0050 0.0050	MECYC-C6 PPN SE-52C-2 0.1738	0.1634 0.1605 0.1541 0.1544 0.1544 0.1544 0.1544 0.1448 0.1448
ELAPSED TINE (MIN)	69 49 69 49 1 1	1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TINE TINE (nin) -05	00000 9000000
LOCK TINE MR.	805 825	930 1130 1530 1530 1530	110CK 11ME 17 HR.	024 024 025 025 025 025 025 1230 025 1230 025 1230

----- NO DATA TAKEN Notes

¢

TOLUEME DATA ON SE-52C-2 MAY DE MIGH DUE TO INTERFERENCE.

- ----

-

EC-544 JP-4 (PET), SIMULATED 10,000 FEET 1981 Marcm 19

0734: 430 ML (100 PPMC) OF JP-4 INJECTED 9661M DRY AIR F1LL AT 102 K.M. 9744: F1LLED TO 500 TORR U717: 0.1 PPM OF NO2 INTO EC 0733: 0.4 PPM OF NO INTO EC

PR(TORR) AFTEK 503 503 503 503 503 503 503 503 EC DILUTION SCHEDULE PR(TORR) DEFORE TIME 0950 0950 1100 1156 1156

1-0 A1 915 PS1

N1 = 0.440 MIN-1

SPECTRAL BIRTRIBUTION	RELATIVE	HA. SHTEMBITY	500 1.444	430 1.207	1001 1001	380 0.820	370 0.70E	140 0.400	0.500	340 0.362	330 0.217	320 0.025	300 0.000
	UNITS		DEG C										
	8.DEV	•	8.4		SLIND	1	444	FPN					
	AVERAGE	VALUE	12.5		INITIAL	CONC.	0.419	0.112					
	1841.		Deric-1		. 18MI		E-841 1	T 140-3					
	4 7				41		9	N2-UNC					

INSTRUMENTS USED

.

NY I FID IC ACID MCHO ANALYSIS 1520 1 1 3000 CA 2000 8 200

22-0CT-82 PAGE 1

EC-509 JP-4 (PET): SIMULATED:10.000 FEET 1981 MARCH 19

22-001-82 Page 2

^

CLOCK	ELAPSED	OZONE	01	ND2-UNC	NDX-UNC	-	PAN	NCHO	N-C6	N-C7	N-C8	N-C9
TINE	TIME	MAA	NGG	ngg	Ngq	DEG C	PPN	NGG	r99	PPN	PPN	U 44
BAY HR.	(MEN)	103-8410	1 148-3	1 148-3	T 148-3	DORIC-1	ECD-1	ĊA	SE - 52C-2	SE-52C-2	SE - 52C - 2	8E-52C-
1 805	-70								0.2214	0.4038	0.424	0.2303
1 842	Ę,							0.008			-	
1 915	0	0.000	0.419	0.112	0.519	3.9	0.000		0.2172	0.4013	0.424	0.2413
1 930	15	00.03	0.369	0.157	0.515	8.6					•	
1 945	0E	0.009	0.307	0.208	0.502	• • •			2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
1 1000	45	0.015	0.227	0.273	0.489	9.5					*	
1 1015	60	0.033	0.145	0.319	0.476	10.1	0.004	0.027	0.2108	0.3903	0.415	0.2332
0201 1	75	0.051	0.115	0.352	0.439	10.4			1			
1 1045	96	0.075	0.082	0.373	0.446	11.0]	•		
1 1100	105	0.099	0.060	0.378	164.0	11.3) 			
1 1115	120	0.129	0.049	0.371	0.414	11.4	0.011	0.036	0.2070	0.3805	0.402	0.2362
1 1130	135	0.153	0.041	0.347	0.400	11.0			*			
1 1145	150	0.180	0.032	0.358	0.382	11.4						
1 1200	145	0.204	0.032	0.343	0.365	11.4			****			
1 1215	160	0.228	0.026	425.0	64E.0	11.2	0.019	FEO.O	0.2027	0.3694	0.380	0.2064
1 1230	195	0.246	0.024	0.319	426.0	11.3						
1 1245	210	0.267	0.019	0.309	0.319	11.4	* * * * *					
1 1300	225	0.288	0.019	942.0	0.307	11.4			2 8 9 9 9 9			
1 1315	940	0.303	0.017	0.285	0.294	11.4	0.022	0.040	0.1974	0.3617	0.380	0.2130
1 1330	255	0.327	0.017	0.273	0.281	11.6						
1 1345	270	0.45	0.015	0.241	0.268	11.0	8		f			
1 1400	285	0910	0.015	0.249	0.255	11.6						
1 1415	000	0.375	0.015	0.240	0.245	11.4	0.028	0.042	0.1955	0.3571	0.349	0.2127
11430	313	0.393	0.013	0.231	0.236	11.7			* * * *	21-1-1-0		
1 1445	OFF	0.402	0.013	0.225	0.230	11.9						
1 1500	345	0.414	0.013	0.214	0.221	12.0						
1 1505	320							440.0		***		
1 1515	095	0.417	0.013	0.212	0.215	12.0	0.023		0.1910	4442.0	0.345	0.2003
1 1530	375	0.414	0.009	0.204	0.208	- 23.4						1
	ND DATA	TAKEN										

LU-509 JP-4 (PET), SIAULATED 14:000 FEET 1981 MARCM 19

22-0CT-82 PAGE 3

111

11ME	ELAPSED TIME	рЕМ76 МЕ РЕМ Фенкалена	TOLUENE PPn af - 430- 3	10LUEME PPh	C2BENZ PPh 46_43[-3	M-XYL PPN SF-530-3	I-CJ-B2 PPN SE-525-2	0-XYL PPM SF-53C-3	M-C3-62 FFM 8F-52F-3	124TMEB2 PPN SF-526-2	N+P-XYL PPN 10-C-A00	MECYC-C PPN 95-520-1
508	-70	6.0031	A 0747.0	0.0880.0	0.0472	0.1525	0.0344	0.0571	0.0744	0.1245	0.1042	0.2926
515	9	0.0775	0.4919	0.0981	0.0486	0.1544	0.0373	0.0621	0.0887	0.1294	0.1115	0.2877
1015	04	0.0929	0.4814	*****	0.0496	0.1337	0.0396	0.0435	9590.0	0.1292		0.2803
1115	120	0.0903	0.4490		0.0492	0.1467	0.0431	0.0419	¢.1007	0.1292		0.2737
1215	180	0.0432	0.4484	0.0884	0.0425	0.1170	0.0310	0.0492	0.0589	0.1221	0.0957	0.2647
1315	240	0.0800	0.4445		0.0456	0.1185	0.0370	0.0579	0.0840	0.1169		0.2592
1415	300	0.0571	0.4342		0.0496	0.1134	0.0379	0.0438	0.1005	0.1145		0.2546
1515	360	0.0734	0.4288	0.0876	0.0428	0.1117	0.0380	0.0511	0.0457	0.0955	0.0894	0.2495
CLOCA	ELAPSE U	N-C10	H-C11							·		
AV HK.	(NIN)	SE-52C-2	SE-52C-2									
808	- 70	0.1479	0.1726									
615	•	0.1742	0.1941									
1015	60	8221.0.	0.1939				•					
1115	120	0.1777	0.1994									
1215	001	0.1445	0.1808									
1315	240	0.1440	0.0502									
1415	300	0.1588	0.1750									
1515	360	0.1458	0.1593									

NOTES

¢

NO DATA TAKEN

TOLUEME BATA ON SE-52C-2 MAY DE MIDH DECAUSE OF INTERFERENCE.

EC-510 JP-4 (FET), SIMULATED 10,000 FEET 1981, Mar 20

0724: "0.1 PPM MO2 INJECTED INTO EC "0.4 PPM NO INJECTED 430 Microliters (100 PPMC) JP-4 Injected Fill to 500 Tork With 10% RM Pure Aik

PR(TORR) AFTER *** EC DILUTION SCHEDULE PR(10RR) BEFORE FINE 1020 1158 11227 1328

T=0 AT 915 PST

K1 = 0.440 h[N-1

					SPECT	RAL
-	ISNI.	AVERAGE	S.DEV	UNITS		RELA
		VALUE			, HA	INTE
	DORIC-1	10.2	1.9	DEG C	200	-
					024	-
4	INST.	INITIAL	UNITS.		101	-
		CONC.			080	•
	11-11-11-1	0.419	444		370	•
2-UNC	1 148-3	0.112	Mgg		340	0
					956	0
					340	0
					OPE	0

20

ŝ

â

DISTRIBUTION FIVE 481TY

INSTRUMENTS USED

0.103 0.028 0.000

320 310

ALYZER NB 8410 LTER ANALYZER LLARYS FID CARBOWAX-6001 FIL LANE! FIL RTZ CAPIL 8 61479 IO ANALYS CHROMOTROPIC ACID MCH CATOP ROP. TART DESCRIPTION RIC TEN RM-121) -121) -121 2920 10'C-600 RM-2100 PM-1 RM-2200 BMS-1 RM-2750 SE-52C-2 RM-1800 BDRIC-1 DDR 1840 DDRIC-1 DDR 1530 1 146-3 TEC 1530 C A CHR LABEL 9

22-0C1-82 PAGE 1

||--510 ||-4 (PET), SIMULATED 10.000 FEET |+81. Mak 20

Γ.

22-0CT-82 PAGE 2

					•							
CLOCK	ELAPSED	OZONE	ę	MO2-UNC	MDX-UNC		MCMD	N-C6	N-C4	N-C7	8-C8	N-C9
TINE	TINE	6 F.N	PPR	r99	PPR	DEG C	F P A	Ngg	nga	H d d	PPN	ngg
BAY NR.	(WIN) .	N03-8410	T 140-3	T 148-3	1 148-3	1-3130N	C >	SE-52C-2	1-8NQ	SE-52C-2	8E-52C-2	\$E-52C-2
1 010	59- -	* * *	-		***			0.3129	0.2949	0.4375	0.4288	0.2410
1 830	- 45						0.004					
1 915	9	-0.00	0.419	0.112	0.534	3.1		0.3053		0.4232	0.4014	0.2154
1 930	15	0.000	0.345	0.157	0.524	7.3						
1 945	0 M	0.003	0.290	0.221	0.513	7.7	1 1 1 1 1					
1 1000	54	0.012	0.225	0.275	0.300	9 .1		*****				
1 1015	40	0.027	0.152	0.335	0.489	9.2	* * * * * * * * * *	0.3014		0.4165	0.3918	0.2034
1 1030	75	0.051	0.097	0.347	0.448	4.4						
1 1045	06	0.075	0.071	0.160	0.451	•.•		***	****			
1 1100	105	801.0	0.049	0.385	0.438	10.0						
1 1115	120	0.132	0.037	0.382	0.421	10.1	0.036	0.2941	1111	0.4048	0.3805	0.2053
1 1130	135	0.159	0.028	0.374	E04 - 0	10.4						
1 1145	150	0.183	0.024	0.345	992.0	10.6			***	8 8 1 8 8 8		
1 1200	165	0.213	0.019	0.341	0.382	11.2						4 8 9 9
1 1215	180	0.237	0.015	446.0	0.361	10.8		0.2959		0.4062	0.3818	0.2006
1 1219	184				7 8 8 8 8 9		0.043					
1 1230	195	0.244	0.013	0.333	0.348	11.0						
1 1245	210	0.282	0.011	0.322	0.334	11.3	1 8 9 9 9 9					
1-1300	225	EOE.0	0.011	0.312	0.322	11.0		****				
1 1315	240	0.324	9.004	102.0	0.309	21.3	0.046	0.2826		0.3840	0.3602	0.1997
0EE1 1	255	0.351	400.0	442.0	101.0	11.4						
1 1345	270	0.372	0.004	0.281	0.288	11.4						
1 1400	285	062.0	00.04	0.268	0.276	11.3		• • • • • • •		8 8 8 8		
1 1415	300	0.411	400.0	0.240	0.248	11.4	0.044	0.2820		0.3857	0.3594	0.1844
1 1430	315	0.424	0.004	0.253	0.257	11.4						
2442 1	011	0.441	0.004	0.245	0.247	11.4						
1 1500	345	0.447	400.0	0.241	0.245	11.6	0.044					
1 1515	340	0.450	0.002	0.234	0.240	11.4		0.2761		0.3748	0.3519	0.1883
	NO DATA	TAKEN										

EC-510 JP-4 (PE1), SIMULATED 10:000 FEE1 1981, Mak 20

22-0CT-82 Page 3

CL OCK	ELAPSED TIME	DENZENE PPN	TOLUENE PPN	TOLUENE PPh	C2BENZ PPN	H-XYL PPn	1-C3-B2 PPN	0-XYL PPA	N-C3-B2 PPN	124THEB2 Rau Data	146-X7L PPh	NECYC-C PPN
BAY HR.	(WIW)	SE-52C-2	SE -52C-2	10'C-600	SE-52C-2	SE-52C-2	SE-52C-2	SE-52C-2	SE-52C-2	SE-52C-2	10,C-900	SE-52C-
1 810	94-	0.1108	0.5090 A	6990.0	0.0506	0.1383	0.0399	0.0657	0.0927	1561.0	6790.0	0.3130
1 915	•	0.0522	0.4847	0.1016	0.0439	0.1428	0.0313	0.0511	0.0583	0.1111	E701.0	0.3036
1 1015	90	0.0516	0.4743		0.0430	0.1362	1150.0	0.0488	0.0555	0.1010		0.2975
11115	120	0.0490	0.4638		0.0417	0.1160	0.0324	0.0467	0.0590	0.0982		0.2910
1 1215	180	0.0493	0.4647	0.0954	0.0421	0.1151	0.0282	0.0477	0.0610	0.0691	0.0947	0.2900
1 1315	240	0.0460	0.4402		0.0400	0.1073	C1E0.0	0.0486	0.0551	0.0972		0.2758
1 1415	000	0.0445	1424.0		0.0409	0.1240	0.0293	0.0440	0.0546	0.0905		0.2751
1 1515	340	0.0472	0.4302	0.0876	0.0387	0.1017	0.0272	0.0431	0.0504	0.0880	0.0847	0.2677
CLOCK	ELAPSED	N-C10	N-C11									
TIME	TINE	PPN	Ndd									
DAY HR.	(NIN)	SE52C2	SE-52C-2									
1 810	1 9-	0.1726	0.1802									
1 915	0	0.1569	0.1729									
1 1015	99	0.1472	0.1507					•				
1 1115	120	0.1523	0.2354									
1 1215	100	0.1298	0.1416									
1 1315	240	0.1424	0.1519									
1 1415	300	0.1362	0.1508									
1 1515	360	0.1350	0.1478									

_

.

NO DATA TAKEN

08111 "0.1 PPN M02 08221 "0.4 PPN M0 08251 430 MICROLIT

0822: "0.4 PPN NO INJECTED INTO EC 08221 430 Microliters (100 PPMC) injected. Start pure air fill. Dry buld temp: 85 Fi wet buld temp: 71Fi 1435: 500 Microliter buld Ozome injected

T=0 AT 1000 PST

NI = 0.310 NIN-1

RAL DISTRIBUTIO Relative	INTENSITY	1.446	1.233	1.023	0.852	0.734	0.595	0.500	0.371	0.236	0.103	0.000	
SPECT	. MM	200	910	104	380	370	360	052	0410	OFF	320	310	
UNITS .		DEG C											
9.DEV		8 .0		UNITS.		Mdd	Ndd						
AVERAGE	VALUE	29.9		INITIM	CONC.	0.336	0.084						
. TSN1		DORIC-1		INST.		1148-0	T 14B-3		•				
8		-		47		NG	ND2-UNC						

INSTRUMENTS USED

NRTZ CAPILLARYI FID Joh Filter Analyzer HCHO ANALYBIS Monitor LFOLANE! FID 19 2 Ŧ 1 F19 **BJYH** 102 C CMROMOTROPIC A DASIBI 1790 DZI AET DESCRIPTION RH-123 -121 1-12 0.0-400 2100 PN-1 3000 CA 1790 D-1790 OR IC-LADEL C9-1 1-9M 2750 2000 2200 2920 2

21-007-02 PAGE 1

EC-515 JP-4 (PET), GROUND LEVEL 1981 APKIL 2

21-0CT-82 PAGE 2

Ņ

CLOCA TIME BAY HR.	ELAPSED TIME (MIM)	020NE PFN D-1790	A0 7 7 7 1 1 4 1 - G	NO2-UNC PPN T 148-3	NOX-UNC PPH 1 148-3	T DEG C DORIC-1	PAN PPN ECD-1	NCHO PPH Ca	N-C6 PPN BNS-1	N-C6 PFM SE-52C-2	N-C7 PPN SE-52C-2	N-C8 PPN SE=52C
1 807 1 850	04- 113							0.002	0.3684	0.4087	0.5259	0.489
1 1000	90	0.000	0.336	0.084	0.522	29.9			8	0.4020	0.5062	0.477
1 1020	0 9 N	0.002	0.176	0.225	0.500	28.8	000.0					
1 1100	04	0.137	0.024	0.338	0.451	29.9	0.013	0.024		0.3887	0.4966	0.463
1 1130	96	0.349	0.010	0.301	0.388	20.3		0.042		SOUL O	4024	
1 1230	150	0.579	0.008	0.217	0.283	6.0E						
1 1300	180	0.610	0.008	0.194	0.253	30.9	0.034	0.069		0.3788	0.4763	0.435
011110	210	0.603	800.0	0.181	0.239	0.0E						
1 1430	240	0.540	010.0	0.1/3	0.224	4.42	W 0/0'0	6/0.0		2692.0	1.94.0	N
1 1500	OOE	0.520	0.008	0.142	0.217	29.2	0.069 A	0.056		0.3528	0.4480	0.410
1 1530	330	0.498	0.008	0.158	0.209	29.0						
1 1550	330	1			***			0.061	4 			
1 1400	360	0.476	0.008	0.151	0.205	28.8	0.050 A			0.3538	0.4370	E04 . 0
CLOCK TIME	ELAPSED Time	807 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	C2BENZ PPH	H-XYL PPH	I-C3-B2 PPM	D-XYL PPN	N-C3-B2 PPN	124TNEBZ PPM	MECYC-C6 PPM	N-C10 PPN	N-C11 PPN	
DAY HR.	(NIN) .	8E-52C-2	8E-52C-2	8E-52C-2	8E-52C-2	8E-52C-2	3E-5 2C-2	8E-52C-2	9E-52C-2	SE-52C-2	8E-52C-2	
1 850	-70	0.2578	0.0517	0.1680	0.0344	0.0409	0.0671	0.1266	0.3731	0.1860	0.1707	
1 1000	•	0.2502	0.0514	0.1669	0.0371	0.0413	0.0680	0.1267	0.3665	0.1824	0.1641	
1 1200	9 0	0.2467	0.0513	0.1618	44E0.0	0.0410	0.0700	0.1290	0.3548	0.1875	0.1915	
1 1300	180	0.2306	0.0483	0.1472	0.0358	0.0545	0.0458	0.1147	8422.0	0.1742	0.1784	
1 1400	240	0.2267	0.0465	0.1429	0.0343	0.0543	0.0440	0.1225	0.3256	0.1763	0.1801	
1 1500	OOM	0.2179	0.0459	0.1380	0.0342	0.0545	0.0420	0.1088	0.3156	0.1636	0.1675	
1 1600	360	0.2173	0.0449	0.1334	0.0354	0.0551	0.0998 8	0.1103	0.3100	0.1655	0.1558	
	NO BATA	TAKEN	·									

NOTES

PAN SAMPLE DILUTED 10:1. VALUES REPORTED MERE TAKE THIS INTO ACCOUNT. Value unusually large.

- - -

< 4

JP-4 (FET), SIAULATED 20,000 FT., Z = 70 1981 APRIL 9

FILTER PAMES - 1/4 INCH AND 1/8 INCH FUR 70 DEGREE ZENITH ANGLE SIMULATION.

TERS (50 PPMC) JP-4 (PET) INJECTED. UKE AIR FILL TO 350 TOKK. 50 TORR-EC TQ "400 MICROMS, MI-VAC OPEMED MI-VAC CLOSED "500 MICRONS, M2 TO 10 TORR. 0.1 PPM MO2 IMTO EC 0820: BEGIN DRY PUKE AIR FILL TO 350 TOKI 2000: Filler 10 330 Tokis. 1250: Pressure Abuust - 348 TO 352 Torr. 1500: Pressure Abuust - 242 TO 352 Torr. **MICROLITEI** 0759: 1 0802: UB14: 0818:

T=0 AT 1000 PST

N1 = 0.350 MIN-1

IR I BUT ION		Ł											
TRAL DIST	RELATIVE	TIGN3TNI	1.786	1.299	840.1	0.681	0.759	0.415	0.200	0.349	0.209	0.071	0.00
SPEC		. HN	200	024	403	380	370	340	050	046	330	320	310
	UNI 78		DE0 C										
	8.BEV		2.4	•	ST IND	1	PPN	PPN					
	AVERAGE	VALUE	-1.9		INITIAL	CONC.	0.352	0.079					
	INST.		DORIC-1		.TSMI		T 148-3	T 148-3					
	10		-	•		•	OW	MD2-UNC					

INSTRUMENTS USED

ESCRIPT LABEL

LLARY! FID R ANALYZER ICAT 2M-121 10 2750 1530 1800

-4004 FID NEI FID 2100 PN-1 3000 CA 8410 M03-84 2000 ECD-1 ī 920 200

ž

-4001 ECD SK CA

21-0CT-82 PAGE 1

EC-517 JP-4 (PET); Simulated 20,000 FI.; 2 = 70 1981 April 9

21-0CT-82 FAGE 2

1

CLOCK	ELAPSED	OZGNE	ON	NO2-UNC	NOX-UNC	-	PAN	нсно	N-C6	N-C6	N-C7	N-C8
TIME	TIME	Wdd	NGG	Mgg	Wdd	DEG C	Ngg	PPM	PFN	PPN Ngq	PPN	N99 .
DAY HR.	(NEN)	N03-8410	1 148-3	N-947 1	T 148-3	DORIC-1	ECD-1	CA	DMS-1	SE-52C-2	SE-52C-2	SE-52C-3
1 845	-75						0.000			0.1780	0.2274	0.2099
1 855	- 65							****	0.1613			
1 906	-54							0.004				
1 1000	0	0.000	0.352	0.079	0.436	-8.9	0.000	1 1 1 1		0.1725	0.2198	0.2024
0201 1	OE .	0.000	0.326	0.100	0.429	-2.6						
1 1100	0 9	0.004	0.279	0.142	0.421	-0.8	0.001	0.013		0.1781	0.2280	0.2109
1 1130	6	0.004	0.227	0.176	E04.0	-2.1				1		
1 1200	120	0.004	0.184	0.203	0.388	-1.8	0.002	0.017		0.1727	0.2207	0.2036
1 1230	150	0.004	0.148	0.225	0.373	-1.3			*****			
1 1300	180	0.004	0.120	0.240	0.363	-1.0	0.009	150.0		0.1735	0.2217	0.2019
1 1400	140	0.004	0.079	0.253	0.337	8.0-	0.013	0.042		0.1663	0.2117	0.1943
1 1500	300	0.004	0.058	9.253	0.313	-0-7	0.018	0.048		0.1595	0.2026	0.1861
1 1550	350							0.071				
1 1000	360	0.007	0.037	0.253	0.294	6.0	0.022			0.1559	0.1976	0.1812
0100	FI APSFN	0.U - 7	RE N7 ENG	TOLNEME	CORENZ	142-8	1-63-87	177-0	N-644	1 JATHER7	177-91W	1-1-1-1-1-1
TIME	TIME	Wdd	PPH	Mad	Mdd	Ndd	PPM	1 1 4 4		PPM		PPM
DAY HR.	(MIN)	SE-52C-2	SE-52C-2	10.0-900	8E-52C-2	SE-52C-2	SE-52C-2	8E-52C-2	SE-52C-2	\$E-52C-2	10'C-600	SE-52C-3
1 845	-75	0.1076	0.0298		0.0225	0.0741	0.0160	0.0275	0.0285	0.0557		0.1627
1 1000	•	0.1032	0.0290	0.0490	0.0211	0.0689	0.0140	0.0241	0.0257	0.0493		0.1575
1 1100	64	0.1108	0.0302		0.0224	0.0731	0.0163	0.0266	0.0299	0.0561		0.1633
1 1200	120	0.1079	0.0295		0.0232	0.0709	0.0171	0.0264	0.0328	0.0558		0.1583
1 1300	180	0.1050	0.0293	0.0501	0.0205	0.0675	0.0140	0.0229	0.0279	0.0547	0.0500	0.1580
1 1400	240	0.1014	0.0285		0.0215	0.0664	0.0151	0.0247	0.0277	0.0502		0.1511
1 1500	000	0.0973	0.0270		0.0206	0.0628	0.0147	0.0234	0.0271	0.0471	1 - 1 - 1	0.1449
1 1400	340	0.0949	0.0263	0.0438	0.0199	0.0528	0.0138	0.0225	0.0264	0.0477	0.0426	0.1403
	NO DATA	TAKEN										

LATED 20.000 FT. 1981

• 70

21-0CT-82 PAGE 3

N-C11 PPN 8E-52C-2	9080.0	0.0716	0.0844	0.0404	0.0887	0.0783	0.0741	0.0745	
M-C10 FPH SE-52C-2	0.0784	0.0724	0.0818	0.0933	0.0804	0.0759	0.0725	0.0714	TAKEN
LAPSED TIME (MIN)	-75	•	04	120	180	240	005	340	ND PATA
CLOCK TIME AT HR.	843	1000	1100	1200	1300	1400	1500	1400	
- é	-	-	-	•	-	-	-	-	- 1

EC-575 JP-4 (PET), GROUND LEVEL 1981 SEPTEMBER 3 0835: STOP PUMPING. 10 TORR. PURE AIR. 0847: 0.1 PPM NO2. 0849: 0.4 PPM NO. 0852: BEGIM ULTRA DRY PURE AIR FILL.

0852: BEGIN ULTRA DRY PUKE AIR FILL. 0918: Begin JP-4 N2 flusm (430 Microliters).

NI = 0.480 MIN-1

1=0 AT 945 PST

SPECTRAL DISTRIBUTION	RELATIVE	NM. INTENSITY	500 0.978	430 0.957	403 0.875	380 0.755	370 0.675	340 0.584	350 0.500	340 0.382	330 0.248	320 0.126	310 0.031	300 0.000
	UNITS		DEG C											
	S.DEV		1.4		UNITS		Ngg	Ndd						
	AVERAGE	VALUE	33.2		INITIAL	CONC.	0.410	0.088						
	INST.		DOR1C-1		INST.		T 14B-1	T 14B-1						
	10				10		Qž	NO2-UNC						

INSTRUMENTS USED

	FID		8		FID			1479	ENIL.
	901		Ē	F 1 0	801		18	9 NS	Ĵ
	CAP.		ē 00	901	009	æ	ALYS	ŝ	YZER
	UARTZ	111 1	P-XAUG	FOLANE	-XANOG	MALYZE	CHO AN	NDICAT	ANAL 5
	E-32 0		X CARD	HYLBUL	OX CAR	A XON-	ACID H	TURE I	8410 0
ION	IS HOE	POROPA	12.5	DINET	10, 1	92 7-4	SOPIC .	ENPERA	LABS
ESCRIPT	RN-1213	RM-121	RN-1213	RN-1211	RN-1211	TECO 14	CHROMOTI	DORIC TI	MONI TOR
LABEL D	SE-52C-2	PN-1	ECD-1	DMS-1	10.0-900	T 14B-1	e u	BORIC-1	H03-8410
91	2750	2100 1	2000	2200	2920	1510	1000E	1800	8410

21-0CT-82 PAGE 1

LC-575 JP-4 (PET), GROUND LEVEL 1981 SEPTEMBER 3

21-0CT-62 PAGE 2

CLOCK	ELAPSED	OZONE	9	NO2-UNC	NOX-UNC	-	NV.	HCHO	N-C6	#-C7	MECYC-CA	N-CO
TINE	TIME	NGG	NGG	N99	Ndd	DEG C	Ndd	PPN	Ndd	udd	MAA	NGG
DAY HE.	(NEN)	M03-8410	T 148-1	T 148-1	T 148-1	BORIC-1	ECD-1	5	SE-52C-2	SE-52C-2	3E-3 2C-2	\$E- 52C-2
246 1	•	0.020	014.0	0.088	844.0	31.4			0.4435	0.5213	0.3842	0.4811
1 952	~							0.008				
1 1000	15	0.015	0.341	0.146	0.491	31.8						
1 1015	01	0.022	0.173	0.299	0.477	29.8	0.003					
1 1030	\$	0.112	0.027	0.415	0.445	29.8						
1 1045	9	0.303	0.004	0.400	0.407	30.8	0.040	0.015	0.4267	0.4926	0.3479	0.4537
1 1100	22	0.431	0.001	0.378	0.382	31.7	1					
1 1115	06	0.534	0.001	0.302	0.304	32.7	0.041					
1 1130	105	0.413	0.000	0.299	0.300	33.5						
1 1145	120	0.470	0.000	0.284	0.285	33.9	0.094	0.017	0.4174	0.4801	0.3586	0.4391
1 1200	521	0.705	0.000	0.271	0.272	34.2						
1 1215	150	0.723	0.000	0.261	0.242	34.3	94010				***	
1 1230	145	0.725	0.000	0.252	0.255	34.0						
1 1245	180	0.721	0.000	0.246	0.249	34.0	0.113	0.049	0.4112	0.4713	0.3485	0.4315
1 1300	195	0.710	0.000	0.241	0.245	4 ° EE						
S151 T	210	0.497	0.001	0.236	0.240	4"EE .	0.110					
1 1330	225	247.0	0.000	0.233	0.235	34.0			*****			
1 1345	040	0.483	0.001	0.229	0.231	34.0	0.094	0.033	0.4005	0.4587	0.3385	0.4189
1 1400	255	0.477	0.000	0.224	0.227	6.EE	• • • • •					
1 1415	270	9.448	0.000	0.222	0.224	93.9	440.0					
1 1430	285	0.457	000.0	0.217	0.219	34.0						
1445	300		0.000	0.213	0.214	34.0	0.072	0.029	0.3929	2644.0	0.3318	0.4113
1 1500	315		000.0	0.208	0.212	34.2	1111				*****	
1 1515	911		0.000	0.206	0.207	34.0	0.080				1	
1 1536	345	0.543	0.001	0.201	0.205	34.2					891	
1 1535	05E	1						110.0				
1 1545	9 7 0	0.631	0.001	0.198	0.201	34.0	0.070		0.3648	0.4407	0.3250	0.4020

131

.
EC-575 JP-4 (PET), GROUND LEVE 1981 September 3

21-0CT-6 PABE 3

124TMEB2 PPN SE-52C-2	0.1143 0.1119 0.1086 0.1086 0.1080 0.1080 0.1080
X-C3-BZ PPM SE-52C-2	0.0550 0.0552 0.05541 0.05541 0.05541 0.0511
1-C3-BZ PPM SE-52C-2	8040° 1040° 1040° 1040° 1040° 1040° 1040° 1040° 1040° 1040° 1040°
C2BENZ PPM SE-52C-2	0.1894 0.1818 0.1700 0.1724 0.16724 0.1642 0.1544 0.1544
0-XYL PPM SE-52C-2	0.0452 0.0452 0.0454 0.0419 0.0584 0.0584 0.0584 0.0570
BENZENE PPM SE-52C-2	0.0972 0.0910 0.0903 0.0865 0.0865 0.0858 0.0858
N-C11 FPH SE-52C-2	0.1756 0.1815 0.1887 0.1779 0.1779 0.1730 0.1730 0.1730
N-C10 PPM SE-52C-2	0.1589 0.1510 0.15110 0.1541 0.1545 0.1497 0.1497 0.1480 0.1480
N-C9 PPN 86-52C-2	0.2392 0.2351 0.2255 0.2255 0.2255 0.2151 0.2151 0.2112 0.2041
ELAPSED TIME (MIN)	0 120 120 120 300 360 360 360 360 360 360 360 360
CLOCK TIME Dav HR.	1 945 1 1045 1 1145 1 1145 1 1145 1 1145 1 1145 1 1145 1 1145

FC-576 J#-4 (PET), 500 T0kk, 304 k 1981 SEP1, 10

-4 (PET) INTO EC. WIG: 10 TORR. PURE AIR INTO EC. ENTO EC

IN UITH DAY PURE AIR. 7MI ON N4< 0818: 0.4 P

CHANGER MAKE	AIK AD	SCHEDULE	
TINE	P.K.	(10)	P¢.
	;		1
0954	490		203
1120	104		105
1252	284		105
1345	044		203
1505	485		203

144 054 TA 0-1

NI = 0.4/0 NIN-1

SPECTRAL BISTRIBUTION	RELATIVE	MM. INTENSITY	500 1.235	430 1.073	403 0.942	380 0.796	370 0.697	360 0.395	995 0 955	340 0.371	330 0.253	320 0.120	310 0.019	. 100 0.000
	UNI 75		DEG C											
	S.DEV		4.0		· UNITS		E.	Ĩ						
	AVERABE	VALUE	31.2		INITIM	CONC.	0.470	0.084						
	1841.		DORIC-1	•	18M1.		148-14	1 148-3						
	11		_		1			+02-UNC						

. •

۰.'

INSTRUMENTS USED

ID LABEL DESCRIPTION 2750 SE-52C-2 RH-1211 JON SE-52 GUARTZ CAP. GCI FID 2000 ECD-1 RH-1211 J2° SI CARDOMAX-400 GCJ ECD 1550 T 14D-3 TECO 14D-3 NO-MOX AMALYZER 1800 DOTIC-1 DORIC TENPERATURE INDICATOR. 9H 41479 3000 CA CARONOTRDFIC ACID NCHO AMALYSIS 3410 NOJ-0410 NONITOR LADS 8410 DJ AMALYZER (CHENIL.)

EC-576 JP-4 (PET), 500 TORK, 304 N 1981 SEPT, 10

22-0CT-82 PAGE 2

CLOCK	ELAPSED	OZONE	Q¥	MO2-UNC	-	Pan	нсно	N-C6	MECYC-C6	N - C8	M-C7	N-C9
11ME	TINE	PFN	PFN	Ngg	DEG C	PPN	r P n	r P n	499	F F	FPA	PPN
DAY HR.	(NIN)	N03-8410	E-941 1	1 146-3	DOKIC-1	ECD-1	e U	SE-52C-2	\$E-52C-2	SE-52C-2	SE-52C-2	SE - 52C-
1 911	51-						0.013					
1 915	-15		0.474	0.088	30.5							
1 930	0	* * * *	0.470	0.084	29.7			0.4573	0.3949	0.4931	0.5363	0.2491
1 945	15		0.361	0.182	29.8							
1 1000	0	0.000	0.130	0.392	30.8	00.03					*****	
1 1015	45	0.181	0.021	0.453	31.0							
1 1030	90	0.333	0.017	0.425	31.6	0.045		0.4229	0.3629	0.4470	0.4878	0.2287
1 1036	9 9						0.036					
1 1045	75	0.428	0.017	0.395	30.6		*	***			1	
1 1100	90	0.507	0.017	0.373	30.8							
1 1115	105	0.545	0.017	0.356	30.9							1 1 1
1 1130	120	0.569	0.017	0.341	31.0	0.102	0.044	0.4155	0.3581	0.4352	0.4787	0.221
1 1145	135	0.585	0.017	0.330	31.2							
1 1200	150	0.585	0.017	0.322	31.3				1 1 1 1 1 1			
1 1215	165	0.585	0.015	0.315	31.4		1					
1 1230	180	0.580	0.017	0.312	51.3	0.112	0.050	0.4080	0.3459	0.4288	0.4683	0.2197
1 1245	195	0.572	0.017	0.307	31.4					8		
1 1300	210	0.547	0.015	0.303	31.6				* * * * *			
1 1315	225	0.547	0.015	0.298	31.6		* * * * *					
1 1330	240	0.536	0.017	0.292	31.6	0.078	0.082	0.4004	0.3397	0.4180	0.4592	0.2071
1 1345	255	0.539	0.017	0.288	32.0							
1 1400	270	0.515	0.017	0.285	31.4							
1 1415	282	0.507	0.017	0.281	31.4			8				
1 1430	300	0.507	0.017	0.274	21.7	0.078		0.3844	0.3246	0.4008	E044.0	0.201
1 1435	305						0.047					
1 1445	315	0.509	0.017	0.275	31.6							
1 1500	3 30	0.499	0.017	0.270	31.4	1						
1 1515	345	C.488	0.015	0.266	31.8		****					
1 1520	350						0.041					
1 1530	340	0.490	0.017	0.261	31.7	0.072	4	0.3721	0.3173	0.3906	0.4275	0.198
	ATA DATA	TAKEN										

EC-578 JP-4 (PET): 500 TORK: 304 K 1981 SEPT. 10

	ELAPSED 1 INE (MIW)	N-C10 FFN 86-52C-2	N-C11 FFn 86~52C-2	BENZENE PPN BE-52C-2	0-XYL PPn 86-526-2	C2BEN2 PPN SE-52C-2	. [-C3-92 PFN 8E+52C-2	H-C3-B2 FPN 8E-52C-2	1247MEB2 PPn 8E-52C-2
910	٥	0.1457	0.1740	0.0999	0.0672	0.1911	0.0504	0.0413	0.1200
OFO	4	0.1560	0.1755	0.0911	EE40.0	0.1772	0.0448	0.0574	0.1073
130	120	0.1508	0.1482	0.0902	0.0612	0.1736	0.0446	0.0548	0.1002
530	180	0.1500	0.1711	0.0894	0.0412	0.1488	0.0452	0.0550	0.1004
011	40	0.1407	0.1533	8240.0	0.0556	0.1413	0.0408	0.0503	0.0715
0	100	0.1379	0.1554	0.0860	0.0547	0.1589	0.0390	0.0492	0.0917
230	340	0.1348	0.1517	0.0838	0.0542	0.1554	0420.0	0.0484	0.0880
1	NO DATA	TAKEN							

MOTES

THERE IS NO DHS. PN. OR C'400 DATA. THIS IS DECAU JP-4 MAS ALREADY IN THE CHANDER AT THE PRE T=0 TIM Which caused the peaks to be obliterated.

EC-580 JP-4 (PET): 300 TORK. 1981 SEPT. 14 UB24: BEBIN DRY PURE AIR FILL TO 350 TORR. 0847: 0.1 PPN NO2 INJECTED. 0857: 0.4 PPN NO INJECTED. 0901: 430 Mickoliters JP-4 Injected.

31	. PR.	1	350	352	342	
SCHEDU	01)					
KE UP AIR	PK.	;	930	342	0EE	930 PD1
1 A	i wi	1	1206	1232	1500	[=0 A]

NI = 0.475 MIN-1

DISTRIBUTION

401		2						-						
0000		. WN	200	930	E04	085	370	360	350	0 4 M	OEE	320	310	005
			ں د											
	UNITS		DEG											
	S.DEV		0.6		UNITS		Xdd	NGG						
	AVERAGE	VALUE	31.5		INITIAL	CONC.	0.451	0.071						
	. T2NI		DORIC-1		INST.		1 14B-3	T 14B-3						
	10		_		X D		ç	402-UNC						

INSTRUMENTS USED

0000.0

 ID
 LABEL
 DESCRIPTION

 2750
 BE-52C-2
 KH-1211
 30M
 SE-52
 GCI
 FID

 2200
 DM9-1
 RH-1211
 JDMETHYLGULFOLME
 GCI
 FID

 2200
 DM9-1
 RH-1211
 JDMETHYLGULFOLME
 GCI
 FID

 2190
 PH-2
 RH-1211
 JDMETHYLGULFOLME
 GCI
 FID

 2190
 PH-2
 RH-1021
 JD
 SC
 CARDUAAT-000
 GCI
 FID

 2000
 CCH-400
 RH-1211
 J2
 SC
 CARDUAAT-400
 GCI
 FID

 2720
 IO'CC-400
 RH-1211
 J2
 SC
 DAMATON
 GCI
 FID

 2720
 IO'CC-400
 RH-1211
 J2
 SC
 DAMITOR
 SC
 FID

 2721
 IO'CC-400
 RH-1211
 J2
 SC
 RHDUAAT-400
 GCI
 FID

 2721
 IO'CC-400
 RH-1211
 J2
 SC
 RHDUAR
 SC
 FID

 2721
 IO'CC-400
 RH-1211

JP-4 (PET): 300 TOKK. 1981 Stri. 14 1-1-1-1

NECYC-C4 FFA 8E-52C-2 684E.0 0.3562 N-C7 PPN 8E-52C+2 0.5257 N-C4 PPN SE-52C-2 0.442 HCHO PPN CA CHRON 0.0110 NOX-UNC FFN T 148-3 102-UNC PPN 0.071 2333 .28 144-1 144-1 0.451 020ME 777 9-1212 0.027 0.027 0.027 0.083 0.198 0.198 0.313 0.313 0.355 0.355 0.355 0.32 ELAPSED TINE (NIN) CLOCK TINE MAY MR. 0100 20012

•.29 AKEN IN DAT

0.00

.234 0.234

9.29

22-0C1-82 FAGE 2

N-C9 PFN E-52C-2

N-C8 PPN 8E-52C-2

0.2470

62230

0,2272 0,2176 0,2176 0,2094

1225.0

0.484

I.

EC-580 JP-4 (PET), 300 TORK. 1901 SEPT. 14

N-C3-B2 FPN SE-52C-2	0.0615 0.0578 0.0578 0.0546 0.0531 0.0531
I-C3-\$2 PPh 9E-52C-2	0.0513 0.0531 0.0471 0.0441 0.0424 0.0387 0.0387
C2BENZ PPM SE-52C-2	0.1932 0.1989 0.1743 0.1697 0.1607 0.1546 0.1561
0-XYL FPA SE-52C-2	0.0697 0.0715 0.0631 0.0594 0.0532 0.0532
BENZENE PPN SE-5 2C-2	0.0982 0.1015 0.0911 0.0894 0.0843 0.0832 0.0832
N-C11 PPN SE-52C-2	0.1678 0.1706 0.1712 0.1712 0.1626 0.1626 0.1410 0.1451
N-C10 PPN 8E-52C-2	0.1625 0.1698 0.1549 0.1549 0.1430 0.1430 0.1297 0.1364
ELAPSED TINE (MIN)	00000000000000000000000000000000000000
CLOCA TIME Day MR.	1 930 1 930 1 1030 1 1130 1 130 1 130 1 130 1 1530

124TMEB2 SE-52C-2

B2

0.1182 0.1196 0.1055 0.1006

0.1079 0.0811 0.0860

NO DATA TAKEN

.....

· _• ٠. •

.

•

٠.

٠... ٠.,

22-001-82 Page 3

EC--581 JP-4 (PET), 350 TORR, 305 K 1981 SEFT, 15

M2 INTO EC. 16. 18. 19. INTO EC. 19. IN. 19. IN.	
INDER INTO EC NTO EC LLUSH. IR SCI	2
TORR CYL PPN M02 7788 N0 1 10884. Cy 110 JP-4 F 110 JP-4 F 110 JP-4 F 110 JP-4 F	E : SAA
0009970 9879900 9879000	
14240 18240 18240 18260 18260	1111 1247 1324

T-0 AT 945 FAT

X1 = 0.475 MIN-1

SPECTRAL DISTRIBUTION	RELATIVE	MM. INTEMBITY	500 1.240	430 1.101	401 0.946	180 0.800	370 0.700	360 0.580	350 0.500	340 0.373	JJO 0.237	320 0.121	310 0.019	300 0.000
	UNITS													
	9.DEV		0.7		811WN		H L L	H						
	AVERAGE	VALUE	11.1	1	THITAL	CONC.	0.419	0.105						
	INST.		AORIC-1		IMST.		1 146-3	148-3	•					
	10			•	d I	•	Q	MO2-UNC						

INSTRUMENTS USED

> (CHENIL.) 00 0C1 ECD 0R1 SN 41479 0C1 FID Ē 0 03 ESCRIPT ID LABEL DE 2756 BE-52C-2 H 2290 DM9-1 1 2720 10'C-400 H 2190 PW-2 1800 BGRIC-1 1 1530 T 14D-3 1530 C 4410 M 4410 M03-8410 M

21-0CT-82 PAGE 1

Salada Salada Sala

1.1.1.

EC-581 JP-4 (PET), 350 TOKR, 305 N 1981 SEFT, 15

21-0CT-82 PAGE 2

	N - C 8	SE-52C-2		0.5028				0.4605	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0.4226				0.4268				0.4216			1	0.4040					0.3877	
	NECYC-C6 PPM	SE-52C-2	0	0.3890	* * * * *	* • • • •]	0.3684				0.3354				0.3413		***		0.3352				0.3225					0.3092	
·	N-C7 PPN	SE-52C-2		0.5219		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.4963				0.4531				0.4594				0.4547		* * *		0.4365		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0.4184	
	N-C6 PPN	SE-52C-2		0.4242				0.4087	*****			0.3741				0.3817				0.3764			* * * *	0.3626			4 1 1 1		0.3469	
•	HCHO PPN	CA	0.015	0.059	11111	9 8 8 1 1		0.046		f t t t		0.094		t 1 1 1						4 1 1 1 1	****	9 8 1 1 1	* * * *	0.082		* * * *		0.096		
	2 Z Q Q Q Q Q	ECD-1			t + + + +	 		0.053		1 1 1 1 1		0.104				0.114		* 1 * *		0.102	* 1 * 1 1			0.096				1111	0.080	
	T DEA C	DORIC-1	8	30.1	30.2	29.5	29.9	30.8	31.6	32.3	7.1E	31.3	31.4	31.4	31.6	31.6	31.6	31.4	31.4	31.4	31.6	31.4	31.6	31.6	31.7	31.6	31.8		31.6	
	NOX-UNC PPR	T 146-3		0.519	0.502	0.461	0.419	0.388	0.363	945.0	0.328	0.313	0.307	0.298	0.294	0.290	0.288	0.283	0.281	0.275	0.270	0.266	0.260	0.260	0.255	0.253	0.253		0.246	·
	HO2-UNC	E-841 1		0.105	0.231	0.427	0.412	0.382	0.358	0.339	0.322	0.309	0.300	0.292	0.294	0.283	0.281	0.275	0.275	0.266	0.261	0.257	0.251	0.251	0.249	0.245	0.245		0.238	
	NO NO	T 14B-3		0.419	0.275	E40.0	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.015	E10.0	0.015	0.015	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017		0.017	
	0ZONE PPN	M03-8410		0.031	0.021	0.035	0.181	0.262	0.314	0.356	0.398	0.412	0.412	0.419	0.408	0.405	191.0	195.0	0.377	0.377	0.381	0.370	0.377	0.370	0.349	0.356	0.349		0.345	TAKEN
	ELAPSED. TIME	(NIN)	m 1	•	15	30	45	60	. 75	66	105	120	135	150	165	:80	195	210	225	240	255	270	285	300	315	OEE	545	353	360	NO DATA
	CLOCK	DAY HR.	1 942	1 945	1 1000	1 1015	1 1030	1 1045	1 1100	1 1115	1 1130	1 1145	1 1200	1 1215	1 1230	1 1245	1 1300	1 1315	1 1330	1 1345	1 1400	1 115	1 1430	1 1445	1 1500	1 1515	1 1530	1 1538	1 1545	1 5 7 1 1

EC-501 JP-4 (PET): 350 TORR: 305 1981 SEPT. 15

21-0CT-8 PAGE 3

PPN 526-2	FFN 56-520-2	86-52C-2	BENZENE PPN SE-52C-2	0-XYL PPN 8E-52C-2	C286WZ PPM 86-52C-2	I-CJ-87 FPA SE-52C-2	N-C3-82 PFN SE-52C-2	1241MEB PPN SE-52C-
2	0.1476	0.1/08	0540.0	C790 · 0		9400·0		
98	0.1637	0.1815	0.0896	0.0657	0.1807	0.0484	2420.0	0.1277
80	0.1515	0.1699	0.0825	0.0622	0.1689	0.0457	0.0572	0.1205
5	0.1542	0.1744	0.0859	0.0620	0.1495	0.0459	0.0571	0.0998
2	0.1519	0.1733	0.0839	0.0402	0.1677	0.0445	0.0554	0.1004
2	0.1441	0.1620	0.0875	0.0584	0.1614).0432	0.0533	0.0913
•	71337	0.1464	0.0775	0.0549	0.1546	0.0402	0.0494	0.0861

W DATA TAKEN

21-0CT-82 PAGE 1

> 0824: 10 TORR DRY PURE AIR. 0.1 PPM MO2. 0832: 0.4 PPM MO. DEGIM DRY PURE AIR FILL. 0900: Filled. 0932: 430 Microliters JP-4 (Pet) imjected.

T=0 AT 1000 PST

K1 = 0.475 MIN-1

UNITS	DEG		
S.DEV	1.9	UNITS	1 4 4 4 4
AVERAGE	-1.5	INITIAL	0.432
INST.	boric-1	INST.	T 148-3
10	T	10	NQ NO2-UNC

c

INSTRUMENTS USED

 IV
 LABEL
 DESCRIPTION

 2200
 DMS-1
 RN-121
 DIMETHYLSULFOLANE
 BCI FID

 2750
 SE-52C-2
 RN-121
 DOROPAK-N
 BCI FID

 2100
 FN-1
 RN-121
 10°
 SC CARDOMAX-400
 BCI FID

 2900
 FCG-1
 DORIC
 TAN-1211
 10°
 10°
 CARDOMAX-400
 BCI FID

 2920
 10°C-600
 RN-1211
 10°
 10°C
 CARDOMAX-400
 BCI FID

 2920
 10°C-600
 RN-1212
 DORIC
 BORIC
 TAN
 500
 50°C
 50°C

•

EC-567 JP-4 (PET), 740 TORR, 272 K 1981 8EPT, 23

21-0CT-82 PAGE 2

ACCOUNT DEPENDENT. FOR CONSISTENCED STRATES STOL

CLOCK TIME DAY NR.	ELAPSED TINE (NIN)	020ME PPH B-1212	80 PPN 1 148-3	MO2-UMC PPN T 148-3	MOX-UMC PPN T 148-3	T DEG C BORIC-1	777 777 777 777	ACHO FFH C FFH	N-C6 PPN \$E-52C-2	N-C7 PPN BE-52C-2	NECYC-C6 PPN 8E-52C-2	M-C8 PPN 8E-52C-2
1 945	51-	0.000	0.402	0.051	0.454						8 8 8 8	8
1 1000	•	0.000	0.432	0.042	0.496	-7.3			0.3650	0.4657	0.3429	0.4312
1 1001	-							0.000			1 6 1 1 6	
1 1015	13	0.00	0.426	0.076	402.0	0.9						
1 1030	Q M	0.000	0.419	0.099	0.523	1.5						*****
1 1045	1	0.000	0.394	0.104	0.501	•						
1 1100	9	0.017	0.371	0.130	102.0	-1.7			0.3871	0.4474	0.3442	0.4322
1 1105	54							0.000				***
1 1115	75	0.022	0+10	0.159	0.501	-1-0						
1 1130	9	0.022	0.305	0.194	0.200	-1.9					****	
1 1145	105	0.024	0.244	0.217	0.483	-1-						
1 1200	120	0.037	0.238	0.246	0.504	-1.7	0.004		0.3743	0.4541	0.3344	0.4184
1 1215	135	0.037	0.200	0.292	494	-1.7						
1 1230	150	0.039	0.148	0.312	0.482	-1-8						
1 1245	145	0.049	0.139	0.530	0.471	-1-						
1 1300	180	0.054	0.122	545.0	0.445	-1.7	0.013	0.004	4842.0	0.4349	0.3262	0.4058
1 1315	195	290.0	0.079	0.354	0.454	-1.7					8 8 6 2 8 8	
1 1340	210	890-0	0.085	0.342	0.440	-1.8						****
1 1345	225	0.07J	0.074	0.341	0.435	-1.7						
1 1400	9 4 0	5.003	0:062	0.342	0.424	-1.7	0.021	000.0	0.3457	0.4313	0.3208	0.3973
1 1415	255	0.040	0.054	0.358	0.417	-1.2						****
1 1430	270	0.100	0.050	0.341	0.412	-1.1					***	
1 1445	205	0.105	0.041	0.357	0.402							
1 1500	800	0.120	620.0	0.355	942.0	.01	0.024	000.0	0.3500	0.4239	0.3153	0.3908
1 1515	315	0.122	0.033	0.354	0.390		1					; ; ; ; ;
1 1530	011	0.134	0.029	0.351	0.383	•••						
1 1545	546	0.139	0.028	141.0	0.374	.01						
1 1550	956					;;;;		0.000				
1 1600	360	0.151	0.024	0.343	0.348	-1.2	0.034		0.3531	0.4175	0.3105	0.3838
	NO BATA	TAKEN								•		

EC-587 JP-4 (PET): 740 TORR: 272 K 1981 SEPT. 23

21-0CT-82 Page 3

CLOCA TIME DAY HR.	ELAPSED TINE (MIN)	N-C9 PPN SE-52C-2	N-C10 PPN SE-52C-2	N-C11 PFN SE-52C-2	BENZENE PPN SE-52C-2	0-XYL . PPM SE-52C-2	C2BENZ PPH SE-52C-2	I - C3 - B2 PPM SE - 52C - 2	N-C3-B2 PFA SE-52C-2	124THEBZ PPH SE-52C-2
1 1000	•	0.2222	0.1505	0.1598	0.0835	0.0630	0.1676	0.0460	0.0556	0.1104
1100	6 0	0.2249	0.1528	0.1672	0.0847	0.0448	0.1673	0.0476	0.0574	0.1111
1 1200	120	0.2148	0.1461	0.1584	0.0850	0.0596	0.1653	0.0442	0.0538	0.1043
1 1300	180	0.2079	0.1428	0.1559	0.0823	0.0564	0.1567	0.0424	0.0515	0.1001
1 1400	240	0.2023	0.1378	0.1494	0.0815	5420.0	0.1550	0.0410	0.0495	0.0955
1 1500	OOM	0.1980	0.1350	0.1455	0.0769	0.0528	0.1521	0.0397	0.0480	0.0931
1 1600	360	0.1944	0.1318	0.1409	0.0764	0.0514	0.1486	0.0391	0.0470	1160.0
	NO DATA	TAKEN								

EL-308 JP-4 (PET)+ 740 TOAR+ 205 K 1981 SEPT+ 24

0622: 0.1 PPN M02. 0628: 0.4 PPM M0. FILL WITH BRY PURE AIR. 0653: 430 Microliters JP-4 Injected.

T=0 AT 1000 PST A1 = 0.475 MIM-1

SPECI	ł	Ė	000	430	101	085	370	360	936	01E	910	320	01E	300
	UNITS		DEG C											
	8. DEV		0.0		11113		Ndd							
	AVERABE	VAL NE			THIT		0.342							
	. 1 8 M1				1441		5-444 T							
	B I	!			•		5							

TRAL DISTRIBUTION RELATIVE

INSTRUMENTS USED

-	2	8							
1		Ë,	•			• •			
1	3	ŝ		į	5	ž			81
5	÷	Ş.	ÿ			ž		-	
ı J	N	Z-Z	¥	a		Ĭ	ð	r ZEI	Ē
,	ART	ğ	ž		Ĩ	ğ	I	Ĩ	ŝ
	3	ž	3	3	ž	2 4	¥	ž×	Ŧ
	1	2	ž	Ĭ	2 2	ž	302	Ş	U
	3 -	ž	Ē	₹8	ю •	Ĭ	0	ĝ	ũ
ŝ	Ā	2	ž	Ē	2	ž	5	1	ģ
	211	21)	211	2	211	5	ä	1	Į
	1-5	Ĩ	Ĩ	Ē	Ī	ğ	Ï	LEC.	N
ä	ů.		-	-	-	_	-		Ī
2	220-	2	7	_	-	2	020	-	
N S	5.98	10,1	Ś	ź		Š	Ĩ		S
-	8	2	8	8	8	Ş	17	8	8
	27	2	2	3	20				8

.

۰.

٠.

٠.

21-0CT-82 PAGE 1

ľ

EC-588 JP-4 (PET), 740 TORK, 285 A 1981 SEPT, 24

CLOCK	ELAPSED	020NE	Q	NO2-UNC	NDX-UNC	H	PAN	нсно	N-C6	N-C7	MECYC-C4	8-C8
TIME	TIME	Ndd	Ndd	NGG	Ndd	DEG C	NGG	Ndd	Mdd	NGG	MAd	N J A
BAY HR.	(NIN)	D-1070	1 148-3	1 14B-3	T 148-3	BORIC-1	ECD-1	S	SE-52C-2	SE-52C-2	8E-52C-2	SE-52C-
1 952	.	8						0.017				
1 1000	•		0.362	0.094	0.458	13.7			0.4253	0.5250	0.3816	0.4745
1 1015	51		0.305	0.144	124 · 451	14.9						
1 1030	e N		0.224	0.211	624.0	13.8						
1 1045	45		0.141	0.271	0.415	12.8						
1 1100	6 0	0.007	0.078	0.327	0.407	12.0	0.013	0.00	0.3984	0.4794	0.3525	0.4375
1 1115	5	0.044	0.042	44E.0	687.0	11.9		r 				
0611 1	0	0.088	0.051	0.351	0.378	11.8						
1 1145	105	0.124	0.032	6EE . 0	0.158	11.6	f ; ; ; ;					
1 1200	120	0.143	0.013	0.338	0.354	11.6	0.037	510. 0	0.3629	0.4521	E2EE.0	0.4191
1 1215	135	0.190	0.011	0.328	0+2-0	11.6						
1 1230	150	0.232	0.009	0.322	0.332	11.6						
1 1245	165	0.259	0.007	0.297	0.307	11.5						
1 1300	180	0.275	0.006	0.295	E0E'0	11.5	0.060	0.013	0.3877	0.4475	0.3381	0.4158
1 1315	195	0.284	0.006	0.294	0.301	11.3						
1 1330	210	0.315	0.005	0.289	0.296	11.3						
1 1345	225	422.0	0.005	0.286	0.294	11.3	11127				*****	
1 1400	240	0.344	0.005	0.273	0.280	11.5	0.074	0.017	0.3717	0.4370	0.3250	0.4021
1 1415	255	191.0	0.005	0.264	0.269	£.11						
1 1430	270	942.0	0.003	0.257	0.243	11.3						
1 1445	282	0.415	0.005	0.247	0.253	11.3	新新新新新新					
1 1500	000	0.432	0.003	0.235	0.241	11.8	0.090	0.019				
1 1515	315	0.447	0.005	0.229	0.235	11.5						
0551 1	011 11	924 - 0	0.004	0.222	0.228	11.5				/		
1 1545	540	0.444	0.005	0.214	0.222	11.8	***					
1 1550	350							0.017				
1 1600	09E	0.483	0.005	0.211	0.217	11.4	0.092		4445.0	0.4241	0.3166	0.3972
	NO DATA 1	TAKEN										

285 202

JP-4 (PE 1981 SEP

247MEB2 PPN 286-52C-2	0.1231 0.1101 0.1071 0.0793 0.0793
x - Cu - B 2 - 2 - 2 5 - 5 - 5 5 - 5 - 5 5	0.0575 0.0575 0.0557 0.0557 0.0557 0.0512
1-C3-B2 PPN SE-52C-2	0.0512 0.0469 0.0454 0.0459 0.0459
C2BENZ PPN \$6-52C-2	0.1740 0.1740 0.1644 0.1552 0.1552
0-XYL PPN 8E-52C-2	0.045 0.0455 0.0410 0.0410 0.0410 0.0574
DENZENE PPN 8E-52C-2	0.1007 0.0873 0.0815 0.0815 0.0872 0.0872 0.0872
H-C11 PPh 86-520-2	0.1932 0.1810 0.1742 0.1725 0.1632 0.1645
N-C10 PPN 8E-52C-2	0.1690 0.1563 0.1510 0.1486 0.1422 0.1372
N-C9 FPN SE-52C-2	0.2451 0.2258 0.2179 0.2154 0.2036
ELAPSED TINE (NIN)	1 7 0 0 7 7 0 7 0
CLOCK TIME BAY NR.	1 1000 1 1100 1 1200 1 1300 1 1400

NO DATA TAKEN

EC-591 JP-6 (PET), GROUND LEVEL 1981 OCT. 7 0033: 0.1 PPM MO2 AND 0.4 PPM MO INTO EC. 386 Microliters JP-8(Pet) into EC. 0848: 50% R.H. Pure Air Fill. 0900: Filled.

1=0 AT 930 PS1

A1 = 0.340 MIN-1

SPECTRAL DISTRIBUTION	RELATIVE	NN. INTENSITY	500 1.705	430 1.240	1.023	380 0.873	370 0.734	360 0.600	350 0.500	340 0.362	330 0.217	320 0.098	310 0.026	300 0.000
	UNITS.		DEG C											
	S. BEV		0.9		CN118		MAA	RPA						
	AVERAGE	VALUE	30.7		INITIAL	CONC.	0.476	0.098						
	INST.		DORIC-1		INST.		148-4	1 148-3						
	1		Ŧ		•1		QN	NO2-UNC						

.

٠...

٠. •

INSTRUMENTS USED

ID LABEL DESCRIPTION 2450 VAR 3700 VARIAN GCI 30M 8E-54 QUARTZ CAP. 0CI FID 1800 DORIC-1 Doric Tenperature indicator, 9M 41479 1212 D-1212 Darie 12 020ME HONITOR 1530 T 14D-3 TECQ 14D-3 HO-HOX AMALYZER 3000 CA CHRONOTROFIC ACID MCHQ AMALYSIB - <u>-</u> -

.

•

21-0CT-82 FAGE 1

•

EC-591 JP-6 (PET); GROUND LEVEL 1991 OC1. 7

21-0CT-82 PAGE 2 è

R-C13 PPT VAR 370	, , , , , ,		F 6 8 7 8]	0.2264	4 1 1 1 1 1 1		1	0.2449			# . 	0.2344				0.2327				0.2247					0.1077	
- H-C12 - FPH VAR 3700	8	•				0.3036				0.3272	****	5335		0.3028				0.2959				0.2904					0.1877	
H-C11 PPH VAR 3700						0.2829	***			0.2947	******			0.2745				0.2708			,	0.2673					0.2172	
N-C10 PPM VAR 3700.						0.0054				0.0843				0.0798				2870.0				0.0742					0.0497	
H-C9 PPN VAR 3700				1		0.0257				0.0257				0.0241				0.0241				0.0235			*****		0.0224	
WCMD CJ WCMD	0.00					0.002		8 8 8		0.015				4004				0.004				240.0				0.084		
T DEB C DORIC-1		20.3	20.4	20.6	29.7	30.1	30.5	10.4	20.7		10.4	30.4	30.9	31.0	1.15	31.0	31.1	31.0	31.0	1.15	21.2	21.2	21.3	21.3	31.4		4.45	
NOX-UNC PPN 1 148-3		.571	0.559	0.549	0.541	423.0	0.520	0.507	0.498	0.483	0.441	424.0	0.415	9.195	0.348	0.341	0.322	0.295	0.275	0.256	0.239	0.227	0.219	0.212	0.209		0.205	
-	1	0	Ĭ																							•		
NO2-UNC PPN T 148-3		0.098	0.119	0.141	0.195	0.244	0,302	948.0	0.400	0.424	0.424	0.415	545 °Q	0.378	0.354	0.329	0.305	0.263	0.261	0.244	0.227	0.217	0.207	0.200	241.0		0.195	
MO MO2-UMC - PPN PPN - 1 148-3 7 148-3		0.474 0.098 0	0.437 0.119	0.390 0.141	0.344 0.195	0.265 0.244	0.217 0.302	0.158 0.346	0.078 0.400	0.050 0.424	0.039 0.424	0.024 0.415	0.022 0.393	0.017 0.378	0.015 0.354	0.015 0.329	0.015 0.305	0.015 0.263	0.015 0.261	0.015 0.244	0.015 0.227	0.015 0.217	0.015 0.207	0.200	0.015 0.197		0.015 0.195	
020ME M0 M02-UMC PPH PPN PPN 9-1212 T 148-3 T 148-3	* • • • • • • • • • • • • • • • • • • •	0.041 0.474 0.098 0	0.044 0.437 0.119 (0.029 0.390 0.141	0.022 0.344 0.195	0.017 0.285 0.244	0.017 0.217 0.302	0.024 0.158 0.346	0.041 0.098 0.400	0.071 0.050 0.424	0.115 0.039 0.424	0.144 0.024 0.415	0.220 0.022 0.393	0.249 0.017 0.378	0.315 0.015 0.354	0.354 0.015 0.329	0.396 0.015 0.305	0.427 0.015 0.283	0.452 0.015 0.241	0.474 0.015 0.244	0.400 0.015 0.227	0.493 0.015 0.217	0.493 0.015 0.207	0.491 0.015 0.200	0.483 0.015 0.197		0.474 0.015 0.195	
ЕLA PSED 020МЕ МО МО2-UMC TIME РРМ РРМ РРМ (MIM) B-1212 T 14 b-3 T 14 b-3		0 0.041 0.474 0.098 0	15 0.044 0.427 0.119 (30 0.029 0.390 0.141	45 0.022 0.344 0.195	40 0.017 0.285 0.244	75 0.017 0.217 0.302	90 0.024 0.158 0.346	105 0.041 0.098 0.400	120 0.071 0.050 0.424	135 0.115 0.039 0.424	150 0.146 0.024 0.415	145 0.220 0.022 0.373	180 0.249 0.017 0.378	195 0.315 0.015 0.354	210 0.354 0.015 0.329	225 0.396 0.015 0.305	240 0.427 0.015 0.263	255 0.452 0.015 0.261	270 0.474 0.015 0.244	205 0.400 0.015 0.227	300 0.493 0.015 0.217	315 0.493 0.015 0.207	330 0.491 0.015 0.200	142 0.483 0.015 0.197	05C	340 0.474 0.015 0.195	

	•			
	•			
394-S				
	•			
	Ν.			
		•		
ela:			•	
x - 4				
<u> 2</u>				
1				
	ب	<pre></pre>		
	E	999461991 0 4 4 999461991 0 4	z	
	2	x g 000000	B	
		5 '	7. RTE	
	IO ¥		VI ON .	
	\$ E .			
	- <u>-</u>	xm. 0000000		
	 • z			
	4		2	

......

EC-592 JP-6 (PET): GROUND LEVEL 1981 OCT: 8

08471 10 1000

INJECTED Sox R.H.

T=0 AT 930 PS1

R1 = 0.440 MIN-1

DISTRIBUTION

1 M

SPECI	:	- HR	005	0114	101		370	090	955	340	OFF	320	915	000
	78													
	IND		-											
	8. BEV		1 • 4		UNITS		H	844						
	AVERABE	AAL UR	1.1		INITIAL	CONC.	0.419	0.138						
	. T 8M1		DAIC-1		1961.		T 148-3	1 148-1	•					
	=			•		•	8	MD2-UNC						

INSTRUMENTS USED

P. BCI FIB H 41479 NALYSIS IC ACID HCH LADEL 5 1300 450 23 9

BROUND LEVEL 8 .130 1841 14(134) 8-4 765-33

21-0CT-82 PAGE 2

CLOCK	ELAPSED	DZONE	02	NO2-UNC	NOX-UNC	-	HCHO	N-C9	N-C10	N-C11	N-C12	N-C13
TINE	TIME	Ngg	Mdd	Ndd	Mgg	DEG C	Mdd	NGJ	Ngg	Ngg	PPN	PPN
DAY HR.	(NEW)	D-1212	N-841 L	T 148-3	1 14B-U	DORIC-1	CA	VAR 3700	UAR 3700	VAR 3700	VAR 3700	VAR 3700
1 930	•	0.088	0.419	0.158	0.578	28.6		0.0229	0.0602	0.1604	0.1762	0.1414
1 935	n				* * * * * *		0.006					
1 945	15	0.024	0.402	0.166	0.566	28.7						
1 1000	30	0.022	0.373	0.180	0.556	28.7						
1 1015	43	0.017	0.339	0.209	0.549	29.2	******					
1 1030	99	0.012	0.295	0.249	0.541	29.8	** * * * *		0.0450	0.1419	0.1365	0.1002
1 1045	22	0.010	0.253	0.280	0.534	30.1						
1 1100	96	0.010	0.205	0.322	0.524	30.4						
1 1115	105	0.017	0.151	0.361	0.512	30.9			*****			
1 1130	120	0.029	0.109	0.393	0.505	31.0			0.0427	0.1423	0.1525	0.1155
1 1135	125			1			0.006				*	
1 1145	135	0.051	0.073	0.419	0.493	31.0						
1 1200	150	0.078	0.051	0.427	0.478	30.9						
1 1215	165	0.110	420.0	0.427	0.461	31.0				* - * - * -		
1 1230	180	0.149	0.024	0.422	0.444	31.3	0.008		0.0415	0.1416	0.1531	0.1162
1 1245	261	0.185	0.020	0.410	0.424	21.3						
1 1300	210	0.225	0.017	E6E.O	0.410	31.3						
1 1315	225	0.266	0.015	0.375	0.390	31.3						
1 1330	240	0.295	0.012	0.358	175.0	4.1E	0.013		0.0397	0.1343	0.1437	0.1076
1 1345	255	0.327	0.012	0.341	0.351	31.4						
1 1400	270	0.361	0.012	0.322	0.332	31.6						
1 1415	285	E62.0	0.010	0.302	0.312	32.0						
1 1430	90E	0.422	0.012	0.285	0.292	32.6	0.010		0.0407	0.1378	0.1298	0.0934
1 1445	315	0.454	0.010	0.268	0.275	33.5						
1 1500	9190	0.481	0.010	0.251	0.258	34.2			8 8 8 8			
1 1515	945	0.200	0.010	0.239	0.246	1.EE	****					
1 1520	350						0.015				1	
1 1530	340	0.508	0.010	0.224	0.231	31.9		*	0.0375	0.1253	0.1345	0.0976
		TAVEN										

•								
	Ca							
,	51-10 696						·	
τ, ····································								
		,						
, ,								
•								
·ب ا		-						
•			.077	KEN				
, 1				e E				
	Q.	. 0K(8 0K(1 0K))))))))))))))))))))))))))))))))))))	10000 1000 1000 1000 1000 1000 1000 10	0 PAT				
- - -	- 29 EC - 5	20 20 20 20 20 20 20 20 20 20 20 20 20 2		ž !				
1	_	1981 1981 CLOC 111 DAY H						
J .					153			
i.			:					

EC-595 JP-8 (PET), SINULATED 20,000 FEET 1981 DCT. 14

LITERS JP-B(PET). 0820: FILL WITH DRY PURE AIR. 0832: INJECTED 386 MICROLITE 0840: INJECTED 0.1 PPN NO2. 0855: INJECTED 0.4 PPN NO. 0855: INJECTED 0.4 PPN NO.

T=0 AT 915 PST

KJ = 0.430 MIN-1

SPECTRAL DISTRIBUTION	NN. INTENSITY	500 1.720	430 1.248	403 1.050	380 0.972	370 0.747	360 0.618	350 0.500	340 0.342	330 0.235	320 0.110	310 0.020	300 0.000
		DE0 C											
	3.050	1.4		UNITS		Wdd	Xdd						
	RVEKAUE VALUE	-0.1		INITIAL	CONC.	0.419	0.077						
		DORIC-1		INST.		1 148-3	T 148-3						
:	1	-		1		QN	M02-UMC						

INSTRUMENTS USED

30M SE-54 QUARTZ CAP. GCI FID Ekature indicator, SN 61479 DASIBI 1070 020ME MONITOR Teco 148-3 NO-MOX AMALYZER Chromotropic Acid McMo Amalysis DESCRIPTION IB LABEL DESCRIPTI 2550 VAR 3700 VARIAN GI 1800 DDRIC-1 DDRIC TE 1017 D-1070 DASIDI 1 1530 T 140-3 TECO 14D 1530 CA CHRONDTR ٠.

21-0CT-82 PAGE 1

٠,

EC-595 JP-8 (PET): SIMULATED 20,000 FEET 1981 Oct. 14

21-0CT-82 FAGE 2

ABORTED. RMT MOT ENGAGED. Aborted. Retention times not identifyable. Sample skipped due to slowness of program.

< m U

CI OCK	EL APSEN	070MF	Ģ	00-00M	704 - 11NC	۲	0101	00-7				2.5-4
TINE	TIME	PPA	N 44	PPN PPN	PPA	DEG C		E P F	N d d	Ngg Ngg	N d d	
DAY HR.	(NIN)	D-1070	T 146-3	T 146-3	I 148-3	DORIC-1	CA	VAR 3700	VAR 3700	VAR 3700	VAR 3700	VAR 3700
1 915	•	0.000	0.419	0.077	0.498	-4.8		•	•	Ø	8	
1 930	15	0.000	0.414	0.084	0.498	-1.9				*		
1 945	30	0.000	0.408	0.088	0.498	-1.8						
1 1000	45	0.000	0.400	0.095	0.495	-1.6		****				1 1 1 1 1
1 1015	60	0.000	0.389	0.097	0.488	-1.6		0.0232	0.0698	0.1840	0.1092	0.0313
1 1030	75	0.000	0.376	0.110	0.486	-1.4					* * 1 * 1 *	
1 1045	96	0.000	0.367	0.118	0.486	-0.7						
1 1100	105	0.000	0.352	0.125	0.479	-0.7						
1 1115	120	0.000	0.337	0.133	0.473	4.0-	* * * * *	0.0232	0.0756	0.2200	0.1542	0.0514
1 1130	135	0.000	0.322	0.146	0.468	0.0	0.061					
1 1145	150	0.000	0.303	0.157	0.459	4.0						,
1 1200	165	0.002	0.286	0.165	0.449	0.6				****		* * * * *
1 1215	180	0.002	0.267	0.178	0.447	0.6		8	a	3 		
1 1225	190				1 1 1 1 1 1		0.033					
1 1230	195	0.002	0.249	0.185	0.436	0.6						
1 1245	210	0.005	0.232	0.195	0.429	4.0			1			
1 1300	225	0.005	0.217	0.202	0.419	•••			1 1 1 1	*****		
1 1315	240	0.005	0.200	0.210	0.410	••0		D	с 	J	J	
1 1330	255	0.010	0.185	0.217	0.401	0.6				***		
1 1345	270	0.007	0.170	0.223	0.393	0.7						1 1 1 1 1
1 1400	285	0.010	0.159	0.230	0.386	1.2						
1 1415	00E	0.012	0.146	0.232	0.378	1.3		•	A	¥	•	
1 1425	310						0.029					1
1 1430	315	0.015	0.128	0.243	0.371	1.2						
1 1445	330	0.015	0.118	0.245	0.363	P.4						
1 1500	345	0.020	0.110	0.245	0.355	1.3						
1 1510	355						0.019				*****	
1 1515	360	0.022	0.099	0.249	0.348	1.2			0.0677	0.2022	0.1501	0.0478
	NO DATA	TAKEN										
NOTES									,			

(The reverse of this page is blank.)

7

142 ·