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ABSTRACT

Creep data of 2618-T61 aluminum alloy under multistep multiaxial

proportional loadings at 2000C (3920F) are reported. Two viscoplastic

f low rules were developed using constant stress creep and strain

recovery data. One was based on the accumulated strain (strain

hardening), and the other on a tensorial state variable (kinematic

hardening). Data were represented by two models: a nonrecoverable

viscoplastic model; and a viscous-viscoelastic model in which the

time-dependent strain was resolved into recoverable (viscoelastic) and

nonrecoverable components. The modified superposition principle was

used to predict the viscoelastic strain component under variable

stress states for both models. The experiments showed that the

viscous-viscoelastic model with either strain-hardening or kinematic

hardening gave very good predictions of the material responses.

Strain hardening was best in some step-down stress states. The

viscoelastic component accounted for not only the recovery strain but

also the transient creep strain upon reloadings and step-up loadings.



INTRODUCTION

There have been great advances in development of constitutive

relations suitable for material used in design for high temperature.

However, all suffer from a lack of experimental data to evaluate them

Il].

Classically, most constitutive relations were based on the strain

- .hardening rule. Some modifications have to be made for this approach

to simulate the anisotropic nature observed in most structural

materials, see [2,3] and [4, Chap. 2].

In recent theories state variables have been introduced to

incorporate the anisotropic nature. The formulations usually consist

of a flow rule which describes the interrelations between strain rate,

*applied stress, and state variables, and an evolution rule which

describes the rate of change of the state variables with deformation

and metallurgical effects. The evolution rule was generally based on

the Bailey-Orowan model [5], and in most cases a tensorial state

variable (back stress) was associated with the kinematic hardening

nature and a scalar state variable with the isotropic hardening

nature, see [6-8]. Nearly all theories used the Mises relation to

extend their applicability from uniaxial to multiaxial stress states,

and except for Hart's work [8], they are all based on the viscoplastic

approach.

In previous work at Brown University on 2618-T61 aluminum [9-12],

a viscous-viscoelastic model (VV) with strain hardening nature was

developed and compared with a series of short term creep tests under

various stress histories. The stress strain relations were refined in

S
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[13] through a set of 48 hour creep and recovery data under constant

multiaxial stress states including aging and compression tests. In

current work, the previous strain hardening flow rule (SH) was refined

and another kinematic hardening rule (KH) was derived from the stress

strain relations reported in [131. In addition to the VV model, a

viscoplastic model (VP) in which all the time dependent strain was

assumed nonrecoverable was also developed to show the role of the

viscoelastic component. A set of 300-hour creep experiments under

multiaxial multistep proportional loadings were compared with: a VV

model with SH nature (VV-SH); a VV model with KH nature (VV-KH); a VP

model with SH nature (VP-SH); and a VP model with KH nature (VP-KH).

Future work will consider more complicated stress states such as

nonproportional loadings, stress reversals and mixed stress relaxation

and multiaxial creep.

MATERIAL, SPECIMEN, APPARATUS AND PROCEDURES

The material employed in the present work was aluminum alloy

2618-T61 which came from the same batch as that reported in [13], but

- probably different from that used in [9-12]. A more complete

description of material and specimen were given in [9,13]. The

combined tension and torsion machine and the compression machine used

for these experiments were described in [14] and [15], respectively.

The temperature control system and the data acquisition procedures

were described in [9,14,15]. All the tests were performed at a test

temperature of 2000C.

;a
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EXPERIMENTAL RESULTS

Eight tests are reported here whose loading programs and the

resulting total strain versus time are shown in Fig. 1-8. The total

duration of each test was around 300 h. The letter A preceeding the

* test number represents a pure tension or compression test, T

represents a pure torsion test, and CA, CT represent the axial part

and the torsion part, respectively, in a combined tension and torsion

test. The first two steps of each test were constant stress creep

followed by strain recovery. These were used for determining the

stress-strain-time relations for constant stress states, as reported

in [13]. Test 23, Fig. 1, was not shown in [13] because some friction

was detected in the strain measuring system during the first step and

small adjustments were made during step 2 to save the following steps.

The loading direction remains constant for each test. The stress

magnitudes change abruptly in the following ways: step up followed by

step down as in Fig. 2, step down followed by step up as in Fig. 3 and

8, and step down followed by reloading and step down as in Fig. 1,

4-7. Test A37, Fig. 7, is a compression test with the loading program

exactly the same as that of tension test A32 shown in the same figure.

* The symmetry in tension and compression as discussed in [13] can be

reaffirmed from Fig. 7. Another compression test is A44, Fig. 8.

The loading program for test 31 (CA31 or CT31), Fig. 5, 6 is

basically the same as that for test A32 with equal magnitudes of

- effective stress defined by 02 + 3T2 - (Oeff)2 for each pair of

corresponding steps.

The third step for all the tests except test A24 Fig. 2 was

reloaded to the same stress as the first step. This always resulted
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in some transient creep strain upon reloading to the previous creep

stress level. Also all the step up steps resulted in transient creep.

Partial unloading resulted in the following: If the reduction was

small enough there was a period of strain recovery followed by new

creep within 24 h or less, as in period 6 Fig. 1 and 2, period 4 Fig. 3,

period 7 Fig. 5, 6 and 7. However, in period 4 Fig. 8 a reduction of

stress similar to that of period 4 Fig. 3 but at much higher stress

yielded continuous strain recovery during the period of observation.

When the stress was reduced in one or two steps to about one half

there was a short strain recovery period followed by a long period

with no strain change, as in period 7 Fig. 1 and 2, period 4 Fig. 4,

5, 6, and 7, period 7 Fig. 4, and period 9 Fig. 8. If the stress was

reduced in several steps to a sufficiently small proportion of the

initial stress, continuous slow strain recovery was observed as in

period 8 Fig. 1, 6 and 7, period 5 Fig. 3 and 8.

STRESS-STRAIN-TIME RELATIONS FOR CONSTANT STRESS STATES

In the VV model, the total strain cij during constant stress creep

was represented as:

E +VE l +V n2
ij = Eij + cij t + ijt

E 4-E n1 VE
where is the time independent elastic strain, -j t U is the

+V "2 V
viscoelastic component, and cijt =ij is the time dependent

nonrecoverable component for the YY model. n- n- .,e 0.223 and

0.496, respectively, see [131. Time independent plastic strain was

. ." . . . .



negligible for this material at the stresses employed. In the VP model,

the total strain Eij during creep is

IrS

Cij = Cij t , (2)

where cjtN = C¢ j is the time dependent strain for the VP model, and N

was found to be 0.407, [13]. The elastic moduli for tension E and for

torsion G were found to be 6.50xi04 MPa (9.43xi03 ksi) and 2.38xlO4 HPa

(3.45x103 ksi), respectively. The third order multiple integral

representation yields the following expressions for the stress dependent

+VE VE
coefficients C11 and e12 under constant combined tension and torsion

stress, i.e.,

VE +£1 = FVE(Or) = PI F3°3  4 (3)

+VE ; +
12 GVE(aT) = + G2T3 + G 2 T (4)

where Fi and Gi are constants whose values are given in [13].

A function Fa (or Fb)of maximum shear stress Tmax multiplied by

the stress deviator aij, was developed to represent the stress

dependence of £ij or cLij as follows,

Cij = ijFa(rmax) (5)

where

Fa(Tmax) - 3.616xlOSx~l0.3914x exp[2.108xlOSx(rmax/G) 2 ]} ,

percent per MPa-hr
0 4 9 6 ,
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and

":ij OijFb(Tmax) (6)

where

Fb(Tmax) = 6.219x10-5x{1+0.6433x exp[l.633xl0 5x(Tmax/G)2]}

percent per MPa-hr
0-4 07

where G is the shear modulus. Equations (5) and (6) represent the

data best of several different formulations considered, such as power

function, hyperbolic sine and combinations of power and exponential

functions.

WEAKENING EFFECTS

In previous work [13], secondary and tertiary creep stages were

observed when the magnitude of the effective stress was 137.2 IPa

(19.90 ksi) or higher. It was also reported that there were no

significant aging effects in this precipitation hardened material in

300 hours. The onset of the secondary and tertiary stages could be

caused by a combination of several other weakening effects such as

static recovery, dynamic recovery, grain boundary shearing and

intercrystalline fracture. In current work, these possible weakening

effects were neglected in the theoretical analysis, which did not

consider the occurrence of secondary and tertiary stages.
I

I-
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CONSTITUTIVE EQUATIONS FOR VARIABLE STRESS STATES
VE

VISCOELASTIC STRAIN, Eyj: By the modified superposition principle

[9, 16, 17] the viscoelastic strain for a varying stress is given by

t
E af[c (m,t-] (7)

0

where the strain at constant stress is given by E = f(a,t).

For a series of m steps in stress as in the present test programs,

the strain was described by the following form from Eq. (7)

VE n1 n 1
Ell . FVE(Ol,Tl)[t - ] +

n n
+ FVE(on-l,Tm-l)[(t-tm-2) - (ttinl) ]

nI
+ FVE(am,Tm)(t-tm_1) , t- 1 ' t . (8)

VE
Similarly, £12 was obtained by replacing FVE(O,T) by GVE(a,T) in

Eq. (8).

V
TIME DEPENDENT NONRECOVERABLE STRAIN, cLj: Two flow rules,

V
strain hardening or kinematic hardening, were developed here for Eij

under variable stress states. The derivation was based on the

assumption that the hardening nature of the material under variable

stress states was the same as that under constant stress states.
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DEVELOPMENT OF THE STRAIN HARDENING FLOW RULE: Here only the

Vcase for the Cji (VP model) is discussed. The derivations are exactly

the same for the cij (VV model) except for different values for the

time exponents and different relationships for F(Tmax).bV
As shown in [13], c£Lj under constant stress creep can be

expressed as:

V
Cij = F(Tmax)oijtN (9)

Differentiating both sides with respect to time yields

oV

ij = NF(Tmax)ijtN-  • (10)

To obtain a strain hardening flow rule the t in Eq. (10) was

expressed in terms of the accumulated strain as follows. Taking the

maximum of the shear strain on the left hand side of Eq. (9) and the

maximum of the shear stress on the right hand side yields the

following expression:

Cij = TmaF(Tmax)tN , (1I)

from which,

V 1/N
= {i /[Ta:(mx] (12)

4

r. V

where Cjj is the magnitude of the strain tensor defined by the Tresca

relation. The choice of the Tresca relation instead of a Mises

-I

I " " 2. .., . , " " . . • ' -" " " - " " - " " " ' " . .
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relation for magnitude quantities came from the observation that the

maximum shear rates are constant at any given time for those creep

tests vhose stress levels are the same according to the Tresca relation

as discussed in (131. For combined tension a and torsion T stress

states, T~a is equal to [(0/2)2+y2]1/2 and E7]j equals

{[(3/4)e'il], 1'2 )211/2. Substituting t from Eq. (12) into Eq. (10)

yielded the strain hardening flow rule,

V V ! (N-l)IN (3

where F(TmaX) is SS follows: For the VP model, F(Tmax) is Fb(Tmax),

Eq. (6). For the VV model, N is replaced by n2 and F(TMax) is

Fa(Tmax), Eq. (5).

Furthermore, differentiating both sides of Eq. (11) with respect

to time t, substituting Eq. (12) for t and dividing by cij yields

r:jI f.ijjj N[TmaxF(Tmax)J (14)

Integrating (14) with respect to time yields

t (5
£jj { fb'max()F(T(maxQ&))11/Nd~l 15

0

For a series of m steps in stress, Eq. (15) becomes

Cij - [TMaX(l)F(tmax(l))] (tj) + 4

*~ ~ 4 (max(m1l)F(Kmax(m1j))] 1(m..1m2

I/N N
+ (mx)Fmx()J (t-tm..i)) tm-l t . (16)
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Eq. (16) is true for both proportional and nonproportional loadings.

However, for proportional loadings, the strain components at any given

time can be obtained directly from Eq. (16) because the loading direction

"k is constant throughout the test. From Eq. (13) a constant loading

direction implies constant strain rate direction and thus constant

strain direction. In the combined tension a and torsion T stress states
I I I I

Gij is equal to zero except O11 - (2/3)0, 022 = 033 = (- 1/3)0, and

012 - 021 - r. In multistep proportional loadings,

V V -V-
T/[(2/3)o] - £12/11 - k, where k is a constant for each test, and Eij

and T 3 x can be expressed as:

VV V VCij =  ([(3/4)-112 + (E2)211/2 11I(k2 + (9/16))1/2 (17)

Tuax  [(/2)2+T211/2 - ((2/3)a(k2+(91l6))l/2 . (18)

V
By substituting (17) and (18) into (16) E1 under a series of m steps

in stress can be obtained as

"11 - ([(201/3) F(Tmax(1))
]  (tl) +

1/N

+ [(202-1/3) F(Tax(O-.1)J I (tm-I -m2)

1/N N
+ [(20=/3) F(Twax(m))] (t-tm-i)) , tm 1 < t . (19)

V
A similar form can be obtained for £12 with 20/3 replaced by T. The

above expressions are exactly the same as those reported in [10,16]

with the stress dependent coefficients replaced by F(Tax)Oij.
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DEVELOPMNT OF THE KINEMATIC HARDENING FLOW RULE: Neglecting the

weakening effects mentioned in a previous paragraph, a general form of

the kinematic hardening model can be expressed as:

0V

-ij [Hl(jIijj)]Eij/I£ijI (flow rule) , (20)

and

-ij ,2(Iiji, Iycjl)Zlj (evolution rule) , (21)
I I

where lij ij-4Gij, aij is the stress deviator, aij is the state

variable (back stress), and IZij1, 101ijj, ICijl are the magnitudes of

the corresponding stress tensors, which in principle can be defined by

either Mies or Tresca relations, see [6-8]. By symuetry in tension

and compression and the indifference of creep strain to the stress

direction, as implied by Eq. (3) and (6), it is reasonable to assume

the initial values of mij are all zero.

In a pure torsion test, aij is equal to zero except for
Pi .I I

012 = 2 1 = T, which implies, according to Eq. (20) and (21), that all
-V *V

_  the tensorial components are zero except for 12 E £21 0,

a a12 -210 O, -12" £21 9 , 012 = 021& 1 0, and that IZijI, I1ij1

and IC jI are equal to IT-ai, I1, and 1421, respectively. Eq. (20)

and (21) thus reduce to the following forms:

"OV

c12 - R(T-A) , (22)

012 R2 (o, 1 2 ) 1 2 o (23)
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Since the initial value of 1 is zero, the initial shear creep

rate is a function of shear stress only, according to Eq. (22)9 i.e.,
." "V

C12(t=O) = HI(T). Therefore function Hl can be specified by the

relationship between the initial shear creep rates and shear stresses.

However, the initial creep rates are so rapid as to be

indeterminant, possibly infinite according to Eq. (1), (2). In order

to obtain a reasonable estimation of an initial creep rate, the first

two hours of creep data of all the tests reported in [13] were fitted

by Eq. (1) with n, = 0.223 to obtain n2 for use in cV(VV model) and by

Eq. (2) to obtain N for use in eV (VP model). In [13] Eq. (2) was

used to fit the first two hours of creep data to get C? for the

determination of the elastic moduli.

It was found that there existed small gaps between ¢ij and the

estimated elastic responses for some high stress level creep tests.

These gaps might be due to plastic strain or high strain rate effects

during loading. These gaps were neglected and no Lime independent

plastic strain was included in the theoretical analysis, see [13]. To

compensate for these gaps by time dependent strain, a virtual data at

t - 0 calculated from E or G was put in each of those creep data sets

whose effective stress magnitudes were equal to or greater than

137.2 MPa (19.90 ksi) as mentioned in the note for Table 3 in [131.

Since the deviations were small they actually had very little effect

*Q on the data fittings. The averages of n2 and N are 0.330 and 0.292

respectively. Because only the values of E!j and cij with n2 and N

fixed are involved in the creep rate estimations, the values of n2 and

N for individual tests are not shown here.

I°
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Refitting the 2-hour data by Eq. (1) and (2) with n2 and N fixed
yields the values of anda in Eq. (2) which are shown

in Table 1. Instead of the initial creep rate (infinite) an "early"

value of creep rate was used in determining HI. The "early" creep

V n2 "1 N1
rates were calculated either by n2ELjtl (or NCjtl ) or by

.v n2  Et N. jtl /tl (or £ijtl/tl), where tj is a small time such as 1 sec. In

either case it can be seen that the ratios of creep rates for different
V\

tests depend only on :j or eij. Different approaches or choices of

t1 can only result in a different constant multiplier for HI whose

effect will be discussed in a later section. The initial creep rates

based on the first approach with t1 - 1 sec. are shown in Table 1.

The relationships between "initial" shear creep rates and r were

found to be best represented by the following expressions:

For the VV model,

E12(tO) - Clsinh(T/K 1 ) , (24)

or, for the VP model,

.V

C12(t=0) - C2 sinh(c/K 2 ) , (25)

where KI, K2 are 19.34 MPa (2.805 ksi) and 22.23 )a (3.225 ksi)

respectively; and C1 , C2 are equal to 0.06371 and 0.1929 in percent/h,

respectively, see Fig. 9.

According to Eq. (20) and (22) the flow rules for pure torsion

loadings can then be expressed as:

is,
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C2(t) = Clsinh [(T--4)/Kl] , (VV) (26)

or

. £12(t) = C2sinh [(T-)/K2] , (VP) (27)

To obtain the evolution rule, an interrelation between Q, a, and
" "V

£12 during deformation was derived from constant stress shear creep

tests. Here, CV(VP Model) is used as an example; the same method

applies for cV(VV Model) except for different constants. From

Eq. (27) it follows that: for any stress histories,

- 2  n{42C2 )(2IC + 1]1/'2} (28)
p ,q ,- - x~2 In(( 12/C2) + [(CV2/C21 ]/ •()

For pure torsion creep tests in which T is constant, differentiating

Eq. (28) with respect to time yields:

. -K2 W12/[(Z12)2 + C2 / 2 (29)

The evolution rule can be obtained by expressing £12 in Eq. (29)
iV

in terms of a and £12. Recalling that the creep strain can be

expressed by C12 - 2 LN in the VP model, the following results were

obtained by consecutive differentiation with respect to time:

C12 N C12 tN-l , (30)

€12 * N(N-1) C12 N-2• (31)
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From (30) and (31),

* IV

ll1(N-l) vy -1/(N-l)WV
(N-lC 2N) 12)1 . (32)

£12 in Eq. (32) is equal to TFb(T) according to Eq. (6).
.V °V

Substituting T from Eq. (28) makes £12 in (32) a function of a and £12

only. Introducing Eq. (32) into Eq. (29) yields the evolution rule;

i.e., the relation between a, a and jl2 during creep. Even though the

evolution rule for hardening was derived from creep tests at constant

stress it was assumed that the same hardening nature would be

.applicable for other stress histories.

For the VV model the evolution rule is the sane as the VP model

+ V
except N is replaced by n2 and £12 is replaced by £12 

= cFa(T) from

Eq. (5).

Since Eq. (27) and (29) (with Eq. (32) inserted in Eq. (29)) were

both derived from constant stress creep tests, the kinematic hardening

rule, Eq. (27) and (29), describe the creep curves very well

regardless of values of C1 (or C2 ) employed. But different values of

C1 (or C2) result in different values of a during creep according to
o" •

V

Eq. (28). However, £12 in Eq. (28) is very small compared to C1 (or

C2) except at the very beginning of a test. Thus differences in C1 (or

C2) are generally unimportant.

Isotropic hardening effects can be taken into consideration, if

required, by developing an evolution rule for Kl (or K2) as in L6,7].

el
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KINEMATIC HARDENING RULES FOR MULTIAXIAL STRESS STATES

Equation (27), (29) and (32) can be extended to multiaxial stress

states as follows. For Ejj, (VP Model),

I.i
Eij 2(Ei/l~il) inh(Zij1K2)(33)

(N4-i)(bN)1/(N-I),*V ,-1/(N-1)K2 2 C )/2 1 (34)

-i

where bI - b2Fb(b2) and

• v 1/2,

b2 Icljl + K2 tn{(IEjI/c2) + ((lc'jI/c2)2 + 1]

Similar expressions can be obtained for cij (VV model) with N replaced

by n2 and Fb by Fa, Eq. (5). All the magnitude quantities are defined

by the Tresca relation in order to be consistent with the previous

experimental observation that the strain rate magnitudes defined by

the Tresca relation are constant at any given time for those creep

tests whose stresses are equal according to the Tresca relation.

The validity of these multiaxial relations can be checked by

viewing the data and theory for the first step of each of the pure

tension and the combined tension and torsion tests shown in Fig. 1-8.

*| The dashed and dash-dot lines represent the results predicted by the

above multiaxial relations for VV and VP models, respectively.

Since this paper deals only with multistep proportional loadings,

V V
*Ci~ was taken to be zero whenever tij was smaller than zero, i.e. j
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was frozen. More complicated stress histories will be discussed in

11 subsequent papers.

PREDICTIONS BY THE THEORIES

In summ.ary, two theoretical models are presented: VV and VP. In

each model the time dependent nonrecoverable strain was represented by

either the SH flow rule, Eq. (13), or by the KH flow rule, Eq. (33)

and (34). Eq. (13) can be integrated explicitly for proportional

V
loadings as shown by Eq. (19) for ell. The modified superposition

principle was used for representing the viscoelastic component under

VE
variable stress states as shown by Eq. (8) for £11. An IHSL subroutine

DVERK based on the Runge-Kutta-Verner fifth and sixth order method

with automatic time step control was used for the numerical

integration.

The results are shown in Fig. 1-8 in which VV-SH are represented

* by solid lines, VP-SH by dotted lines, VV-KH by dashed lines, and

VP-KH by dash-dot lines. The back stresses aij at the end of each

step are shown in Table 2.

DISCUSSION

A comparison of the theoretical results with experimental data

shows that both VV-SH and VV-KK give very good predictions of the

material responses. Since the nonrecoverable strains were frozen in

the KR models whenever Lij was smaller than zero, VV-SR is better than

VV-KR in some steps such as step 6 of Fig. 1. Adding a linear

evolution rule for K1 or K2 in the KH rules was tried, but did not
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result in a smaller mij at the beginning of these steps as required in

order for the applied stress to induce further creep. This might be

an inherent disadvantage for the state variable approach.

Since the EVE component was not included in either VP-SR or

VP-UH, they could not predict the recovery strains and the transient

creep strains upon reloadings such as observed in period 3 of Fig. 3

and 4, etc. Most of the work of other investigators based on VP

models used a "static recovery" term (representing annealing after

cold work) in the evolution rule to simulate the transient strains,

see (18]. The present work shows that the eVE component can account

for these behaviors without introducing annealing effects into the

analysis.

CONCLUSIONS

A strain hardening (SH) and a kinematic hardening (KR) flow rule

were developed from constant stress creep and recovery data. Both are

in the form of a system of coupled ordinary differential equations.

Under multistep proportional loadings, the strain hardening flow rules

can be integrated explicitly to obtain all the strain components at

any given time. Associated with each hardening rule, data are

represented by two tbeoretical models: a viscous-viscoelastic (VV)

model and a viscoplastic (VP) model. The viscoelastic components were

represented by the modified superposition principle for both modals.

The agreements of the VV models with the experimental observations are

generally very good. VV-SH is better than VV-KH in some step down

stress states. The viscoelastic component is essential in accounting
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for not only the recovery strain but also the transient creep strain

upon reloadings and step up loadings.
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Table 1: Results used for estimation of the "early" shear creep rates

12 +V2, C12 +at t =0, c at t =0,

£129 1l2' 12 12

(in Eq. (1) (in Eq. (2) (from (from
TEST SHEAR +V n2- I 1 N-i

* NO. STRESS, with with n2c 12t1  , Nc12t1

n1 = 0.223 N=0.292) t1 =1sec) t1 = 1 sec)

n = 0.330)

NPa (ksi) 10-4/hn2 10-4/hN 10-2/h 10-2/h

T28 77.4 (3.97) 0.1417 0.3592 0.1129 0.3456
T29 41.4 (6.00) 0.3629 0.6608 0.2891 0.6358
T26 63.2 (9.17) 1.034 1.699 0.8237 1.635
%?8 79.2 (11.49) 2.404 3.514 1.915 3.381
142 101.4 (14.70) 7.544 9.564 6.009 9.202

.L

4,

I

4
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FIGURE CAPTIONS

Fig. 1: Test T23. X = 8 h, Y - 0.02%. Numbers in parenthesis on
the ordinate indicate the creep period to which the ordinate
number applies. Solid lines: Viscous-viscoelastic with

Z strain hardening; Dashed lines: Viscous-viscoelastic with
kinematic hardening; Dotted lines: Viscoplastic with strain
hardening; Dot-dashed lines: Viscoplastic with kinematic
hardening.

Fig. 2: Test A24. X - 8 h, Y = 0.02%. See caption of Fig. 1 for
key to theory curves.

Fig. 3: Test A25. X - 8 h, Y = 0.022. Numbers in parenthesis on
the ordinate indicate the creep period to which the ordinate
number applies. See caption of Fig. 1 for key to theory
curves.

Fig. 4: Test T26. X - 8 h, Y - 0.02%. Numbers in parenthesis on
the ordinate indicate the creep period to which the ordinate
number applies. See caption of Fig. 1 for key to theory
curves.

Fig. 5: Test CA31. X - 8 h, Y - 0.02%. Numbers in parenthesis on
the ordinate indicate the creep period to which the ordinate
number applies. See caption of Fig. 1 for key to theory
curves.

Fig. 6: Test CT31. X - 8 h, Y - 0.02%. Numbers in parenthesis on
the ordinate indicate the creep period to which the ordinate
number applies. See caption of Fig. 1 for key to theory
curves.

Fig. 7: Tests A32, a tension creep test, and A37, a compression
creep test (designated by CONP). X - 8 h, Y - 0.022.
Numbers in parenthesis on the ordinate indicate the creep
period to which the ordinate number applies. See caption of
Fig. 1 for key to theory curves.

Fig. 8: Test A44, a compression creep test. X - 8 h, Y - 0.04%.
Numbers in parenthesis on the ordinate indicate the creep
period to which the ordinate number applies. See caption of
Fig. I for key to theory curves.

4 Fig. 9: Early shear rates vs. shear stresses.
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