
AD-A14 921 QUERY OPTIMIZATION IN DISTRIBUTED DATABASES(U) 1/3
MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR
INFORMATION AND DECISION SYSTEMS K HUANG OCT 82

UNCLASSIFIED LS-TH-1247 NBBI477-C-9532 *FiG i2/i

Eoss1 0i 01 0 mosoE

L-t

•"2

.12.2.

1111.25 L11114 1.

MICROCOPY REOLUTION TEST CHART I, -

NATIONAL BUREAU OF STANOARDS-1963-A

'.< 2

f "1
-4

fri

October, 1982 LIDS-TH-1247 '0

Research Supported By:

Office of Naval Research
Contract ONR/N0014-77-C-O532
(NR 041-519)

QUERY OPTIMIZATION IN

DISTRIBUTED DATABASES

Kuan-Tsoe Huang

C->,

LUJ
.-- Laboratory for Information and Decision Systems

L. MASSACHUSETTS INSTITUTE OF TECHNOLOGY. CAMBRIDGE, MASSACHUSETTS 02139

C..

017.

-t-

October, 1982 LIDS-TH-1247

QUERY OPTIMIZATION IN DISTRIBUTED DATABASES

by

Kuan-Tsae Huang

This report is based on the unaltered thesis of Kuan-Tsae Huang, submitted
in partial fulfillment of '.ie requirements for the degree of Doctor of
Philosophy at the Massachusetts Institute of Technology in September, 1982.
The research was conducted at the M.I.T. Laboratory for Information and
Decision Systems, with support provided by the Office of Naval Research
under contract ONR/N00014-77-C-0532 (NR 041-519).

-.

• .Of 't VA"

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139

. . .. A , A v o
' And OS

Query Optimization in Distributed Databases

by

Kuan-Tsae Huang

B.S., National Taivan Normal University
(1974)

.S., University of Illinois at Urbana-Champaign
(1979)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS OF THE

DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 1982

c Massachusetts Institute of Technology

Signature of Author 4 4 L/4"
Departmen1 of Electrical Engineering

and computer Science, Sep. 1982

Certified by
Thesis Supervisor

Accepted by
Chairman, Departmental Committee on Graduate Students

-9

2

Query Optimization in Distributed Databases

by

Kuan-Tsae Huang

Submitted to the Department of Electrical Engineering and
Computer Science in Partial Fulfillment of the Requirements

Sfor the Degree of Doctor of Philosophy

ABSTRACT

Distributed database management systems (DDBMS) are amongst
the most important and successful software developments in this
decade. They are enabling the computing power and data to be
placed within the user environment close to the point of user
activities. The performance efficiency of DDBMS is deeply related

K. to the query processing strategies involving data transmission
over different nodes through the network. This thesis is to study
the optimization of query processing strategies in a distributed
databases environment.

With the objective of minimum communication cost, we have
developed a mathematical model to find a join-semijoin program
for processing a given equi-join query in distributed
homogenenous relational databases. Rules for estimating the size
of the derived relation is proposed. The distributed query
processing problem is formulated as dynamic network problem. We
also extend this model to consider both communication cost and
local processing cost. For a simpler case where all semijoin
reducibilities are zero and semijoin reducibilities do not change
after join operation, we have shown that under three different
objective functions, th problems of finding a routing strategy
of required data to the site where a query is initiated are*NP-omplete. We ana lze the difficult, nature, of the query

*processing prob J nd provde an analytcal bass for heuristc

. u ..
-oWe extend this model to query

processing in a distributed

heterogeneous databases environment. A heterogeneous database
communication system is proposed to integrate heterogeneous
database management systems to combine and share information.
The use of a database communication system for heterogeneous
DBMSs makes the overall system transparent to users from an
operational point of view. Problems of schema translation and
query translation of the query processing in this environment are

Supervisor: Dr. Wilbur B. Davenport, Jr.

Title: Professor of Communications Science and Engineering

77 -7 .7-

3

ACKNOWLEDGMENTS

I would first of all like to express my gratitude to my
thesis supervisor, Professor Wilbur B. Davenport, Jr. He has
been a constant resource of encouragement, guidance and
support throughout my graduate studies. His patient effort
in correcting my writing greatly improve this thesis. I
also like to thank to my thesis readers, Professors Robert
Gallager, Stuart Madnick and Christos Papadimitriou for many
constructive suggestions to improve this thesis. Espicially,
the weekly discussion with Christos in the first stage of -

the thesis and the supervision from Bob at the last stage of
the thesis are very helpful. Special thanks go to them.

During my stay at M.I.T., I have benefited immensely
from Professors Dimitri Bersekas, Ravi Kannan, Richard
Larson and Thomas Magnatti for their support and advise.

I would also like to thank my friends from Taiwan, my
fellow colleagues from Operations Research Center and -:
Laboratory for Information and Decision Systems at M.I.T.
for their friendship, moral and intellectual support. .-

My deepest appreciation goes to my wife Lu-Yue by my
side, my parents, brothers and sister at Taiwan, who have
unreservedly given me their love, support and understanding.
I shall be forever thankful for them.

This research was conducted at the M.I.T. Laboratory
for Information and Decision systems with support provided
by the Office of Naval Research under contract
ONR/N00014-77-C-0532 (NR 041-519).

........ .. -o.. . . .

.-2"i" "2 ":" ' - 2i
°

'.. 2 i ? . i i~.. .. . i ." " , 1" . - , . '

4

DEDICATION

To M4y Parents

Ching-M~ing and Jen-Uyeh (Chang) Huang

June, 1982

77 . . -

5

* TABLE OF CONTENTS

* Abstracts --- 2

Acknowledgements -- 3

1. Introduction --- 7

* 1.1 Background and Motivation -------------------------- 7

1.2 Assumptions and Objectives -------------------------- 9

1.3 Organization of The Thesis 10

2. Query Processing in Distributed Relational Databases--- 13

2.1 Introduction -------------------------------------- 13

2.2 Relational Terminologies and Basic Lemmas---------- 15

2.3 Review of Previous Works --------------------------- 32

- 2.4 A Model for Equi-join Query Processing ------------- 40

* 2.5 Extend the Model to Include Local Processing Cost-- 88

2.6 conclusions --------------------------------------- 88

3. Computation Complexity of Distributed Query Processing
Problem --- 91

3.1 Introduction -------------------------------------- 91

. 3.2 Complexity Theroy --------------------------------- 94

*3.3 Computation Complexity of Query Processing Problem- 97

* 3.4 Conclusions -------------------------------------- 109

4. Heuristic Algorithm for Distributed Query Processing
Problem --- 11 ill

4,1 Introduction -------------------------------------. ll

4.2 Cases Where All Semijoin Reducibilities Equal to
Zero ----------------------------- - 112

4.3 Heuristic Algorithm for distributed Query
Processing Problem ------------------------------- 127

4.4 Conclusions --------------------------------------- 129

6

5. Query Processing in Distributed Heterogeneous Databases-131

5.1 Introduction---------------------------------------131.

5.2 Motivation and Objectives---------------------------135

5.3 Heterogeneous Database Communication System ---------142

5.4 Query Processing in Heterogeneous Environment------158

5.5 Conclusions --160

6. Schema and Query Translation ----------------------------163

6.1 Introduction ---------------------------------------163

K6.2 Schema Translation -------------------- 166

6.3 Query Translation ----------------------------------177

6.4 Conclusions ------------------------------------ 19

7. Summary and Future Research ----------------------------192

7.1 Summary and Future Research ------------------------- 192

7.2 Conclusions --197

References -- 199

pp.

.7

Chapter 1

Introduction

1.1 Background and Motivation

Database management systems are amongst the most

important and successful software developments in this

decade. They have already had a significant impact in the

field of data processing and information retrieval. Many

organizations have successfully developed their own database

management systems for storing and accessing information to

help their operations. The increaing geographic dispersion

of the business activities within an organization forces the

enterprise to develop a distibuted database management

system (DDBMS) in order to provide its users faster and

easier access to data for decision making as well as to keep

the system reliable and secure. For example, in militay

Command, Control and Communication (C) systems, data

gathering from sensors and commanders are distributed in

nature. A centralized database management system can not

provide the availability, reliability and modularity that is

needed.

The development of computer networks since 1970, and

the emergence of low-cost, yet powerful, small mini and

micro computers makes it possible to develop a distributed

database management system enabling the computing power and

data to be placed within the user environment close to the

point of user activities. The development of DDBMS are

. .

* 8

apparently the result of the convergence of these different

* technologies. It certainly will make possible both

economical and technical advantages such as faster access to

data, better performance, increased reliability, easier

upward expansion, and more information sharing, etc.

However, the benefits of DDBMS can not be gained

without cost. Several problems inherent to distributed

systems must be solved as must other problems related to

database systems in general. These additional distributed

system problems come from the slow transmission speed,

narrow bandwidth and possibly high failure rate of the

communication channels. The speed of communication

transmissions are slow compared to the CPU, main memory and

secondary storage times. These distributed system problems

include concurrency control, recovery, database integrity,

query processing, directory management, security, etc.

Recent studies ES1W 78, GBWRR 81, HY 79, DL 80, DP 80]

on distributed databases have shown that the performance

efficiency of DDBMS is deeply related to the query

processing strategies involving data transmission over

different nodes through the network. Moreover, the

communication technologies have not yet reached the same

level as the computer technologies, both in cost and

k. .,or nco, and it is expected that this situation will not

6 be changed in the near future. So, in this thesis we study

the optimization of query processing strategies in a

.

9

distributed databases environment.

U1.2 Assumptions and Objectives

Query Processing in a distributed database environment

corresponds to the translation of a request formulated in a

high-level nonprocedural language on one sub-system of the

network, into a sequence of data manipulation statements

which retrieve and update data stored in local DBMSs. The

objective of this thesis is to develop a quantitative and

syntatic understanding of the optimization of query

processing strategies in a distributed database management

systems environment. Particular emphasis will be given to

the minimization of the total amount of data transmission

cost required for processing a single query.

This thesis starts with a mathematical model for

* equi-join query processing in distributed relational

database management systems. It then studies the

computational complexity of this problem and some solution

algorithms. The query processing in a distributed

heterogeneous database environment is also studied.

Our basic underlying assumptions in this thesis are:

1. It is possible to exchange information amongst the

various systems and they are willing to maintain

information.

2. Each DBMS i: considered to be able to execute a given

local transaction.

...-.' ,i' ' . -" ,

10

3. There exists a communication network which connects the

various DBMSs.

4. The access to a local DBMS is not affected by the

% ooperation of the data communication system which should

be transparent to the local user.

5. The communication cost is the dominant factor and local

processing is essentially free.

As we are only concerned with distributed query

processing in this thesis, we also assume that other

problems related to distributed database management systems,

such as concurrency control, database integrity, redundancy,

recovery and sectrity poblems have been taken care of by

soif other components of the system.

1.3 Organization of The Thesis

This thesis is organized into seven chapters.

Chapter I contains the background and motivation of

this thesis. Query processing in distributed databases is

the main theme of this thesis. Assumptions about

distributed database environments are stated and objectives

of this thesis are defined.

Chapter 2 discusses query processing in a distributed

relational database management system environment. As

communication technologies have not yet reached the same

level of reduction in costs and of increases in performance

that we can observe in computer technologies, we assume

1p"

network traffic constitutes the critical factor. We

formalize the problem of solving an equi-join query by joins

and semijoins mixed strategies into a mathematical model.

* lQuery processing for a broader class of query is also

*discussed.

Chapter 3 considers the computational complexity of the

query processing problem formulated in chapter 2. Three

*. variations of simpler cases of the query processing problem

*i with different objective functions are studied.

Chapter 4 focuses on heuristic algorithms for the query

K processing problem. We first consider the heuristic

.. algorithms for the cases where all possible semijoins are

performed and find a routing strategy for the join

*! operations to solve the query. Next, we consider heuristic

algorithms for the general case where we want to solve a

given query by a sequence of joins and semijoins.

Chapter 5 extends the previous results on distributed

relational databases to the query processing in distributed

heterogeneous databases. It begins with a study of the

" heterogeneous world of database management systems. The

architecture of a heterogeneous database communication

system is described to integrate those heterogeneous,

distributed and nonintegrated database management systems.

Query processing in heterogeneous database environments by

using a database communication system is discussed.

12

Chapter 6 deals with two essential components of a

database communication system for query processing: schema

translators to translate from the data model schema of the

database management system to relational schema in order to

provide a uniform relational view to the user; and query

translators to translate relational algebra operations into

corresponding data manipulation statements of the underlying

data model of the system in order to retrieve data.

Chapter 7 provides a summary of the major results of

each chapter and suggests several potential areas for future

research.

0l

13

Chapter 2

Query Processing in Distributed Relational Databases

2.1 Introduction

Query processing in a Distributed Relational Data Base

Management System (DDBMS) corresponds to the translation of

requests, formulated in a high-level language on one system

of the network, into a sequence of relational algebra

operations which retrieve and update data stored in the

DDBMS. The optimization process is usually subdivided into

two parts: The first part is used at the node where the

query is generated for analyzing the query before executing

it and producing as output a sequence of operational

commands to the local DBMS, which is optimal in terms of

some cost function criteria. The second part is used by the

local DBMSs for further analyzing each operational command

and producing the optimal local data retrieval strategy. The

result of these operations constitutes the final response

returned to the user.

In distributed query processing, the execution of a

query involves data transmissions which take significant

time in comparison with the subquery and elementary

operation execution times. However, on the other hand, the

distribution of the system makes possible the parallel

processing of local elementary operations, which is

beneficial. The cost function of processing a query in a

I,

14

DDBMS environment depends on the following parameters:

L1. Total transmission time.

" 2. Total execution time.

3. Total resources usage.

4. Total response time.

Some of the parameters are dependent on others,

therefore the cost function will depend on all four

parameters and may not be linear. In a distributed DBMS,

the main bottle-necks of the system are the transmission

delays of the inter-computer communications. The cost

function may be simplified by considering only the quantity

of data transmitted through the network. Most of the query

processing algorithms proposed to date concern only the

reduction. of the total transmission time.

In this chapter, we first formalize some definitions

for distributed relational DBMS and derive some basic

results in section 2.2. In section 2.3, we review the

literature of distributed query processing algorithms. We

extend previous work in two directions: One is that we want

to solve a distributed query by using a join and semijoin

- - mixed strategy. The other is that we want to formalize the

problem in a mathematical formulation. In section 2.4, we

develop a distributed query processing model for a class of

* conjunctive equi-join queries and formulate the problem as a

dynamic network problem. In section 2.5, we extend the

*i model to general query processing where inequality-join

,. . .

S.. -7 7

15

clauses could appear. The model can also be extended to

include the local processing cost into consideration.

2.2 Relational Terminology and Basic Lemmas

In this section, we formalize the time-invariant

description of a relation and a database.

2.2.1 Schema

K: A domain is a set of values. A relation is any subset

of the cartesian product of one or more domains. The members

of a relation are called tuples. A tuple t-(t ,

has n components; the i-th component of t is tj . We can

view a relation as a table, where each row is a tuple and

each column corresponds to one component. The columns are

often given names, called attributes. Let U be a set of

attributes, called a Universe. Associated with each

attribute AoEU is a domain, DOM(A). A relation schema R is a

list of attribute names for a relation, i.e. a subset of U.

14 Let R4-1 A1 ,A2 ,...,A..) be a relation schema. We will use

the notation R.A. to denote the attribute AK of relation R.

The domain of Rj is DOM(R)u X DOM(R..Aj). Let R,, Ra

,...., R~be relation schemas. A database schema D is

defined as a set of relation schemas [Ri, R1 ,..., Rnd. U(D)

is the attribute set of D, i.e. U(D) U R;. The domain of Da a,

is denoted DOM(D) and is defined to be X DOM(R). Let Di,
4oI

DI,.o.,D Pbe a set of database schemas. Each DK corresponds

7_~

16

to a database at one location. A distributed database schema

DD is defined as a set of database schemas [Df,D,...,Dp}

and U(DD) is the set of attributes in DD.

When set notation is used (e.g. RC U R. AxE R, 1._ R.

1, the sets in question are understood to be sets of

attributes. R* u R. iff R1- R. and R-C R., i.e. R* and R

are two relation schemas having the same set of attributes.

Two database schemas, D ={R R , ,R.,R and D -S ,Sa, ,$8 .

}, are equivalent if there exists a one-to-one

correspondence between their relations with respect to the

equality of two relation schemas, i.e. there exists a

n-permutation a'such that R =S. for all i-I,2,..,n.

Definition:

We define as follows the size of a database schema:

The size of a distributed database schema DD, IDDI ,

is the number of different sites in DD.

The relation size of a database schema D,, ID j is
r

the number of relation schemas in D o

The relation size of a distributed database schema DD,

IJLDDI is equal to

.ID.1I.

The attribute size of a relation schema R., R , is

the number of attributes in R.

I.

. %

17

" The attribute size of a database schema D I D IO is

equal to IU(D)I, where U(D)=U "U(RA).

DEFINITION:

D-is a database subschema of D* denoted by D.D- if

for all. RKC ED, there exists R e D. such that R

R 4 D; is maximal if there exists no R G D. such that

K L

DEFINITION:
For each D. , AEU(D), we define s(A,D)-{RI(REDh)

and (AE RK), the set of all relation schemas in Dj for

which A is an attribute.

For A4EU(DD), we define s(A)=D 4 l(DADD) and (ls(A,D

DEFINITION:

Attribute A is said to be isolated in DD if is(A)I-l.

i.e. if A is an attribute of only 'one D;.

DEFINITION:

A schema graph for a database schema D={R 1 ,R2 ,...,R]

is a graph G. <V ,Ep>with node set V-D and edge(R,Rj

Mc E iff U(R) I U (Rj) .

*~i A schema graph for distributed database schema DD=D 6 ,DJ

is a graph G OUVPEp> with node set V DD
vp Po

and edge (D ,D)EE iff U(D4)flU(Dj)A.

.oj cc•.

-18

2.2.2 Database state

Let R-(A, tA2..,#A,, be a relation schema. A tuple T

over R is a mapping which associates with each attribute a

value out of a distinct domain associated with the

attribute. When the order of attributes in R is fixed, we

may write T as an m-tuple T-(T(A.),T(A 2),...,T(Ad).

Definition:

1. A relation state r of R is a finite set of tuples over

R. r may be visualized as a table of data whose

columns are labeled A,, A1 ,..., Aand whose rows are

tuples.

2. If D-RR 1 . ,,1 , then a database state for D is

da{r1 ,r, ,..., r] where for lin, r is a relation

state for RL ; we denote the database state by d.

3. If DDU[DI,D2 ,...D] then a distributed database state

for DD is ddo(d,,d 1,... ,dp I where for lk~m, d is a

database state for Dg , we denote the distributed

database state by dd.

Note that, if there is no confusion, we will use

capital letters (e.g. R, D, DD) to represent both schema and

t4 state through out the thesis. For example, relation Ro(S,r)

is to represent both its relation schema S and relation

state r.

Example: Relations and Databases

(1) Three relation schemas:

.,....... .i~i..i.._ .° .--,. _.. °._ ..-. i. ._; ., -..

19

uCLIENT-{CNUMBER, NAME, ADDR, AGE, BIRTHDAY)
AGENT- [ANUMBER, NAME, ADDR, TERRITORY, SENIORITY)

SALE- {ANUMBER, CNUMBER, POLICYNO, DATE)

(2) Database schema:

D - { CLIENT, AGENT, SALE)
(3) Set of attributes:

U(CLIENT)-{CNUMBER, NAME, ADDR, AGE, BIRTHDAY)

U(D)-{CNUMBER, NAME, ADDR, AGE, BIRTHDAY, ANUMBER,

TERRITORY, SENIORITY, POLICYNO, DATE)

(4) Relation states and database state:

CLIENT

I CNUMBER NAME ADDR J AGE BIRTHDAY

I 11 TOTO IMAIN ST. 32 12/18

I 12 YOYO WEST ST.e 41 3/14

I 13 LILI EAST ST. I 26 6/30

I 14 PAPA NORTH ST. I 29 5/11

-"15 DADA MAIN ST. 30 7/31 I

I 16 QUQU EAST ST.o 37 9/17.'

AGENT

ANUMBER NAME ADDR I TERRITORY SENIORITY

Al JOHN MAIN ST.e CENTER I10

A2 TOM WEST ST.I WEST 8

A3 PAUL NORTH ST. I NORTH 5

A4 DICK SOUTH ST.I SOUTH 3

A5 JEFF EAST ST. EAST 11

-- -- -- -- - - - -- -- ---- -

20

SALE

IANUNDER jCI4UMBER POLICYNO I DATE I
I Al 11 I 3 I 4/78

I A2 I 12 I 4 I 5/80 I
I A5 13 I 7 I 9/80 I
I A3 14 I 1 I 9/81

I Al 15 I 4 I12/81 I
A5 I 16 1 I12/81

2.2.3 Operator

The operators we use are a subset of the relational

algebra (CODD 721.

Definition:

Let R={A1 ,AZ,..,AJ, and let r be the relation state

of R and t-(t, It.2 010000t M) be a tuple in r. The

projection of tuple t on attributes Yn(AA A4 seA 4m

')C R is tCy]J(tA, It,;2 @@ That is, the

projection is obtained by removing from t those

components corresponding to attributes not in Y.I

The projection of relation state r onto an attribute

set Y is r(YJm(s'J (s'ms[Y]) and (S is a tuple of r)).

Also denoted as Tyr].

.o>

21

Definition:

Let R,=(S, ,r,) and R.m(S. ,r,) be two relations with

the same relation schemas, i.e. Si =S . The

intersection of these two relations, denoted by R1(1 R.

, is the relation (S,r), where S -S =S is the

relation schema and r=(tjt~r, (r. , is the relation

state.

Definition:

Let R and S be relations of arity (number of

attributes) h and k, respectively. The Cartesian

product of R and S, denoted by R x S is the set of

(h+k)-tuples whose first h components form a tuple in

R and whose last k components form a tuple in S.

Definition:
Let {RZ J' be a set of relations and the schema of

I.-

relation R; be the set of attributes (A4 , ,Ai ,'-',A

J. A qualification q is a formula of clauses of the
forms (R. 9A 98 R.) and (R; Aje 9 C), where

S is an arithmetic operator (<, -, >, <, >= or w)

and C is a constant value in the domain of the

attribute A4e of R4 , connected by logical operators (A

V. and -).

Definition:

The selection of relation R on qualification q,

22

denoted (rj(R)- ft.(t1 t, t,,)6RI q (t1,#t2 .eo, tn)

is true). i.e. 0- (R) is the set of tuples in R that

Ci.. satisfy q.

Let R. and R: be two relations and Y R/ (IR

". Definition:

The equi-join of RI and Ri.on Y, denoted by R4 IXI R.

is the resulting relation of computing (tit is a

tuple in Rhx Ri ,such that t(RI.Y] = t[Ri .Y] I and

then projecting out columns R .Y.

The semi join of Rand R-on Y, denoted by R; IX R. ,

I Y
equals R. 1 R 1(Y]. Equivalently it equals ft (t4

-Er) and (tjarj Y])

The natural join of R. & R. , denoted by R. IXZ Rj

is the join of R, & R-on R.t Rj.

The natural semijoin of R & R., denoted by RA IX R1 ,

7- . is the semijoin of R4 & Rj on Ri() R..

Note that the natural join is commutative. i.e.

R. IIl R R. R l R.
J~ 4P

Definition:

The natural join of R -(Si,rc), R; =(S. ,ri) and 1

-(SV rr), denoted by R IXlR IIRV, is the resulting

relation of (R; IIRj) IZI RK . Here Y.- SA f Sj
* Y4 111KIJYJII '

and Y U Y -(S U S) S.

A1-. j- ". A

*" .-

4 m m .,, u m- .-: d -- hmn- "' uu
"'

23

Lemma: For natural joins, we have
:'i(. Iy Rj Y;XU R- R, IXl Rj 1Il RV .

Proof:

1. The relation schemas of both resulting relations

above are the same, which is S4 U S. U SY
2. Let r1 be the state of (R. lxI R3) IXi RK ' r,

be the state of RL 14 (R. IXi RK) and r. be
Y;u Y;

the state of R4 IX Ri. We can derive

r" t latIC C- Ik& t o Ce RiIXIR1 s.t.

t[RK]=tX , t[RA U Ri]-t. I

t { t k t r, t; r , tjer & t eR IXlR1 S.t.

t[RC]-tK,R t[RA st*[R4]at, and

t[Rj]-t.[CR Pt.)
JJ

. { t C-tKr,, t e r., tjE rj s.t.

t[RJutA, t(R;]mt. and (*)

t[R Ji=t. I
Similary, we can derive r.. - the formula (*). Thus r,

or , and the lemma follows.

Note that the natural join operation is associative,
'! i.e.

(R;IZI Ri) IXl Rr -nRll (I).

I i Example:

2 .. '. i
.': 2.'-. 2 .

" -'- 2
-

: -. .-. . - : . - ' -' - ' - - -- - '

24

(1) Join R, III RA
y

i1R IR

IA, AZ I A3 IA a A3 IA 4 I

I 11 I 21 I 31 I 21 I 31 I 41 I

I 12 I 22 I 31 I 22 I 32 I42 I

i13 21 32 21 I 33 43 I

I 14 I 22 I 32 I 22 I 34 I 41

21 1 35 42 1

R, III RL
(A3 .)

JA, A2I A3 AlAI A+ I

AI 1 A2 I 31 I 21 I 41 I

I 12 I 22 I 31 I 21 I 41 I

113 121 132 122 1421

1141 221 321221421

R, IXI R1

{Aa ,A3)

A, I A 2. A. I A+t

11 j 211 31 I 41 I

I114 22 32 42

This is the natural join since (A, Aj-R, Rj.

(2) Semijoin RXI R1

Y

25

R13:1 R. is to join ------ with R. -

{A3 1 IA 3 I I A A3 I A4 I

1 31 1 21 31 411

I 32 22 32 I 42 I

R i 2 R2 is to join ----------- vith R2 -
e e e e{A eeA3ee A ee Ae Az eeeI A+ ee

SI21I 31 21 31 141I

122 31 I22 321 42

21 321

221 32 I

This is a natural semijoin since [A,,AjiaRe 2 .
(3) R, III Rz IXI R.3

S3 ----------------I A3~ I lA 5 I

31 14 I 51

31 143 I 53

32 1 44 1 52

32 I 44 I 51 I

Then R, IZI R .2 I I R3 (I I R .) III R3

--
IA IA I A 3 I A*IAS

I 1 121 I 31 I 41 I 51

2.2.4 Query

Given a database Dm{ 1R,r 12,.., RAt} a query can usually

be written in a number of alternative algebraic expressions.

26

aIn particular each query can be put in the following form:

Q - 7W.OR XRX... xRM)

wiere TL contains the attributes in the answer relation; q

is a qualification and each R is a relation. Usually, TL is

referred to as the target-list. We shall assume all

queries are expressed in this canonical form, denoted by

Q=(q, TL). A query Q is called single relational (SR) if TL

is a subset of some relation schema in D, otherwise, Q is

~multirelational (MR).

Definition:

A query Q=(q, TL) is a conjunctive equi-join query if

the qualification q is a conjunction of equi-join

clauses of the form (Rh. X= R-.Y), where X and Y are

subsets of attributes of R. and Rj respectively.

Note that equi-join queries do not include one-relation

clauses of the form (R..Y -constant). One-relation clauses

were excluded because they correspond to local operations

and are generally evaluated locally before join and semijoin

operations are applied.

Let DD-{R1 , Rf2 ,..., RpJ be a distributed database

schema and Q=(qTL) be a query over DD. For every

distributed database state dd, the answer of Q over (DD,dd),

denoted by Q(dd), is Q(dd)= mTOj(r xrx... xr1).

27

Definition: (equivalence)

Given a database schema DD, two queries Q and Q, are

equivalent, denoted Q , iff for all database

states dd, Q (dd)=Qx(dd).

Definition:

Let Q-(q,TL) be a query. The transitive closure of Q

is a query Q = (q ,TL) whose qualification q ,

includes q and all clauses implied by q under

transitivity. (e.g. If (R1 .A|-R2.A)and (R1.A2-R$.A3)

are in q, then (R .AI MR3 .A3) is in q).

Lemma:

Given a database schema, a query Q is equivalent to

its closure Q-. i.e. Q a Q

Proof:
+t +Let Q-(q,TL) and Q =(q+, TL). By the definition of q

for each database state dd={r, ,r2,...,rn), any tuple t

in r1 xr3 x...xrn that satisfies q satisfies every

clause in q. Since every clause in q+ is either a

clause in q or a clause derived from clauses in q by

transitivity, the tuple t also satisfies every clause

in qt . The other direction is also true. So Or(r x

r,6 ... x r) n fj1(rx rjz ... x rn). Also the

target list of Q and Q are the same. This implies

Q(dd)-Q(dd). Thus Q -_ Q

Definition:

A qualification q is called sub-natural iff for each

clause R..A. OR .A.I, A -A.

A- it j

q7

28

A qualification q is called natural iff q is a

subnatural qualification and for all relation schemas

R. and Rj, and for all A E R(R, R .A -R. .A is a

clause of q.

Definition:

Given a database schema D-{R ,R2 ,...,R), a query

Q-(q,TL)is called a natural join query (NJQ) (resp.

sub-natural join query , SNJQ) iff q is a natural

qualification (resp. sub-natural qualification) for it

and TL &U(D).

2.2.5 Qual Graph

Next we define qual graphs for the class of sub-natural

join (SNJ) qualifications. Qual graphs are another structure

for specifying sub-natural queries. Let D be a database

schema and let U(D) - U R..

Definition:

A qual graph for Q-(q,TL) over D is an edge-labelled

undirected graph G. -<Va,E,,L,>, where Vecontains one

node per relation schema in D, EQ=VaxVa , and L.:E.-> 2'

, where 2 0P) is the set of all subsets of U(D), with

* L I (Ri,R-]-[A, U(D) 'RZ.)-R A is a clause in q).

Note that:

1. The qual graph of Q.(q,TL) is uniquely defined by

* the qualification q.

2. The label of edge (R4,R.), L f(R.,R.)) my be the

I 4

29

empty get

Definition:

The transitive closure of G.-< V*, Ea, La>, denoted by

Val< z~ La> is Val, VA, 3m E., and

L&{(Rj,Rk))- AkE U(D) I there is a path from to R.

* in Ga such that A is in the label of each edge on the

path }.

Lemma 1:

Let Q-(q,TL) be a sub-natural join graph and its qual

graph be Ga<VaEi,La> , then G" Ge.

Lemma 2:

Let Q-(q,TL) be a natural join query then G9 - G*=Gq

Lemma 3:

Let QI-(qI, TL,) and Q,-(q1 ,TL1) be sub-natural join

queries. Q, i if f G4 GZ and TL,=TL,.

In the sequel we will only consider sub-natural join

queries whose qual graphs are connected. A query whose qual

" graph is disconnected produces a result that is the

Cartesian product of database substates produced by each

connected component. Since these connected components are

not joined in any way, there is no loss of generality in

treating the components seperately.

30

Definition:

A sub-natural join query Q-(q,TL) is called a tree

query if f there exists a connected qual graph G., such

that Q1 Q and Gais a tree. All other sub-natural

join queries with connected qual graphs which do not

have equivalent queries with tree gual graphs are

called cyclic queries.

Example:

Let R n[A,C), R,-[A,D), R,-fA,B) and R4 -[B,D,El.

1. Q M(q,,TL), where q,- (R1 .A a RA) A (Rz.A - R3 .A)

(R1.A R R3.A) A (R3 OB -R 4 *-B)

Qis a subnatural join query.

The qual graph G a of Qis not a tree.

6TO I IA

A

A
A

Q.,m(q 1,,Th), where q.7 (R1OA - RS.A) A(RX.A aR3.A)

(R3.A - R4.*A)

The qual graph G& of Qis a tree.

A2

31

Thus, Q2 is a tree query because G

(ie. Q1 2 Q2), anid G is a tree,

we see that Qis also a tree query.

2.% Q3(q 3 pTL), vhere q3 a (R I.A - RZOA) IN (RZ.A - R3 *.A)A

(R3 .1s R4.0) A (R2I.p - R4.p)

The qual graph GQ of Qjis not a tree.

A

Its transitive closure G + is
G3

A

A

A

From G we can see that all queries equivalent to Q93
have cyclic qual graphs. Thus, Qis a cyclicK3
query.

Note that, for this thesis, we will consider an

operation or a query to be a mapping from a temporary
database state to a new temporary database state. During the

analysis of a query solution strategy, the database state is

32

conceptually considered changing from one state to the other

state by an operation. The real database state stored in the

system does not change unless update operations are really

performed.

2.3 Review of Previous Works

2.3.1. [WONG 77] & [ESW 781

Wong's algorithm is the first comprehensive solution to

the distributed query processing problem (DQPP). It was

implemented in SDD-1. The assumption of the system

environment is the following:

1. Each system is a relational, nonredundant DBMS

(i.e. unique copy of data).

2. The final result of a query is produced at a single

site.

3. Each system can MOVE fragments of relations to

another system.

4. The communication cost is a function of transmitted

data volume and the goal is to minimize the

communication cost.

This algorithm translates a query Q into a sequence of

relational algebra operations (selection, projection and

join) and MOVE operations (move portions of relations from

one site to another). It first selects a final processing

site, So , and constructs an initial feasible solution:

1A
33

Move all R referenced by Q to S*.

Process Q at S. as a local query.

The solution is improved by recursively replacing a

MOVE by lower cost sequences of MOVEs and relational

operations. It terminates when no MOVE can be replaced by a

lower cost sequence. This algorithm produces increasingly

efficient sequences of commands by its hill-climbing

discipline. Since at each step of refinement the best

K: alternative is chosen, this algorithm can be thought as a

greedy heuristic algorithm. The critical point of this

algorithm is that the heuristic is too weak to guarantee

optimality and it has no analytical tool for the evaluation

of traffic volumes when MOVE is executed.

Wong's algorithm has been also adopted for the

distributed version of 1NGRES [ESW 78]. The algorithm begins

by executing all one variable subqueries to obtain reduced

relations. Each site sends a short description of these

relations to the MASTER INGRES site where the query has been

originated so that the MASTER site knows which sites are

involved in the query processing. This algorithm then breaks

the qualification into separate pieces using a few simple

heuristics. Consequently, the sequence of distributed

operations is decided by means of the quantitative

information obtained. Two cost criteria, minimum response

time and minimum communication traffic are considered.

j-

. 34

2.3.2. [HY 79]

Hevner and Yao present another approach to distributed

query processing that can be interpreted as a semijoin

approach. They consider a class of simple queries in which,

after initial local processing, each relation in the query

contains only one attribute --- the common joining

attribute. All relations are joined on this single

attribute. If we assume the only attribute name is A, the

qualification of a simple query can be written as

Au' (R.A * RM.A)
Lai

By the transitive rule, the closure is

q A A (R.A -R..A)

The qual graphs of q and q (for n-5) are
:.-4.

0 S I, AIS

2 A

' .. 24

4 rom the qual graph G , It is easy to see that any

spanning tree of G corresponds to a query equivalent toQls

35

the simple query.

Note that for a simple query, intersection, join and

semijoin are identical operations. The optimization problem

for this class of queries is trivial. They propose two

algorithms whose cost functions are the global response time

* and response time related only to the network traffic (total

transmission time). The first one implies the maximum

degree of parallelism of query execution. The quadratic time

bound is proved for this case. The second strategy

corresponds to the minimization of network traffic and a

linear time algorithm is presented.

The authors attempt to generalize this algorithm for

arbitrary equi-join queries. For a relation RZ =(SL,ri),

where S. -(A4, ,A2#e..,AKI, they define the selectivity

for each domain Dom(RI.A~1) to be the number of values of

Dom(RZ.A..) currently appearing in the column R .A. of

relation state r divided by the cardinality of Dom(R;.A-).

They assumed the selectivity on one domain does not affect

the selectivity of the other joining domain. Therefore,

each joining domain in the relation R~is handled separately.

A heuristic algorithm that uses an improved exhaustive

search is proposed for the general queries.

2.3.3 (GBWRR 81], (BG 81] and [BG 80]

In [GBWRR 81], an algorithm is proposed in which

semi-join concepts are exploited in order to refine the

36

approach of Wong's algorithm. In this algorithm, a query Q

is processed in two phases. Phase I is called the reduction

phase. It seeks to reduce the database state with respect to

Q. The use of semijoins is the principal tactic in this

phase. A sequence of semijoin operations S3 is said to

reduce a database state D for query Q if we may apply S to

D without affecting Q's answer, i.e. Q(D)-Q(SJ(D)). A

sequence of semijoins is called a reducer for Q if it

reduces every database state for Q. A sequence of semijoins

SJ is cost effective in state D if the amount of data

requiring inter-site data transmission in order to compute

SJ(D) is less than or equal to the quantity of data in D

that will be eliminated by SJ. The goal of the reduction

phase is to translate Q into a cost effective reducer. This

reduction phase is known as the full reducer problem.

Phase 2 is the final processing phase. The system

selects one site as the final processing site and the

reduced databases of the other sites are transmitted to the

final site. The system then excutes Q against these

* databases at that site as a cal query. The final

processing phase of SDD-1 is very simple. The core of the

SDD-1 query processing algorithm is the reduction phase.

The authors present a heuristic algorithm that solves

this problem for a class of equi-join queries. By defining
4

rules for estimating the cost and effectiveness of

semijoins, the algorithm starts with an initial feasible

1.

.J-- -

37

solution consisting of null reducer, i.e. an empty sequnce

of semijoins. The algorithm improves the initial solution by

iteratively appending cost effective semi-joins to it. When

all cost effective semi-joins have been exhausted, the basic

optimization is complete. At this point the algorithm is the

same as Wong's algorithm. Let the sequence of semijoins just

constucted be S. The algorithm next permutes the order of

semijoins in S such that the effectiveness of S3 is

increased while its cost is decreased. Finally, the

algorithm selects a final processing site and prunes

semijoins in S that are made unnecessary by the choice of

final site. The resulting sequence of semijoins is executed

and quaranteed to be a cost effective reducer for Q. It is

still not guaranteed to be optimal.

2.3.4 [CHIU 79] and [CH 80]

The use of semijoins for distributed query processing

is also studied by Chiu. He considers a sub-class of

equi-join queries whose qualification can be written as

The qual graph of this quety when n-5 is:

A, 1 .--AA%3 As 4 4 .5

. .

38

In this class of query, every joining attribute of one

relation joins to exactly one attribute of another relation.

This sub-class is called a chain query because the graph

-, representation of it is a chain. This class of queries has

the property that the closure of the qual graph G is the

same as G

They proved that semijoins are powerful enough to solve

chain queries. They are the only authors who present a

syntatic characterization of chain queries and derive an

efficient dynamic programming algorithm that translates any

chain query Q into an optimal sequence of semijoins that

compute Q. This algorithm has O(n3) time complexity, where

n is the number of relations referenced by Q. They

generalize this approach to a larger class of queries called

tree queries whose answer is a subset of one relation in the

database, and develop a methodology for optimally solving

this class of tree queries. However, the syntatic

charaterization becomes more complicated. No timing analysis

is presented for the tree query case.

2.3.5 Summary

*i Most of the distributed query processing algorithms

-.. developed to date have thi following common features:I -S I

1. single query processing

Most of the algorithms only consider the optimization

of the processing of one query, as if DBMSs were a single

39

user system. In fact, every node in DBMSs is simultaneously

an access point of DBMSs. Moreover, every node has the

ability to do query decomposition and to process relational

operators. It is desired to have an optimal processing

algorithm for the set of queries which are in the system at

*i a given time interval.

2. communication cost dominance

The inter-system communication time is the dominant

cost of distributed query processing. The communication time

is dependent on the volume of data to be transmitted. The

total transmission time of a query is proportional to the

amount of data and messages required to be transmitted. Most

of the algorithms consider only the transmission cost. It

would be desirable to develop algorithms that consider local

processing costs as well. Another direction would be to

select a better execution sequence for semijoin and join

operations and exploit the feature of parallelism of data

transmissions over links and local processings.

3. heuristic algorithm

For each query processing strategy, the costs of one

step in the execution depend on previous steps. The set of

strategy space blows up very quickly as the number of steps

increase. This suggests that the distributed query

processing problem may inherently be a complex problem. Most

of the distributed query processing algorithms are

heuristics. [CHIU 79] is the only one who studies the

40

syntatic characteristics of semijoin programs for a class of

chain queries in order to reduce the set of strategy space.

It is our desire to study the complexity of the distributed

query processing problem. We are also interested in the

understanding of quantitative characteristics of this

problem.

2.4 A Model for Equi-join Query Processing

As we reviewed in the last section, most of the

distributed query processing algorithms proposed have the

common philosophy of performing local processing first, then

applying as many semijoins as possible to reduce the

database state as much as possible and then sending to the

S..final site to perform the join and produce the final

results. The reason for doing so is presumably that the

semijoin tactic will be profitable.

As described in [ULL 80], there are some rules which

' may be used to help "optimize" relational expressions,

although these rules in no sense guarantee optimal overall

equivalent expressions. The basic idea is to attempt to

perform selections and projections as early as possible.

For a query Q-(q,TL), let I R, R2 , ... , Rr be the

set of relation schemas referenced by q and let Z be the set

of attributes appearing in q. Before processing the query,

we can project each relation Rj over attributes (I TL)AR1.

We then execute those subqueries which reference only one

A4

41

local relation. We may also want a cascade of those

operations to be organized into one selection followed by

one projection and group selections and projections with the

preceding binary operation. From here on, we represent R,,Rj2

,...,R,%as the relations after such preprocessing.
"1

In a distributed query processing environment, if we

adopt the assumption that the data communication cost

dominates the local processing cost, then the local

processing costs of a query (e.g. select, project) are

negligible. The only significant cost needed to be

considered is the data transmission cost. Data transmission

is incurred when two relations that must be joined may

reside at different sites. To perform the join, one way is

to move the entire relation from one site to the other. The

other way is to replace a join by performing semijoins first

and then performing join. Assume R and R2 at different

sites and we want to join R I and R2 at the site of Ra . By

the semijoin strategy, one can send the projection of R on

its joining columns to RI's site and perform a semijoin to

reduce R1 by R, before sending R, to R2'S site. This will be

a profitable tactic only when the projection of Rj. on its

joining columns is smaller than the amount by which R1 is

reduced by the semijoin. From the above example of joining

two relations, one can easily be convinced that
F1

semijoins-then-joins stategies may not be able to produce an

optimal strategy for the objectives of the minimization of

42

the total data transmission cost. Our approach is to extend

I the strategy space to the class of joins-semijoins-mixed

strategies. A joins-semijoins-mixed strategy is an orderedrsequence of join and semijoin operations where join and

semijoin operations intermingle with each other. (i.e. The

order of join and semijoin operations do not have any

restriction.)

We assume that a query Q, specified by a qualification

q over the relations R,, Ra,...,Rn, and by a target list TL,

can be decomposed into a set of operations J p 'pa'"'

which will produce the answer to the query, where Prd , the

set of relational algebra operators. In general, a query can

be decomposed into several different executing sequences

which will produce the same answer. We call such an

executing sequence a strategy. Let S(Q) denote the set of

strategies which answer the query Q. The goal of the problem

is to minimize the overall cost of executing this query Q.

We can formulate this problem as

"A
MIN f(P,D[O])- f.(p,Dli])" pES(Q) d4-1

.4 1

s.t. PUP1 P '''"PL

D.i+ l]p.(D[i])

DJO] is the initial database state

44
": 43

Here pl(D[i]) means the mapping from the temporary

database state at stage i by the operation p to a new

* temporary database state. During the analysis of a query

* solution strategy, the database state is conceptually

" considered changing from one state to the other state by an

operation. The real database state stored in the system does

not change unless update operations are performed.

As shown in [BG 81], any query Q-(q,TL) with an

equijoin qualification q and a target list TL can be

efficiently transformed by renaming attributes of the

relation schema and qualification into an equivalent natural

join query. Instead of the class of equijoin queries, EQJ,

we shall study the class of natural join queries, NJQ.

In this section, we restrict our study to a class of

queries that after initial local processing and attribute

renaming, the resulting queries are natural join queries.

Although it is a subset of the complete relational calculus

language, it is a rich and large class of queries in

practice.

- -- - -... .. -

44

2.4.1 Definitions and Assumptions

We assume a distributed database management system

DDBMS consists of a collection of interconnected computers S,

, S3 ,...,Sat different sites. Each computer, known as a

node in the network, contains a DBMS. Data are logically

viewed in the relational model. Without loss of generality,

we assume each site only consists of one relation. In the

distributed database DD-(D I , D,..., Dn }, where each D.

only consists of one relation R; , we shall use DD-1 D,, D.

. .) or { R1 , R2 ,...,R 1 . interchangeably when no

confusion will occur.

Data transmission in the network is via communication

links. We assume that the transmission cost to send one byte

of data between any two sites i & j is known and equal to c.

Thus the cost function of transmitting data of volume V

between two sites i & j is a linear function C~j(V)-c *V.

We assume that all possible subqueries involving data at a

single site are preprocessed; This we call "local

processing'. The effect of local processing is to reduce the

amount of data that needs further processing. We will

regard the state of each database as the resulting state of

the database after local processing. Thus, after local

processing, the following parameters of the qeury can be

defined.
ae

6-

45

n = number of sites (i.e. relations) in the remaining

query

0- I RL I , number of attributes in site RL

,.. R R , the set of attributes of joining domains

betveen R. & R
4

v;, number of tuples in relation Ri

w(A) - the width of data item of attribute A

Z- y * w w(A) the size of the relation R.

w(YL)- ,(A)

In DDBMS, we define two types of directed operators.

Definition:

1. <IXl (or R <IXI R-) is the directed natural join

operator which sends R. to R. and performs the

natural join of R. and Ri at R4's site.,4 4
2. <XZ (or RL <IX Ri) is the directed natural

semijoin operator which projects Yq =ReA R, over R"

, sends the result to R and performs the join of R,

and that result at Ri's site. (i.e. R. iXlr R at R.

's site).

Note that IXl>-RJIX JI>R- and XIJ>qRi ZI>)R are similarly

defined. One can use them interchangeablly. The semijoin

operation only reduces the relation state without changing

the relation schema.

46

Definition:
A join-semijoin program Puplp..•pL is a sequence of

directed natural join and directed natural semijoin

operators.

A natural join qualification q with final node at R,

can be done by sending all relations Rj, i¥l, to R, and

performing RIIXIRZIXI...X[IRat node R, . So R a IXI>R ,R3

XI>R ,••.R IXI>Rs or its permutation are join-semijoin

programs of this qualification q.

2.4.2 Query Processing Graph

We define a processing graph of a qualification over a

database schema DD(R I. =tto be a graph with two types of

edges,<V ,AFB1 >. V1 is the set of nodes, which is equal to

D. A 9 is a set of semijoin edges which is (aL I RTR-'0'and

RL4 A R. We denote such an edge by i -->-- j with one arrow

on the edge. Bi-VxV=(b1 IA i~j I is the set of join edges.

We denote such an edge by i -->>-- j with two arrows on the

edge.

Note that if RLIfR- then we can not perform a

semijoin between R~and R , so a.,is not a semijoin edge. If

Ri S , then Rm=RnR. The semijoin of R4 to R-, R.XI>R-,

is the same as the join of Rj to R,, R.11IR t This operation

is covered by join edge be.

47

Example:

R~n(AI#ASA,,A 1 J

R 2 (Aj,A1 ,A,,A,,

R3 of A,. ,A,, A#

The processing graph of the natural join qualification q is:

2 3

Without lost of generality, from now on we assume that

the final node of a query is node 1.

Definition:

Given a natural join qualification q ,a

join-semijoin program P is said to be correct with

respect to q if after executing the program P, the

final node will have a new relation R; * R1 IXIR 1
:.. . II I ... I x IRMO"..

Lemma 1:

A join-semijoin program consisting of a directed

path of edges in B. from R,to Rk., bK, 1 bKa*...,bRtL.L

will form a relation Rk IZIRK I ...IXIR in node R

Proof: We prove this by induction on the length of the

path. If 11, then the path is b After this

48

operation we will have R,.<--- RK IXIR . By the

induction assumption on 1-1, R~e1 <---R IXIRK

IX... IXIR In the case of 1, for the first 1-1

edges of this path, R, MR IZI... IXIRKP by

induction assumption. After performing bK 1 KtK, we

will have R R IXIR -R IXlR IXI...IXIRKL

Definition:

Given a directed spanning tree T toward final node R

, a program of operations in B. , ... ,bac,-@r

is said to associate with T if each directed path in

the directed spanning tree has the same ordering as

the subsequence of corresponding operations in the

program.

Example: In the following directed spanning tree T. toward

node 1,1 b 5+b64 bl+b 41 N,1 b2, is a program associated

with T. and b~ b b b b b is another program

associated with T.

-7-

5 6 7-3

•4 '1

49

Lemma 2:

A program with edges in a3 associated with a

directed spanning tree with nodes k, , k, 1,.,k.

and toward node 1 will form the joining of R, ,RKA

,...,Rn ,R 5 (i.e. RIXlm XI.IXl IR) at node

Proof: we prove this by induction on the height of the

spanning tree. If h-2, then the resulting relation

at node 1 is the joining of R with all leaf

relations which is RJJXJ ...JxJR t at node

1 .(see Figure) By the induction assumption on h-1,

the resulting relation at the final node 1 is the r

joining of all the relations in the nodes of the

tree. In the case of h, each node at level 1 has

height h-1, and the resulting relation at these

level I nodes is the joining of all the relations in

the nodes of the corresponding subtree above that

node. Consider the final node 1; it will join all

the resulting relations in the level 1 nodes of node

1 with the relation R, . Because a directed

spanning tree will contain each node k exactly

once, we will obtain the relation RKIZIRlXI ...IZ IR

IZlR, at node 1 .I

0

50

Theorem 1:

Let Q-(q,TL) be a natural join query and TL-R, U...U

Rr . Let P be a join-semijoin program for q; then P

is correct for q iff there exists an ordered subset

of the set fbLi I in P which associates with a

directed spanning tree toward node R1 .

Proof: IF: Since a natural semijoin from relation R to S

only reduces relation state s to a new state

consisting of tuples with values in the columns of

joining attributes appearing in both r and s, it

does not change the relation schema S. Thus after

performing the sequence of join opeations associated

with the directed spanning tree toward R,, we get R,

IX•...IXR n at node R1. Any other join operation

does not change the state. This implies P is

correct for q.

ONLY IF: Let P be a correct program for P. For

each semijoin operation ati in P, R-f Ritf and % R.

Thus, performing the semijoin operation does not

move the full relation state from node R to node R.

. We still need to perform a join to move the full

table of R4 to RI. If there does not exist a subset

of (bL . in P which form a directed spanning tree

toward node R,, then there is some node RK which is

disconnected from the tree component. Then some

information from those nodes which do not have a

path toward R is lost. So, in order to form R,

SJIZIRA JxJ ... IZIRlXIIRnat node R,, there must be a

subset of edges in BI that forms a directed

spanning tree toward node R,.

From theorem 1, we know that given a NJQ qualification

q, the set of correct programs for q is the set of

join-semijoin programs such that there exists a directed

spanning tree toward R out of the set of join edges in P.

We denote this set of correct programs for q by 60 (q). In

this thesis, we restrict the problem by only looking for a

best program within this class of programs. The distributed

query processing problem becomes to find a program PE P(q)

with minimum communication cost. For a program p, if we

change the order of the sequence of operations, the total

communication cost will be different. The set of correct

programs P(q) is very large. In fact, after executing one

operation in P, the number of rows and columns of some

relations will be changed. This change then affects the

communication cost of the next operation. So the

communication cost of one operation will depend on the

previous subsequence of operations.

2.4.3 Estimate t.e Size of the Derived Relations

In order to compare the communication cost of query

processing strategies, it is very important to have a method

of estimating the size of a relation after one operation.

52

U Also the system for estimation of the size of the derived

relation must be consistent in the sense that if two

sequences of operations will produce the same results, the

estimated sizes of the result according to the two sequences

of operations must be the same. In this section, we use

capital R to represent both relation state and relation

schema.

We introduce the notion of semijoin reducibility and

join reducibility of R., to R. denoted by cW and

respectively, for each pair of relations RZ and Rj where

OS 1 and 0< Vjl. The interpretation of the semijoin

reducibility olj of.R L to R; is the percentage of rows of R
V R

that are eliminated after performing the semijoin RZ XI> R .

At stage t, if the number of rows of Ri is vi[t-1] and the

semijoin reducibility of R1 to Rj is [t-1], then the

number of rows of R after performing semijoin R XJ> R.will
L J

be reduced to v.[t)- v. [t-l]* (l-dq~t-l]). Note that the
J J

semijoin reducibility of R, to Rj is not necessarily equal

to the semijoin reducibility of R. to Ri and oC(I[t]aO for

all t. The interpretation of the join reducibility of R1 to
"4 R. is that after performing join R. ZXl> R., the number of

rows of the new relation RjJXIRj at site j will be v][t]- v,

[..j]* V• Ct-13 * (1- diat-lD * (1- It-lJ) * (1- Pj[t-1]).

4 This is because the effect of join R; JXl> Rj is equivalent

to performing the semijoins RIXI> Rj and RXI> Riand then

performing the join of R; to R . Both semijoin
:ib

, " • " ' " " "-........ '.. , ,. .t :...... .. .,. .. ,-

p7

53

*i reduciblities and join reducibility affect the number of

rows of the new relation. The join reducibility of R. to R.
J

K is the same as the join reducibility of R. to R. i.e.
".I~

* ~ .(t] ,.Lt]. Also ,[~t].O for all t.

For this paper, we assume that the number of tuples of

relation R- in the system, v , and the set of

reducibilities {1 (, Iq} of each pair of relations are

known. Note that these quantities depend on the initial

local processing and attribute renaming process of any given

query. After the systems are running, they can be updated

periodically according to statistical measurements. They

will form the basic information for processing a given

query.

Since the number of rows and columns of a relation will

be changed after one operation, the reducibilities of this

relation with other relations will be changed too. We

. define how the reducibilities will be changed after one

operation. Assume the databases before the operation pt to

be D-{R 1 [t-l],...Rt [t-l l), the number of rows of each

relation R. [t-l] to be v1[t-1], and the semijoin and join

reducibilities of R.[t-l] to Rj(t-1] to be cW-[t-1] and

If the operation pT at stage t is a.., i.e. R. XI>R. ,

then the database schema will remain the same. The state at

node j will change to R- [t]-RC [t-1] XI Rj [t-1] and all

54

other states will remain the same, i.e. R[t]-R [tl], Y k

t j. The number of rows of relation R.(t] will be changed

to equal vj [t-l * (l-o~jCt-l]) and the number of rows of

all other relations will remain the same. At stage t, we

have

t. .(l-' t-lJ)

According to the definition of reducibilities, the estimated

size of R, ZI(R XIRj) is

v.It].(1-it04 , vt [t(1](1- tt-1]) •.

Since R;L Z(.&Xl.j) -R XIR ,
+-v. [t-1] *(1- f..t-l]) * (-4(J

- - * (1-oEjtt-l) ,

which implies d1j[t]-O.

The estimated size of (R XIR)) ZIRA is

- v;,[t] * (1- jIt]) - viit-.1 * (1- d.,t)).

* Since (R; XfR1) X I R- a (Rj XIRZ),

Ve(t-1] *(l-oj[tJ) -v;[t-1] * (l-.I 1 [t-lJ),

which implies d.j[t]- d-1Itt-1].

Next, we consider the reducibilities .(/j[t) and ot[t].

At stage t, we have

k ajtJ:

v,(t]- Io IR I R& XlR. v;[t.-Vt-l]*vv v Ett- ------- (I- o',It-11)

55

Lemma: RKXI(R XIRj) , R. X(R XR)

Proof:

R XI(R XIR)

-(teRjI t ERL xRj rx S sr , s.'t.

t [Y]=sK[Y]}

-{t6Rj1 3 s.4R4 & Bs,4Ri s. t.

t (Ytj]=S;(Y~~j& t [YO;]'usK[Y.~j) (

Similarily, we have R X(RXlR,)- (*).

Thus, R.XI(RL XIRj) - RC XI(Rt XtRj).

The size of R. X[(Rh XIRj) is

v, [t-1]* (1- Cecil t-1])* (1- ocj[t]

and the size of R; XI(RKXIRj) is

By the above lemma, they should be equal.

In extreme case,OKj[t] could be either 0 or 1. In

general, we will find an approximation function of% it]

Let

3(Y.) -the set of values in columns Y of R1 .

K(Yilk) -the set of values in columns Ypjc of R. .

3 (YSV)-the set of values in columns Yp, of R, XlR j .

Here we assume the set of elements in J(Yj) is uniformly

reduced by the operation a,. , i.e. the percentage of

elements being reduced in the set of common elements, J(Yj,)f

K(Y5V) and in the remaining set of non-common elements, J(

-K(Yj.) in J(Yj,) by operation a.. are the same. Thus, the

4 . ..

56

ratio of the size of the set, J IYjK) K(Yj), of common

elements in J;IYjy) with the size of the set, JZ(Yj,) in J.

(Y3K) is the same as the ratio of the size of the set, J (Y l

) IKIYjj), of common elements in J (Yjg) with the size of

the set, 3 (Yjr), in J (Y;) before operation aq , i.e.

ii I Y.(.) (CYj V) I . J (Yjv) A K (Y) I
------------------- ----------------------------------- ----------------------]i. lJ'; (Yj)1 I (YjI,,

So we have

This implies the size of RKxg (R. XIR 1) is

2 J

Following the same assumption as above, after operation

a.. , the number of common elements in columns Yj- of RZ hIR.

and RK has been reduced by (l-a j [t-l]). After performing

semijoin operation (R i XR)XI>RX, the size of (R hIR

)XIRlwill be
iVic E~t- 1* (1- 1, [t-1 D* (1- 1jx I t- 1].

By the definition of semijoin reducibility, the size of (RI

XIRJ)XIRgwill be

where 91j,,(t] is the semijoin reducibility of RCXIR to R,,

This implies

for k 4 i,j.0

57

For the join reducibility R. .ith .

if we want to still have j$.t] defined by pairwise formula

V.(t]* vK[t]*(1- t3)*(1- (Kft])(Ct]

then we must have

Fi([t-I]).

We will discuss the reasons later. Here we assume jt] =

Next, we consider reducibility P-[t3. Suppose at

stage t, we have R, XRZ at node i and R. XJRj at node j.

-- (t] It]-IRo, I I Rvt] t-1 V(M t])(t]
L X(leI qtto])

then o4j t]=O, VkJJt]-0 vjEt]Mv!Jt-lJ* (1- a9 i(t-1])

* _ and v.[t]-vjrtl]* (1- [tlj)
J JF

Since (R XIRL) lXl (Rn X1R1) - R4 IXIRj , it follows that

* v. t-1]* (l=od1) [t-1]) * v [t-1]* (1-. [t-1]) * (l-f9[tJ).

Thus Fjit]- f CIt-13.

Figure 2.1 illustrate these changing rules. We summarize

the reducibilities changing. rules after semijoin operation a

in the following:

$ kt][k

df I[3t] s4[(t-1] otherwise.

58

F j,,[t]- max[-l rit~-"')/1 E-1 1 vk

ffljt] f r(t-l otherwise.

If thi operation p at stage t is b.., i.e. R. IxI>Rj

then the database schema at node j, R.[tJ will change to R&

it-11 U R-Et-1], and the relation state at site j will be R.
J

(t-1] lXi R.[t-1]. The number of rows of R.[t], vj[t], is

v.[t-1] * it-] (1-oG..Et-1]) *(1- OeCjt-1]) * (1-
J

, All other relation states Will remain the same. Because this

is a join operation, the semijoin reducibilities and join

reducibilities will be affected. (See Figure 2.2)

At stage t, we have

v[tI I Ri I I RlXlR1J v(t]=v_[t-1]* Et'1]
vL[t-l] .[:: ji rtJ * (l-ot.; t-lJ])•A

According to the definition of reducibilities, the estimated

size of R L I (R. IZIRj) is

vi[t] * (I- 4j[t]).

- . Since RL Xl(Rt IZlL) - R IXlR 3 , this implies

:}.1- [41 t]-n, i.e. o[tJm.

Similarily, the estimated size of (R IZJRj) ZJRZ is

%Et] (1o-El v t-'(-~ tv.t lg(t).v![-~*(-~Lt)
T I T.,.

59

Since (R1, IXIR1) RI Rj XlR ,
v.Ct-1] * (1-.Vj*.t]) . vi(t-13 * (1-d-.t-11)

w which implies *jt]- [t-1].

Lemma: (R) X1 Rr S RZ X1 (R. XI RIC

with equality when Y Y(Y

Proof: Let Yj,, Y n YjAcn Y *. Then

(R d IXlRj) X1 Ri

VER1I, aso CR1 I X Rn. so S*YbKU YJK] t Y. to YjMj
j "(terl -s, E R s R- s. t.

t[YLV] - S [Yji]

t(YN I s'.jYpj 3&

Also

RL Xl (R. X1 Ri)

nftGRX S C- 53 R1 t[yi,1 3 a S'~ 1 [yj &

s 4 R; 3 t[Yj] - s 4 [Yj] &

Thus (RL IXlRj) Xl RIS R Xl (R. X1 Ri)..c

If Y]jY gbYj,then s,[Y 1) 3 t[Yj] = sz(Y]

This implies equality of relation states when Y. - Y
CI,

Because of the above lemma, we approximate the number

of rows of (R [IXIRX) X by the number of rows of R.

X1 (R. X1 Rr). If at stage t, we have

41

..-
60

VL(t]= I RL I I RZIR.!! v;[t]MvC(t-1]*v;(t-1]
V: *l (1-. *t-l)

(t-1=])

S-iJoining Domain Y U YiO

IR,~

the joining domain of R. III Rj with R will be Y U .

Since vg1[t] * (1-o Wv[t])

. v [t-j] * (I- o,.[t-1]) * (-'.[t-1 J)

implies (1-odj,1 t]) u (1-alcdt-1]) * (1-0(]x[t-1]),

the semijoin reducibility of R III Ri with R,, will be

OiJ3(Et]- [t-1] + dx C t-1 - o11j -t-1] * eic[t-1I].

Lemma: R IX I (R IxI R) (R1 XI R) IxI (R I Rj1)

with equality if Y Yj.

Proof:

R X1 (R III Rj

={tl t E (R I R) 3 sOR 1 s.t.

5s [1 9K d K]- t [C.COIUY]}

={ta 1f.'R; , s.i R ,s~tRK s.t.

8, =t(R] 4 s =t[R] &
*, s,CY [I,]-t] * s. [Yi,]

s [Y] - t(Y] so (Y# 3).

Also

I':. ":-" - ." . - . .:' .: : " ' - " ' ' - " '. - • - - ... " " '" " " -. .

61

5(R K X RL) lXi (R 11 Rj

in{tIUas 6R ZIRL 1s 4 fiRr IR. set.

S3 wt[R 94& s~ t[Rj

ftl 9s 3 4 R. 5s4 C-Rj s# C55 R 19 set

53 mt[R. s* mt[Rj

53tLI tEY I W SS ltc I
s* [Y7 3 t[Yjl I - S& [yjr 1

So we have

R X1 (Rz lXi R (Rj, X1 Rj) JXi (Rc X1 R.)

Note that equality holds when Y -Y . Similarily, we

approximate the size of R~ X1 (R, JXJ R. by the size of

(R~ X1 RI) lXi (R~ It X 1).

Since the reducibilities between R XIRZ and R,,XlRj are

* as follow:

- v(t13* 1- [tin -t-i *t- v;(- [t(13)~t

* 1- ol- t-ll *ol [iu~t-1 D *(1- (xt-1)

If at stage t, we have

.4

62

vL[tl- I R l I RZIXIRjt] ±-V& [t-l.f*v [t-l]
;:!:Vitt-I]

-------- Ol' [t-ii)

* *~* (1- F, [t-lJ)

k.'k

I R l

By definition, the size of R ,I(RjIXlRj) is

Vi[t]*(-o4(j[t]), so v.t] , (1-OKj[tI)
- v.[t-l] * (l- [t-l]) . vj(t-1] * 1l-.4t-11)-, "* (X-41(t-lJ) * (l-oC [t-l]) • (1- q~t-1])

Since vj [t]-av [t-ll*V Ejt-l)* (l- tqtt-l]) , (l-. [t-l])

t

implies (l- 0(t]) - (l-41(t-l]) * (1-4i(t-1]), so the

semijoin reducibilities of Ri IXl R i with R, will be

d.cjEjt]- I q(t-1] +4 Et-l] - O(t-l] • ot1[t-1].

We summarize the changing rules of semi join

reducibility of Rh[t] to RK[t] after join operation bLJ as

follows: (also see figure 2.2)

0 h-i;k-j

01 t-] t hjokwis

t a. o(Md t-1] Ih + [(C t-l1" N t'I I"4k t-1 I k-j;hti,j

,1:. w t 'l otherwise

a

63

Next, we consider the changing rules of join

reducibilities after operation Pt ab.. .(see figure 2.2)

. After performing RL III> R] (ie. b.i) at stage t-l, the

state at node i is R.[t]- Ri[t-l]. The state at node j is R;

[t-l] IXIij[t-l]. g01[t] changes to 0 and .[t] is the same

as o';[t-1]. Assume [t] changes from p[t-1]. We

* illustrate in the following figure.

At stage t,

De- I[t].r- It-1I]

Figure 2.3 reducibilities after join operation R.IXI>R,

If we perform join b.. again at a future stage, the

resulting state at node j is the same because RZ X[(R XItj)

R. IR Correspondingly, the estimated sizes of the

derived relations must be the same.

That is v,[t]* vj[t]* (1-e.J[t])* (-.1Ct])* (1-fo[t]) -

Ii Ct].

Because ol4 [t]-0 and o'ji[t]- o ji[t-1], we have

and resulting cj[t] - 1- l/(v;[t]* (1-oLji[t-1]))

. 1- l/(v [t-l]* (1- (-])

64

if vz[t-1]* (1- j[t-1]) t 0.

If.:. (t-1] (1-ol][t-l])=O, then we set P3 qEt]fl.

Thus we have

Pi .t 1 1/(Vz[t-l]*(1- (t-l])) if vZ[t-]*(1- -0[- [t-l])0 .

{.if v (-1]*j t-1

Next, we consider the changing rule of join reducibility

:- [t]. We assume at stage t,

vdt= I RI I RjXR 1j V[t]-v[t-]*V,[t-l]v[t-] * ~ ~ ~nlv (l-.I-[t-l])

• (1- p1?[t-lJ)• 1 -t-1t]]

k tjK

Rog

We first look at another way of interpreting join

reducibility. Let Y be the set of common attributes of R

and Ri , W be the set of attributes in RZ -Y and Z be the

set of attributes in R. -Y, i.e. R1 ={Y,W) and R - ={Y,Zj.

After two semijoin operations aZ, and aj(, we assume

M a the number of common elements in Y columns.

Associated with each common element y in Y columns, let

Nq-the number of w in columns W for yp in R L ,

Np-the number of z in columns Z for y. in Rj

Thus, the size of R1 , vL a %; N. and the size of Rj , V.
PIb.

hi-

65

a N • If we join R L with R] R*IXIR., the actual

size of the relation RL IXIRj will be X Ni *Njp. By the
paI

definition of join reducibility, the size of RIXIRj is
M M

m(N£)*(Z N.
pal

Thus, we have
M M 1

- N)/((L [p,, N-F

-l if Pei
If N.p -Ni and Njp -N31 for all p, q, then

1- J ./M

- I/number of common elements in Y columns.

Suppose R is another relation with attributes {Y,U},

i.e. Y q =YjX =Yr =Y, and RK has the same set of common

elements in columns Y as of Ri and R3. After performing all

possible semijoin operations, R1, R; and R. will have the

same M common elements remain in columns Y. Let

N1 ,p-the number of u in coluvmns U for y, in R.
M

n The size of RK will be : . If we join R JXJR XR

the actual size of R& IXIR1 IXIRV will be

' " N *N i Nx .(I

If we join R. IXlI$ at node j, the size of R IXlR. is
*' Nzp *Np . Let the join reducibility of R IXlJR with R. be
psiPb

. If we join RL IXIRj with R. at node k, by definition

- we have the size of R C IXJR; IXIR be
M M

(N * Np)*((1-). (2)

* Formulas (1) and (2) should be equal. Thus, we have
SM1
N.. ,*N j*NI,)*((, Nt7 N,)/ (

(~ L*NIP*NKP N)
FBI7

66

MJNr*j N £P

'I 2"IfNN , NJ , and N N V for all p and q, then

)-(1-.M M

Ncr *N ,)* M N *N
Pt MM 7 pa M M

M(1-I)*('Z N9?

M *(1-

In general, we let M = mij, { 1/(1- p) i.e. the

smallest number of common elements in joining columns of all

pair of relations R and R. Thus, we approximate the join

reducibility of Ri JX(Rj with R. by
1-MN* (i- ,.* (1- ')

Now we back to the changing rule of join reducibility

•t] after semijoin operation a,. . Following the assumption

of Y j Y!,(if we want to still have ,Jt] defined by

pairwise formula

v-t1 VK] (1-04JCt]). (1-OeJ~it1)*(J- figtI),

then 1- Pj,,[t] will still be the reciprocal of the distinct

* elements in the joining columns, and after aq

I- jgdt3 -(.2- pp [t-1J)/(l- e 1 [t-13). Thus, we

approximate the join reducibility of RL XJRj with R by

max{ -0}.

- In the case of n relations {R L , for which the

semijoin and join reducibilities are {o], fj) and the

number of rows of relation R. is v. , by the above

..

67

reducibility changing rules, we have the following results.

Lemma: For relations R, IXlR IXI IXIRp at node p and R

V ~at node g,*let ,and b hi

corresponding semijoin and join reducibilities. They

satisfy the following formulas.

'Tr(Xc)

(3) 1- A " - ,-.,) T (1- ,

I RIIXIR.IXI ... IXlRp I I R"

Proof: We prove this lemma by induction on p.
.4

For p-2, by the assumption of semijoin and join

reducibility changing rules, we have C(

and of R, IXIR2 with R satisfy

- M T (1-
,-

PT

hat

for q *1,2.
By the induction assumption, we have the semijoin

and join reducibilities ,and

of RIIIR IXI ... IXIR.. with R, satisfy

4- , -. (1- 1ke.
1- r 1 (1- o)

ahat
': 1- ~P-4" " ' - k

68

forqj'i,..p.

For the case of p,

I R1IXIRaZI ... IXIRp..! I I~

I, M

IRP

Let the semi join and join reducibilities of RI IXIRa

lxi ... IXIRr with R be , ' and p~
and the semijoin and join reducibilities of R, IXIRJ6

XI ... IXIR,, with R Ibe .e',and
*By the induction assumption, they satisfy

Olt 1- (I' p
1- ~ T (1 .Tr 1 P.

* and

for q*l2..pl

Also, we know the semijoin and join reducibilities

,I

69

of R and Rbe tpL, 4Iand.p . If we perform

join operation b..,., i.e. (R XJR., IXJ ...IXI R.

)IXI> Rp , then by the assumption of reducibility

changing rules, we have the semijoin and join

reducibilities , and of R,ZIXR '

IXl -..IXlRp at node p and R L at node q satisfy

1- aly- (1- ip-)*(j- * 'p)

1 - *e""M* (1-)*.
'_, M * M?= * W (1- Bk).((.- .)p hi' I:ar

.:. for q * 1,2 ... ,p. "

, The lemma follows.

... Lemma: The estimated size of relation R1 lXlR IlXl ... lXlR n
'iis

hlh#hia b,Ica

• Proof: We prove this lemma by induction on n.

L~~i For n2, by the definition, the size of relation .is

vi*v *(2- .4&*(1gM1 r1" 1
By the induction assumption, we have the size of RM

IhlR , Ill *.. IXlR..be

70

hal iIt,113 hjul
11*1' h4lC

For the case of n, by the above lemma and induction

assumption, we have the size of R I JXJR3 JX ...

IXlRn-I be

h kI ph V-

II*K h1

and the size of R rk be v. The semijoin and join

reducibilities , and of Rl XIRZ

lXI ...IXIR,-, at node n-i and R. at node n satisfy
hIot

ii: - ,,., 1- M, Ir (1-1
fl~n-Ihat1- n-I* hag([nIAK)

Thus, if we join R I IXIR2Z IXi ... IXIR,.., with R.

the size of the resulting relation R XIR 3 jIl ...

IXIRn will be

a * 7r) IT

.M ,.,(.- a- .PhR

The lemma follows.

we summarize the changing rules of join reducibilities

of Rh,(t to R[t] after operation p, -b as follows:

* ~ ~~ [.Rt]- i-M*(i- Pj(~J* l a(t-1]) V k1~ipj

)" - 1/(vt I[t-1 1* (1- i[t-13) if v [t-1* *(1-[i Itt-1])to.
i. .if v; [t-1 I*(i- j[Et-1 J)-0.

71

t,(tJ- [t-1] otherwise

V h,k

Theorem:

o.-[t]-j1 and O< q.[t]<lI, for all i and j and any

. time t.

Proof:

If O<a-1 and Ob<l then O<(a-1)(b-1).<1 implies

O.a+b-a- bil. We prove this theorem by induction on

t. At t-0, the initial valueso49 [O] and are

set to between 0 and 1. By the induction assumption

at t-1, we have 0< @(sq[t-1]S< 1 and 0< f 1j[t-1]< 1.

At stage t, if -I1 t] is equal to 0 or 0&-[t-1], or

--[t] is equal to 1 or ri[t-1], then they still

between 0 and 1.

If dq [t]. O4j Ct-1i +o idt1] -4tKi-J [t-1] *

oI#X[t-1] then by the induction assumption we have 0.<

4."[t- 1J.< 1 and 0,<oeC[t-1]< 1,

which implies 0.,;(t]j 1.
9

For j53 [t]=-1M*(1- foC Et-ll)*(l- fj{[t-1]) because

M-min(1-(1- fp[O])} implies 1/Mumax{(1- f1 [O1), thus

we have M*(1- fpjLt-l])*1. This implies O< M*(1-

If 0, 0 then v.

is greater than or equal to 1.

Thus, Fqit]- 1 /(v Ct-l*(l- [t-11)) is between

72

0 an 1. These prove 0,< t].l and O< p[t]41. The

theorem follows.

We note to readers that for the case of three relations

R1 , R2 and R3 having the same joining columns, i.e. Y-Y MY

-Y63 . sY I. c tn a a ,aa will actually produce the same

results at node 2. But, under this model, the estimated

sizes of that result by following these two strategies are

*!-i different. In general, the strategy a31 a11 a 3 is more time

comsuming than the strategy a, a, and sually we do not use

it.

Since the semijoin of R.XJ> RS requires the projection

of R. over Y.. and sending the result to to node j, the

projection of R. over Ri(tR may reduce the number of rows

of R~by eliminating multiple copies of tuples that are the

same over R.ARj. We want to estimate the number of tuples

of a relation after projection.

Let W be the set of attributes in RZ-Yq and Z be the

set of attributes in R.-Y. , i.e. R. ={ W, Y-} and Rj{ Y..
,z.J %'J

Let N(YW)= number of w values in R1 [W] per y and

N(YZ) - number of z values in R; [Z] per y.

N(l)-number of y in R[Y~j

N(2)-number of y in R[Yj].

N(O)number of common y in R and R1 [Yc 1.

Thus v.N (1) * N(YW) , v N = 1(2) N(YZ).

"i kll~lll ..I.i lk m' .l i i l-. .'l hm , " '. _ , • . ..

73

After semijoin RL XIR. and Rj X , then

*V - 14(0) * N(YW) - vZ * (I-gi) and

* ~V. a 14(0) * N(YZ) M vi. * (1-61ij)

The size of R, hXR 1 is N(Join)= N4(0) * 1(YW) *N(YZ).

* According to the definition of reducibilities, ye have

N (Join) av* vi~(1

NM N42)*1(YW) N 1(2) *N(YZ)

aN(0) *N(YW) N 1(0) *N(YZ) *(l-.)

a 1(0) * 14(YW) * N(YZ)

This implies N4(0) a 1 /1

Since N(O) * N(YW) aN(1) * N(YW) *(1-01JO)

* N(1)- 1 /((1-e~q) *(1-

Similarily, N4(2). 1 /(-4)*(-f)

Thus, we will estimate the number of rows after projection

of R~ over Y.- by

If 01j1 then R. and Rj do not have common values in the '
joining column of R and R . then oc-.I at

either one of cCi. , Q~j orp 3 equal to 1 will implies another

two also equal to one. If one of them is equal to 1. then the

result is empty.

74

Example:

Suppose vs have three relations R, 1 ,R 2 and R3

where R,,(% R--4 and R.4 RJV i,j; and suppose v 0J

O(IjEO1, PiE0 are given. Then the processing graph

will be:

Let P1 =a 2 b1 b,~ and P,.- a, b bi be two programs.

Both two programs P, and P,, will produce the same

results R, [01 III RaEOJ lI R3[0) at site 1. (see

Figure 2.4) By the rules of estimating the size of

the derived relation, the estimate sizes of R,(O]

III R.Z[O] II R3(O] derived by these two programs

will be the same. Which is M *e* 1~fl (i..

* ~~l- j[03), where Maminjl-(l- Fg, 1 0])).

For P1 =a 2 b bs

0After performing a 32

V1 (13.v, [03

v31l1v

.
3 .1J

V o

75

P8 a b b

R3 XI>R1 R211R R311

R,112 RR R2

R 2i

RXIR 1 R 1 1R RIXR, RX>R

R, R2

R, IXIR 2 IR3 3

R3

Figure 2.4 two programs P, and P..

76

O4 3 1110 ditto]

oda~lJ oliCOI

1(1- Pz OJ)/(1odaCOJ)

lq(l]u P(Oj[otherwise

After performing b 3

-s vJC2]-va~l]*vL.[]*(I-l3jCl])*(l-JCdlJ)*(l fC]

-v3 COJ*vxEOI*('- aixCO])*(l- oG3j(o]*(l- p~j)

at;,, E 2 -0

a3E2]- 0

o4i E2] esl 1

o4lm2]u o(31C0]I+ o&i E0 1 4)(iCOJ* d.,CO]

E ~ ~ a3E2]n' 1- 1/v 1 (ll

*~a ,C21 1- I *(l- tl/jCOD*(l-PG,aCO])

After performing b3,

vE 3]ova(21

77

V3 (3]3-v, [2]

U ~~~vi[3]mvi (2]*v~ 2*1 Ia 2 *j ~[3*± ~[

3 33
-M* TV 4 CO3* T (1-./..CO)* :W (1- B.. ODj

For P~ =a1 a 3 l bb

After performing 3a

oVj (ha o4,0]

03 (1]u.3 03

g31xjl- 4(I03

1~~l - (2di(0)/2Sa[]

fwll bI 1] hotEO otherwise

After performing a 13

v1 [23-v5 (03

v,[E2]uv, [0]*(l-d42[03)

v3 E2]-v 3 [0]*(1- *43(03)

e4a.E2]=0

dLM2= 4 C0

.1(a 23.'Co(03E

643(233 43(E03

L

78

o~i2u 400+ o43 (0]- 044101* 43(01

1'(1- IlD 1-e3D

~42] .[~%0] otherwise

After performing b5

v., [3]=v., (2]

o4,(3]nv0 H

43 (3]a .14(2]10

d41 C31o(L 2O43O-.0* 4]]

04(.3]- gj, x2]44a(2]- co.1[21* od3a[2]

1- 1/v3 (2]

1-Mr2I. zIS)*1* 1[21)

After performing b.

ml v3 [4]nv, (3]

v 3 (4-v 3 3] -alj3 1-*21

3i 3 37
M lv.(O1* 77 (1-*L(0]) -M (1- 10[O1

A<

.,- .-- .

79

In practical implementation, we can initially set./..

and for each pair of relations by some number which we

*: can intuitively guess at the time that the databases are

implemented. At each node, we set some mechanisms to record

the statistical information of semijoin reducibilities and

join reducibilities. After the systems are running, we can

update the number of tuples in each relation and the

reducibilities of each pair of relations.

In processing a given query, we perform initial local

processing (including projection and selection operations)

and attribute renaming process first. Assume the size of

relations , reducibilities and the

number of tuples of relations associated in solving the

given query after local processing, vkEO], for relation R;

are known. The reducibilities o9(][0], j[0]1 of the

resulting relations associated with this query will depend

on the local processing. In the following, we will derive

formulas for ol[0] and PJ[0].

Let W be the set of attributes in R4 -V. and Z be the

set of attributes in Rj -Yl)i.e. R.-{ W, Y) and R -{ Y 9-

,Z). Let

N(YW)- number of w values in RA [W] per y;

N(YZ) - number of z values in Rj [Z] per y;

N(A)-number of common y in R[Ycj] and R;[Y Cy before

local processing;

80

N(B)-number of co-on y in R;[Y'j J and RI[Yij 3 after local

processing.

we illustrated as in the following figure:
Before local processng

V. IR I

After local processing

v[03 i R-, .- 1 I vi [0]

,2-: ,:LoJ

we assume the number of common elements of the joining

domain being reduced is proportional to the size of

* relations being reduced,

*~i i.e. N(B) -N(A) * (vc[0]/vC) * (v)[0]/v; 1.

So N(B) * N(YZ)

-N(A) * (vf0l/v,) * (vi[0]/v) * N(YZ)

v * (1-.4j) * (vi [0]/vc) * (V; [03/V)

Sv. (o1 * (l- qo]).

This implies (1- ciij)* (vj[0J/vj) - 1

0

81

sQ we have o4jj[0] di1 -(1-oh) *(v

similarily, we have Oejjd0] *1 -(1- v 1 (03/v.)

Because N(B) *N(YW) *N(YZ)

-N(A) *(%~ [0]/ve (v. (03/v. j N(YW) *N(YZ)

vi 10 * v * (1 04i [0 I dj0 (1- j% 0)

. 0 j[0] * *lj (1/

* (v j O/v (0]v. 0

* This implies

(1- ~).(- [0J) *(vz (0]/vj (v; [O]/vj)

That is Fj3o- + (1- Pep* (1- (VC/vZ(0])*(v;/vj (03).

We cboosef,~[0] to be max{ 0, F + (1- pal (1 (V; /vj

(0])*(vj /vj [03))). The set of numbers (v. 10], 01ij (03It

[])are the initial values for analyzing this given query.

*82

2.4.4 Problem Formulation

In order to write down the mathematical formulation of

the distributed query optimization problem, we need to know

the cost function of each operation. From our previous

assumption of a linear cost function, we can write down the

cost function of operations at stage t.

The cost of operation a.j will be

Cost(a)Mcz * Z v(A))

and the cost of operation bq will be

Cost(b.)MC. *(v.[t] * W v(A)).
J A AR

Based on the distributed query processing model we

developed, the formulation of the distributed query

optimization problem is as follow:

INPUT:

1,. a distributed database schema D-{ R(O],...,R,[0]

2. the width w(A) of each attribute A in U(D)

3. the number of rows ,v-[O], of each relation R A

4. the semijoin reducibility oj [01 of each pair of

relations RA R with j0]-O

5. the join reducibility q of each pair of

relations RZ & Rwith Pa0J-o and elo' - P1.

83

OBJECTIVE:

Find an optimal join-semijoin program to solve the

natural join program.

Let P-p1p2... then the problem can be written in the

form:

Min cost(p*)

s.t. D[t]uf (D[t-l])
A[t]=f2 (A[t-l], B[t-1])

B[t]-f 3 (A[t-l], B[t-1])

Z[t]=f4. (X~t-1], A[t-1], B~t-1])

and

1E03, A[0), B[0] are given.

Where A(0]= [(0]] and

B[]- j [0] 1 are
the initial reducibility matrices.

Y[10-[vi [0] is
the initial size of relation D .

f1 (D[t-1]) is the mapping from temporary database

state at stage t-l by the operation p, to a new

temporary database state at stage t. During the

analysis of a query solution strategy, the database

state is conceptually considered changing from one

state to the other state by an operation. The real

database state stored in the system does not change

84

unless update operations are really performed.
U . and f2 'f3 and f4 are mappings according the definition

of reducibilities and its changing rules.
.4

* If P maq ,then

:1 I

I vj.t-1J * (1-oL..[t-21) IY It]- " I
k v,[t-1) I

n r)[t-1

A[t] -

± i k n

" o d, *4-K t-I I . t-1 I .

t t 1-1] ... oL [t-lI

*i o(~Ct-1] *.. 0 ... tl1] ... 0 .

,:. [-] .. [t* . o . . t--

• ,I .

* S{ _t *.

n L, 1t-1] ... J. t t- l .b. t1 *-l... 0 ,
ill J

85

B(t]

o 0-

0 ...

kc i I1 t-1 ... v 1 t]se eg~t-1J ... ~tl t41I

n tS

* otp)c S^tl* ()

86

If ibcthen

ItI

:1 v4(t-i] *(ia(ti]1)

V[t]a :

n v,[t-1] d

Alt]

1I .Lij t-11]g-1]

I .41 (t -i1

t-1 1 . -

kj 41[t-1] ...
0

-tj .. dc -

:41 t-13 t- I * 0..jtt 1 0

*j oom.L t- - -

t -

87

B(t]

1 ik jn

1 r

~[t-)I

:1E t . I I

ii 1-,,lt to* 00 *. AKtJ.. 0 t1

I*J t(..3 - I

0j..FX - ... 2-M*(i-J-1

I MY1J Il(-PFID
:1 t~ + M1()

A1 1
Ijj 1~4*2 ~ * 11/ . ~M(1 . 0 .* iM(2

A*

R.(tlmR.[t-11 U R.Ct-1]

88

2.5 Extend The Model to Include Local Processing Cost

The underlying assumption of this chapter is that of

communication cost dominance. This is ususlly true in the

case of a large scale communication network. When databases

are distributed in a local area network environment, the

local processing costs also play a significant role in query

processing because selection, projection and join operations

sometime take a significant processing time to process the

operations. In the case where local processing costs are

comparable to communication costs, this model can be easily

extended to cover the situation by providing a method for

estimating the amount of processing time required and

associating each node with a local processing cost. A method

of estimating the local processing cost of selection,

projection and join operations was studied by [SEL 79] and

[KIM 80], etc. This cost depends on the method of

implementing join operation and the available main-memory

buffer space.

2.6 Conclusions

In this chapter, we considered the query processing

problem in a distributed relational database envirnment, and

.:.w e extended previous work to consider a larger class of

solution strategies for equi-join query processing.

V

-. - . - .---- - - -o

- . --

89

We have developed a mathematical model to compute the

Iminimum communication cost of a join-semijoin program for

processing a given equi-join query. We defined a query

processing graph for each equi-join query and characterize

the set of join-semijoin programs which solve this query. A

rule for estimating the size of the derived relation is

assumed. With the assumption of communication cost

dominance, when the cost functions are linear in the size of

data transmission, an optimization problem for distributed

query processing is formulated and solved. This model can

be extended to the case where local processing costs are

significant and nonnegligible by associating each node with

a local procesAing cost and providing a method for

*estimating local processing cost.

Although the model is based on processing the class of

equi-join queries which is a subset of complete relatioanl

- calculus language, it is a rich and large class of queries

,* in practice.

In a general query processing, we can divide the

clauses in the qualification of a query into two sets: The

set of equality clauses and the set of inequality clauses.

Usually the set of inequality clauses is very small. We can

* either process the set of inequality clauses by using the

,* inequality joins and inequality semijoins first and leave

*= the remaining equi-join query solving by using the model or

" vice versa. The other approach is to change all inequality

90

S.: join clauses into equality join clauses by referencing the
U. domains of join attributes.

A future research topic is to extend this *model to

cover a large class of inequality join queries by providing

. a method to measure the reducibilities and to, estimate the

size of the derived relations.

*6

;.

91

Chapter 3

Computation Complexity of Distributed

Query Processing Problem

3.1 Introduction

In distributed database management systems, the

*: efficiency of query processing has a strong influence on the

performance of the systems. Query processing in a

distributed system is different from that in a centralized

system. In a distributed system, data are stored at

computers which are geographically separated; hence query

processing involves some local data processing and the

necessary data transmission over communication links.

Although both types of operations will introduce time

delays, for a large network of databases the transmission

delay plays the major role in the overall system

performance. Many researchers and system developers have

considered these facts and have derived ways of finding a

distributed processing strategy for data processing and data

transmissions. It is recognized that deriving an optimal

distributed processing strategy, in the sense that some cost

is minimized, is a very difficult problem and all algorithms

that have been proposed to date are heuristic. No one has

yet been able to show that finding an optimal query

processing strategy in distributed databases is an

intractable problem.

92

In the last chapter, under the assumption that data

transmission costs dominate tha local processing costs, we

developed a model for solving an equi-join query by a

strategy employing a mixed sequence of joins and semijoins.

The objective is to minimize the total data transmission

costs for processing the query. If we perform all the

possible semijoin operations, as in the strategy used in

SDD-1 [GBWRR 81], the remaining problem becomes one of

finding a routing strategy of sending required data to the

site where the query was initiated with a minimum total

transmission cost. Its DD-1, the system takes the simplest

, -way by sending all the data to the query initiating node and

processing at that node. In this chapter, we will consider

the case where all semijoin reducibilities are equal to zero

and the join reducibilities ore not affected by join

operations. We call this problem the query processing

problem (QP). For our purpose, we formulate the problem in

the following way.

Query processing problem (QP):

Given a complete directed graph G-(V,E); the size of

data associated with each node i, s. ; the unit

communication cost of edge(i,j), c. ; and the join

reducibility associated with edge(li,j), d. Here d has

the same interpretation as 1- in chapter 2. All semijoin

reducibilitiep oI'in chapter 2 are equal to zero. The size

of data at node j after the arrival of data from node i and

"

3~a

3

S* 44

THE cosT OF THis suBTREE is

SCIS +Sz 13 I (S. 1 'S3 d13 0.d23) C34

-I. (3 s1 s. 413 423 .54 d34)C40

J FiGuRE 3.1 THE COST OF A SUBTREE

94

the join operation between them will produce the size of

data at node j equal to .s Here, d-adi for

each pair of i,j . We define a subtree of a tree as the

usual meaning of subtree with all edges pointing to the

direction of the root of the subtree. Figure 3.1

illustrates an example of the cost of a subtree.

Our objective is to find an inversely directed spanning

tree toward nide Vwith minimum communication costs. Note

that this model is different from the model stated in

chapter two. The model in this chapter is not consistent in

estimating the sizes of the data by two strategies which

will generate the same results. For example, in figure 3.1,

If we join data in node 1, 2 and 3 by joining data from node

1 to node 3 and then joining data from node 2 to node 3 will

result the size be s*s *s 3 *d *d 3 . On the other hand, if we

do it by joining data from node I to node 2 and then joining

the result from node 2 to node 3 will result the size be s

• 3*s$*d *d. We will show that under this model, three

problems of finding a routing strategy of sending required

data to the desired site are NP-complete.

This chapter is organized as follows: In the next

section, we review .omplexity theory and list the three

NP-complete problems we need to use for proving our results.

In section 3.3 , we prove the NP-complete results for the

query processing problem with a bounded.number of nodes in

4i each subtree (QPBS) by using the satisfiability problem

A"D-A124 92± UERY OPTIMIZATION IN DISTRIBUTED DATABASES(U)2/
MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR
INFORMATION AND DECISION SYSTEMS K HUANG OCT 82

UNCLASSIFIED LIDS-TH-i247 N88814-77-C-B532 F/G 12/1i N

smhhhmohhhhiI
smhhhmhhhhhhh
smhhhhhhhhhhh
smhhhhhhhhhhh
EhhhhhhhhhhhhsI
EhhhhhhhhhhhhE
mhhhhhh00hE0hhI

1.01

'W g.0 12.

U UAIOL -BUA OF SAOAS193-

95

(SAT), for the query processing With a bounded number of

subtrees (QPBT) by using the bounded component spanning

forest problem (BC), and for the query processing problem

with maximum benefit (QM) by using the exact cover by 3-sets

problem (13C). The conclusion is given in section 3.4.

3.2 Complexity Theory

Recent developments in the theory of computational

complexity provide a powerful method for comparing the

computational difficulties of different problems. It often

-- can provide information useful to algorithm designers. The

application of this theory to combinational problems has

*i aroused the interest of many researchers. The foundations

for the theory are in the paper of Cook [Cook 71] and of

Karp [Karp 721 who first explored the relation between the

classes P and NP of (language recognition) problems solvable

by deterministic and non-deterministic turing machines,

respectively, in a number of steps bounded by a polynomial

in the length of the input. In this context, all problems

are stated in terms of recognition problems which require

yes/no answers. For the combinatorial optimization problem,

we transform it into the problem of determining the

existence of a solution with value at most (or at least)

a equal to y, for some threshold y. The class NP is very

extensive. It contains several classical problems ranging

from the satisfiability problem of proposftional calculus to

*Q the traveling salesman problem for which, despite many

• .

96

lengthy and intensive efforts, no efficient algorithm is

known at present.I
A problem is said to be NP-complete, if, intuitively,

it is as hard as any problem in NP. Proving that a given

problem is NP-complete typically requires two steps:

1. Showing that this problem is in NP by describing an

efficient nondeterministic algorithm solving it.

2. Showing how a known NP-complete problem can be reduced to

the given problem via a polynomially time-bounded

transformation.

The following theorem lists those NP-complete problems

that will be used in this chapter to establish

NP-completeness of the distributed query processing problem.

Theorem 1: The following problems are NP-complete:

(1) Satisfiability problem in the conjunctive normal form

(SAT)

Given a set (z ,....,x. of variables and a set c ,...,cm

of clauses. Each clause is the disjunction of literals

(i.e. variables or negations of variables). We are asked

to determine whether or not the conjunction of c,,..,c,

is satisfiable, i.e.,whether there is an assignment of

the values true and false to each of the variables, so

that each clause contains at least one true literal.

a.'-

97
A

(2) Bounded component spanning forest (BC)

Given a complete graph Ga(V,Z), and given a nonnegative

weight W(v)E Z, associate with each v6V.

Assume positive integers K% JVJ and B are also given.

Can the vertices in V be partitioned into k < K disjoint

sets V ,V,0,V1 so that for I < i s. k, the subgraph of

G induced by V. is connected and the sum of the weights

of the vertices in V. does not exceed B?

(3) Exact cover by 3-sets (X3C)

* Given a finite set X-(f , T,-] with iXl =3q and

a collection C-f 6,6 q.- ,Cr of 3-element subsets

of X . Does C contain an exact cover for X ? i.e., Does

there exist a subcollection C'S C so that every element

of X occurs in exactly one member of C' ?

Proof:

(1) see reference [KARP 72]

(2) see reference [GAJO 79]

(3) see reference [KARP 72)

3.3 Computation Complexity of Query Processing Problem.

In this section, we show that three problems of finding

a routing strategy of sending required data to the desired

site are NP-complete. The first problem is the query

processing problem with the constraint that the number of

nodes in each subtree is bounded. The second problem is the

7777-7- 7. -

98

query processing problem with the constraint that the number

of subtrees of the root of the directed spanning tree is

bounded. The third problem consider the maximun benefit of

routing strategy which has nothing to do with the minimum

cost query processing problem.

3.3.1 Query Processing Problem With a Bounded Number of

Nodes in Zach Subtree (QPBS)

3We formulate the problem as follows:

Assume we are given:

* a complete graph G-(V,E)

" si, the size of data associated with each node v.

Sc . , the unit transmission cost associated with edge

(ij)

* d-., the reducibility associated with each pair of

nodes (i,j)

* B is rational constant and K is integer constant.

v , the final node (query answer node)

Does there exist a directed spanning tree toward v. so

that the cost of the spanning tree is at most B and the

number of nodes in each subtree of vis at most K?

Theorem 2: QPBS is NP-complete

Proof:

Consider the SAT problem in theorem 1. We will show that SAT

is reducible to QPUS, i.e., that for any instance of SAT an

instance of QPBS can be constructed in polynomial-bounded

o% '. °

99

time so that solving the instance of QPBS solves the

instance of SAT as well. The theorem then follows from the

NP-completeness of SAT in theorem 1 and the fact that QPBS

belongs to NP, since any feasible spanning tree toward node

". v. can be recognized as such in polynomial time.

Given any instance of SAT, we write a set of variables

as fxm ,...,z 1.j and a set of clauses as (c, €ca,...C , and

define an instance of QPBS as follows:

Ga(V,E) is a complete graph such that:

. * V~v°, , .. ,z,1 X1 7 ,.. fin' , ,.. c , di,, -" dj

* each node is associated with a size 2, i.e. s- 2 ViA,

• each edge is associated vith a reducibility - 1/2

* the cost of each edge is defined as follows:

cost (d , d1)- 1 Vj a---,m

cost (d,, Zx) - cost (d1, fl) 1

cost (R., zj4) = cost (x., * cost i .,) -

! ~cost(-

V i * 1, 2,", n-1.

cost (x, vo) l, cost (in, vo) 1
cost (c ,)- I if V' is a literal in c. wherer -

is either xz or i.

• all other edges have high cost.

* 2 (2n+2m)

* J * n+m

Figure 3.2 illustrates this reduction.

100

SAT: THE BooLANFomuLJ Bn71+ i2)*(X2 + XP*XI X2+ 3)

QFBS:

Fimum 3.2 ILuTioN oF RwxUTioN Fm SAT mo (RS

101

Each node is associated with a size 2 and each edge has

* a reducibility of 1/2 . Edges of infinite length are not

shown. The solution of QPBS corresponding to the truth

assignment x~ false, x2 a 3-true is shown with & heavy

* line.

We claim that SAT has a solution if and only if G

.(V,E) contains a spanning tree towards V.8o that the cost

3 of each subtree is bounded by D and the number of nodes in

each subtree of v. is bounded by K.

()Assume there is a truth assignment t satisfying SAT.

Then the tree T with d., 183 .. - through d, and then

through those 0-value literals of .,. and then to v. as

p,,

one subtree, and c1,,c,,... colthrough the 1-value literals

and then to v*as another subtree of y, will have cost 2(

2n+2m and each subtree has n am nodes.

so Suppose oPBS has a tree solution T. Note that T must

have 2n+2m edges. Since B -2*(2n2m), and the shortest edge

of G has length 1, it follows that T must consist of 2n2m

edges of length 1. Also, since there are two edges of length

1 incident upon node v. and K is half the number of nodes in

0, T has exactly 2 subtres rooted at node vof each of

cardinality (not including v.) nm. The m nodes d ad. then

are obviously in one such subtree. The only way that these

nodes can be connected to r ois by -path P traversing

one node from each pair {x., FO.. No e t at m s

102

r. Let a literal have the value false if the corresponding

node is in P. Since dwd,,..., d, together with P exhausts

the m+n vertices allowed in a subtree, the nodes x .4 , f.)

not in P and (c;] must constitute the other branch. Also,

for each c; , there is a node not in P, such that c. is

adjacent to it . Hence each clause of SAT contains a

literal that is assigned the value true by the above truth

assignment. Thus SAT is satisfiable.

3.3.2 Query Processing With a Bounded Number of Subtrees

(QPBT)

We next consider the objective to be finding a directed

spanning tree toward final node v* with a minimum number of

subtrees such that the cost of each subtree is bounded by B.

We prove that this problem is still NP-complete.

This problem is formulated as follows:

Assume we are given

* G - (V,E) a complete graph

* s;, the size of data associated with each v.

* c.. , the unit transmission cost associated with

edge (5,j)

. d- , the reducibility associated with each pair of

nodes (i,j)

* B and K, constants

* the final node, v.

Does there exist a spanning tree toward node v* such that

the cost of each subtree is bounded by B and the number of

103
I

the subtrees is no greater than K?

*| Theorem 3: QPBT is NP-complete

*proof:

Note that the proof of theorem 2 works trivially for theorem

i 3 also. Here we give another proof. Consider the BC

problem of Theorem 1. We will show that BC is reducible to

*: QPBT, i.e., that for any instance of BC an instance of QPBT

can be constructed in polynomial-bounded time so that

solving the instance of QPBT solves the instance of BC as

well. The theorem then follows from the NP-completeness of

BC in theorem 1 and the fact that QPBT belongs to NP, since

.- any feasible spanning tree toward node v. can be recognized

as such in polynomial time.

Given any instance of BC, we denote the graph by G -

(V.,2.), and the weight of each node v EV. by W(v.)EZ . We

construct an instance of QPBT as follows:
G (V,E) is a complete graph with V = V U [v (final node))

.- 1

c" W(v.

• di- 1 ViJ

S& B are the same as in BC

The subtree example following has the communication cost

wv) + W(v,) + W(vl) + W(v4).

I W(I ,-'

F0

FIGuRE 3.3 ILLUSTRATION OF REDUCTION FROM BC TO R'BT

, • ~~~~~~~~~~~~~..,........ m.•+........... ii" '+ i 't

-.- ', p . . * S -

104

We claim that DC has a solution. iff the constructed G

=(VE) contains a spanning tree toward v so that the cost

of each subtree is bounded by B and the number of the

subtrees is bound by K.

(=') Assume that BC has a solution

i.e. the vertices in V can be partitioned into k < K

disjoint sets V ,V2 1..., VKso that for 1 iS k, the subgraph

of G induced by V. is connected, and the sum of the weights

AtA.,,'"of the vertices in V.Z is B.

We construct a subtree T. for each set V. and connect it to

v and each subtree T.has comm. cost - L s - Z W(v,)

B and the number of subtrees k4K.

(@=) The reverse of the argument is the same as above.

3.3.3 Query Processing Problem With Maximum Benefit (QM)

In the query processing problem, if we associate each

edge with the unit benefit of transmitting data through that

edge instead of with the unit cost, then the problem becomes

finding a maximum benefit spanning tree toward node v. We

show that this problem is still NP-complete. Note that this

problem has nothing to do with minimum cost query processing

problem because we cannot transform minimum cost QP problem

to this problem.

We formulate the problem as follows:

.5

.,, , ,,. .. •..-.-.. -. _ .. . - ' .. _ 3--. u'. :- -z
.

105

Assume we are given:

* G - (VE)

* for each node v., associate data size, s

for each pair of nodes (i,j), associate a join

reducibility dj, and a unit benefit b-j

I final node v.

- constant 3

Does there exist a spanning tree toward v. such that the

total benefit is no less than B 1B 3)?

Theorem 4: QM is NP-complete

proof:

Considering the X3C problem in theorem 1. we will show that

x3c is reducible to QM, i.e., that for any instance of 3C,

an instance of QM can be constructed in polynomial-bound

time such that solving the instance of QM solves the

instance of X3C as well. The theorem then follows from the

NP-completeness of 3C in theorem I and the fact that QM

belongs to NP, since any feasible spanning tree toward node

v can be recognized as such in polynomial time.

Given any instance of 13C, we write a finite set of

elements I ={ , , Z r31 1 and a collection C of

3-element subsets of 1: C * { , cr:,. . 1.

We define an instance of QM as follows:

• . . .-.. . .

106

a4
1441 ~. 4.

ZigL

I o2

ED~ OF-0BNFT R£O HW
, 2.

2im .4 IUTAINO E=INFoMCo(4

- -- - -- "war""

107

G =(V,E) is a complete graph

* v * r0,, 0,..., O 3,,' Z#'"" , Vol

3 * for each node i, s. 4

* d..- 1/2 yi,j

b & O V) *1 j -1,2,,,,r

b (m, n)-OD otherwise

*B 40q +4r

Figure 3.4 illustrates this reduction.

We claim that X3C has a solution if and only if G

-(V,E) contains a spanning tree with the total benefit no

less than B.

(=) X3C has an exact cover c'SC, then the spanning tree

with edges (ZI , (r) VjC' and (C. , V) in 1,2,..r, .

has benefit

3q 4 + 32 q + 4 (r-q)

a44q - 4q + 4r

s40q + 4r > B

(4:) Considering the spanning tree toward node v. in fig.

3.4, there are only three types of first-level nodes

directed toward the second-level nodes: (1) the nodes in the

first level direct toward one node in the second level and

leave one node in the second level without any first-level

nodes directed to it, (2) two second-level nodes each have

two first-level nodes directed to them, and (3) one

108

TI -~e benefik of T, is 12+32.+4+=48

V .- t 4 z34

i 4 THE BENEFIT OF THESETWO EDGES
:":: is 32-t.4 = 36-.-

ii..,T2 : The 6megif 4 Tz is 16+14 +16, =4o°

T2 'C 24 4 4

r"2.

. FU ,THE BENEFIT OF THESEWO EINOES

.3: Tke kenefit of T3 is

J.

r THE BENEFIT OF ThEE140 EDGES

is l6bi-r-24-

FIGURE3.5 THREE TYPES OF SPANN ING TREES TOWARD NODE V0

109

second-level node has two first-level node directed to it

and the other second level node has only one first-level

node directed to it. We illustrate the three cases as in T a,

T and Trespectively in figure 3.5.

As we can see from figure 3.4 and figure 3.5, we know

* The benefit of the first level in figure 3.4 is constant

12q.

* The maximun benefit of the second level in figure 3.4 is
32q + 4 (r - q) which occur when exactly three z.

l. 4

connect to one 07

So if there exists a spanning tree toward v. with cost

no less than B (b 40q + 4r), then this must be a spanning

tree with exact three z connect to one (r

Let

C' * { 0 exact three CA connect to one q!

-in the spanning tree)

Then, C' is the exact cover of X3C.

Following the same proof, if we restrict d - 1/2 for

all i, j then the problem is still NP-complete.

3.4 Conclusion:

We have proven that three variations of the query

processing problem (QP) are NP-complete problems. The

complexity of the query processing problem is still open. it

- -.- 110

is a future research problem. The difficulty of solving

N. query processing problems comes from the fact that the cost

of each stage depends on the cost of all previous stages.

That is, we need to search over all the inversely directed

spanning trees toward the final node v and compute the cost

of them. The solution space is very large. The other

complexity comes from the fact that at each stage (node), we

want to choose the next node to move and process; we have

two objectives: one is the minimization of the immediate

transmission cost and the other is the maximization of the

data being reduced after moving the data from one node to

the other and performing the join operation between them.

Because of the results of this chapter and the dynamic

programming problem nature of the query processing problem,

we do not intend to look for optimal algorithms. Instead,

our objective in the next chapter is to provide heuristic

algorithms for choosing routing strategies for processing a

given query.

Future research direction will be determing the

complexity of query processing prblems in the model of

chapter two.

40

111

Chapter 4

Heuristic Algorithm for Distributed Query Processing Problem

4.1 Introduction

In the last chapter, we have shown that under three

different objective functions, the problem of finding a

routing strategy for sending required data to the site where

a query is initiated is NP-complete. The exact algorithm for

this problem must enumerate all possible solutions and

calculate their costs because of their dynamic network

nature. When the number of nodes is small, the enumeration

algoriti,,s is possible and hopefully can generate an answer

within a reasonable response time. Since many of the queries

issued by users are for real-time application, response time

is an important factor for the users. The algorithm for a

*. generating routing strategy must be very efficient in order

to meet the requirement. Heuristic algorithms appear to be

the only reasonable option for solving such problems.

In this chapter, we will analyze the problem and

provide heuristic algorithms for the problem. We first

consider the simpler case of the problem where all possible

semijoins are performed and only consider the routing

strategies for join operations. We provide several heuristic

algorithms for this problem. We then extend the algorithms

of the simpler case to the general distributed query

processing problem of solving an equi-join query by a

A 112
I.'.

sequence of join-semijoin mixed operations. Numerical

examples are given to show how the algorithm work.

Before we discuss algorithms, we shall introduce

several graphical terminologies as used in graph theory. An

inversely-directed spanning tree is a directed spanning tree

with all edges pointing in the direction of the root of the

tree. A branch of a node is a subtree of that node. Consider

a directed path (x2,x13) (x,,x,) passing through

nodes x ,1 3,...,1 K in a graph. The length of this path is

k, i.e., the number of nodes in the path. For i and j so

that lgi~j~k, xj is a successor of x. and x. is a

predecessor of x . If j-i+1, we shall use the terms

immediate successor and immediate predecessor, respectively.

A node with no successor is a terminal node (or final node),

and one with no predecessors is an initial node. A

nonterminal node is at level k in a graph if the longest

path from it to a terminal node is of length k. The level of

a terminal node is defined to be 1. A sequence of

join-semijoin operations is a sequence of join-semijoin

edges in the query processing graph which we defined in

chapter 2.

4.2 Cases Where All Semijoin Reducibilities Equal Zero

In this section, we consider a simpler case which

E assumes that all possible semijoins were performed, i.e.,

all semijoin reducibilities between each pair of nodes

113

become zero. We also assume that the join reducibilities are

not changed or affected by the join operation. This

assumption simplifies the problem by ignoring the possible

dynamic changes of join reducibilities after join operation.

we describe the problem in the following: [SQP]

Given a complete directed graph G-(V,E) with V-(v0 ,v1

,...,v I and En- (v ,vj)I V i 4 j 1. Assume v. is the

answering node of a query. For each node vL, we denote the

data size of that node by %L . With each pair of nodes (v.,v

), we associate a unit transmission cost c of that edge

and a reducibility d.- between relations in node v and v.

The reduciblity d.. between relations in nodes vi and v-

means that if we send a relation from node vi to node v1 and

perform a join operation locally at node vi, the resulting

data at node v. will have size sr*s.* d. .* In fact, this d;
J Il J Jb

has the same interpretation as I- q where fq is the join

reducibility between relations in node vZ and v. . Figure

4.1 gives an example of this problem. The total transmission

cost of the solution strategy is computed by taking the sum

of the subtree cost of each branch of the tree. Figure 4.2

shows an example of the transmission cost of the operation

between a pair of nodes. The costs are labelled next to the

edges. Our objective is to find a directed spanning tree

toward node V. with minimum total communication cost.

4.2.1 Analysis

114

so

Fxium 4.1 EXA*LE OF SU' Pmm-Ew

V3 V2

V, S SSfil t,

vso

TOTAL COST OF THIS SLETREE IS

S3'C 31+ C2- C21~ +4 i , 3-dl03 I

FiuRE 4.2 EXAMPL OF COmPUING SISTREE COST

115

In this problem, we have two types of objectives at

each step. The first type is to minimize the next step

transmission cost, i.e. node i, ml n (c |. The second

type concerns data reduction after this operation. It can

be either finding the minimum of the data required to

transmit after the first-step operation, i.e. mtn {d. • s.
J J

* or finding the maximum of the data being reduced after the

first-step operation, i.e. max f(I-d) in order to

find the next step operation, we either can consider only

one of the two types of objectives or consider the weighted

combination of those two objectives. This type of

heuristic algorithms forms a solution in a single pass by

selecting operations sequentially in an order that

minimizes the increase in the objective at each step.

We call this type of algorithm a greedy heuristic because

of its appetite for immediate improvement. We will give an

analysis of this problem in this section in order to provide

a constructive insight of the heuristic algorithm.

We define a node label p. for each node to be

the transmission cost of the next edge in the solution

tree. Initially, we assume all node labels p.= 1. As the

solution tree grows, the number of nodes in the tree

increases and the node labels will update accordingly.

Fig. 4.3 gives an example of updating node labels of the

example in fig. 4.2

1J16°3

A.vin; ~~~ P.=P= P,=r3 ij
::B. /

ii

P.

IA: s .%S. .

P,. -s . ,- d p,) s - 43,-s 4,C

FiGUR 4.3 ExAIvIP OF ULFMOTING NODE LABELS

117

At any stage, if we want a new node to be included in

the solution tree, we need to compare the total transmission

costs of all possible cases. For example in fig. 4.3, if

node 4 is the next node to be included in the solution tree,

it can be sent to node 0,1,2, or 3. We need to compare all

four possible cases and choose the one with minimum totrl

communication costs. See fig. 4.4. In general, if S

is the set of nodes in the solution tree at this stage and

node k is the node which will be included in the solution

tree, we need to compare the costs

M~in (S c +4. *dKL(p.)
. " ICo

i 340
j*00

and choose a minimum one. Assuming node r to be such a

node, we include node k in the solution tree by adding

the edge (k,r). The node labels are changed as follows:

P! = si*dxlP) j in path (r,O) & j 410.

P p. otherwise.

Figure 4.5 gives the node label's updating of Figure 4.4

*o where node 3 is the node which was selected.

Assuming the graph has node Veand n other nodes, and

the number of nodes in the solution tree S at this stage

is m, the number of operations at each stage is then O(n.m).

m"2 t.

118

I'3 5C 3 ,

I A
- 7 -

-

"

II

S4 C4 3 +- S4 c4 3 (P34 .+ +P2""

54 6 C41 + 54 .d4 + P3')g9

54.c4.. +P2+3+ -

FIGURE 4.4 INCLUJDING A NEW NODE INTO SOLUTION TREE

S4. r-, 2 F21%pzC)

PI .S4*d43*(p10))

() (3)

FiWuRE 4.5 UPnATiNG NODE LABELS

120

So the number of computations of this greedy algorithm

requires O(n3). We will identify several special cases in

which the computations are reduced.

Let I-{i I CA., min(Cj be the set of nodes where the

minimum unit transmission cost is desired when sending

the query answering node 0, and J - {ifmin {s..d . < 1 1 be

the set of nodes where there exists a non-final node at

which data can be reduced to a smaller size by sending the

data from node i and performing the local processing.

Given a node i, we can classify into one of the

following four cases:

I~EJ 0

0

Case 1: CL =min (C:-1 and 3k so that ste m in [sad.
Ld;C j*o A

Since the node labels will change as P. m s.d.

(Pj) 9 j in path (kO 1, j 'f 0, if we add the

edqes (i,k), and sjd4, < 1 , it will reduce the

121

total communication cost of the path (k,O). We

need to compare the tradeoff between the

payment for the first step transmission cost and the

gain- from the saving of the path transmission cost.

The strategy of choosing k is such that k is

the outermost node of a branch with larger

je p~k1c,)

and (1 - s.' d. P .)br 9 s.(cjc j)br>0 s)c.

Case 2: i I and iEJ.

Let K.= [k I C. < C. and s-d. 1 3. .

Lemma: If KA#, then we never use edge (i,O)

Proof:

Since s d4 < 1 implies

OX: P-KO P.
sh du 4L P.) < 3e Pe*4(xo) J

and s c4, s. c* , the cost of sending data from

node i to node 0 will have a higher communication

cost.

If K =4,then we must compare all options as in the

general case.

Case 3: 161 and i4J

Since ieI, so sA*c. > s.*c. ,Vj, and i j

implies sA*d j > 1. The cost of sending data directly

from i to 0 will be s.* c. And the total cost
A, AO0

122

will be

s.c4 + O5 p. . (4.3)!
The cost of sending data to node k will be s,,. c,

and the total cost will be

sc. + s.d. (S& p.) + P.
J% e FrA 0") pJ 49j06Vee.~si J

(4.4) 3*0

Formula 4.4 is always greater then (4.3), so we have

Lemma: If iC-I and i4J , then the minimum routing

is through edge (i,O).

Case 4: iCI and i43.

In this case, we need to compare all

possible options to include node i in the solution

tree. We use formula (4.1).

4.2.2 Heuristic Algorithms

In general, a heuristic algorithm can be divided into

two stages. The first stage is to build a feasible

solution. If the algorithm for generating an initial

feasible solution is good enough to provide a solution

close to the optimal solution, then the algorithm itself can

be used as a heuristic for the problem. The second stage

is the improvement stage. At this stage, the heuristic

attempts to improve an initial feasible solution by some

method to obtain a better solution. The most often used

123

method is the interchangeable heuristic which attempts to

improve an initial feasible solution by interchanging

some nodes in the solution with some that are not in the

solution. This process continues until a solution is

found that cannot be improved by such interchanges.

In this section, we will seperately describe the

algorithms for building an initial feasible solution

and for solution improvement. Any combination of

algorithms for those two stages will be an algorithm for

(SQPJ.

We will first describe the algorithms for building

* an initial feasible solution.

According to the analysis of section 4.2.1, we can

. easily generate an algorithm to build an initially

feasible solution that is an inversely directed spanning

tree toward node v , gradually letting T be the

solution tree. Initially T is empty. We also assume each

node i has associated with it a node label p . Initially

P - 1 Vi. The algorithm is as follows:

Algorithm A:

(1) T of initially

(2) V node tEV a (v c C smin (c) & s d. > ,

includ (t,O) into the tree. i.e. T - ((tO)vteV

(3) Sort the remaining nodes in the increasing order of

the size of the data at each node. Assume that the

124

order is s. >,. sa().

(4) Add the nodes in the tree T according to the

order of this sequence

(5) In adding node v)into the tree T, choose a node t
V'

already in the tree so that adding the edge (v(),t

) gives a minimum cost increase.

(6) update node labels according to formula (4.2)

(7) stop when all nodes are included in the tree.

This algorithm is a greedy heuristic algorithm because

t forms a solution by selecting an edge which minimizes the

increase in the objective at each step.

If we consider only one objective, the first-step

transmission cost, then we can transfer this problem

into a minimum-directed spanning tree problem.

Algorithm B:

(1) Build a complete directed graph with one node

corresponding to one database site.

(2) Associate each edge with the cost of the first step

of the transmission. i.e. s..c.for edge (i,j)

(3) Find a minimum-directed spanning tree toward node

0.

Since there exists a polynomial time algorithm for the

minimum directed spanning tree problem, this solution can be

4solved easily. Since this algorithm considers only one

objective and ignores the other objective, reducing the

-ai

125

resulting data after this operation, the worst case of this

algorithm could be very bad.. So we expect that this

algorithm must be used with an improvement method to

provide an algorithm for CSQP].

Another algorithm is obtained by considering the

objective of reducing data by intermediate processing only,

and ignordinge the first-step transmission cost. As with

algorithm B, we expect that this algorithm must be used

* with an improvement method to provide an heuristic

algorithm for [SQP]. We describe the algorithm as

follows:

. Algorithm C:

(1) Build a complete graph with one node corresponding

to one database site

(2) Associate each edge (i,j) with the amount of

data being reduced, s,- sj (1-d.)

(3) Find a maximum matching of the graph

(4) Combine the two nodes in a matching as one and build .4

another complete graph in which each edge is

associated with the new amount of data between this

pair of nodes, and find a maximum matching again.

(5) Repeat this procedure until the number of nodes

in each branch of the tree is less than a fixed

number.

4126

Another algorithm is to take a weighted combination of

these two factors. If we let WL. ji d. / (n-i which is the

average unit transmission cost from node i to the other

node, then we can associate each edge (i.,j) with a

*combination of first-step transmission cost and weighted

second-step transmission cost, i.e., weighted data reducing

factor. This approach is expected to generate a better

UI solution than algorithm B and algorithm C.

Algorithm D:

(1) Build a completed directed graph with one node

corresponding to one database site.

(2) Associate each edge with the combination of

the first-step transmission cost and the

- weighted data reducing factor of intermediate

! processing. i.e.

S c + 8;-d .,We for edge (i,j).

. (3) Find a minimum directed spanning tree toward node

- . 0.

The algorithm for solution improvement is called

the interchange heuristic. This method starts from one

approximate solution and then perturbs it somewhat to see if

a better solution results. If a better solution does

result, the original solution is discarded and

perturbations on the new solution are tried. Methods of this

kind for the traveling salesman problem are described in

CLIN 65] and [RSL 77]. We generalize these techniques as a

• o,127

perturbation method in our heuristic algorithms.

'_ Define a k-change of a problem as the deletion of k

edges and their replacement by other k edges so that another

solution is obtained. we also define a solution as k-optimal

if no k-change produces a better solution.

We describe the algorithms for solution improvement, by

k-interchange heuristics in the following.

Algorithm k-interchange:

(1) Obtain a initial feasible solution.

(2) Repeat apply k-change to the current solution until

the k-optimal has reached.

The heuristic algorithm for solving SQP can be the

combination of one of the algorithms A through D with

algorithm k-interchange for some fixed k.

4.3 Heuristic Algorithm for Distributed Query Processing

Problem

For the general query processing problem, we want to

solving a query by a sequence of join and semijoin

operations. Our heuristic algorithm is to generate a

sequence of join operations for solving the query with

minimun cost by a similar algorithm of algorithm A. This is

4an incremental method for building up the solution. Then we

check each edge to determine whether there exists a semijoin

2.1 ; 1 i1 -.i _ . . ". .

128

operation which will make the join operation have less

transmission cost. If such a semijoin operation exists, then

we replace the current solution strategy by adding this

semijoin edge to it. We describe the algorithm as follows:

Algorithm E:

:'(1)1T -f initially

(2) V node tev - iv I cv.umin (c .1 & y Vi 1,
J

includ (tO) into the tree. i.e. T - { (t,O)Iy t V

I

(3) Sort the remaining nodes in the increasing order of

the size of the data at each node. Assume that the

order is st,)> Sit)O ... > S, where s - r y* Width

of the relation.

(4) Add the nodes in the tree T according to the

order of this sequence

(5) In adding node v,,)into the tree T, choose a node t

already in the tree so that adding the edge v ,t

) gives a minimum cost increase.

(6) update node labels according to formula (4.2)

(7) After all nodes are included in the tree, we check

each node to determine whether there exists one

semijoin edge which will reduce the original

transmission cost. If there exist one, then include

the semijoin edge. The order of the checking

sequence is from the terminal node up to its

predecessor.

(8) Stop until all nodes have been checked for semijoin

4129

operations.

We expect to have a numerical example for this

algorithm. We also hope to generate other efficient

algorithms.

P
4.4 Conclusions

In this chapter, we analyzed the difficult nature of

the query processing problem and provided an analytical

basis for heuristic algorithms. We first considered the

simpler case of the problem where all possible semijoins are

performed first, i.e., all semijoin reducibilities become

zero. We provide several heuristic algorithms for this

problem. Each of the algorithms has two stages. The first

-stage is to find a feasible processing strategy. The second

stage is the improvement stage where interchange procedures

are used. We then extend those heuristic algorithms to the

general query processing problem by including semijoin

operations into the sequence of join operations. We first

create a solution strategy using only join operations and

then change a join operation to one semijoin operation and

* one join operation when it is beneficial to do so.

Future research direction is the study of the analytic

behavior of those heuristic algorithms. Although some

analytic results of worst case and average case analysis are

difficult to obtain, some computational experiments may be

conducted to get a feeling for the average performance of

-. * * - - . - - - - - - - - - -- *

130

the algorithms. Developing more efficient and general

solution procedures for general query processing problems is

also a future research area.

U

a

I'.

I

131

Chapter 5

Query Processing in Distributed Heterogeneous Databases

5.1 Introduction

Database management systems are among the most

important and successful software developments in this

decade. They have already had a significant inpact in the

field of data processing and information retrieval. The

existing commercial systems are almost exclusively based on

one of the three data models: relational, network(e.g.,

CODASYL) and hierarchical. Many organizations have

independently developed their own databases on their own

computers and database management systems to support the

planning and decision making in operations. Each DBMS has

its own intended schema, access control, degree of

efficiency, security classification and operational

requirements, etc. Often, different databases may contain

data relevant to the problem although their structure and

representation could be different. It will be beneficial if

we can bring together all these databases in several

locations in order to integrate information resources and

build new kinds of applications to help operations.

Heterogeneous database management systems which are

geographically distributed around the world play one of the

most important roles in command, control and communication

(C 3 systems, and other organizational operations. One of

) and~~~~ ote. ranztoa

132

the main problems in using these databases is the

communication between them when we need to retrieve and

update information. When a user issues a query at one site,

the system must be able to respond to the itser with an

answer of the query as soon as possible. In today's business

S. operations, efficient decision making based on information

resources will depend increasingly on a more automated and

faster response distributed database management system.

Existing data communication technology for computer

networks does not yet provide a solution for the

communication between these DBMSs. Communication delay of

data transmission is still a dominant factor in system

performance. In order to develop a method for query

processing in distributed heterogeneous database management

sytems environments and to develop a quantitative and

syntactic understanding of the query processing strategies

optimization, we need to have an integrated system to

combine and share information in a heterogeneous distributed

database environment.

In previous studies, a number of approaches have been

proposed to the problem of heterogeneous DBMSs. One early

proposal was to restructure each database into a common

structure under a given DBMS; that is, to convert and to

migrate the entire database from the various DBMS's to the

given DBMS. This type of approach is generally called "data

base conversion." [SHL 75], [SHTGL 773, [SLH 761, (SO 753,

133

and [SU 76] are works in this direction. Another approach is

to maintain the original database and provide an effective

information exchange among the different systems without

incurring mass data migration. The major advantages and

functional characteristics of this latter approach 're:

1. A global data model is used to provide users with a

common schema.

2. The data bases can be kept distributed without

requiring any data movement.

3. Each data base can both operate in its own local

mode and participate in the distributed system.

4. The application programs for the original data bases

do not have to be changed and remain still usable.

The following researches are in this direction: In [AD

77] and (AD 78], the model of Abrial, [AB 74], is used as a

global data model. In [NBC 76] and [CP 80], the Entity

relationship (E-R) model proposed by [CHE 76] is used as

global conceptual data model and a modified version of DIAM

(Data independent accessing model) incorporating the syntax

proposed by the CODASYL SDDTG (Storage Data Definition and

Translation Group) is used as the global internal model (SDD

77]. In [SBD 81], MULTIASE uses the Functional Data Model

of [SHI 79] as the global conceptual data model. DAPLER,

embedded in the programming language ADA, is used as the

user-interface language and a subset of ADAPLEX is used as a

mapping language. The Database Communication System we

propose in this chapter can be classified into the second

i . '° .• - . .

134

* -category. The main differences of our approach from others

are that we take advantage of the relational data model and

• .use a very high-level non-procedural language for user

" - interfaces.

This chapter is dedicated to the study of communication

among nonintegrated, heterogeneous and distributed DBMSs. A

concept of a data communication system is proposed to

provide a way to integrate and share information in a

heterogeneous database. The Database Communication System is

- . a front-end software system of a DBMS. It presents to users

an environment of a single system and allows them to access

the data using a high level data manipulation language

without requiring that the total database be physically

integrated and controlled. The architecture of the database

communication system proposed in this chapter is only a

conceptual design. All three components, schema unit, query

unit and control unit require detailed requirement

specifications. It is not our intent in this thesis to

study all of them. We effhasize only the query unit in this

thesis. In the next chapter, we will study how a query is

processed in a heterogeneous database environment. Schema

translation and query translation will also be addressed

there.

The organization of this chapter is as follows: In

section 5.2, we describe the motivations and difficulties of

heterogeneous DBMS and specify the goal of this system

4135

design. In section 5.3, we describe the components of

heterogeneous database communication systems. The

*relational data model is then chosen as a global data model

to support the communication. Several reasons are described

in section 5.3.1. In section 5.3.2, we describe the

architecture of a database communication system and the

*- functional characteristics of each of its components. In

section 5.3.3, some network configurations are described

that permit integration of heterogeneous DBMSs by using

database communication systems. In section 5.4, we

described briefly how a query is processed in a

heterogeneous database environment and we will leave the

details of the query processing to the next chapter.

Lastly, several other problems of database communication

systems requiring further detailed specification are

discussed.

5.2 Motivation and Objectives

* 5.2.1 The Heterogeneous World of DBMSs

In the real world, resources are heterogeous in nature,

e.g. size, shape, color, structure etc. The same fact exists

J in the world of DMBSs. There are at least several dozens of

heterogeneous DBMSs commercially available today, e.g.,

IMS,S2000, TOTAL IDMS, etc. From several points of view, we

can distinguish heterogeous DMBSs.

136

1. Conceptual Model Viewpoint

Traditionally, the data model may be classified into

three categories: hierarchical, network, and relational.

Most of the commercially available systems may be

implemented in some variant of one of the three models. For

example , IMS is hierarchical, system 2000 is inverted

hierarchical, TOTAL follovs CODASYL DBTG architecture,

ADABAS is inverted network and INGRES is relational.

2. Physical Model Viewpoint

Although two DBMSs may have the same conceptual model

- or may even be the same type of DBMS, they may have

different data structures.

For example, the storing information about courses

offered and courses taken by students may well use different

physical data structures to represent it in a network model.

With diferent data structures, the access paths will be

different.

S1 S2 S3
courses students cu

c e O ecourses

studntscourses -

* stuentsstudents

STUDENT

i5.i

137

3. Data Manipulation Language Viewpoint

The data manipulation language can be record-at-a-time

or set-at-time. In other words, it can be low-level

procedural or high-level non-procedural. It depends on the

conceptual model and physical model the system has adapted.

It also depends on the system itself. For example, in the

relational system, System R, the language can be SEQUEL or

Query-by-Example.

4. Application Viewpoint

From an application point of view, the DBMS can be

*. classified into a general-purpose system and a special

purpose system. TOTAL is 4 general-purpose DBMS which is

used for all kinds of different application purposes. The

PARS (Programmed Airline Reservation) System is a special

system which serves only a specialized application. The

systems used for different purposes support different

facilities.

5. Machine Viewpoint

The same DBMS can be implemented on different

computers. The ARPAkET-Datacomputer system is a typical

heterogeneous system where quite different types of

computers are tied together to implement their own DBMSs.

Different computers may differ in their speed, memory size,

storage management, etc.

-1,

138

6. System Control Viewpoint

Viewed from the system control aspect, there are two

types of systems: centralized v.s. decentralized control

systems. A centralized control system assumes the existance

of one central control function to handle all systemwide

global control. The LADDER-FAM (Language Access to

Distributed Data with Error Recovery-File Access Manager)

(1,2] developed at SRI is an example. A distributed control

system where the control is completely distributed to each

subsystem is more reliable. The SDD-1 system of the

Computer Corporation of America (3] is an example of this

type.

5.2.2 Difficulties and Approaches

The large bulk of local data are produced at a variety

of locations in many fields. In business, scientific

research and government, the data exchange is very important

in decision making, experiment, management and control. The

difficulties of communications between heterogeneous DBMSs

can be identified as follows.

1. Data model --- the conceptual models for different

DBMSs may be different. A user having a knowledge of one

system may not be familiar with another system. Selection of

a data model for every system to provide a uniform view to

the end user is essential.

139

2. Data definition language --- in addition to

selecting a data model, a data definition language to

support the description of conceptual scheme is also

essential.-

3. Data manipulation language --- the user's query

language cannot be the one for local host schemes; it must

be a query language which supports the global uniform

scheme. Because the end users don't know what data model the

query will have to deal with, they are obviously unable to

specify how something must be done, and so must instead

specify what is to be done, i.e., the language must be

nonprocedural.

4. Data integration --- most of the data base set up by

*independent organization are hard to integrate. It is also

possible that inconsistencies exist between copies of the

same information stored in different databases. Combining

all local schema together to form a global schema is

necessary in order to provide an integration schema for

them.

5. Data incompatibilities --- the same objects in

*! different DBMSs may be represented in different types,

different schema names, different scales, etc. When

integrating the DBMSs, we need to recognize these

" incompatibilities of data sources and identify them in the

integration schema.

.o

140

6. Processing results --- once a result is gotten for a

query, it is expressed in the form of the original data

model, and it must be translated to the uniform data model.

* Can this current result be saved and be operated on later?

7. Data dictionary and directory schema --- We must

provide each end user with a uniform directory so that he is

able to see easily what data is available, where it is, and

how to get it.

8. Access planning --- with a high-level query

language, the system should provide an optimizing strategy

for each query in a distributed system.

9. Multiple-systems access --- each query may reference

data in two or more different systems. The system must

coordinate their transactions.

10. Multiple view support --- If the system wants to

support multiple schemes for each DBMS, so that users can

have freedom to choose their own preferred query language

and global schema, then the systems must add more schema

translators and query translators.

11. Control system --- After integrating different

DBMSs, the system has to have a system controller to control

the network DBMSs. The data manager must decide whether to

use centralized control or distributed controls.

:7"

t'" 141

5.2.3 Design Objectives

Before we set up the design approach, it is important

to decide what goals we want to achieve:

1. Central view for users --- All user's views are

defined upon a global conceptual schema which is the union

of the local schemata and integration schema. It is hoped

that from the user's point of view, the system behaves in

the same way as in a centralized system and the user is

unaware of the fact that he may be dealing with

heterogenous local databases.

2. General to any system --- We wish the database

communication system to be general to any system and that it

can be used to integrate various database systems for

various applications. In addition, we want to minimize the

cost and effort and maximize the performances.

3. Flexible to future extension --- We know that the

volume and the complexity of database are extending very

rapidly. It is the major factor of the cost of maintenance.

We want the system to be flexible for the future extension

with minimum cost.

4 4. Reliability --- The communications between

heterogeneous DBMSs should not fully rely on a centralized

system. The communication capability should be distributed

among every heterogeneous DBMS.

eI

142

5. Distributed control --- Based on the reliability and

parallel processing issues, we want the communication

between DBMSs to have distributed control.

6. Security --- When combining heterogeneous DBMSs,

n some confidential data in one system should often not be

accessible so that access can be checked and the data

protected.

5.3 Heterogeneous Database Communication Systems

5.3.1 Data Model

Because we are dealing with communications between

different DBMSs supported by different data models,e.g.

hierarchical, relational, etc., our approach is to select a

data model to support a uniform conceptual schema for each

DBMS. It provides users with a homogeneous view of

conceptual schema and also serves as a bridge between the

underlying models. Many logical data models have been

proposed which model the real world in terms of the

interested objects and the interrelation between them. in

[KER 76], the authors study 23 data models and attempt to

establish the similarities and differences among them

according to data model structure, logical access

type,semantics and terminology. Recent research has focused

on two directions. One is to enhance the refinement of the

conventional data models. The notion of "normal form theory"

has led to a refinement of the relational model which

4143

attempts to catch up more semantics information by

explicitly expressing functional dependencies among data.

Many authors worked along this direction and built some type

of semanatic data models. The second approach has been to

emphasize the identification of a basic simple construct.

*This construct is simple and with clean semantics. It may

be easily collected in a meaningful fashion to represent

complex varieties in semantic structures. It is clear that

there is no mental model which is so superior that it is

good for all users.

In view of the state of the art, we choose a relational

data model as a global data model to provide a central view

to the users' bases for the following reasons:

1. The relational data model shields the user from data

formats, access methods and the complexity of storage

structures.

2. It supports a high-level non-procedural query

language.

3. The storage and data structures are very simple;

all data is represented in the form of records.

4. Access paths do not have to be predefined. A number

of power operators are supported in relational model, e.g.,

select, project, join, etc. for data retrieval.

5. Because of the decline of hardware cost and the rise

of manpower cost, a high-level nonprocedure manipulation

language is necessary to minimize the user workload.

144

6. The relational model provide a simple and powerful

interface to the data.

7. The relational model has fast response to ad hoc

queries which are considered to be the high-percentage of

queries.

P 8. The advance in associative storage devices offers

the potential of greatly improving the efficiency and

therefore the performance of a relational system.

Based on this choice, we propose a database

communication system which incorporates distributed

heterogeneous systems into a unified entity and shares the

information resources in a distributed manner.

5.3.2 Architecture of Database Communication Systems

Although the heterogeneous database management systems

are usually geographically distributed, the existing

approach for communication between heterogeneous DBMSs

builds a single control system which coorperates and

communicates between different DBMSs by using the computer

network. One asks why shouldn't the database control also

spread through each coorperating DBMS? Hopefully doing so

will provide a better use of data resources and improve the

performance and reliability.

Our approach is to define a database communication

system which serves as a front-end processor of local DBMSs

as an interface to the computer network. It is a software

145

* I external I I external
* I schema 11 view

IDBMS Communication Network Communication DBMS I
System Syte

D DB

Fig. 5.~General Architecture of Heterogeneous DSMs.

q 146

system aimed to link geographically distributed

heterogeneous DBMSs together and to act as a bridge for

communication between local DBMSs (see Figure 5.2).

The basic underlying assumptions are:

1. It is possible to exchange information among the various

systems and they are willing to maintain information.

2. Each DBMS is considered to be able to execute a given

local transaction.

3. There exists a communication network which connects the

various DBMSs.

4. The access to a local DBMS is not affected by the

operation of the data communication system which should

be transparent to the local user.

Functional Characteristics

The database communication system consists of three

major units: (see Figure 5.3)

* Schema Unit

* Query Unit

* Control Unit

The functional characteristics of each component within a

unit are described separately in order to maintain the

modularity.

A. Schema Unit:

The schema unit maintains the local schema and

integrity schema. It consists of three components. We will

0j

147

QUERY SCHEMA CONCURRENCY
TRANSLATOR TRANSLATOR CONTROL

LOCAL SCHEMA INTEGRITY

QUERYCONTROL

OPT IMI ZER
SECUR ITYGLOBAL SCHEMACNTO

QUER INEGRAIONDATA
QUER INEGRAIONDICTIONARY

RECOMPOSER SCHEMADIETR

QUERY SCHEMA CONTROL
UNIT UNIT UNIT

53~ .3 PARCRITECT3ME OF DATABASE COMMNICATION SYTE

148

GLOBAL SCHEMA

INTEGRAT ION SCHEMA

LOCAL LOCAL
SCHEMA SCHEMA

LOCAL -- -LOCAL

HOST HOST
SCHEMA SCHEMA

F3re 54 SCHMi ACHITECTRE

:149

. describe each component following by its important

functions. (see Figure 5.4)

(A.1) Schema Translator

* Reads a schema description of the local DBMS

and translates it into a schema description

in a global data model and vice versa.

* This is done by a mapping of the data

definition language and the structure of the

data model.

* The schema translator may be different for

different target DBMS.

* schema unit can have several different

kinds of schema translators.

(A.2) Local Schema and Global Schema

* Local schema is the schema translated by the

schema translator from the local host schema.

• Global schema is the union of all local

schema and integration schema of the database

communication system.
-- I

(A.3) Integration Schema

* It consists of information about integrity

constraints, data incompatibility, and data

redundancy.

It is set up at the time a DBMS joins to the

heterogeneous network.

*.The component can be viewed as a small

150

* database.

B. Query Unit:

A query unit takes care of the query processing,

optimization and access strategy. It consists of three

components. (see Figure 5.5)

(B.1) Query Translator

* Translates a query in the global query

language into a query accepted by the local

DBMS.

* This is done by a mapping of the data

manipulation language.

The query is parsed and simplified.

(B.2) Query Optimizer

* The query is decomposed into local subqueries

which reference only local schema and queries

which reference only the integration schema.

* The distributed query algorithm must provide

an execution strategy which minimizes both

the amount of data moved from site to site

and the number of messages sent between

sites. In addition, the algorithm should take

advantage of the computing power available at

all of the sites involved in the processing

of the query.

* The algorithm must also take care of the

.-

I

4 151J

IQUERY AGAINST
GLOBAL SCHEMA

DECOMPOSER

QUERY OPTIMIZER

QUERY TRANSLATOR

QUERY SIMPLIFIER

PARSER

ACCESS PLANNER

EXECUTION)

QUERY RECOMPOSER

FIALEULTS

Q1

152

query recomposer within the optimization

strategy.

(B.3) Query Recomposer

* The access strategies are then executed. The

results of the execution are represented in

local host schema. The final answer must be

described in terms of global schema.

* The result of local queries must be sent to

the answer site so that the results can be

put together and reformated as the answer

expected by the query.

C. Control Unit:

(C.1) Concurrency Control

* The concurrency control algorithm must have a

synchronization protocol to preserve

consistency in a distributed environment.

* It processes distributed interleaved

transaction by guaranteeing that all nodes in

the system process the accepted update in the

same reference.

0 * Deadlock detection or prevention mechanisms

must be provided. When system failures

occur, the other nodes must be able to

continue to operate and the crashed nodes

must be able to restore correct operation.

a"

V.o

153

(C.2) Integrity Control

* There are two levels of consistency. Strong

iF mutual consistency has all copies of data in

the system updated at the same time. Weak

mutual consistency allows various copies of

the data to converge to the same update

status over time, but, at any instant of

time, some copies may be more up-to-date than

the others.

* In a C operational system, we may want to

adapt weak mutual consistency so as to use

less processing time.

(C.3) Security Control

* All data, dictionary, programs and services

must be protected from unauthorized access.

* All authorization information is kept locally

and checked locally.

A feedback encryption and decryption system

must be provided to each node across the

communication network.

(C.4) Data Dictionary/Directory Schema

* Provides user with a transparent view of the

directory.

* eeping information about where various data

stored to efficiently provide the system

query unit access data.

154

* Keeping one central master directory in the

system with each local DBMS keeping a local

subset of the control directory.

* These are the "bread and butter* software for

a successful database administration

function.

5.3.3 Heterogeneous DBMSs Network

By using a database communication system (DCS), the

heterogeneous DB4Ss can be integrated in several

interconnection configurations according to the desired

criteria. For example, several versions of the same type of

system could be grouped together under a local database

communication system so that they can easily communicate

without needing translation if a query just references the

local DBnSs. The systems which store similar data can be

grouped together at a first level so that they can be more

efficient in retrieving data and exchanging information.

Those systems which store confidential data can be put

together so that the management and security control can be

handled more effectively.

W. The heterogeneous DBMSs network using a database

* communication system as a bridge for interconnection may

have one of the following configurations:

U 1. Star Architecture (Centralized System)

2. hierachical architecture

OCS

1DCS DCS DCS

:M EMS Eis MS R R R EDS DM TOA

ri131

156

3. Ring architecture.

DBMS

DBMS DBMS

DBMS, C C DBMS

* 4 Partition Architecture

DBS DBMS DBMS DBMS DBMS

157
*

5.General Architecture

DBMS DBMS DBMS

DCS

DBM

4

158

Advances in hardvare, software, and communication

technology viii make the distributed DBMSs possible. Several

communication networks are commercially available to

integrate the distributed DBSs. For instance, ARPANET is

one example of a point-to-point partially interconnected

public data netvork. It is a packed-switched network which

interconnects large-scale computers worldwide. Ethernet is

one example of a branching broadcast communication system.

It is a local computer network for carrying digital data

packets among locally distributed computing stations.

It will also be possible to interconnect existing

networks of multiple systems with new designs, using gateway

* technology. Combinations of loop or hierarchical and

- point-to-point interconnect technology will make it feasible

to develop complex local/remote systems. The combination of

low-cost satellite communication links and high-speed

fiber-optics loop-based systems will also provide a basis

for large, complex, hybrid interconnect structures to share

information on distributed DBMSs.

5.4 Query Processing in a Heterogeneous Environment

Based on the architecture of the database communication

system (DCS) we proposed in [HD81] , we adopt the relational

_ model as the global conceptual model. It is necessary to

provide a relational schema for each database. For those

4159

databases in which the underlying data models are not

relational models, schema translators will be required to do

the translation jobs. A specific schema translator is needed

for a specific data model to translate the underlying schema

to a relational logical schema. The integration schema

consists of information about integrity constraints, data

* incompatibility and data redundancy. This integration

schema can be viewed as a small database. For "the queryI. which is against this local relational schema, it is also

:* necessary to provide tranilation rules to translate the

relational operations into data manipulation language

statements of the underlying data model. The users will see

the system as a distributed relational database system.

In our approach, each database system is presented to a

user with a global relational schema. A query for data

access or update is specified in terms of a relational

calculus-like qualification over relations with a target

list. Codd's data sublanguage ALPHA (DSL ALPHA) [CODD 72] is

one of the calculus-based data sublanguages. It consists

simply of the relational calculus in a syntatic form which

more closely resembles that of a programming language. In

practice, the syntax would have to be compatible with that

of the host language, whatever that was. For our purpose,

we shall use the syntax of ALPHA which is expressed in [CODD

70].

160

Given a relational Alpha query presented to the system,

the optimizer in the query processing unit of the system

will find an optimal strategy and transform the query into

an optimal sequence of relational algebra operators. In

order to execute the operations against the local DBMS, the

query translator will have to translate a relation algebra

operation against the local DBMS into a program of data

manipulation language (DML) statements of the target system.

Join, Semijoin, Union, Intersection and Difference of

two relations require two operands having the same set of

attributes. They can be executed by using project and select

operations to retrieve data and put it into relational form

and then perform the desired binary operation. The details

of query translation will be discussed in the next chapter.

5.5 Conclusions

We have described the architecture of a heterogeneous

database communication system in this chapter. The database

communication system is an approach to integrating

-, heterogeneous database management systems. We believe that

the integration of many independent, distributed information

resources, should be helpful in information retrieval and

decision making in solving real world problems. There are

several problems which need further study in order to make

* the system successful: query optimization, distributed

concurrency control, translation rules, and security

- .•,. ".. - • . .

161

control, etc.

In the environment of business operations, time is a

very important- factor. The user should be able to easily

form a query and have the system retrieve the data and

recompose it for quick presentation to the user. Query

optimization is the most important component and is the

subject of this thesis. Concurrency control problems have

been widely studied, mostly for centrally controlled

systems. We need to study and develop algorithms which are

suitable for a distributed environment. For the translation

between global schema and local schema, and between a query

in a global language and a query in a local language, we

need to study the rules for translation for different data

models and manipulation languages. This is the subject of

the next chapter. Security control is one of the most

important problems in DBMS systems. Because the data are

often integrated together, the security control of

classified information is essential. The mechanism for

checking access rights and encryption of the information

flowing throughout the network deserves further study. This

solution of a database communication system makes the

distributed system transparent to users from an operational

point of view. It is hoped that such a database

communication system will increase the efficient usage and

4i management of information and data of heterogeneous database

management systems.

o

*.- -- --- ~- ~ -~--- . ~

162

In the next chapter, we will study query processing in

heterogeneous database management systems. Schema

. translation and query translation will also be described.

0

163

Chapter 6I
Schema and Query Translation

6.1 Introduction

Based on the architecture of the database communication

system we proposed in the last chapter, we adopt here the

relational model as the global conceptual model. It is

necessary to provide a relational schema for each database

management system (DBMS). For those databases in which the

underlying data models are not relational models, schema

translators will be necessary in order to provide the

relational view to the user. For each specific data model,

a specific schema translator is needed for a specific data

model to translate the underlying schema to a relational

logical schema. If the underlying data is a relational

model, in some cases we still need to do some adjustment and

provide a uniform relational schema. For example, in one

database, the students' information relation will have

attributes (course, faculty, studentlD, grade), and in the

other database, there will be a relation with attributes

(course, professor, studentlD, grade). The attribute

*faculty" in one relation in fact has the same domain as the

attribute "professor" in the other relation. We need to put

this condition as an integrity constraint in the integrity

schema component and provide a new uniform relation schema

for this system. The other problem we also need to consider

is the data incompatability. In the first relation, the i.

164

grade could be given by a number scale between 0 and 100

and the second relation could have the grade in the literal

scale wAO to OF." The data incompatability must be taken

care of by the integrity schema. Schema translators are one

of the topics that will be discussed in this chapter.

Data manipulation facilities will also be discussed in

this chapter. In our heterogeneous database communication

system, we use ALPHA, a non-procedural relational calculus

like language, to express a query. Given a query, it will be

analyzed by the query optimizer and be transformed to a

sequence of relational algebra operators against those local

relational schemata. Because the underlying data models are

not necessary relational models, it is also necessary to

provide translation rules to translate the relational

operations into corresponding data manipulation language

statements of the underlying data model. In this chapter, we

address the problem of designing a schema translator and a

query translator of a specific data model.

Relational, network, and hierarchical models are the

three major data models that have been used in database

systems. The relational model has been adopted here as the

global conceptual model. We need to consider schema

translators from relational model to relational model, from

relational model to network model, and from relational model

to hierarchical model. We also need to consider query

translators from relational algebra operators to

165

'.ji

corresponding data manipulation languages of the three data

models. As we can .see, the schema translator and the query

translator for the case in which the underlying data model

is relational are rather easy to develop. We leave this

case here without any futher detailed specification.

Also,since the present state of the art is such that the

existing commercial systems are almost exclusively based on

one of the other two models, we therefore will restrict our

effort here to the design of translators for systems based

on these two models.

Hierarchical systems provide for the same form of

association between two records as does the network system.

A hierarchy is simply a network that is a forest (a

collection of trees) in which all links point in the

direction from child to parent. If we have an hierarchical

design we can thus clearly regard it as a particular network

specification and will have no difficulty implementing it

using a network-based software product. It is not difficult

to see that similar remarks can be made about the schema

translation and query translation. Because of this reason,

we concentrate our effort in this chapter on schema

translation from a network model to a relational model and

query tranlation from relational algebra operators to

network data manipulation languages.

We focus on those changes that must be made because of

the difference in the level of procedurality of the

166

relational algebra operators and the data manipulation

language of target data models. We do not consider the

problem of modifying the program when the schema is altered

due to database redesign and evalution. We also do not

attempt to address the issues involved in the implementation

of these translation rules, such as the syntax of the

language used in a specific system.

This chapter is organized as follows. In the next

section, schema translation rules are formulated for

translating CODASYL/DBTG schema into relational schema.

Based on this translation rule, ye derive the query

. translation rules for mapping relational algebra operations

into CODASYL data manipulation language statements in

section 6.3.

6.2 Schema Translation

A great deal of attention has been focused on the

network approach since the publication in April 1971 of the

CODASYL DBTG final report (CODA 71]. The initial DBTG

specifications have undergone subsequent development and

refinement as reported in (CODA 73] & (CODA 78] by CODASYL

7 groups. A number of commercially available systems have used

one or more versions of the specifications as the

-K implementation base. While those commercial implementations

may show slight differences, their underlying concepts are

based on the same CODASYL/DBTG data model.

-

167

The DBTG specifications propose three levels of data

organization, associated data definition language, and the

language for processing this data:

1. The schema data definition language, schema DDL.

2. The subschema data definition language, subschema DDl.

3. The data manipulation language, DML.

4. The device/media control language, DMCL.

The schema is the logical description of the data base.

A schema description in the DBTG DDL includes four types of

declarations.

1. The schema name description-- it is unique for each

schema handled by the DBMS.

2. Record type declarations-- they define the data items

for each record.

3. Set declarations-- they define the relationships

between defined record types.

" 4. Area declarations-- they define the physical areas in

which records will be stored.

There are two kinds of record types in the CODASYL/DBTG

model: a description record type and a connection record

type.

0L

168

A description record type in the DBTG data model has a

record ID, and one or several attributes describing

properties of the record. It is very similar to a relation

in the relation data model with the record ID as the key

attribute. Therefore, a description record type can be

translated to a relational schema directly.

A connection record type is introduced when n types of

entity (represented by n description record types) are to

be connected. N set types are also introduced. Each of the

n "entity" record types is made the owner of one of the set

types, and the connection record type is made the member of

the set types; and each connection record occurrence is made

a member of exactly one occurrence of each of the n types of

set and thus represents the connection between the

corresponding n entities. For this record type we define a

relation schema R with attributes consisting of the keys of

the owners of the n sets in which this record is a member

and the data items of this record. The key of this relation

is the set of keys of the owners of the n sets.

A set type is defined in the schema as having a certain

type of record as its owner and some other type of record as

its member. Each occurrence of a set type consists of

precisely one occurrence of its owner together with zero or

more occurrences of its member. For each set type, we do

not correspondingly define a relational schGma. Instead, we

*Q 169

- create a table in each node to record all the sets which can

be thought of as defining an access path relation. This

table contains three attributes [set, owner, member j. It

is used in the query translation process from relational

operator to CODASYL DML statements to identify the access

path. The table can be thought of as a new relation which

is stored in the local database and only used for query

translation. This table provides information of record

access paths. It isn't joined to the global schema to be

presented to the user. A singular set is a set with a

system as an owner and a description record as a member. It

can be thought of as a set having exactly one occurrence and

having no owner record. By using the singular set construct,

the set of description record occurrences is exactly like a

sequential file. It provides the user an access path to

access the description record. For the singular set, we also

keep the set information on the table.

- An area is a storage space of a DBTG database. For each

r type of record the schema specifies the area into which

occurrences of the record are to be placed when they are

entered into the database. This concept can be thought of

as the vertical and horizontal partition of the database.

For instance, consider a university application that creates

student records. The database administrater may decide for a

varity of reasons that instead of representing status as a

data-item in the student record type, the classification is

r

K170

* -to be made by storing student records in two distinct a:eas,

graduate and undergraduate. This area type is

correspondently mapped to the horizontal or vertical

partition of relational database which may be necessary to

create a new relational schema.

In this thesis, we shall assume that all occurrences of a

given type of record are to go into a single area.

In conclusion, we summarize the translation rules in Figure

6.1, and give an example of the translation rules.

1. For a description record type R, we define a

relation schema R', with each data item to

be a attribute of R. The identifier of R is

the key of R'.

2. For a connection record type, we define a

relation schema S' with attributes

consisting of the identifiers of the owners

of the sets in which S is a member and the

data items of S. The set of identifiers of

the owners of the set is the key of S'.

3. For each set-type, we maintain a table which

contain three attributes: set, owner and

member.

171

Figure 6.1

EXAMLE [DATE 771

Assume the Supplier-part-project database S is stored

in a CODASYL version DBMS. The schema of this database

is defined as follows.

a" *

, I

-- - -

172

SCHEMA NAME IS S-P-J-SCHEMA

AREA NAME IS S-AREA

AREA NAME IS P-AR A

AREA NAME IS 3-AREA

AREA NAME IS SPJ-AREA

RECORD NAME IS S;

LOCATION MODE IS CALC HASH-SNO USING SNO IN S;

WITHIN S-AREA;

IDENTIFIER IS SNO IN S.

02 SNO ; TYPE IS CHARACTER 4.

02 SNAME ; TYPE IS CHARACTER 20.

02 STATUS ; TYPE IS CHARACTER 3.

02 CITY ; TYPE IS CHARACTER 15.

RECORD NAME IS P;

LOCATION MODE IS CALC HASH-PNO USING PNO IN P;

WITHIN P-AREA;

IDENTIFIER IS PNO IN P.

02 PNO ; TYPE IS CHARACTER 4.

4. 02 PNAME ; TYPE IS CHARACTER 20.

02 COLOR ; TYPE IS CHARACTER 6.

02 WEIGHT ; TYPE IS CHARACTER 4.

RECORD NAME IS J;

LOCATION MODE IS CALC HASH-JNO USING JNO IN J;

WITHIN J-AREA;

IDENTIFIER IS JNO IN 3.

173

02 JNO ; TYPE IS CHARACTER 4.

02 JNAME ;TYPE IS CHARACTER 20.

02 CITY ;TYPE IS CHARACTER 15.

RECORD NAME IS SPJ;

LOCATION MODE IS SYSTEM-DEFAULT;

WITHIN SPJ-AREA;

IDENTIFIER IS SNO IS SPJ,

PNO IN SPJ,

JNO IN SPJ.

02 SNO TYPE IS CHARACTER 5.

02 PNO ; TYPE IS CHARACTER 6.

02 JNO ; TYPE IS CHARACTER 4.

02 QTY ; TYPE IS FIXED DECIMAL 5.

SET NAME IS S-SPJ;

OWNER IS S;

ORDER IS PERMANENT SORTED BY DEFINED KEYS.

MEMBER IS SPJ

INSERTION IS AUTOMATIC

RETENTION IS MANDATORY;

KEY IS ASCENDING PNO IN SPJ, JNO IN SPJ

DUPLICATES ARE NOT ALLOWED

NULL IS NOT ALLOWED;r
SET SELECTION IS THRU S-SPJ OWNER

IDENTIFIED BY IDENTIFER SNO IS S

EQUAL TO SNO IN SPJ.

174

SET NAME IS S-SET;

OWNER IS SYSTEM;

ORDER IS PERMANENT SORTED BY DEFINED KEYS.

MEMBER IS S

INSERTION IS AUTOMATIC

RETENTION IS FIXED;

KEY IS ASCENDING SNO IN S

* DUPLICATEs ARE NOT ALLOWED

NULL IS NOT ALLOWED;

SET SELECTION IS THRU S-SET SYSTEM.

SET NAME IS P-SPJ;

OWNER IS P;
ORDER IS PERMANENT SORTED BY DEFINED KEYS.

MEMBER IS SPJ

INSERTION IS AUTOMATIC

RETENTI ON IS MANDATORY;

KEY IS ASCENDING JNO IN SPJ, SNO IN SPJ

DUPLICATES ARE NOT ALLOWED

NULL IS NOT ALLOWED;

SET SELECTION IS THRU P-SPJ OWNER

IDENTIFIED BY IDENTIFER PNO IN P

K. EQUAL TO PNO IN SPJ.

SET NAME IS P-SET;

OWNER IS SYSTEM;

ORDER IS PERMANENT SORTED BY DEFINED KEYS.

r.•

175

MEMBER IS P

INSERTION IS AUTOMATIC

RETENTION IS FIXED;

KEY IS ASCENDING PNO IN P

DUPLICATES ARE NOT ALLOWED

NULL IS NOT ALLOWED;

SET SELECTION IS THRU P-SET SYSTEM.

SET NAME IS J-SPJ;

OWNER IS J;

ORDER IS PERMANENT SORTED BY DEFINED KEYS.

MEMBER IS SPJ

INSERTION IS AUTOMATIC

RETENTION IS MANDATORY;

KEY IS ASCENDING SNO IN SPJ, PNO IN SPJ

DUPLICATES ARE NOT ALLOWED

NULL IS NOT ALLOWED;

SET SELECTION IS THRU J-SPJ OWNER

IDENTIFIED BY IDENTIFIER JNO IN J

EQUAL TO JNO IN SPJ.

SET NAME IS J-SET;

OWNER IS SYSTEM;

ORDER IS PERMANENT SORTED BY DEFINED KEYS.

MEMBER IS J

INSERTION IS AUTOMATIC

RETENTION IS FIXED;

176

KEY IS ASCENDING JNO IN J

DUPLICATES ARE NOT ALLOWED

NULL IS NOT ALLOWED;

.- SET SELECTION IS THRU J-SET SYSTEM.

h"-4

0°°

71 9 - _ . 7--- - , . . , - - - , . -

177

After applying the rules of schema translation, we define 7

u the following relational schema

S-(SNO, SNAME, STATUS, CITY)

P-l(.Q, PNAME, COLOR, WEIGHT)

J-(N, JNA)E, CITY)

SPJ-(NO, PNO, 1N_0, QTT).

We create an access path relation as follows:

-* set owner member

S-SPJ S SPJ

J-SPJ 3 SPJ

P-SPJ P SPJ

S SYSTEM S

P SYSTEM P

3 SYSTEM 3

6.3 Query Translation

In our database communication system, each database

system is presented to a user with a global relational

schema. A query for data access or update is specified in

terms of a relational calculus-like qualification over

relations with a target list. Codd's data sublanguage ALPHA

(DSL ALPHA) [CODD 72] is one of the calculus-based data

sublanguages. It consists simply of the relational calculus

in a syntactic form which more closely resembles that of a

programming language. In practice, the syntax would have tn

178

be compatible with that of the host language, whatever that

was.

For our purpose, we shall use the syntax of ALPHA which

is expressed in [CODD 70]. We restrict ourselves toi
consideration of its major features only. Assume a query Q

express in ALPHA issued at site S. An example of a query

expressed in ALPHA is:

EXAMPLE:

Let the query be "Get SNO values for suppliers who

supply a LONDON or PARIS project with a red part."

The corresponding ALPHA statement of this query will be

RANGE P P1

RANGE J J1

GET W (SPJ.SNO) : PX3JX (PX.COLOR-'RED'

A(JX.CITY'LONDONVJX.CITY-'PARIS')

A SPJ.PNO-PX.PNO A SPJ.JNO=JX.JNO)

The list of attributes within parenthesis of W is the

target list which specifies the attributes to retrieve.

The predicate calculus following ":" is the

qualification

The query optimizer in the query processing unit of the

system will transform the query into a sequence of

relational algebra operations. This sequence of relational

algebra operations is the optimal query processing strategy.

Some of th4 DBMSs may be implemented on the CODASYL model.

7,2

179

In order to execute the operations against the local DBMS,

we have to translate a relation algebra operation against

this DBMS to a program of CODASYL DML statements. The query

translator of this section plays the role of this process.

CODASYL Data Manipulation Language

We briefly introduce the way queries are specified in

CODASYL DML. In the CODASYL model, the major DML statements

are the following:

FIND -------- locates an existing record occurrence and

establishes it as the current of run-unit.

GET --------- retrieves the current of run-unit.

MODIFY ------ updates the current of run-unit.

CONNECT ----- inserts the current of run-unit into one or more
".1

set occurrences.

DISCONNECT--removes the current of run-unit from one or more

set ocurrences.

ERASE ------ deletes the current of run-unit.

STORE ------ creates a new record occurence and establishes

it as the current of run-unit.

A query 1n the CODASYL model is a sequence of DML

statements which are embedded within a program as a

syntactic extension of the host language. The function of

the FIND statement is to locate a record occurrence in the

database and to make it the current of the run-unit (the

most recently accessed record occurrence), also the current

of the appropriate area (logical partitioning of the

180

database), the current of the appropriate record type, and

the current of all sets in which it participates. It is

logically required before each of the other statements,

except STORE. Note that the FIND statement itself does not

p retrieve any data. For each program operating under its

control, the DBMS maintains a table of "currency status

indicators" in the user working area (UWA). These indicators

are actually database-key values.

The current of the run-unit, whatever its type, can be

brought into the UWA only by executing GET. The modify

statement replaces (portions of)the current of the run-unit

with values taken from the UWA. The STORE statement will

store newly constructed data items in the UWA into the

database.

In the distributed DBMS environment, we assume each

system has a SEND command which can send a file or part of

the UWA from one system to another system.

To update a database, or to create a new record, it is

necessary tc, retrieve the data occurrence to be updated or

to create a new data occurrence in the UWA. After updating

the data occurrence in the UWA, a MODIFY or STORE statement

is then applied. Therefore, we need to consider only

retrieve operations.

We first study the translation procedures for two unary

K 'algebra operators: project and select.

181

we assume R-Ar and 1UIA, 1,0601A910 PROJECT,

* denoted by lTx(R), is to retrieve the attributes in X of

each record in R. The algorithm PROJECT~ (R,X), as shown

below, is to translate 7r (R) into a DM1. program,X

PROJECTN(R,X):

IF C 1t'tu='R-set' and mal).sytem')

1* description record *

THEN NIT: FIND next R within R-set;

IF end of set GOTO quit;

GET A IIN Ry AK IN R;

GOTO NIT.

ELSE IF (~t (t)w'S-R' and 1 ,~(t)m'S')

1* connection record *

THEN NIT: FIND next R within S-R;

IF end of set GOTO quit;

GET A Iin R,..., AK in R.

GOTO NIT.

Let Y=(A 1 #A,,#*e.1 A1 TmRo SELECT, denoted by

is to select tuples in R such that R.A, -'c, 'oeee, ReAle

*c,. The algorithm below is the translation algorithm.

IF (R is a connection record)

THEN if (some Ab is and attribute of S) &(S-R is a set)

THEN BEGIN

L

182

MOVE 'c ' to A in S;

FIND any S;

IF S-R empty GOTO quit;

MOVE 'C 1 ' to A in R;

MOVE 'c ' to A in R;

FIND any R within S-R;

IF end of set GOTO quit;

GET R;

END;

ELSE BEGIN

/* there exist some S s.t. S-R is a set */

NIT: FIND next S within S-set;

IF end of set GOTO quit;

GET A in S;

MOVE 'cl ' to A, in R;

MOVE 'c ' to AK in R;

FIND any R within S-R;

GET'A in R, ... , A in R;

IF end of set GOTO NZT;

END;

183

Next, we look at binary relation algebra operations.

Several binary relation algebra operations (e.g., division,

join, semijoin, etc.) which reference two relations may be

I stored at the same system. In this case, data must be sent

from one system to another. For a CODASYL DBTG model DBMS,

*' there are three strategies for sending data through the

network: record-at-a-time transmission, set-at-a-time

transmission and all-records-at-a-time transmission. In a

CODASYL DBTG model DBMS, record-at-a-time and set-at-a-time

access operators are supported which enable one node to send

data to the other node after performing such an operation.

The data transmission of these two types of operations

requires considerable communication overhead. In a

relational DBMS, all records required by another system are

usually transmitted at a time.

We assume in this thesis that the transmission mode of

any system will be all-records-at-a-time. We also assume

that the data are in relational table-like form after being

F retrieved from local DBMSs and temporarily stored in the UWA

of each local DBMS. We assume each DCS has the ability to

execute relational algebra operations. This assumption will

Fenable easier data transmission when it is required. it also

, makes the translation procedures of binary relational

algebra operators distinct between the two cases in which

the operands of the operator are at the same system and

where they are not.

184

When the two operands of the operator are in different

fl systems, we always retrieve the first operands and store

them in the user working area as a relation and then send it

to the other system to produce the final result. We will

first consider the case when two operands are in different

sites.

Two of the most useful distributed binary relational

algebra operators* for distributed query processing and the

execution sequence are join and semijoin, defined below:

Let R, and Ra be two relation schemas at different

systems S1 & ,5 respectively and X-RInR, be the set of

attributes in R and R2 . Without lost of generality, we

assume X=[A 0A.2 ',''AK)." Let T, and T2 be the temporary

relations.

,1. JOIN

DEFINITION:

The distributed join of R, and R. over X is a

distributed query operator which executes the following

sequence of operations:

1. retrieve R from S as T2

2. send T from S to SI;

3. R li Ta at site S1.

The query translation of this operator is as follow:

185

IF Rand R. are both relational DBHSs

THEN execute it as relational operator;

ELSE IF R1 is relational and R~ is CODASYL

THENj
P (R.,,R,) at S. as.T

send T from S.. to SI; :
execute N1 JXJ R. as relational operator;

ELSE IF R is CODASYL

THEN

retrieve R., from S.,as a elation T;

send T from S1to 5I;

K For all t*ET

This operation will create a new relation T' with relation

Ischema R U R.,at the working area of system S,.

2. SE?41301N

DEFINITION: .

The distributed semi join of R1 and Ra over X, RN1 ZI RA

,execute the following sequence of operations:

1. project R~over X at S, and form a result T,;

2. send T, to S2

3. join T1 with R2 a 2adfr eutT i.e.

select R based on T, at S2
p2.

4. send T~ to ;

5. join N., to R, at S1 to form a result T3 at S, i.e.

select Rbased on Z columns of R.

186

This operation can be executed as follows:

IF Rand R. are both relational systems

THEN execute the operator as relational operator;

ELSE IF R1 is relational &. is CODASYL

THEN

project R on X at S1 asT,

send T1 to S,-

for each (t, ,tJ.,..tic) T I

and form result as T..;

send T 2 to I

join R to Rat S 1 as relational

operator;

ELSE IF R is CODASYL R is relational

THEN

PROJECT #i(R,,X) asT,

send T1 to a

join T1 with R3 as relational

operator to get T.;

send T~ to I

for t(1 t,6

*SELECTJ(RI FRI ty

and formi result asT.

ELSE IF both R, R.,are CODASYL

* THEN

PRO3ECTH(R,,Z) as TI

187

send T to S.;

* for each teT

SELECT (R,,R,2 ,t)

and form result as T.;

send T. to SI;

for all t-It , . t J(,ti , . . ,t I)

T., SELECT (R R , (t

form a result T

The Union, Intersection and Difference of two relations

require two operands having the same set of attributes. If

both two operands are stored in relational systems, then we

" just perform the relational operation. If one of the two

operands R are stored in CODASYL systems, we first use

PROJECT (RR) to retrieve R to form a relation and then
perform the relational operation afterward. If both

operands are stored in CODASYL systems, then we must

*consider two cases. If the results of the operation are

temporarily stored in the UWA for use by later operations,

then we use both PROJECTN (R! ,Rg) and PROJECT(Ra,RJ) to

retrieve both two operands as two relations and send one

relation from one site to the other to perform the1

*operation; or we can use PROJECT to retrieve one operand as

a relation and send it to the other site and then perform

selections.
-i

""• . . " " - • • -". •"-" ' """ " . .m . .4 ' * -..*.. b - -- -= .

oA,188

The second case is that in which the results of the

operation are to be stored in one site. In this case, we use

PROJECT to retrieve one operand as a relation and send it to

the other site and perform corresponding CODASYL DML

statements.

When the two operands of a binary operation are at the

same site and are stored in a CODASYL system, then we can

i perform the operation in the same sequence we discussed

above. However, we can do it in a more efficient way because

it is not necessary to fisrt retrieve one operand as a

relation in the execution of this operation. We can use

solely CODASYL DML statements to perform this operation and

*2 do it by record-at-a-time or set-at-a-time. In some cases,

we even can do much better by combining a sequence of

relational opeations which reference data stored at the same

CODASYL system and then translating them to a sequence of

CODASYL DML statements.

Let us look at two examples: We assume S, P, J, SPJ are

as in example 1 and they are stored at the same system.

EXAMPLE 2 Perform the operation J III SPJ
7N0

We can translate this operation into a CODASYL DM

statements as follow:

NXTs FIND next J within J-SET;

IF end of set GO'"O quit;

get SPJ and form a new relation;

1 m

189

GOTO NXT.

EXAMPLE 3

Let the subquery expressed in ALPHA referenced to this

CODASYL DBMS be

PROJECT (JOIN (SELECT SPJ WHERE JNO="3l')

AND

(SELECT P WHERE COLOR- 'RED')

OVER PNO) OVER SNO SNAME STATUS

The interpretation of this subquery is to get SNO,

SNAME, STATUS values for suppliers who supply project

31 with a red part.

The corresponding CODASYL Dl.L statement for this

subquery could be

MOVE '31' TO JNO IN J;

FIND ANY J;

IF J-SPJ EMPTY GOTO QUIT;

MOVE BLANK TO TEMP-SNO;

NXT. FIND NEXT SPJ WITHIN J-SPJ;

IF end of set GOTO QUIT;

GET 5PJ

IF SNO IN SPJ *TEMP-SNO GOTO NXT;

MOVE SNO IN SPJ TO TEMP-SNO;

FIND OWNER WITHIN P-SPJ;

GET P;

. 190

IF COLOR IN P -'RED'

THEN

MOVE TEMP-SNO TO SNO IN S;

FIND ANY S;

Ni GET SNAME IN S, STATUS IN S;

ADD TEMP-SNO, SNAME, STATUS

VALUES TO RESULT LIST;

ELSE MOVE BLANK TO TEMP-SNO;

GOTO NXT.

From these two examples, we learn that some

optimization can be done on the translation of subquery

referencing to a CODASYL DBMS into a sequence of CODASYL DML

statements. This is one of the optimization problems of

local processing. We do not plan to discuss it further

within this thesis.

6.4 Conclusions

In this chapter, we have presented detailed schema

translation rules for translating a CODASYL data model to a

relational data model, and algorithms for translating

relational ALPHA query into CODASYL DML statements whose

associated databases schemata have themselves been

translated. The translation algorithms are developed for

each relational atomic operation. The translation procedures

are based on the relational operations sequence provided by

the query optimizer with the objective of minimizing

• "

'D-R124 921 QUERY OPTIMIZATION IN DISTRIBUTED DATABRSES(U) 3/3
MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR
INFORMATION AND DECISION SYSTEMS K H4UANG OCT 82

UNCLASSIFIED LIDS-TH-247 N9994-77-C-532 F/G 12/1 N

mhhhhhEhhhNisonw

I -7 .
.

L 6 2.

!6ll I la'1 2.M 1*2.0,
L

- I,1.8

1 .25 .. 1.6

MICROCOPY RE§OLUTION TEST CHART . ~

NATIONAL BUREAU OF STANDARS- 9
3

-A

'-" " " • •- "

- 191

communication complexity and are done one relational algebra

operation at a time. The translation procedures also use the

information of the access path relation.

Some optimization for the local query processing can be

done by translating a subquery which is a continuing

subsequence of relational operations which reference data at

the same DBMS into a sequence of CODASYL DML statements

rather than translating one operation at a time. Because

our major concern is the communication cost, this local

processing optimization will not be considered in this

thesis.

|I

!9

II

, - .- .

-' ,-. ,-. -I. U -.-. -. i -. - ~b. -. ~U * . *~ - U - U - * * *r, r 5 r;; * * *U - . * U U U . U U U

U* S U U~* U U~ *~U*U~,S~,"U *55~5.* ,U.U.U.Sb U a a -. .' *U S . . U~* * J

j
I...V

I..

K

S.

r

2
~1

-9

I 'I

*'1

-~ U * - . U

192

Chapter 7

Summary and Future Research

This thesis addresses the problem of query processing

in distributed database management systems. In distributed

homogenenous relational databases, we develop a mathematical

model and algorithms for solving a query by a sequence of

joins and semijoins using mixed strategy. We extend this

model to distributed heterogeneous databases and only

consider problems of schema translation and query

translation which are parts of the query processing problem.

Many other problems, e.g., consistency, redundancy,

concurrent control, security, etc., remain to be done. We

will here briefly summarize our research effort and suggest

the potential direction of future research for each chapter

and then make a few concluding remarks.

7.1 Summary and Future Research

In chapter 1, we discussed the need for research in

query processing in the integration of distributed database

management systems. That chapter also contains a goal and a

road map for the entire thesis.

In chapter 2, we first reviewed some formal definitions

. of relational terminologies and previous studies of the

. query processing problem in distributed relational

databases. Under the assumption that network traffic

constitutes the main critical factor, we have developed a

193

mathematical model to compute the minimum communication cost

of a join-semijoin program for processing a given equi-join

query . For each equi-join query, we define a query

processing graph for a given query from which the set of

join-semijoin programs that solve the query can be

characterized. A rule for estimating the size of the derived

relation is proposed. The parameters for estimating the size

of the derived relation form a consistent parameter system.

With the assumption that the communication cost dominates

and that the cost functions are linear in the sizes of the

data to be transmitted, the distributed query processing

problem is formulated as a dynamic network problem. A slight

change of the model made by associating each node with a

local processing cost will extend the model to the case

where local computer processing time and transmission delay

through the network are comparable. This could happen for

distributed databases in a local area network environment,

for example.

One future research direction is to extend this model

to cover a larger class of queries,e.g., the class of

ineqality-join queries, queries with existential quatifier,

etc.,. by providing a model of measuring the reducibilities

and estimating the size of the derived relations. Another

potential research direction is the optimization of the

local processing cost. In the case where both local

processing costs and communication costs are important, the

optimization of data retrieval when local computer

opo •.... . .

194i

processing is used becomes essential. The access paths to

i the stored data, the implementation algorithms of relational

algebra operations, e.g., join, project, selection, etc.,

and the order of relational algebra operations are also

I critical factors in query optimization. it would be very

nice to provide a model to consider all those factors as

well as communication costs.

3 In chapter 3, we studied the computational complexity

of the distributed query processng problem. For a simpler

case where all semijoin reducibilities are zero and join

reducibilities do not affected by join operation, we have

shown that under three different objective functions the

, problems of finding a routing strategy of required data to

the site where a query is initiated are NP-complete. This

"- gives us an indication that the distributed query processing

* problem is a hard problem. In fact, we can see from the

nature of the dynamic network problem how to identify the

reason for the difficulty of this problem. Future research

direction will be the complexity of the query processing

problem in the model of chapter 2.

One of the future research directions is to identify a

set of conditions so that under those assumptions, the

problem will be solvable using a polynomial time algorithm.

Another future research direction is to find the

*computational complexity of an approximation problem for the

* distributed query processing problem. We conjecture that the

.'. . -. ..° . -. ?

-o7
7717 7- V --77

195

-approximation problems are also very hard problems.

N In chapter 4, we analyzed the difficult nature of the

query processing problem and provided an analytical basis

for heuristic algorithms. We first considered the simpler

case of the problem where all possible semijoins are

performed first, i.e. all semijoin reducibilities become

zero. We provided several heuristic algorithms for this

problem. Each of the algorithms has two stages. The first

stage is to find a feasible processing strategy. The second

stage is the improvement stage where interchange procedures

are used. We then extend those heuristic algorithms to the

general query processing problem by including semi join

operations into the sequence of join operations.

A future research direction is the study of the

analytic behavior of those heuristic algorithms. Although

some analytic results of worst case and average case

analysis are difficult to obtain, some computational

experiments may be conducted to get a feeling for the

average performance of the algorithms. Developing more

efficient and general solution procedures for general query

processing problems is also a future research area.

In chapter 5, we developed a method for query

processing in a distributed heterogeneous database

management systems environment. A heterogeneous database

communication system is proposed to integrate heterogeneous

database management systems to combine and share

i : -,.. . . . , _ . _ . - . -. -- " -

196

information. The architecture of a heterogeneous database

commu, ication system is described and several components are

identified. The use of a database communication system for

heterogeneous DBDSs makes the overall system transparent to

users from an operational point of view. In this chapter, we

are concerned only with query processing in a heterogeneous

environment. Other problems of a database communication

system such as concurrency control, updating, redundancy,

security, etc., are subjects for future research.

In chapter 6, we presented detailed schema translation

rules for translating a schema of a CODASYL data model to a

relational schema. We also presented algorithms for

translating relational algebra operations into CODASYL DML

statements whose associated database schemata have

themselves been translated. Translation algorithms are

developed for each relational atomic operation. Relational,

network, and hierarchical models are the major three data

" models that have been used in commercial database management

systems. The schema translator and query translator for the

* case in which the underlying data model is relational are

rather easy to develop. For the case where the underlying

data model is hierarchical, the translation procedures are

similar to the case of the network model.

Some optimization for the local query processing can be

made by translating a subquory, which is a continuing

subsequence of relational operations which reference data at

o, -L

197

the same DEMS into a sequence of CODASYL DM. statements

a rather than translating one operation at a time. In the case

where the local processing cost is comparable to the

• "communication cost, this optimization is essential and must
*.4

be taken into account. This is a rich subject for future

research.

7.2 Conclusions

The main objective of this thesis has been to study

query processing in a distributed database environment.

Different data retrieval strategies. generally lead to

substantially different system performances in terms of

*response time, computer utilization and network traffic. In

practice, communication cost constitutes a major factor.

Past experience showed that deciding a solution strategy for

processing a given query is a very complicated problem. The

mathematical formulation of the distributed query processing

of this thesis provides a formal model of this problem. and

we showed theoretically that this problem is indeed a very

difficult problem. The heuristic algorithms proposed in this

thesis, based on the analysis of the problem, should help in

finding an optimization strategy for a distributed query

processing environment.

The database communication system approach in chapter 5

* provides a method of integrating heterogeneous database

management systems. It leaves several problems for future

....................

............° .. 2x

198

research activities. Detailed study and specification of

each component of the system are desired. Future research

efforts should also be oriented toward prototype system

It implementation.

Finally, it is hoped that more applications of the

works in this thesis will occur in the future.

II

199

REFERENCES

[A Abrial, J. R. Data semantics. IFIP-TC2 Working

Conf., Jan 1976.

-" [AD 77]
[D7 Abida, m. and Delobel, C. The cooperation problem

between different data base management systems.
IFIP-TC2 Working Conf. Jan 1977.

CAD 78]
Abida, N. and Portal, D. A cooperation system for
heterogeneous data base management systems.
Inform. Systems 3(3):209-215, 1978.

E[C 81]
Bernstein, P. A. and Chiu, D. M. Using semi-joins
to solve relational queries. J. ACM 28(1):25-40,
Jan 1981.

(BF)f(Y 81]
Beer, C. etc. Properties of acyclic database
schemas. 13th. ACM STOC 335-362 May 1981.

(IG 81l
Bernstein, P. A. and Goodman, N. The power of
natural semijoins. SIAM J. of Comput. 10(4). Nov
1981.

[sG 8o1], Bernstein, P. A. and Goodman, N. The power of

inequality semijoins. TR-12-80, Aiken Computation
Lab. Harvard Uuiv. Aug 1980.

(CH 761
Chen, P. The entity relationship model: toward a
unified view of data. ACM TODS 1(1) 1976.

(M83 Chiu, D. M. and Ha, Y. C. A methodologT for

interpreting tree quer is intr ,ptimal semi-join
expressions, Proc. SIGMOL ;.nf Jun 1980.

q ,"

°Ao

200

[CHIU 79]
Chiu, D. N. Optimal query interpretation for
distributed databases. Ph. D. thesis, Harvard
Univ. 1979.

(CODA 71]
Data Base Task Goup of CODASYL programming
language committee, Report, ACM Apr 1971.

[CODA 73]
CODASYL data description language committee, DDL
Journal of Development 1973.

(CODA 78]
CODASYL data description language committee, DDL
Journal of Development 1978.

[CODD 70]
Codd, E. F. A relational model for large shared
data bases. Comm. ACM 13(6):377-387, Jun 1970.

[CODD 72] Codd, E. F. Relational completeness of data base
sublanguages. In Data Base Systems, Courant
Computer Science Symposia Series, Vol. 6: 65-90,
1972.

[CP 80]
Cardenas, A. and Pirahesh, M. H. Data base
communication in a heterogeneous data base
management system network. Inform. Systems
5(1):55-79, 1980.

(DAT 77]

Date, C. J. An Introduction to Database Systems,
2ed, Addison Wesley, Reading Mass. 1977.

(DAY 79]
Dayal, U. Schema mapping problems in database
systems, TR-11-79, Center of Research in Computing
Technology, Harvard Univ. Aug. 1979.

DL"] Delobel, C. and Litwin, V. Distrib-ited Data Bases,

Proc. of the international symposium on

201

distributed data bases French, March 1980.

EDP 80]
Draffan,I.W. and Poole, F, Distributed Data Bases,
editor, Cambridge University Press 1980.

[ESW 78]
Epstein, R. etc. Distributed query processing in
a relational data base system, Proc. SIGMOD Conf.
169-180 Jun 1978.

[GBWRR 81]
Goodman, N., Bernstein, P. A., Wong, E., Reeve, C.
L., Rothnie, J. B. Query Processing in SDD-1. ACM
TODS Dec. 1981.

-GRA 79]
Graham, M. H. On the universal relation. Tech.
report, Univ. of Toronto, sep 1980.

.GS 81]
Goodman, N. and Shmueli, 0. Syntactic
characterizations of database schemas TR-09-81,
Aiken Comp. Lab. Harvard Un-'. Jun 1981.P

* [HUL 81]
Hull, R. Acyclic join dependencies and database
projections, In proc. XP2. June 1981.

[HY 791
Hevner, A. R. and Yao, S. B. Query processing in
distributed database systems. IEEE Trans. on
Software Engineering, SE-5(3):177-187, May 1979.

.KER 76]
Kerschberg, L. etc., A taxonomy of data models, in
Systems for Large Data Bases, Lockerman, P. C. and
Neuhold, E. J. ed., North-Holland, 1976.

[LIN 65]
Lin, S. Computer solution of the traveling
salesman problem, Bell System Tech. J., 44,
2245-2269, 1965.

202

[NSA 77]
Morn's, P. and Sagalowicz, D. Managing network
access to a distributed database, proc. 2nd
Berkeley Workshop, 58-67, 1977.

EMU 81]
Maier, D., and Ullman, J.D. Connections in
acyclic hypergraphs. STAN-CS-81-853, Stanford
Univ. May 1981.

(NBC 76]
Nahouraii, E., Brooks, L. 0., and Cardenas, A. F.
An approach to data communication between
different GDBMS. Proc. 2nd VLDB, Sep 1976.

EROG 77]
Rothnie, J. B. and Goodman, N. An overview of the
preliminary design of SDD-1, Proc. 2nd Berkeley
Workshop, 39-57, 1977.

[RSL 77]
Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M. an
analysis of several heuristics for the traveling
salesman problem, SIAM J. Computing, Vol 6, NO. 3,
sep 1977.

(SAC 77]
Sacerdoti, E. D. Language access to distributed
data with error recovery, SRI Tech. Note 140,
1977.

(SMA 73]
Senko, M. E. Data structures and accessing in
data base systems. IBM system J. 12(1) 1973.

(SUD 81]
Smith, J. M. etc. MUTIBASE-integrating
heterogeneous distributed database systems, AFIPS
NCC vol. 50(487-500) 1981.

(SDD 77]
SDDTG of CODASYL systems committee, A stored data
definition language for the translation of data.
Inform. Systems 2(3) 1977.

* ~ ~ ~ ~ T -.- '. i------ I T --

203

[SEN 76]
Senko, H. E. DIAN as a detailed example of the
ANSI/SPARC architecture. IFIP-TC2 Working Conf.
Jan 1976.

[SHI 79]
Shipman, D. The functional data model and the data
language DAPLEX, Proc. SIGMOD Conf. 1979.

[SHL 75]
Shu, N., Housel, B., Lum, V. CONVERT, a high
level translation definition language for data
conversion. IBM Rep. RJ 1500, 1975.

[~SHM 81] !
Shmueli,,O. The fundamental role of tree schemas

in relational query processing, Ph.D. Thesis,
TR-16-81, Aiken Comp. Lab. Harvard Univ.

[SHTGL 77]
Shu, N., Housel, B., Taylor, R. W., Ghosh, S. P.,
Lum, V. EXPRESS: a data extraction, processing
and restructuring system. ACM TODS 2(2), Jun 1977.

: [SLM 76]
Shu, N., Lum, V., Housel, B. An approach to data
migration in computer networks. IBM Rep. RJ 1703
1976.

*[SO 75]
Soshani, A. A logical-level approach to data base
conversion. Proc. SIGMOD conf. 112-122. 1975.

[SU 76]
4 Su, S. Y. W. Application program conversion due

to data base changes. Proc. 2nd VLDB, 143-157 Sep
1976.

* [ULL So]
Ullman, 3. D. Principles of Database Systems,
Computer Series Press, 1980.

(WONG 77]
Wong, Z. Retrieving Dispersed data in SDD-1: A
systems for distributed databases. Proc. 1977

. 4 -L

204

Berkeley Workshop on Distributed Data Management
and computer Network. May 1977.

[TO79] Yu. C. T., and ozsoyoglu, M. Z. An algorithm for
tree query membership of a distributed query.
Proc. Compsac 79. IEEE Comp. Society Nov 1979.

[ZA 79]
Zaniolo, C. Design of relational views over
network schemas, Proc. 1979 ACM SIGMOD
Conference, June 1979.

It

II p

