A MODIFIED KOLMOGOROV-SMIRNOV,
ANDERSON-DARLING, AND CRAMER-
VON MISES TEST FOR THE GAMMA
DISTRIBUTION WITH UNKNOWN
LOCATION AND SCALE PARAMETERS

THESIS
AFIT/GOR/MA/82D-4 Philip J. Viviano
Capt USAF

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY (ATC)
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
A MODIFIED KOLMOGOROV-SMIRNOV, ANDERSON-DARLING, AND CRAMER-VON MISES TEST FOR THE GAMMA DISTRIBUTION WITH UNKNOWN LOCATION AND SCALE PARAMETERS

Philip J. Viviano, Capt., USAF

Air Force Institute of Technology/AFIT-En: Wright-Patterson AFB, Ohio 45433

December 1982

Approved for public release; distribution unlimited.

The Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises statistics are used to develop a new test of fit for the three-parameter gamma distribution with unknown location and scale parameters. The goodness-of-fit tests are valid for sample sizes, \(n = 5, 10, \ldots, 36 \), and shape parameter, \(X = .5, 1, \ldots, 4.0 \).
A power investigation of the tests is performed against ten alternative distributions. The most powerful test against the alternative distributions is the Cramer-von Mises, followed closely by the Anderson-Darling; the Kolmogorov-Smirnov is the least powerful.

A functional relationship between the critical values and shape parameter is investigated for each test. The critical values can be expressed as a function of the inverse of the square of the shape parameter.
A MODIFIED KOLMOGOROV-Smirnov, Anderson-Darling, and Cramer-Von Mises Test for the Gamma Distribution with Unknown Location and Scale Parameters

THESIS

AFIT/GOR/MA/82D-4 Philip J. Viviano
Capt USAF
A MODIFIED KOLMOGOROV-SMIRNOV,
ANDERSON-DARLING, AND CRAMER-VON MISES TEST FOR THE GAMMA
DISTRIBUTION WITH UNKNOWN
LOCATION AND SCALE PARAMETERS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

by
Philip J. Viviano
Capt USAF
Graduate Operations Research
December 1982

Approved for public release; distribution unlimited.
Goodness-of-fit tests are developed for the gamma distribution when the scale and location parameters are unspecified and must be estimated from the sample data. The Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling statistics are used to develop the tables. A comprehensive power study is conducted to compare the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling goodness-of-fit tests. An analysis is performed to determine the functional relationship between the critical values and the shape parameter.

I would like to thank my advisor, Capt. Brian Woodruff, whose guidance was instrumental to the successful completion of my thesis.

In addition, I would like to thank Dr. Albert H. Moore, and Lt. Col. James Dunne; their advice and guidance was very helpful to me.

Also, I would like to thank my wife, Jane, who supported me throughout my thesis research.

Finally, I would like to express my appreciation to my classmates for their help and encouragement during the preparation of my thesis.

Philip J. Viviano
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>Abstract</td>
<td>xi</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>3</td>
</tr>
<tr>
<td>Empirical Distribution Function</td>
<td>4</td>
</tr>
<tr>
<td>Statistics</td>
<td>5</td>
</tr>
<tr>
<td>The Kolmogorov-Smirnov Statistic</td>
<td>5</td>
</tr>
<tr>
<td>The Anderson-Darling Statistic</td>
<td>5</td>
</tr>
<tr>
<td>The Cramer-von Mises Statistic</td>
<td>6</td>
</tr>
<tr>
<td>Problem Statement</td>
<td>6</td>
</tr>
<tr>
<td>Objectives</td>
<td>7</td>
</tr>
<tr>
<td>II. The Gamma Distribution</td>
<td>8</td>
</tr>
<tr>
<td>The Gamma Density Function</td>
<td>8</td>
</tr>
<tr>
<td>Application of the Gamma Density</td>
<td>11</td>
</tr>
<tr>
<td>Function</td>
<td></td>
</tr>
<tr>
<td>III. Methodology</td>
<td>12</td>
</tr>
<tr>
<td>Monte Carlo Simulation Procedure</td>
<td>12</td>
</tr>
<tr>
<td>Generation of the Three Parameter</td>
<td>14</td>
</tr>
<tr>
<td>Gamma Deviates</td>
<td>14</td>
</tr>
<tr>
<td>Maximum Likelihood Estimates for</td>
<td>14</td>
</tr>
<tr>
<td>the Gamma Parameters</td>
<td></td>
</tr>
<tr>
<td>Deriving the Hypothesized</td>
<td>16</td>
</tr>
<tr>
<td>Distribution Function F(x)</td>
<td></td>
</tr>
<tr>
<td>Power Comparison</td>
<td>17</td>
</tr>
<tr>
<td>Determining the Critical Values</td>
<td>21</td>
</tr>
<tr>
<td>Computer Programs</td>
<td>21</td>
</tr>
<tr>
<td>IV. Use of Tables</td>
<td>22</td>
</tr>
<tr>
<td>Example</td>
<td>23</td>
</tr>
</tbody>
</table>
V. Discussion of the Results

Presentation of the Kolmogorov-Smirnov,
Cramer-von Mises, and Anderson-Darling
Tables of Critical Values
Computer Programs Validation
Power Investigation
Relationship Between Critical Values
and Shape Parameters

VI. Conclusions and Recommendations

Conclusions
Recommendations

Bibliography

APPENDIX A: Tables of the Kolmogorov-Smirnov Critical
Values for the Gamma Distribution

APPENDIX B: Tables of the Anderson-Darling Critical
Values for the Gamma Distribution

APPENDIX C: Tables of the Cramer-von Mises Critical
Values for the Gamma Distribution

APPENDIX D: Graphs of the Kolmogorov-Smirnov Critical
Values Versus the Gamma Shape Parameters

APPENDIX E: Graphs of the Anderson-Darling Critical
Values Versus the Gamma Shape Parameters

APPENDIX F: Graphs of the Cramer-von Mises Critical
Values Versus the Gamma Shape Parameters

APPENDIX G: Computer Programs
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Standard Gamma Density Function with $K = .5, 2, 3, 4, and 5$</td>
<td>9</td>
</tr>
<tr>
<td>1b</td>
<td>Standard Gamma Density Function, $K = 50$</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Standard Gamma Density Function, for $K = 2$ and $\theta = 1/3, 1/2, 1, and 2$</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Flow Chart</td>
<td>13</td>
</tr>
<tr>
<td>4a</td>
<td>Lognormal, $\omega = 0, \rho = 1$</td>
<td>19</td>
</tr>
<tr>
<td>4b</td>
<td>Lognormal, $\omega = 0, \rho = 2$</td>
<td>19</td>
</tr>
<tr>
<td>5a</td>
<td>Weibull, $K = 3, 0 = 1, C = 0$</td>
<td>19</td>
</tr>
<tr>
<td>5b</td>
<td>Weibull, $K = 2, 0 = 1, C = 0$</td>
<td>19</td>
</tr>
<tr>
<td>6a</td>
<td>Beta, $\rho = 1, q = 1$</td>
<td>20</td>
</tr>
<tr>
<td>6b</td>
<td>Beta, $\rho = 2, q = 2$</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Shape vs K-S Critical Values, Level = .01, $n = 5$</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>Shape vs K-S Critical Values, Level = .01, $n = 10$</td>
<td>59</td>
</tr>
<tr>
<td>9</td>
<td>Shape vs K-S Critical Values, Level = .01, $n = 15$</td>
<td>70</td>
</tr>
<tr>
<td>10</td>
<td>Shape vs K-S Critical Values, Level = .01, $n = 20$</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>Shape vs K-S Critical Values, Level = .01, $n = 25$</td>
<td>72</td>
</tr>
<tr>
<td>12</td>
<td>Shape vs K-S Critical Values, Level = .01, $n = 30$</td>
<td>73</td>
</tr>
<tr>
<td>13</td>
<td>Shape vs K-S Critical Values, Level = .05, $n = 5$</td>
<td>74</td>
</tr>
<tr>
<td>14</td>
<td>Shape vs K-S Critical Values, Level = .05, $n = 10$</td>
<td>75</td>
</tr>
<tr>
<td>15</td>
<td>Shape vs K-S Critical Values, Level = .05, $n = 15$</td>
<td>76</td>
</tr>
<tr>
<td>16</td>
<td>Shape vs K-S Critical Values, Level = .05, $n = 20$</td>
<td>77</td>
</tr>
<tr>
<td>17</td>
<td>Shape vs K-S Critical Values, Level = .05, $n = 25$</td>
<td>78</td>
</tr>
<tr>
<td>18</td>
<td>Shape vs K-S Critical Values, Level = .05, $n = 30$</td>
<td>79</td>
</tr>
</tbody>
</table>
Figure

19. Shape vs K-S Critical Values, Level = .10, n = 5 . 80
20. Shape vs K-S Critical Values, Level = .10, n = 10 81
21. Shape vs K-S Critical Values, Level = .10, n = 15 82
22. Shape vs K-S Critical Values, Level = .10, n = 20 83
23. Shape vs K-S Critical Values, Level = .10, n = 25 84
24. Shape vs K-S Critical Values, Level = .10, n = 30 85
25. Shape vs K-S Critical Values, Level = .15, n = 5 . 86
26. Shape vs K-S Critical Values, Level = .15, n = 10 87
27. Shape vs K-S Critical Values, Level = .15, n = 15 88
28. Shape vs K-S Critical Values, Level = .15, n = 20 89
29. Shape vs K-S Critical Values, Level = .15, n = 25 90
30. Shape vs K-S Critical Values, Level = .15, n = 30 91
31. Shape vs K-S Critical Values, Level = .20, n = 5 . 92
32. Shape vs K-S Critical Values, Level = .20, n = 10 93
33. Shape vs K-S Critical Values, Level = .20, n = 15 94
34. Shape vs K-S Critical Values, Level = .20, n = 20 95
35. Shape vs K-S Critical Values, Level = .20, n = 25 96
36. Shape vs K-S Critical Values, Level = .20, n = 30 97
37. Shape vs A^2 Critical Values, Level = .01, n = 5 . 99
38. Shape vs A^2 Critical Values, Level = .01, n = 10 . 100
39. Shape vs A^2 Critical Values, Level = .01, n = 15 . 101
40. Shape vs A^2 Critical Values, Level = .01, n = 20 . 102
41. Shape vs A^2 Critical Values, Level = .01, n = 25 . 103
42. Shape vs A^2 Critical Values, Level = .01, n = 30 . 104
43. Shape vs A^2 Critical Values, Level = .05, n = 5 . 105
44. Shape vs A^2 Critical Values, Level = .05, n = 10 . 105
45. Shape vs A^2 Critical Values, Level = 0.05, n = 15
46. Shape vs A^2 Critical Values, Level = 0.05, n = 20
47. Shape vs A^2 Critical Values, Level = 0.05, n = 25
48. Shape vs A^2 Critical Values, Level = 0.05, n = 30
49. Shape vs A^2 Critical Values, Level = 0.10, n = 5
50. Shape vs A^2 Critical Values, Level = 0.10, n = 10
51. Shape vs A^2 Critical Values, Level = 0.10, n = 15
52. Shape vs A^2 Critical Values, Level = 0.10, n = 20
53. Shape vs A^2 Critical Values, Level = 0.10, n = 25
54. Shape vs A^2 Critical Values, Level = 0.10, n = 30
55. Shape vs A^2 Critical Values, Level = 0.15, n = 5
56. Shape vs A^2 Critical Values, Level = 0.15, n = 10
57. Shape vs A^2 Critical Values, Level = 0.15, n = 15
58. Shape vs A^2 Critical Values, Level = 0.15, n = 20
59. Shape vs A^2 Critical Values, Level = 0.15, n = 25
60. Shape vs A^2 Critical Values, Level = 0.15, n = 30
61. Shape vs A^2 Critical Values, Level = 0.20, n = 5
62. Shape vs A^2 Critical Values, Level = 0.20, n = 10
63. Shape vs A^2 Critical Values, Level = 0.20, n = 15
64. Shape vs A^2 Critical Values, Level = 0.20, n = 20
65. Shape vs A^2 Critical Values, Level = 0.20, n = 25
66. Shape vs A^2 Critical Values, Level = 0.20, n = 30
67. Shape vs A^2 Critical Values, Level = 0.01, n = 5
68. Shape vs A^2 Critical Values, Level = 0.01, n = 10
69. Shape vs A^2 Critical Values, Level = 0.01, n = 15
70. Shape vs A^2 Critical Values, Level = 0.01, n = 20
<table>
<thead>
<tr>
<th>Figure</th>
<th>Shape vs W^2 Critical Values, Level = .01, n = 25</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>71</td>
<td>Shape vs W^2 Critical Values, Level = .01, n = 30</td>
<td>135</td>
</tr>
<tr>
<td>72</td>
<td>Shape vs W^2 Critical Values, Level = .05, n = 5</td>
<td>136</td>
</tr>
<tr>
<td>73</td>
<td>Shape vs W^2 Critical Values, Level = .05, n = 10</td>
<td>137</td>
</tr>
<tr>
<td>74</td>
<td>Shape vs W^2 Critical Values, Level = .05, n = 15</td>
<td>138</td>
</tr>
<tr>
<td>75</td>
<td>Shape vs W^2 Critical Values, Level = .05, n = 20</td>
<td>139</td>
</tr>
<tr>
<td>76</td>
<td>Shape vs W^2 Critical Values, Level = .05, n = 25</td>
<td>140</td>
</tr>
<tr>
<td>77</td>
<td>Shape vs W^2 Critical Values, Level = .05, n = 30</td>
<td>141</td>
</tr>
<tr>
<td>78</td>
<td>Shape vs W^2 Critical Values, Level = .10, n = 5</td>
<td>142</td>
</tr>
<tr>
<td>79</td>
<td>Shape vs W^2 Critical Values, Level = .10, n = 10</td>
<td>143</td>
</tr>
<tr>
<td>80</td>
<td>Shape vs W^2 Critical Values, Level = .10, n = 15</td>
<td>144</td>
</tr>
<tr>
<td>81</td>
<td>Shape vs W^2 Critical Values, Level = .10, n = 20</td>
<td>145</td>
</tr>
<tr>
<td>82</td>
<td>Shape vs W^2 Critical Values, Level = .10, n = 25</td>
<td>146</td>
</tr>
<tr>
<td>83</td>
<td>Shape vs W^2 Critical Values, Level = .10, n = 30</td>
<td>147</td>
</tr>
<tr>
<td>84</td>
<td>Shape vs W^2 Critical Values, Level = .15, n = 5</td>
<td>148</td>
</tr>
<tr>
<td>85</td>
<td>Shape vs W^2 Critical Values, Level = .15, n = 10</td>
<td>149</td>
</tr>
<tr>
<td>86</td>
<td>Shape vs W^2 Critical Values, Level = .15, n = 15</td>
<td>150</td>
</tr>
<tr>
<td>87</td>
<td>Shape vs W^2 Critical Values, Level = .15, n = 20</td>
<td>151</td>
</tr>
<tr>
<td>88</td>
<td>Shape vs W^2 Critical Values, Level = .15, n = 25</td>
<td>152</td>
</tr>
<tr>
<td>89</td>
<td>Shape vs W^2 Critical Values, Level = .15, n = 30</td>
<td>153</td>
</tr>
<tr>
<td>90</td>
<td>Shape vs W^2 Critical Values, Level = .20, n = 5</td>
<td>154</td>
</tr>
<tr>
<td>91</td>
<td>Shape vs W^2 Critical Values, Level = .20, n = 10</td>
<td>155</td>
</tr>
<tr>
<td>92</td>
<td>Shape vs W^2 Critical Values, Level = .20, n = 15</td>
<td>156</td>
</tr>
<tr>
<td>93</td>
<td>Shape vs W^2 Critical Values, Level = .20, n = 20</td>
<td>157</td>
</tr>
<tr>
<td>94</td>
<td>Shape vs W^2 Critical Values, Level = .20, n = 25</td>
<td>158</td>
</tr>
<tr>
<td>95</td>
<td>Shape vs W^2 Critical Values, Level = .20, n = 30</td>
<td>159</td>
</tr>
<tr>
<td>96</td>
<td>Shape vs W^2 Critical Values, Level = .20, n = 30</td>
<td>159</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Example: $x, F(x)$</td>
</tr>
<tr>
<td>II</td>
<td>Cramer-von Mises W^2</td>
</tr>
<tr>
<td>III</td>
<td>Anderson-Darling A^2</td>
</tr>
<tr>
<td>IV</td>
<td>Kolmogorov-Smirnov K-S Thesis Critical Values</td>
</tr>
<tr>
<td>V</td>
<td>Kolmogorov-Smirnov K-S Lilliefors Critical Values</td>
</tr>
<tr>
<td>VI</td>
<td>Power Test for the Gamma Distribution</td>
</tr>
<tr>
<td></td>
<td>H_0: Gamma Distribution, $K = 4.0$</td>
</tr>
<tr>
<td></td>
<td>H_a: Another Distribution</td>
</tr>
<tr>
<td></td>
<td>Level of Significance = .05</td>
</tr>
<tr>
<td>VII</td>
<td>Power Test for the Gamma Distribution</td>
</tr>
<tr>
<td></td>
<td>H_0: Gamma Distribution, $K = 1.5$</td>
</tr>
<tr>
<td></td>
<td>H_a: Another Distribution</td>
</tr>
<tr>
<td></td>
<td>Level of Significance = .05</td>
</tr>
<tr>
<td>VIII</td>
<td>Power Test for the Gamma Distribution</td>
</tr>
<tr>
<td></td>
<td>H_0: Gamma Distribution, $K = 4.0$</td>
</tr>
<tr>
<td></td>
<td>H_a: Another Distribution</td>
</tr>
<tr>
<td></td>
<td>Level of Significance = .01</td>
</tr>
<tr>
<td>IX</td>
<td>Power Test for the Gamma Distribution</td>
</tr>
<tr>
<td></td>
<td>H_0: Gamma Distribution, $K = 1.5$</td>
</tr>
<tr>
<td></td>
<td>H_a: Another Distribution</td>
</tr>
<tr>
<td></td>
<td>Level of Significance = .01</td>
</tr>
<tr>
<td>X</td>
<td>Coefficients and R^2 Values for the Relationships Between the Kolmogorov-Smirnov Critical Values and the Gamma Shape Parameter, 1.0 (.5) 4.0</td>
</tr>
<tr>
<td>XI</td>
<td>Coefficients and R^2 Values for the Relationships Between the Anderson-Darling Critical Values and the Gamma Shape Parameters, 1.0 (.5) 4.0</td>
</tr>
<tr>
<td>XII</td>
<td>Coefficients and R^2 Values for the Relationships Between the Cramer-von Mises Critical Values and the Gamma Shape Parameters, 1.0 (.5) 4.0</td>
</tr>
<tr>
<td>Table</td>
<td>Kolmogorov-Smirnov Shape Parameter = 5</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>XIII</td>
<td></td>
</tr>
<tr>
<td>XIV</td>
<td></td>
</tr>
<tr>
<td>XV</td>
<td></td>
</tr>
<tr>
<td>XVI</td>
<td></td>
</tr>
<tr>
<td>XVII</td>
<td></td>
</tr>
<tr>
<td>XVIII</td>
<td></td>
</tr>
<tr>
<td>XIX</td>
<td></td>
</tr>
<tr>
<td>XX</td>
<td></td>
</tr>
<tr>
<td>XXI</td>
<td>Anderson-Darling Shape Parameter = .5</td>
</tr>
<tr>
<td>XXII</td>
<td>Anderson-Darling Shape Parameter = 1.0</td>
</tr>
<tr>
<td>XXIII</td>
<td>Anderson-Darling Shape Parameter = 1.5</td>
</tr>
<tr>
<td>XXIV</td>
<td>Anderson-Darling Shape Parameter = 2.0</td>
</tr>
<tr>
<td>XXV</td>
<td>Anderson-Darling Shape Parameter = 2.5</td>
</tr>
<tr>
<td>XXVI</td>
<td>Anderson-Darling Shape Parameter = 3.0</td>
</tr>
<tr>
<td>XXVII</td>
<td>Anderson-Darling Shape Parameter = 3.5</td>
</tr>
<tr>
<td>XXVIII</td>
<td>Anderson-Darling Shape Parameter = 4.0</td>
</tr>
<tr>
<td>XXIX</td>
<td>Cramer-von Mises Shape Parameter = .5</td>
</tr>
<tr>
<td>XXX</td>
<td>Cramer-von Mises Shape Parameter = 1.0</td>
</tr>
<tr>
<td>XXXI</td>
<td>Cramer-von Mises Shape Parameter = 1.5</td>
</tr>
<tr>
<td>XXXII</td>
<td>Cramer-von Mises Shape Parameter = 2.0</td>
</tr>
<tr>
<td>XXXIII</td>
<td>Cramer-von Mises Shape Parameter = 2.5</td>
</tr>
<tr>
<td>XXXIV</td>
<td>Cramer-von Mises Shape Parameter = 3.0</td>
</tr>
<tr>
<td>XXXV</td>
<td>Cramer-von Mises Shape Parameter = 3.5</td>
</tr>
<tr>
<td>XXXVI</td>
<td>Cramer-von Mises Shape Parameter = 4.0</td>
</tr>
</tbody>
</table>
Abstract

The Anderson-Darling, Cramer-von Mises, and the Kolmogorov-Smirnov statistics are used to develop a new test of fit for the three-parameter gamma distribution with unknown shape and location parameters. The critical values generated were obtained by a Monte Carlo procedure. For each value of \(n \) (sample size), 5000 sample sets were drawn from a gamma population whose shape is specified. The location and scale parameters are estimated from the data, and the three statistics are calculated based on the estimated distribution. The simulation was performed for sample sizes \(n = 5, 10, 15, 20, 30 \) and shape parameters, \(\lambda = 0.5, 1, 3, 5 \).

Using gamma distributions for shape equal to 1.5 and 2.5, the power of each test is investigated against ten alternative distributions for sample sizes \(n = 5, 15 \), and 30. In general both the Anderson-Darling and the Cramer-von Mises tests are more powerful than the Kolmogorov-Smirnov test. Except for the case where the alternative distribution is lognormal, the Cramer-von Mises test is the most powerful test.

The functional relationship between the critical values of the Anderson-Darling, Cramer-von Mises, and Kolmogorov-Smirnov is also examined. A critical value for a shape parameter between 1.5 and 2.5 which is not included in the tables can then be easily derived from this functional relationship.
I. Introduction

Currently the U.S. Air Force is placing more and more emphasis on system availability, maintainability, and reliability, both in research and development and in day to day operations. Of particular importance to the Air Force is the ability to predict time-to-failure of equipment. Studies in probability and statistics have increased understanding of some key probability distributions used in predicting time-to-failure. Among the most commonly used continuous distributions in this area are the beta, gamma, exponential, Weibull, and lognormal distributions.

Often in these studies, analysts are confronted with the problem of testing agreement between probability theory and actual observations. In other words, given n observations of some variable, say time-to-failure, the problem is to find out if it can be regarded as a random variable having a given probability distribution. The general approach to the solution of this problem is known as the goodness-of-fit test. In more precise terms let \(x_1, x_2, \ldots, x_n \) be a random sample. Then a statement of the goodness-of-fit test is:
\[H_0: \quad F(x) = F_H(x) \]
\[H_A: \quad F(x) \neq F_H(x) \]

where \(F(x) \) is the actual distribution function of \(x \) and \(F_H(x) \) is the hypothesized distribution function.
Two commonly used goodness-of-fit tests are the Chi-square test and the Kolmogorov-Smirnov test. The Chi-square test compares observed frequencies with expected frequencies of the hypothesized distribution. It is restricted to large samples—approximately 25 or greater (2:73). The Kolmogorov-Smirnov (K-S) test compares cumulative frequencies between the actual sample using a step function, against corresponding values using the hypothesized cumulative distribution function. The K-S test can be used for large or small samples; however, it is restricted to distributions which are fully specified. R. W. Lilliefors developed a goodness-of-fit test for the normal (19), and exponential distribution (20), which can be used for small samples where the parameters must be estimated from the sample data. When parameters are estimated from sample data, the test is said to be a modified test.

Following Lilliefors' technique, several other modified tests have been documented. R. Cortes developed a modified Kolmogorov-Smirnov test for the three-parameter Weibull and gamma distributions (5). J. Bush expanded the goodness-of-fit test for the Weibull to include the modified Cramer-von Mises (W) and Anderson-Darling (A²) tests (30). The modified Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling tests have also been done for the uniform, normal, Laplace, exponential, and Cauchy distributions (11). In 1973 Mann, Schaefer, and Fertig designed two new test statistics.
called the L and S statistics. The L and S test statistics were used to develop a goodness-of-fit test for the two parameter Weibull with unknown parameters (22).

In 1981 Koutrouvelis and Kellermeier introduced a goodness-of-fit test based on the empirical characteristic function when the parameters must be estimated (17). This test statistic could be used as an alternative to the EDF statistic if the characteristic function is more easily determined than the distribution function.

Empirical Distribution Function Statistics

A general class of statistics used for the goodness-of-fit tests is called empirical distribution function (EDF) statistics. Historically EDF statistics have been used in cases where the parameters are either known or unknown. In most instances EDF statistics are easily calculated and are competitive in terms of power. This class of statistics is based on a comparison between the cumulative distribution function, \(F(x) \), and the empirical cumulative distribution function \(S_n(x) \) defined as

\[
S_n(x) = \frac{\text{no. of } x_i \leq x}{n}
\]

(1)

The test procedure is summarized as follows: given a sample from some population, the EDF tests reject \(H_0: F(x) = F_H(x) \) when the difference between \(F_H(x) \) and \(S_n(x) \) is large. Here \(F_H(x) \) is the hypothesized distribution. In general, EDF tests are valid when the distribution is fully specified. However, David and Johnson showed that the distribution of
an EDF statistic depends only on the functional form of the
distribution and not on the unknown parameters when the
estimated parameters are location and scale (6). It is this
principle that permits us to generate valid critical value
tables for the gamma distribution which depend only on the
shape parameter and sample size.

It is important to note that this thesis uses a modi-
fied form of the EDF statistic, because the cumulative
distribution is not fully specified. An estimated distribu-
tion function is used whose parameters are derived from the
observed sample.

The Kolmogorov-Smirnov Statistic

The Kolmogorov-Smirnov (K-S) statistic is defined as
the absolute value of the difference between \(F(x) \) and \(S_n(x) \)
or,

\[
D = |F(x) - S_n(x)|. \tag{2}
\]

In using the K-S statistic for the goodness-of-fit test, we
are interested in the greatest absolute difference between
\(F(x) \) and \(S_n(x) \) (2). Therefore the test statistic is

\[
T = \sup |F(x) - S_n(x)|. \tag{3}
\]

The Anderson-Darling Statistic

It is known that goodness-of-fit tests which use actual
observations without grouping are sensitive to discrepancies
at the tails of the distribution rather than near the median
(26:2). The Anderson-Darling test statistic overcomes this
problem by accentuating the values of \(S_n(x) - F(x) \) where the
test statistic is desired to have sensitivity. More
specifically, the Anderson-Darling statistic is based on a weighted average of the squared discrepancy, (i.e. $[S_n(x) - F(x)]^2$ weighted by $\Psi(F(x))$), or

$$A_n^2 = n \int_{-\infty}^{\infty} [S_n(x) - F(x)]^2 \Psi(F(x)) dF(x),$$

where

$$\Psi(F(x)) = [F(x) \cdot (1-F(x))]^{-1}.$$

Using the computational form

$$A_n^2 = -n - \frac{1}{n} \sum_{j=1}^{n} (2j-1) \left[\ln F(x_j) + \ln (1-F_{n-j+1}) \right],$$

the test procedure is as follows:

1) Let $x_1 \leq x_2 \leq \ldots \leq x_n$ be n observations in the sample.
2) Compute A_n^2.
3) If A_n^2 is too large, the hypothesis is to be rejected.

The Cramer-von Mises Statistic

The Cramer-von Mises statistic is a special case of the A_n^2 with $[F(x)] = 1$ and is written as

$$W_n^2 = \int_{-\infty}^{\infty} [S_n(x) - F(x)]^2 dx.$$

This test procedure is the same as outlined for the Anderson-Darling goodness-of-fit test (26). The computational form used in this case would be

$$W_n^2 = \frac{1}{12n} + \sum_{j=1}^{n} \left[F(x_j) - \frac{2j-1}{2n} \right]^2.$$

Problem Statement

Few goodness-of-fit tests are available to perform on sample data when the parameters of the distribution are not known. As mentioned earlier, Lilliefors developed a test for the unspecified exponential and normal. Also, Bush
generated a set of critical values for the Weibull with unspecified scale and location parameters (3). There still exists the need to develop a valid goodness-of-fit test for the gamma density function when the scale and location parameters are unknown.

The purpose of this research is to develop a goodness-of-fit test for the 3 parameter gamma when the scale and location parameters must be estimated from the sample data. This involves generating a table of critical values based on the sample size and the shape parameter. The accuracy of the critical values must be sufficient enough so that data, sampled from other populations are rejected.

Objectives

This thesis has the following objectives:

1) To generate and document the Anderson-Darling, Cramer-von Mises, and the Kolmogorov-Smirnov rejection tables for the three parameter gamma distribution where the scale and location parameters are unknown.

2) To conduct a power comparison between the Anderson-Darling, Cramer-von Mises, and Kolmogorov-Smirnov goodness-of-fit tests.

3) To investigate the possibilities of a functional relationship between the shape parameter and the critical values in objective one.
II. The Gamma Distribution

The Gamma Density Function

The gamma density function is useful in reliability and maintainability theory. It also has applications in the natural sciences. If the random variable x is gamma distributed then the probability density function takes the form:

$$ f(x) = \frac{(x-c)^{k-1}}{\Gamma(k) \theta^k} \exp\left(-\frac{x-c}{\theta}\right), \quad (9) $$

where $\theta, k > 0; \ x \geq c > 0$.

There are three parameters which specify the gamma, θ is the scale parameter; k is the shape parameter, and c, the location parameter.

The complexity and versatility of the gamma distribution can be observed by examining the graphs of the distribution for various values of the shape and scale parameters. Figure 1a shows graphs of the standardized gamma (i.e., $c=0$, $\theta=1$) for $k=0.5, 1, 2, 3, 4, \text{ and } 5$ (7:370). When $k=1$, the gamma is the exponential. Also, it is interesting to note that when k is less than one, the gamma closely resembles the exponential distribution.

Also, Figure 1b shows that for large k ($k=50$), the gamma resembles the normal distribution. Figure 2 illustrates the influence of θ on the graph of the gamma. Here we set $c=0$ and $k=2$ and sketch the graphs for $\theta=1/3, 1/2, 1$ and 2 (7:371).
FIG 1. Graphs of the standard gamma density function for
(a), $K = .5, 2, 3, 4$ & 5 and (b) $K=50$
FIG 2. Graphs of the standard gamma density function for $c = 0$, $K = 2$ and $\theta = 1/3$, $1/2$, 1, and 2.
Application of the Gamma Density Function

The gamma distribution is often used in reliability theory to represent the distribution of the time between failures of a system. Assume, for example, that a system is made up of r components, all of which must fail for the system to fail. Furthermore, assume that the time to failure x_i of each component is independent and exponentially distributed. Then the time to system failure $Y = X_1 + X_2 + \ldots + X_r$ is gamma distributed (7:369).

In queueing theory, the random variable T follows a gamma distribution, where $T = X_1 + X_2 + \ldots X$ is the total time to service K customers assuming that the time of service of each customer is independent and exponentially distributed.

The two cases described can be modeled as a special case of the gamma known as the Erlang distribution and expressed as:

$$f(t) = \frac{(t)^K}{(K-1)!} \cdot t^{K-1} e^{-K t}, \quad t \geq 0. \quad (16)$$

A random variable having a gamma distribution has also been used to represent or measure the occurrence of physical phenomena. For example, Slack and Kruebein (1955) demonstrated that the mean value x of radioactivity (alpha particles per minute) within a sample of Pennsylvania shale followed a gamma distribution (7:370).
III. Methodology

This chapter presents the Monte Carlo simulation procedure used in generating the critical value tables for the modified Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling tests. The procedure is outlined using the flow chart in Figure 3. Secondly, an outline of the power comparison among the three goodness-of-fit tests is given. Thirdly, a discussion of the analysis of the functional relationship between the shape parameter and critical values is presented for each of the test statistics.

Monte Carlo Simulation Procedure

The following procedure is used to generate the critical value tables for the modified goodness-of-fit tests. As mentioned earlier Figure 3 presents these steps in flow chart format.

1) For a fixed sample size n and fixed shape parameter \(\alpha \), n standard random gamma deviates are generated using a computer subroutine. The standard gamma deviates are converted to random deviates with location parameter \(C = 1 \) and scale parameter \(\theta = 1 \).

2) The n random deviates are ordered, \(x(1), x(2), \ldots, x(n) \).

3) The ordered random deviates are used to estimate the maximum likelihood scale and location parameters.
FIG 3. Flow chart
4) The estimated scale and location parameters and fixed shape parameter are used to determine the hypothesized distribution function \(F(x) \).

5) The test statistic is calculated using equations three, six, and eight, for the modified Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises tests respectively.

6) Steps one through five are repeated 5000 times.

7) The value of each statistic are ordered in ascending order and the 80th, 85th, 90th, 95th and 99th percentiles are used as the critical values of the test.

Generation of the Three Parameter Gamma Deviates

For the gamma distribution function, there is no closed form for which we could obtain an inverse; however algorithms are available which can be used to generate random gamma deviates. The IMSL subroutine \texttt{GGMAR} is used to generate standard gamma deviates in this thesis. These standard deviates are converted to deviates having location \(C = 10 \) and scale \(\theta = 1 \). This is done by using the transformation

\[
z = \theta \cdot x + C
\]

where \(x \) represents a standard random deviate. This transformation is made to avoid a problem with the parameter estimating routine. Further discussion on this matter is presented in the following section.

Maximum Likelihood Estimates for the Gamma Parameters

The procedure used to calculate the maximum likelihood estimates for gamma parameters was developed by Harter and
Their analysis involves the derivation of the maximum likelihood estimators and includes an iterative method for solving the simultaneous equations. To derive the maximum likelihood equations we begin with the gamma density function with location parameter \(C \geq 0 \), scale parameter \(\theta \), and shape parameter \(k \):

\[
 f(x; C, \theta, k) = \frac{1}{\Gamma(k)\theta} \left(\frac{x-C}{\theta} \right)^{k-1} \exp\left[-\frac{x-C}{\theta}\right], \quad \theta, \, k > 0 \quad x \geq C. \tag{12}
\]

The likelihood function of the order statistics \(x_1, x_2, \ldots, x_n \) of a sample of size \(n \) is

\[
 L = \left(\frac{1}{\Gamma(k)\theta} \right)^n \sum_{i=1}^{n} \left(\frac{x_i-C}{\theta} \right)^{k-1} \exp\left[-\sum_{i=1}^{n} \frac{x_i-C}{\theta}\right]. \tag{13}
\]

We wish to find the values of \(\theta, k, \) and \(C \) which maximize \(L \). This is done by taking the natural logarithm of \(L \), and setting the partial derivatives with respect to the three parameters equal to zero and solving the three simultaneous equations. The partial derivatives are shown here:

\[
 \frac{\partial \ln L}{\partial \theta} = \frac{-nk}{\theta} + \sum_{i=1}^{n} \frac{x_i-C}{\theta^2} \tag{14}
\]

\[
 \frac{\partial \ln L}{\partial k} = -n \ln \theta + \sum_{i=1}^{n} \ln(x_i-C) - n \frac{\partial \Gamma(k)}{\partial k} \frac{1}{\Gamma(k)} \tag{15}
\]

\[
 \frac{\partial \ln L}{\partial C} = (1-k) \sum_{i=1}^{n} \frac{(x_i-C)^{-1}}{\theta} \tag{16}
\]

It should be noted that because of a limitation of the barter and Moore subroutine, it is not possible to estimate the parameters when the gamma deviates are generated with location \(C = 0 \). In the event that gamma deviates are
generated with $C = 0$, it is possible to obtain negative estimates for the parameters. The subroutine maps these negative estimates onto zero. Thus, \hat{C} and $\hat{\theta}$ will not retain the invariant property which is needed for these tests to be valid. In addition, the iterative technique used in the Carter and Moore subroutine does not work for the special case when the shape parameter is set to one. Because the gamma is an exponential distribution when the shape parameter is equal to one, we can use the maximum likelihood estimators of the location and scale parameters for the exponential. Therefore, setting K equal to one and solving equations 13 and 15 we obtain

$$C = \bar{x}(1)$$ \hspace{1cm} (17)

and

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i - \bar{x}(1)$$ \hspace{1cm} (18)

Deriving the Hypothesized Distribution Function $\hat{F}(x)$

The maximum likelihood estimates for the location and scale parameters and the fixed shape parameter determine $\hat{F}(x)$. Obtaining a numerical value for $\hat{F}(x)$ requires an integral calculation; this calculation was done using the IMSL subroutine MDCAM (13). MDCAM calculates the probability that a random variable x from a standard gamma distribution (i.e., $C = 1$ and $\theta = 1$) is less than or equal to x. To transform the deviates, y_i, from a generalized gamma distribution into standard gamma deviates we use

$$x_i = \frac{y_i - \hat{C}}{\hat{\theta}}.$$ \hspace{1cm} (19)
The details of this transformation are provided in Cortes (5:17).

Power Comparison

The powers of the modified Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling tests are compared for ten alternative distributions. Samples of sizes equal to five, 15, and 25 are drawn from the following selected distributions:

1) Gamma, shape equals 1.5
2) Gamma, shape equals 2.5
3) Gamma, shape equals 4.0
4) Weibull, shape equals 2.0
5) Weibull, shape equals 3.0
6) Normal (10,1)
7) Beta (\(p = 1, q = 2\))
8) Beta (\(p = 2, q = 2\))
9) Lognormal (\(p = 1, w = 0\))
10) Lognormal (\(p = 2, w = 0\))

These distributions are tested according to:

- \(H_0\): The sample variates follow a gamma distribution having shape parameter K.
- \(H_A\): The sample variates follow some other distribution.

The power investigation was conducted under two null hypotheses, one for shape parameter, \(K = 1.5\), the other for shape parameter, \(K = 4.0\). The random deviates for the above alternative distributions were generated using IMSL subroutines.
The lognormal density function is written as

\[f(x) = \frac{1}{xp\sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{\ln(x-\omega)}{\rho} \right)^2 \right), \quad x>0 \]

\[= 0 \text{ otherwise.} \]

and is illustrated in Figures 4a and 4b for the parameters \(\rho \) and \(\omega \) given above.

The Weibull density function is

\[f(x) = \frac{K(x-c)^{K-1}}{\theta^K} \exp \left(-\frac{(x-c)}{\theta} \right)^K, \quad K, \theta > 0, \quad c \leq x \leq x_0 \]

\[= 0 \text{ otherwise.} \]

and is shown in Figures 5a and 5b.

The beta density function is expressed as

\[f(x) = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} x^{p-1}(1-x)^{q-1}, \quad 0<x<1 \]

\[= 0, \text{ otherwise.} \]

and its graph for the two cases of interest, is presented in Figures 6a and 6b.

For each of the sample sizes mentioned above, five thousand sample sets were generated for the alternative distributions. The location and scale parameters are calculated under the null hypothesis and the three test statistics, \(F^2 \), \(A^2 \), and \(W^2 \) are evaluated. The value of these statistics are compared to the critical values derived in this thesis. If the value of the statistic is greater than the critical value, the null hypothesis is rejected. The
FIG 4a. Lognormal
$w = 0$, $p = 1$.

FIG 4b. Lognormal
$w = 0$, $p = 2$.

FIG 5a. Weibull, $K = 3$.
$\theta = 1$, $C = 0$.

FIG 5b. Weibull, $K = 2.6$.
$\theta = 1$, $C = 0$.

19
FIG 5a. Beta,
\[p = 1, \quad q = 1 \]

FIG 5b. Beta,
\[p = 2, \quad q = 2 \]
total number of rejections are counted. The power is the
total number of rejections divided by the number of trials,
5000.

Determining the Critical Values

By repeating steps one through five 5000 times as shown
in the flow chart in Figure 7, 5000 values for K-S, A^2, and
W^2 are calculated. These critical values are ordered and
the 80th, 85th, 90th, 95th, and 99th percentile are used as
the critical values of the tests.

Computer Programs

The computer programs used in this thesis are presented
in Appendix C.
IV. Use of Tables

In this chapter a set of steps is given which is used to perform a goodness-of-fit test by applying any of the three tests developed in this thesis. Also, an example illustrating the Anderson-Darling test is presented.

The following steps are used to perform a goodness-of-fit test:

1) Determine the shape parameter, K, and the desired level of significance α.

2) From the data to be tested, calculate the maximum likelihood estimators for the location and scale parameters.

3) From the appropriate table, select the critical value, $d_{\alpha,n}$ corresponding to α, the sample size n, and shape parameter K.

4) Using the maximum likelihood estimators, determine the estimated hypothesized distribution, and use equation three, six, or eight to calculate the Kolmogorov-Smirnov, Anderson-Darling, or Cramer-von Mises test statistic respectively.

5) If the value obtained in step four is greater than the critical value found in step three, then reject the hypothesized distribution. If it is smaller than the critical value, then the hypothesized distribution cannot be rejected.
Example

The time between failures of a particular subsystem of a radar system is believed to be distributed according to a gamma distribution with shape parameter equal to 3.0. A test engineer recorded the following times between failures of that subsystem: 11.1, 10.6, 10.4, 13.0, 11.3, 10.5, 18.6, 16.9, 16.6, 10.8 days.

A modified Anderson-Darling test at a .05 level of significance is performed using the critical values in this thesis. The problem can be stated as a test of hypothesis, that is,

\[H_0: \text{The distribution is gamma (shape = 3.0).} \]

\[H_A: \text{The sample comes from another distribution.} \]

First, the level of significance \(\alpha \), and shape parameter \(\gamma \), have been determined to be .05 and 3.0 respectively. Second, the maximum likelihood estimators calculated using the Hunter and Moore subroutine are \(\hat{\theta} = 9.319 \) and \(\hat{\gamma} = .826 \). Next, the critical value from Table XXVI is .8415. The hypothesized distribution is completely determined by the fixed shape parameter and the estimated location and scale parameters; these values are presented in Table I. The value of the Anderson-Darling statistic is \(A^2 = 1.7342 \). Since 1.7342 is greater than .8415, the null hypothesis is rejected. Therefore, the conclusion is that the sample of time between failures comes from some other distribution.
<table>
<thead>
<tr>
<th>i</th>
<th>x</th>
<th>(\hat{F}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.4</td>
<td>.153</td>
</tr>
<tr>
<td>2</td>
<td>10.5</td>
<td>.163</td>
</tr>
<tr>
<td>3</td>
<td>10.6</td>
<td>.203</td>
</tr>
<tr>
<td>4</td>
<td>10.6</td>
<td>.211</td>
</tr>
<tr>
<td>5</td>
<td>10.8</td>
<td>.259</td>
</tr>
<tr>
<td>6</td>
<td>10.9</td>
<td>.300</td>
</tr>
<tr>
<td>7</td>
<td>11.1</td>
<td>.384</td>
</tr>
<tr>
<td>8</td>
<td>11.3</td>
<td>.432</td>
</tr>
<tr>
<td>9</td>
<td>13.0</td>
<td>.822</td>
</tr>
<tr>
<td>10</td>
<td>18.6</td>
<td>.999</td>
</tr>
</tbody>
</table>
V. Discussion of the results

This chapter presents the results obtained with respect to the objectives stated in chapter 1. These objectives were to develop modified Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises tests for the gamma and compare their powers. Also included was an investigation of the relationship between the critical values of each test and shape parameters. Included with these results is a report on the validation of the computer programs used in this thesis.

Presentation of the Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling Tables of Critical Values

The tables of critical values for the modified K-S, A2, and Λ2 tests are presented in Appendices A, B, and C, respectively.

When the shape parameter is fixed, both the K-S and A2 critical values are decreasing as the sample size increases. The rate of decrease is smaller as n increases; this is an indication that the critical values appear to be converging for large sample sizes. The Cramer-von Mises critical values, on the other hand, are increasing with respect to the sample size. Again, the rate of increase is smaller for larger values of n, indicating that the critical values are converging for large sample sizes.

It should be noted that because the critical values are derived through Monte Carlo simulations, the values are not error free and that the amount of error decreases as the number of trials increases (25). The 5000 repetitions used
in this thesis was a practical compromise based on computer time required and accuracy desired.

Computer Programs Validation

The computer programs are verified by generating critical values for the exponential distribution with unknown mean. This is done by generating gamma deviates with shape parameter equal to one, fixing the location parameter at some arbitrary value, and estimating only the scale parameter.

The critical values are calculated for sample sizes \(n = 5, 10, 20, \) and 30. The critical values from the Anderson-Darling and Cramer-von Mises statistics are modified using expressions (23) and (24) derived by Stephens (27):

\[
\chi^2 \left(1 + \frac{15}{n} - \frac{5}{n^2}\right)
\]

(23)

\[
\chi^2 \left(1 + \frac{16}{n}\right).
\]

(24)

The computed critical values are compared to those calculated by Stephens (27) for significance levels .15. The critical values calculated for the Kolmogorov-Smirnov statistic for the exponential are compared directly to those derived by Lilliefors (28). The critical values which are derived from the programs in this thesis are presented in Table IV and can be compared to Lilliefors results in Table V.

The critical values for the Kolmogorov-Smirnov statistic compared very well to the Lilliefors values. The
TABLE II
Craner-von Mises \(w^2 \)

<table>
<thead>
<tr>
<th>1-x</th>
<th>(w^2) ((1 + \frac{.16}{n}))</th>
<th>(n=5)</th>
<th>(n=10)</th>
<th>(n=20)</th>
<th>(n=30)</th>
<th>Stephen's Critical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>.95</td>
<td>.149</td>
<td>.149</td>
<td>.148</td>
<td>.1523</td>
<td>.149</td>
<td></td>
</tr>
<tr>
<td>.98</td>
<td>.177</td>
<td>.176</td>
<td>.174</td>
<td>.176</td>
<td>.171</td>
<td></td>
</tr>
<tr>
<td>.99</td>
<td>.223</td>
<td>.219</td>
<td>.221</td>
<td>.221</td>
<td>.224</td>
<td></td>
</tr>
<tr>
<td>.99</td>
<td>.341</td>
<td>.332</td>
<td>.335</td>
<td>.325</td>
<td>.337</td>
<td></td>
</tr>
</tbody>
</table>

TABLE III
Anderson-Darling \(A^2 \)

<table>
<thead>
<tr>
<th>1-x</th>
<th>(A^2) ((1 + \frac{1.5}{n} - \frac{5}{n^2}))</th>
<th>(n=5)</th>
<th>(n=10)</th>
<th>(n=20)</th>
<th>(n=30)</th>
<th>Stephen's Critical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>.95</td>
<td>.941</td>
<td>.992</td>
<td>.953</td>
<td>.961</td>
<td>.922</td>
<td></td>
</tr>
<tr>
<td>.98</td>
<td>1.099</td>
<td>1.129</td>
<td>1.097</td>
<td>1.098</td>
<td>1.078</td>
<td></td>
</tr>
<tr>
<td>.99</td>
<td>1.297</td>
<td>1.381</td>
<td>1.376</td>
<td>1.372</td>
<td>1.341</td>
<td></td>
</tr>
<tr>
<td>.99</td>
<td>2.276</td>
<td>2.219</td>
<td>2.077</td>
<td>1.974</td>
<td>1.957</td>
<td></td>
</tr>
</tbody>
</table>
TABLE IV

Kolmogorov-Smirnov Thesis Critical Values

<table>
<thead>
<tr>
<th>l-</th>
<th>n=5</th>
<th>n=10</th>
<th>n=20</th>
<th>n=30</th>
</tr>
</thead>
<tbody>
<tr>
<td>.85</td>
<td>.378</td>
<td>.276</td>
<td>.199</td>
<td>.166</td>
</tr>
<tr>
<td>.90</td>
<td>.401</td>
<td>.295</td>
<td>.214</td>
<td>.178</td>
</tr>
<tr>
<td>.95</td>
<td>.447</td>
<td>.328</td>
<td>.235</td>
<td>.193</td>
</tr>
<tr>
<td>.99</td>
<td>.531</td>
<td>.384</td>
<td>.278</td>
<td>.232</td>
</tr>
</tbody>
</table>

TABLE V

Kolmogorov-Smirnov K-S Lilliefors Critical Values

<table>
<thead>
<tr>
<th>l-</th>
<th>n=5</th>
<th>n=10</th>
<th>n=20</th>
<th>n=30</th>
</tr>
</thead>
<tbody>
<tr>
<td>.85</td>
<td>.382</td>
<td>.277</td>
<td>.199</td>
<td>.164</td>
</tr>
<tr>
<td>.90</td>
<td>.406</td>
<td>.295</td>
<td>.212</td>
<td>.174</td>
</tr>
<tr>
<td>.95</td>
<td>.442</td>
<td>.325</td>
<td>.234</td>
<td>.192</td>
</tr>
<tr>
<td>.99</td>
<td>.530</td>
<td>.380</td>
<td>.278</td>
<td>.226</td>
</tr>
</tbody>
</table>
greatest deviation occurs for $n = 5$ at significance level .01. The Cramer-von Mises values generated are very close to Stephens values with the greatest deviation being 3.6% for $n = 30$ and significance level at .01. There was also a good match between the Anderson-Darling values, with most deviations between 3% and 4%; however the greatest deviation is 13.4% for $n = 10$ and significance level .01.

Power Investigation

A power comparison is made between the Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises goodness-of-fit tests developed in this thesis. The gamma distribution with shape parameters equal to 1.5 and 4.0 were both used against the alternative distributions listed in chapter III. Sample sizes five, 15, and 25 were used in the power studies at both an α-level of .05 and .01.

Tables VI through XIII show the results of the power comparisons for α-levels .05 and .01. When the null hypothesis is true, the power meets the claimed level of significance to the second decimal place in most cases. For all tests, the power is low for sample sizes equal to five. In fact, in most cases for $n = 5$ the power is nearly equal to the significance of the test, indicating that the goodness-of-fit test has no practical use for very small sample sizes.

In nearly all cases, the powers of the Cramer-von Mises and/or Anderson-Darling are greater than Kolmogorov-Smirnov tests. Based on this study, the latter test would not be
Table VI

Power Test for the Gamma Distribution

H₁: Gamma Distribution, \(\gamma = 4.0 \)
H₀: Another distribution
Level of significance = .05

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Test Statistics</th>
<th>Alternative Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gamma (\gamma = 1.5)</td>
</tr>
<tr>
<td>25</td>
<td>(K-S = .177)</td>
<td>(K-S = .072)</td>
</tr>
<tr>
<td></td>
<td>(\chi^2 = .262)</td>
<td>(\chi^2 = .075)</td>
</tr>
<tr>
<td></td>
<td>(A^2 = .226)</td>
<td>(A^2 = .075)</td>
</tr>
<tr>
<td>15</td>
<td>(K-S = .117)</td>
<td>(K-S = .069)</td>
</tr>
<tr>
<td></td>
<td>(\chi^2 = .135)</td>
<td>(\chi^2 = .062)</td>
</tr>
<tr>
<td></td>
<td>(A^2 = .167)</td>
<td>(A^2 = .064)</td>
</tr>
<tr>
<td>5</td>
<td>(K-S = .075)</td>
<td>(K-S = .061)</td>
</tr>
<tr>
<td></td>
<td>(\chi^2 = .076)</td>
<td>(\chi^2 = .061)</td>
</tr>
<tr>
<td></td>
<td>(A^2 = .076)</td>
<td>(A^2 = .063)</td>
</tr>
</tbody>
</table>
TABLE VI Continued

Lower Test for the Gamma Distribution

Γ : Gamma distribution, $k = 5\theta = \ln_{2}$: Another distribution
Level of Significance = .05

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Test Statistics</th>
<th>Alternative Distributions</th>
<th>Beta</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal (1,1)</td>
<td>Lognormal $\omega = \theta$ $\rho = 1$</td>
<td>Lognormal $\omega = \theta$ $\rho = 2$</td>
<td>$\beta = 1$ $q = 1$</td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = .375$</td>
<td>$\chi^2 = .726$</td>
<td>$\chi^2 = .997$</td>
<td>$\chi^2 = .269$</td>
</tr>
<tr>
<td></td>
<td>$A^2 = .368$</td>
<td>$A^2 = .761$</td>
<td>$A^2 = .999$</td>
<td>$A^2 = .296$</td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = .216$</td>
<td>$\chi^2 = .491$</td>
<td>$\chi^2 = .949$</td>
<td>$\chi^2 = .162$</td>
</tr>
<tr>
<td></td>
<td>$A^2 = .197$</td>
<td>$A^2 = .517$</td>
<td>$A^2 = .963$</td>
<td>$A^2 = .163$</td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = .058$</td>
<td>$\chi^2 = .155$</td>
<td>$\chi^2 = .452$</td>
<td>$\chi^2 = .055$</td>
</tr>
<tr>
<td></td>
<td>$A^2 = .347$</td>
<td>$A^2 = .175$</td>
<td>$A^2 = .469$</td>
<td>$A^2 = .043$</td>
</tr>
</tbody>
</table>
TABLE VII

Power Test for the Gamma Distribution
H_0: Gamma Distribution, $k = 1.5$ -- H_a: Another Distribution
Level of Significance $= .15$

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Test Statistics</th>
<th>Alternative Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gamma Shape=1.5</td>
<td>Gamma Shape=2.5</td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = .051$</td>
<td>$\chi^2 = .0994$</td>
</tr>
<tr>
<td></td>
<td>$A^2 = .044$</td>
<td>$A^2 = .0724$</td>
</tr>
<tr>
<td>15</td>
<td>$K-S = .0558$</td>
<td>$K-S = .053$</td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = .047$</td>
<td>$\chi^2 = .056$</td>
</tr>
<tr>
<td></td>
<td>$A^2 = .0448$</td>
<td>$A^2 = .037$</td>
</tr>
<tr>
<td>5</td>
<td>$K-S = .051$</td>
<td>$K-S = .044$</td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = .047$</td>
<td>$\chi^2 = .036$</td>
</tr>
<tr>
<td></td>
<td>$A^2 = .049$</td>
<td>$A^2 = .0382$</td>
</tr>
</tbody>
</table>
TABLE VII Continued

Power Test for the Gamma Distribution

H₀: Gamma Distribution, θ = 1.5 --- H₁: Another Distribution

Level of Significance = .05

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Test Statistics</th>
<th>Normal (1°,1)</th>
<th>Lognormal (\omega = 0, \rho = 1)</th>
<th>Lognormal (\omega = 1, \rho = 2)</th>
<th>Beta (\mu = 1, \sigma = 1)</th>
<th>Beta (\mu = 2, \sigma = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
<td>K-S = .726</td>
<td>K-S = .396</td>
<td>K-S = .955</td>
<td>K-S = .361</td>
<td>K-S = .515</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(w^2 = .797)</td>
<td>(w^2 = .442)</td>
<td>(w^2 = .991)</td>
<td>(w^2 = .468)</td>
<td>(w^2 = .639)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A^2 = .743)</td>
<td>(A^2 = .444)</td>
<td>(A^2 = .955)</td>
<td>(A^2 = .413)</td>
<td>(A^2 = .566)</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>K-S = .387</td>
<td>K-S = .252</td>
<td>K-S = .873</td>
<td>K-S = .181</td>
<td>K-S = .245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(w^2 = .453)</td>
<td>(w^2 = .295)</td>
<td>(w^2 = .969)</td>
<td>(w^2 = .226)</td>
<td>(w^2 = .304)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A^2 = .377)</td>
<td>(A^2 = .307)</td>
<td>(A^2 = .928)</td>
<td>(A^2 = .184)</td>
<td>(A^2 = .234)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>K-S = .356</td>
<td>K-S = .114</td>
<td>K-S = .303</td>
<td>K-S = .047</td>
<td>K-S = .045</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(w^2 = .038)</td>
<td>(w^2 = .118)</td>
<td>(w^2 = .405)</td>
<td>(w^2 = .041)</td>
<td>(w^2 = .334)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A^2 = .015)</td>
<td>(A^2 = .122)</td>
<td>(A^2 = .423)</td>
<td>(A^2 = .020)</td>
<td>(A^2 = .017)</td>
</tr>
</tbody>
</table>
TABLE VII

Power Test for the Gamma Distribution

H₀: Gamma Distribution, \(\alpha = 4.1 \) -- H₁: Another Distribution
Level of Significance = .01

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Test Statistics</th>
<th>Alternative Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gamma Shape=1.5</td>
<td>Gamma Shape=2.5</td>
</tr>
<tr>
<td>25</td>
<td>K-S = .057</td>
<td>K-S = .017</td>
</tr>
<tr>
<td></td>
<td>(\chi^2 = .055)</td>
<td>(\chi^2 = .015)</td>
</tr>
<tr>
<td></td>
<td>(A^2 = .079)</td>
<td>(A^2 = .017)</td>
</tr>
<tr>
<td></td>
<td>(\chi^2 = .064)</td>
<td>(\chi^2 = .015)</td>
</tr>
<tr>
<td></td>
<td>(A^2 = .049)</td>
<td>(A^2 = .017)</td>
</tr>
<tr>
<td>5</td>
<td>K-S = .018</td>
<td>K-S = .015</td>
</tr>
<tr>
<td></td>
<td>(\chi^2 = .019)</td>
<td>(\chi^2 = .014)</td>
</tr>
<tr>
<td></td>
<td>(A^2 = .024)</td>
<td>(A^2 = .016)</td>
</tr>
</tbody>
</table>
Table VIII Continued

Power Test for the Gamma Distribution

H_0: Gamma Distribution, $\gamma = k, \delta$ — H_1: Another Distribution

Level of Significance = .11

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Test Statistics</th>
<th>Alternative Distributions</th>
<th>Normal ($\chi^2 = 1, \lambda = 1$)</th>
<th>Lognormal $\omega = 3$, $\rho = 1$</th>
<th>Lognormal $\omega = 3$, $\rho = 2$</th>
<th>Beta $\alpha = 1$, $\beta = 1$</th>
<th>Beta $\alpha = 2$, $\beta = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\chi^2 = .193$</td>
<td>$\chi^2 = .526$</td>
<td>$\chi^2 = .985$</td>
<td>$\chi^2 = .075$</td>
<td>$\chi^2 = .633$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A^2 = .187$</td>
<td>$A^2 = .558$</td>
<td>$A^2 = .991$</td>
<td>$A^2 = .075$</td>
<td>$A^2 = .954$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>$K-S = .098$</td>
<td>$K-S = .257$</td>
<td>$K-S = .817$</td>
<td>$K-S = .635$</td>
<td>$K-S = .134$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = .088$</td>
<td>$\chi^2 = .315$</td>
<td>$\chi^2 = .883$</td>
<td>$\chi^2 = .038$</td>
<td>$\chi^2 = .042$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A^2 = .083$</td>
<td>$A^2 = .355$</td>
<td>$A^2 = .977$</td>
<td>$A^2 = .037$</td>
<td>$A^2 = .034$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>$K-S = .013$</td>
<td>$K-S = .056$</td>
<td>$K-S = .269$</td>
<td>$K-S = .012$</td>
<td>$K-S = .018$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\chi^2 = .011$</td>
<td>$\chi^2 = .066$</td>
<td>$\chi^2 = .306$</td>
<td>$\chi^2 = .012$</td>
<td>$\chi^2 = .038$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A^2 = .080$</td>
<td>$A^2 = .077$</td>
<td>$A^2 = .340$</td>
<td>$A^2 = .008$</td>
<td>$A^2 = .056$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE I.

Power Test for the Gamma Distribution
H₀: Gamma Distribution, K = 1.5 -- Hₐ: Another Distribution
Level of Significance = .10

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Test Statistics</th>
<th>Alternative Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gamma Shape=1.5</td>
</tr>
<tr>
<td></td>
<td>W² = .010</td>
<td>W² = .022</td>
</tr>
<tr>
<td></td>
<td>A² = .011</td>
<td>A² = .015</td>
</tr>
<tr>
<td>15</td>
<td>K-S = .007</td>
<td>K-S = .009</td>
</tr>
<tr>
<td></td>
<td>W² = .008</td>
<td>W² = .009</td>
</tr>
<tr>
<td></td>
<td>A² = .009</td>
<td>A² = .004</td>
</tr>
<tr>
<td>5</td>
<td>K-S = .010</td>
<td>K-S = .007</td>
</tr>
<tr>
<td></td>
<td>W² = .013</td>
<td>W² = .007</td>
</tr>
<tr>
<td></td>
<td>A² = .011</td>
<td>A² = .006</td>
</tr>
</tbody>
</table>
TABLE IX Continued

Power Test for the Gamma Distribution

H:₀: Gamma Distribution, \(\Gamma = 1.5 \) — \(\Gamma_a \): Another Distribution

Level of Significance = .1

<table>
<thead>
<tr>
<th>Sample Size (n)</th>
<th>Test Statistics</th>
<th>Normal ((\log n))</th>
<th>Lognormal (\psi = 0, \rho = 1)</th>
<th>Lognormal (\psi = 0, \rho = 2)</th>
<th>Beta (\psi = 1, \rho = 1)</th>
<th>Beta (\psi = 2, \rho = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td></td>
<td>(K-S = .515)</td>
<td>(K-S = .238)</td>
<td>(K-S = .135)</td>
<td>(K-S = .264)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A_2 = .567)</td>
<td>(A_2 = .293)</td>
<td>(A_2 = .167)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>(K-S = .181)</td>
<td>(K-S = .127)</td>
<td>(K-S = .740)</td>
<td>(K-S = .635)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A_2 = .228)</td>
<td>(A_2 = .164)</td>
<td>(A_2 = .413)</td>
<td>(A_2 = .109)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>(K-S = .084)</td>
<td>(K-S = .048)</td>
<td>(K-S = .213)</td>
<td>(K-S = .070)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(A_2 = .061)</td>
<td>(A_2 = .047)</td>
<td>(A_2 = .244)</td>
<td>(A_2 = .062)</td>
<td></td>
</tr>
<tr>
<td>Level of Significance</td>
<td>.25</td>
<td>.20</td>
<td>.15</td>
<td>.10</td>
<td>.05</td>
<td>.01</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>n= 5</td>
<td>.0545</td>
<td>.0542</td>
<td>.0572</td>
<td>1.011</td>
<td>1.1138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.3115</td>
<td>.3273</td>
<td>.3452</td>
<td>.3685</td>
<td>.4215</td>
<td></td>
</tr>
<tr>
<td>n=10</td>
<td>.0512</td>
<td>.0573</td>
<td>.0650</td>
<td>.0679</td>
<td>.0804</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.2281</td>
<td>.2387</td>
<td>.2527</td>
<td>.2762</td>
<td>.3190</td>
<td></td>
</tr>
<tr>
<td>n=15</td>
<td>.0447</td>
<td>.0499</td>
<td>.0539</td>
<td>.0536</td>
<td>.0785</td>
<td></td>
</tr>
</tbody>
</table>

Legend

- \(a_1 \)
- \(R^2 \)
- \(a_{ij} \)
<table>
<thead>
<tr>
<th>Level of Significance</th>
<th>.20</th>
<th>.15</th>
<th>.10</th>
<th>.05</th>
<th>.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=20</td>
<td>.417</td>
<td>.456</td>
<td>.509</td>
<td>.578</td>
<td>.682</td>
</tr>
<tr>
<td></td>
<td>.1653</td>
<td>.1731</td>
<td>.1837</td>
<td>.1908</td>
<td>.2297</td>
</tr>
<tr>
<td>n=25</td>
<td>.6325</td>
<td>.367</td>
<td>.373</td>
<td>.4208</td>
<td>.537</td>
</tr>
<tr>
<td></td>
<td>.1492</td>
<td>.1562</td>
<td>.1659</td>
<td>.1859</td>
<td>.2098</td>
</tr>
<tr>
<td>n=30</td>
<td>.0317</td>
<td>.0349</td>
<td>.3691</td>
<td>.4206</td>
<td>.0639</td>
</tr>
<tr>
<td></td>
<td>.1363</td>
<td>.1432</td>
<td>.1526</td>
<td>.1663</td>
<td>.1637</td>
</tr>
</tbody>
</table>

Legend: a_1, a_2, k_2
<table>
<thead>
<tr>
<th>Level of Significance</th>
<th>(\alpha = .20)</th>
<th>(\alpha = .10)</th>
<th>(\alpha = .05)</th>
<th>(\alpha = .01)</th>
<th>(\alpha = .001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 20)</td>
<td>(4.17)</td>
<td>(3.50)</td>
<td>(3.00)</td>
<td>(2.71)</td>
<td>(2.50)</td>
</tr>
<tr>
<td>(n = 25)</td>
<td>(4.35)</td>
<td>(3.65)</td>
<td>(3.15)</td>
<td>(2.85)</td>
<td>(2.65)</td>
</tr>
<tr>
<td>(n = 30)</td>
<td>(5.00)</td>
<td>(4.00)</td>
<td>(3.30)</td>
<td>(3.00)</td>
<td>(2.80)</td>
</tr>
</tbody>
</table>

Legend: \(a_1 \) and \(R^2 \)
<table>
<thead>
<tr>
<th>Level of Significance</th>
<th>.20</th>
<th>.15</th>
<th>.10</th>
<th>.05</th>
<th>.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.4124</td>
<td>.4767</td>
<td>.5769</td>
<td>.6945</td>
<td>1.2165</td>
</tr>
<tr>
<td></td>
<td>.5350</td>
<td>.5061</td>
<td>.6565</td>
<td>.7338</td>
<td>1.6327</td>
</tr>
<tr>
<td>n=25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.5613</td>
<td>.5043</td>
<td>.5840</td>
<td>.7675</td>
<td>1.0620</td>
</tr>
<tr>
<td></td>
<td>.5241</td>
<td>.5767</td>
<td>.6553</td>
<td>.7850</td>
<td>1.0911</td>
</tr>
<tr>
<td>n=30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.5560</td>
<td>.5175</td>
<td>.6169</td>
<td>.7634</td>
<td>1.2163</td>
</tr>
<tr>
<td></td>
<td>.5293</td>
<td>.5819</td>
<td>.6554</td>
<td>.7810</td>
<td>1.0977</td>
</tr>
</tbody>
</table>

Legend: α_1, r^2, a_0
TABLE XII

Coefficients and R^2 Values for the Relationships between the Cramer-von Mises Critical Values and the Gamma Shape Parameters, $1.0 (.5) 4.0$

<table>
<thead>
<tr>
<th>Level of Significance</th>
<th>.20</th>
<th>.15</th>
<th>.10</th>
<th>.05</th>
<th>.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>n= 5</td>
<td>.0516</td>
<td>.0589</td>
<td>.0739</td>
<td>.1107</td>
<td>.1523</td>
</tr>
<tr>
<td></td>
<td>.0871</td>
<td>.0956</td>
<td>.1066</td>
<td>.1238</td>
<td>.1693</td>
</tr>
<tr>
<td>n=10</td>
<td>.0616</td>
<td>.0715</td>
<td>.0857</td>
<td>.1137</td>
<td>.1765</td>
</tr>
<tr>
<td></td>
<td>.0871</td>
<td>.0961</td>
<td>.1104</td>
<td>.1321</td>
<td>.1861</td>
</tr>
<tr>
<td>n=15</td>
<td>.0534</td>
<td>.0694</td>
<td>.0913</td>
<td>.1146</td>
<td>.2043</td>
</tr>
<tr>
<td></td>
<td>.0888</td>
<td>.0917</td>
<td>.1107</td>
<td>.1341</td>
<td>.1857</td>
</tr>
</tbody>
</table>

Legend

\[a_1 \]

\[H^2 \]

\[a_0 \]
<table>
<thead>
<tr>
<th>Level of Significance</th>
<th>.20</th>
<th>.15</th>
<th>.10</th>
<th>.05</th>
<th>.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=20</td>
<td>.0746</td>
<td>.0063</td>
<td>.1005</td>
<td>.1264</td>
<td>.2365</td>
</tr>
<tr>
<td></td>
<td>.0867</td>
<td>.0955</td>
<td>.1104</td>
<td>.1357</td>
<td>.1836</td>
</tr>
<tr>
<td>n=25</td>
<td>.0658</td>
<td>.0762</td>
<td>.0856</td>
<td>.1098</td>
<td>.1895</td>
</tr>
<tr>
<td></td>
<td>.0871</td>
<td>.0973</td>
<td>.1136</td>
<td>.1379</td>
<td>.1957</td>
</tr>
<tr>
<td>n=30</td>
<td>.0673</td>
<td>.0826</td>
<td>.0946</td>
<td>.1221</td>
<td>.2203</td>
</tr>
<tr>
<td></td>
<td>.0882</td>
<td>.0974</td>
<td>.1124</td>
<td>.1361</td>
<td>.1937</td>
</tr>
</tbody>
</table>

Legend: a_1, a_2, a_0
used as long as the first two are available. An examination of Tables VI through XIII reveals that for both levels of significance, the Cramer-von Mises test is more powerful than the Anderson-Darling test. The only exception to the previous statement occurs when the alternative distribution is lognormal.

The following observations are made concerning the power of both the Cramer-von Mises and Anderson-Darling tests when sample sizes are either 15 or 25:

1) If the null hypothesis is a gamma with shape equal to 1.5, the power is high against all alternative distributions except for another gamma. The tests are especially high against the lognormal distribution.

2) When the null hypothesis is the gamma with shape equal to four, the power is high against the lognormal and normal distributions. The power is not quite so high against the beta. Against the other gammas and the Weibull with shape equal to two, the power is low, even when the sample size is 25.

Relationship between Critical Values and Shape Parameters

An investigation of the relationship between the shape parameter and the Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises critical values is summarized in this section. For each test statistic, the shape parameter versus critical values are plotted. These graphs are presented in Appendix B for the K-S, Appendix E for \(A^2 \), and Appendix F for the \(\psi^2 \) critical values. The graphs of all the test
statistics appear to exhibit a common and consistent behavior. This consistent behavior observed from the graphical representations can be summed up as follows:

1) For all test statistics, the relationship of critical values as a function of shape is always decreasing for shape greater than one; this decrease appears to be an inverse relationship.

2) The graphs of the Anderson-Darling critical values always show an increase as the shape increases from .5 to 1.0.

3) The Kolmogorov-Smirnov and Cramer-von Mises critical values increase or decrease, as the shape varies from .5 to 1.0, depending on the sample size.

A regression analysis is performed to determine the functional relationship between the critical values and shape parameters, as suggested by the graphs. The study includes values for the shape between 1.5 and 4.0. Shape parameters less than 1.5 are not considered in the regression analysis because a different estimating technique was used to calculate the critical values for the gamma when shape is equal to one. In addition, more information is needed about the behavior of the function between .5 and 1.5 for all test statistics.

The expression which best represents the relationship for all test statistics is

\[C = a_0 + a_1 \left(\frac{1}{\kappa^2} \right). \]

\(\kappa^2 \), the number which measured the amount of variation
in all cases. This expression can be used to find the critical value corresponding to shape parameters between 1.5 and 4.0, not found in the tables in Appendices A, B, and C. Therefore, a test of hypothesis can be performed for the null hypothesis being, for example, a gamma distribution having shape equal to 2.75.

The value of R^2, and coefficients a_0 and a_1 are recorded in Tables XIV, XV, and XVI, for the K-S, A^2, and W^2 critical values respectively.
VI. Conclusions and Recommendations

Conclusions

Based on results obtained in this thesis, the following conclusions are noted:

1) The Kolmogorov-Smirnov, Anderson-Darling and Cramer-von Mises critical values for the three-parameter gamma are valid. The power study revealed that when the null hypothesis is true all three tests achieve the claimed level of significance.

2) The power comparison study based on the ten alternative distributions listed in Chapter 3 shows that in general the powers in decreasing order are χ^2, A^2, and K-S. The A^2, however is more powerful against the lognormal distribution. All three tests demonstrated low power for sample sizes equal to five, indicating a goodness-of-fit test involving a sample size of five using the tabled critical values would not be practical.

Recommendations

The following recommendations are suggested for further investigation:

1) Develop a more efficient technique to calculate the maximum likelihood estimators for the parameters of a gamma distribution.

2) Investigate a functional relationship between the sample size and critical values so that goodness-of-fit tests can be done for sample sizes other than those presented in this thesis.
3) Extend the goodness-of-fit test to include parameters between zero and one.

4) Examine the feasibility of developing a goodness-of-fit test for distributions whose parameters are unknown, based on the characteristic function.
BIBLIOGRAPHY

APPENDIX A

Tables of the Kolmogorov-Smirnov Critical Values for the Gamma Distribution
TABLE XIII

Kolmogorov-Smirnov Shape Parameter = .5

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.10</td>
</tr>
<tr>
<td>5</td>
<td>.3528</td>
</tr>
<tr>
<td>10</td>
<td>.2637</td>
</tr>
<tr>
<td>15</td>
<td>.2249</td>
</tr>
<tr>
<td>20</td>
<td>.1967</td>
</tr>
<tr>
<td>25</td>
<td>.1759</td>
</tr>
<tr>
<td>30</td>
<td>.1635</td>
</tr>
</tbody>
</table>

TABLE XIV

Kolmogorov-Smirnov Shape Parameter = 1.0

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.10</td>
</tr>
<tr>
<td>5</td>
<td>.3701</td>
</tr>
<tr>
<td>10</td>
<td>.2651</td>
</tr>
<tr>
<td>15</td>
<td>.2164</td>
</tr>
<tr>
<td>20</td>
<td>.1923</td>
</tr>
<tr>
<td>25</td>
<td>.1593</td>
</tr>
<tr>
<td>30</td>
<td>.1561</td>
</tr>
</tbody>
</table>
TABLE XV

Kolmogorov-Smirnov
Shape Parameter = 1.5

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.3333</td>
</tr>
<tr>
<td>10</td>
<td>.2496</td>
</tr>
<tr>
<td>15</td>
<td>.2186</td>
</tr>
<tr>
<td>20</td>
<td>.1941</td>
</tr>
<tr>
<td>25</td>
<td>.1624</td>
</tr>
<tr>
<td>30</td>
<td>.1507</td>
</tr>
</tbody>
</table>

TABLE XVI

Kolmogorov-Smirnov
Shape Parameter = 2.0

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.3255</td>
</tr>
<tr>
<td>10</td>
<td>.2432</td>
</tr>
<tr>
<td>15</td>
<td>.2195</td>
</tr>
<tr>
<td>20</td>
<td>.1748</td>
</tr>
<tr>
<td>25</td>
<td>.1591</td>
</tr>
<tr>
<td>30</td>
<td>.1463</td>
</tr>
</tbody>
</table>
TABLE XVII

Kolmogorov-Smirnov
Shape Parameter = 2.5

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.3198</td>
</tr>
<tr>
<td>10</td>
<td>.2370</td>
</tr>
<tr>
<td>15</td>
<td>.1963</td>
</tr>
<tr>
<td>20</td>
<td>.1718</td>
</tr>
<tr>
<td>25</td>
<td>.1552</td>
</tr>
<tr>
<td>30</td>
<td>.1417</td>
</tr>
</tbody>
</table>

TABLE XVIII

Kolmogorov-Smirnov
Shape Parameter = 3.0

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.3179</td>
</tr>
<tr>
<td>10</td>
<td>.2338</td>
</tr>
<tr>
<td>15</td>
<td>.1939</td>
</tr>
<tr>
<td>20</td>
<td>.1710</td>
</tr>
<tr>
<td>25</td>
<td>.1520</td>
</tr>
<tr>
<td>30</td>
<td>.1411</td>
</tr>
</tbody>
</table>
TABLE XIX

Kolmogorov-Smirnov
Shape Parameter = 3.5

<table>
<thead>
<tr>
<th>Sample Size (n)</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(.20)</td>
</tr>
<tr>
<td>5</td>
<td>.3161</td>
</tr>
<tr>
<td>10</td>
<td>.2310</td>
</tr>
<tr>
<td>15</td>
<td>.1923</td>
</tr>
<tr>
<td>20</td>
<td>.1695</td>
</tr>
<tr>
<td>25</td>
<td>.1511</td>
</tr>
<tr>
<td>30</td>
<td>.1382</td>
</tr>
</tbody>
</table>

TABLE XX

Kolmogorov-Smirnov
Shape Parameter = 4.8

<table>
<thead>
<tr>
<th>Sample Size (n)</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(.20)</td>
</tr>
<tr>
<td>5</td>
<td>.3131</td>
</tr>
<tr>
<td>10</td>
<td>.2308</td>
</tr>
<tr>
<td>15</td>
<td>.1904</td>
</tr>
<tr>
<td>20</td>
<td>.1657</td>
</tr>
<tr>
<td>25</td>
<td>.1505</td>
</tr>
<tr>
<td>30</td>
<td>.1381</td>
</tr>
</tbody>
</table>
APPENDIX B

Tables of the Anderson-Darling Critical Values for the Gamma Distribution
TABLE XXI

Anderson-Darling
Shape Parameter = .5

<table>
<thead>
<tr>
<th>Sample Size n</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>1.0724</td>
</tr>
<tr>
<td>10</td>
<td>1.9224</td>
</tr>
<tr>
<td>15</td>
<td>1.6797</td>
</tr>
<tr>
<td>20</td>
<td>1.8704</td>
</tr>
<tr>
<td>25</td>
<td>1.8367</td>
</tr>
<tr>
<td>30</td>
<td>1.8332</td>
</tr>
</tbody>
</table>

TABLE XXII

Anderson-Darling
Shape Parameter = 1.9

<table>
<thead>
<tr>
<th>Sample Size n</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>2.0889</td>
</tr>
<tr>
<td>10</td>
<td>1.5065</td>
</tr>
<tr>
<td>15</td>
<td>1.2827</td>
</tr>
<tr>
<td>20</td>
<td>1.2124</td>
</tr>
<tr>
<td>25</td>
<td>1.0831</td>
</tr>
<tr>
<td>30</td>
<td>1.0558</td>
</tr>
</tbody>
</table>
TABLE XXIII
Anderson-Darling
Shape Parameter = 1.5

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.6908</td>
</tr>
<tr>
<td>10</td>
<td>.7104</td>
</tr>
<tr>
<td>15</td>
<td>.7563</td>
</tr>
<tr>
<td>20</td>
<td>.7145</td>
</tr>
<tr>
<td>25</td>
<td>.7278</td>
</tr>
<tr>
<td>30</td>
<td>.7296</td>
</tr>
</tbody>
</table>

TABLE XXIV
Anderson-Darling
Shape Parameter = 2.0

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.6106</td>
</tr>
<tr>
<td>10</td>
<td>.6265</td>
</tr>
<tr>
<td>15</td>
<td>.6330</td>
</tr>
<tr>
<td>20</td>
<td>.6422</td>
</tr>
<tr>
<td>25</td>
<td>.6429</td>
</tr>
<tr>
<td>30</td>
<td>.6481</td>
</tr>
<tr>
<td>Sample Size</td>
<td>Level of Significance</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.5700</td>
</tr>
<tr>
<td>10</td>
<td>.5691</td>
</tr>
<tr>
<td>15</td>
<td>.5915</td>
</tr>
<tr>
<td>20</td>
<td>.6109</td>
</tr>
<tr>
<td>25</td>
<td>.5991</td>
</tr>
<tr>
<td>30</td>
<td>.6011</td>
</tr>
</tbody>
</table>

TABLE XXVI

Anderson-Darling Shape Parameter = 3.9

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.5549</td>
</tr>
<tr>
<td>10</td>
<td>.5687</td>
</tr>
<tr>
<td>15</td>
<td>.5757</td>
</tr>
<tr>
<td>20</td>
<td>.5749</td>
</tr>
<tr>
<td>25</td>
<td>.5768</td>
</tr>
<tr>
<td>30</td>
<td>.5852</td>
</tr>
</tbody>
</table>
TABLE XXVII

Anderson-Darling
Shape Parameter = 3.5

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
<th>.20</th>
<th>.15</th>
<th>.10</th>
<th>.05</th>
<th>.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.5472</td>
<td>.5967</td>
<td>.6588</td>
<td>.7748</td>
<td>1.0173</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.5522</td>
<td>.6024</td>
<td>.6730</td>
<td>.8072</td>
<td>1.1318</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>.5577</td>
<td>.6209</td>
<td>.6942</td>
<td>.8081</td>
<td>1.1158</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>.5686</td>
<td>.6259</td>
<td>.7060</td>
<td>.8432</td>
<td>1.1503</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>.5603</td>
<td>.6190</td>
<td>.6960</td>
<td>.8418</td>
<td>1.1590</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>.5603</td>
<td>.6130</td>
<td>.6973</td>
<td>.8298</td>
<td>1.1755</td>
<td></td>
</tr>
</tbody>
</table>

TABLE XXVIII

Anderson-Darling
Shape Parameter = 4.0

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
<th>.20</th>
<th>.15</th>
<th>.10</th>
<th>.05</th>
<th>.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.5293</td>
<td>.5835</td>
<td>.6464</td>
<td>.7535</td>
<td>0.9715</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.5475</td>
<td>.5996</td>
<td>.6720</td>
<td>.6031</td>
<td>1.1020</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>.5435</td>
<td>.6066</td>
<td>.6816</td>
<td>.8154</td>
<td>1.1036</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>.5565</td>
<td>.6068</td>
<td>.6915</td>
<td>.8204</td>
<td>1.1021</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>.5557</td>
<td>.6124</td>
<td>.6998</td>
<td>.8425</td>
<td>1.2994</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>.5577</td>
<td>.6193</td>
<td>.6978</td>
<td>.8239</td>
<td>1.1618</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX C

Tables of the Cramer-von Mises Critical

Values for the Gamma Distribution
TABLE XXIX

Cramer-von Mises
Shape Parameter = .5

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.1217</td>
</tr>
<tr>
<td>10</td>
<td>.1327</td>
</tr>
<tr>
<td>15</td>
<td>.1379</td>
</tr>
<tr>
<td>20</td>
<td>.1425</td>
</tr>
<tr>
<td>25</td>
<td>.1453</td>
</tr>
<tr>
<td>30</td>
<td>.1440</td>
</tr>
</tbody>
</table>

TABLE XXX

Cramer-von Mises
Shape Parameter = 1.0

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.1397</td>
</tr>
<tr>
<td>10</td>
<td>.1341</td>
</tr>
<tr>
<td>15</td>
<td>.1310</td>
</tr>
<tr>
<td>20</td>
<td>.1316</td>
</tr>
<tr>
<td>25</td>
<td>.1299</td>
</tr>
<tr>
<td>30</td>
<td>.1319</td>
</tr>
</tbody>
</table>
TABLE XXXI

Cramer-von Mises
Shape Parameter = 1.5

<table>
<thead>
<tr>
<th>Sample Size n</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.1092</td>
</tr>
<tr>
<td>10</td>
<td>.1132</td>
</tr>
<tr>
<td>15</td>
<td>.1133</td>
</tr>
<tr>
<td>20</td>
<td>.1199</td>
</tr>
<tr>
<td>25</td>
<td>.1157</td>
</tr>
<tr>
<td>30</td>
<td>.1171</td>
</tr>
</tbody>
</table>

TABLE XXXII

Cramer-von Mises
Shape Parameter = 2.0

<table>
<thead>
<tr>
<th>Sample Size n</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.1007</td>
</tr>
<tr>
<td>10</td>
<td>.1045</td>
</tr>
<tr>
<td>15</td>
<td>.1046</td>
</tr>
<tr>
<td>20</td>
<td>.1055</td>
</tr>
<tr>
<td>25</td>
<td>.1051</td>
</tr>
<tr>
<td>30</td>
<td>.1077</td>
</tr>
</tbody>
</table>
TABLE XXXIII

Cramer-von Mises
Shape Parameter = 2.5

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.6958</td>
</tr>
<tr>
<td>10</td>
<td>.6639</td>
</tr>
<tr>
<td>15</td>
<td>.6983</td>
</tr>
<tr>
<td>20</td>
<td>.6991</td>
</tr>
<tr>
<td>25</td>
<td>.6979</td>
</tr>
<tr>
<td>30</td>
<td>.6979</td>
</tr>
</tbody>
</table>

TABLE XXXIV

Cramer-von Mises
Shape Parameter = 3.0

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.6927</td>
</tr>
<tr>
<td>10</td>
<td>.6948</td>
</tr>
<tr>
<td>15</td>
<td>.6954</td>
</tr>
<tr>
<td>20</td>
<td>.6942</td>
</tr>
<tr>
<td>25</td>
<td>.6935</td>
</tr>
<tr>
<td>30</td>
<td>.6957</td>
</tr>
</tbody>
</table>
TABLE XXXV
Cramer-von Mises
Shape Parameter = 3.5

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.0919</td>
</tr>
<tr>
<td>10</td>
<td>.0914</td>
</tr>
<tr>
<td>15</td>
<td>.0925</td>
</tr>
<tr>
<td>20</td>
<td>.0939</td>
</tr>
<tr>
<td>25</td>
<td>.0920</td>
</tr>
<tr>
<td>30</td>
<td>.0926</td>
</tr>
</tbody>
</table>

TABLE XXXVI
Cramer-von Mises
Shape Parameter = 4.0

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Level of Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.20</td>
</tr>
<tr>
<td>5</td>
<td>.0839</td>
</tr>
<tr>
<td>10</td>
<td>.0906</td>
</tr>
<tr>
<td>15</td>
<td>.0915</td>
</tr>
<tr>
<td>20</td>
<td>.0908</td>
</tr>
<tr>
<td>25</td>
<td>.0916</td>
</tr>
<tr>
<td>30</td>
<td>.0928</td>
</tr>
</tbody>
</table>
APPENDIX D

Graphs of the Kolmogorov-Smirnov
Critical Values Versus the
Gamma Shape Parameters
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 5

FIG 7. SHAPE vs K-S Critical Values, Level = .01, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 10

FIG. 3. Shape vs K-S Critical Values, Level = .01, n = 10
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL=.01 N=15

FIG 5. Shape vs r-S Critical Values, Level = .01, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 20

FIG 10. SHAPE vs K-S Critical Values, Level = .01, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 25

![Graph showing Shape vs K-S Critical Values, Level = .01, n = 25]
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 30

FIG 12. Shape vs K-S Critical Values, Level = .01, n = 30

73
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL=.05 N=5

FIG 13. Shape vs K-S Critical Values, Level = .05, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 10

FIG 14. SHAPE VS L-S Critical Values, Level = .05, n = 10
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 15

FIG 15. Shape vs K-S Critical Values, Level = .05, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 20

FIG 16. Shape vs K-S Critical Values, Level = .05, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 **N = 25**

FIG 17. Shape vs K-S Critical Values, Level = .05, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = 0.05 N = 30

FIG 10. SHAPE VS K-S CRITICAL VALUES, LEVEL = 0.05, N = 30
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL=.10 N=5

Fig. 19. Shape vs K-S Critical Values, Level = .10, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10 N = 10

FIG 7.5. SHAPE VS K-S CRITICAL VALUES, LEVEL = .10, N = 10
A MODIFIED KOLMOGOROV-SMINOV ANDERSON-DARLING AND CRAMER-VON MISES TEST F. (U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. P J VIVIANO

UNCLASSIFIED DEC 82 AFIT/GOR/MA/82D-4
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10, N = 15

FIG 21. Shape vs K-S Critical Values, Level = .10, n = 15
FIG 27. SHAPE vs K-S Critical Values, Level = .10, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10 N = 25

FIG 23. Shape vs K-S Critical Values, Level = .10, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10 N = 30

FIG 24. Shape vs K-S Critical Values, Level = .10, n = 30
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 5

FIG 25. SHAPE VS K-S CRITICAL VALUES, LEVEL = .15, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 10

FIG 26. Shape vs K-S Critical Values, Level = .15, n = 10
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 15

FIG 27. Shape vs K-S Critical Values, Level = .15, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 20

FIG 28. SHAPE vs K-S CRITICAL VALUES, LEVEL = .15, n = 20
SHAPES VS CRITICAL VALUES

GAMMA

LEVEL = .15 n = 25

FIG 29. Shape vs K-S Critical Values, Level = .15, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 30

FIG 30. Shape vs K-S Critical Values, Level = .15, n = 30
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .20 N = 6

FIG 31. Shape vs K-S Critical Values, Level = .20, n = 5
FIG 32. SHAPE vs K-S Critical Values, Level = .20, n = 10
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .20 N = 15

FIG 33. Shape vs K-S Critical Values, Level = .20, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = 0.20 N = 20

FIG 34. Shape vs S-S Critical Values, Level = 0.20, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .20 N = 25

![Graph showing shape vs critical values for the gamma distribution with level 0.20 and n = 25. The x-axis represents the shape parameter, and the y-axis shows critical values.](image)

FIG 35. Shape vs K-S Critical Values, Level = .20, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL=.20 N=30

FIG 35. SHAPE vs K-S Critical Values, Level = .20, n = 30
APPENDIX E

Graphs of the Anderson-Darling Critical Values Versus the Gamma Shape Parameters
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 n = 5

FIG 37. Shape vs Λ^2 Critical Values, Level = .01, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 10

FIG 38. Shape vs \(\chi^2 \) Critical Values, Level = .01, n = 10
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 15

FIG 39: SHAPE vs A^2 Critical Values, Level = .01, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 20

FIG 49: Shape vs A^2 Critical Values, Level = .01, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 25

FIG 41. SHAPE vs \(\gamma^2 \) Critical Values, Level = .01, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 30

FIG 42. SHAPE vs λ^2 Critical Values, Level = .01, n = 30
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = 0.05 n = 5

FIG 43. SHAPE vs \(\lambda^2 \) Critical Values, Level = .05, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 10

FIG 64. Shape vs λ_2 Critical Values, Level = .05, n = 10
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 15

FIG 45. SHAPE VS κ^2 CRITICAL VALUES, LEVEL = .05, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 20

FIG 45. Shape vs A^2 Critical Values, Level = .05, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 25

FIG 47. Shape vs A^2 Critical Values, Level = .05, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 30

FIG 43. SHAPE vs A² Critical Values, Level = .05, n = 30
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10 N = 5

FIG 42. Shape vs A^2 Critical Values, Level = .10, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10 N = 10

SHAPe VS CRITICAL VALUES, Level = .10, n = 10
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL=.10 N=15

FIG 51. SHAPE vs A^2 Critical Values, Level = .10, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10 N = 20

FIG 52. SHAPE vs A^2 Critical Values, Level = .10, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL=.10 N=25

Fig 53. Shape vs Λ^2 Critical Values, Level = .10, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL=.10 N=30

FIG 54. Shape vs A^2 Critical Values, Level = .10, n = 30
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 5

Diagram Description:
- Title: SHAPE VS CRITICAL VALUES
- Subtitle: GAMMA
- Level: .15, N = 5
- Shape parameter vs critical values
- Critical values range from 0.00 to 2.80
- Shape parameter range from 0.00 to 4.00

Image Caption:
- Diagram labeled as Figure 59: SHAPE vs \(\gamma^2 \) Critical Values, Level = .15, n = 5

Text Reference:
- Page 117
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 n = 10

FIG 56. Shape vs Γ^2 Critical Values, Level = .15, n = 10

118
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 15

FIG 57. SHAPE vs A^2 Critical Values, Level = .15, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 20

FIG 58. Shape vs. A² Critical Values, Level = .15, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 25

FIG 59. Shape vs A^2 Critical Values, Level = .15, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 30

SHAPE PARAMETER

CRITICAL VALUES

0.00 1.00 2.00 3.00 4.00

0.60 0.70 0.80 0.90 1.00 1.10 1.20

FIG 66. SHAPE vs \(\gamma^2 \) Critical Values, Level = .15, n = 30
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .20 N = 5

CRITICAL VALUES

0.40 0.80 1.20 1.60 2.00 2.40 2.80

SHAPE PARAMETER

0.00 1.00 2.00 3.00 4.00

FIG. 1. SHAPE VS A^2 Critical Values, Level = .20, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .20 N = 10

FIG 62. Shape vs A² Critical Values, Level = .20, n = 10
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .20 N = 15

FIG 63. SHAPE vs Λ^2 Critical Values, Level = .20, n = 15
FIG 6A. Shape vs \(\gamma^2 \) Critical Values, Level = .20, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .20 N = 25

FIG 95. Shape vs χ^2 Critical Values, Level = .20, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .20 N = 30

FIG 66. Shape vs A^2 Critical Values, Level = .20, n = 30
APPENDIX F

Graphs of the Cramer-von Mises
Critical Values Versus the
Gamma Shape Parameters
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 5

FIG. 67. Shape vs \(\gamma^2 \) Critical Values, Level = .01, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 10

FIG 38. Shape vs χ^2 Critical Values, Level = .01, n = 10
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 15

Shape vs \(\gamma^2 \) Critical Values, Level = .01, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 20

FIG 7B. Shape vs n^2 Critical Values, Level = .01, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 25

FIG 71. Shape vs χ^2 Critical Values, Level = .01, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .01 N = 30

FIG 72. Shape vs \(n^2 \) Critical Values, Level = .01, n = 30
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 5

FIG 73. SHAPE vs \(\chi^2 \) Critical Values, Level = .05, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 10

Critical Values, Level = .05, n = 10

SHAPE PARAMETER

CRITICAL VALUES

0.00 0.12 0.14 0.16 0.18 0.20 0.22 0.24

SHAPE VS γ^2 Critical Values, Level = .05, n = 10

137
FIG 75. SHAPE VS t^2 CRITICAL VALUES, Level = .05, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 20

FIG 75. Shape vs w^2 Critical Values, Level = .05, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .05 N = 25

FIG 77. Shape vs \(k^2 \) Critical Values, Level = .05, n = 25
FIG 7a. Shape vs n^2 Critical Values, Level = .05, n = 30
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10 N = 5

FIG 79. Shape vs n^2 Critical Values, Level = .10, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10 N = 10

FIG 39. SHAPE vs \(w^2 \) Critical Values, Level = .10, n = 10
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = 0.10 N = 15

FIG 21. SHAPE vs \(n^2 \) Critical Values, Level = 0.10, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10 N = 20

FIG 32. Shape vs x^2 Critical Values, Level = .10, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10 N = 25

FIG 83. Shape vs \(s^2 \) Critical Values, Level = .10, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .10 N = 30

FIG 64. SHAPE vs \(\gamma^2 \) Critical Values, Level = .10, n = 30
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 5

FIG 8.5. Shape vs k^2 Critical Values, Level = .15, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 10

FIG. 30. SHAPE vs γ^2 Critical Values, Level = .15, n = 10.
SHAPE VS CRITICAL VALUES

GAMMA LEVEL = .15 N = 15

FIG 27. Shape vs \(\kappa^2 \) Critical Values, Level = .15, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 20

FIG 88. Shape vs χ^2 Critical Values, Level = .15, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 25

11.69. Shape vs γ^2 Critical Values, Level = .15, n = 25
FIG 96. SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .15 N = 30

FIG 96. Shape vs γ^2 Critical Values, Level = .15, n = 30
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL=.20 N=6

FIG 91. SHAPE vs N² Critical Values, Level = .20, n = 5
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL=.20 N=10

FIG 42. Shape vs \(\gamma^2 \) Critical Values, Level = .20, n = 10
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .20 n = 15

FIG 93. Shape vs x^2 Critical Values, Level = .20, n = 15
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = .20 N = 20

SHAPEx VS x^2 Critical Values, Level = .20, n = 20
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = 0.20, N = 25

FIG. 59. Shape vs κ^2 Critical Values, Level = 0.20, n = 25
SHAPE VS CRITICAL VALUES

GAMMA

LEVEL = 0.20 N = 30

FIG 96. SHAPE vs \(\chi^2 \) Critical Values, Level = 0.20, n = 30
APPENDIX G

Computer Programs
PROGRAM AD

*THIS PROGRAM GENERATES THE MODIFIED A-D STATISTICS

THE TABLES GENERATED ARE VALID FOR THE GAMMA DISTRIBUTION

N = SAMPLE SIZE = 5x(5), 30

SS1 = 0 IF SCALE PARAMETER (THETA) IS KNOWN
SS1 = 1 IF THETA IS TO BE ESTIMATED
SS2 = 0 IF SHAPE PARAMETER (K) IS KNOWN
SS2 = 1 IF K IS TO BE ESTIMATED
SS3 = 0 IF LOCATION (C) IS KNOWN
SS3 = 1 IF C IS TO BE ESTIMATED
C1 = INITIAL ESTIMATE OF C (OR KNOWN VALUE)
T1 = INITIAL ESTIMATE OF THETA (OR KNOWN VALUE)
A1 = INITIAL ESTIMATE OF ALPHA (OR KNOWN VALUE)

COMMON/VALUE/P(100)
COMMON/RAY/T(100)
COMMON/MANA/NeSS1+SS2+SS3+c1+a1,MR
DOUBLE PRECISION OSEED, C1, T1, A1
DIMENSION FX(60), XX(5000), YY(5000), G(50)
INTEGER REP, PP
OSEED = 150000000
MR = 0
N = 0
ZER0 = 0
REP = 0
NOS = PP - 2
NUM = REP - 2

CALCULATES 5000 PLOTTING POSITIONS ON INTERVAL (0,1) AT (1-.5)/N
THESE ARE USED FOR INTERPOLATIONS ON PERCENTILES

YY(1) = 0.
YY(REP) = 1.
DO 405 L = 2, REP - 1
 YY(L) = (L - 1) / NOS
CONTINUE

END OF PLOTTING POSITIONS ROUTINE
READ+SS1+SS2+SS3+c1+a1
PRINT+SS1+SS2+SS3+c1+a1
PRINT
SAMPLE SIZE ASSIGNED HERE
DO 100 PP = 15, 15
N = PP
M = N

LOOP FOR MONTE CARLO SIMULATION STARTS HERE
DO 99 KK = 1, 5000
CALL GGAMR(OSEED, A1, N, G, P)
DO 719 K=1,N
 P(IK)=1.*P(IK)*10.4
719 CONTINUE
 CALL VSRTA(P,N)
 DO 3 I=1,N
 T(I)=P(I)
 CONTINUE
 CALL GAMMA(CSJ,TSJ,ASJ)
C *CALCULATES ESTIMATED F(X) FOR EACH SAMPLE POINT
 DO 333 L=1,N
 W=P(L)+CSJ/TSJ
 X1=ASJ
 CALL MGAM(M,W,X1,PROB,IER)
 FX(L)=PROB
 IF(FX(L).EQ.0.)THEN
 FX(L)=FX(L)+.0001
 NZERO=NZERO+1
 END IF
 IF(FX(L).EQ.1.)THEN
 FX(L)=FX(L)-.0001
 NONE=NONE+1
 END IF
 CONTINUE
 WAD=0.
 XN=N
 DO 500 I=1,N
 X1=I
 WAD=WAD+2.*(XI-1.)*(LOG(FX(I))+LOG(1.-FX(N+1.-I)))
 CONTINUE
 WAD=1.-WAD/XN
 AA(KK)=WAD
99 CONTINUE
 CALL VSRTA(AA,5000)
 DO 400 L=1,REP-2
 XX(L+1)=AA(L)
400 CONTINUE
 CALL ENOPT(XX,YY,REP,HNUM)
C *PRINTS PERCENTILES
 PRINT*(2X,A=12,I)*FOR N = *PP
 PRINT*(2X,A=16)*----------
 PRINT*
 DO 410 J=80,95,5
 DO 420 I=1,REP
 I=REP+1-I
 IF(YY(I).LT.(J/100.-.0))THEN
 SLOPE=(YY(I+1)-YY(I))/(XX(I+1)-XX(I))
 ZZ=-SLOPE*XX(I)+YY(I)
 PRINT*(2X,A=12,A,F9.4)*,
 1*THE* & J*TH PERCENTILE IS*,
 2*(J/100.)-ZZ)/SLOPE
 PRINT*
 GO TO 410
 END IF
 420 CONTINUE
 410 CONTINUE
DO 430 AK=1,REP
K=REP*1-AK
IF(YY(K).LT.99) THEN
 GO TO 999
END IF

430 CONTINUE

999 SLOPE=(YY(K+1)-YY(K))/XX(K+1)-XX(K))
ZZ=SLOPE*XX(K)+YY(K)
PRINT(2*X+AZF9.4)*
!THE 99TH PERCENTILE IS*
2((99-ZZ)/SLOPE
PRINT
PRINT
PRINT
PRINT
100 CONTINUE

PRINT(2*X+F9.4+X+F9.4+X+F9.4+)*CS+TS+AS*E
END

SUBROUTINE TO EVALUATE ENDPOINTS
SUBROUTINE ENDP(XX,YY,REP,NUM)
INTEGER REP
DIMENSION XX(REP),YY(REP)
SLOPE=(YY(2)-YY(3))/XX(2)-XX(3))
B=Y(2)-SLOPE*XX(2)
V1=B/SLOPE
IF(V1.LT.0.) THEN
 V1=0
END IF

XX(1)=V1
SLOPE=(YY(NUM)-YY(NUM+1))/XX(NUM)-XX(NUM+1))
B1=YY(NUM)-SLOPE*XX(NUM)
V2=(1.-B1)/SLOPE
XX(REP)=V2
RETURN
END
PROGRAM PIOGG1

THIS PROGRAM GENERATES A POWER STUDY BETWEEN THE FOLLOWING:

KS, CRAMER VON-MISES, ANDERSON-DARLING, AND CHI-SQUARE STAT

5000 REP:

THIS POWER STUDY IS VALID FOR THE GAMMA DISTRIBUTION

N = SAMPLE SIZE = 25

SS1=0 IF SCALE PARAMETER THETA IS KNOWN

SS2=0 IF SHAPE (K) IS KNOWN

SS3=0 IF LOCATION (C) IS KNOWN

CI=INITIAL ESTIMATE OF C (OR KNOWN VALUE)

TI=INITIAL ESTIMATE OF K (OR KNOWN VALUE)

COMMON/VALUE/P(100)

COMMON/R/CT(100)

COMMON/MANA/H+SS1+SS2+SS3+C1+T1+A1+M7

DIMENSION FX(100),FIX(100)

DOUBLE PRECISION OSEED*10.

INTEGER PP

OSEED=0.

HR=0.

RWCM=0.

RWKS=0.

MZERO=0.

NONE=0.

CONTINUE.

READ *SS1,SS2,SS3,C1,T1,A1

PRINT* *SS1,SS2,SS3,C1,T1,A1

PRINT

PRINT* *SS1,SS2,SS3,C1,T1,A1

PRINT

PRINT* (2X,A,F1.1)**SHAPE=+A1

PRINT* (2X,A,**---------------------)

PP=10

N=PP

M=N

DO 99 KK=1,5000

CALL GNLG(0,OSEED,M,0..1.11)

DO 719 IK=1,N

CONTINUE.

CALL VSRTAP(N)

DO 3 J=1,N

T(IJ)=P(IJ)

CONTINUE.

CALL GAMMA(CSJ,TSJ,ASJ)

DO 48 L=1N

W=TSJ-J-CSJj/TSJ

164
PROGRAM P1066I 74/74 OPFED

XX=ASJ
CALL MOGAM(W,XX,PROB,IER)
F(X)=PROB
F(X)=F(X)
IF (F(X)<0.0001) THEN
NONE=NONE+1
END IF
IF (F(X)<0.001) THEN
NONE=NONE+1
END IF
CONTINUE
WCM=W
X=0.
D=0.
TOP=T
B=0.
DO 500 I=1,N
XI=I
RL=I
IF(RL/XN=F(X),GT.,TOP) TOP=RL/XN=F(X)
IF(F(X)>1.-1/2)
WAD=WAD+(2.*X1-1.*(12.*XN))
CONTINUE
DIFF=TOP
IF(BOT.GT.DIF) DIF=BOT
WKS=DIF
AAKS(I,K)=DIF
IF(WKS.GT.*2732) RM=W,K+1.
WCM=WCM+1./((12.*XN)-W)
AAMCVM(I)=WCM
IF(WCM.GT.1391) WCVM=WCVM+1.
WAD=WAD/XN+X
AAMD(I,K)=WAD
IF(WAD.GT.801) RWAD=RWAD+1
CONTINUE
CALL VSRTA(AAKS,5000)
CALL VSRTA(AAMCVM,5000)
CALL VSRTA(AAMWAD,5000)
PRINT*
PRINT*,*SAMPLE SIZE = *,PP
PRINT*
PRINT*,*TOTAL REJECTION % FOR <= 5.0
PRINT*,*TOTAL REJECTION % FOR 9<=0.
PRINT*,*TOTAL REJECTION % FOR 9<=0.
PRINT*,*TOTAL REJECTION % FOR 9<=0.
PRINT*
PRINT*,(2*X,F9.4,X,F9.4)
END
SUBROUTINE GAMMA CALCULATES MLE PARAMETERS

SUBROUTINE GAMMA(CSJ, TSJ, ASJ)
COMMON /NAV/T(100)
COMMON/ANA/MA, SS1, SS2, SS3, M, CI, T1, A1, NF
DOUBLE PRECISION T(C), THETA(J), ALPHA(J), DLT, DLA, AL, DLC, CE, T1, EN, EM, C1, T1, A1, NF
DOUBLE PRECISION EM, E1, D2, DT, D2A, DA, DC, DENS, GAM2, GAM1, GAM0
DOUBLE PRECISION RAGA, RAG12, EXP, DABS, DLOG, SL, DS, G1, GI, D12, S1, DGA
DOUBLE PRECISION DGAM1, EL, CSJ, TSJ, ASJ, CI, T1, A1, DSEED
DIMENSION C(100), T(100), THETA(J), ALPHA(J)
DIMENSION C1(100), T(100), THETA(J), ALPH(J)
DIM 3, 3
THETA(J) = T1
ALPH(J) = A1
EN = N
EM = M
86
ELMN = E0, D0
EMR = MR
MRP = MR + 1
87
NM = N - M + 1
DO 88 1 = NM, N
 EI = 1
88
ELMN = ELMN + DLOG(EI)
IF (MR) 89, 109
109
DO 10 I = 1, NR
 EI = I
110
ELMN = ELMN + DLOG(EI)
89
DO 63 J = 1, 100
 IF (J-1) 63, 109
101
JJ = J - 1
 IF (J-JJ) 111, 109
111
J2 = J - 2
 IF (J-J2) 111, 112
112
J3 = J - 3
 IF (SS1) 113, 119, 118
118
D2T = THETA(JJ) - 2.0 + THETA(J2) + THETA(J3)
DT = THETA(JJ) - THETA(J2)
 IF (D2T) 114, 135, 135
135
NT = DABS(DT/D2T)
 GO TO 120
120
NT = 999999
121
IF (SS2) 122, 122, 122
122
D2A = ALPHA(JJ) - 2.0 + ALPHA(J2) + ALPHA(J3)
DA = ALPHA(JJ) - ALPHA(J2)
 IF (D2A) 122, 122, 122
123
NA = DABS(DA/D2A)
 GO TO 123
122
NA = 999999
123
IF (SS3) 124, 124, 124
124
D2C = C(JJ) - 2.0 + C(J2) + C(J3)
DC = C(JJ) - C(J2)
 IF (C(JJ) + 5.0 - T(JJ)) 140, 125, 125
140
DO 125 I = 1, 5
 IF (C(JI) + 5.0 - T(I)) 140, 125, 125
125
GO 125
SUBROUTINE GAMMA 74/74 OPT=0

140 IF (C(JJ)-5.0<5) 125,125,141
141 IF (O2C) 137,125,137
137 HC=ABS(O2C/02C) GO TO 126
125 HC=99999
126 NS=2*MIN(NT,NA,NC) IF(NS)6,6,142
142 IF(NS<99999)139,6,6
130 ENS=NS IF (SS1) 127,127,120
127 THETA(J)=THETA(JJ) GO TO 129
126 THETA(J)=THETA(JJ)+(DT-2500*(ENS+1.00)*O2T)*ENS
THETA(J)=DMAX1(THETA(J),1.0-4)
129 IF (SS2) 130,130,131
130 ALPHA(J)=ALPHA(JJ) GO TO 132
131 ALPHA(J)=ALPHA(JJ)+(DA-2500*(ENS+1.00)*O2A)*ENS
ALPHA(J)=DMAX1(ALPHA(J)1.0-4)
132 IF (SS3) 133,133,134
133 C(JJ)=C(JJ) GO TO 112
134 C(JJ)=C(JJ)+(DC-2500*(ENS+1.00)*O2C)*ENS
C(JJ)=DMAX1(C(JJ),1.00)
C(JJ)=DMIN1(C(JJ)-T(1))
IF ((1.00-EMR)+C(JJ)-T(1))112,6,6
6 THETA(J)=THETA(JJ) IF (SS4) 135,135,137
7 SI=0.00 DO 8 I=MRP,4
8 SI=SI+T(I)-C(JJ)
IF (N-MRP)666,73,74
73 THETA(J)=SI/(EM+ALPHA(JJ)) GO TO 13
74 GMA=GM(1+ALPHA(JJ)) KS=0
DD 100 K=1+50
KK=K-1
GMA1=GM(1+(T(M)-C(JJ))/THETA(JJ)+ALPHA(JJ))
GMA2=GM(1+T(MR)-C(JJ))/THETA(JJ)+ALPHA(JJ)
DLT(K)=EM+ALPHA(JJ)/THETA(JJ)+SI/(THETA(JJ)+2)+(EN-EM)+((T(M)-C(JJ)
1)+ALPHA(JJ)+EXP((C(JJ)-T(M))/THETA(JJ))/THETA(JJ)+ALPHA(JJ)+1.0
20+EXP((GMA1)/EMN+ALPHA(JJ))/THETA(JJ)+ENM+(T(MR)-C(JJ))**ALPHA(JJ)
3)*EXP((C(JJ)-T(MR))/THETA(JJ))/THETA(JJ)+ALPHA(JJ)+1.00)^GMA2 TH(K)=THETA(JJ)
IF (DLT(K))101,13,102
101 KS=KS+1 IF (K=KS+1)
102 IF(K=KS+1)103,103,103
103 THETA(J)=5.00+TH(K)
GO TO 106
104 THETA(J)=1.500+TH(K)
GO TO 106
105 IF (DLT(K))=DLT(K)107,13,106
106 KK=KS-1
GO TO 105

167
SUBROUTINE GAANA
107 THETA(J) = TH(K) + DLT(K) * (TH(K) - TH(KK)) / (DLT(KK) - DLT(K))
108 CONTINUE
123 ALPHA(J) = ALPHA(JJ)
124 IF (SS22 < 4.4 + 15)
125 SL = 0.00
126 DO 16 I = MRP,M
127 SL = SL + LOG(T(I) - C(JJ))
128 KS = 0
129 DO 43 K = 1, 50
130 KK = K - 1
131 GMA = GAM(A) (ALPHA(J))
132 IF (N-M+MR) >= 66.30 + 21
133 GMA1 = GAM((T(M) - C(JJ)) / THETA(J) * ALPHA(J))
134 GMA2 = GAM((T(MP) - C(JJ)) / THETA(J) * ALPHA(J))
135 DG = DGAM(A) (ALPHA(J))
136 IF (N-M+MR) >= 66, 77, 32
137 DLAC(K) = EM * LOG(THETA(J)) + SL - EM * DG / GMA
138 GO TO 70
139 DG1 = DGAM(A) (T(M) - C(JJ)) / THETA(J) * ALPHA(J)
140 DG2 = DGAM(A) (T(MP) - C(JJ)) / THETA(J) * ALPHA(J)
141 DLAC(K) = EM * LOG(THETA(J)) + SL - EM * DG1 / GMA - GMA1
142 CONTINUE
143 GO TO 40
144 KS = KS - 1
145 IF (KS <= 0, 70)
146 KS = KS + 1
147 ALPHA(J) = 0.50 * ALPHA(JK)
148 GO TO 43
149 KS = KS + 1
150 IF (KS <= 0, 70)
151 KS = KS - 1
152 ALPHA(J) = ALPH(K) * OLACK) + (ALPH(5) - ALPH) (OLACK) / OLACK)
153 IF (N-M+MR) >= 66.30 + 24
154 THETA(J) = TH(K) + DLT(K) * (TH(K) - TH(KK)) / (DLT(KK) - DLT(K))
155 CONTINUE
156 C(JJ) = C(JJ)
157 IF (SS22 < 4.4 + 15)
158 DLT(K) = (1.00 - ALPHA(J)) * SR + EM / THETA(J)
159 GO TO 82
160 DLT(K) = (1.00 - ALPHA(J)) * SR + EM / THETA(J) + (EN-EN) * (TM - C(JJ))
SUBROUTINE GHMA

1. ALPH(A(J)-1.0D0)*EXP(-(T(M)-C(J))/THETA(J))/(THETA(J)*ALPHA(J)*(GMB 2a-GMAI)+EMK*(NRP-C(J))*ALPHA(J)-1.0D0)*EXP(-(NRP-C(J))/THETA(J)) 3THETA(J)/THETA(J)*ALPHA(J)*GMAI2)

82 CE(K)=C(J)
91 IF (DL(C(K))<91,112,91)
90 KS=KS-1
91 KS=KS+1
52 C(J)=5D0*CE(K)
GO TO 60
53 C(J)=CE(K)*SDO*(T(I)-CE(K))
GO TO 68
54 IF (DL(C(K))=DL(C(K))=D7,112,55
55 KK=KK-1
GO TO 54
67 C(J)=CE(K)*2L(C(K))*CE(K)+CE(K))/2L(C(K))-DL(C(K))
68 IF (DBS(D(C(J)-CE(K))-1.0-4-112,112,56
56 CONTINUE
GO TO 112
57 C(J)=T(I)
112 IF (HR>16,113,58)
113 DO 115 I=1,N
114 MR=MR+1
115 C(J)=T(I)
116 IF (HR>16,58,86
58 SL=0.D0
SL=0.D0
DO 92 I=MR,A
SI=SI+T(I)-C(J)
92 SL=SL*LOG(T(I)-C(J))
GMA=2LGM(ALPHA(J))
IF (N=MR)36,98,96
96 GMAI=2LGM(T(M)-C(J))/THETA(J)*ALPHA(J))
GMAI2=2LGM(T(NRP-C(J))/THETA(J)*ALPHA(J))
98 EL=EL+EM*LOG(GMAI)+EM*ALPHA(J)+2LGM(THETA(J))*ALPHA(J)-1.0D0)*SL 5T/THETA(J)
IF (N=MR)61,103,99
99 EL=EL+EM*ALPHA(J)+2LGM(THETA(J))+EM*2LGM(GMAI2)
100 CSJ=C(J)
TSJ=THETA(J)
ASJ=ALPHA(J)
IF (J=2)63,60,60
60 IF (DBS(D(C(J))=C(J))=1.0-4-16,61,63
61 IF (DBS(D(THETA(J)-THETA(J))-1.0-4-62,62,63
62 IF (DBS(D(ALPHA(J)-ALPHA(J))-1.0-4-63,63,63
63 CONTINUE
4 CONTINUE
66 RETURN
END
FUNCTION G6M 74/74 OPT=0 FTN 5.1+524

C **
C **
DOUBLE PRECISION FUNCTION G6M(Y)
DOUBLE PRECISION G6*Z*LOG*DEXP*Y
Z=Y
G=0.0D0

1 IF (Z-9.00001)>2.0D0
2 G=G-LOG(Z)
Z=Z+1.0D0
GO TO 1

3 G6M=G+(Z-.50000)*LOG(Z)-Z**50000*LOG(2.00001*1.141592653589793000)+1.0D0/
1(12.00002*Z)**1.00001*(36.00002*Z)**3+1.0D0/(1260.00002*Z)**5-1.0D0/(1680.00002*Z**
27)+1.0D0/(1160.00002*Z**9)-691.00002*(360360.00002*Z**11)+1.0D0/(1560.00002*Z**13)
3) G6M=DEXP(G6M)
RETURN
END

FUNCTION DGAM 74/74 OPT=0 FTN 5.1+524

DOUBLE PRECISION FUNCTION DGAM(Y)
DOUBLE PRECISION D6*Z*Y*LOG*GAM
Z=Y
G=0.0D0

1 IF (Z-9.00001)>2.0D0
2 G=G-LOG(Z)
Z=Z+1.0D0
GO TO 1

3 DGAM=G+(Z-.50000)*LOG(Z)-Z**50000*LOG(2.00001*1.141592653589793000)+1.0D0/
1(12.00002*Z)**1.00001*(36.00002*Z)**3+1.0D0/(1260.00002*Z)**5-1.0D0/(1680.00002*Z**
27)+1.0D0/(1160.00002*Z**9)-691.00002*(360360.00002*Z**11)+1.0D0/(1560.00002*Z**13)
3) DGAM=DEXP(DGAM)
RETURN
END

FUNCTION DGAMI 74/74 OPT=0 FTN 5.1+524

DOUBLE PRECISION FUNCTION DGAMI(W,Z)
DOUBLE PRECISION U=W*W+Z+SU*ELL
DIMENSION U(501)*W(501)
U(1)=W**2*LOG(W/Z)
W(1)=W**2/2**2+S
SU=U(1)-V(1)
DO 1 L=2,50
1 LL=L-1
ELL=LL
U(1)=U/(1.U(1)+U*ELL)**((Z*ELL-1.00001)/(Z+ELL))
W(1)=W/(Z*ELL-1.00001)**2/(Z+ELL)**2*ELL
S=SU*W**2/2*ELL
DGAMI=S
RETURN
END
FUNCTION GAMI

DOUBLE PRECISION FUNCTION GAMI(U, Z)
DOUBLE PRECISION U, W, Z, SU, ELL
DIMENSION U(50)
U(1) = W * Z
SU = U(1)
DO 1 L = 2, 50
 LL = L - 1
 ELL = LL
 U(L) = (-U(LL) / ELL) * W * (Z * ELL - 1.0) / (Z * ELL)
1 SU = SU * U(L)
 GAMI = SU
 RETURN
END
Vita

Philip John Viviano was born on 15 September 1948 in Saint Louis, Missouri. He graduated from Saint Paul High School in Highland, Illinois in 1966. He received a bachelor's degree in Applied Mathematics from Southern Illinois University in Edwardsville in 1971. He attended Officers Training School and was commissioned as a USAF officer in 1977. He worked as a planning analyst for the Deputy for Development Plans, Electronic Systems Division, Hanscom Air Force Base. He then entered the School of Engineering, Air Force Institute of Technology in June 1981.

Permanent Address: 126 Collinsville Ave.

Collinsville, IL 62234
END

FILMED

3-83

DTIC