
7-R124 733 DESIGN OF A MULTIPROCESSING OPERATING SYSTEM FOR 1/2
SIXTEEN-BIT MICROPROCESSORS(U) AIR FORCE INST OF TECH
URIGHT-PATTERSON RFB OH SCHOOL OF ENGI. . D S HUNEYCUTT

UNLSII DEC 82 AFIT/GCS/EE/82D-28 .F/G 9/2 N

11.

(%.%

-% -. -. - .- - -

\'~.$~C

~ I '*DT

LET

OW"FEK
DEATET FTEAI OC

AI NM ST (T.

IR INTTTO E" LG

A Olt4 --a- e

Wright-Pattmon A r FreBsOi

7%b d~mad b

p~-.7 .t" awao

a~~~ S * ... - -

AFIT/GCS/EE/82D-20

Design of a Multiprocessing

Operating System
for

Sixteen-Bit Microprocessors

THESIS

-a AFIT/GCS/EE/82D Douglas S. Huneycutt Sr.
Captain USAF

Approved for public release; distribution unlimited.

* ~* DTIC
* b-- , ~ELECTE

FEB 2 3 1983

WPI.I

Aj

* . AFIT/GCS/EE/82D-20

Design of a Multiprocessing

Operating System

for

Sixteen-Bit Microprocessors

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Accession For
NTIS GRA&I

DTTC TAB

Uyannounced -
Justificatio

by By_
Douglas S. Huneycutt, Sr., B.A. .istribution/

Availibility Codes
Captain USAF iAvail and/or

~ist ISpecial

Graduate Computer Systems

December 1982

Approved for public release; distribution unlimited.

iW-7

Preface

This thesis presents a design of a multiprocessing

operating system intended for implementation of 16-bit

microprocessor systems. The design is based on the works of

Mitchell S. Ross and Robert J. Yusko, to whom I would like

to express my thanks for a job well done.

Additionally, I would like to thank my faculty advisor#

Dr. Gary B. Lamont, for his help and understanding during

this effort.

Most of all, I would like to express my indebtedness and

greatest appreciation to my wife, Miriam. Her tolerance

and encouragement made my stay at APIT tolerable. Thanks

also to my son, Scott, who was forced to spend his first

year of life as a 'computer orphan'.

Douglas S. Huneycuttl Sr.

4,
-p1

S -",,-* *. P !, , - , + + " , l

Table of Contents

.." .- -I, Preface , ii
Table of Contents,ooooo*

2' Abs t r a c t i **.. 0000000 vi
I. Scope of Project oo o 1

Introduction 0000.. ***..000*00 * **0**** * ** *so0oe 1itryduction..... ,..........,.,................. 2History oooo,,o ,,o o ooooooo o ooo~ o.oo,.,,,,,,,o

Objectives . .00 60*90000000600009.00000 5
Approacha. * .a......... 6
Overview 0 .0a.*.a . 7

Ii. Requirements ooooooooooooo*oeooo*oooooooooeoeo 9

Introduction 000000.000** .. 00.0 9
Local Requirements 000000000*............... 9
Minimum Capabilities 10
Design Approach0........ 10
Language Considerations 0000000000000.00000000 13
CPU Considerations 0000000000* 16

Restriction of CPU Access 00000000 17A - Restriction of Memory Access 17
Memory Mapping o.0900000006606000000*000000.. 18
Program Relocation 0000..0000000........0000.0 19
Sharing of Memory .00409090000000096006060000 20
Context Switching **.*ee**ooo***.oooooo 20
Interrupt Support *..0..0.00......0.. 0000. 20
CPU Access Restriction 00.0.000.00000000000060 21
Memory Access/Mapping/Sharing 21
Context Switching *ooooooo.....****. .ooooo 21
Interrupt Handling*... 21
Choice of Target Device 22

Summary oooooo..o.............. 000.. 22

III. Top-Level System Design and Implementation....e. 23

Introduction 23
-' Structured Design Limitations •........ 24

Top-Level Modules 26
Bootstrap (Level 1) e....... 27
System Initialization (Level 2) o.o606........ 28
Interrupt Service (Level 3) 28
System Calls 29

CPU Scheduling (Level 4) 30
Summary 30

oeA'o o o ooo..,o e o o o o oo o e

IV. Interrupt Service 32

* "': Introduction 32
Linkage* 32
Timer Interrupts 33
Other Hardware Interrupts *00*.**.... 33
System Call Management *. 34

I.,.-. File System Calls 36
User Structure Calls .. 36
Process Structure Calls 37
System Modification Calls 37
Communications Calls 37

Summary 38

V. AMOS Data Structures Design and Implementation.. 39

• :Introduction 39

The Process Structure 39
The DDB Structure 41
The User Structure 41
The Master Block Structure 43
The Directory Entry Structure 43
Summary 43

VI. The AMOS File System Design and Implementation.. 44

Introduction 44
Specifications . . gge@....e.... .e.45

File Types 45
AMOS File System Structure46

File Addressing 47
Secondary Devices , 49
Disk Descriptor Blocks and Files 49
AMOS Disk Format 51
I/O Buffering 53
AMOS File System Calls (structure chart) 4

Creating a File 0.................... 55
Opening a File 59
Other System Calls 6

* Summary 61

VII. Results 62

Implementation Problems • ... 62

Solution • 63
Summary 65

VIII. Conclusions and Recommendations 66

Recommendations .6. 67
Major Recommendation • 69

0, h
1 ; i . ,"

;
"

' "" " '" ' "" " '" " " "" ' ". ..." "
" *

"" " . .""" '

Bibliography aaaaaa******** a aaaaaaa70

Appendix A: Microprocessor Benchmarks Al

Appendix B: UNIX Short Course Notes B........ 1

Appendix C: AMOS Bootstrap and ISRs *........ Cl

Appendix D: AMOS Structure Charts Dl

Appendix E: AMOS Source Code *... . .00000*...... El

Vita ... V

9:

i .

Vit

"S l e e e e e ee e e e e e ee e e e e e e e

*P~

"4:

*t

Abstract

A multiprocessing operating system for the Air Force

Institute of Technology Digital Engineering Laboratory was

designed and partially implemented. The requirements for

such a design were developed by a thorough literature search

and through an abstraction of the works of Ross and Yusko.

The resultant design is functionally compatible with UNIX,

version 2.7.

Because of the broad scope of such a project, this

effort was geared toward the total design of the file

system, with a high-level design to cover all other areas.

Further research is needed to complete the design, as the

high-level areas are not sufficiently detailed for full

implementation.

.4.

vi

I. Scope of Project

Introduction

:;T he purpose of this investigation is to develop a

multiprocessing operating system for sixteen-bit micro-

computers. The AFIT Multiprocessing Operating System (AMOS)

is based on state-of-the-art software and hardware

technology. AMOS has been designed to be implementable on

any of the current powerful microprocessors. The Zilog

-21*1W single chip microprocessor was chosen for the initial

implementation due to its advanced architecture and

architectural similarity to popular minicomputer processors.

Chapter 2 deals with this selection in much greater detail.

:.The Z8000 was designed with operating system support in

mind, and this investigation takes every advantage of that

design.

The purpose of this chapter is to give a brief histor-

ical introduction to operating systems, to outline the

objectives of this investigation, and to detail the approach

taken to attain the stated objectives.

A formal definition of an operating system is: "those

program modules that govern the control of computer system

resources such as processors, main storage, secondary sto-

rage, I/0 devices, and files. "(Ref 1, P.). The important

implication in this definition is that the operating system

is usually a software program. Because the operating system

and user programs both execute in computer hardware, the

operating system must have the capability of gaining

'special' status, thus allowing it to allocate and

deallocate resources at a higher priority level than that of

the normal user program.

Historically, there has been a logical line of demar-

cation between microcomputers and minicomputers. Even the

low-level minicomputers, such as the Digital Equipment

Corporation's PDP-11 series, have hardware capable of en-

forcing the difference between the system and the user. On

the other hand, microcomputer systems have typically been

restricted to a single user, confined within a narrow

address space, usually 64K bytes.

Within the past few years, however, there has been a

tremendous surge in technology, resulting in a new class of

microprocessors with the capability of addressing up to 16

megabytes of main memory directly.(Ref " 2) This extended
memory access capability immediately opened the micro-

computer segment of technology to advanced applications,

such as intricate graphics, large database manipulation,

multiuser environments, and others. Because of the new

emphasis on microcomputer software, operating systems

development for microcomputers can now achieve the same

level of sophistication already available for minicomputers.

History

The earliest computers were designed for processing a

single jot at a ti, t, and were programmed by hand, setting

memory locWa'nb with switches and reading in punched cards.

The 'operating systems' of these machines were basically

2

program loaders. As the technology improved, processor

speed increased, and it became obvious that a large amount

of time was spent waiting for 1/0 operations to be

completed. Multiprogramming was developed to take advantage

of the wasted time by having multiple jobs in memory and

allowing their 1/0 wait states and processing states to

*overlap. This technique depends rather heavily on having a

good mix of I/O-bound and CPU-bound jobs in memory to

achieve the most efficient usage of system

resources. (Ref. 1# p- 238) To alleviate this requirement,

time-slice preemption was developed where each job was given

a set time (100 milliseconds, for example) in which to

perform CPU processing. If the job had not requested I/O by

the end of its time-slice, it was preempted and placed in a

holding queue until its turn came to be processed again.

From the development of time-slice preemption, it was a

natural turn of events to start using timesharing, in which

most user input and output centers at the user's terminal.

The use of terminal timesharing required that the computer

* have some way of conversing with the average user, not just

the specially trained operators. 'User-friendly' has become

a popular phrase in referring to operating systems, often

for the lack of the characteristic. For an operating system

to be user-friendly, it must communicate with the user at

whatever level the user desires. The early mainframes had

no degree of user-friendliness, while today's large systems

(e.g. the DEC-20 seripi) have operating systems which make

it very difficult for the uninitiated user to achieve

3

'computer suicide'. This is achieved in part by providing

defaults for command options, allowing easy recovery of

deleted files, and repeated confirmation requests during

dangerous procedures.(Ref. 3) Whether or not this techinque

is actually 'friendly' or not depends heavily on the user's

point of view and experience level.

In 1969, Ken Thompson of the Bell Laboratories began

developing the UNIX timesharing operating system for Digital

Equipment Corporation's minicomputers. Originally designed

as a research tool for Thompson's own work, UNIX spread

through the Bell facilities due to its utilitarian nature.

From the Bell groups, UNIX went on to find popular support

at universities and (to a lesser extent) the business world.

Today, UNIX is one of the most popular operating system for

DEC minicomputers.(Ref. 4)

In 1974, Microcomputer Applications Associates deve-

loped the Control Program for Microcomputers (CP/M). CP/M

was designed as a single-user operating system, taking

advantage of the new technologies of 8-bit microprocessors

and low-cost floppy disk storage to provide an attainable

computer for a single user. CP/M gained in popularity

rapidly, mostly due to its wide acceptance by the growing

person~l computer market, and is now "the operating system

of choice of more than 500,000 users, almost 100 vendors,

and more than 500 independent software vendors."(Ref 5)

In the last few years, many efforts have been made to

usurp CP/M's position in the 8-bit computer world. 'Unix-

4

LS- 7777. 6 7 -7 79

like' operating systems have been marketed for 8-bit

machines, most notably Cromix(Ref " 5) for Cromemco Z-80

computers and the Apple-Ill operating system(Ref" 5), which

implement many of the Unix features. These efforts, while

partially successful, have shown that minicomputer

*performance cannot generally be achieved from an 8-bit

computer.

Until the last few years, UNIX and CP/M formed a

natural boundary between minicomputer and microcomputer

software. Microcomputer eight-bit architecture was

*incapable of the performance levels required to efficiently

use the powerful structures of the UNIX system. Recently,

however, the development of the new 16-bit microcomputers

has narrowed the architectural gap between minicomputers andW "-
microcomputers. With the introduction of processors such as

the Intel 8086, the Zilog Z8000, and the Motorolla 68000,

the microcomputer user is no longer bound to overly

restrictive architecture and processor speeds. The new

microprocessors are complemented with new, powerful control

software.

Objectives

The objective of this investigation is to develop a

multiprocessing operating system for a 16-bit micro-

processor. Requirements definitions, design and implemen-

tation will be accomplished using modern top-down

I methodology. The phrase 'divide and conquer' is particu-

* * larly appropriate in the realm of operating system design.

Each module will contain only procedures relevant to the

5

stated purpose of the module, and will be restricted in

length to a reasonably understandable amount of information.

The major considerations involved are reliability, fairness

in resource allocation, 'user-friendliness', and cost-

effectiveness. As in the development of Unix, the operating

system will consist of the 'kernel' only, leaving

development of utility and user programs for future

projects.

The implementation of the operating system will be

accomplished in a structured high-level language. Again as

with Unix, the operating system development will avoid as

much as possible hardware configuration dependency.

Approach

This investigation began with a thorough literature

review to extract useful methods already proven successful

- in the development of operating systems. Most of the

requirements definitions were derived from the works of

RosslRef. 6) and Yusko(Ref " 71. There is no accepted

standard method for operating systems design, but literature

abounds with methods for software engineering. Recalling

the previously stated definition of an operating system, the

design offered by this investigation will treat the

operating system as, a large, very complex combination of

,algorithms and will proceed with techniques suggested by the

software engineering community.

Because of the complex nature of an operating system, a

top-down structured approach to design and implementation

6

. , .,,

is essential. More appropriately, from the user's view, an

'outward-in' approach is taken, looking inward from where

the user sits at the terminal. This method helps insure

that user requirements are met and that the system behaves

in a 'user friendly' manner.(Ref. 5)

The initial implementation computer for the operating

system is a Multibus Z8000 system from Advanced Micro

Devices (AMD). The system consists of a non-segmented Z800

CPU card, a multi-port serial I/O card, 128-Kbytes of main

memory, a floppy disk controller, a clock/timer card, and a

mainframe with motherboard, power supply, and cooling fans.

Overview

This investigation is rooted in the investigative works

of Ross(Ref " 6) and Yusko(Ref " 7). Yusko's scheduler, as

presented in his thesis, is modified to fit directly into

the AMOS structure.

Ross' high-level design is used in a modified form and

greatly expanded. Appendices will include structure charts,

structured English modules, and the data dictionary. The

actual source code for the operating system is placed in

appendix E.

. Testing of the operating system was done at all points

.% 1 during its development. Both validation (assuring that the

development stage produces correct results)(Ref - 18, p. 84)

and verification (making sure that the results are what is

required)(Ref. 18, p. 85) were continuous processes.

The sequence of steps taken in this development and

their relative importance were derived from the author's

7

7. (. . " "

experiences. To be a valid learning experience, this

project was designed to be as highly structured as possible,

otherwise all other students to follow will become

hopelessly bogged down in the project's complexity. AFIT

needs this operating system as a tool, both for further

student research and eventually as a basis for cost-

effective student development systems.

-. 8

U-

U.... ..

l-

'

'11

II. Requirements

Introduction

Operating systems today are sophisticated interface

devices between the computer user and individual computer

resources. On some of the more friendly systems, the user

has the capability to ask the computer to prompt for

'commands. For example, on the TOPS-20 operating system for

Digital Equipment Corporation's DEC-20 computers, a user may

type in 'DIR' followed by an escape, and TOPS-20 will auto-

matically complete the command line with 'ECTORY (of what

account?)'. To achieve this level of sophistication,

operating systems are by nature very complex.

(S To design an operating system to complement the state-

of-the-art, highly structured techniques must be used

religiously or months of effort may be wasted through

confusion and incompatibility as the project grows. The

purpose of this chapter is to present the

objectives/approaches considered for this design and

implementation effort and to explain the logic used in

selecting the techniques and tools.

Local Requirements

AFIT personnel rely heavily on various computer systems

for study and research work. Both faculty members and

students currently have to rely on the availability of

computer resources external to AFIT. From benchmarks

conducted by the MITRE Corporation, an efficient

* ". microprocessor multiuser system should be capable of

9

handling (conservatively) 8 to 10 concurrent users with

little degradation. (Ref. 8, P. 20) This would provide AFIT

with a very cost-effective software development system.

Additionally, AFIT courses include subjects such as

software engineering and operating systems development.

Carefully designed and highly structured operating system

documentation would prove invaluable to the teaching of

these subjects.

Perhaps the most important requirement locally is for

* an operating system that is highly reliable and user-

friendly. Students in particular become very disenchanted

when having to learn cryptic commands in an attempt to

recover lost files that should not have been lost in the

first place.

The Air Force is gradually recognizing the value of the

microcomputer in support of the Air Force mission. To this

end, the Microcomputer Technology Branch of the Air Force

Data Systems Design Center at Gunter AFS, Alabama has been

recently created to supervise the production and acquisition

of standard Air Force microcomputer software. (Re f. 9) This

project is designed not only to provide a multitasking

operating system, but also to provide the insight necessary

for Air Force acquisition personnel to correctly specizfy

required software.

Minimum Capabilities

*1~ The following Is a list of the minimum capabilities

that should be produced by this design effort. These

requirements were developed by the author over several years

10

.~~~~~* .- - . . .~..

' ,. of use of various operating systems. Additionally, the

works of Ross (Ref " 8) and Yusko (Ref " 9) were consulted to

c'nsolidate the requirements research of prior works.

1) Multiuser support (at least 4 concurrent

users, more if hardware is available)

2) Friendly user interface

3) Interprocess/interuser communication

4) Fair allocation of system resources

5) Meaningful error/recovery diagnostics

6) Minimal device/user utility support

These requirements are specified as a goal, to give the

research effort a point of focus. As research continues,

the requirements will be modified and consolidated to

conform to ever-changing needs.

Due to the nature of this project, user utilities and

support software will not be considered unless time permits.

The main thrust of this design will be toward the total

specification and implementation of the multiple-user file

system, with process control and interfacing being given

secondary attention.

Design Approach

The operating system in this design will be approached

from the 'hierarchical view,(Refo 10) to best allow for

continued development in future projects. This view

considers the system as a layered series of subsystems, each

with a specific routine to perform. To achieve its

function, one layer may call upon lower layers, which may in

*1

;o11

turn call upon still lower layers. The key to this view is

knowing exactly where each layer belongs, what information

it needs as input to perform its task, and what information

it will return to the calling layer when its task is

complete.

Dijkstra first formalized this view of operating

systems design.(Ref " 10) His T.H.E. operating system is the

classic example of the hierarchical operating system design

approach. In this system, level 0 controls the CPU resource

and level 1 controls the memory resource, virtualizing

memory by providing paging and segment management. Level 2

virtualizes the operator console. Level 3 manages

peripheral devices, while levels 4 and 5 are user and

operator processes, respectively. By using this technique

of isolating all functions on a hierarchical level basis

". with strictly defined operations, inputs, and outputs, the

correctness of any operating system module can be tested by

stubbing its subordinate modules. Further still, Dijkstra

claims the entire system can be tested and proven logically

correct before it is implemented(Ref.), although such an

project.

The hierarchical, top-down approach will be used by

this study. Other methods, such as Hansen's bottom-up

F approach,(Ref. 11) are acknowleged but will not be

considered further, as they do not lend themselves as well

V 1 to the continued research required by such a large project.

12

Language Considerations

In discussing structured design and implementation of

* a project such as this, careful consideration must be given

to the choice of language in which to carry out the

Implementation. Obviously, a structured design lends itself

well to being coded in a structured language, but there are

other factors to consider.

Historically, operating systems have been written in

assembly language.(Refo 20) The main reasons for this are

that: 1) well written and optimized assembly code is the

fastest-executing code available, and 2) the code produced

is the most compact, taking up the least possible amount of

expensive (in price and availability) memory.

The trend in software development today is turning

toward structured languages for a single major reason --

cost (including time of implementation). The cost of

hardware continues to drop in the competitive marketplace,

while the shortage of competent software designers continues

and grows more severe. Managers have recognized for a

number of years that the cost of developing and maintaining

a large software system, over time, far exceeds the cost of

the hardware required to run the system.(Ref 12 In an

A effort to minimize this expense, large-scale design projects

now commonly use software engineering structured design

techniques. The use of structured languages allows programs

to be written in a style that follows the physical form of

If 10 the design used. This allows maintenance programmers to

reference system documentation that directly matches the

13

J.. 4 7

. -Z structure charts, HIPOs, or whatever techniques are used.

The benifits of using structured language for

implementation of large projects has extended into the

design of operating systems, where speed and size are

crucial factors. The result is a hybrid construction where

the structured language is used for the control structures

and, in speed sensitive areas, assembly language is used to

optimize performance. Both UNIX, written in C, and UCSD

Pascal, written in Pascal, are implemented in this fashion.

Another consideration in the AFIT environment is porta-

bility. AFIT has a tendency to pick up new microcomputers

as they become available. Often software is not available

for these devices until much later than the time the

hardware is released. If an operating system is designed

with portability in mind, then transfering It to the new

hardware should involve modifications to low level routines

only. An operating system implemented mostly in a high-

level language eases the process, as there are usually one

or more cross-compilers for that language. With low-level

driver modification, any software project that is well

designed should be able to be transfered from one machine to

another. If the implementation is in assembly language,

this process would be very costly, if not impossible. An

excellent example of this process is the UNIX system, which

has been implemented on several machines ranging from the

Interdata 7/32 and IBM/370(Ref. 13) machines down to the

LSI-11 microprocessor.(Re f 14) As a counter-example,

14

kz, .PLO -

consider the CP/M and MP/M operating systems which, being

K "written in 8080 assembly language, can only run on 8080,

Z80, and 8085 microcomputers.

Given that this implementation effort will take place

mainly in a high-level structured language, the only choice

is which one to use. Two of the choices are Pascal and C,

with others (PL/I, Algol, etc) in the background. Require-

ments are that the language provide clean, easy to

understand flow control structures (the basic for/next,

repeat, and decision structures) and that the language not

be overly restrictive. In other words, the language chosen

must allow the type of 'bit-tweaking' required in typical

operating systems functions, such as bit masking and boolean

logic operations. This stems from the desire to optimize

code for certain functions without having to resort to

assembly language.

The C language was chosen for this effort because, of

the two language compilers readily available for this

research (Pascal and C), C is by far the less restrictive.

Because of this lack of restriction, extreme care must be

taken to strictly adhere to structured design and

implementation rules. Otherwise, porrly designed and

written code may result, having a very negative effect on

future efforts. A strong influence in choosing C are that

AFIT has several C compilers available, including a Z8000

cross-compiler that runs under UNIX donated by the Mitre

Corporation.(Ref. 8, p. 28) Additionally, the C source for

the UNIX operating system is available for study.

15

. N W _ .. V . V 7 7 7. . . .

CPU Considerations

This design and implementation effort is geared toward

device independence. However, to have an implementation, a

target device must be selected. There are currently several

16-bit microprocessor devices on the market. Of these,

three were considered as initial implementation targets for

this study. The devices were the Intel 8086, the Zilog

Z8000, and the Motorolla 68000. The 8086 device was the

choice for the two thesis projects which preceeded this

effort, due to its availability in the Digital Engineering

Laboratory. In conversations with the authors of those

projects, the main drawback to the 8086 discussed was the

lack of differentiation between system tasks and user tasks.

This flaw would require operating system implementation to

rely on specialized external hardware and relatively complex

low-level system software to prevent malicious- or error-

induced mahem by users on one another. Of the three devices

inspected, only the Z8800 has the capability to discern

between system and user tasks and control the operations

performed by users.(Ref. 15)

Thorough benchmarks have been made testing the relative

merits ot the 8086, Z8000, and 68000. Appendix A details

these benchmarks. The Z8000 generally came out to be a bit

slower than the 68000, but much faster than the 8086.

Measurements made by the Mitre Corporation indicate that, in

local network processing, the Z8000 at 4 MHz is S 5 to 20

percent faster than a PDP 11/ 4 5.
'(Ref. 8, p. 20)

16

'V . . - - - - . 4

17 7Z7- - 77 7

The amount of hardware operating system support offered

4 by the CPU was of great importance in selecting the proper

device on which to implement the design. The support

desired includes restriction of access to the CPU,

restriction of memory access, memory mapping and program

relocation capability, sharing of memory (programs and

p data), context switching support, and 1/0 interrupt support.

The degree to which the devices in question support these

* items was the deciding factor in the choice of the Z8000 as

the implementation target. Each will be examined in detail

in the rest of this chapter.

Restriction of CPU access

The operating system is faced with a serious problem in

allocating its resources. It must relinquish control of

the CPU in order for user tasks to be processed, yet be

assured of regaining control correctly when a specific event

occurs. Obviously, when the CPU is turned over to a user

task, the operating system is no longer In control of the

*system. Therefore, there must be some mechanism to prevent

user tasks from doing mischief while running. The separa-

tion of the CPU into two modes, system and normal, solves

this problem. In system mode, the full power of the device

is available to the operating system. In normal mode, the

user tasks are restricted in their use of I/O instructions,

-~ control register manipulation, and other special instruc-

tions (i.e. the HALT instruction). The transfer between

~, ~.modes is normally accomplished through automatic circuitry

17

* 5 4 5 7 -. . . *

involving the interrupt structures and the use of special-

ized system interrupts called traps.

Restriction of Memory Access

Hardware support for restriction of access to memory

usually takes the form of interpretion of an address

presented by the CPU and matching the address against a

table of attributes set by the operating system. There are

two basic types of address that processors use.(Ref, 16)

Segmented addresses consist of a segment address and an

offset within that segment. This is sometimes called two-
* i,.

dimensional addressing. Linear addresses (or one-

dimensional addresses) consist only of an offset within

memory relative to address zero. In a system that uses

; segmented addresses, attributes are associated with a

segment. In systems that use linear addressing, attributes

are usually associated with fixed-length blocks of memory

called pages.

Memory Mapping

Memory mapping is the function of assigning each

logical address used in a program to a physical address in

the system. Usually, this is done by dividing the logical

address space into blocks of contiguous addresses, then

mapping the logical blocks into physical contiguous blocks

of memory. Such a scheme requires only that the base

physical address for each block be stored and that the

origins and sizes of the logical blocks be provided.

18

Program Relocation

There are three types of program relocation: static

relocation, dynamic logical address relocation, and dynamic

physical address relocation. (Ref.- 16) Static relocation is

what occurs in the operation of a linking loader, where

program location is determined at the time the program is

brought into memory from disk. Once running, the program is

fixed in memory. Dynamic logical address relocation is "the

process of changing the logical address at which a given

Program is to run.u(Ref. 16) This process is usually

possible only when the code being relocated has been written

in a position-independent manner, as is common with the PDP-

11 systems. Dynamic physical address relocation is achieved

by physically movirg the code in memory, charoqing the

* physical location at which it runs, but leaving the logical

* -addressing alone. To achieve dynamic physical relocation,,

memory mapping must be used.

Static physical relocation is possible on any system,

as it is a function of the program loader and is totally

software-dependent. On the other hand, to achieve dynamic

relocation, device support is required. Logical address

relocation is very helpful in implementing program/data

sharing between tasks, and physical address relocation

allows recompaction of fragmented memory. The availability

* * of both techniques is a great advantage in a sophisticated

operating system design.

19

Sharing of Memory

Sharing of memory segments is a desireable feature to

design into an operating system, particularly for a system

designed to run as efficiently as possible on a small

system. This technique allows utility programs to be

reentrant and allows multiple users to access the same code.

This technique discourages multiple copies of the same

-program from being resident in main memory.

Context Switching

In a multiuser system, each time a task is interrupted

to allow another task to run, the machine state of the

current task must be saved and the state of the new task

. must be reloaded from memory. This is known as Ocontext
switching".(Ref. 16, p. 3-78) Hardware support of this

function includes automatic saving of at least part of the

machine state on the stack or in system memory when an

interrupt occurs.

Interrupt Support

As stated above, context switching support is heavily

dependent on interrupt handling. The device in question

should support as much as possible the following

features: (Ref. 16)

1) A vectored interrupt scheme to avoid the

*necessity of polling devices to determine

the type of interrupt that occured.

2) Fast interrupt response.

3) A priority scheme, for allowing interrupts

of interrupts.

20

4 . . .• ' - . ." S - . " " " " " r ' ° '. . , .' ," . ,j . ., " ' ' - -. : _- + ,, -, . - . , .? - - ,- .

4) Block I/0 and DMA capability.

5) Restricted access to I/0 intructions.

The rest of this section defines how the three devices in
,0

question match up to these specifications.

CPU Access Restriction

Of the three devices, only the 8086 has no

differentiation between normal and system modes. However,

the 68000 uses memory-mapped I/O, therefore the normal user

has access to I/O instructions. The Z8000 normal mode

restricts the use of I/O instructions, control register

manipulation, and the HALT instruction.

Memory Access/Mapping/Sharing

All the devices inspected require external circuitry to

S .control access to memory. However, the Z8000 provides

instructions for use with memory segmentation.

Context Switching

All the devices store at least par-t-otthe machine

state on receiving an interrupt. The Z8000 has block move

instructions for facilitating the storage of the entire

Instruction set.

Interrupt Handling

, All the devices react in a similar manner to

interrupts. However, the Z8000 allows the interrupt vector

table to be located anywhere in memory, whereas the 68000

requires the table to be located in specific memory

locations.

S.:.

.°,
21

S A * A A A * S.*.* *.* *.*..A*.. S 2%

'77~~ 7777777 7. 7

Choice of the Target Device

Given the considerations above plus the results of the

benchmarks given appendix A, the Z8000 was chosen as the

%I target device for this study.

Summary

The operating system is generally accepted as the

single most complex piece of software that a computer system

is expected to run. A sophisticated operating system must

be designed and implemented using the strictest of

techniques. The advantages of structured design and imple-

mentation far outweigh the penalties imposed.

The C language was chosen for this implementation for

its clarity, power, and availability. Many examples exist

for operating systems algorithms in C, and the UNIX C source

is available for study.

-~ Also, the Z8000 microprocessor was chosen for this

implementation due to its design which supports operating

system constructs.

Thi-s dasign and implementation effort will provide AFIT

with a useful teaching tool for future classes, plus a cost-

efficient software development system. It is expected that#

as with UNIX, very few years will pass before extensive

modifications to this system have been made. But, again as

* with UNIX, the overall concept of the design will still be

apparent*

22

ZC '.N **~'" *

III. Top-LevelSystemDesignand Implementation

Introduction

The first two chapters of this thesis have emphasized

two main techniques required for the successful completion

of the design effort.(Ref. 17) These are the use of top-

down structured design and implementation techniques and the

incorporation of user-friendliness into the design at all

levels. The efforts of the previous chapters, taken in

concert with the total efforts of Ross(Ref. 6), form the

basis for the design of the AMOS system. This chapter deals

with the actual design of the AMOS operating system kernel.

While the design of Ross provided the major motivation for

this effort, a major flaw exists in the his results. Ross'

design has no readily apparent method specified for

processes to request operations from the operating system.

The AMOS design, on the other hand, is centered on the

ability to efficiently service any request made by

processes. The design is approached from the outside

inward, dealing first with the high-level requests that

software and hardware external to the kernel are likely to

want AMOS to satisfy. These requests are often refered to

as 'hooks' into the operating system, and will hereafter be

called system calls. The design proceeds inward to the low-

level (and possibly system-dependent) routines AMOS itself

uses to satisfy these system calls.

To help to visualize the basis of the AMOS design# the

following chart shows the logical flow of requests and

service in the AMOS system. User processes and hardware

23

Ell 4~

'~%- - - -7-

operations occur at a level outside the processing of the

AMOS kernel. The kernel is entered to satisfy specific

requests for action.

User Processes /Hardware Activity

19
Action Request Request Results

AMOS Kernel Service Interface

xA
Formatted RqetResults

Action Request

AMOS kernel internal routines

Figure 3-1

Structured Design Limitations

It becomes obvious during the course of an investigation

such as this that when designing interactive software#

particularly in a multi-user environment, the idea of top-

down structuring is somewhat compromised. For a

multitasking system to be responsive to its users, hardware

interrupts must be implemented (for user terminal input, for

17 % device drivers, and for the system clock). Additionally, a

multitasking system must be capable of protecting all users

and itself from the occaisional user program that runs

'amok'. This requirement is achieved in most cases by

24

;.<: reserving privileged instructions for exclusive use by the

operating system. The user programs must therefore request

the operating system to perform certain tasks through the

% use of system calls, which on the Z8000 are another type of

interrupt.

All interrupts, whether hardware or software, will cause

an unconditional transfer of control to the operating

system, where a routine designed to handle the interrupt

will be executed. These Interrupt Service Routines (ISR's)

will handle the specific task requested (queueing I/O,

performing scheduling, running a child task, etc), then

return control to a routine within the operating system

proper.

The Z8000 microprocessor has a very sophisticated

interrupt handling scheme which allows for up to 262

different entry points to interrupt service

routines.(Ref. 15) This capability makes the Z8000 very

responsive in a multi-user environment. However, to follow

the spirit of top-down structured design and to make the
.4

4

resultant design easier to comprehend, the choice was made

to restrict AMOS to a minimum of entry points, thereby

enforcing smooth data/control flow as much as possible.

Exceptions to this rule are unavoidable if reasonable

response times are to be achieved, stemming from interrupts

due to the terminal, printer, and disk interfaces.

b' ,,

25

.~ ~ 2",4
-

Top-Level Modules

S"The highest level of the operating system is perhaps the

simplest to explain. More a concept than reality, Level 0

is an executive for the three main system segments. The

main segments consist of bootstrapping the system, initial-

izing the global structures and variables used by the.

system, and setting up the branching requirements for the

system to service interrupts. The logical interconnection

of these segments is shown by the structure chart in Figure

S•..3-2.

Executive
.----- Interrupts

Level 0 (Asynchronous)

Boot Initialize Service Reschedule
System System Interrupts CPU

Level 1 Level 2 Level 3 Level 4

Figure 3-2

Note that the 'levels' shown in 3-2 are horizontally

situated. The important point of this configuration is to

note that the interception of user/hardware requests occurs

at Level 0, and requests are passed to subsequent levels for

processing. While the use of the phrase would seem to

A" indicate equivalence of the separate processing 9L.jps, such

26

* ': .d4" -- '-!, - * *,, *. .>, -. - .- •t ." -ft - . . . , • . •.. - -, -

is not the case. Procedures below the individule modules

shown above follow a numbering scheme with the 'real' part

of the number being the original entry point from Level 0.

The interconnections shown in Figure 3-2 are logical

only. Actually, Level 1 is entered immediately when power

is applied to the system. In the absence of a failure, Level

2 is entered to initialize the global structures, buffer

pools, and variables used by the system. This initial-

ization includes setting up the branching requirements for

interrupts. After initialization, Level 2 branches to Level

0. Level 0 initiates the system task, which sets itself up

as process 0 and goes to sleep awaiting an event

(interrupt). When an interrupt occurs, Level 0 saves the

-. system state and takes actions appropriate to the type of

'Uinterrupt. Level 3 is called from Level 0 to process the

interrupt request, acceptinq as input the parameters passed

from Level 0. A special case interrupt (that of a terminal

interrupt from a device not currently attached to a process)

X:.results in the spawning of a login process. Level 4 is

entered upon a successful return from Level 3 to reschedule

r allocation of the CPU resource after an interrupt.

Bootstrap2 (Level 1)

What actually occurs when the computer is initially

powered-on depends on the hardware. There are two general

P... possibilities:

1. The CPU begins executing from an on-board

monitor which may allow different low-level

functions to be performed without disk

27

VN~jinteraction. This is not a disk operating

system functihn.

2. The CPU may be held in a RESET state while

the disk controller independently loads a

small segment of code from the disk. The CPU

is then allowed to run, executing the code

loaded by the controller. This code is known

as the bootstrap loader, because it 'boot-

straps' the rest of the operating system

proper.

The bootstrap operation is obviously highly hardware-

dependent. For the purposes of this chapter, it is assumed

that the bootstrap correctly loads the required operating

system code into memory. An introduction to the bootstrap

loader is presented in Appendix B.

System Initialization (Level 2)

When the operating system is first loaded and run, the

CPU is running in system mode with interrupts disabled. All

devices (disk controller, I/0 ports, and the system clock)II.are initialized. Memory management hardware is initialized.

Finally the system initializes the I/0 buffers and various

structure arrays, interrupts are enabled, and then control

returns to the executive.

Intrrut Service (Level 3)

Interrupt service is divided into three groupings, as

shown in Figure 3-3. These groupings are indicated by the

nature of processing required by each type of interrupt.

28

These groups are service of timer interrupts, service of

other hardware interrupts, and service of user-generated

interrupts, or system calls.

ServiceRequest

Service
Interrupts

Level 3.0

Service timer Service other Service a User
Interrupt hardware inter. interrupt (SC)

Level 3.1 Level 3.2 Level 3.3

* Figure 3.3

This structure is useful in visualizing the possibil-

ities for the various interrupts, but is not realized in

implementation. For reasonable response times, Level 3.1

and all sub-levels of 3.2 are entered directly when their

interrupts are received. Further discussion of the

interrupt service routine coding is presented in Appendix C.

Level 3.3 is entered when any System Call is initiated.

System Calls

Starting at Level 3.3 is the level of design that has

recieved the most attention in the AMOS design, the

4servicing of user-generated external requirements. The

other areas of service are fairly hardware-dependent and,

29

'rk i7-.

once the hardware configuration is defined, are relatively

inflexible as to their design requirements. As previously

mentioned, AMOS will satisfy many of the system calls

presented by programs written to run under the Unix environ-

ment. Because the design of the system call handling

section is so extensive and so important, full discussion of

this section is deferred to the next chapter.

CPU Scheduling (Level 4)

The final level of processing in the top-level modules

is the CPU scheduling module. With modification to accept

the structures of AMOS, the work presented by Yusko will be

used to implement scheduling. This set of algorithms has

already been proved to be correct by implementation in

Pascal for a basic operating systems class.

Summary

This chapter has presented the overview of the top-level

modules of AMOS. Paradoxically, it is those top-level

modules that fail to conform In reality to the concepts of

top-down structured design. Where there ideally should be

strong cohesion between modules, the requirement of

reasonable response time and the restrictions of boot-

strapping make it impossible to enforce ?uch a cohesive

structure. This chapter is presented in the hope that

readers can recognize the conceptual cohesion of the AMOS

design, despite the slightly disjointed flow between top-

level modules in implementation.
lef

30

~~-T.

Due to a lack of time, a thorough test design was not

developed for the AMOS project. However, each module of C

code for the partial implementation of AMOS was thoroughly

tested through the use of driver routines and stubbs.

Interface requirements were defined and validated at all

levels.

I-.3

,%'

*'

. -'-. * . *--.

%

77. 7

IV. Interrupt Service

Introduction

This chapter is devoted to the development of logical

ideas of interrupt service as implemented in the design of

AMOS. This development is geared toward the implementation

of the requirements propp.sed in chapter 2. The previous

chapter gave a brief introduction to the three basic logical

groupings of interrupts that may occur, those being timer

interrupts, general hardware interrupts, and user-generated

or software interrupts (system calls). These basic groups

will be explained in more detail in this chapter, with

emphasis on operating system call handling. To begin the

chapter, the linkage between the interrupt intercept code

and the interrupt service routines will be defined.

Linkage

The interrupt linkage portion of any operating system is

highly hardware-dependent. Interrupts generally force the

host microprocessor to branch to a specific area of code

pointed to either by registers within the processor or by

pre-set interrupt service tables in main memory. For the

purposes of this chapter, is is assumed that hardware inter-

rupts (not system calls) branch directly to their spe-cif ic

interrupt service routines for reasons of efficiency, then

enter Level 0 for non-time-sensitive processing. A timer

interrupt results in blockage of the current process and a

call to Level 4 to reschedule the processor.

System calls all branch to a common rout e that accepts

arguments from the calling process and branches to Level 0

32

for further processing. Level 0 essentially creates a block

of argument pointers then calls Level 3 to process the call.

After the call is completed, Level 0 blocks the current

process and calls Level 4 to reschedule the processor.

Timer Interrupts

Any multitasking system must depend on a 'heartbeat'

pulse to allow for timely service of the tasks being

processed. If tasks were interrupted only when I/O was

requested or when they voluntarily put themselves to sleep,
* tasks which require a high percentage of processor time as

opposed to I/O would monopolize the CPU resource. This

situation would prove unfair to the other tasks being

processed.

To provide a more even distribution of processing time

among the resident tasks, AMOS provides each task with a

'Slice' of time in which to run. If the task has not

requested some action of AMOS during that period, it is

preempted and placed at the rear of the appropriate queue to

wait for further processing. Any request made to AMOS by

the current task results in the task being preempted, as if

a time-out had occured.

* Other Hardware Interrupts

There may be many sources of other hardware interrupts,

depending upon the configuration of the machine upon which

AMOS is running. The most common is the terminal input

fa interrupt, which occurs whenever a user strikes a key at the

terminal. This action results in a hardware branch to a

33

service routine to intercept the character and place it in

the proper process buffer.

Other sources of interrupts include intelligent device

controllers. These controllers contain microprocessors

dedicated to the performance of specific tasks within the

host system. They exist on the system bus in concert with

but independent of the central processor. Device

controllers of this variety may use interrupts to

communicate with the host. The current state of the art in

small computer circuitry is tending more toward the

independent device controller (for example, the Morrow

Designs DJ/DMA floppy disk DMA controller, which is

patterned after the IBM 370 disk channel device).(e 21

System Call Management

The final category of interrupts recognized by AMOS is

the software-generated interrupt, or system call. These are

requests made by proceses for services which they cannot

* perform for themselves due to the nature of the service

requested as presented in Chapter II.

T1he AMOS design breaks system calls into five logical

groupings according to the action requested. These groups

are sufficient in that their categories should be able to

comply with future modifications to the system requirements.

1) File System Calls -- requests for access to

and/or modification of files

2) User Structure Calls -- requests for access to

and/or modification of information pertaining to

* '.,the requesting task

34

3) Process Structure Calls -- requests for access

to and/or modification of system data control-

ling the processing of the requesting task

. 4) System Modification Calls -- requests to re-

trieve or modify system information, such as the

system time, and to mount and unmount secondary

storage devices

5) Communications Calls -- requests to set up com-

munications channels between tasks and to set or

retrieve communications parameters between tasks

and devices

The following structure chart shows the linkage between

Level 3.3 (service of system calls) and the lower level

modules that service the requests.

NOTE: error *Arglist

*arglist and
error values -Service System

are common Calls
along all3.
branches.

Service File Service user dqta

system reques modification req.
3.31 3.32

Service Process Service System data Service Comm.
data mod req. modification req. request

3.33 3.3 3.35

Figure 4.1

35

; ' " ' ' ' '' . c -...... *' " ' ' - "" " "* L " " : -" -. ." * . •. " . '

* *.:..File System. Calls

The AMOS file system is patterned to closely resemble

the UNIX file system from the external point of view. This

design decision was based on the availability of large

amounts of utility and support code geared specifically

* toward the UNIX file system. In designing an externally

compatible file system for AMOS, much of this code will be

directly applicable to the AMOS environment. Pathnames

familiar to UNIX users (see Appendix B) are recognized by

AMOS. For the microcomputer environment, however, the

fragility of the UNIX file system internal structure is

unacceptable. Microcomputers are generally expected to

function in harsher surroundings than the minicomputers that

run UNIX. Any event that causes even a temporary power

fluctuation can easily destroy the UNIX f ile system on

disk. (Ref. 22) Additionally, the role the user plays in the

microcomputer environment is that of the system operator.

This allows the user to make mistakes (such as switchiing

disks without notifying the operating system) that result in

disaster under the UNIX file system. AMOS seeks to nullify

the problems caused by such user intervention.

User Structure Calls

The AMOS user structure contains 'personal' information

about the user that owns a specific set of processes.

System calls exist under AMOS to allow modifications to the

current working directory and the cur rent u se r

Identification.

36

Process Structure Calls

The AMOS process structure contains information about

* an individual process, and must remain in main memory at all

times when the process is active (i.e. nct terminated).

AMOS system calls exist to allow the retrieval or

modification of the process identification number, the

process priority, and the process running time.

Additionally, calls are available to allow a process to

create new child processes (processes that return control to

the parent when finished), to kill a specific process, to

wait for completion of a process, to spawn a new process in

* .the calling process' memory space, to kill itself, and to

* request more memory from AMOS.

System Modification Calls

AMOS system calls are available to get or set the system

time, to mount or dismount alternate f ile system devices,

and to force the writing of main memory-resident information

to disk. Other requirements will become necessary as the

development of the AMOS environment is expanded.

Communications Calls

There are three communications requests that AMOS

honors. The f irst if the PIPE request, which creates a

System f ile to act as a pipeline for output f rom one process

to feed the input to another process. This pipeline is

temporary, being deleted as soon as the receiving process

terminates. The PIPE call can be used to allow for parallel

processing of dependent processes, with the PIPE enforcing

the synchronization of the processes.

37

The other two requests are for the retrieval or setting

of the characteristics of the controlling terminal device

attached to the process. This information is used to allow

processes to tailor their input and output for specific

devices without making it necessary to have multiple copies

of a process for each 1/O device.

Summary

This chapter has dealt with the handling of interrupts

by AMOS. It may seem incongruous to deal with a seemingly

low level function like an interrupt at such a high level in

the AMOS design. It must be remembered that for any opera-

ting system to respond efficiently to several concurrent

users, it must be designed from the top-down to handle

interrupts efficiently. One must only remember work done on

.. 0 one of the older operating systems (the ones that have to

run a 'time-sharing subsystem' to support interactive

terminals) to understand the crippling response times that

are realized by operating systems that have added interrupt

. % support as an after-thought. As an example, the Department

of Defense supports a world-wide network of Honeywell 6000

computers in a defense network. The H1-6000 series is not an

interrupt driven system. As a result, in the latest series

of tests of the network, the failure rate due to abnormal

termination of communications was consistantly over 75% in

the network.

38

'-S. V. AMOS Data Structures Designl and Implementation

Introduction

This chapter defines the information structures used in

the design and development of AMOS. These structures have

evolved to efficiently fulfil the requirements definitions

specified in chapter 2. It is essential to bring this

discussion into the investigation at this point, because the

next chapter and the appendices delve quite deeply into the

implementation section of AMOS. A thorough understanding of

the way structure design and their use is necessary for the

continued understanding of AMOS development.

The term 'structure' comes from the c programming

language, the implementation language for AMOS. It defines

* a logical grouping of perhaps dissimilar data items into an

entity. Each item within the structure may be referenced by

5.'-.naming the structure (or a pointer to the structure) and the

item. The nature of C, combined with the natural grouping of

data items In the design of AMOS, leads to the definition of

many different structures. The structures which have been

defined in the present stage of design are presented ~n this

chapter.

K The Process Structure

The AMOS process structure contains all the information

necessary to properly schedule the active process (which is

in competition with other active processes for processing

time). An active process is defined as a process that has

begun processing and not yet terminated. All active

proesss hve rocssstructure entries in the proctal

39

S . *** * S..- .- *.-~.*:* il . 7 ... ~

Sarray, which is resident in main memory at all times. The

process structure and its enclosing array completely define

all variables necessary for AMOS to efficiently execute

concurrent processes. The process structure is defined in C

as follows:

struct process

char pstatus; /* The status of the process */
char p_memstat; /* The process memory status
char p prior; /* The priority of the process */
char pint; /* The number of interrupt that */

/* stopped the process */
char puserid; /* The user identification #
char pcoretime; /* How long the process has been */

1 * resident in main memory */
char pcputime; /* How much processor time has

/* devoted to the process */
char p bias; /* The bias for calculating the */

-/* priority of the process */
char pterm; /* The device number for the

* '." /* controlling terminal */
char pid; /* The identification number for */
chr d/* the process */
char pidp; /* The identification number for */

-/* the parent of the process */
char p_loc; /* The starting address for the */

, * process */
char psize; /* The size of the process in

/* 512-byte blocks */
char p_seg; /* The process segment number */

- char preason; /* Why the process is blocked */

} proc table[MAXPROC];

Figure 5.1

As can be seen from the definition above, AMOS will

support up to a maximum number of concurrent processes

(MAXPROC). MAXPROC is a system parameter defined at system

compilation time. Each process holds a position in the

proc table array. An array was choosen to hold process

information because of the relatively low overhead involved

40

~* in table manipulation as opposed to the more flexible

alternatives, such as a dynamically growing linked-

list.(Ref. 23, p. 401) Additionally, a linked-list, which

requires at least one level of indirection, is more

difficult to implement, verify, and debug.

The DDB Structure

The Disk Descriptor Block (DDB) structure of AMOS is
similar to the inode structure of UNIX (see Appendix B).

Each DDB structure describes completely a disk file. This

structure is described more completely in chapter VI,

including its C language definition, but is presented

briefly here because it is referenced several times in the

next structure to be examined, the user structure.

~ The User Structure

The AMOS user structure contains information similar to

a that found in the process structure, but the information is

of a noncritical nature in scheduling the processes.

Because of this fact, the data is maintained in a separate

array. This design feature allows for future modifications,

such as the capability to swap out noncritical data item,

thus making more memory space available for active

processes. Currently, swapping of the user scructure is not

anticipated due to the overhead incurred in disk I/0. In

-~ -the future when more systems are available with hard disk

subsystems, this overhead will be reduced and may be deemed

acceptable.

,44

41

-A

The elements of the user structure are defined as

fo l lows:

struct user
{
int u state[STATSIZ]; /* Storage space for thestate */

-/* of the processor after an */
1 /* interrupt. */

char uerror; /* The last error that occured */
char u eid; /* The effective user id # */
char rid; /* The real id #
ddbptr *i wddb; /* Pointer to the working dir- */

:1 * ectory DDB entry */
char u wname(NAMSIZ]; /* Working directory name */
ddbptr *u tddb; /* Pointer to the temporary */

-/* directory DDB entry */
char u tname[NAMSIZ]; /* Temporary directory name */
int u-files[MAXFILES]; /* Pointers to open files
int uarglst[101; /* Room for 10 arguments to */

/* a system call
char uargstr[80]; /* Storage for up to 80 chars */

/* (pathnames, etc) */
struct process *u_proc; /* Pointer to owning process */

} user table[MAXPROCI;

Figure 5.2

There are several global data areas of the user structure

that are accessed from nearly all levels in the service of

system calls. In particular, the u error field is filled

with the most recent error condition which occured. The

pointers to disk descrpitor block structures are set during

file system calls, to make recovery of the current state

after a blockage easier (for instance, if the process is

blocked during a pathname search due to a component already

being used, the ddb pointers allow the process to be placed

into a queue waiting for the ddb to be freed, then resumed

when the ddb is available).

42

V- ' " . . , . . . " , - . " . - . . . - - - - " , "

The Master Block Structure

The AMOS Master Block structure (mblock) is used by the

file system to completely define a mounted file system

device. A copy of the master block resides in a known

location on each mountable device, and provides an entry

point into that device for all file system accesses. The C

definition of the mblock structure is given in the next

chapter.

The Directory Entry Structure

The AMOS Directory Entry structure (dir entry) is used

to define an entry for a single file within a directory

- block. It also is more completely defined in the chapter

VI.

Summary

,Y This chapter has given the reader an introduction to the

C structures used by AMOS to group similar data item into

logical areas of memory for easier access. These data

structures are the product of the total requirements

* definition and the capability of the C language. Given

these structures, the manipulation of processes in AMOS has

been made as efficient yet easy to understand as possible.

The works of Yusko(Ref" 7) have to be modified to handle

these structures as part of the ongoing implementation of

AMOS. It is strongly suggested that the material presented

in this chapter Is made fully familiar before proceeding to

the rest of the report.

43

W. VI. The AMOS File System Design and implementation

Introduction

The AMOS file system is designed to provide the user

with a flexible and powerfully structured method for storing

and retrieving text and data. While any file system is a

data structure in itself, it is important not to confuse the

generic term 'structure' as used in reference to a file

system with the specific reserved term 'structure' as seen

by the C language. The AMOS file system definition contains

many C structure definitions which, when taken as a whole,

define the overall 'structure' of the file system.

The AMOS file system was designed to agree with the

total requirements definitions presented in chapter 2. Not

coincidentally, the AMOS file system is very similar to the

UNIX f ile system. There are two reasons for this

similarity. The f irst and over-riding reason is that the

UNIX file system is well structured. All major requirements

for a multiuser system are met (e.g. f ile protection,

sharing, etc). Minor problems, such as a lack of extremely

strenuous security checks, are assumed acceptable for the

AFIT environment, where cooperation among users is to be

expected and no security-sensitive material will be stored.

The second reason for adoption of a UNIX-like f ile

structure is that, in the AFIT environment, UNIX has a

strong following. Any new development that makes use of

existing tools can be more valuable than one that requires

ground-up effort. The UNIX toolset is extensive, and AMOS

Is designed to enable a reasonable porting capability of the

44

UNIX tools to the AMOS environment. Alternatives to a

UNIX-like system, such as a linear directory structure

(CP/N), do not lend themselves well to conversion of

existing software structures for a tree-structured system.

Specifications

As in UNIX, AMOS regards a file as a named character

string which may be stored on or retrieved from a variety of

peripheral devices (including main memory).(Ref" 19) AMOS

seeks to negate the differences between storage devices to

allow the greatest flexibility in storage/retrieval. Also

as with UNIX, there is no record structure imposed upon

files, but the 'newline' character (an ASCII line feed) may

be used by user programs to simulate this feature. Although

current hardware is anticipated to be closely tied to floppy

disk storage, the AMOS file system allocation scheme allows

a single file to be up to 34,606,592 bytes long. This

scheme anticipates the expansion of the AMOS hardware to

include hard disk capability.

File Types

All accesses to an AMOS file system device are made to

files, with the 3xceptions of the system information fetches

available only the the AMOS kernel. The AMOS file system

recognizes three logical types of files. These are standard

files, directory fileq- and special files.

Standard files make up the bulk of the files on any

system. These files contain normal text, executable
'- .-

programs, binary tables, etc. In other words, standard

* 45

"o4., ,

files contain standard data. Most user interaction will be

concerned with standard files.

Directory files contain the information necessary for

the operating system to correlate file names with the

physical locations of the named files. They also contain

system information about access rights to the files

referenced and various other information. The capability to

create and delete directory files is restricted to either

the owner of the directory or the AMOS Wizard (system

manager), for obvious system security reasons.

Special files exist to provide the interface between the

operating system and the I/O devices. All devices

recognized by AMOS can be read from and written to simply by

- accessing the correct special file. As with UNIX, there are

three advantages to treating device I/O in this

manner'(Ref. 19) The first is that device and file I/O are

very similar. Tho second is that file and device name have

the same meaning in the same context, so that I/O

redirection can be implemented. The final advantage is that

I/O devices are afforded the same protection as normal files

through the operating system.

AMOS File System Structure

The AMOS file system is structured as a rooted tree,

where the interior nodes of the tree are directory files and

the leaves of the tree are either standard files or special

files. Reasoning behind this design choice, which directly
matches the UNIX file structure, was given in the

introduction of this chapter. The following simple graph

46

" . r'-" v-"" .',".'"""- ."•"-". ".
,d '% ,,a. ,,a~,..;o,3e . ,,., ,,,,,".,r/' ,- - -"• . " - '."• • - . .' • . -. -.. - " ". " . * . --- - - . . .-- . -

and paragraphs illustrate this structure.

., / \

'dev' 'usr'

Ifd' 'tty' 'src' ."acnt '

and so on.....

In this example, 'dev', 'usr', and 'src' are directory

files, 'acnt' is a standard file, and 1fd' and 'tty' are

special files.

Pathnames, such as '/usr/acnt', are useful for users of

the operating system. Obviously the operating system itself

needs a bit more information about the file to be able to

access the data requested. The following paragraphs delve

into the format of system data required for file access.

File Addressing

Ignoring the mechanics of how multiple devices get

attached to the file system, assume for the time being that

there are several devices containing files that the

operating system must be capable of addressing.

Any block of data residing on a device can be accessed

by the operating system provided that two identifiers are

made available. First, the device name must be known.

Secondly, the offset within the device, in terms of a

predefined block size, must be known. In AMOS (and version

- 2.6 UNIX) the block size is set at 512 characters per block.

47

This is the atomic unit of any file access, and is set as a

system parameter at compilation time. Any changes made to

*the block size should give serious consideration to the

*effects of the change, which will vary from one hardware

configuration to another. Given that the device identifier

and offset are known, it is a relatively simple matter to

retrieve data from device. Users cannot be expected to keep

track of such matters as the device and offset of their

files, however, so a naming scheme that allows pathname

specifications for files is essential.

When the system is initialized, the root of the file

system is at a known location on the system device. The

root contains directory entries for its immediate lower

levels, some of which may themselves be directories. By

walking the tree indicated by a given pathname, any file on

the system may be uniquely specified. For example, take the

pathr-ame '/usr/src/games/chess.c'. To locate the file

'chess.c', start at the root of the file system and search

for an entry in the root directory named 'usr'. Search the

directory 'usr' for an entry named 'src'. Search 'src' for

'games', then search 'games' for 'chess.c'. Since each

portion of the pathname is a file itself, including the

'leaf' named 'chess.c', identical operating system proce-

dures may be followed for walking the pathname. Following

UNIX convention, if the pathname starts with the character
b1/o

'I', the root directory is the starting point for the walk.

Otherwise, the current directory of the task is the starting

po i n t.

48

j,,- .$ * ," . .. ,
o
.-.. ,, .J ..- o-....• .- .. ,.- ,•... .. .

Secondary Devices

If only a single device were allowed to contain the

entire file system, AMOS would soon run out of file space.

Therefore it is essential that secondary devices be

accessible to the file system. Again, the solution is found

In the methods of the UNIX system.

A secondary device is added to the file system by

mounting the device so that its root overlays an existing

standard file (leaf) in the system device structure. After

the mounting, any references to the original leaf file will

actually be routed through the root of the secondary device.

At this point is becomes clear why the device identifier is

essential is addressing. Users can easily reference files

without knowing on which device the files reside. For the
operating system to access the files, however, the device

identifier must be available within the system mount table,

to be combined with the directory entry for the file. This

brings us to the point of the directory entries themselves.

.*. Disk Descriptor Blocks and Files

Any file (directory or standard) under AMOS is composed

of two parts, a header and a data area. The header infor-

mation for a disk file is located entirely in a structure

termed a 'disk descriptor block', or ddb. This structure,

similar to the UNIX inode(Ref" 19), is a record of file

attributes and physical disk locations. There are two

varieties of ddb defined for AMOS. The first is the

., , description of the ddb as it occurs on the disk. The second

49

* . .T Q-.,

is how the ddb appears in memory during file access. In C,

the disk ddb is defined as follows:

struct diskddb {
.nt cr date; /* Date created
;nt ac-date; /* Date last accessed
mnt moddate; /* Date last modified
-nt mode; /* Mode of file
char links; /* Number of links to same file "/
char owner; /* Owner's ID number */
int numblocks; /* Number of blocks in file
int numchars; /*Number of chars.inlast block */

Sint blocks[91; /* Allocation list for file

The memory resident copy of the ddb uses the date fields

for other data while the ddb is in memory. This technique

allows optimization of disk space by not requiring data not

'needed on disk to be stored there. The memory resident

N, descriptor block is defined as follows:

struct memddb.,
char dstat; 1* In-core status of ddb
char refcount; /* Number of refs to in-core copy */
,nt device; /* Device number where ddb lives */
int doffset; /* Offset in ddb list of device */
int mode; /* Mode of file
char links; /* Number of links to same file */
char owner; /* Owner's ID number
int numblocks; /* Number of blocks in file
int numchars; /*Number of chars.inlast block */
nt blocks[9]; /* Allocation list for file

.- int curblock; /* Current block in memory */

Notice that the ASCII name of the file does not appear

in the disk ddb structure. The operating system must trans-

late the pathname given by the user into the information

77. given by the ddb.

Each entry in a directory file contains a ASCII file

name (up to 14 characters) plus an ddb number. The

ddb number is used as the offset within a known area of disk4-
50

• _ % *- . ; /- :. ' ". N'. N " .J , ' **.. . ,, . * * ..' " '., . ., " ,. ,

IN. . . -. - - - -

that contains only ddb's, called the ddb list. When walking

the pathname given by the user, each time a match for a

segment of the pathname is made, the ddb number found by the

match is used to as the offset into the ddb list to retrieve

the ddb for the wanted file.

The allocation array for each file (contained in the ddb

structure) consists of 9 pointers to 512-character blocks on

the disk. This array is structured as a double-indirect

addressing table. The first 7 pointers point to data blocks

which contain file data. This gives a basic allocation of

3584 characters. While this will probably be enough for

most directory files, it certainly is not sufficient for

most other files. In this case, the 8th pointer points to a

*block containing 256 more pointers to data blocks. This is

the single-indirect pointer. With this scheme, up to

134,656 characters may be contained within a file, a much

more palatable size. If this is still not enough storage,

the last pointer points at up to 256 blocks, each pointing

at up to 256 data blocks. This is the double-indirect

scheme, which allows for files containing up to 34,606,592

bytes. This should be enough storage for a microcomputer-

based system, even with a hard disk.

AMOS Disk Format

Currently the AMOS system device is assumed to be a

rfloppy disk. Tracks 0 and 1 of each disk are reserved for
the system bootstrap and for future expansion requirements.

Starting at track 2, sector 1 is the available disk storage
*space for the AMOS file system. The disk is broken into

51

,' -* * * - - -,-

512-byte blocks, numbered from 1 to the limit of the device

storage. Block 1 always contains the Master Block for the

disk. The C definition of the Master Block is:

struct mblock
,t m -devsize; /* Size in blocks of device */
nt m-blktrk; /* Blocks per track */

int m reserved; /* Number of reserved tracks /
int m -ddblsize; /* Size of ddb list in blocks */
int mddblist[9]; /* Pointers to ddb list */
char mlocked; /* Device is Read Only
char m-mod; /* Device modified */
int m freeptr; /* Pointer to free-list block */
int m~numfree; /* Number of free pointers */
int m-free[230];/*Pointersto230free blocks */
int unused(1e]; /* Reserved for future use */

The ddb list contains pointers to blocks containing disk

descriptor blocks (headers) for AMOS files. The

":. mddblist[9] array uses the same double-indirect algorithm
as is used in the ddb structure itself.

The free list is a device borrowed from UNIX(Ref. 19) to

allow for dynamic allocation of disk space. The master

block for each device contains 230 pointers to free blocks

(initially), plus a pointer to the next block in the free

list. Each block of the free list contains as its first

entry another pointer to the next free list block, then a

"- counter of the number of free block pointers contained

Si' withing that block, followed by an array of 260 pointers to

more free blocks. This scheme allows AMOS to gain pointers

to several free blocks whenever it has a need to allocate

disk space, on the assumption that space will be allocated

and deallocated rather frequently. This should reduce the

number of disk accesses necessary overall, which is a

V.5

valuable attribute for any system bound to slow speed

devices such as floppy disks.

The reserved tracks field was added to the master block

in order to simplify having several 'logical' disk drives

contained within a single physical device. Given a hard

disk with 300 tracks per surface, the drive may be broken

into logical devices by using the reserved tracks field to

offset within the physical device.

I/O Buffering

Any operating system that is limited in storage to a

single atomic unit of disk access will be slow and overly

disk bound in normal, disk-intensive processing. AMOS is

currently in this category. Future modifications to AMOS

should include a buffered I/O capability as one of the

highest priorities.

53

* AMOS File System Calls

The AMOS file system allows user processes to manipulate

file data through a series of system calls. The process

doing the manipulating must be either be controlled by the

owner of the area within which the manipulation is to take

place, have permissions (indicated by f ields with the ddb

for the directory/file), or be controlled by user #0-5, who

in AMOS are granted the status of Wizard. Wizards of AMOS

have the power to manipulate any parameter of the system

without restriction. The file system calls available under

AMOS make it possible for the user to create, open, close,

read, write, and delete files. Additionally, there are

calls to return the disk status of files and to position the

current read/write pointer for an open file.

Level 3.31 (Service File System Request) accepts as

input a pointer (*arglist) that points to an array of 10

integers. The first entry in the array contains the system

call number. From this number 3.31 will decide which file

system routine to call. The following entries in the array

either point to strings or actually contain integer

arguments to be used by the lower level routines. No error

checking is done on the contents of the subsequent arglist

entries at Level 3.31. The decision is made as to which

routine to call and the arglist pointer Is merely passed

down to the correct routine.

54

The following structure chart illustates the linkage

between Level 3.31 (Service File System Request) and its

lower levels:

error ~ *arglist

Service File"
,- System Requests

""-' 3.31

error *arglist

create [pen -Cose Read
* .~file file file file

*~*3.311 3.312 3133.314

Wrr te De -t e Posit-ion Get Tile-
file file R/W pointer status

33.316 3.317 3.318

Figure 6.1

Each of the 3.31x levels is covered in more detail in

the following sections.

Creating a File (Level 3.311)

To create a file, the user is expected to pass AMOS an

ASCII pathname and a mode number. The pathname consists of

55

6-. -,

a null-terminated string composed of names, not to exceed 12

characters in length, separated by one or more '/'

characters. Redundant ''s are treated as a single

character. The characters of the name components may be any

of the printable ASCII characters except the '/' itself.

The mode number is an integer, defined in AMOS as either

READ (0) or WRITE (1). The CREATE system call, if

successful, creates and opens the file WRITE operations.

The mode argument is necessary for permission checking at

the intermediate levels of the pathname conversion.

The following structure chart shows the breakdown of the

steps necessary to accomplish the CREATE system call:

fnumb, *name,
error ? mode

Create
-: [File

3.311
* name,
mode _______

" h*tddb, *name, error WRITE, f
error mode, error *tddb fnumb,

~ i*tddb error

Translate Create a' Access
name to new ddb File

ddb

3.3111 3.3112 3.3113

Figure 6.2

56

,-: r -; . -'r o , -: ,- " --.* -. ' " . -. •*~

Translated into English, Level 3.311 issues calls to

lower levels to:

1) Translate a given pathname string into a pointer to

. a disk descriptor block, checking permissions along

the way. In this context, the translation routine

.* should return the NOFILE standard error.

2) Create a new disk descriptor block on disk for the

new file, placing its name in the parent directory.

3) Access the file for WRITE, returning the file

* number for future accesses.

To translate the pathname string into a ddb pointer,

AMOS has to extract each component from the pathname and

search directory entries for matches to the components. The

V structure chart for this step is as follows:

*tddb, 1 *name,

error mode

Translate name
to ddb

3.3111

*name *comp, *comp,
*;t'error mode error

Extract- - Searc-
component Directory

from for
* +. pathname component

3.31111 3.31112

Figure 6.3

57
L.4,

t "r-j r 4 ''.. 4 . ,-'-+ ,a""""" ' : . 4 -* * *.--' -
"

*" " " ' " " " " ,."-'." + ,-:." ," ". '!" _,., " "." "-,"+ ,, . , +"+..- """ ' ., .

What Figure 6.3 does not show is that, to avoid

- repetitive stack manipulation in an area that is likely to

recieve a large amount of traffic, the directory to be

searched for a matching component entry is pointed to be the

*tddb entry in the current user structure. This entry is

set in Level 3.3111 to either the root entry (if the first

character of the pathname is a '/') or to the current

working directory entry, which is also stored in the current

user structure.

Level 3.31112 is broken down still further into

sublevels, as illustrated in the following chart:

*comp, t
mode error

' search
Directory

VV l:for
component
3.31112

*dirbl*dirlk J*dirblk
• di rbl k, *comp

match

Read next Search block for Release block
block of component match from buffer
ddb entry pool
ddbenry3.311122
3.311121 3.311123

'Figure 6.4

h..58

'~ . - ~~7~ **66~-..

Levels 3.311121 and 3.311123 involve the device driver

-,:2. *'- for the system device and were not carried to any lower

Plevels in the current implementation.

Opening a File

Opening a file under AMOS involves an almost identical

sequence of events as does creating a file. The following

structure chart illustrates this point:

fnumb, *namfe#
error mode

Opn

~3.312

*name,
mode

• . *tddb, mode,

* .error *tddb fnumb,

I Transeater:7 r-'an s I----Acess

•-name to I File
"I ddb I

3.3111 I 3.3113

Figure 6.5

;.5,9

.7,,-1

Other System Calls

The other various system calls of AMOS have not been

defined beyond the point of being able to recognize that

they have been called. These system calls are:

1) Directory File Calls:
LINK : Create an alternate pathname for a file
MAKE DDB : Create a ddb
CHNG MODE : Change access modes for a file
CHNGOWNER : Change the owner of a file
NODE STAT : Returns a ddb's status from disk
COPY FD : Duplicate an open file descriptor

2) User Modification Calls
CWDIR : Change the current working directory
GET USERID : Get the current userid
SET USERID : Set the current userid

3) Process Modification Calls
GET PROCID : Get the id # for the current process
SET-PRIOR : Set the priority for a process
KILL PROC : Kill a specified process
FORK PROC : Create a new process
WAIT-PROC : Suspend process until child terminates
DIE - : Normal term. call for all process
GET PTIME : Get process times
EXEU : Execute a new process in current space
MEMREQ : Request more/less memory for process

3) System Modification Calls
GET STIME : Get system time
SET STIME : Set system time
MOUNT : Enters a device into mounted-on table
UNMOUNT : Deletes an entry made by MOUNT
SAVE : Update system data to disk

4) Communications Calls
PIPE : Create interprocess channel
GET TERM : Get terminal attributes

f. SET-TERM : Set terminal attributes

With the definitions and design specifications already

given, these areas should be able to be implemented within

the total scope of the AMOS project.

60

Summa ry

'-' The AMOS file system is specified at the upper levels

completely. The lower, hardware-dependend routines which

will be common to all file system routines are incomplete

due to the lack of an implementation system. The mid-level

creation and opening routines have been specified in a

hardwa re- independent manner to allow development and testing

to continue.

Obviously, the system device routines will need to be

built into AMOS (hard-wired). Modularization has hopefully

kept the hardware-dependent modules to a minimum, so future

complete implementations will need recompilation at only the

lowest driver level.

The structures defined in this chapter would seem to

contain several elements that conflict with good software

engineering practice. In particular, the error flags and

character string space (items which would seem to be

* transient in nature) are included as set fields of the user

structure. As will be seen in the next chapter, this design

'flaw' is actually a necessity for an interrupt-driven

* system where asynchronous events may cause the interruption

of Process flow while dealing with 'transient' data. Having

a storage slot allocated helps to prevent loss of continuity

due to asynchronous events.

61

-,7 ,7 . 7-- 7

VII. Results

This chapter covers the partial implementation of the

AMOS multiprocessing system. Also discussed are some of the

problems encountered with the implementation and the

solutions to the problems. As will be seen in the

implementation section, the precepts of good structured

programming and testing were used at all levels of the

partial implementation.

* "-" Implementation Problems

Implementation of the partial design of AMOS was

hampered by the inability of the author to achieve a working

Z8000 development environment at AFIT. After much effort in

bringing up UNIX 4 .1 (Ref. 24) on the DEL VAX 11/780 to

support the Z8000 C cross-compiler and assem-

bler(Ref. 8, p. 28), it was discovered that these packages

were incompatible with the Berkeley UNIX distribution's

format for the C language(Ref. 24, Sect. 8). The

modifications needed to correct this problem would have

required more time than was available for the project.

7Additionally, the AMD Z8000 target microcomputer system

was not fully configured until very late in the

- d implementation effort. While all of the system boards were

available, the control monitor read-only memory (ROM) chips

to control the CPU board were not delivered until

approximately 10 of the 12 months devoted to this effort

., 9-. were past. When they were delivered, it was discovered that

the control program does little more on its own than allow

for low-level (hexadecimal) memory/register display and

62

7 7. 7 .*

*.'. ~block memory moves. While there are commands to allow for a

host system to up/down load from the Z8000 system, these

commands are dependent on the host being an Am/Sys AMD

development system.

The ef forts devoted to securing both a software

development system (UNIX/VAX) and a hardware implementation

system were spent in the belief that is would be possible to

have these items available for AMOS implementation. Since

this was not the case, other resources had to be used for

the partial implementation.

Solution

The development system used for the partial

implementation of AMOS consists of an S-100 based Z80

'00 microprocessor, a Morrow DJ/2D floppy disk controller, 56K

bytes of RAM, several 1/O ports, a terminal, and a printer.

This system belongs to the author. The implementation

language is the BD Software C compiler, version 1.50 (pre-

release), by Leor Zolman(fi2) BDS C is a subset imple-

mentation of UNIX C, with some slightly annoying restric-

__ tions, such as the lack of initializing declarations and

register variables. Despite such restrictions, BDS C is

close enough to UNIX C to allow for the generation of

portable source code.

All file system modules given in the previous chapters

have been implemented in C. A driver module was written to

simulate the system calls, interrogate the tester for input

data, and call Level 0. Output is directed to the terminal

63

screen.

Interrupt service routines that will eventually handle

the actual AMOS interrupts were not written. Due to the

inefficiencies generated in even the best optimizing C

A compilers, for the sake of response time these routines will

most likely have to be written in the assembly language of

the host microprocessor. Since the author's system is a Z80

based system (and is not capable of handling interrupts,

anyway) the development of these modules appeared to

be inappropriate at this time.

The AMOS file system disk structure has been implemented

on the host system's floppy disks. This was achieved

* through the use of the CP/M operating system's BIOS calls to

do direct I/O to the floppy disks. The listings of two

utilities are included in the source code appendix. These

are AFORM.C, a floppy disk formatter for AMOS, and LS.C,

which prints out the master block information and a

directory listing for the root dircetory. AFORM depends on

the floppy disk to be formatted having already been through

a CP/M-style formatting program. To create the basic

information in the master block, AFORM does BIOS calls to

retrieve the floppy disk information from CP/M's disk

Parameter header and disk parameter block. This

information is used to determine the total number of blocks

which may be used on the disk and the number of blocks that

will fit per track of the disk. Currently, AMOS will not

allow a data block to be split over track boundaries.

64

Test Approach and Results

Due to the severe lack of time, a comprehensive test

plan was not developed for the AMOS partial implementation.

Thorough testing was done on each module implemented as an

entity in itself (through drivers and stubbs) and as a part

* of the integrated whole. The development of a driver

S.' routine allowed testing of the ent're package, using as data

items known to be good test items through the entity

testing.

Summary

The implementation effort given to this investigation

has proven the file system capability of the AMOS design. A

good bit of the time spent was given over to figuring out

the CP/M - AMOS interface, which will not be used in the

final implementation. Nevertheless, test results on the

,CP/M implementation show that the basic file system

structure is valid and implementable.

65

* * S!% .*.-

VIII. Conclusions and Recommendations

This investigation has been concerned with the

development of a multiprocessing operating system. The

chief objective of the design was to present a complex

* system as a conglomerate of relatively simple modules

operating on small objects (structures). An unstructured

*design ofthis mgiuecould ntbe talyunderstood b

a single person, but each small segment of processing

required may be grasped without very strenuous effort.

The concepts of structured design made the approach

taken possible. These concepts were followed to the

greatest extent possible. However, two of the measures of

high cohesiveness were basically ignored. Global data areas

ar-4 used extensively to avoid having to pass structure

values on the stack (which is impossible in C). While this

technique is dangerous, the amount of code and stack space

*necessary to pass all arguments dynamically is prohibitive.

Also, address pointers are used to pass system call

arguments to the lower levels of AMOS. Again, the purpose

'.1* for this travesty of software engineering is to preserve

system memory. Arguments to system calls may be up to 100
bytes in length, so without passing pointers to the

arguments each level of the call would reproduce the

arguments on the stack.

In summary, AMOS is designed to be an interactive

multiprocessing operating system similar in use to the UNIX

operating system. Most of the UNIX version 2.6 system calls

are recognized by AMOS, although the majority have not been

66

taken to their conclusion in this effort. The use of

structured design techniques and the use of a highly

structured language in the partial implementation of AMOS

made the effort feasible.

What has been achieved in implementation in this effort

is a 'proof by example' that the AMOS file system is a valid

design. The CP/M environment (specifically the BIOS) is too

restrictive to allow much of the other areas of AMOS to be

easily implemented under its structure.

Recommendations

The previous chapter listed the areas of AMOS needing

immediate attention to provide AFIT with a functional

operating system. Specifically, further attention is needed

in the system call areas, hardware device interfaces, and in

modification to Yusko's works.(Ref. 7) Additionally, as

mentioned earlier, a buffered input/output facility should

be provided before any serious work can be accomplished

using AMOS.

The user interface (in UNIX, the Shell) must also be

provided before multiterminal use can be provided

effectively. This effort will be difficult enough to

constitute a separate research effort.

Before complete implementation can occur, cross-compiler

software must be available. The MITRE sources provided as a

Z8000 assembler and C cross-compiler proved to the author

that C and UNIX are no longer a set of standard

" -4 'transportable' software tools. The MITRE code is foreign

67
,-r . a-

.- to the UNIX systems available to AFIT currently, rroducing

several hundred errors on compilation. This code will have

to be rewritten if it is to be used. It is recommended that

the problems involved with the MITRE code be investigated

further and one of two courses be taken. First, the code

may be rewritten to comply with the expectations of the UNIX

C compiler. Second, if the rewrite is extensive enough to

warrany this action, the code may be taken apart and

implemented under the BDS C compiler to be run on one of the

CP/M systems available in the DEL. This second course of

action is the more work-intensive, but offers the advantage

of allowing much more flexible work to be done in the future

without having to depend on the schedules of the UNIX

systems. Additionally, the experience gained through the

rewrite of the code would be invaluable for the student in

the compilers course sequence at AFIT.

The host microcomputer system must be made fully

operational before implementation can occur. What

implementation of AMOS occured was accomplished on the

author's home CP/M-oriented S-100 computer. The fact that

the system is locked to 56K bytes of memory, is non-

interrupt driven, and had available only the BD Software C

compiler severly hampered any efforts to extend

4implementation beyond the basic file system. The AMD Z8000

system original planned for the host system is complete in

all its hardware, but major firmware (bootstrap, disk

interface, etc) programs need to be developed.

Alternatively, the Z8000 board in the AMD system could

1 66

C. . be replaced with another processor and the system be given

over to another project. A fully configured Z8001 system

from Zilog (the Zeus system, for example) would more

completely conform to the hardware requirements for

implementation of AMOS, as the Zeus system contains a

segmented Z8001 processor and three memory management units.

The AND system contains a Z8002 non-segmented processor, no

memory management units, and is restricted to a bank-

switched memory scheme.

* * Major Recomendation

As far as the author is aware, there have been to date

three operating systems theses, including AMOS. Each has

been relatively independent of the others. Ross provided a

very high-level design with no apparent 'hooks' for user

programs. Yusko provided a scheduler that, after some

modification, worked as specified. AMOS provides a high-

level system definition in somewhat less detail that Ross',

but goes much deeper into the file system area.

It is recommended that results of the AMOS study, plus

Ross' and Yusko's work, be used to define an operating

* system down to the different managable levels (i.e. file

system, scheduler, etc). This definition should include a
very strict interface specifiction. Each separate level of

the design should then be assigned as a separate effort.

a: Only with a continuing management scheme for the design, to

be implemented over several cycles of thesis students, will

a project of this magnitude be fully accomplished.

69

d . .- : 2 jx -i§:?-- **&> ~ . *

7. 7- a 77 7 4. 7 ,-- - 7

,.. '", Bibliography

,. 1. Madnick, Stuart E. and John J. Donovan, Operating Systems,
New York: McGraw-Hill, 1974.

2. Grappel, Robert D. and Jack E Hemenway, NA tale of four
microprocessors: Benchmarks quantify performance",
Electronic Design News, 85-103 (April 1981).

3. TOPS-20 Commands Reference Manual, Digital Equipment
Corporation manual #AA-5115B-TM (Intro).

4. Greenburg, Robert B. *The UNIX Operating System and the
XENIX Standard Operating Environmentu, Byte, 6:248-264
(June 1981).

5. Freedman, David "Portable Operating Systems Fight for 16-
Bit Machines", Mini-Micro Systems, 9:237-249 (September
1982).

6. Ross, Mitchell S. Design and Development of a Multi-
programming Operating System for Sixteen Bt
Microprocessors, MS Thesis Wright-Pattersn AFB, Ohio:
School of Engineering, Air Force Institute of Technology,
December 1981.

7. Yusko, Robert J. Development of a Multiprogramming System
for the Intel 8086 Microprocessor, MS Thesis, Wraht-
Patterson AFB, -- o: School of Engineering, Air Force
Institute of Technology, December 1981.

8. Skelton, Anita P., Jose Nabielsky, and Steven F. Holmgren,
FY80 Final Revort: C able Bus Applications in Command
eners-, p.20 The MITRE Corporation, McLean, Virginia.

P.20 (28 for Compiler)

9. Department of the Air Force letter dated 17 May 1982,
subject: Air Force Small Computer/Office Automation
Service Organization (AFSCOASO) (DPD:HAF-P82-02).

10. Dijkstra, E.W. "The Structure of T.H.E. Multiprogramming
System," Communications of the ACM, 11: 341-346 (May
1968).

.5,.

11. Hansen, Brinch. "The Nucleus of a Multiprogramming
System," Communications of the ACM, 13: 238-241 (April
1970).

12. Bergland, G.D. "A Guided Tour of Program Design
Methodologies", COMPUTER, 13-37 (October 1981).

?. "..... ---*.~.-..........

. -

13. Johnson, S.C. and D.M. Ritchie. "Portability of C Programs
and the UNIX System, Bell System Technical Journal, 57:

-! 2021-2048 (July - Auguis-E-T97 -.

14. Lycklama, H. OUNIX on a Microprocessor", Bell System
Technical Journal, 57: 2087-2101 (July - August 1978).

15. Mateosian, Richard. Programming the Z8000, Berkeley:
*i Sybex, 1980.

16. Microprocesscr Applications Reference Book, Vol. I, page
3.75-3.83. Zilog, Inc. Cupertino, California.-1981.

17. Huneycutt, Douglas S. Desigin a Multipprcessin
Operating System for SixteenSit Mi-roprocessors,S
Thesis, Wright-Patterson AFB, Ohio: School of
Engineering, Air Force Institute of Technology, December
1982.

18. ASD-TR-78-43, wComputer Program Maintenance", Dec. 77,
Aeronautical Systems Division# Air Force Systems
Command, Wright-Patterson AFB, OH.

19. Thompson, K. "UNIX Implementation', Bell System Technical
Journal, 57: 1931-1946 (July - August 1978).

20. Ritchie, D.M. "A Retrospective', Bell S Technical
Journal, 57: 1947-1970 (July - August 1978).

21. Advertisement for Morrow Designs, BYTE 7:168 (1982).

22. UNIX Programmers Manual, Seventh Edition, Virtual VAX-il
Version. Coputer Sclence Division, Department of
:E c'_--rcal Engneern and Computer Sciences, Un-ersity
of California at Berkeley. June, 1981.

23. Koffman, Elliot B. Problem Solving and Structured
Programming in Pascal. Reading: Addison-Wesley 1981.

24. Ibid, Ref. 22.

25. Zolman, Leor. The BD Software C Compiler Manual, vl.4

26. Lions# J. A Commentary on the UNIX Operating System.
Department of Computer Science, University of New South
Wales, June1977.

,"..

Appendix A

Microprocessor Benchmarks

This appendix presents the results of a series of

benchmark tests run against four 16-bit microprocessors:

the Digital Equipment Corporation LSI-11/23, the Intel 8086,

the Motorola 68000, and the Zilog Z8000. The results were

originally published in Electronic Desig News, April 1

1981, by Robert D. Grappel and Jack E. Hemenway.

The choice of microprocessors was based on the major

16-bit microprocessors in use in systems at the time of the

survey. Currently there are several newer devices either on

the market or in the process of being introduced, in

addition to manufacturer's upgrades to the devices studied.

The benchmark results are presented in this appendix as a

reference point from which to make further investigation as

to an appropriate device on which to base future AMOS

implementations.

- The benchmarks in this study consist of various

exercises in microprocessor agility. All of the test cases

are applicable to some portion of operating system

processing. In particular, the interrupt handling tests

strongly indicate what kind of response time can be expected

in the new processors when compared to a known factor such

as the responses realized from the LSI-Il. In all cases,

the code submitted for the benchmarks was developed by the

manufacturer of the device and submitted to the other manu-

facturers for comment. The following sections present the

Al

details of the benchmarks and their results.

-: I/O Interrupt capability

Four levels of prioritized interrupts were allowed in

the first test. The second test specified FIFO processing

of multiple levels of interrupts. Each device was given the

same sequence of interrupt occurance and timing. The

results for the four microprocessors are:
.4,.4

Processor Clock Speed(MHz) Code (bytes) Exe. Time

LSI-11 3.33 MHz 20 114 usec
8086 10.00 MHz 55 126 usec
68000 10.00 24 33 usec
Z8000 6.00 18 42 usec

LSI-11 (FIFO) 3.33 MHz 86 1196 usec
8086 (FIFO) 10.00 MHz 85 348 usec
68000 (FIFO) 10.00 118 390 usec
Z8000 (FIFO) 6.00 106 436 usec

Character/string search

Test data for this benchmark consisted of the following

string:

OOOOOOOOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
HEREOOOOOOOOOOOOOOOOOOOOOOOO O
HERE IS A MATCHOOOOOOOOOOOOOOO

where the string to match is "HERE IS A MATCH". The results

of the test given for the 68000 were calculated by Motorola

by hand.

Processor Clock Speed(MHz) Code (bytes) Exe. Time

LSI-11 3.33 MHz 76 996 usec
8086 10.00 MHz 70 193 usec
68000 10.00 44 244 usec
Z8000 6.00 66 237 usec

A2

Bit Set/Reset/Test

The data for this benchmark consisted of an array of 125

bits arranged in an alternating pattern of ZEROs and ONEs.

The array started on a word boundary. Nine tests were

performed by each processor, consisting of the following:

Test Function Bit Number

I TEST 10
2 TEST 11
3 TEST 123
4 SET 10
5 SET 11
6 SET 123
7 RESET 10
8 RESET 11
9 RESET 123

where the bit string was to be uneffected by the test with

the exception of the target bit. The following chart lists

the results of this test. The results given for the 68000

and the 8086 were hand-calculated by the manufacturers.

Processor Clock Speed(MHz) Code (bytes) Exe. Time

LSI-11 3.33 MHz 70 799 usec
8086 10.00 MHz 46 122 usec
68000 10.00 36 70 usec
Z8000 6.00 44 123 usec

Linked-list Insertion

The data set for this test started with an empty list,

into which five records were to be inserted with keys (32-

bit numbers, given here in hexadecimal notation). The times

given are for all five insertions. The time given for the

68000 was hand-computed by Motorola.

Record Keys :
1. 12345 2. 12300 3. 13344
4. 12345 5. 34126

A3

4'.'.-.,

Processor Clock Speed(MHz) Code (bytes) Exe. Time

LSI-11 3.33 MHz 138 592 usec
8086 10.00 MHz 94 not given
68000 10.00 106 153 usec
Z8000 6.00 96 237 usec

Quicksort

The Quicksort benchmark used data consisting of 102

records, each 16 bytes long. The key value to be sorted on

consisted of bytes 3-9 of each record. The data was

initialized as follows:

Record 0 00 00 00 00 00 00 00
Record 1 FF 00 00 00 00 00 00
Record 2 FE 00 00 00 00 00 00
Record 3 FD 00 00 00 00 00 00
Record 4 FC 00 00 00 00 00 00

Record 100 9C 00 00 00 00 00 00

Record 101 FF FF FF FF FF FF FF

The times given for the 68000 are again hand-computed. No

data was available for the LSI-II.

Processor Clock Speed(MHz) Code (bytes) Exe. Time

LSI-11 3.33 MHz --

8086 10.00 MHz 347 115,669 usec
68000 10.00 44 33,527 usec

.- Z8000 6.00 66 115,500 usec

Bit-matrix Transposition

The final benchmark consisted of a test of the bit-

matrix transposition capability of the four microprocessors.

The test data consisted of 49 bits in the following array:

0100100
1010111
0010001
1101010
0101000

0 1 0 0 1 0 0

1100101

A4

, • -,' • "' ,,;' "-,",;',;< ':;-,.-','...;.,. i.'.'....'.".".....,.-,....-.--....-....-. ".."..-..-. .

1.. . . .0. .1..

where the array began on a word boundary. Once again, the

., timing for the 68000 was hand-computed.

Processor Clock Speed(MHz) Code (bytes) Exe. Time

LSI-11 3.33 MHz 152 1517 usec
8086 10.00 MHz 88 820 usec
68000 10.00 74 368 usec

*Z8000 6.00 110 646 usec

Summary

In most of the above benchmarks the timing for the 68000

had to be computed by the Motorola programming staff, based

on their knowlege of the time required for their processor

to complete the required sequences of instructions. This

does not detract from the validity of the times given (due

to the fact that all other manufacturers were given the

opportunity to rebuf the results), but it is difficult to

place as much weight on the 68000 results as on the other

validated results.

The processor speeds given were current as of April,

1981. Since that time, Zilog has made available a version

of the Z8000 (both the Z8002 and the Z8001) that run at 10

MHz. Obviously, the use of higher-speed devices would

modify the results of the benchmarks somewhat, particularly

in test/processor combinations that allow much of the

processing required to be register-resident. This

combination allows memory access times have their least

impact. The Zilog device tested was the Z8002 unsegmented

processor, but the results would have been identical with

the Z8001 running in non-segmented mode.

-- Again, it must be stressed that newer devices are

'A

: a .. " - .. -' -. --- ". , * . .- ... -...-. . . a . . .- , .. - .,. - .- ,. -., , , , , , _. . . .
*' , .,C ,,.+ zdag ,+, , ,, .a._ +, . .. ,... .+. ._ .,&_, ,+ + * . . *

,'4_.-L -, .- -o -, . ,l . ,, . ,..? . ,.. ,j,, , °.., .. ,..' ' -'

becoming available on the market almost monthly. Some of

the devices demonstrate combinations of the features that

make the tested devices excell in certain areas. For

example, the recently announced Zilog Z800 !.ombines the

separated Bus Interface Unit/Arithmetic Logic Unit of the

8086 with the memory management capabilities of the Z8000

family of processors. The ALU of the Z800 is timed

separately from the BIU, allowing ALU speeds of up to 25MHz.

These capabilites are combined on a single processors that

retains object code compatibility with the popular Z80

microprocessor.

3. .

.*9

-.-

-- A6

- 3 - - .% ~

. ,'.:. ~---.

Appendix B

UNIX Short Course Notes

.. Introduction

Appendix B contains a set of class notes researched and

.written by this writer. They are appropriate to include in

this document due to the stated design objective ofS.,

patterning AMOS to be functionally compatible with UNIX.

The information presented here comes in great part from the

UNIX source code and commentary put together by J.

Lions. (Ref. 26) This code is the source for version 2.6 of
41

UNIX. Later versions had some impact on the AMOS design

also.

Contents

This appendix contains the following sections:

.: History 0 0.... 00..... .. . B2
I, ;V iew s o f UN IX ..o. ...o. .. .o...o B 3

User's Point of View.... B4
UNIX Command Structur B4* UNIX File s B6
UNIX Utilities o................. B14UNIX ocumntato... • o o . o. .o .o o o o B1UNIX Documentation B14

UNIX Structures................................ B15
Definition of Process............ B15
The PROC Structure............................. B16
The Data Segment........ B17
The Text Segment.... B18
Other Structures............................... B18"" InlalizttonB20

B1

7 -1 S . k IelAt 0Wt .. *tWt1~~ .** *

UNIX Short Course Notes

Capt Doug Huneycutt
GCS-82D

October, 1982

History

UNIX was written by Ken Thompson of the Bell Laboratories

in 1969. Originally written in assembly language for a PDP-

7 mini-computer, UNIX was created specifically to provide a

useful environment for programming research and development.

The operating system grew in popularity within Bell Labs and

spread to educational and business sites. In the summer of

1973, UNIX was rewritten in the C programming language (also

greatly influenced by Ken Thompson). Since the translation

to C, UNIX has been ported to several other minicomputers

and mainframes, recently making its appearance in the

microcomputer sphere running on the Z8000 and 68000 16-bit

microprocessors. The original version of UNIX (2.6) was

modified and re-released as version 2.7 to eliminate for the

most part the hardware dependencies of 2.6 and make

*implementation easier for different sites. Bell

Laboratories is currently 'pre-releasing' an vastly modified

version called 3.0, which is incompatible in many areas with

the earlier versions of UNIX. The University of California

at Berkeley developed and maintains the 32V version of UNIX,

developed specifically for varieties of VAXen. Version 4.1

.~ .. ~-.:..bsd (a version of 32V) is currently being used on the SSC at

AFIT, and is command upward compatible with version 7, but

B2

C-source incompatible in many respects. Soon to be

released, version 4.2 bsd will be incompatible with 4.1#

3.0, 2.7, and 2.6 versions, but is deemed by UCB to be so

vastly improved that this lack of upward compatibility is

acceptable. (Compatibility observations obtained by

eavesdropping on the UNIX-WIZARDS list from SRI-CSL.)

Views of UNIX

There are three types of people who work with the UNIX

operating system. The most common is the normal user. The

user is the person who literally 'uses' the system to

achieve an end outside the realm of the machine. An example

of a user is an AFIT student who merely uses the programming

facilities of UNIX to achieve an external result (a grade).

The second class is the system programmer. This is the

person who writes programs that aid the system in achieving

the results demanded by the users. An example is the person

who writes a device driver for a new graphics terminal and

installs it under the UNIX file system. Users generally

r don't knew or care HOW the interface was written, only that

it works as needed.

The third type of UNIXophile is the system modifier,

alternately called the Super User, Guru, Wizard, or on

occasions when a file system is garbaged, a MUCH wider

variety of names. This is the person who maintains the

system and modifies it to meet the changing needs of the

installation. Examples as far as AFIT is concerned are Joe

Hamlin and Role Black.

B3

I. The user's Point of View

There are four major areas with which each user must have

a high degree of familiarity. These are the UNIX command

structure, the UNIX file system, the utilities (which make

up the largest part of the UNIX operating system), and the

documentation facilities UNIX has to offer. Each of these

areas will be covered in this section.

The UNIX command structure

The UNIX command structure can perhaps best be regarded as

a form of programming language. The standard command

interpreter is called the shell (sb), and supports a

language syntax similar to the ALGOL-68 language. The

Berkeley UNIX interpreter is called the C shell (csh), jnd

supports a language syntax similar to the C programming

W language. The shell programs are the most commonly used

interface to the UNIX system.

When a user logs in under UNIX, the configuration file is

read to determine the defaults for the user. This file may

specify either sb or csh as the default shell. It is also

possible to substitute a 'personal' shell program, which may

be desirable in cases where the user needs special

consideration.

-~ The shell prints a prompt and awaits Input. Following the

* syntax for input to the shell it is possible to produce very

extensive control structures (see the appendices of 'The

UNIX Shell', BSTJ pp. 1987-1990). A 'null progra-m' is a

:~ valid response, given by simply hitting the carriage return,

which causes the cycle to start over again. The most common

B4

..............

:.*.-.. , , . -. . -. . ' .. ,-

'program' entered to the shell is simply a command with

optional flags and arguments. This is analogous to calling

a subroutine in a language and passing parameters. In fact,

the program that gets called accesses the flags and

-arguments as if they were passed in from a calling routine,

as shown in the following example:

. definitions..

main (argc ,argv)
int argc; /* The number of arguments given '1

- char **argv; /* A pointer to a character array
that holds the arguments */

Body of program

The shell runs the program the user has specified after

, parsing the options given, passing the program the values of

argc and argv.

Another very handy aspect of the shell is the ability to

redirect I/0 and to pipeline data. As will be shown later,

each process under UNIX can spawn child processes, each of

which inherits the files of its parent. For a user to

execute a program, the shell spawns a new process and

executes the file given in the new process space, passing

the program the input parameters. The new program also

inherits the standard I/O files of the shell, which normally

default to the terminal. These I/0 files can be modified by

using the shell keywords < (for standard input) and > (for

5 output). For example:

ls -1 /usr >dir

I
LO....B5

. lists the directory contents of the /usr node, placing the

listing in the file dir under the current working directory.

The command

wc <dir

then performs a word count on the file dir. Actually, a

simpler method of achieving the same results exists. By

using the pipe feature of UNIX, two or more processes may be

executed concurrently, one feeding data to the other. For

example:

ls -1 /usr I wc

achieves the same result as the previous examples without

leaving a file in the working directory to be cleaned up

later. Contrary to the statement in the BSTJ article on the

shell, the pipe facility does create a file on disk, but it

is deleted after use automatically, so the effect is the

same.

This explanation of the facilities of the shell barely

scratches the surface of the capabilities of the standard

shell, let alone the C shell. For more complete tutorial

information, see the UNIX programmers manual set.

The UNIX file system

UNIX regards a file as a named character string which may

be stored on or retrieved from a variety of peripheral

devices. The file system tends to minimize the differences

between storage devices to allow the greatest flexibility in

storage and retrieval. There is no record structure imposed

upon files, but the newline character (an ASCII line feed)

may be used to simulate this feature.

B6

7 77 -

There are three types of files associated with the UNIX

file system. These are standard data f iles, directory

files, and special files (device drivers). As the name

implies, standard files contain standard data such as that

entered by programmers during an editing session.

Directory files contain the information necessary for the

operating system to correlate file names with the physical

locations of the named files. They also contain specialized

information about the files such as access rights, etc. The

capability to create and delete directory files is

restricted, for obvious security reasons.

Special files exist to provide the interface between UNIX

and system I/0 devices. All devices recognized by UNIX can

be read from and written to simply be accessing the correct

* special file. There are three advantages to treating device

I/0 in this manner (taken from BSTJ, p. 1909):

1. Device and file I/0 are made similar
2. File and device names have the same meaning in

the same context, so I/0 redirection is easily
implemented.

3. I/0 devices are afforded the same system
protection as normal files.

The UNIX file system takes the form of a rooted tree where

the leaves of the tree are data files (text, numerical data,

etc) or device drivers and the interior nodes of the tree

are directory f iles. A leaf f ile may be referenced by any

B7

number of interior nodes (directories), but interior nodes

'.-" may have only one parent. For example:

-,, . I/

'dev' 'usr'
/.: I! II \

'fd' 'tty' 'src' tacnt'
/ \
/ \

and so on.....

In this example, 'dev', usr', and 'src' are directory

files, 'acnt is a standard file, and 'fd' and 'tty' are

special files. Also, note that the file Itty' is referenced

by both "/usr' and '/tty' (though this would be discouraged

in a real-life installation).

Pathnames, such as '/usr/acnt', are useful for users of

the operating system. Obviously the operating system itself

needs a bit more information about the file to be able to

access the data requested. The following paragraphs delve

into the system information required for file access and its

format.

Ignoring the mechanics of how multiple devices get

attached to the file system, assume for the time being that

there are several devices containing files that the

operating system must be capable of addressing.

Any block of data residing on a device can be accessed

by the operating system provided that two identifiers are

made available. First, the device name must be known.

Secondly, the offset within the device, in terms of a

predefined block size, must be known. In UNIX the block

B8

size is set at either 512 (versions 2.6 and 2.7) or 1024

(version 4.1) characters per block. This is the atomic unit

of any file access. Given that the device identifier and

offset are known, it is a relatively simple matter to

retrieve data from device. Users cannot be expected to keep

track of such matters as the device and offset of their

files, however, so a naming scheme that allows pathname

specifications for files is essential.

When the system is initialized, the root of the file

system is at a known location on the system device. The

root contains directory entrie for its immediate lower

levels, some of which may themselves be directories. By

walking the tree indicated by a given pathname, any file on

the system may be uniquely specified. For example, take the

pathname '/usr/src/games/chess.c'. To locate the file

'chess.c', the following procedure is followed. Starting at

the root of the file system, search for an entry in the root

' directory named 'usr'. Search the directory 'usr' for an

entry named 'src'. Search 'src' for 'games', then search

'games' for 'chess.c'. Since each portion of the pathname

is a file itself, including the 'leaf' named 'chess.c',

identical operating system procedures may be followed for

walking the pathname. If the pathname starts with the

character '/', the root directory is the starting point for

the walk. Otherwise, the current directory of the task is

the starting point.

If only a single device were allowed to contain the entire

B9

u I '+ +- +" 'r
+ *

+r • • "..""" """""""""".
o °

.

file system, UNIX would soon run out of file space.

Therefore it is essential that secondary devices be

accessible to the file system.

A secondary device is added to the file system by mounting

the device so that its root overlays an existing standard

file (leaf) in the system device structure. After the

mounting, any references to the original leaf file will

actually be directed through the root of the secondary

device. At this point it becomes clear why the device

identifier is essential in addressing. Users can easily

reference files without knowing on which device the files

reside. For the operating system to access the files the

device identifier must be available within the system data

structures and the offset must be contained within the

directory entry for the file. This brings us to the point

a.' of the directory entries themselves.

The UNIX specification of a disk file is located entirely

in a structure termed an i-node. This structure, es defined

in the BSTJ, p.1942, is a record of file attributes and

.a physical disk locations. In C, the i-node is defined as

follows:

struct inode {

int i mode; /* Protection codes and type *1
char i nlink; /* Number of links to the file */

char uid; /* The user ID of the owner
char i-gid; /* The group ID of the owner */
char i size0; /* Least significant size value */

char *T sizel; /* Most significant size *1
int i iddr[81; /* Physical device addresses */

int i-atime[2]; /* Creation time */
int i-mtime(2]; /* Modification time */

Notice that the ASCII name of the file does not appear in

B10

the i-node structure. So how does the operating system

translate the pathname given by the user into the

information given by the i-node?

Each entry in a directory file contains a ASCII file name

(up to 14 characters) plus an i-number. The i-number is the

offset within a predefined area of the disk that contains

the i-nodes, called the i-list. When walking the pathname

given by the user, each time a match for a segment of the

pathname is made, the i-number found by the match is used to

offset into the i-list and retrieve the i-node for the

desired file.

Depending on the size of the i-list on the disk, all or

part of the list may be core-resident to speed access times

for the operating system. Obviously, the number of file

accesses during a given period make this optimization

worthwhile. A major drawback, however, occurs when the

system is mishandled or crashes unexpectedly. Any changes

made to the i-list while in core that were not forced to

disk before an accident occurs are not remembered by the

system when it is brought back up. In what amounts to a

massive multiply-linked list, this can be disasterous,

resulting is a totally useless file system. Only through

painful hand-walking of the i-list can such a meltdown be

recovered.

The final section of the file system discussion presents

the algorithm used to allocate file space under UNIX.

Though this algorithm is presented in the BSTJ, it will be

B1

AD-Rt24 733 DESIGN OF A MULTIPROCESSING OPERATING SYSTEM FOR 2/2
SIXTEEN-BIT MICROPROCESSORS(U) AIR FORCE INST OF TECH
MRIGHT-PRTTERSON RFB OH SCHOOL OF ENGI.. D S HUNEYCUTT

UNCLASSIFIED DEC 82 RFIT/GCS/EE/82D-28 F/G 9/2 NLEIIIIIIIIIIEI
ElllIIhllllllE
IIIIIIIIIIIIIIflfflf
I IEEEEEEEEEI ,

I, . W

1 .

IBii&0.

* ... ,.aEL=

L AS
1"25 j- 16

RMUTM TST CHAR

su~mOf SAPDADS-163-

7.1,

g .graphically represented here in an effort to make it a bit

Smore understandable.

Each file system device under UNIX contains a super-block

which describes the device. This can be roughly represented

as follows:

Size of the file system

I "Size of the i-node list

I Part of the free-block list

I of free blocks I # of free i-nodes

Part of the free i-node list

Following the super-block comes the i-list, which contains

the file definitions for all files on the device. Each

*definition is called an i-node, which was defined earlier.

The position of each i-node within the i-list defines its

unique i-number. Following the i-list are data blocks for

storage.

Each i-node contains an array of disk addresses. The

example in the BSTJ contains 13 addresses, while the source

code and commentary used by this class has the i-node

defined with 8 addresses. For the sake of continuity, the

13-address example will be used. The first 10 addresses are

direct pointers to the first 10 data blocks of the file

(5,120 bytes under 2.6 and 2.7, and 10,240 bytes under 4.1).

The l1th address, if needed, points to disk block that

contains more disk addresses. If still more space is needed

then the 12th address points to a block that contains

B12

"P-' ," ' .g- *-.,"..., ,e ,**,""' " "d" " * " . " '""." ",., -4•, "",.-.. " .. ".' " .,".. -,. '-.

.7. -37--

addresses to more indirect blocks, each of which points to a

* group of data blocks. The 13th address is used for triple

Indirect addressing, and for driving system managers crazy.

A graphical representation follows:

i-node data addresses

pintr to dat Iirect II

pontr to sigl Indirec

poiter to double InirectI

Block ec blck Bloc

Tis cpolue more cov Sige f th NXflsse.Ms

of poeintrs ata in tindiecto Ia obandthog h

coblocks rans aovethe Block an th orecdecmetr

ver ontr to6 sigl UNX bt indirecatil with_ vrion 4. n

* I idiret bloks IBlok3

2.7. The use of these structures will be covered in more

.... • k detail in the later sections concerning modification of the

UNIX system.

UNIX Utilities

By far the greatest bulk of the UNIX system is comprised

of the utilities package, while the kernel of the operating

system is relatively small. All the utilities are available

in source form on tape for modification by the AFIT

programming staff.

Version 4.1 of UNIX has between 180 and 200 utilities

available, an alphabetical list of which has been made

available as an attachment to this document. The massive

amount of material available makes inclusion in this paper

with any degree of justice impossible, so the reader is

directed to the uNIX Programmers Manual for assistance in

wading through the system.

UNIX Documentation

As just mentioned, the most valuable source of

documentation for UNIX is the UNIX Programmers Manual. This

massive set of volumes enshrines all the information about

the utilities (commands), system calls, subroutines, special

files, file formats, GAMES!, macro packages, and maintenance

procedures for the UNIX system.

Additionally, the learn command is available to run the

user through a tutorial on a variety of subjects, including

C, the editor, files, morefiles, and others. The strength

_of learn is that it actually allows the 'student' to give

commands and run exercises under UNIX, while regaining

B14

constant data. These three subdivisions are covered in the

next few sections.

The Oproc* structure

The proc structure is contained within the coresponding

array named proc (358). Each structure of this array

contains the following data:

1) The process status
2) The process flags
3) The process priority
4) Storage for a signal sent in to the process
5) The user ID for the process

-K 6) How long the process has been resident
7) How much CPU time the process has used
8) A priority bias (nice)
9) The controlling TTY number

10) The unique process ID number
11) The process ID of the process' parent
12) The address and size of the swappable image of the

process (size is in blocks, address is memory address
if in core, disk block if swapped)

13) What event the process is blocked for.
14) A pointer to the text structure for the process

Each process has a status code, one of:

Sleeping
Waiting
Running
Being Created
Being Terminated
Being Traced (by parent)

These status codes are mutually exclusive (i.e. a job can't

be sleeping and running at the same time). In addition to

the primary status indicator, there are several additional

codes used by UNIX to indicate further status of the

process. These are:

In core
Is a system process (scheduling)
Locked in core (no swap)
Being swapped out
Being traced (again)

These codes may be ORed together (i.e. a job may be in core

B16

~ u~*.-.,- ~ ~---A

and locked at the same time).

Each process running under UNIX must have a proc structure

in the proc array, which remains core-resident at all times.

As shown in the source (376), this limits the number of

concurrent processes to NPROC. Theoretically, a linked list

could be used instead of an array to contain the proc

structures and remove the limitation on the number of

concurrent processes. In real life, however, this would

probably be more trouble and cost more in overhead than it

would be worth.

The Data Segment

The process data segment is the portion of the process

which is 'swappable'...that is, which must be written to

disk in its entirety if the process is to be removed from

main memory. For the purposes of this paper, the data

segment contains program code and data, the contents of the

stack, and a copy of the user structure for the process.

One point to notice is that on a PDP-11 running UNIX, there

are as many kernel stacks as there are processes, making it

impossible for the stack information of the kernel to

migrate from one process to another, even In the event of a

machine failure. The user structure (413) contains the

following process data:

1) Storage for various registers
2) I/0 flag
3) An error code
4) The effective and real user and group IDs
5) A pointer to the proc structure
6) I/0 data (file offset, etc)
7) A pointer to the inode for the current directory
8) Storage for the current pathname component

B17

.AR

9) A pointer to the current inode
_- 10) Storage for the current directory entry

11) Pointers to open file descriptors
12) Storage for the arguments of system calls
13) Sizes for the different segments and stack
14) Various flags
15) User and system times for this process and its

child processes.

The Text Segment

The text segment is optional for the process. Most

programs written by standard users will not contain a text

segment. The only advantages to having a text segment are

that the text is sharable by more than one user, saving

memory when many users are accessing it, and that when

swapping is necessary, the text segment is not rewritten to

disk, as it has not been changed.

Other Structures

There are several structures used by UNIX. The two of

greatest interest to this class (proc and user) have just

been presented. Others exist that don't concern this class

at the level we are examining UNIX. Presented below are a

few of the other structures of interest.

It should be pointed out that the authors of the UNIX C

code had a highly questionable habit of declaring a

structure named with a descriptive name, then declaring an

array of the structures using the same name. For example,

struct mount {
nt m dev; /* Device moupted */
nt *m bufp; /* Pointer to superblock */
int "° inodp; * Pointer to mounted on mnode

mount (NMOUNT) ;

..4..,which declares a structure (defines a type, for Pascal

freaks), then declares an array of NMOUNT mount structures,

B18

• " ' ,. % " ',e
" °

",a" .- f, a. . - - . . - f a

. naming the array mount also. Bad news for many C compilers

today.

This is a good place to start, though. The Omount" array

.4 contains structures in core to allow UNIX to find the super

block of any mounted device. This is essential to allowing

multiple devices to be accessed throught the rooted tree

type of file system.

The next structure of interest is the text structure

(4306). This structure contains information concerning the

disk address of each pure text segment currently in use by

processest how many processes are using the text, its main

memory address if loaded, and an inode pointer. The main

point of this structure is to see that for any text segment,

no matter how many processes are accessing it, there is only

one entry in the text array, thus saving memory space.

The file structrue (5507) contains a flag (read, write, or

pipe), a pointer to an inode structure, a reference count,

and a pointer to a read/write offset value. This structure

(again contained in an array by the same name) defines any

file open under UNIX, and is always resident In main memory.

The filesys structure (5561) contains the definition of

the super block for each mounted file system device, plus

status flags. This structure appears to be used as a

template to overlay and give structure to the block of data

S# read in from disk as the super block. The contents of this

block were defined earlier.

B19

Initialization

~ Hardware (memory management, etc) is not referenced in

this discussion, as each configuration is different. The

low levels of UNIX are too hard ware -dependent for a general

OS class. Discussion begins here with the "main' procedure

(1550) which performs the following functions:

1) Initializes memory - a pair of memo ry-management
registers is used to step sequentially upward through
memory in blocks, initializing the blocks to contain
zeros. When any block cannot be read, it is assumed
that the maximum of physical memory has been reached.

2) The maximum memory size per process is set by taking
the minimum of the physical memory size, the MAXMEM
site-dependent definition, and the physical limit
Imposed by the hardware.

3) Disk swapping space is defined and initialized.

4) The system clock is initialized.

5) The character buffer pool is initialized.

6) The large buffer pool is initialized.

7) The table entries for the root device are initialized.

8) Process 0 is kicked off.

This discussion will not get into the details of how the

buffer pools are used by I/O devices. Suffice it to say

that there are two types of devices recognized by UNIX.

These are character-oriented devices and block-oriented

devices. Examples are terminals and disk drives,

respectively.

* As noted~ above, the last step of initialization is to

start process 0, which executes sched (1940). Sched handles

the I/O procedures necessary to swap processes In and out of

maina memory. NOTE: sched is itself a process, being

820

executed in the space of process 0. The logical states of

sched consist of the following:

1) Waiting for swapping I/0 to complete
2) Waiting because none of the swapped processes are

ready to run.
3) Waiting because none of the processes swapped out

have been out for more than 3 seconds and/or none
of the main memory resident processes are inactive
or have been In memory for more than 2 seconds.

4) Running (scheduling a processes to run)

When sched is able to run (ioe. a process may be

scheduled), the following algorithm is used to select which

process to enable:

1) Disable clock interrupts to prevent timing
information from being changed.

2) Scan the proc array to find the process that is
ready to run AND has been inactive for the longest
t ime.

3) If not found, case 2 above holds.
*4) Search for a block of memory to hold the swapped

process. Note that if a text segment is needed,
and is swapped out, the memory needed is the data
segment size PLUS the text segment size, required
as a contiguous block of memory.

5) If no memory block large enough is found, search
through the in-memory processes to find a process
that is waiting or stopped (not sleeping, locked
or process 0, the scheduler itself). If found,
swap the process out to disk and load the
'news process back into main memory.

6; If a process is not found in step 5), and the
process to be swapped in hasn't been out for more
than 3 seconds, then case 3 above holds.

7) If the process has been swapped for more than 3
seconds, search for a resident process which is
sleeping of ready to run and swap out the selected
process that has been in memory the longest time

SI IF the process has been in memory longer than 2
seconds. ELSE, case 3 holds again.

8) Swap in the 'new' process.

Following a successfuil swap, the area of disk used to

contain the swapped out process isfreed frthe system to

use in future swaps.

This explains how processes are swapped into and out of

821

main memory, but how does processor allocation occur between

processes that are memory resident? The answer is that a

switch may occur in one of two general ways:

1) The process may initiate an action which results
in it being inactivated.

2) An interrupt (clock, device controller, etc) may
force the start of a system process, which will
cause rescheduling of the CPU after it finishes.

In either case, ultimately a call is made to the swtch

routine (2178). This routine searches the proc array for

the process that is ready to run and has the highest

priority (the lowest priority number). The priority value

of a process is changed frcm time to time through the setpri

routine (2156). This routine basically sets the priority of

the process proportionally to the CPU time used, also

factoring in the value found In p_nice of the user

structure. P nice may be altered by the system of the

user/super user, making the priority externally setable.

B22

Appendix C
AMOS Bootstrap and Interrupt Service Routines

This appendix deals with the logical requirements for

the implementation of the AMOS bootstrap and the AMOS

interrupt service routines. The actual implementation will

depend heavily on the host processor choosen for the

implementation and the server devices (i.e. disk controller,

serial I/0 controller, etc) available to that host device.

Bootstrap

The AMOS bootstrap should be implemented to allow for

the greatest of ease in system modifications. When the host

system is powered up, control may be directed either toward

a monitor ROM or toward a power-on bootstrap loader. In the

first case, the capabilities of the monitor may vary from

system to system, but the option of bootstrapping from disk

must be available.

The AMOS bootstrap program should consist of the

. following steps:

1) Load the first sector of code (128 bytes) from

track 0, sector 1 of the system device, placing

it into a known location in memory. Begin

executing this code (the bootstrap loader).

2) The bootstrap loader will call the AMOS low-

level device drivers to load the rest of the

bootstrap program from within the system data

area of the system device.

3) The bootstrap program will again use the low-

Cl

level AMOS drivers to search for and load a

file with the pathname */AMOSw from the root

area. This file (AMOS) is the executable image

of the AMOS operating system. Once this file
I%.

is loaded, control will passed to this image

and AMOS will begin execution (Level 0).

The bootstrap is configured in this manner to allow for

modifications to AMOS, which after compilation will be

placed into the file "/AMOS", without the need to

reconfigure the bootstrap mechanism. A test mechanism

should be provided to force AMOS, while executing, to reboot

from a temporary test image. This will allow the system

manager to simply reboot the system normally (from the

console) if the new image -doesn't work. (Assuming, of

course, the the test image doesn't clobber the file system.)

Interrupt Service Routines

The interrupt service routines of AMOS have not been

specified, largely due to the hardware-dependent nature of

such code. However, a few restrictions apply regardless of

• 'the implementation hardware.

First, to implement AMOS in a manner as responsive as

possible to the user, interrupts should be disabled for as

short a time as possible. Prioritization mechanisms should

be implemented to allow for high-priority requirements to

break into low-priority processing.

Second, the user-generated interrupt (system call)

.. service routine must be capable of retrieving arguments

passed by the user process and placing them into an area

C2

. .".

* - - -~-;*7-

accessible to the AMOS kernel. This process is device

dependent also, as many *i, the newer processors allow for

separation of memory Into system, normal, data, code, and

stack spaces (all permutations). Careful attention must be

given to not disturb data areas that may be needed by the

user process In later processing (i.e. for a file name

search, the service routine must not overwrite the name

string when retrieving it. The user task may recieve an

error flag from AMOS that will require further processing on

the name).

Summary

The AMOS bootstrap and interrupt service routines are

essential parts of the implementation details. This

investigation has not specified implementation details for

these routines, due to the expectation of varied hardware

availability in the future. The minimal requirements listed

above should be followed, however, in future implementation

to allow the greatest flexibility in system modifications.

"C3

Apeni D

AMOS Structure Charts

This appendix contains the module structure charts for

AMOS developed in the main body of the report. The charts

have been spatially expanded for increased readability.

Full discussion of the logic of development for these charts

* is found in the main report body

Di

4.~~~~~~~~~~~~~ 7W~ V,~
5

,S. %~.S.-.~* * ~

17- fA -b. - -

Index

Executive (Level 0) D3

Service Interrupts (Level 3.0) D4

Service System Calls (Level 3.3) D5

Service File System Requests (Level 3.31) D6

Create File (Level 3.311) D7

Translate Name to DDB (Level 3.11...........D8

Search Directory for Component (Level 3.31112) D9

OpenFile (Level 3.312) DlO

,.'

4-D2

-.4 , , ' . ' . , , . . , . ', . , , . , , " ' .. , , - , . . . - . . . - . . . - .

A:[

Executive
<----- Interrupts

Level 0 (Asynchronous)

(No downward *rls
flow, if cntrl i user/proc
comes up, boot structs.

- OK)A

Init'ed d Modified

globals J user/proc current
structures process

Boot Initialize Service Reschedule
System System Interrupts CPU

Level 1 Level 2 Level 3 Level 4

IE7

Figure 3-2

'D3

.9

t.

,A°. •

D3

t.1*

9.. modied

*arglist user/proc

structures

Service

Interrupts

Level 3.0

(undecided (undecided *arglist
linkage) linkage)

Serror#e

user struct

Service timer Service other Service a User
Interrupt hardware inter. interrupt (SC)

Level 3.1 Level 3.2 Level 3.3

Figure 3.3

4.D4

1 . " * . ° - ° ~

S""d,,: " ," " " " ," .

I,-A

. error, *Arglist
: user struct /

":"Service System'3.3

AlCbanhelsrr

!.-. /*a rglist into sublevel#

ue err return error
ServiceSevic Systeriemse dt

Isystem request moiiato3.3331. 3 .

ServTice Proces ervce System data Service Comm.

data mod re . modification req. request
3.33 3.34 3.35

Figure 4.1

'D5

.1-

D5

%" . %-% %t....."..........................."......."................."".............,.. "-"......

.° ~ -.. . , ... , . A . A . -, . . . -. . % , . V;. . I. : . . .L.....-

?*arglist
error J

System Requests

" 3.31

error *arglist

Crae pen Close Read
file file file file

3.311 3.31 3.314

.,i

Write Delete Position Get File

file file R/W pointer status

3.315 3.316 3.317 3.318

Figure 6.1

ID

D6

!.4 V . K:'..,

f numb, *name,
error mode

~Create
File

-3.311

* name,
mode

r *tddb, *name, WRITEn
error mode, error *tddb fnumb

*tddb error

Translate Create a Access
name to new ddb File

ddb

3.3111 3.3112 3.3113

Figure 6.2

D7

7: - ,--..

~..

*tddb, *name,

error t mode

Translate name
to ddb

3.3111

*name *comp, *ooIp,
error mode error

Extract Search
component Directory

from for
pathname component
3.31111 3.31112

Figure 6.3

08

-.1 7.%

V. 7d I.-IM 7

"oo,,,cop,? 1
mode error

Search
Directory

for
component
3.31112

*dirblk *dirrb k

error match
fdb

Read next ESearch block for Release block
dboenty component match from buffer: , 3. 11122pool

; F 33 .31 1 1 2 13.311121
3.311123

Figure 6.4

,...

'9'
.D,

- ..

,.4

f fnumb, 4 *name,
U °° I:

error mode

Open
File

*name,
mode T *tddb, mode,9

error *tddb fnumb
: Irror

• Translate Access
name to File

: ddb

3.31113.3113

Figure 6.4

NOTE:

' Both submodules of level 3.312 are previously defined

common routines of the CREATE system call, containing

multiple sublevels.

-

D10

... --------- 4 *~ .. 4* 4 4

ApPendix E

AMOS Source Code

This appendix contains the source code (in C) for the
partial implementation of the AMOS system. Included are the

files:

AMOS. H
General purpose equates No Ref.

SYSCALL.H
System call equates Fig. 4-1, p. 32

STRUCT.H
SystemStructuredefinitionsand

Chap. Vglobal variable declararions

DRIVER.C
Driverroutineto accept userinput Chap. 7and format the entry data to Level 0

INIT.C
Initialization routine for Fig. 3-2, p.24
global data

~ SYSCALLC

System Call handling routines Fig. 4-1, p. 32
PARSER.C

Routines oriented toward converting a Fig. 6-3, p.52* given pathname into a ddb pointer

AFORMC
AMOS floppy disk formatter for theCP/M operating system (BIOS oriented)

LS.C
AMOS disk statistics reporting utility
also CP/m BIOS oriented.

AV

E

.** General System Parameter Equates for AMOS **

•* Date last modified: 30 Nov 82 **U: ******************************* ***
struct ddbdef *rootddb;
int error; /* Gotta have a global error value */

#define SEPARATOR 1/' /* Pathname separator */
#define NAMESIZ 12 /* 12 characters/name
#define NULL 0 /* Null value
#define MAXDEV 4 /* 4 devices can be mounted
#define MAXFILES 16 /* Up to 16 files open */
#define NUMDDB 40 /* 40 spaces for in-core ddb */
4define DDBSIZ 32 /* DDB is 32 bytes long */
#define STATSIZ 20 /* Size of status block of integers...

used to store off user status in a
context switch.

#define NAMESIZ 12 /* Number of characters per name*/
#define TRUE 1 /* Boolean value */
#define MAXPROC 30 /* Try 30 concurrent processes */

/* Error codes */
#define E NOFILE 1 /* No file */
#define E-EXISTS 2 /* File already exists */
#define E-NOPERM 3 /* No/invalid permissions */

/* File access modes */
#define MREAD 1
#define A-WRITE 2

I
.

E2

l. , . - ",,. 7 --..... .

"2-. /* ***** ********** *********** ***** ****** *********** *'**********,*

** Specific System Call Parameter Equates for AMOS **
**SYSCALL.H *

** Date last modified: 2 Nov 82 **,** **
',., ** **

/* The first section of system calls are requests made
to AMOS to manipulate the normal file system. */

tdefine CREATE 1 /* Create a file
#define OPEN 2 I* Open a file for I/O
#define CLOSE 3 /* Close a file
#define READ 4 /* Read a file
#define WRITE 5 /* Write to a file
idefine SEEK 6 /* Position R/W pointer in a file */
#define FILE STAT 7 /* Returns status of an open file */
#define DELETE 8 /* Delete a file link

,* The second section of system calls are requests made
to AMOS to manipulate the directory and inode
portion of the file system. *

#define LINK 15
/* Create an alternate pathname for a file */#define MAKENODE 16
/* Create an inode

#define CHNGMODE 17
/* Change access modes for a file

#define CHNGOWNER 18
/* Change the owner of a file

#define NODESTAT 19
/* Returns an inode's status from disk

#define COPYFD 20
/* Duplicate an open file descriptor

The third section of system calls are requests to
supply or modify data in the user descriptor area.*/

#define CWDIR 29
/* Change the current working directory

#define GET USERID 30
/* Get the current userld */

#define SETUSERID 31
/* Set the current userid */

S* The fourth section contains requests for AMOS to
return or modify data in the process descriptor
area. *

#define GET PROCID 39
/* Get the Id # for the current process */

#define SET PRIOR 40

E3

/* Set the priority for a process */
#define KILL PROC 41

/* Kill a specified process */
#define FORK PROC 43

/* Create a new process .1
#define WAITPROC 44

/* Suspend process until child terminates */
#define DIE 45

/* Normal term. call for all process */
#define GETPTIME 46

/* Get process times */
#define EXEC 47
#define MEMREQ 48

The fifth section contains requests to get/modify
system parameters, execute new tasks, modify
resource allocation, etc */

#define GETSTIME 55
/ Get system time */

#define SETSTIME 56
/* Set system time */

#def in. MOUNT 58
* Enters a device into mounted-on table */

#define UNMOUNT 59
/* Deletes an entry made by MOUNT

#define SAVE 62
/* Update system data to disk

/* Communications section */

#define PIPE 70
#define GET TERM 71
#define SET-TERM 72

/*.Standard errors that can be encountered */

#define ENOFILE 1
/, File named doesn't exist */

#define EEXISTS. 2
/* Pile named already exists */

E4

q

** Structure definitions for AMOS data areas
** STRUCT.H **

S* Date last modified: 18 Nov 82 **
***************************** ****

#include "amos.h"

** Definitions for the proc table array, which **
' ** contains the in-core information needed by **

** AMOS for keeping track of current processes.

struct process f
char p flag; /* Process flags
char p prior; /* Process priority *1
char pint; /* Storage for an interrupt */
char p userid; /* User ID of this process */
char p.coretime; /* How long in core */
char p cputime; /* How much CPU time given */
char p_bias; /* Bias for priority calcs */
char p term; /* Terminal connected to proc */
int pid; /* Process ID #
Int p_idp; /* Parent's ID #
int ploc; /* Address of start of process */int p-slze; /* Size of process in blocks *
-nt p reason; /* Reason process is blocked */
proc_table[MAXPROC]; /* Allocate the space needed */

/****** Now define the status and flag values *

/* Status codes */

#define CURRENT 0; /* Currently running proc */
#define SLEEPING 1; /* Waiting for external event */
#define NATAL 2; /* Process is being created
#define DYING 3; /* Process is terminating */

/* Flag codes */

#define RESIDENT 1; /* In main memory */
#define SWAPPED 2; I' Out on disk
#define LOCKED 4; /* Can't be swapped (le sys) *1

E5

Definition oftedb rdisk descriptor bok
** The ddb entry contains all information necessary *
** to access a disk file. *

struct ddbdef{
char dstat; 1* In core status of ddb *Ichar refcount; /* Number of ref s to core copy *
Int device; /* Which device does it refer to *
int doffset; /* and what offset in the list *
int mode; /* Access, etc for file
char links; /* Disk links to file
char owner; /* Owner id # *mnt numblocks; /* Number of blocks allocated
int numchars; /* Number of chars in last block *mnt curblock; /* Current block read (last one) *int blocks(Bl; I' Offsets for blocks of file)ddb-table fNUI4DDB];

** Definitions for the user structure, which
** contains the swappable information not needed by *
** AMOS while processes are swapped out to disk. *

*.. #define ddbptr struct ddbdef

struct user
nt ustat(STATSIZJ; 1* User status (registers, etc) *
chr uerror; /* Last error reported '

char u eid; I' User's effective IDchar u -rid;- /* User's real ID 'ddbptr *jj wddb; /* Pointer to work dir ddb entry *
char u wname[NAMESIZ]; /* Working directory name C
ddbptr *ii tddb; I' Pointer to temp dir ddb entry *
char u-tname[NAMESIZ]; /* Temporary directory name '
int u files[M'AXFILES]; /* Pointers to open files C
int u arglst[101; IC Argument block for syscall C
char u-argstr[80]; l* Storage for argument string C* mt u psize; /* Size (128-byte biks) of task '
luser taEle MAXPROC];

struct devices{* mt dev num; l* Number of device installed C
int *mblock; /* Pointer to Master Block
int *root ddb; /* Pointer to root DDB C
Idev table[MAXDEVJ;

struct files
char access; /* Access type C
char refnum; IC Number of active references C

A mt *refddb; 1* Pointer to file's ddb C* mt offval; /* Read/write offset pointer C

Ifile table (MAXFILES];

E6

** Driver Routine for AMOS System Call Handler Codeii . t .~ ** **

** Date last modified: 30 Sep 82 **

** MAIN() is a driver to accept keyboard input to emulate **
,** AMOS system calls. The driver asks the user to input **

** a system call number then, depending on the system **
** call desired, querries the user for the information *
** necessary to accomplish the task. The arguments are **
** passed in an array of 10 integers. If an argument is **
** a character or integer value, the argument itself is **
** passed in the array. String arguments are passed by **
** placing a pointer to the string in the argument array. **** **

#include "bdscio.h" /* Grab standard I/O routines */
#include "syscall.h" /* and the syscall definitions*/

main()

int syscall; /* System call number
int end test; /* Boolean for testing */
int argTist[lo]; /* Room for 10 pointers */
char argstr[10)[40]; /* Argument storage */

inito; /* Initialize data areas */

end test - FALSE;
priitf(0\033E\n\n\007\007Please remove your system disk and");
printf(w place the AMOS-formatted disk into the drive.\no);
printf("\n NOT RESPONSIBLE FOR GARBAGED DISKS IF YOU DON'T
printf(ODO ITIlI\n\nHit RET when ready -----);
getcharo;
printf(0\033E\033x1\033Y8 ");
printf("AMOS System Call Routine Driver
printf(O(C) 1982 by Douglas S. Huneycutt, Sr\033k");

while (lend test)
printf(\i\033qEnter the System Call number (0 to quit): ");
scanf(%d',&syscall);

if (syscall 1= 0) /* Build parameters for test */
switch (syscall) {

case CREATE:
case OPEN:

arglist[0] - &argstr[0][0]; /* First parameter */
printf ("File to ");
printf ("ts? ",(syscall -= CREATE) ? "create" : "open");

/* SCANF is passed the content of the first element of
the arglist array, which is the address of the first
element of the argument text array. *

scanf ("Ss",arglistf0]);

E 7

!.:-....... .

printf ('Mode (- READ, 1 = WRITE) ? U);

/* SCANF is passed the address of the second element of
the arqlist array, which is filled with the mode number.

scanf ("%d\n*,&arglist[1]);
break;

else
end test - TRUE;

if (lend test) {
printfTO\033p"); I* Set rev video for system responses| sys request(syscallrarglist);

'printf(0\033E\n\nPlease replace your system disk and hit RET (waiti
getchar (;
printf (0\33yl\033E");
}

.4

7-

E8

INIT.C Routine for AMOS System *****' _. **

** Date last modified: 30 Sep 82 **

• * INIT() is called to initialize global data areas in the **
* AMOS structures.

#include "struct.h"
#define DLOCKED 4
Init()

struct ddbdef *tmp;

tmp = &ddb table[);
tmp->dstat - DLOCKED; /* Root ddb locked in core */
tmp->refcount 1 1; /* Test driver is only access */
tmp->device = 1; /* Drive A for now */
tmp->doffset = 1; /* Root ddb is first in line */
tmp->mode -M READ; /* Read access for now */
tmp->numblocki = 1; /* Only 1 block allocated */
tmp->numchars = 28; /* 2 directory entries */
tmp->curblock = 0;
tmp->blocks(3 = 5; /* Set block 5 for root dir

C. tmp = &ddb table [11;
tmp->devici = 1;
tmp->doffset = 2;
tmp->mode - M READ;
tmp->numblocks - 1;
tmp->numchars = 28;
tmp->curblock = 0;
tmp->blocks[) = 6;

rootddb - &ddb table[]; /* Point to root ddb entry */
cu.u wddb a &ddb table[l); /* Point to work ddb entry */

E9

'-

• ** System Call handler routines for AMOS *

,5':* ** **

Daelast modified:28OT2

,.. *. *

** sys request (syscall argptr) accepts input from the **

** driver routine. syscall is an integer system call and **
** argptr is a pointer to an array of 10 integers, having **

** been formated by the driver. If an argument is a **
** character or integer value, the argument itself is *
** passed in the array. String arguments are passed by **

** placing a pointer to the string in the argument array. ********************************* ****

tinclude "syscall.h" /* Grab system call defines */
int error;
int fnumber;
#define OpWrite 1

sys request(syscalleargptr)
intsyscall; !* System call number '/
int *argptr; /* Pointer to pointer array */

switch (syscall) {

case CREATE: case DELETE:., case OPEN: case CLOSE:

case READ: case WRITE:
case SEEK: case FILE STAT:

N Filesys(syscallargptr);
break;

case LINK: case COPY FD:
case CHNG MODE: case CHNG OWNER:
case NODE-STAT:

D Pilesys(syscallargptr);

break;

case GET USERID: case SET USERID:
case CWDIR:

User Mod(syscallargptr);
brear;

£10

s7.. ,-~t
-7 7- - --

case GET PROCID: case SET PRIOR:

case KILL PROC: case FORK PROC:
case WAIT PROC: case DIE:
case GET PTIME: case EXEC:
case MEMREQ:

Proc Mod(syscall,argptr);
brear;

case GET STIME: case SET STIME:

case MOUNT: case UNMOUNT:
case SAVE:

Sys Mod(syscallargptr);

break;

case PIPE: case GET TERM: case SET-TERM:

CommReq(syscall,argptr) ;
break;

,' default: printf("\007Sorry...not implemented\n");

N Filesys(syscall,argptr)
i't syscall;
int *argptr;

char *name;
int mode;

switch (syscall) {

case CREATE:
name = argptr(01;

'-'.. mode = argptr[l];
f create (namemode);
break;

case OPEN:
f openo;
break;

case CLOSE:
f closeo;
bieak;

case READ:
f reado;
bieak;

case WRITE:
f writeo;
break;

case SEEK:
f seeko;

'p break;

Ell

.,I

4..
. . ..

,-.: ~ ~.. ,..* ..9*, , " -"--,-*9 . ' :',=-r '--: '"-:"-"""
"

"; " *"; " -"" "

case FILESTAT:
f stat(O;

.4 b7eak;
case DELETE:

f deleo;
b~reak;

D Filesys(syscall)
int syscall;

switch (syscall)
case LINK:
i linko;
bireak;

case CHNGMODE:
i cmodeo;
b-reak;

case CHNGOWNER:
i chowno;
break;

case NODE STAT:
i nstatt);

N blreak;
case COPY FD:

fd -copyT);
break;

User Mod (syscall)
int syscall;

printf("User area modification control module reached.\n");

ProcMod(syscall)
int syscall;

printf(*Process modification control reached.\n");

SysMod(syscall)
int syscall;

printf(wSystem modification control module reached.\n");

* Comm Req (sysca 11)
nt syscall;

printf("Communications Modules control reached.\n");

E1 2

t.* 4 '-':' -*' * **
' ' ' '

.

** Module --- f create(namemode) **
** Purpose -- Creates a file of length 0 with the **
** name and mode supplied by the caller. If **

the call is successful, the file is opened *
for writing. **

** Date modified -5 Nov 82 **
.. ** **

** Items passed -- 1) Pointer to an ASCII name string **

** 2) Integer MODE value **
**,returned -- 1) Integer file number, if successful **

** NOTES: f create, as noted'above, returns an error **
** iT the file to be created already exists **
** on disk. This does NOT conform to Unix, *
** which will truncate an existing file if *
** found. **
***************************** ***

f create(name,mode)
char *name; /* Pointer to a pathname */
"nt mode; /* Mode for the created file */

ParseName(name,mode); /* See if it's okay to make the file */

/* Now check to see if an error occured. There are init-
ially three possibilities that the file already
exists, that an error occured in walking the pathname,
and that no file of that name exists (in this case, the
desired result). */

if (error I- E NOFILE) { /* Something went wrong..,*/

if (error ----NULL) j
error - E EXISTS; /* No error means it exists */
return;)I

- return; /* For other errors, i.e. no access */
1,'i /* to a subdirectory, the Parse Name */

/* routine has already set the 'ERROR */

E13

/* At this point, it's okay to create a new file. The steps
are:

a) make a disk descriptor block (DDB)
b) open the new file for writing

0.. c) return the file identification number */

Make DDB(namemode);
if (error I= NULL) return; /* Make DDB sets error codes */
fnumber = (FOpen(name,Op Write));
return (fnumber);

f open()

printf (NFile open routine called.\nl);

f close()

printf ("File close routine called.\n");}

f _read()

printf ("File read routine called.\nO);}

f write()

printf ("File write routine called.\n*);

f_seek()

printf ("File seek routine called.\nn);

f stat(
I
printf ("File status routine called.\n*);

f dele()
I
printf ("File delete routine called.\n");

. ilink()

printf ("File link routine called.\n");

I make()

-{
printf ("I-node creation routine called.\n");

E14

.', o, ' " _' -', .. -'" X .*- .-- '/: ;- ."*"*" " *" -.. .. *. -
. .- .*..=, * . . 2 . *

i cmode C

printf ("Mode change routine called.\n");

-chown()

printf (0Owner change routine called.\n");

Instat()

F
Iprintf (ONode status routine called.\n");

fd copy()

printf ("File descriptor copy routine called.\n*);

EI

. ,..,** **

** PARSER.C -- contains routines needed to parse down a **
** pathname into the correct ddb (disk **
** descriptor block) pointer. **S** **

** **t

; ** Module --- parse_name **
** Purpose -- to retrieve a ddb pointer (disk desc. **
'."** block) when passed a pathname **

** Globals used -- ERROR (one or more of the following) **
** ERR$EXISTS -- File already exists **
,,.' ERR$BADNAME -Bad pathname given **
...', ** ERR$NOPERM -- No permissions **
** **

* " ** t ti**i * *** I*r**** t 1, **** *** . **/

#include Istruct.h*

parse name (namemode)
* char *name;
int mode;

int w ddb; /* Temporary 'walker' variable */
int tmp; /* Same */
char comp[NAMESIZ]; /* Array for pathname components */
int more; /* Boolean/length for path calcs */

/* First, set the walker value to start search correctly
- If the first char of the path is a '/', start search

at the root, otherwise start at the working direct. *

if (*name -= '/')
w ddb = rootddb;

else
Sw_ddb = cu.uw ddb;

/* Now search the starting directory for a name that matches
the component of the path being looked at done by copying
the path component into the user temporary name space. *

while (1) (
more = extract(namecomp);
tmp = srch dir(wddb,comp,mode);
if (error T- NULL)

return;
if (more -= NULL) /* End of pathname */

return(w.ddb);
else {

E16

name - name+more;
w ddb = tmp;

K }

** extract - extracts a string of length not to exceed **
": ** NAMESIZ and places it into the array addressed **
'

° :** by comp. Returns a length value defined as **
** the length of the string PLUS the number of **
** separators found (to be used to offset a **
-** pointer for repeated extractions.

extract (name,comp)
char *name; /* Pointer to string to extract */
char *comp; /* Array to put component into */

". {

int seps; /* Number of separators found
int index; /* Array index value */

index = seps = 0;
while (*name == SEPARATOR) f

seps++;
name++;

while (1)
if (index < NAMESIZ)
complindex] = *name;

index++;
name++;
comp(index] =1\0;
if (*name == 'I') return(index+seps);
if (*name == \0) return(NULL);
}

II

E.17

.** srch dir(ddb,namemode) - searches for a directory

"** -entry that matches name, **

• * pointed to by the ddb entry *
• * with the given mode perms **

** ddb = disk descriptor block for directory to be searched **
.** name = text pattern to be matched against

** mode = 0 (search), 1 (read), 2 (write) **
".** * *

srch dir(ddb,name,mode) /* Returns the matched ddb, if found */
.nt *ddb;
char *name;
nt mode;(
int bufptr; /* Pointer to directory block read */
int match; /* Matching ddb value *1

printf(Osrch dir-> Searching %s, mode %d\n",name,mode);
error = NULL;
match = NULL;
while (match == NULL) {

bufptr = get_block(ddb);
if (error) I* error -- EOF

return;
match = scan block(bufptrname); /* Match data in block */
rel block(bulfptr); /* Release dir block */

error = NULL;
• "return(match);

E18

1* STUB.C -- contains program stubbs. *
acc file(ddb,mode)

* mnt ddb;
mnt mode;'UK'.printf("** STUBBED - CC-file **\n');

get block(fnumb)
int fnumb;

printf(*** STUBBED- get-block **\flU);

scan block (bufptrlpattern)
char *bufptr;
char *pattern;
I

.p ~ printf("** STUBBED - scan-block **\flU);

make ddb()
I
printf(*** STUBBED - make ddb **\flU);

rel block (fnumb,bptr)
int fnumb;
char *bptr;,
f
printf("** STUBBED - el-block**\n");

E 19

*VJ ./''

* AFORM.C - Disk formatter for the AMOS system *

* Written : 12 October 1982 by Douglas S. Huneycutt, Sr
*-Modified: 13 November 1982 *i* *
* Formatter for the AMOS Operating System, requires that a *
* standard 8" floppy disk (preformatted for CP/M) be placed *
* in drive B with the write-protect notch covered (write
* enabled). AFORM draws information from the DPB and DPH *
• information written by the CP/M formatting process to *
* correctly format the disk. *

#include "bdscio.h"
#define SELDSK 9
#define SETTRK 10
#define SETSEC 11
#define SETDMA 12
#define READS 13
#define WRITES 14
#define dpb struct DPB
struct DPB {

int spt; /* Sectors per track
char bsh; /* Block shift factor *1
char blm; /* Block mask
char exm; /* Extent mask
unsigned dsm; /* Max data block number (BLS units)*/
unsigned drm; /* Total # of directory entries */
char al0; /* Reserved directory block info
char all; /* U U U *
int cks; /* Size of directory check vector */
int off; /* # of reserved tracks */

#define dph struct DPH
struct DPH

unsigned xlt; /* Translation table address
char resll[61;/* Scratchpad buffers */
char *dirbuf;/* Pointer to the direct, buffer */
dpb *pdpb; /* Pointer to the Disk Param Block */
char *csv; /* Pointer to the changed disks area */
char *alv; /* Pointer to the allocation vector */

.E2

E 20

#define mblock struct MBLOCK
struct MBLOCK { /* AMOS Master block definition '/

int m devsize; /* Size in blocks of dev. (33.28 Mb) */
int m~blktrk; /* Blocks per track for device */
int a-reserved; /* Reserved tracks on device (from 0)*/
in, m-ddblsize; /* Size of ddb list in blocks 'I
Int mdblist[93; /* Double-indir. pointers to list
char m-locked; /* Flag for locked-mounted
char m-mod; /* Flag for mblock modified
int -freeptr; /* Pntr to next block of freelist */
int m numfree; /* # of free block pntrs in this blk '/
int m-freef230]; /* Pntr to 230 free blocks on disk */
tin unassigned[le];/* Reserved for future expansion */

)master;

#define d ddb struct DiskDDB
struct DikDDB {

int cr_date; /* Date created */
int ac date; /* Date last accessed
int mou date; /* Date last modified
int mode; /* Mode of file
char links; /* Disk links to file
char owner; /* Owner number for file
nt numblocks; /* Number of blocks allocated to file*/
int numchars; /* Number of chars in the last block*/
int blocks[91; /* Allocation array for file1;

d ddb *ddbptr;
cliar dskbuf[512]; /* Disk buffer */

:# *define dir ent struct DirEntry
struct DirEtry /

char fname[14]; /* ASCII name of file */
int ddb number; /* Position in ddb list */

struct dir block {
dir ent entry[321;

main (
I'I

dph *header; /* Disk parameter header */
dpb *pblock; /* Parameter block '/
int blk trk; /* # of blocks per track '/
int wasTe track; /* # of sectors wasted per track */
int blk dTsk; /* Blocks per disk '/int dati;
int ind;

E21

p printf(-\033E\n\nN);
printf("AFORM -- Amos Floppy Disk Formatter Program\n*);
printf(" (C) 1982 Douglas S. Huneycutt Sr.\n\n");
printf(OPlease place a CP/M formatted disk into drive B,);

printf(Ithen hit RETURN.\nNOTE: Any disk in Drive B will be);
printf(Orendered useless for further CP/M use.\nO);
getcharo;
header - dphaddr(1); /* Select B, get header address */
gblock - header->pdpb;
lk_trk - pblock->spt/4;

waste track - pblock->spt%4;
blk dTsk - blk trk * 73;

printf (\033E\n\nl);
printf (DISK INFORMATION:\n");
printf(" Reserved Tracks : 2 (0 and l)\no);
printf(m 512-byte blocks per track : %d\nl,blk trk);
printf(U Sectors waste per track : %d\nwwaste track);
printf(w Master Block location : Track 2, block 0\n");
printf(" Total blocks on disk : %d\n",blk disk);
printf(w ======================== ======= n======\='==
printf(" TOTAL STORAGE ON THIS DISK : %dK bytes\n",blkdisk/2);

/* Fill out initial master block information from what the
* CP/M disk parameters show, plus our knowledge of the

AMOS structure. */
-master.m devsize - blk disk; /* Device size in blocks *1

master.mblktrk = blk trk; /* Blocks per track of disk
master.m-reserved - 27 /* Number of reserved tracks */
master.m-ddblsize - 1; /* Initially, only the root ddb*/
master.m-ddblist[0=2; /* Block ldedicatedto mblock */
for (ind=l; ind<-9; Ind++)
master.m ddblist[ind] = 0; /* Block out rest of ddblist */

master.m freeptr a 3; /* Block 3 is next in free list*/
master.m-numfree = 230; /* Mblock contains 242 pointers*/
for (indf0; ind<-229; ind++)
master.m free[Ind] = ind+5; /* Point to 5-235 as free */

master.m locked - TRUE;
master.m-od - FALSE;

printf("\nWriting Master Block to AMOS block l.\n);
write block(&master,1);
ddbptf - dskbuf; /* Set ddbptr to disk buffer area
/* Set values in root ddb for disk dump */
ddbptr->cr date - getdate();
ddbptr->ac date a ddbptr->cr date;
ddbptr->moa date - ddbptr->crdate;
ddbptr->mode a 0;
ddbptr->numblocks = 1;
ddbptr->numchars = 32;
ddbptr->blocks[S] - 4;
printf(*Writing Root DDB to AMOS block 2\n");
write block(ddbptr,2);
bdos(T3); /* Reset disks, forcinq flush of BIOS buffers el

E22

-s7,71

*Dphaddr - return the address of a disk parameter header
*This Is performed by bios call 9, but the Blos() function
*can not be usedl because it returns a <A> not <HL>

dphaddr (drive)
int drive;

unsigned *warmstartt,seldsk,result;

warmstart - 1;
seldsk - *warmstart +- 24; /* address of SELDSK routine *
result = call(seldsk,0,0,l,0); /* bios seldsk routine *

2:. return(result);

write block (buffer ,block)
char *buffer;
imt block;

int sector,lndexinewsec;
char *dmaadr;

sector ((block-l)*4)+l;
dmaadr =buffer;
for (index-0;lndex<4;index++)

nevsec - transec(sector-l);
bios (SELDSK.l);

bris (ETTRK 2); log. sector #%d, phys sec #%d\n",
print (\t~r tingsectorlnewsec);

bios (SETSEConewsoc);
bios (SETDMA,dmaadr);

* *, bios (WRITES);
sector - sector+l;
dmaadr - dmaadr+128;

transec(sector) /* Translate log. to phy sector *
int sector;

unsigned *warmstart,
trans,,
seldsk,
result#
*tdpb,

* * table;

warmstart - 1;
seldsk -*warmstart + 24; /* Select disk routine *
trans -*warmstart + 45; /* Translate sec routine ~

~.tdpb -call(seldsk,0#,,,); /* Select drive B */
table -*tdpb; /* Get trans table address *

E23

reslt caltan5hIsgtocrtabl);

qet dateoC

int month,daypyear~top;

printf("\nWhat's today's date ? (mm/dd/yy))
scanf("%d %d %d&month&day,&year);
tmp - month << 12;
tap - tap I (day << 7);
tmp - tap I (year - 82);
return Ctsp);

LS.C - Disk checker for the AMOS system

*Written :13 November 1982 by Douglas S. Huneycutt, Sr
Modified: 28 November 1982*

Checks the root directory for dates# etc

#include Obdacio.h"
#include Oblockio.h"

main()

dir ent *direntry;
int nument;
int index;
int In2;

1* Read in master block *

get block(1l.l&master);
prinEtf (\@33E\n\nw);
printf (smaster Block specifications :\n\n");
prmntf("\t\t blocks on device : Id\n~rmaster.m devsize);
printf('\t\t Blocks per track : %d\nl,master.m blktrk);
printf(*\tNumber of reserved tracks : %d\nwmaster.m reserved);
printf(*\t Current size of ddb-list : %d blocks\ntmaster.m 'ddb
printf(*\t Next block of ddb-list : td\n"rmaster.m.ddblisECO)
printf("\t\t Device Locked ? : Is\n", (master.m locked) ? "Yes
printf(*\t\tDovice changed ? : %s\nI,(master.m iod) ? "Yes"

/* Read in Root D block *

get block(2,lldskbuf);
ddbptr - dskbuf;
PrIntf(I\nRoot DDS specifications :\n\n*);
PrIntt('\t Date Created:)
pdoat*(ddbptr->cr date);

E 24

printf(u\tDate last accessed :U)
p date (ddbptr->ac date);
printf(*\tDate last modified :)
p_date(ddbptr->mod date);

printf(O\nHit C to exit, CR to continue\n");
getcharo;
printf (\033E\nN);
Printf("Now you can either \n\n");
printf("\tl) Do a directory listing\n");
printf("\t2) Create a file.\n\n");
printf("Enter the number of the command you wish to perform ~U
if (getcharo--121)

else

printf(0\033E\nDirectory listing for ROOT\n\n");
get block(2,l,dskbuf);
ddb~ptr - dskbuf; /* Point to buffer as a ddb structu
nument - (ddbptr->numchars) / 16;
get -block(ddbptr->blocks[8J ,l,dskbuf);
direntry - dskbuf;
for (index-l; index<-nument; index++)

for (in2-0f; in2(14; in2++)
* putchar (direntry->fname [in2l);

printf("\tDDB Number %d\n",direntry->ddb-number);
direntry -direntry + 1;

p date (date)
mnt date;

int tmp;

tmp - (date >> 12) &OxI0UF; /* Get month field *
printf("%d/"#tmp);
tmp = (date & Ox0FFF) >> 7;
prIntf (%d/Otmp);
tmp - (date & BxflS7F) + 1982;
printf (%d\n",tmp);

E25

Vita

Captain Douglas S. Huneycutt, Sr. was born on October

13, 1956 in Salina, Kansas. In 1974, he graduated from

Summerville Senior High School In Summerville, South

Carolina. He attended Clemson University and the College of

Charleston, South Carolina from which he recieved a Bachelor

of Arts degree with a major in Physics and concentration in

Pre-medicine in 1978. Following graduation, he attended the

Air Force Officer Training School at Medina Base, Texas,

followed by the Computer System Design Officer school at

Keesler AFB, Mississippi. Between February 1979 and Jane

1981 he served in the Directorate of Data Automation,

Headquarters, Air Force Systems Command at Andrews AFB, DC.

He entered the Air Force Institute of Technology in June

1981.

Permanent Address:

120 President Circle

Summerville, SC 29483

V

SECURITY CLASSIFICATION OF THIS PAGE (U1,at Date Entered) _________________

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCETSSION NO 3. RECIPIENT'S CATALOG NUMBER

AFIT/GCS/EE/82D-20
*<-.4. TITLE (ad Subtitle) is. TYPE OF REPORT & PERIOD COVERED

DESIGN OF A MULTIPROCESSING MS THESIS
OPERATING SYSTEM FOR SIXTEEN- 6. PERFORMING ORG. REPORT NUMBER
BIT MICROPROCESSORS

7. AUTHOR(s) 6. CONTRACT OR GRANT NUMBER(s)

Douglas.S. .Huneycutt, Sr, Captain,, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Air Force Institute of Technology (AFIT) AREA & WORK UNIT NUMBERS

* Wright-Patterson AFB,*OH 45433

11. CWJR IG OFFLCE NAIE AND ADRll 12. REPORT OATE

i~r rObce !nstitUte o rsechnology (AFIT) Dec ember 1982

Wright-Patterson AFB, OH 45433 IS. NUIj~gOF PAGES

14. MONITORING AGENCY NAME & ADDRESS(iI different from Conitrolling Office) 1S. SECURITY CLASS. (of this report)

UJkCLA9SFiL..D

SCHEDULE

f tO. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

a .117. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different krm Report)

Approved for public release; IAW AFR 190-17

* -~ IS. SUPPLEMENTARY NOTE$

L%72 'V -IAVP --
l -- k

Dean for Research and Professional Detclopmo~d
Air tome. lnzlAe of Technology (ATj,

It. KEY WORDS (Continue an reverse side if necesary and Identifyby block num~ber)

Operating Systems
Timesharing
Multiprogramming

Multiprocessing

20. AIM M Okne "ot r~9 e~e Wit necesary and Identify by block nimber)

See reverse

d ~ Z#~U 173 EDIIONOF NO69 I OBOLEE SCURITY CLASSIFICATION OF THIS PAGE (*Won Data Enteri

SECURITY CLASSIFICATION OF THIS PAGE(ikaen Date Enitore)

.-- , ,

....- 20. Abstract

A multiprocessing operating system for the Air Forc
Institute of Technology Digital Engineering Laboratory wa
designed and partially implemented. The requirements for such
design were developed by a thorough literature search and throug
an abctraction of the works of Ross and Yusko. The resultant
design is functionally compatible with UNIX, version 2.7.

Because of the broad scope of. such. a project, this effort was
geared toward the total design of the file system,-with a high
level design to cover all other areas. Further research i
needed to complete the design, as the high-level areas are no
sufficiently detailed for full implementation.

O.-S _

SECURITY CL.ASSIIlCATION OP THIS PAOE'W~ien Data Entegi.

.0

g

I

I

