UNCLASSIFIED

DESIGN OF A MULTIPROC!

ESSING OPEERTING SVSTEH FORi

SIXTEEN-BIT MICROPROC

SSORS(U) RIR _FORCE INST OF TECH

WRIGHT-PATTERSON AF
DEC 82 AFIT/GCS/EE/

| ----
I

OH SCHOOL OF ENGI.. S HUNEYCUTT
D-28 9 '

.“
(2]
N

3
f R

3
{
¥
H
:
4
Y

. MICROCOPY RESOLUTION TEST CHART
L’ NATIONAL BUREAU OF STANDARDS-1963-A

YR S

-

Pl
'

AD A1 24 ¢ 2

O

.n,.“..‘.. “wlw e

. @\ELECTE
. - FEB 2 3 19g3
DEPARTMENT OF THE AIR FORCE >
AR UNIVERSITY (ATC) E

AIR, FORGE INSTITUTE OF TECKNOLOGY ™~

k\

o o

anht-?a"cnon Au Force Base, Ohio ‘ 4
. 022 06

83 0%

TG nmnmY . 'k ak Nl Wondl Sl el Y - . W . e
g&m i, By i ‘».._.&.'.l‘...J..‘\!;J«-_..h_!.A,_..la.‘.‘,_u.ln:;a:?.ai‘.a_‘!;n"\4‘.‘.:?'.-"..’.. ORI RIINNAPAPIR W NR LA A P T A A)

* e W
PR
g

L bt e s,
LA

TYXTS
.'o' *
PN M R

. LR W,
AR N
28 B

U PP

IR

v

Y
.®

.l
S

l‘?‘

4

A

8
Y
. Jki

o«
’
.

[
LCCRTRA

L
B2t 2l e

[XDCCEORRT
. e
"2

wee oty

RO, rwu,
AADAPAS b . AN

19

P AL A e S A Sl e asiEe M i i AR e i “ndiie aien i s AP

e AFIT/GCS/EE/82D-20

Design of a Multiprocessing
Operating System
for
Sixteen-Bit Microprocessors

THESIS

AFIT/GCS/EE/82D Douglas S. Huneycutt Sr.
Captain USAF

Approved for public release; distribution unlimited.

L

DTIC

ELECTE

&
;
;

3 j Ty Y , y " - Dl - , g . - .
FatU AR SR N I I RO TR IR I S IR R B R R R R S e e R I A X -.;1

B
T AR
SR

=
AL .

Yo re i)
AN

APIT/GCS/EE/82D-20

AN

-
=

32 Design of a Multiprocessing

Operating System

for
- Sixteen-Bit Microprocessors
Y
N THESIS
=
‘;ﬁ Presented to the Faculty of the School of Engineering
By
Qﬁj of the Air Force Institute of Technology
Ot
ey 3
1) — Air University
© | © in partial Fulfillment of the
-.’E\'
2 Requirements for the Degree of
2 .
B Master of Science
"
’ Accession For
NTIS GRARI
DTIC TAB
Unannounced 0
Justification_______~__
by By____
Douglas S. Huneycutt, Sr., B.A. _R““rimn@onL________
__Availability Codes
b’ Captain USAF Avail andfop]
A Dist Special
'i Graduate Computer Systems
A
jl'j December 1982 A
4]
§f2 g§§ Approved for public release; distribution unlimited.
t'n‘ “"'

s

AR T NV e T T L e v

0 vl W VAT, PG TS L

.greatest appreciation to my wife, Miriam. Her tolerance

— e g
o .-‘-1.-‘. LJARIE it sl gl g T T S
LA AT T R R A R L A

Preface

This thesis presents a design of a multiprocessing
operating system intended for implementation of 16-bit

microprocessor systems. The design is based on the works of

" Mitchell S. Ross and Robert J. Yusko, to whom I would like

to express my thanks for a job well done.
Additionally, I would like to thank my faculty advisor,

Dr. Gary B. Lamont, for his help and understanding during
this effort.

Most of all, I would like to express my indebtedness and
and encouragement made my stay at AFIT tolerable. Thanks
also to my son, Scott, who was forced to spend his first

year of life as a ‘computer orphan'.

Douglas S. Huneycutt, Sr.

(o N o PRI IO, .. v A RN A S N € T L T Ot S SR R KA A LA AL DT Ao

ti"»

1

-7 Table of Contents

(o *. .

o s

?; .‘:.:” Preface-.O................I.Q.‘......‘....O.. ii

1

‘/ Table of Contents S & B |

ii::: AbstraCt ® 8 0 000000 000000 PO OO OO OOOE OO OO SOOI OOIOPOESEOEINDPOSNEDS Vi

o

v I. Scope Of Project eccescecccccccccoccccssnccccsnns 1
Introduction ® 0000 ¢ OO0 O OB O OO S OO OO OGO OCESEOIOSIDLDLEPES SO 1

EZ‘?':‘ Histoty 0 TG TP LN OOPOP OO OLOCPOLIONPPLELOIOOIEVNTOCEOESOIOEEOEEOGPTS 2

:‘:".:: ObjeCtives ® 0 000000000 UOPOLOOLOINOLOOEOEOSIOECGEOIDROIOIONOSOSEOSTOIDS 5

::\.: Appt‘oact‘ ® 0 0 0 600 06000 ¢ 000808008 O0 OO OISO BNLIOGESOOIDNIES 6

;..::.; overview ® O 00 0000 G 9O 0SB0 OO0 OSSOSO E OSSOSO OSOSTOIOBSNOSDPINOSIEOOETS 7

“ II. Requitements ® 0 0 00 900 0000 50 OP O OO0 SO PLEE OO BSIOLIOEBS OSSOSO STS 9

f:).

.ﬁ‘;':' ' Introduction ® O 0 000 00 00 0PSO O OO CO SO OCOS OGSO 9

145 Local RequUirements ccecececcccecscsscscsccconcce 9

AN Minimum CapabilitieS .cecececsccccccccccccscaces 10

“A Design Approach @O 00 &0 0 00000 00000 00O SO OOLIOIEOSEOSTBRIEESS 10

w Language ConsiderationsS ..ccccececccoccccceccsces 13

g::;f . cpu Considetations @ S O 0000000000000 00006000000000 16

5$ Restriction of CPU ACCeSS seceeccscsccoccccese 17

el ReSttiction Of Memoty Access ee 0000000 0s00c e 17

"-‘7 @ Memory Mapping ® OO ¢ 5 S OO OO OO OGO OO IS OOORIGSSOSOOSOSTDS 18
. i Program Relocation ® 8 0800000000000 00000000000 19

'f: Sharing of MemMOrY cccceecccccecosscssccccsccces 20
ﬁa Context SWitChing ®seesecsscvscsscsssvsssencscnee 20
q} Intetrupt Suppott L N R I N R RN W I W) 20
s CPU Access Restriction .ececeececccccscsccccas 21
s Memory Access/Mapping/Sharing ceeeececececcess 21
‘. context SWitChing LR 2R BN B AR AR BN BE B BN BN BN BN BN B BN BN BN BN NN BN WY NN B BN N W 3 21
l:.:i Interrupt Handling L BN B IR BN BN BN BN BN B BN B BN BX BN B BN B N RN BN BB BN BN NN 21
’U:EE ChOice Of Target DeVice ® 0 ® 00000 0000008000 0000 22
:'f:i:z summary LK K BN BN B B BN BN B RN BN BN BN BN BN NY BN BN BN BN B BN BN BE N B N BN I N N N B B R N N BN N) 22
- ITII. Top-Level System Design and Implementation.eee.. 23

;::Ei Introduction ® 0 9 0005 000 000000508 OO0 OeO LGOS EEOESDNITPSLEE 23
qﬁ Structured Design LimitationsS .ececececceccccsces 24
'{i' Top-Level Modules L3R B BN BN BN BN BN B BN BN B NN N OBE NE BE NE BE BE ONE NN N BE OB OB ONR B B NN J 26
‘J Bootstrap (Level 1) 0 ¢ 0 00005 500 00 OO0 OO OOSOOSSOSPSDS 27
System Initialization (Level 2) cceccecescccccces 28

g2 Interrupt Service (Level 3) .ceccecccscccsscaces 28
';.':g System Calls 9 0 00 8 0 00008009 0000090000 BOPOES OO SOSS 29
‘:..:'3 Cpu SCheduling (Level 4) 0 0000600000000 08GO OO QOO S 30
;? Summaty 0000000000000 00000000000000000000000000 30

o &

hpp

ff“
»

ety
LR

gy
P

[Y-P R el Bt Wy

3

.
» 0;4,'%
e

»

£, S,
IR

3

4,
b3

A
XY
o

$2A

g I
3N
-

-
)

-
-
¥

i QS',': gt

At

%,
"
P

Yaravas
’l‘~.\'. I.‘ "<

ORISR

AN

AN

W T

Iv.

vIi.

VII.

VIII.

v &w
..
g - - i - o N -,
e e G e s

M Bt e T e W Lt A S T e Ta Ya T e A KA Wt AT AN A T N AT AT

Interrupt SerVice ® 0 0068 0000000000000 000000000000

Introduction 0 00600 0000000000060 0 L0000 00008000GDS
Linkage 000000 00O C O QOO OOPO PO OO0 SONPOOOONOOONCESOESS

Timer Intetrupts ® 00O OOOOOOPIO O OO0 80000800 0sOLeRe
Other Hardware INterruptsS cccceccccccccccccccans
System Call Management ..ccccecccesssscscsccsccce

File System Calls T EEEREEREEN NN NI I I A B B A A NN BN J
User Structure Calls ,ccececccccsvsscsccocncce
Process Structure CallsS ecccecsscsscscccccosccne
System Modification Calls cccccececcccecccccns
Communications CallsS ccccececcccccascsssccccce

Summary © O 0O O 0O OO OO OO OO0 OO0 0000 GO OO OSSO SOBESSOESTPNTTCEDS
AMOS Data Structures Design and Implementation..

INtroduUCtion .ccecceccccoscocccncscsccosscscscccosos
The ProcesSs StrucCture .ececcececccescccscsscsscscscee
The DDB StrucCtuUre c.ccecccecccrccccsscsccccscncnnsce
The User Structure ...cecccceeccccssccscscscsscse
The Master Block Structure oco;ooootoooooooooooo
The Directory Entry Structure .ccccecccececcscccee

Summaty ...'...........................O.........

The AMOS File System Design and Implementation..

Introduction 00 0200000000600 0000060000CISIOISOIESEOIDIDOGES
Specifications ® 0 20 00000000000 POPOOOOSPLOEOONNSDLES

File Types ' FEEEEEEYEREEEY Y N N I A BB BN B BN BN A A 2 I % J
AMOS File System Structure .cccescesessccccccces
File AderSSing ' EEVYEEREEEEREEENRNIE NN N N I N N A N N B N NS NN
Secondary DeVices (X EEEREEREERE NN NN N NN N I NI NI N N NI N NN
Disk Descriptor Blocks and FileS .ccccscccccccne
AMOS DiSk FO‘mat ® Q0 00O 0 00000060 0O OO P OOOOODESODNES

I/o BUffetingOOOOOOOIQO.........0......0...
AMOS File System Calls (structure chart) .ceceee

CIeatingaFile TEXXEEEEEERE N NI NI NN N NE SN NN NN

openingapile FYEEEEREEEN NN W I BN I I B A B A S BN I B N J
Other System Calls ..ccceccoccccccccccccccccsce

SumaryOOOOOOIOUQODQ..........0.0.0
Results....‘...............‘....C......l........
Implementation ProblemS ccceccceccccccccccscscsses

S°1uti°n ..“............l'.....................

SumaryQO...........OO.........‘....0..
Conclusions and RecommendationS cccccccscceccces

ReCOmmendations 0 00D 0 00O PN PO B OOCOLOOEOCBIOESEESTSEISIPOSEDS
Major Reconm‘ndation '"EEEEEENXEE RN NI N I I AN AR A NN NS

...................
P e P R R | v e T Ta Ve CIPR I e S T P -
N - »n e Vg w

AN
A R

32

32
32
33
33
34

36
36

37
37

38

39

39

39
41
41

43
43

44
44

45
46
47
49
49
S1
53
54

55
59

61
62

62
63
65

66

67
69

Y)

RPN

st b SR KR TR o K B N S R I A s N < ST S A S AE AAC AEENTTLE S SO RO ER TN N AR D D IO R
b
%;

3“

e

“: .’:‘,. Blbliography 00 00 000000000000 CE0000000600006060006000000008 70
'~:-' N

= Appendix A: Microprocessor Benchmarks ...ccccececeess Al

Appendix B: UNIX Short Course NOteS .c.cccccevsccscscss Bl
Appendix C: AMOS Bootstrap and ISRS .cecccessccsscces Cl
5 - Appendix D: AMOS Structure ChartS ccecceccecscccccccess Dl

2 Appendix E: AMOS Source Code .cceeccscccccsscccsssssss El

2
<

Vita @ O 8 0000000000000 P PO OSSN OOS OO0 DE OO OOLOOSSIOSOSEPSNDSSOOSDS

SR

.‘;" ‘z\

i.- ::1* i

- et Ry ¥ A
PALKS LAWY
R B PR

> S

RN
o
L]

».
PR &f

SRR

:':l": ’

YN

a
o
kK

~'-}q R R I B o Craw, .

- a - R et
l’ls:ﬂ_-l;’ ,h'p_' - ".-.‘.-'-'-.'-_Lu# ML‘-.L'LAL.LL‘L‘ 'L’:,A‘,t..,!‘-j...’:-t‘! L ',1.,“ ‘.-'j

nl.”& L" m- n’mL_Lh.!. ""L!'

. Tt o o ey ey x d K iy i it 2 X dal . e Gy ks N e Bk - P .
AN S bl AL AN A I N D I Y O S W A O S I A Ny Ly Myt et Ly DI 2 N0 LSERE R A .
2L WL S LWL LG S L UELIDEIL L P

) Abstract

. RS
2 o A multiprocessing operating system for the Air Force

Institute of Technology Digital Engineering Laboratory was
i 'designed and partially implemented. The requirements for
*{ such a design were developed by a thorough literature search
and through an abstraction of the works of Ross and Yusko.
g The resultant design is functionally compatible with UNIX,
g version 2.7.
Because of the broad scope of such a project, this
o3 ' effort was geared toward the total design of the file
system, with a high-level design to cover all other areas.
oy Further research is needed to complete the design, as the
high-level areas are not sufficiently detailed for full

implementation.

’
Ty

vi

DRSNS AT T B BN SN
, “w .

.....

R A A e SO A it B N IR T N A R AT A YRR DY s S O S N S A C RN O

‘.

bt

‘ 1. Scope of Project

I

jii Introduction

ég >OThe purpose of this investigation ié to develop a
r¥3 multiprocessing operating system for sixteen-bit micro-
}ég computers. The AFIT Multiprocessing Operating System (AMOS)
;é is based on state-of-the-art software and hardware
éﬁ technology. AMOS has been designed to be implementable on
%‘ﬁ any of the currentvpowerful microprocessors. The Zilog
;% | FiéS;;-single chip microprocessor was chosen for the initial
;Si implementation due to its advanced architecture and
E; ~architectural similarity to popular minicomputer processors.<f:-~
z; Chapter 2 deals with this selection in much greater detail.
d ‘E; The 28000 was designed with operating system support in
é:g mind, and this investigation takes every advantage of that
§§ design.

45; The purpose of this chapter is to give a brief histor-
> ical introduction to operating systems, to outline the
gg o?jectivgs of this investigation, and to detail the approach
E; taken to attain the stated objectives.

;% A formal definition of an operating system is: "those
f% program modules that govern the control of computer system
§2 resources such as processors, main storage, secondary sto-
N rage, I1/0 devices, and files."(Ref. 1, P. 1), 7The important
132 implication in this definition is that the operating system

is usually a software'program. Because the operating system

gﬁ; and user programs both execute in computer hardware, the

operating system must have the capability of gaining

S s SRt R AR A I AT LT ST IO A A I I R i b ISR ' P L TR SR P A P M B S

£

;% @é 'special' status, thus allowing it to allocate and
R deallocate resources at a higher priority level than that of
:% the normal user program.

7? Historically, there has been a logical line of demar-
R cation between microcomputers and minicomputers. Even the
% low-level minicomputers, such as the Digital Equipment
Zg Corporation's PDP-1]1 series, have hardware capable of en- |
e forcing the difference between the system and the user. On
;§ the other hand, microcomputer systems have typically been
% restricted to a single user, confined within a narrow
.: address space, usually 64K bytes.

~2 Within the past few years, however, there has been a
;z . tremendous surge in technology, resulting in a new class of
A 'Gib» microprocessors with the capability of addressing up to 16
;j- megabytes of main memory directly.(Ref' 2) rThis extended
?; memory access capability immediately opened the micro-
E - computer segment of technology to advanced applications,
iﬁ such as intricate graphics, large database manipulation,
:5 multiuser environments, and others. Because of the new
i emphasis on microcomputer software, operating systems
; development for microcomputers can now achieve the same
g level of sophistication already available for minicomputers.
:' History

jg The earliest computers were designed for processing a
ﬁi single jo' at a iive, and were programmed by hand, setting
: memory locar‘.ns with switches and reading in punched cards.
% @%9 The ‘operating systems' of these machines were basically
:

| 2

: m RTINS S ISR ST N . i G T o e e VAR TN ST T A S g Y e

WY W Y W T e, T e

o e — ™ - g ” v >, C -r " e A M K3 T - e L oun
By - Wi e N T (I MO SO C M Tl ‘i ‘g':'._p ,‘.-")’:-A’.Jn:.\x..h.; bl SN N A OIS IR LA WP I ."_'."-'-“.'-:_‘.', [S -'_‘s’. Lo

5
sy
-%ﬁ B program loaders. As the technology improved, processor
éi‘ té) speed increased, and it became obvious that a large amount
%#: of time was spent waiting for I/0 operations to be
§§ completed. Multiprogramming was developed to take advantage
dig' : of the wasted time by having multiple jobs in memory and
e allowing their I/0 wait states and processing states to
; overlap. This technique depends rather heavily on having a
_: good mix of I/0O-bound and CPU-bound jobs in memory to
‘F‘ achieve the most efficient usage of system
Eﬁ resources, (Ref. 1, p. 238) ¢4 a11eviate this requirement,
'fél time-slice preemption was developed where eachbjob was given
t; a set time (100 milliseconds, for example) in which to
.Ei perform CPU processing. If the job had not requested I/0 by
’;ﬁ e the end of its time-slice, it was preempted and placed in a
o ‘t‘ holding queue until its turn came to be processed again.
,;? From the development of time-slice preemption, it was a
é% natural turn of events to start using timesharing, in which
e most user input and output centers at the user's terminal.
lg&, The use of terminal timesharing required that the computer
3; have some way of conversing with the average user, not just
i:J the specially trained operators. ‘User-friendly' has become
%? a popular phrase in referring to operating systems, often
,;ﬁ for the lack of the characteristic. For an operating system
4; to be user-friendly, it must communicate with the user at
5% whatever level the user desires. The early mainframes had
tf no degree of user-friendliness, while today's large systems

(e.g. the DEC-20 serie ;) have operating systems which make

it very difficult for the uninitiated user to achieve

] Wi @

DA .

................

This is achieved in part by providing

'‘computer suicide’.
defaults for command options, allowing easy recovery of
deleted files, and repeated confirmation requests during
dangerous procedures.(Ref' 3) Whether or not this techinque
is actually *'friendly' or not depends heavily on the user's
point of view and experience level.

In 1969, Ken Thompson of the Bell Laboratories began
developing the UNIX timesharing operating system for Digital
Equipment Corporation's minicomputers. Originally designed
as a research tool for Thompson's own work, UNIX spread
through the Bell facilities due to its utilitarian nature.
From the Bell groups, UNIX went on to find popular support
at universities and (to a lesser extent) the business world.

‘ii Today, UNIX is one of the most popular operating system for

DEC minicomputers.(Ref’ 4)

In 1974, Microcomputer Applications Associates deve-
loped the Control Program for Microcomputers (CP/M). CP/M
was designed as a single-user operating system, taking
advantage of the new technologies of 8-bit microprocessors
and low-cost floppy disk storage to provide an attainable
computer for a single user. CP/M gained in popularity
rapidly, mostly due to its wide acceptance by the growing
personal computer market, and is now "the operating system
of choice of more than 500,0¢0 users, almost 160 vendors,
and more than 508 independent software vendorsJ“Ref' 3)

In the last few years, many efforts have been made to

usurp CP/M's position in the 8-bit computer world. ‘'Unix-

T I I A T L

C P A PO IR S SaS , A I I R I ST U I I EEIL SO S N L TSRt
% o Wt 0 10 W S T ST, S e A s W A S T S STt T St T T T O SR ST S 'LJ

.............
. o S N N R S S A

like' operating systems have been marketed for 8-bit
machines, most notably cromix(Ref. 5) for Cromemco Z-80
computers and the Apple-III1 operating system(Ref' 5), which
implement many of the Unix features. These efforts, while
partially successful, have shown that minicomputer
performance cannot generally be achieved from an 8-bit
computer.

Until the last few years, UNIX and CP/M formed a
natural boundary between minicomputer and microcomputer
software, Microcomputer eight-bit architecture was
incapable of the performance levels required to efficiently
use the powerful structures of the UNIX system. Recently,
however, the development of the new 16~-bit microcomputers

.. has narrowed the architectural gap between minicomputers and

microcomputers. With the introduction of processors such as
the Intel 8086, the Zilog 280008, and the Motorolla 6800%9,

the microcomputer user is no longer bound to overly

restrictive architecture and processor speeds. The new
microprocessors are complemented with new, powerful control
software.
Objectives
The objective of this investigation is to develop a
multiprocessing operating system for a 16-bit micro-
processor. Requirements definitions, design and implemen-
sﬁ tation will be accomplished using modern top~down
methodology. The phrase 'divide and conquer'® is particﬁ-
ﬁ?‘ larly appropriate in the realm of operating system design.

o Each module will contain only procedures relevant to the

T ol | ~aak 20 SRR~ et el LA Sl S AL - ML iy il eSS Tl I Wt e P T - —~ T TN T oo
ML ¥ 4 te lte b I > St . e e Pty Rat ® P T e T T e, ,'i

stated purpose of the module, and will be restricted in
length to a reasonably understandable amount of information.

The major considerations involved are reliability, fairness

e
P&l

)
v
-

in resource allocation, ‘'user-friendliness', and cost-

PO
L)

X4
3
-
%o,

effectiveness. As in the development of Unix, the operating
system will consist of the ‘kernel' only, leaving
development of utility and user programs for future
projects.

The implementation of the operating system will be
accomplished in a structured high-level language. Again as
with Unix, the operating system development will avoid as

much as possible hardware confiquration dependency.
Approach

This investigation began with a thorough literature
review to extract useful methods already proven successful
in the development of operating systems. Most of the
requirements definitions were derived from the works of

(Ref. 6) (Ref. 7).

and Yusko There is no accepted

Ross
standard method for operating systems design, but literature
abounds with methods for software engineering. Recalling
the previously stated definition of an operating system, the
design offered by this investigation will treat the
operating system as a large, very complex combination of
-algorithms and will proceed with techniques suggested by the
software engineering community.

Because of the complex nature of an operating system, a

top-down structured approach to design and implementation

U S P P A PR UL R T et e e T e T S SR TEDC S SR S YR SRS ST T S S
R A R R T T T T T T S T A R TR T ir- W e A P! TRl NPT TR N SR UM RN AL ML |

T T T Y L WX Wy = g W W, W
...... B e e BT

is essential. More appropriately, from the user's view, an

‘outward-in' approach is taken, looking inward from where
the user sits at the terminal. This method helps insure
that user requirements are met and that the system behaves
in a ‘'user friendly' manner,(Ref. 5)

The initial implementation computer for the operating
'system is a Multibus 28008 system from Advanced Micro
Devices (AMD). The system consists of a non-segmented 28008
CPU card, a multi-port serial 1/0 card, 128-Kbytes of main
memory, a floppy disk controller, a clock/timer card, and a
mainframe with motherboard, power supply, and cooling fans.
Overview

This investigation is rooted in the investigative works
of Ross(Ref. 6) and Yusko (Refe 7) yysko's scheduler, as
presented in his thesis, is modified to fit directly into
the AMOS structure.

Ross' high-level design is used in a modified form and
greatly expanded. Appendices will include structure charts,
structured English modules, and the data dictionary. The
actual source code for the operating system is placed in
appendix E.

Testing of the operating system was done at all points
during its development. Both validation (assuring that the

development stage produces correct results)(Ref° 18, p. 84)

and verification (making sure that the results are what is
required) (Ref. 18, p. 85) ,ore continuous processes.
The sequence of steps taken in this development and

their relative importance were derived from the author's

............

1a.%a” vt PREEPS :':'l -.‘- ",A’-..'-' '-'—:‘-‘v \""_.r_‘- et ‘-- '.',“'.‘ T \T“.'.‘ T ."-.' ‘.'in."\v“‘_"»‘".:'.‘;:—."" _‘-":‘“;‘ ‘:."_’;1.. ~-‘ -:'-‘-‘ ‘-;‘ ‘.‘ .d‘~\ _v;—‘ e ':‘
@ﬁ} experiences. To be a valid learning experience, this

project was designed to be as highly structured as possible,

- otherwise all other students to follow will become

LS
08, 4,04

hopelessly bogged down in the project's complexity. AFIT

0

- ..

needs this operating system as a tool, both for further

student research and eventually as a basis for cost-

effective student development systems.

<
.

A

w0

g
o a4
DA WLt
', -t R
'.?
Tt

.

L R LT S SRR IC L N S R S S S LR NSRS R IRN R J tf
. ST N R R . AT R T T I W L TSR IR WL T L S e e e e N s e AN T e

LN ARL AN U A it N s ot ntoal sl Ca v e AR EIPY Iy S, DS I T DAL D W~ i, W W T . S A, ¥,

y,.

r—

L)

Y SV T R

C4r o

D)

.3

S NIRER

s

o

ya J";-/: 1‘-_- o '.

rieChs;
UMY "

e NN

ot

'

T,
"t %S e

THNY

~

* SbA ‘A'j’i

T et

SYRSAATS
At

M O 2B

I R e

I1. Requirements

Introduction

Operating systems today are sophisticated interface
devices between the computer user and individual computer
resources. On some of the more friendly systems, the user
has the capability to ask the computer to prompt for
commands. For example, on the TOPS-28 operating system for
Digital Equipment Corporation's DEC-20 computers, a user may
type in 'DIR' followed by an escape, and TOPS-20 will auto-
matically complete the command line with 'ECTORY (of what
account?)’. To achieve this level of sophistication,
operating systems are by nature very complex.

To design an operating system to complement the state-

of-the-art, highly structured techniques must be used

religiously or months of effort may be wasted through
confusion and incompatibility as the project grows. The
purpose of this chapter is to present the
objectives/approaches considered for this design and
implementation effort and to explain the logic used in
selecting the techniques and tools.

Local Requirements

AFIT personnel rely heavily on various computer systems
for study and research work. Both faculty members and
students currently have to rely on the availability of
computer resources external to AFIT. From benchmarks
conducted by the MITRE Corporation, an efficient

microprocessor multiuser system should be capable of

......

P A e YA A A A A A O P S g A N O NSNS A WL RIS et S st ﬂ,trnﬁ,T
xS

gy

¢ B

N

g& - " handling (conservatively) 8 to 10 concurrent users with
NI

DA little degradation.(Ref. 8, p. 28) nis would provide AFIT
‘ .

SE with a very cost-effective software development system.

gﬁ Additionally, AFIT courses include subjects such as
i

oh software engineering and operating systems development.

Carefully designed and highly structured operating system

4

.
§§ documentation would prove invaluable to the teaching of
;%? these subjects.

}5 Perhaps the most important requirement locally is for
;; an operating system that is highly reliable and user-
iﬁ friendly. Students in particular become very disenchanted
2& when having to learn cryptic commands in an attempt to
ig? recover lost files that should not have been lost in the
fg; R first place.

, <

G The Air Force is gradually recognizing the value of the
Sg microcomputer in support of the Air Force mission. To this
%; end, ﬁhe Microcomputer Technology Branch of the Air Force
}q; Data Systems Design Center at Gunter AFS, Alabama has been
i% recently created to supervise the production and acquisition
53 of standard Air Force microcomputer software.(Ref' 9) tThis
56 project is designed not only to provide a multitasking
§§ operating system, but also to provide the insight necessary
iﬁ for Air Force acquisition personnel to correctly specify
.; required software.

g; Minimum Capabilities

,f% The following is a list of the minimum capabilities
;J f?j that should be produced by this design effort. These
;g requirements were developed by the author over several years
-

tasl 10

LT

. PR A T P - T e e e T s % s - - p - & ® e - _a -~ -
R R SR L A R R I U AU L R AR) P A R P AU RN SN
PR . W) P PR RIS T PR NI IO I LY '_,"_1")"";‘_5‘_.\;"'-‘

\’ » - 4
alsdy -V
g v

.
o
e's

.

’
i

RSN

‘.

X

‘4 -.l’\'. K

l’l

v
A L A
-s o

-_vl‘.u.- i.q LRI
. UL ". et

‘i

LS
e

- LT
B3NS
PP SRS

N,
N .

AP
AHESL IO,

P "l;l

¢ 044

e
2

sy -

of use of various operating systems. Additionally, the
works of Ross(Ref. 8) .4 Yusko (Ref. 9) yere consulted to
cunsolidate the requirements research of prior works.
l) Multiuser support (at least 4 concurrent
users, more if hardware is available)

2) Friendly user interface
3) Interprocess/interuser communication
4) Fair allocation of system resources
5) Meaningful error/recovery diagnostics
6) Minimal device/user utility support
These requirements are specified as a goal, to give the

research effort a point of focus. As research continues,

. the requirements will be modified and consolidated to

conform to ever-changing needs.

Due to the nature of this project, user utilities and
support software will not be considered unless time permits.
The main thrust of this design will be toward the total
specification and implementation of the multiple-user file
system, with process control and interfacing being given
secondary attention.

Design Approach

The operating system in this design will be approached
from the 'hierarchical view'(Ref. 12) to best allow for
continued development in future projects. This view
considers the system as a layered series of subsystems, each

with a specific routine to perform. To achieve its

function, one layer may call upon lower layers, which may in

; g - Mot STy Ty S PRI A * .-\-.!-‘..‘A.-\- \\N‘ A ..“ g\“'- L“ h‘F -:"-\ .." -" '.." -."-'

) L)

v
LA A

i A R 2. o ey
‘:.-n.v - I‘ ca ‘—"-:‘..‘-‘ .J‘—. -~ ..- RN

turn call upon still lower layers. The key to this view is
knowing exactly where each layer belongs, what information

it needs as input to perform its task, and what information

it will return to the calling layer when its task is
complete,

Dijkstra first formalized this view of operating
systems design.(Refe 10) yis 7T H,E. operating system is the
classic example of the hierarchical operating system design
approach. In this system, level @ controls the CPU resource
and level 1 controls the memory resource, virtualizing
memory by providing paging and segment management. Level 2

virtualizes the operator console. Level 3 manages

peripheral devices, while levels 4 and 5 are user and
operator processes, respectively. By using this technique
of isolating all functions on a hierarchical level basis
with strictly defined operations, inputs, and outputs, the
- correctness of any operating system module can be tested by
stubbing its subordinate modules. Further still, Dijkstra
claims the entire system can be tested and proven logically

correct before it is implemented(Refs 18) = ,1¢hough such an

extensive correctness proof is well beyond the scope of this
project.

The hierarchical, top~down approach will be used by
this study. Other methods, such as Hansen's bottom-up
approach, (Ref. 11) 5 acknowleged but will not be

considered further, as they do not lend themselves as well

to the continued research required by such a large project.

12

..............

PR IR T P AT N L2 R I .
o > I R T AT S AR IO A A R AT A T AR, BRI R IR SN

- A N I M P Y .- Synt B e e i) -
S S N N S RN N R T I T T R T LT T T

) o 3 ™. o N il g o] X i S ~ v A=\ A M diinvl BN St ol AR e A A A AT T T
;-g " &b . . L SO Cwiils SEARE oG NC UE IR NE W EONEICI Y L S DRGSR NA SodD N IE e N A T S R A R T i T N A A I A RN

2

N

3

‘if‘ g&g Language Considerations

;“I ' In discussing structured design and implementation of
%gé a project such as this, careful consideration must be given
‘32 to the choice of language in which to carry out the
;§? implementation. Obviously, a structured design lends itself
155 well to being coded in a structured language, but there are
%ﬁ other factors to consider.

:;3 Historically, operating systems have been written in
fn3 assembly language.(Re€fe 28) 7ne nain reasons for this are
:i; that: 1) well written and optimized assembly code is the
??f fastest-executing code available, and 2) the code produced
;: is the most compact, taking up the least possible amount of
g;g expensive (in price and availability) memory.

iﬁ o The trend in software development today is turning
\R~ « toward structured languages for a single major reason --
:és cost (including time of implementation). The cost of
b?; hardware continues to drop in the competitive marketplace,
;5: while the shortage of competent software designers continues
:é; and grows more severe. Managers have recognized for a
:§§ number of years that the cost of developing and maintaining
4@ a large software system, over time, far exceeds the cost of
.%ﬁ the hardware required to run the system.(Ref° 12) 1n an
':s effort to minimize this expense, large-scale design projects
e now commonly use software engineering structured design

techniques. The use of structured languages allows programs
to be written in a style that follows the physical form of

?% the design used. This allows maintenance programmers to

L

z‘*\r"“'
fﬁﬁﬁ.r::ffffﬁ.

reference system documentation that directly matches the

.
o
:‘.’ .

13

T £~ ;
S L .
et

.....

R

L 0 NP ¥ v i O T S oS e T i e i P UL L ST I P L I D SRS Coe e
e £ PN sl s ML y VJAMI.!..L&_’{_'.I_'FL{ s e e e e e T s e T e T T T e T e e

£

i

¥

B

ég %&3 structure charts, HIPOs, or whatever techniques are used.
r& The benifits of using structured language for
'%% "implementation of large projects has extended into the
5§. design of operating systems, where speed and size are
i crucial factors. The result is a hybrid construction where
‘éf | the structured language is used for the control structures
ié& and, in speed sensitive areas, assembly language is used to
;ﬂﬂ optimize performance. Both UNIX, written in C, and UCSD
E& Pascal, written in Pascal, are implemented in this fashion.
fgg Another consideration in the AFIT environment is porta-
:? bility. AFIT has a tendency to pick up new microcomputers
}E as they become available. Often software is not available
§§ for these devices until much later than the time the
;" QEQ hardware is released. 1If an operating system is designed
3; with portability in mind, then traﬁsfeting it to the new
éﬁ hardware should involve modifications to low level routines
e only. An operating system implemented mostly in a high-
ﬁg level language eases the process, as there are usually one
.Eg or more cross-compilers for that language. With low-level
B driver modification, any software project that is well
:% designed should be able to be transfered from one machine to
:% another. If the implementation is in assembly language,
.j this process would be very costly, if not impossible. An
E; excellent example of this process is the UNIX system, which
:é has been implemented on several machines ranging from the
i‘ Interdata 7/32 and 1em/370(Ref. 13) pachines down to the
;i %g, LSI-11 microprocessor.‘“ef' 14) as a counter-example,
2

i s 14

»
e Ay s - ey - . - - -~ el ™" ~ el e . -
H » \"I'\, \111 “’- My '.i‘\".‘- w7 LM e e e te S P R e e TR S e e v S e - w

> O e it Y S ST PENE O S M M S
[N R A, .L-_.f-.—-l:;l;!’lt

I - -'\o“-. . Pl
P VL SO P D NP NI R S ST TSN WA wP WA MIUE U0 T Sy T N

...........
............

.

PRI TR

consider the CP/M and MP/M operating systems which, being

<
TN

written in 808¢ assembly language, can only run on 8089,

s9 T @
Aty
*

280, and 8085 microcomputers.

Given that this implementation effort will take place

mainly in a high-level structured language, the only choice

- is which one to use. Twoc cf the choices are Pascal and C,
‘%% with others (PL/I, Algol, etc) in the background. Require-~
:ig ments are that‘the language provide clean, easy to
EMJ understand flow control structures (the basic for/next,
gﬁ ~ repeat, and decision structures) and that the language not
.gﬁ be overly restrictive. In other words, the language chosen
f;f must allow the type of 'bit-tweaking' required in typical

operating systems functions, such as bit masking and boolean

P logic operations. This stems from the desire to optimize
e ‘r'. code for certain functions without having to resort to
i%g assembly language.
4?5 The C language was chosen for this effort because, of
o the two language compilers readily available for this
gﬁ research (Pascal and C), C is by far the less restrictive.
j%% Because of this lack of restriction, extreme care must be
:é taken to strictly adhere to structured design and
%gf implementation rules. Otherwise, porrly designed and
35% written code may result, having a very negative effect on
‘ﬁ; future efforts. A strong influence in choosing C are that
E% AFIT has several C compilers available, including a 28000
fﬁ% cross-compiler that runs under UNIX donated by the Mitre
‘?: £§? Corporatlon.(k‘f° 8, p. 28) Additionally, the C source for
Sf "the UNIX operating system is available for study.
i .

LTS e ey ot W e @ e - - - .
AN SO TP A R A AT A N S R St TESU I SO Tt W e e T T e
L, gt Mo (N % LA LR (S - e Lh UL

- . -
.........................

;é ;;; ‘CPU Considerations |
This design and implementation effort is geared toward |
device independence. However, to have an implementation, a]
target device must be selected. There are currently several l
16-bit microprocessor devices on the market. Of these, }
three were considered as initial implementation targets for |
this study. The devices were the Intel 8886, the Zilog
280008, and the Motorolla 680806. The 8886 device was the i

choice for the two thesis projects which preceeded this

o d ORI Ll

vy
LI

effort, due to its availability in the Digital Engineering

Laboratory. In conversations with the authors of those

(),u

projects, the main drawback to the 8086 discussed was the

lack of differentiation between system tasks and user tasks.

!ﬁi This flaw would require operating system implementation to

rely on specialized external hardware and relatively complex

low-level system software to prevent malicious- or error-
induced mahem by users on one another. Of the three devices
inspected, only the z80@88 has the capability to discern
between system gnd uéer tasks and control the operations
performed by ugers.(Ref' 15)

Thorough benchmarks have been made testing the relative
merits ot the 8086, 28008, and 68008. Appendix A details
these benchmarks. The 28620 generally came out to be a bit
slower than the 68800, but much faster than the 80686.
Measurements made by the Mitre Corporation indicate that, in

local network processing, the 28000 at 4 MHz is 'S5 to 20

’ percent faster than a PDP 11/45.'(Ref' 8, p. 20)

" - Wy yr—r g —~ -
MACROI S RS e N et et gt S A I SR S S e A A S O
: e P D A 1

The amount of hardware operating system support offered

R by the CPU was of great importance in selecting the proper

device on which to implement the design. The support

|
desired includes restriction of access to the CPU, 1
restriction of memory access, memory mapping and program |
relocation capability, sharing of memory (programs and

data), context switching support, and I/0 interrupt support. |
The degree to which the devices in question support these !
items was the deciding factor in the choice of the Z8008 as {

the implementation target. Each will be examined in detail 1

in the rest of this chapter.

Restriction of CPU access

The operating system is faced with a serious problem in

N allocating its resources. It must relinquish control of \

the CPU in order for user tasks to be processed, yet be
assured of regaining control correctly when a specific event
occurs. Obviously, when the CPU is turned over to a user
task, the operating system is no longer in control of the
system. Therefore, there must be some mechanism to prevent
user tasks from doing mischief while running. The separa-
tion of the CPU into two modes, system and normal, solves
this problem. 1In system mode, the full power of the device
is available to the operating system. In normal mode, the
user tasks are restricted in their use of I/0 instructions,
control register manipulation, and other special instruc-

~tions (i.e. the HALT instruction). The transfer between

on modes is normally accomplished through automatic circuitry
17
T A I R P Sy TR Vet 3, T P R S LA At A T P T O T

Ve 4te e
PP TEIRIRAAE oo !

7

AR BD
3

~
pe 54

2,0
R

Ty
Pt s
o atal

asdadc s Wt

1%

N

- q g g i
) Haf et n ' ata AV etats

A i ot s 5
. T b L e Na e L e e Ee T T N N T T T e e e e e M e R TS
AN SN e B B SR B P L A SRR I S L I A R R B N Y B TN PR IS St

involving the interrupt structures and the use of special-

ized system interrupts called traps.

Restriction of Memory Access

Hardware support for restriction of access to memory
usually takes the form of interpretion of an address
presented by the CPU and matching the address againSt\a
table of attributes set by the operating system. There are
two basic types of address that processors use.(Ref' 16)
Segmented addresses consist of a segment address and an
offset within that segment. This is sometimes called two-
dimensional addressing. Linear addresses (or one-
dimensional addresses) consist only of an offset within
memory relative to address zero. In a system that uses
segmented addresses, attributes are associated with a
segment. In systems that use linear addressing, attributes
are usually associated with fixed-length blocks of memory
called pages.

Memory Mapping

Memory mapping is the function of assigning each

logical address used in a program to a physical address in

"the system. Usually, this is done by dividing the logical

-
P

X
RN

address space into blocks of contiguous addresses, then
mapping the logical blocks into physical contiguous blocks
of memory. Such a scheme requires only that the base
physical address for each block be stored and that the

origins and sizes of the logical blocks be provided.

18

~
F R e T s U e Y R e R T S A i S R =TT

S e LW TR IOS AN ESICI I T N G B E C A O A C AR ACa) T e

23
o

L]
1&2 . " Program Relocation
_;%, £ There are three types of program relocation: static
ix; . relocation, dynamic logical address relocation, and dynamic
Eg physical address relocation.(Ref. 16) giatic relocation is
ﬁ: what occurs in the operation of a linking loader, where
G Program location is determined at the time the program is
e brought into memory from disk. Once running, the program'is

fixed in memory. Dynamic logical address relocation is "the

l process of changing the logical address at which a given
;% program is to run.,"(Ref. 16) qhijs process is usually
%5 possible only when the code being relocated has been written
ﬁ?' in a position-independent manner, as is common with the PDP- =
;ﬁi 11 systems. Dynamic physical address relocation is achieved
‘éﬁ il by physically movirg the code in memory, chamhaing the
?n b physical location at which it runs, but leaving the logical
‘ga addressing alone. To achieve dynamic physical relocation,
?;: memory mapping must be used.
a Static physical relocation is possible on any systen,
éi as it is a function of the program loader and is totally
éi software-dependent. On the other hand, to achieve dynamic
iﬁ relocation, device support is required. Logical address
é; relocation is very helpful in implementing program/data
%% sharing between tasks, and physical address relocation
g. allows recompaction of fragmented memory. The availability
;; of both techniques is a great advantage in a sophisticated
;52 operating system design.
“é v
)
@
—- 19
MY
"..

Y ﬂ', A TR T N SR R N e L T e T T T T T e et Tt e .

9 Y A A AT WL e e T T e e e e e e e G e

Sharing of Memory

Sharing of memory segments is a desireable feature to
design into an operating system, particularly for a system

designed to run as efficiently as possible on a small
system. This technique allows utility programs to be
reentrant and allows multiple users to access the same code.
This technique discourages multiple copies of the same
program from being resident in main memory.

Context Switching

In a multiuser system, each time a task ié‘interrupted
to allow another task to run, the machine state of the
current task must be saved and the state of the new task
must be reloaded from memory. This is known as “context
switching®.(Ref. 16, p. 3-78) gargware support of this
function includes automatic saving of at least part of the
machine state on the stack or in system memory when an
interrupt occurs.

Interrupt Support

As stated above, context switching support is heavily

dependent on interrupt handling. The device in question

.should support as much as possible the following

features: (Ref. 16)

l) A vectored interrupt scheme to avoid the
necessity of polling devices to determine
the type of interrupt that occured.

2) Fast interrupt response.

3) A priority scheme, for allowing interrupts

of interrupts.

20

..............

W e

P T TIVILEY
AT Al pt e At Al et

wE 4) Block I/0 and DMA capability.

PN

5) Restricted access to I/0 intructions.

The rest of this section defines how the three devices in

question match up to these specifications.

CPU Access Restriction

Of the three devices, only the 80686 has no
.differentiation between normal and system modes. However,
the 68008 uses memory-mapped 1/0, therefore the normal user
has access to I/0 instructions. The 28000 normal mode
1?3 restricts the use of I1/0 instructions, control register

manipulation, and the HALT instruction.

.éx " Memory Access/Mapping/Sharing

All the devices inspected require external circuitry to

i[‘ control access to memory. However, the 28000 provides

instructions for use with memory segmentation.

Context Switching

All the devices store at least part~o£_thehqéchine
state on receiving an interrupt. The 28060 has block ﬁ;;;“"
instructions for facilitating the storage of the entire
instruction set.

Interrupt Handling

All the devices react in a similar manner to
interrupts. However, the 28000 allows the interrupt vector
table to be located anywhere in memory, whereas the 68000
requires the table to be located in specific memory

locations.

21

..... LU P I e BT S T

....... ‘~~
ey

Y . -
PN R i A R A A R R SN P R Rt Ve v, N

B Mt R T, et At et oLt e T oaw
----- R A N M S A RS e

L KSR TME Rl Sl Sl N Sl

........ T T ISR AN A Tl TPt N S AT A e
. .- tv gt N
-

S X a T T SENSLIGIIRL I IS AN I A P R IO RS S P e I R I P SR R

B
{% e Choice of the Target Device
1§3 kS Given the considerations above plus the results of the
g; benchmarks given appendix A, the 28000 was chosen as the
fg target device for this study.
1y
- Summar

ég The operating system is generally accepted as the
§§ single most complex piece of software that a computer system
:$ is expected to run. A sophisticated operating system must
;E . be designed and implemented using the strictest of
g? techniques. The advantages of structured design and imple-
;U mentation far outweigh the penalties imposed.
;ﬁ The C language was chosen for this implementation for
,5; its clarity, power, and availability. Many examples exist
;ﬁ df* for operating systems algorithms in C, and the UNIX C source
;ii is available for study.
‘gg Also, the Z8080 microprocessor was chosen for this
? implementation due to its design which supports operating
‘% system constructs.

777777 - this design and implementation effort will provide AFIT
) with a useful teachiné tool for future classes, plus a cost-
‘EE ‘efficient software development system. It is expected that,
gg- as with UNIX, very few years will pass before extensive
‘ 4 modifications to this system have been made. But, again as
-E with UNIX, the overall concept of the design will still be
gx apparent.

o

r &

;g %

22

II1. Top-LevelSystemDesignand Implementation

Introduction

The first two chapters of this thesis have emphasized
two main techniques required for the successful completion
of the design effort.(Ref. 17) pnece are the use of top-
down structured design and implementation techniques and the
incorporation of user-friendliness into the design at all
levels, The efforts of the previous chapters, taken in:
concert with the total efforts of Ross(Ref. 6’, form the
basis for the design of the AMOS system. This chapter deals
with the actual design of the AMOS operating system kernel.
While the design of Ross provided the major motivation for

this effort, a major flaw exists in the his results. Ross'

design has no readily apparent method specified for

processes to request operations from the operating system.
The AMOS design, on the other hand, is centered on the
ability to efficiently service any request made by
processes. The design is approached from the outside
inward, dealing first with the high-level requests that
software and hardware external to the kernel are likely to
want AMOS to satisfy. These requests are often refered to
as 'hooks' into the operating system, and will hereafter be
called system calls. The design proceeds inward to the low-
level (and possibly system-dependent) routines AMOS {itself
uses to satisfy these system calls.,

To help to visualize the basis of the AMOS design, the
following chart shows the logical flow of requests and

service in the AMOS system. User processes and hardware

23

A L . W T S S

R T S D S Y Nt m W - - e el . -
L N A A LS P S AT TR I Y RN YL, . . o« '.J
CURS AU, . S, Sl Wy b SN TS PN, YL Y AL VR VRS SO LI)

operations occur at a level outside the processing of the
AMOS kernel. The kernel is entered to satisfy specific

requests for action.

User Processes / Hardware Activity

Action Request Request Results

AMOS Kernel Service Interface

Formatted Request Results
Action Request

AMOS kernel internal routines

Figure 3-1

Structured Design Limitations

It becomes obvious during the course of an investigation
such as this that when designing interactive software,
particularly in a multi-user environment, the idea of top-
down structuring is somewhat compromised. For a
multitasking system to be responsive to its users, hardware
interrupts must be implemented (for user terminal input, for
device drivers, and for the system clock). Additionally, a
multitasking system must be capable of protecting all users
and itself from the occaisional user program that runs

‘amok'. This requirement is achieved in most cases by

24

L N I P Ry S A s I S RN TR BRSNS
CRPRIE NI SIS T DAT I A D Ghe DRSPS U UL L R NE G, B T R

N ,I...l' ..

.
e
:
b
b

- . .
...

reserving privileged instructions for exclusive use by the
operating system. The user programs must therefore request
the operating system to perform certain tasks through the
use of system calls, which on the 28080 are another type of
interrupt.

All interrupts, whether hardware or software, will cause
an unconditional transfer of control to the operating
system, where a routine designed to handle the interrupt
will be executed. These Interrupt Service Routines (ISR'S)
will handle the specific task requested (queueing 1/0,
performing scheduling, running a child task, etc), then
return control to a routine within the operating system
proper.

The Z8008 microprocessor has a very sophisticated
interrupt handling scheme which allows for up to 262
different entry points to interrupt service

routines, (Ref. 15) 7This capability makes the 28088 very
responsive in a multi-user environment. However, to follow
the spirit of top-down structured design and to make the
resultant design easier to comprehend, the choice was made
to restrict AMOS to a minimum of entry points, thereby
enforcing smooth data/control flow as much as possible.
Exceptions to this rule are unavoidable if reasonable
response times are to be achieved, stemming from interrupts

due to the terminal, printer, and disk interfaces.

25

. . - . T T S I S Y - .
........

- A fe - - - - . - . .
- . - PP o T e, T . . . DAL IS L I
) LIPS WAL LS. VNG S AP P S ITN WL LIPS A SR T That Sk I -

........

......
--

b Sl il Aadoagl il Nl Jaadd
.............................. i

Top—-Level Modules

The highest level of the operating system is perhaps the
simplest to explain., More a concept than reality, Level @
is an executive for the three main system segments. The
main segments consist of bootstrapping the system, initial-
izing the global structures and variables used by the
system, and setting up the branching requirements for the
system to service interrupts. The logical interconnection

of these segments is shown by the structure chart in Figure !

3-20
Executive
(owm—— Interrupts
Level @ (Asynchronous)
Boot Initialize Service Reschedule
System System Interrupts CcPU
Level 1 Level 2 Level 3 Level 4
Figure 3-2

Note that the 'levels' shown in 3-2 are horizontally

situated., The important point of this configuration is to
note that the interception of user/hardware requests occurs

at Level @, and requests are passed to subsequent levels for

processing. While the use of the phrase would seem to

indicate equivalence of the separate processing gicuips, such

26

——r g --Q\I_.-__"-'_‘_‘_‘_u.-_'*;\“.‘runﬁ'*.‘!-;.“i‘*“v..'_i“.‘\~"'_—(.1_.'-“’*_._Y':"'..‘._Y -
. . Vi RN

DN P T L L PR SRS PO LT A S T

4
' n s

is not the case. Procedures below the individule modules

v

i g shown above follow a numbering scheme with the 'real' part
of the number being the original entry point from Level @.
The interconnections shown in Figuré 3-2 are logical
only. Actually, Level 1 is entered immediately when power
is applied to the system. In the absence of a failure, Level
2 is entered to initialize the global structures, buffer
pools, and variables used by the system. This initial-
~ization includes setting up the branching requirements for
interrupts. After initialization, Level 2 branches to Level
. Level @ initiates the system task, which sets itself up
as process @ and goes to sleep awaiting an event
(interrupt). When an interrupt occurs, Level @ saves the

- system state and takes actions appropriate to the type of

interrupt. Level 3 is called from Level @ to process the

et
£

-
R WIS P4

- \,"’.'_ &

s
i B3,

v
‘o

interrupt request, accepting as input the parameters passed

f

from Level 8. A special case interrupt (that of a terminal
interrupt from a device not currently attached to a process)
results in the spawning of a login process. Level 4 is
entered upon a successful return from Level 3 to reschedule
allocation of the CPU resource after an interrupt.

Bootstrap (Level 1)

What actually occurs when the computer is initially
powered-on depends on the hardware. There are two general
possibilities:

1. The CPU begins executing from an on-board
monitor which may allow different low-level

functions to be performed without disk

27

R s 20}
' P35,
P H

T
i" :

R N0

.
EY

o

IRE A A
PR

- 'tv.o"
Pt

€
i

. U T, et LY - -, - - -
NS S LR '_;-."-‘-".""-"o:' ."\:\";' -"‘:‘ PN ~."'_'_~:‘:L_~:‘\‘~." \"s

interaction. This is not a disk operating
system function.

2. The CPU may be held in a RESET state while
the disk controller independently 1loads a
small segment of code from the disk. The CPU
is then allowed to run, executing the code
loaded by the controller. This code is known
as the bootstrap loader, because it 'boot-
straps' the rest of the operating system
proper.

The bootstrap operation is obviously highly hardware-
dependent. For the purposes of this chapter, it is assumed
that the bootstrap correctly loads the required operating
system code jinto memory. An introduction to the bootstrap
loader is presented in Appendix B.

System Initialization (Level 2)

When the operating system is first loaded and run, the
CPU is running in system mode with interrupts disabled. All
devices (disk controller, 1/0 ports, and the system clock)
are initialized. Memory management hardware is initialized.
Finally the system initializes the I/0 buffers and various
structure arrays, interrupts are enabled, and then control
returns to the executive.

Interrupt Service (Level 3)

Interrupt service is divided into three groupings, as
shown in Figure 3-3. These groupings are indicated by the

nature of processing required by each type of interrupt.

28

"""" . “
PR Lt

L SRR - .
o W U S TR WA S ¢

6. i Voo Wu e SMEHD L M NN AT A A e A R e T B P R
N

Y

o

I

b3

" . These groups are service of timer interrupts, service of
vy 33

3 et other hardware interrupts, and service of user-generated
{

=3 interrupts, or system calls.

N Service_Request I

N Service

X Interrupts

i

- Level 3.0

7 <
[1

E? Service timer Service other Service a User
= Interrupt hardware inter. interrupt (SC)
;g o Level 3.1 Level 3,2 Level 3.3
] O

i Figure 3.3

2

s This structure is useful in visualizing the possibil-
d ities for the various interrupts, but is not realized in
;E implementation. For reasonable response times, Level 3.1
,; and all sub-levels of 3.2 are entered directly when their
? interrupts are received. Further discussion of the
.g interrupt service routine coding is presented in Appendix C.
tﬁ Level 3.3 is entered when any System Call is initiated.

v System Calls

§ Starting at Level 3,3 is the level of design that has
;' recieved the most attention in the AMOS design, the
? 55; servicing of user-generated external requirements. The
é ‘ other areas of service are fairly hardware-dependent and,
y

; 29

't. I AR R N s W Lo N P T P T P T S S A R RIS

‘l
o

o
ARyt
e

»
PPN
FOF- ARy

£
<

« et

DADACINE X
l'll 4 5

RN T
“5‘ a

»

41
v . AN
R RN L VAN

ST I

DAY

once the hardware configuration is defined, are relatively
inflexible as to their design requirements. As previously

mentioned, AMOS will satisfy many of the system calls

presented by programs written to run under the Unix environ-
ment. Because the design of the system call handling
section is so extensive and so important, full discussion of
this section is deferred to the next chapter.

CPU Scheduling (Level 4)

The final level of processing in the top-level modules
is the CPU scheduling module. With modification to accept
the structures of AMOS, the work presented by Yusko will be
used to implement scheduling. This set of algorithms has
already bezsn proved to be correct by implementation in
Pascal for a basic operating systems class.

Summary

This chapter has presented the overview of the top-level
modules of AMOS. Paradoxically, it is those top-level
modules that fail to conform in reality to the concepts of
top-down structured design. Where there ideally should be
strong cohesion between modules, the requirement of
reasonable response time and the restrictions of boot-
strapping make it impossible to enforce :uch a cohesive
structure. This chapter is presented in the hope that
readers can recognize the conceptual cohesion of the AMOS

design, despite the slightly disjointed flow between top-

level modules in implementation.

Due to a lack of time, a thorough test design was not
developed for the AMOS project. However, each module of C
code for the partial implementation of AMOS was thoroughly
tested through the use of driver routines and stubbs.
Interface requirements were defined and validated at all

levels.

31

IV. Interrupt Service

e Introduction

This chapter is devoted to the development of logical
ideas of interrupt service as implemented in the design of
AMOS. This development is geared toward the implementation
of the requirements proposed in chapter 2. The previous
chapter gave a brief introduction to the three basic logical
groupings of interrupts that may occur, those being timer
interrupts, general hardware interrupts, and user-generated
or software interrupts (system calls). These basic groups
will be explained in more detail in this chapter, with
emphasis on operating system call handling. To begin the
chapter, the linkage between the interrupt intercept code

e and the interrupt service routines will be defined.

‘Linkage

The interrupt linkage portion of any operating system is
highly ﬁardware-dependent. Interrupts generally force the
host microprocessor to branch to a specific area of code
pointed to either by registers within the processor or by
pre-set interrupt service tables in main memory. For the

purposes of this chapter, is is assumed that hardware inter-

ot
K]

.o,
-

o
-~

rupts (not system calls) branch directly to their specific

v
M taea

interrupt service routines for reasons of efficiency, then

enter Level @ for non-time-sensitive processing. A timer

.
A

"lj.. LR

interrupt results in blockage of the current process and a

‘u‘-'-;'l
S0

call to Level 4 to reschedule the processor.

¢
. %

Eon> System calls all branch to a common rout e that accepts

arguments from the calling process and branches to Level @

32

b bl S i At A S O MO PR T T - ottt Sodih sl R e s Sl ot SR S ST RSN can Ehay SR i At
PN i Rl A A BN TR LF RN I

VMU T VLT WS e et T T e T, e - - . . . e e .

- - L] - * L] ..' - * . e ™ . ~ . . . L. e e .- . . C e e B e . s L LR .t . PR

- o n % o' e . P P AR I N . IR SN - R Lo
MAL-i‘.."L B al e n® 2 N Tm e e T PP SRR S VR LY R e e e et A Attt st at. »

Q A " FeOFe ey . T . NalEN
bR A I IO M ORI AU VA D e e A DA S DA D R AN A

N wm e W LT T AT T T L e e e e e e T T S TR TR e YA TR T

for further processing. Level P essentially creates a block
of argument pointers then calls Level 3 to prccess the call,
After the call is completed, Level @ blocks the current
Process and calls Level 4 to reschedule the processor.

Timer Interrupts

Any multitasking system mhst depend on a 'heartbeat'
Pulse to allow for timely service of the tasks being
Processed. If tasks were interrupted only when I1/0 was
requested or when they voluntarily put themselves to sleep,
tasks which require a high percentage of processor time as
opposed to I/0 would monopolize the CPU resource, This
situation would prove unfair to the other tasks being
processed.

(!* To provide a more even distribution of processing time
among the resident tasks, AMOS provides each task with a
'slice' of time in which to run. If the task has not
requested some action of AMOS during that period, it is
pPreempted and placed at the rear of the appropriate queue to
wait for further processing. Any request made to AMOS by
the current task results in the task being preempted, as if
a time-out had occured.

Other Hardware Interrupts

There may be many sources of other hardware interrupts,
"depending upon the configuration of the machine upon which
AMOS is running. The most common is the terminal input
interrupt, which occurs whenever a user strikes a key at the

terminal. This action results in a hardware branch to a

33

B T A e e e v vew R e a A eme Ay w m - o . R .
% ot - - (AP L N CA T i B A) T T T WL W D P O T T U S S S S S R .

» *o ., N W) - " ‘V} » A MR - O T T S e} . Ty [AP R S o
PP WY Vo R TP W LY S RS WL B N S N A I P, Y e P R ottt e e e e

ey DAL ‘et _—r LMLl Aath dengh e I Manfe JNath Jpuah Mesti-Rendt e el Shel St Andl Musi "y — A i T aar Sarians docw o PhdrRt
- .'?,;'.A-‘h'nr'.'kn"',.‘.‘.h'_"_v‘_.'.,4‘_;'-‘;'-';‘»'n‘-'nl'-'-". Tt N et T T T T T e P e) .

¢
g

service routine to intercept the character and place it in
the proper process buffer.

Other sources of interrupts include intelligent device
;E controllers. These controllers contain microprocessors
dedicated to the performance of speéific tasks within the
host system. They exist on the system bus in concert with
but independent of the central processor. Device
controllers of this variety may use interrupts to
communicate with the host. The current state of the art in
e small computer circuitry is tending more toward the
independent device controller (for example, the Morrow
Designs DJ/DMA floppy disk DMA controller, which is
patterned after the IBM 378 disk channel device).(Ref. 21)

- System Call Management

The final category of interrupts recognized by AMOS is
>y the software-generated interrupt, or system call. These are
requests made by proceses for services which they cannot
perform for themselves due to the nature of the service
requested as presented in Chapter II.

i~ The AMOS design breaks system calls into five logical
‘groupings according to the action requested. These groups
are sufficient in that their categories should be able to
comply with future modifications to the system requirements.

1) File System Calls ~-- requests for access to

}f and/or modification of files

2) User Structure Calls -- requests for access to

o, and/or modification of information pertaining to

A the requesting task

Process Structure Calls =-- requests for access
to and/or modification of system data control-
ling the processing of the requesting task
System Modification Calls -- requests to re-
trieve or modify system information, such as the
System time, and to mount and unmount secondary
storage devices

Communjications Calls -- requests to set up com-
munications channels between tasks and to set or
retrieve communications parameters between tasks

and devices

The following structure chart shows the linkage between

Level 3.3 (service of system calls) and the lower level

modules that service the requests.

I *Arglist
NOTE:

*arglist and

error values Service System

are common Calls

along all

branches.

N\ /

r

Service File
ystem request

I

Service User dqta
modification req.

%

3,31 3.32
' ' '
Service Process Service System data Service Comm.
data mod req. modification req. request
3.33 3.34 3.35

-

i

.

Figure 4.1

M . NI O R i T A S A Y S S S I I L I mt m e e Al AT e e e S R R A T A TR e
--_,‘-'4‘*-.‘.14; N S IR R L T T I O e) N I P P TG R R SR NI ST Wl N R R A Sl
-

AR
12

L5 File System Calls

The AMOS file system is patterned to closely resemble

ﬁff the UNIX file system from the external point of view. This

::f design decision was based on the availability of large
amounts of utility and support code geared specifically

toward the UNIX file system. In designing an externally

Eii compatible file system for AMOS, much of this code will be
‘.: directly applicable to the AMOS environment. Pathnames
-?i' familiar to UNIX users (see Appendix B) are recognized by
;;g AMOS., For the microcomputer environment, however, the
i?f fragility of the UNIX file system internal structure is
§§ unacceptable., Microcomputers are generally expected to
§§ function in harsher surroundings than the minicomputers that
e iE“ run UNIX. Any event that causes even a temporary power
?l fluctuation can easily destroy the UNIX file system on
.:,, disk.(Ref. 22) Additionally, the role the user plays in the
;m microcomputer environment is that of the system operator.
ﬁg This allows the user to make mistakes (such as switching
;ég disks without notifying the operating system) that result in
ng disaster under the UNIX file system. AMOS seeks to nullify
ﬂgi the problems caused by such user intervention.

é;j User Structure Calls

s The AMOS user structure contains 'personal' information
fﬁ; about the user that owns a specific set of processes.
Eii System calls exist under AMOS to allow modifications to the
?? - current working directory and the current user
zg; e identification.

~ Yo

36

™ Sha Mt “ S et ~avoan "t Tines SRAS Bon bue na og s
.5 g - T

) L i 3 g 7 TITTE TS T TR M T oW e o S T e AT . e -
ek AL AN oS A A A P PG RN AR KT CMGIE T RRRES |

o A R A WL P i P S TR S

LA Ny - e Tae

'

13
PP,
¥ N i vy

Y o
PRV

i *
_i? . Process Structure Calls
s
Nt e The AMOS process structure contains information about
‘Qﬁ an individual process, and must remain in main memory at all
§g times when the process is active (i.e. nct terminated).
§$ AMOS system calls exist to allow the retrieval or
) modification of the process identification number, the
iﬁ process priotity, and the process running time.
f;f Additionally, calls are available to allow a process to
‘ 3 create new child processes (processes that return control to
f't the parent when finished), to kill a speciﬁic process, to
:% wait for completion of a process, to spawn a new process in
:- the calling process' memory space, to kill itself, and to
:?; request more memory from AMOS.
; i System Modification Calls
tpa w AMOS system calls are available to get or set the system
;g time, to mount or dismount alternate file system devices,
?ﬁ and to force the writing of main memory-resident information
o to disk. Other requirements will become necessary as the
vg? development of the AMOS environment is expanded.
fﬁ Communications Calls
™ There are three communications requests that AMOS
ég honors. The first if the PIPE request, which creates a
’ system file to act as a pipeline for output from one process
to feed the input to another process. This pipeline is
;g temporary, being deleted as soon as the receiving process
%} terminates. The PIPE call can be used to allow for parallel

=, processing of dependent processes, with the PIPE enforcing

o the synchronization of the processes.
“

The other two requests are for the retrieval or setting
of the characteristics of the controlling terminal device
attached to the process. This information is used to allow
processes to tailor their input and output for specific

devices without making it necessary to have multiple copies

of a process for each I/0 device.

Summary
This chapter has dealt with the handling of interrupts

by AMOS. It may seem incongruous to deal with a seemingly
low level function like an interrupt at such a high level in
the AMOS design. It must be remembered that for any opera-
ting system to respond efficiently to several concurrent

users, it must be designed from the top-down to handle

interrupts efficiently. One must only remember work done on

one of the older operating systems (the ones that have to

run a 'time-sharing subsystem' to support interactive

terminals) to understand the crippling response times that

are realized by operating systems that have added interrupt
support as an after-thought. As an example, the Department
of Defense supports a world-wide network of Honeywell 6000
computers in a defense network. The H-60008 series is not an
interrupt driven system. As a result, in the latest series
of tests of the network, the failure rate due to abnormal
termination of communications was consistantly over 75% in

the network.

38

RS
.......

V. AMOS Data Structures Design and Implementation

Introduction

This chapter defines the information structures used in
the design and development of AMOS, These structures have
evolved to efficiently fulfil the requirements definitions

specified in chapter 2. It is essential to bring this

discussion into the investigation at this point, because the
next chapter and the appendices delve quite deeply into the
implementation section of AMOS. A thorough understanding of
the way structure design and their use is necessary for the
continued understanding of AMOS development.

The term '‘structure' comes from the C programming
language, the implementation language for AMOS. It defines
a logical grouping of perhaps dissimilar data items into an
entity. Each item within the structure may be referenced by
naming the structure (or a pointer to the structure) and the
item. The nature of C, combined with the natural grouping of
data items in the design of AMOS, leads to the definition of
many different structures. The structures which have been
defined in the present stage of design are presented .n this
chapter.

The Process Structure

WA 4

The AMOS process structure contains all the information

necessary to properly schedule the active process (which is

. ‘in—"
R R et
e

.

in competition with other active processes for processing

DRI

s

time). An active process is defined as a process that has

st begun processing and not yet terminated. All active

v
K

)
v

a8

processes have process structure entries in the proc_table

oY)
asts

*u

39

. o™ I T T T . e - - N - -
o™ o - PO A L PO Y . . n - - v
- . -
AN AYA” atatataaatowont At Wt ey e

e e Baat 3 i e Bou induns it S et
e D NS AN A A NS D
‘.v\f’_-‘.u_,.‘ T4 SVL4F NI IR AR VS AL T B ARV
.t

- oR
1 | ‘l. .l..'"

,.
o
Ya fa3%)

s %

A

PR LA £

:i SR array, which is resident in main memory at all times. The
‘, T
{ process structure and its enclosing array completely define
2?2 all variables necessary for AMOS to efficiently execute
7 concurrent processes. The process structure is defined in C
Ry

as follows:

e

i ?truct process
Ei char p_status; /* The status of the process */
- char p_memstat; /* The process memory status */
L char p_prior; /* The priority of the process */
e char p_int; /* The number of interrupt that */
b /* stopped the process */
oy char p_userid; /* The user identification § */
" char p_coretime; /* How long the process has been */
o /* resident in main memory */
. char p_cputime; /* How much processor time has */
o /* devoted to the process */
oo char p_bias; /* The bias for calculating the */
v /* priority of the process */
i char p_term; /* The device number for the */
X Lt /* controlling terminal */
; U » char p i4; /* The identification number for */
P ' - /* the process */
o char p_idp; /* The identification number for */
N /* the parent of the process */
oy char p_loc; /* The starting address for the */
vl /* process */
‘ char p_size; /* The size of the process in */

/* Sl2-byte blocks */

) char p_seg; /* The process segment number */
P char p_reason; /* Why the process is blocked */
s } proc_table [MAXPROC];

T Figure 5.1
3 "

4

P e

75 As can be seen from the definition above, AMOS will
v -support up to a maximum number of concurrent processes
%E (MAXPROC). MAXPROC is a system parameter defined at system
i} compilation time. Each process holds a position in the
Iy ,ﬁﬁ proc_table array. An array was choosen to hold process
%; A information because of the relatjvely low overhead involved
ag':':
> 49

.................

R IR
- LI - - . - e 7o ., T
talaca’aty o7 ae L0 at J oat

..................................

=

-

3 R in table manipulation as opposed to the more flexible
{ﬁ alternatives, such as a dynamically growing linked-
o 1ist.(Ref. 23, p. 401) Additionally, a linked-list, which
;g requires at least one level of indirection, is more
® difficult to implement, verify, and debug.

;E The DDB Structure

:; The Disk Descriptor Block (DDB) structure of AMOS is
:‘ similar to thé inode structure of UNIX (see Appendix B).
L;; Each DDB structure describes completely a disk file., This
?? Structure is described more completely in chapter VI,
:“ including its C language definition, but is presented
Zﬁ briefly here because it is referenced several times in the
Si next structure to be examined, the user structure.

53 ti& The User Structure ,

ﬁ The AMOS user structure contains information similar to
j? that found in the process structure, but the information is
L of a noncritical nature in scheduling the processes.
é Because‘of this fact, the data is maintained in a separate
% array. This design feature allows for future modifications,
:3 such as the capability to swap out noncritical data item,
é‘ thus making more memory space available for active
j pProcesses. Currently, swapping of the user scructure is not
4 anticipated due to the overhead incurred in disk 1/0. 1In
%? -the future when more systems are available with hard disk
ré subsystems, this overhead will be reduced and may be deemed
;J acceptable.

41

q.), LN N AR L NS S . Ll A -,
di-.& ‘\- ‘;)A-'\ AR AR A WA o n.;._&.....‘_.A_.!._n._L_.gJ!.l_l._n_g.-__n AL LR RS I

NN I VA e C e TR N S W Ve
- - LRSI N S S

The elements of the user structure are defined as

e follows:
struct user

> int u_state[STATSIZ]; /* Storage space for thestate */
4 /* of the processor after an */
3 /* interrupt. */
] char u_error; /* The last error that occured */
. char u_eid; /* The effective user id # */
L char u_rid; /* The real id # */
S ddbptr *u wddb; /* Pointer to the working dir- */
o - /* ectory DDB entry */
os char u_wname [NAMSIZ]; /* Working directory name */
o ddbptr *u_tddb; /* Pointer to the temporary */
/* directory DDB entry */
char u_tname {NAMSIZ]; /* Temporary directory name */
= int u_files[MAXFILES]; /* Pointers to open files */
N int u_arglst(le); /* Room for 10 arguments to */
. ' /* a system call */
char u_argstr [80]; /* Storage for up to 88 chars */
- /* (pathnames, etc) */
" struct process *u_proc; /* Pointer to owning process */

. } user_table [MAXPROC];

ﬁ' Figure 5,2

There are several global data areas of the user structure

that are accessed from nearly all levels in the service of
- system calls. 1In particular, the u_error field is filled
with the most recent error condition which occured. The
pointers to disk descrpitor block structures are set during
file system calls, to make recovery of the current state
after a blockage easier (for instance, if the process is
blocked during a pathname search due to a component already
< being used, the ddb pointers allow the process to be placed

into a queue waiting for the ddb to be freed, then resumed

o~ when the ddb is available).
0) .

42

e

pe

e
»

LR A%
-

(Y
Gyl

R L
LA
Ban Ve

54

SN

1.2 0 . &
CROA RPN
2%]
&8 a4 a'a’a

[
L 2

1GE:

....‘.

LRAR R

-~ "t ..l -
.

J 9K

-
3
,\\'o
»
Y
N

e e eieae v
A IR SRRy

"

by i
o T
.

g w LI S Yot y—
................ > _—p —py
g Syt v - e N, e TN T ST R T TG N el e LR a3 X - 2
o RN N e el R P S N N C I Sty o AN T T W L R TR e —— ey
L .~ [AR I P

R T

The Master Block Structure

The AMOS Master Block structure (mblock) is used by the
file system to completely define a mounted file system
device. A copy of the master block resides in a known
location on each mountable device, and provides an entry
point into that device for all file system accesses. The C
definition of the mblock structure is given in the next
chapter.

The Directory Entry Structure

The AMOS Directory Entry structure (dir_entry) is used
to define an entry for a single file within a directory
block. It also is more completely defined in the chapter

VI,

Summarx

This chapter has given the reader an introduction to the
C structures used by AMOS to group similar data item into
logical areas of memory for easier access. These data
structures are the product of the total requirements
definition and the capability of the C language. Given
these structures, the manipulation of processes in AMOS has
been made as efficient yet easy to understand as possible.
The works of Yusko(Ref. 7) have to be modified to handle
these structures as part of the ongoing implementation of
AMOS. It is strongly suggested that the material presented
in this chapter is made fully familiar before proceeding to

the rest of the report.

L

¥ o

%%S o V. The AMOS File System Design and Implementation

iy, Introduction

i}{ The AMOS file system is designed to provide the user
-%z with a flexible and powerfully structured method for storing
%: and retrieving text and data. While any file system is a
% data structure in itself, it is important not to confuse the
éﬁ generic term ‘'structure' as used in reference to a file
Eé system with the specific reserved term 'structure' as seen
E* by the C language. The AMOS file system definition contains
E; many C structure definitions which, when taken as a whole,
Si define the overall ‘'structure' of the file system.

té The AMOS file system was designed to agree with the
%? total requirements definitions presented in chapter 2. Not
é% s coincidentally, the AMOS file system is very similar to the
i¢ b UNIX file system. There are two reasons for this
ﬁg similarity, The first and over-riding reason is that the
?ﬁ UNIX file system is well structured. All major requirements
P for a multiuser system are met (e.g. file protection,
%S sharing, etc). Minor problems, such as a lack of extremely
%; strenuous security checks, are assumed acceptable for the
& AFIT environment, where cooperation among users is to be
ég expected and no security-sensitive material will be stored.

Zﬁ The second reason for adoption of a UNIX-like file
.é structure is that, in the AFIT environment, UNIX has a
ﬁ; strong following. Any new development that makes use of
2; existing tools can be more valuable than one that requires

v S ground-up effort. The UNIX toolset is extensive, and AMOS

e is designed to enable a reasonable porting capability of the

44

.......

................

UNIX tools to the AMOS environment. Alternatives to a
UNIX-like system, such as a linear directory structure
(CP/M), do not lend themselves well to conversion of
existing software structures for a tree-structured system.

Specifications

As in UNIX, AMOS regards a file as a named character
string which may be stored on or retrieved from a variety of
peripheral devices (including main memory). pef, 19) AMOS
seeks to negate the differences between storage devices to
allow the greatest flexibility in storage/retrieval. Also
as with UNIX, there is no record structure imposed upon
files, but the 'newline' character (an ASCII line feed) may
be used by user programs to simulate this feature. Although
current hardware is anticipated to be closely tied to floppy
disk storage, the AMOS file system allocation scheme allows
a single file to be up to 34,606,592 bytes long. This
scheme anticipates the expansion of the AMOS hardwafe to
include hard disk capability.

File Types

All accesses to an AMOS file system device are made to

files, with the 2xceptions of the system information fetches
available only the the AMOS kernel. The AMOS file system

recognizes three logical types of files. These are standard

2
[y

R

files, directory files. and special files.

AFORY

FRA

e Standard files make up the bulk of the files on any
p:\

;. o system. These files contain normal text, executable
a2’ s

b programs, binary tables, etc. In other words, standard
L

% 4
"~

r (N L ﬁ 1.“- Lot \’.,',.

e k. AR TN R S| PR
o, o, B e W m T e T e T et e e e e e B
VL NN LNl A S S S T T T T P U T T R SR L U U A R S N S

................

']
»
4
h
x
il
;
Y
F]
'l
A
t‘
':
iy
-.‘
l“
A
'v
‘J
4
¥
g
L4
‘(
4
Y
]
A
y’
I
9
+ 9
’
r/
1
I,
£
L,
. >

files contain standard data. Most user interaction will be
concerned with standard files. |

Directory files contain the information necessary for
the operating system to correlate file names with the
Physical locations of the named files. They also contain
system information about access rights to the files
referenced and various other information. The capability to
create and delete directory files is restricted to either
the owner of the directory or the AMOS Wizard (system
manager), for obvious system security reasons.

Special files exist to provide the interface between the
operating system and the I/0 devices. All devices

recognized by AMOS can be read from and written to simply by

accessing the correct special file. As with UNIX, there are
three advantages to treating device I/0 in this
manner. peg, 19) The first is that device and file I/0 are
very similar., Thce second is that file and device name have
the same meaning in the same context, so that 1/0
redirection can be implemented. The final advantage is that
I1/0 devices are afforded the same protection as normal files
. through the operating system.

AMOS File System Structure

The AMOS file system is structured as a rooted tree,
where the interior nodes of the tree are directory files and
the leaves of the tree are either standard files or special
files. Reasoning behind this design choice, which directly
matches the UNIX file structure, was given in the

introduction of this chapter. The following simple graph

46

........

and paragraphs illustrate this structure.

l/l
/ \
‘dev' ‘usr'

/1 TN\

‘FQ° "tty! '‘src!' “vacnt'

/ N\

and SO ONececese

In this example, 'dev', 'usr', and 'src' are directory
.files, 'acnt' is a standard file, and 'fd' and 'tty' are
special files. ‘

Pathnames, such as '/usr/acnt', are useful for users of
the operating system. Obviously the operating system itself
needs a bit more information about the file to be able to
access the data requested. The following paragraphs delve

into the format of system data required for file access.

File Addressing

Ignoring the mechanics of how multiple devices get
attached to the file system, assume for the time being that
there are several devices containing files that the
operating system must be capable of addressing.

Any block of data residing on a device can be accessed
by the operating system provided that two identifiers are
made available. First, the device name must be known.

Secondly, the offset within the device, in terms of a
predefined block size, must be known. In AMOS (and version

2.6 UNIX) the block size is set at 512 characters per block.

47

................

RN S T e S I Y

O
............

This is the atomic unit of any file access, and is set as a
system parameter at compilation time. Any changes made to |
‘the block size should give serious consideration to the
effects of the change, which will vary from one hardware |
configuration to another. Given that the device identifier
and offset are known, it is a relatively simple matter to
retrieve data from device, Users cannot be expected to keep
track of such matters as the device and offset of their
files, however, so a naming scheme that allows pathname
specifications for files is essential.

When the system is initialized, the root of the file
System is at a known location on the system device. The
root contains directory entries for its immediate lower
levels, some of which may themselves be directories. By

walking the tree indicated by a given pathname, any file on

the system may be uniquely specified. For example, take the
pathrame '/usr/src/games/chess.c’'. To locate the file
'chess.c', start at the root of the file system and search
for an entry in the root directory named 'usr'. Search the
directory 'usr' for an entry named 'src'. Search 'src' for
‘games', then search 'games' for ‘'chess.c'. Since each
portion of the pathname is a file itself, including the
'leaf' named 'chess.c', identical operating system proce-
dures may be followed for walking the pathname. Following
UNIX convention, if the pathname starts with the character
- '/', the root directory is the starting point for the walk.
Otherwise, the current directory of the task is the starting

point.

............

M [] ‘u
ST ARSI BN
A a . L]

AT T3S
‘as

.0 2% 20 a4
RN
0y
.‘ O‘

'
L <

LR
o Y

S
)

a’ata s

-

.

N

‘-
b
v

&

AP

Secondary Devices

If only a single device were allowed to contain the
entire file system, AMOS would soon run out of file space.

Therefore it is essential that secondary devices be
accessible to the file system. Again, the solution is found
in the methods of the UNIX system.

A secondary device is added to the file system by
mounting the device so that its root overlays an existing

standard file (leaf) in the system device structure. After

‘the mounting, any references to the original leaf file will

actually be routed through the root of the secondary device.
At this point is becomes clear why the device identifier is
essential is addressing. Users can easily reference files
without knowing on which device the files reside. For the
operating system to access the files, however, the device
identifier must be available within the system mount table,
to be combined with the directory entry for the file. This
brings us to the point of the directory entries themselves.

Disk Descriptor Blocks and Files

Any file (directory or standard) under AMOS is composed
of two parts, a header and a data area. The header infor-
mation for a disk file is located entirely in a structure
termed a 'disk descriptor block®, or ddb. This structure,
similar to the UNIX inode(Ref_ 19)7 is a record of file
attributes and physical disk locations. There are two
varieties of ddb defined for AMOS. The first is the

description of the ddb as it occurs on the disk. The second

PRI T TN ALY S e A A e s et e Ra Rt AU S I NI L IO
RN A I) STV R R AL G TN LSRN]

A b NN R A A

is how the ddb appears in memory during file access. In C,

R the disk ddb is defined as follows:
struct diskddb {
int cr_date; /* Date crecated */
int ac_date; /% Date last accessed */
int mod_date; /* Date last modified */
int mode; /* Mode of file */
char 1links; /* Number of links to same file */
char owner; /* Owner's ID number */
int numblocks; /* Number of blocks in file */
int numchars; /*Number of chars.inlast block */
%nt blocks[9); /* Allocation list for file */

The memory resident copy of the ddb uses the date fields
for other data while the ddb is in memory. This technique
allows optimization of disk space by not requiring data not
'needed on disk to be stored there. The memory resident
descriptor block is defined as follows:

struct memddb {

iﬁé char dstat; /* In-core status of ddb */

char refcount; /* Number of refs to in-core copy */

int device; /* Device number where ddb lives */

int doffset; /* Offset in ddb_list of device */

int mode ; /* Mode of file */

char 1links; /* Number of links to same file */

char owner; /* Owner's ID number */

int numblocks; /* Number of blocks in file */

int numchars; /*Number of chars.inlast block */

int blocks[9]; /* Allocation list for file */

e int curblock; /* Current block in memory */
LI

Notice that the ASCII name of the file does not appear

in the disk ddb structure. The operating system must trans-
late the pathname given by the user into the information
given by the ddb.

Each entry in a directory file contains a ASCII file
name (up to 14 characters) plus an ddb_number. The

ddb_number is used as the offset within a known area of disk

5@

..

Vst u s @ BT T ST NN e s
o . * l..v.,‘ -.»- - e - -* .-.‘~‘ ‘-. .‘

IS ST S L e T e s M I I N A L A PR i A e M A g N A P
- e, u? R R R A A I R I IR e S LI I IR R

that contains only ddb's, called the ddb_list. When walking

the pathname given by the user, each time a match for a

segment of the pathname is made, the ddb_number found by the

match is used to as the offset into the ddb_list to retrieve

the ddb for the wanted file.

The allocation array for each file (contained in the ddb

structure) consists of 9 pointers to 512~character blocks on

the disk. This array is structured as a double-indirect

addressing table. The first 7 pointers point to data blocks

which contain file data. This gives a basic allocation of

3584 characters. While this will probably be enough for

most directory files, it certainly is not sufficient for ;

most other files. In this case, the 8th pointer points to a

block containing 256 more pointers to data blocks. This is
qt‘ the single-indirect pointer. With this scheme, up to

134,656 characters may be contained within a file, a much

more palatable size. If this is still not enough storage,

the last pointer points at up to 256 blocks, each pointing

at up to 256 data blocks. This is the double-indirect

scheme, which allows for files containing up to 34,686,592

bytes. This should be enough storage for a microcomputer-

based system, even with a hard disk.

AMOS Disk Format

Currently the AMOS system device is assumed to be a
floppy disk. Tracks @ and 1 of each disk are reserved for
the system bootstrap and for future expansion requirements.

_50 Starting at track 2, sector 1 is the available disk storage

‘'space for the AMOS file system. The disk is broken into

51

........ e e ..
Ca o P e e e T T T .3';;-:;,._,,;1;1.-:-?;'-.:.;.‘-,'1

» w .
oty R Y
SRV OO

e

& %%
-

‘P

. 0 A
CO R AR

- AR
sl

l't

5 -‘:‘_‘l 7.

RS
el e

a3

Gty

3 3.1

512-byte blocks, numbered from 1 to the limit of the device
Storage. Block 1 always contains the Master Block for the
disk. The C definition of the Master Block is:

struct mblock {
int m_devsize; /* Size in blocks of device */
int m_blktrk; /* Blocks per track */
int m_reserved; /* Number of reserved tracks */
int m_ddblsize; /* Size of ddb list in blocks */

int m_ddblist[9); /* Pointers to ddb list */
char m_locked; /* Device is Read Only */
char m_mod; /* Device modified */
int m_freeptr; /* Pointer to free-list block */
int m_numfree; /* Number of free pointers */
int m_free([230);/*Pointersto238free blocks */
int unused(l19); /* Reserved for future use */

The ddb 1list contains pointers to blocks containing disk
descriptor blocks (headers) for AMOS files. The
m_ddblist[9] array uses the same double-indirect algorithm
as is used in the ddb structure itself,

The free list is a device borrowed from UNIX(Ref. 19) to

allow for dynamic allocation of disk space. The master
block for each device contains 230 pointers to free blocks
(initially), plus a pointer to the next block in the free
list. Each block of the free list contains as its first
entry another pointer to the next free list block, then a
counter of the number of free block pointers contained
withing that block, followed by an array of 268 pointers to
more free blocks. This scheme allows AMOS to gain pointers
to several free blocks whenever it has a need to allocate
disk space, on the assumption that space will be allocated

and deallocated rather frequently. This should reduce the

number of disk accesses necessary overall, which is a

A I O O A R N R T
T

I
I

e

Y . valuable attribute for any system bound to slow speed
- el devices such as floppy disks.

(.

L The reserved tracks field was added to the master block
!_\3..

ib} in order to simplify having several 'logical' disk drives
?}I contained within a single physical device. Given a hard
3 disk with 308 tracks per surface, the drive may be broken
At

ff? into logical devices by using the reserved tracks field to
i offset within the physical device.

1/0 Buffering

Any operating system that is limited in storage to a

regs
o .
“tsr et &
R]

single atomic unit of disk access will be slow and overly

disk bound in nocrmal, disk-intensive processing. AMOS is

WO 1 i ,O.',l'.‘-'. '
» PO

3@ currently in this category. Future modifications to AMOS
;:_:%:
O > should include a buffered I/0 capability as one of the

=
Y
B

-

highest priorities.

s &
A
LN A A N R

iy .S.‘u Yo

T
»
ad
.
N

o
»

CeY s
LY '.
P 4

A

AN
se s
a

x
DR

53

"l“"w"- I AR S T RS AR ST SN IR TR IRC Tt St SR TSRO BT S R SR Y St e v . P Y
CAMERTINGE P YR Xo Al ek SN YIS TRaliOUAE Sedl SO TR Yol Sl T AL NE Tl S S Wl A Wil - PP U PN A R IO S dedainuandi

by Sy b Pan ", N W P S e R TN .
AL RS A X NP N A RN D e T e A e N N T T T S T T Ty -
» e et A . . DRCACII I CRACR I A e ary irLvre Ty

.
R S S A R DN PURENRAS A

0t S,
* b .
S

AR LAY

AMOS File System Calls

PES
Aty
P

i
- The AMOS file system allows user processes to manipulate
file data through a series of system calls. The process

doing the manipulating must be either be controlled by the

i owner of the area within which the manipulation is to take
o place, have permissions (indicated by fields with the ddb
for the directory/file), or be controlled by user #0-5, who
in AMOS are granted the status of Wizard. Wizards of AMOS
have the power to manipulate any parameter of the system

without restriction. The file system calls available under

AMOS make it possible for the user to create, open, close,
read, write, and delete files. Additionally, there are
calls to return the disk status of files and to position the

e current read/write pointer for an open file.

Level 3.31 (Service File System Request) accepts as

input a pointer (*arglist) that points to an array of 160

integers. The first entry in the array contains the system

call number. From this number 3.31 will decide which file

S
«

et Ty
ke A .
e’ wll Nt
» AN eV .
!) -

U
s ot

system routine to call. The following entries in the array

SO
L)

[N

S either point to strings or actually contain integer

-
£y

arguments to be used by the lower level routines. No error

checking is done on the contents of the subsequent arglist

WA

&
MRS

& o

entries at Level 3.31. The decision is made as to which

.s
7y

v .

routine to call and the arglist pointer is merely passed

¥ d

3]

down to the correct routine.

R
R
LR
W
A

L3

v
AN

L

p ™ -'!-a
e
*

B

L% 24 E i St Nl i) o
P ORISR A N WA

The following structure chart fllustates the linkage

RS-
f” between Level 3.31 (Service File System Request) and its
lower levels:
i *arglist
error
Service File
a8 System Requests
2 3.31
R !
P
error I i *arglist
l"

ose Read
file file

3.313 3.314

1,______.J {_J
Position |
R/W pointer

3.317

Figure 6.1

Each of the 3.31x levels is covered in more detail in

the following sections.

Creating a File (Level 3.311)

-~ To create a file, the user is expected to pass AMOS an

ASCII pathname and a mode number. The pathname consists of

-~

55

T T et P TP T TN T e T ettty e - . CIR S
R e Tt e e e e R R o T S
RERA RS NE TSRS AR NS ST S IR LY RIS, Y R R R L A P PP S i)

MR

a null-terminated string composed of names, not to exceed 12
characters in length, separated by one or more '/'

characters. Redundant '/'s are treated as a single

character. The characters of the name components may be any
of the printable ASCII characters except the '/' itself.
The mode number is an integer, defined in AMOS as either
READ (@) or WRITE (1). The CREATE system call, if
successful, creates and opens the file WRITE operations.
The mode argument is necessary for permission checking at
the intermediate levels of the pathname conversion.

The following structure chart shows the breakdown of the

steps necessary to accomplish the CREATE system call:

fnumb, i *name,
error mode

*name,
mode :
*tddb, *name, WRITE,
error mode, error *tddb f numb,
*tddb error
FTranslate Create a | Access
name to new ddb File
ddb
3.3111 3.3112 3.3113

Figure 6.2

56

f% .ﬁﬁ, Translated into English, Level 3.311 issues calls to
‘;f | lower levels to:

;iﬁ l) Translate a given pathname string into a pointer to
Eig a disk descriptor block, checking permissions along
L the way. In this context, the translation routine

Eﬁi should return the NOFILE standard error.

;ﬁﬁ 2) Create a new disk descriptor block on disk for the
fﬁ. new file, placing its name in the parent directory.
E% 3) Access the file for WRITE, returning the file
_Eg number for future accesses.

it To translate the pathname string into a ddb pointer,
3@ AMOS has to extract each component from the pathname and
@;é search directory entries for matches to the components. The

structure chart for this step is as follows:

At,

O
A%

AN

Pt

*tddb, I *name,
error mode
" Translate name
to ddb

- -
SN

1}
A
L -

A
o U Ry SO

ALY
i

3.3111

i

e
Talaf

. *name *comp, *comp,O
o error mode error
g ' v
o

[~ Extract) Search
component Directory
from for
pathname component
\ 3.31111 3.31112

\t\

‘: “n‘

A

o, Figure 6.3

57

A T ettt e, .
R L N S A A T N e e e T L e G D U S S PGy

A R T I A DR A, . Ly e
- LI T A . e I N

- T et

- e

il

What Figure 6.3 does not show is that, to avoid

d.
e Ay
Relil N

-

repetitive stack manipulation in an area that is likely to
recieve a large amount of traffic, the directory to be

searched for a matching component entry is pointed to be the
*tddb entry in the current user structure. This entry is
set in Level 3,3111 to either the root entry (if the first
character of the pathname is a '/') or to the current
working directory entry, which is also stored in the current
user structure.

Level 3.31112 is broken down still further into

sublevels, as illustrated in the following chart:

*comp,
. mode error
" Search
Directory
for
component
3.31112
*dirblk, *dirblk
*dirblk, *comp

o error
ﬁﬁ match
v
e
"’5 v v L
o~ Read next Search block for Release block
M& block of component match from buffer
Eﬂ ddb entry pool
ﬁg 3.311122
o 3.311121 3.311123
o
wh o)

Figure 6.4

58
''''''' O U PR PRI PREE P S REIEC U

- - v " T T e T o - '~ ™ D S e P P -
o - - W .®a > - N " N .' . -. - - - - - P -’ - - -l - - - - - - LY
O AT RSN CHACTRIMOILITL P C R R [N I I -
-Q ‘l
)
VL
L.
n\."

% o2

£
p

ﬁﬁ; Levels 3.311121 and 3.311123 involve the device driver
AN I
W for the system device and were not carried to any lower

B Ly
3 a5
3 ¥

«
O
.

levels in the current implementation.

:{t

Opening a File

e

o
:
s
o
L™

Opening a file under AMOS involves an almost identical

sequence of events as does creating a file. The following

structure chart illustrates this point:

fnumb, i *name,
error mode

Open
File
3.312
*name,
mode |
*tddb, mode,
error *tddb fnumb,
\' error
TransIate		~ Access
name to		File
ddb		
	' I	
I 3.3111		3.3113
Figure 6.5
59
- T R T T S S Ty e N P

[R
-t T B PR

P A L. BLER AN

SRR R PR IR SR IR L) LIPS R 1 1

Other System Calls

The other various system calls of AMOS have not been
defined beyond the point of being able to recognize that
they have been called. These system calls are:

l) Directory File Calls: .
LINK : Create an alternate pathname for a file

MAKE_DDB : Create a ddb

CHNG_MODE : Change access modes for a file
CHNG_OWNER : Change the owner of a file
NODE_STAT : Returns a ddb's status from disk
COPY_FD : Duplicate an open rile descriptor

2) User Modification Calls
CWDIR : Change the current working directory
GET_USERID : Get the current userid
SET_USERID : Set the current userid

3) Process Modification Calls

GET_PROCID : Get the id # for the current process
SET_PRIOR : Set the priority for a process
KILL_PROC : Kill a specified process

FORK PROC : Create a new process

WAIT PROC : Suspend process until child terminates
DIE — ¢t Normal term. call for all process
GET_PTIME : Get prccess times

EXEC : Execute a new process in current space
MEMREQ : Request more/less memory for process

3) System Modification Calls

GET_STIME : Get system time

SET STIME : Set system time

MOUNT : Enters a device into mounted-on table
UNMOUNT : Deletes an entry made by MOUNT

SAVE : Update system data to disk

4) Communications Calls

PIPE : Create interprocess channel
GET TERM ¢ Get terminal attributes
SET_TERM : Set terminal attributes

With the definitions and design specifications already
given, these areas should be able to be implemented within

the total scope of the AMOS project.

60

fﬁ . Summary
{; ?ﬁ; The AMOS file system is specified at the upper levels
:v completely. The lower, hardware-dependend routines which
;2 will be common to all file system routines are incomplete |
?; due to the lack of an implementation system. The mid-level i
e creation and opening routines have been specified in a |
'g? hardware-independent manner to allow development and testing
2% to continue.
ﬂﬂ Obviously, the system device routines will need to be
;E built into AMOS (hard-wired). Modularization has hopefully
Ei kept the hardware-dependent modules to a minimum, so future
5_ complete implementations will need recompilation at only the
ﬁ} lowest driver level,
f; .y The structures defined in this chapter would seem to
ﬂi‘ contain several elements that conflict with good software
é; engineering practice. In particular, the error flags and
Eé character string space (items which would seem to be
e transient in nature) are included as set fields of the user
?g structure. As will be seen in the next chapter, this design
'é 'flaw' is actually a necessity for an interrupt-driven
:? system where asynchronous events may cause the interruption
zi of process flow while dealing with 'transient' data. Having
f& a storage slot allocated helps to prevent loss of continuity
T due to asynchronous events.
%
:
'J
*' 61
2

e

“"1 .“. .

~

I

T e d
e
"t
et
.y
e
Ve
o 0
S *le
v
L
e
-0
e,
.y

2
e
Y

-
‘d

.......................................

VII. Results

This chapter covers the partial implementation of the
AMOS multiprocessing system. Also discussed are some of the
problems encountered with the implementation and the
solutions to the problems. As will be seen in the
implementation section, the precepts of good structured
programming and testing were used at all levels of the
partial implementation.

Implementation Problems

Implementation of the partial design of AMOS was
hampered by the inability of the author to achieve a working
78000 development environment at AFIT. After much effort in

bringing up UNIX 4.1(Ref. 24) ., the DEL vax 11/788 to

support the 28809 C cross-compiler and assem-
bler (Ref. 8, p. 28), it was discovered that these packages

were incompatible with the Berkeley UNIX distribution's

format for the C language (Ref, 24, Sect. 8). The
modifications needed to correct this problem would have
required more time than was available for the project.
Additionally, the AMD 28000 target microcomputer system
was not fully configured until very late in the
implementation effort. While all of the system boards were
available, the control monitor read-only memory (ROM) chips
to control the CPU board were not delivered until
approximately 10 of the 12 months devoted to this effort

were past. When they were delivered, it was discovered that

the control program does little more on its own than allow

for low~level (hexadecimal) memory/register display and

....
........
-

.
»

hl
>,
v,

L% Nl

.

s
=
L
.
._‘::\'
¥
el
r Al

[N Fa=

e Ty ey
-

crey.
A
.7,

c".o'\c.'_l

g
'-

KR 70 By AS I I DAL R S W B O A R R S R D S R OISR s S Jiae it s S i ol i Bane o S ey
R e e e . LI e ta e fe el et

e T R A I
W ARSI < WP A

...............

block memory moves. While there are commands to allow for a
host system to up/down load from the 28000 system, these
commands are dependent on the host being an Am/Sys AMD
development system.

The efforts devoted to securing both a software
development system (UNIX/VAX) and a hardware implementation
system were spent in the belief that is would be possible to
have these items available for AMOS implementation. Since
this was not the case, other resources had to be used for
the partial implementation.

Solution

The development system used for the partial
implementation of AMOS consists of an S-100 based 288
microprocessor, a Morrow DJ/2D floppy disk controller, 56K

bytes of RAM, several 1/0 ports, a terminal, and a printer.

This system belongs to the author. The implementation
language is the BD Software C compiler, version 1.50 (pre-
release), by Leor Zolman(Re€fe 25) ps ¢ is a subset imple-
mentation of UNIX C, with some slightly annoying restric-
tions, such as the lack of initializing declarations and
register variables. Despite such restrictions, BDS C is
close enough to UNIX C to allow for the generation of
portable source code,

All file system modules given in the previous chapters
have been implemented in C. A driver module was written to
simulate the system calls, interrogate the tester for input

data, and call Level 8. Output is directed to the terminal

63

A W T TR Tl TR T ¥ e - o o
o . . PR AR - A g A GO SR u M SRR ity Wi
s . G T A T e e e

..................................

8 ARG I S, W Rt R O SRR

screen.

Interrupt service routines that will eventually handle

LTS
e

e e
A

the actual AMOS interrupts were not written. Due to the

inefficiencies generated in even the best optimizing C

compilers, for the sake of response time these routines will
most likely have to be written in the assembly language of
the host microprocessor. Since the author's system is a 280
based system (and is not capable of handling interrupts,
anyway) the development of these modules appeared to
be inappropriate at this time.

The AMOS file system disk structure has been implemented
on the host system's floppy disks. This was achieved
through the use of the CP/M operating system's BIOS calls to

do direct I/0 to the floppy disks. The listings of two

iif utilities are included in the source code appendix. These
are AFORM.C, a floppy disk formatter for AMOS, and LS.C,
which prints out the master block information and a
directory listing for the root dircetory. AFORM depends on
the floppy disk to be formatted having already been through
a CP/M-style formatting program, To create the basic
information in the master block, AFORM does BIOS calls to
retrieve the floppy disk information from CP/M's disk
parameter header and disk parameter block. This
information is used to determine the total number of blocks
which may be used on the disk and the number of blocks that
will fit per track of the disk. Currently, AMOS will not

allow a data block to be split over track boundaries,

64

Test Approach and Results

Due to the severe lack of time, a comprehensive test
plan was not developed for the AMOS partial implementation.
Thorough testing was done on each module implemented as an
~entity in itself (through drivers and stubbs) and as a part
of the integrated whole. The development of a driver
routine allowed testing of the ent.re package, using as data
items known to be good test items through the entity
testing.

Summary

The implementation effort given to this investigation
has proven the file system capability of the AMOS design. A
good bit of the time spent was given over to figuring out
the CP/M - AMOS interface, which will hot be used in the
final implementation. Nevertheless, test results on the
CP/M implementation show that the basic file system

structure is valid and implementable.

65

5%

'») ¥

?§

§§% o VIII. Conclusions and Recommendations

?? i This investigation has been concerned with the
{5; ~development of a multiprocessing operating system. The
?é? chief objective of the design was to present a complex
iﬁ system as a conglomerate of relatively simple modules
lgﬁ ?perating on sméll objects (structures). An unstructured
ﬁﬁ design of this magnitude could not be totally understood by
?ﬁ a single person, but each small segment of processing
‘33 required may be grasped without very strenuous effort.

}ﬁg The concepts of structured design made the approach
:%' taken possible. These concepts were followed to the
?% greatest extent possible. However, two of the measures of
;g high cohesiveness were basically ignored. Global data areas
i@ s arz used extensively to avoid'having to pass structure
y L2 values on the stack (which is impossible in C). While this
i technique is dangerous, the amount of code and stack space
é- necessary to pass all arguments dynamically is prohibitive.
A Also, address pointers are used to pass system call
Eg arguments to the lower levels of AMOS. Again, the purpose
:g ’ for this travesty of software engineering is to preserve
oy system memory. Arguments to system calls may be up to 1080
E% bytes in length, so without passing pointers to the
Q; arguments each level of the call would reproduce the
¥g arguments on the stack.

.; In summary, AMOS is designed to be an interactive
;} multiprocessing operating system similar in use to the UNIX
a %f? operating system. Most of the UNIX version 2.6 system calls
'§§ r are recognized by AMOS, although the majority have not been
2

. 66

i Y D Bt R e L b YR S I IO i it T e O o R T T U T T S
et L MLl e AP AR WA IR S T T I T W T T WAL IAY: ."_;-4*.‘,-_.'-;-J_;-_Q-I‘J

taken to their conclusion in this effort. The use of

structured design techniques and the use of a highly

structured language in the partial implementation of AMOS

made the effort feasible.
What has been achieved in implementation in this effort

is a 'proof by example' that the AMOS file system is a valid

design., The CP/M environment (specifically the BIOS) is too
‘restrictive to allow much of the other areas of AMOS to be

easily implemented under jits structure.

Recommendations

The previous chapter listed the areas of AMOS needing
immediate attention to provide AFIT with a functional
operating system. Specifically, further attention is needed
in the system call areas, hardware device interfaces, and in
modification to Yusko's works.(Ref. 7) Additionally, as
mentioned earlier, a buffered input/output facility should
be provided before any serious work can be accomplished
using AMOS.

The user interface (in UNIX, the Shell) must also be
provided beforé multiterminal use can be provided
effectively. This effort will be difficult enough to

constitute a separate research effort.

Before complete implementation can occur, cross-compiler

293
&5 software must be available. The MITRE sources provided as a
X
Ej 28000 assembler and C cross~compiler proved to the author

that C and UNIX are no longer a set of standard

el 35

»
(]
I
FEeLY

"
.

= ‘transportable' software tools. The MITRE code is foreign

T
.

AN
*

AP

67

']

)

.-

e O T R N L v

<Y
'-' }

%

) Al)
R

GLnns
PR B

A

oz -
a-»

o’

&

5
.ty
PR SRN

L n

Bt St SRR L RN S N)

Tt W m T g T T g WU T

. .. - ~ - - ‘.—\. - N v e)

e e S AR e R) -"?.\\5 .-_". T T T I
- gt Bt NMETA 1 e

to the UNIX systems available to AFIT currently, rroducing
several hundred errors on compilation. This code will have
to be rewritten if it is to be used. It is recommended that
the problems involved with the MITRE code be investigated
further and one of two courses be taken. First, the code
may be rewritten to comply with the expectations of the UNIX
C compiler. Second, if the rewrite is extensive enough to
warrany this action, the code may be taken apart and
implemented under the BDS C compiler to be run on one of the
CP/M systems available in the DEL. This second course of
action is the more work-intensive, but offers the advantage
of allowing much more flexible work to be done in the future
without having to depend on the schedules of the UNIX
systems., Additionally, the experience gained through the
rewrite of the code would be invaluable for the student in
the compilers course sequence at AFIT.

The host microcomputer system must be made fully
operational before implementation can occur. What
implementation of AMOS occured was accomplished on the
author's homé CP/M-oriented S-100 computer. The fact that
the system is locked to 56K bytes of memory, is non-
interrupt driven, and had available only the BD Software C
compiler severly hampered any efforts to extend
implementation beyond the basic file system. The AMD 280008
system original planned for the host system is complete in
all its hardware, but major firmware (bootstrap, disk
fnterface, etc) programs need to be developed.

Alternatively, the 28000 board in the AMD system could
68

Tt et et » R . -
AR I R T A T T TP A T
¢ u . . LS - -
i Bl ara AP, P TP R A At S T N N

NN I % e -
‘"h'u“."‘-'xx'\'.'.:r'.'“'

n N A AN A A A A A A A e A P A i U -

. A SR R s 4 N g Y - - N
‘-;.' I i T e R T N A N S T o P R SO R

¢ .
%
é&g f&i be replaced with another processor and the system be given
A R
i' over to another project. A fully configured 280081 system
:%2 from Zilog (the Zeus system, for example) would more
i%é completely conform to the hardware requirements for
i implementation of AMOS, as the Zeus system contains a
‘$2 segmented Z8001 processor and three memory management units.
:%i The AMD system contains a Z80#2 non-segmented processor, no
fif memory management units, and is restricted to a bank-
EQQ switched memory scheme.
ig% Major Recomendation
iif As far as the author is aware, there have been to date
?@ three operating systems theses, including AMOS. Each has
éﬁ been relatively independent of the others. Ross provided a
- ii; very high-level design with no apparent 'hooks' for user
EE programs. Yusko provided a scheduler that, after some
fﬁ modification, worked as specified. AMOS provides a high-
£ level system definition in somewhat less detail that Ross’,
1; but goes much deeper into the file system area.
;g It is recommended that results of the AMOS study, plus
;5 " Ross' and Yusko's work, be used to define an operating
‘QZ system down to the different managable levels (i.e. file
fg system, scheduler, etc). This definition should include a
ﬁ; very strict interface specifiction. Each separate level of
i, the design should then be assigned as a separate effort.
‘tz Only with a continuing management scheme for the design, to
;i be implemented over several cycles of thesis students, will
~3{ 3?? a project of this magnitude be fully accomplished.
7
69

o
l{f

S YN e e T 7 O e ..

w a v - - W Wy W T R R -l ey
e e . S A AT RO AL WAL VLR R ORI IR AP DRI O C At A e e e
R A N e T, e e e T e .

e R e o S N N R A N T T T
2 S
A ‘

v

o

;-_';

i

BN AT

o RS Bibliography

i

!_;1:'

.?ﬁ l. Madnick, Stuart E. and John J. Donovan, Operating Systems,

N New York: McGraw-Hill, 1974,

Ly 2, Grappel, Robert D. and Jack E Hemenway, "A tale of four

" microprocessors: Benchmarks quantify performance",

3; Electronic Design News, 85-1083 (April 1981).

q:- 3. TOPS-20 Commands Reference Manual, Digital Equipment

- Corporation manual $AA-5115B-TM (Intro).

C 4. Greenburg, Robert B. “The UNIX Operating System and the

XENIX Standard Operating Environment®, Byte, 6:248-264
{(June 1981).

5. Freedman, David "Portable Operating Systems Fight for 16-
?it Machines®, Mini-Micro Systems, 9:237-249 (September
982).

6. Ross, Mitchell S. Design and Development of a Multi-
programming Operatfng System for Sixteen BIt

B . Microprocessors, MS Theslis, Wright-Patterson AFB, Ohio:

"ﬁu ifa School of Engineering, Air Force Institute of Technology,

: December 1981,

7. Yusko, Robert J., Development of a MultiFrogrammin Systen
MS Thesis, Wright-

for the Intel 8886 Microprocessor, W
Patterson AFB, Ohlo: School of Engineering, Air Force
Institute of Technology, December 1981.

A & 2 q RG
#e goqa -5 0 S
AN

8. Skelton, Anita P., Jose Nabielsky, and Steven F. Holmgren,

FY8@ Final Report: Cable Bus Applications in Command
Centers, p.20 The MITRE Corporation, McLean, Virginia.

v ~'-§'-:‘.:"n !
K

L

. P.20 (28 for Compiler)

9. Department of the Air Force letter dated 17 May 1982,

L subject: Air Force Small Computer/Office Automation

.éé Service Organization (AFSCOASO) (DPD:HAF-P82-02).

Ei 10. Dijkstra, E.W. “The Structure of T.H.E. Multiprogramming

2 System,” Communications of the ACM, 11: 341-346 (May
1968).

jE} 11. Hansen, Brinch. "The Nucleus of a Multiprogramming

e ?ystem,' Communjcations of the ACM, 13: 238-241 (April

> 970).

Ay

12, Bergland, G.D. "A Guided Tour of Program Design
Methodologies®, COMPUTER, 13-37 (October 1981).

‘”‘;
RARE

13. Johnson, S.C. and D,M. Ritchie. “Portability of C Programs
and the UNIX System®, Bell g;gtem Technical Journal, 57:
2021-2048 (July -~ August I

14. Lycklama, H, "UNIX on a Microprocessor", Bell System
Technical Journal, 57: 2087-2181 (July - August)e

15. Mateosian, Richard. Programming the 28888, Berkeley:
Sybex, 1980,

16. Microprocesscr Applications Reference Book, Vol. 1, page
3.75-3.83. zilog, Inc. Cupertino, California. 1981.

17. Huneycutt, Douglas S. Design a Multipgrocessin \
Operating System for Sixteen BIt Microprocessors, M
ThesIs, Wright-Patterson AFB, Ohio: School of
fgg%neering, Air Force Institute of Technology, December

18. ASD-TR-78-43, "Computer Program Maintenance®, Dec. 77,
Aeronautical Systems Division, Air Force Systems
Command, Wright-Patterson AFB, OH.

19. Thompson, K. "UNIX Implementation®, Bell System Technical
' Journal, 57: 1931-1946 (July - August 1978).

2p. Ritchie, D.M. "A Retrospective®, Bell S¥stem Technical
Journal, 57: 1947-1976 (July - August).

21. Advertisement for Morrow Designs, BYTE 7:168 (May 1982).

AU RS
I -

22, UNIX Programmers Manual, Seventh Edition, Virtual VAX-11
Version. Computer Sclence D Iv{sion, Department of

o
‘
1 St
la
L]
T
AN
LT
For "o
SN
e,
..
.
» 5
> 19
R
e
s
et
o
C)
ey
e S
-
»
» \y
!‘W|‘||l
‘v
b

E& Electrical E Engineering and Computer Sciences, University
ﬁgﬁ of California at Berkeley. June, 1981,

Y,

¥ 23. Koffman, Elliot B. Problem Solving and Structured

- Programming in PascalL Reading: Addison-Wesley 1981.

& 24. Ibid, Ref. 22.

DAY iy

25, Zolman, Leor. The BD Software C Compiler Manual, vl1.4

26. Lions, J. A Commentary on the UNIX Operating System,
Department of Computer Science, University of New South
Wales, June 1977.

4

>
% s,

LA AL
P

o
PA]

1
3

500 N
%.ad

8ty
EAT A

Tafan

T
RN

[s

e

8
"
A
q
!

RIR T W W s, o, -
s o, W \.fl'l \'“. ‘.*." L T N .
YR, Ty . SIS A S R e T T e T et e e e .
L WO W IR, N BT NS RE NN Attt e e Tl T T T T e et . '_-'_.'\-,-_,J

-‘::: N R R R R R R e R T L e e N e L T e L T o o Ay o mm e v e e gy
e

K

,gé‘ Appendix A

5%@ ?%; Microprocessor Benchmarks

’:‘-':' N

%EQ This appendix presents the results of a series of
%%% benchmark tests run against four 16-bit microprocessors:
o " the Digital Equipment Corporation LSI-11/23, the Intel 8086,
"ﬁg the Motorola 68008, and the Zilog 28008, The results were
oy

;gﬁ originally published in Electronic Design News, April 1
jﬁq 1981, by Robert D. Grappel and Jack E. Hemenway.

325 The choice of microprocessors was based on the major
;ég 16-bit microprocessors in use in systems at the time of the
;T: Survey. Currently there are several newer devices either on
éﬁé the market or in the process of being introduced, in

r
»

o
e vale 4o

addition to manufacturer's upgrades to the devices studied.

ey _'-"'n

The benchmark results are presented in this appendix as a

reference point from which to make further investigation as

.

\'{:‘

S

éé& to an appropriate device on which to base future AMOS

'é; implementations.

ﬁi The benchmarks in this study consist of various

T;% exercises in microprocessor agility. All of the test cases

fﬁ are applicable to some portion of operating system

423 processing. In particular, the interrupt handling tests

f?: strongly indicate what kind of respense time can be expected

i in the new processors when compared to a known factor such

%5 as the responses realized from the LSI-11. In all cases,

3§ the code submitted for the benchmarks was developed by the
? manufacturer of the device and submitted to the other manu-

é; €§§ facturers for comment. The following sections present the

S “

X2

‘ Al

-

)
k)

..............................

BT T e N, N e v R B T P P R T
’..",f A ARSI PR Rt e ST 2 e et L T T T et
nn Y % . il bt il e X R ne e 28 PP SN DI ST I S S I s Wi S 3,

details of the benchmarks and their results.

I/0 Interrupt capability

Four levels of prioritized interrupts were allowed in
the first test. The second test specified FIFO processing
of multiple levels of interrupts. Each device was given the
same sequence of interrupt occurance and timing. The

results for the four microprocessors are:

Processor Clock Speed(MHz) Code (bytes) Exe. Time
LSI-11 3.33 MHz 20 114 usec
8086 10.00 MHz 55 126 usec
68000 18.00 24 33 usec
28000 6.00 18 42 usec
LSI-11 (FIFO) 3.33 MAz 86 1196 usec
8686 (FIFO) 19.08 MHz 85 348 usec
6808008 (FIFO) 10.00 118 398 usec
280008 (FIFOQ) 6.00 106 436 usec
é?% Character/string search

Test data for this benchmark consisted of the following
string:
000000000000000000000000000000
000000000000000000000000000000
HEREO0O000000000000000000000000
HERE IS A MATCHO0O0000000000000
where the string to match is "HERE IS A MATCH". The results

of the test given for the 68000 were calculated by Motorola

by hand.
Processor Clock Speed (MHz) Code (bytes) Exe. Time
LSsI-11 3.33 MHz 76 996 usec
8086 180.00 MHz 70 193 usec
N 68000 19.00 44 244 usec
2 28000 6.00 66 237 usec
v
f .j
Yl

A2

2

ol ‘

Rl

%

......
..........

------ T . <. . et P R A
VLI - SR RS S A T T e | -.x;-.'.'_-L."_.‘_.'_._"‘."‘_(‘_.;-’

'« Bl T O T R N o e T oV U S et e A i A S C A C Mt St Bt

...........................

Bit Set/Reset/Test

The data for this benchmark consisted of an array of 125
bits arranged in an alternating pattern of ZEROs and ONEs.
The array started on a word boundary. Nine tests were

performed by each processor, consisting of the following:

Test Function Bit Number
l TEST 10
2 TEST 11
3 TEST 123
4 SET 10
5 SET 11
6 SET 123
7 RESET 10
8 RESET 11
9 RESET 123

where the bit string was to be uneffected by the test with
the exception of the target bit. The following chart lists

the results of this test. The results given for the 6800880

and the 8086 were hand-calculated by the manufacturers.

Processor Clock Speed (MHz) Code (bytes) Exe. Time
LsI-11 3.33 MHz 708 799 usec
8086 10.00 MHz 46 122 usec
68000 10.00 36 70 usec
28000 6.00 44 123 usec

Linked~list Insertion

The data set for this test started with an empty list,
into which five records were to be inserted with keys (32-
bit numbers, given here in hexadecimal notation). The times
given are for all five insertions. The time given for the
68000 was hand-computed by Motorola.

Record Keys :
1. 12345 2. 123900 3. 13344
4. 12345 5. 34126

A3

................

.

.................

; . —— ———
SRS TA S N, R e T A Ay I A R A S AU e g Dt o LIRS S i e Tau e X

O —

............
e e L A I T P L T R g o e I A o
L R R e a ™. - T e i N P N T

Processor Clock Speed (MHz) Code (bytes) Exe. Time

LSI-11 3.33 MHz 138 592 usec

8086 10.00 MH2 94 not given

68000 10.00 196 153 usec

28000 6.00 96 237 usec
Quicksort

The Quicksort benchmark used data consisting of 102
records, each 16 bytes long. The key value to be sorted on
consisted of bytes 3-9 of each record. The data was

initialized as follows:

Record # __ 0 00 00 00 00 00 06 _ _
Record 1 _ _ T FF 00 60 00 00 00 00 _ _ _ _ _ _
Record 2 _ _ T FE 00 00 20 00 00 00 _ _ _ _ _ _
Record 3 _ _ T FD 00 60 00 00 00 00 _ _ _ _ _ _
Record 4 _ ~ T FC 00 @0 00 00 00 00 _ _ _ _ _ _
Record 108 _ _ _ 9C 08 0 00 00 00 €0 _ _ _ _ _ _
Record 101 FF FF FF FF FF FF FF

The times given for the 68000 are again hand-computed. No

data was available for the LSI-11.

Processor Clock Speed (MHz) Code (bytes) Exe. Time
LSI-11 3.33 MH2z - eeecemee-
8086 16.00 MHz 347 115,669 usec
68000 198.00 44 33,527 usec
28000 6.00 66 115,500 usec

Bit-matrix Transposition

The final benchmark consisted of a test of the bit-
matrix transposition capability of the four microprocessors.

The test data consisted of 49 bits in the following array:

RS
— R RS
(SRS SES P~
Ve~
—_——_n 0w -
DA~ ~S
—— S -

..............
WA W e e T T T T e s T et et e e T L T T e e L T e e
...............

NN

- - Ty r T T ad g v . MY
DA K/ e N A AN S I D L ARSI i A i A T SO S A B AP R RS
» . B ELIE VS T Wha Sy P . . DI A N R Ul S R A e O e T R A

9

where the array began on a word boundary. Once again, the

YRR

timing for the 68008 was hand-computed.

s

Q%

Processor Clock Speed (MHz) Code (bytes) Exe. Time

LSI-11 3.33 MHz , 152 1517 usec

8086 10.006 MHzZ 88 828 usec

68000 10.00 74 368 usec

28000 6.00 110 646 usec
Summary

In most of the above benchmarks the timing for the 6800880
had to be computed by the Motorola programming staff, based
on their knowlege of the time required for their processor
to complete the required sequences of instructions. This
does not detract from the validity of the times given (due

“to the fact that all other manufacturers were given the
opportunity to rebuf the results), but it is difficult to

iﬁ; place as much weight on the 68808 results as on the other

validated results.

The processor speeds given were current as of April,
1981. Since that time, Zilog has made available a version
of the 28060 (both the 280682 and the 28001) that run at 10
MHz. Obviously, the use of higher-speed devices would
modify the results of the benchmarks somewhat, particularly
in test/processor combinations that allow much of the
processing required to be register-resident. This
combination allows memory access times have their least

impact. The Zilog device tested was the 28002 unsegmented
processor, but the results would have been identical with-
the 280061 running in non-segmented mode.

AR Again, it must be stressed that newer devices are

AS

................

.-'
0)

»
-

%57
AP

e'*, D) !
Tl LN

p oL s
LA R A

et

oV

U

........
w e Ne "

becoming available on the market almost monthly. Some of
the devices demonstrate combinations of the features that
make the tested devices excell in certain areas. For
example, the recently announced Zilog 2808 ~ombines the
separated Bus Interface Unit/Arithmetic Logic Unit of the
8086 with the memory management capabilities of the 28000
family of processors. The ALU of the 2800 is timed
separately from the BIU, allowing.ALU speeds of up to 25MHz.
These capabilites are combined on a single processors that
retains object code compatibility with the popular 280

microprocessor.

A6

DR L R P T T P e Tl ') e et et
AU TSV, VI, PR VR W R R W TR S S, SR T PP T WS LI -

..........

ERAA I I S A S S s “Eout et e S "Bt SER a1 A W Y W% Sl P At Sl ons aeg g iee
A iy o o Y e o e r e g Te N N R R AT W T WY T R W
ok i AL MR Y A P A, A St U I ."-“.,.‘ -"""" R TR

Appendix B
UNIX Short Course Notes

Introduction

Appendix B contains a set of class notes researched and
~written by this writer. They are appropriate to include in
this document due to the stated design objective of

patterning AMOS to be functionally compatible with UNIX.

The information presented here comes in great part from the
UNIX source code and commentary put together by J.
Lions.(Ref. 26) 1hig code is the source for version 2.6 of
UNIX. Later versions had some impact on the AMOS design
also.

Contents

This appendix contains the following sections:

History.oocot.......0....0..0......0........... 82
Views OE UNIXO'.......Q.l..............l....... BB
Uset's POint Of view....I......0.0......-...... 84
UNIX Command StructuUr@.ccecccecceccccccaccescsces Bd
UNIX File System.-oo.....................-..... B6
UNIX Utilities.’........0...................... qu
UNIX DocumentatioNeccececcececcscosccscccccascsces Bld
UNIX Structutes..-....I..0.0.000............... Bls
Definition of ProcesSS.ceceececccesccccasscccsces B1S
The pROC structure..........OOCO....0.......... 816
The Data Segment.cccecececccccesssscsscssccccee Bl7
The Text Segment’......0..0......l............. 818
Other StructuUreS.cccecccccccvcecccsscssssssccsses BB
Intialization......C...O..Q....‘.l.....l....‘.. 820

Bl

Nt o e et e e e e AN At mm ke A - . . e -
v I R A S A Y N A T A T A T S N L g I R TR S e e e m

o P A T AL S S A L e e S N S
mialalslalalanl gl Al e o vyt et T N

........

) Lt g ac g
" - i P ~ > o
N A A AL NN S P I T A N P IV I DAL I A P R IO A L I IR SO A AR T S U T Y AR e © .t

- - - - - et et . - d -

e UNIX Short Course Notes

ll;;i

Capt Doug Huneycutt
GCS-82D
October, 1982

History
UNIX was written by Ken Thompson of the Bell Laboratories

in 1969. Originally written in assembly language for a PDP-
7 mini-computer, UNIX was created specifically to provide a
useful environment for programming research and development.
The operating system grew in popularity within Bell Labs and
" spread to educational and business sites. In the summer of
1973, UNIX was rewritten in the C programming language (also
. greatly influenced by Ken Thompson). Since the translation
ei’ to C, UNIX has been ported to several other minicomputers
and mainframes, recently making its appearance in the
microcomputer sphere running on the Z8888 and 68688 16-bit
microprocessors. The original version of UNIX (2.6) was
modified and re-released as version 2.7 to eliminate for the
most part the hardware dependencies of 2.6 and make
implementation easier for different sites. Beil
Laboratories is currently 'pre-releasing' an vastly modified
version called 3.8, which is incompatible in many areas with

the earlier versions of UNIX. The University of California

at Berkeley developed and maintains the 32V version of UNIX,

ié developed specifically for varieties of VAXen. Version 4.1
:g < bsd (a version of 32V) is currently being used on the SSC at
iy L

e - AFIT, and is command upward compatible with version 7, but

2N o

»
‘..

S P

DRMIEBIIETATA AT L Y Y

LR R T R
SERUL Y < Srirp

C-source incompatible in many respects. Soon to be

released, version 4.2 bsd will be incompatible with 4.1,
3.8, 2.7, and 2.6 versions, but is deemed by UCB to be so
vastly improved that this lack of upward compatibility is
acceptable. (Compatibility observations obtained by
eavesdropping on the UNIX-WIZARDS list from SRI-CSL.)

Views of UNIX

There are three types of people who work with the UNIX
operating system. The most common is the normal user. The
user is the person who literally ‘'uses' the system to
achieve an end outside the realm of the machine. An example
of a user is an AFIT student who merely uses the programminé
facilities of UNIX to achieve an external result (a grade).

The second class is the system programmer. This is the

person who writes programs that aid the system in achieving
the results demanded by the users. An example is the person
who writes a device driver for a new graphics terminal and

installs it under the UNIX file system. Users generally

don't kncw or care HOW the interface was written, only that

it works as needed.

The third type of UNIXophile is the system modifier,
alternately called the Super User, Guru, Wizard, or on
occasions when a file system is garbaged, a MUCH wider
variety of names. This is the person who maintains the
system and modifies it to meet the changing needs of the
installation. Examples as far as AFIT is concerned are Joe

Hamlin and Roie Black.

B3

i g R R S N e - e TN e T e - - i - . LA Lom meas g boae MR 0 en) &
et . >, A0y . L PSR et L . S T e R R B b S S SR A i S B i >
R L il B NN W VPR AL AP UL S A L S0 L R R MR R S m T e e Nt T At Mttt At ettt T e T T e Ny

i-]
Eg.] 1. The User's Point of View
éég 5&; There are four major areas with which each user must have
€~; : a high degree of familiarity. These are the UNIX command
g? structure, the UNIX file system, the utilities (which make
gg' up the largest part of the UNIX operating system), and the
{! documentation facilities UNIX has to offer. Each of these
ég areas will be covered in this section.
“ié The UNIX command structure |
*ln The UNIX command structure can perhaps best be regarded as ;
Ez a form of programming language. The standard command
‘%} interpreter is called the shell (sh), and supports a
tf language syntax similar to the ALGOL-68 language. The
g? Berkeley UNIX interpreter is called the C shell (csh), and |
is - supports a language syntax similar to the C programming
{$ & language. The shell programs are the most commonly used
;? interface to the UNIX system.
Té When a user logs in under UNIX, the configuration file is
;3 read to determine the defaults for the user. This file may
éf specify either sh or csh as the default shell. It is also
?é possible to substitute a 'personal' shell program, which may
'& be desirable in cases where the user needs special
éé consideration.
éé The shell prints a prompt and awaits input. Following the
é syntax for input to the shell it is possible to produce very
gg extensive control structures (see the appendices of 'The
el
] UNIX Shell', BSTJ pp. 1987-1998). A 'null program' is a
i:- - valid response, given by simply hitting the carriage return,
;§ b which causes the cycle to start over again. The most common
5
B4
B D T A T T R R R DA A AR

Pl iy

‘program' entered to the shell is simply a command with
optional flags and arguments. This is analogous to calling
a subroutine in a language and passing parameters. In fact,
the program that gets called accesses the flags and
arguments as if they were passed in from a calling routine,

as shown in the following example:

. definitions..

main (argc,argv)

int argc; /* The number of arguments given */
char **argv; /* A pointer to a character array
that holds the arguments */

. Body of program

The shell runs the program the user has specified after

parsing the options given, passing the program the values of

argc and argv.

Another very handy aspect of the shell is the ability to
redirect I/0 and to pipeline data., As will be shown later,
each process under UNIX can spawn child processes, each of
which inherits the files of its parent. For a user to
execute a program, the shell spawns a new process and
executes the file given in the new process space, passing
the program the input parameters. The new program also

inherits the standard I/0 files of the shell, which normally

pres

e default to the terminal. These I/0 files can be modified by
:; using the shell keywords < (for standard input) and > (for
G

ﬁi output). For example:

s s

v e 1s -1 /usr >dir

v 4

W BS

ﬁ,

b

.
{Q-
']
4
2
R
2
.I
'l
»
=N
»
i
’I
. »
-.l
.
A
I‘.
V.o
1"‘
0"
..
5 .‘
r,.
P
iy ".
¥,
P«
g
b
b
¢,
¥
e
L] "
k]
g
. ”
%
’
'
2
.
™

‘‘‘‘‘‘
....................
B I e T A R L e e e L R R A

Wy T W e W T v ™ —— TN WY LWL YW
[T L Sl A, - S e e e AT T :_'L\\',":\ AR Y

DR LI I v - .
- BT S L Tatematamuny

lists the directory contents of the /usr node, placing the

listing in the file dir under the current working directory.
The command

we <dir
then performs a word count on the file dir. Actually, a
simpler method of achieving the same results exists. By
using the pipe feature of UNIX, two or more processes may be
executed concurrently, one feeding data to the other. For
example:

1s -1 /usr | wc
achieves the same result as the previous examples without
leaving a file in the working directory to be cleaned up
later, Contrary to the statement in the BSTJ article on the
shell, the pipe facility does create a file on disk, but it
is deleted after use automatically, so the effect is the

same.

This explanation of the facilities of the shell barely
scratches the surface of the capabilities of the standard
shell, let alone the C shell. For more complete tutorial
information, see the UNIX programmers manual set.

The UNIX file system

UNIX regards a file as a named character string which may
be stored on or retrieved from a variety of peripheral
devices. The file system tends to minimize the differences

"between storage devices to allow the greatest flexibility in
storage and retrieval. There is no record structure imposed
upon files, but the newline character (an ASCII line feed)

may be used to simulate this feature.

B6

..........................

LS e AR RN SR S SR Sy S e A A e R A e T AL AL ISR i S D
AN .. 7

Q)
. - - - - - . - - - "
DR ot sl L M A AL AL TS S St AR R e A R I DR L A A R R TR

There are three types of files associated with the UNIX
file system. These are standard data files, directory
files, and special files (device drivers). As the name
implies, standard files contain standard data such as that
entered by programmers during ‘an editing session.

Directory files contain the information necessary for the
operating system to correlate file names with the physical
locations of the named files. They also contain specialized
information about the files such as access rights, etc. The

capability to create and delete directory files is

‘restricted, for obvious security reasons.

LA

Special files exist to provide the interface between UNIX
and system I/O devices. All devices recognized by UNIX can
be read from and written to simply be accessing the correct
special file. There are three advantages to treating device
I1/0 in this manner (taken from BSTJ, p. 1909):

1. Device and file I/0 are made similar

2, File and device names have the same meaning in
the same context, so I/0 redirection is easily
implemented.

3. I/0 devices are afforded the same system
protection as normal files.

The UNIX file system takes the form of a rooted tree where
the leaves of the tree are data files (text, numerical data,

etc) or device drivers and the interior nodes of the tree

are directory files. A leaf file may be referenced by any

B7

)) - f - - - A4 » L il M A Nl) Dedil) Ay -3 » i Jhalil Rindh -4 “» - - - K i - - < - Ll Shans 4 g . v L e W ol -
'\'#AL\-,F.‘A~....’¢‘.s“'q LN ety I At A A g S i A A A S A i A S i A LA BNy
- . R R A R A R

-

number of interior nodes (directories), but jinterior nodes

s may have only one parent. For example:

l/l
/ N\
/ \

‘dev’ ‘usr!
/ | / 1\
/ I/ | \
'fd' ‘'tty! 'src' ‘acnt'
/ \
/ \

and SO ONeceee

In this example, 'dev’, ‘'usr'’, and 'src' are directory
files, 'acnt' is a standard file, and 'fd' and 'tty' are
special files. Also, note that the file ’'tty’' is referenced
by both */usr®' and '/tty' (though this would be discouraged
in a real-life installation).

Pathnames, such as '/usr/acnt', are useful for users of
the operating system. Obviously the operating system itself
needs a bit more information about the file to be able to
access the data requested. The following paragraphs delve
into the system information required for file access and its
format.

Ignoring the mechanics of how multiple devices get
attached to the file system, assume for the time being that
there are several devices containing files that the
operating system must be capable of addressing.

Any block pf data residing on a device can be accessed
ﬁf by the operating system provided that two identifiers are
) made available. First, the device name must be known.

[~ Secondly, the offset within the device, in terms of a

o) predefined block size, must be known. In UNIX the block

IR
.........
,,,,,,,,,

ay size is set at either 512 (versions 2.6 and 2.7) or 1824
(version 4.1) characters per block. This is the atomic unit
.of any file access. Given that the device identifier and
offset are known, it is a relatively simple matter to
retrieve data from device. Users cannot be expected to keep
track of such matters as the device and offset of their
files, however, so a naming scheme that allows pathname
specifications for files is essential.

When the system is initialized, the root of the file
system is at a known location on the system device. The
root contains directory entrie. for its immediate lower
levels, some of which may themselves be directories. By

walking the tree indicated by a given pathname, any file on

aii the system may be uniquely specified. For example, take the

pathname '/usr/src/games/chess.c'. To locate the file
'‘chess.c', the following procedure is followed. Starting at
the root of the file system, search for an entry in the root
directory named ‘usr’. Search the directory ‘usr' for an
entry named 'src', Search 'src' for 'games', then search

‘games' for 'chess.c'. Since each portion of the pathname

is a file itself, including the 'leaf' named ‘chess.c’',

ala

a ‘,‘.I N .' A,

5 E’-‘fi‘ h
v PR

identical operating system procedures may be followed for
walking the pathname. 1If the pathname starts with the
character '/', the root directory is the starting point for
the walk. Otherwise, the current directory of the task is

the starting point.

If only a single device were allowed to contain the entire

B9

..............................

......
'''''''''''''''''''''

RN file system, UNIX would soon run out of file space.
Therefore it is essential that secondary devices be
accessible to the file system.

A secondary device is added to the file system by mounting
the device so that its root overlays an existing standard
file (leaf) in the system device structure. After the
mounting, any references to the original leaf file will
actually be directed through the root of the secondary
device. At this point it becomes clear why the device
identifier is essential in addressing. Users can easily
reference files without knowing on which device the files
reside. For the operating system to access the files the
device identifier must be available within the system data
structures and the offset must be contained within the
directory entry for the file. This brings us to the point
of the directory entries themselves.

The UNIX specification of a disk file is located entirely
in a structure termed an i-node. This structure, es defined
in the BSTJ, p.1942, is a record of file attributes and
physical disk locations. In C, the i-node is defined as
follows:

struct inode {

int i _mode; /* Protection codes and type */
char i nlink; /* Number of links to the file */
char i"uia; /* The user ID of the owner */
char i"gia; /* The group ID of the owner */
char i size#; /* Least significant size value */

char *T1_sizel; /* Most significant size */
int i_addr(8); /* Physical device addresses */
int i "atime([2]; /* Creation time */
%nt i"mtime(2]; /* Modification time */
’

Notice that the ASCII name of the file does not appear in

Bl®Y

..

the i-node structure. So how does the operating system
translate the pathname given by the user into the
information given by the i-~node?

Each entry in a directory file contains a ASCII file name
(up to 14 character#) pPlus an i-number. The i-number is the
offset within a predefined area of the disk that contains
the i-nodes, called the i-list. When walking the pathname
given by the user, each time a match for a segment of the
pathname is made, the i-number found by the match is used to
offset into the i-list and retrieve the i-node for the
desired file.

Depending on the size of the i-list on the disk, all or
part of the list may be core-resident to speed access times

for the operating system. Obviously, the number of file

accesses during a given period make this optimization
worthwhile. A major drawback, however, occurs when the
system is mishandled or crashes unexpectedly. Any changes
made to the i-list while in core that were not forced to
disk before an accident occurs are not remembered by the
system when it is brought back up. In what amounts to a
massive multiply-linked 1ist, this can be disasterous,
resulting is a totally useless file system. Only through
painful hand~-walking of the i-1ist can such a meltdown be
recovered,

The final section of the file system discussion presents
the algorithm used to allocate file space under UNIX,

Though this algorithm is presented in the BSTJ, it will be

B1ll

AD-A124 733

UNCLASSIFIED

gssxan OF A ULTIPROCES

ESSING OPERRTING-SVSTEH—FOR

D

S
" F/G

ESSORSCU) AIR FORCE INST OF TECH
OH 2gCHOOL OF ENGI. .

HUNEVCUTT

* . MICROCOPY RESOLUTION TEST CHART

BUREAU OF STANDARDS-1963-A

T
Sl

'
1
H

g

ﬂ|

L8

rlr.c-. ~4

-\ &

.vm .

o
TR g

N

e T A A N A R A AL A e O N A A G S A A O et DT A,
o

%

N

@é . graphically represented here in an effort to make it a bit

“_E: {3 more understandable.

ié Each file system device under UNIX contains a super-block

§§ which describes the device. This can be roughly represented

:f" as follows:

:? } Size of the file system |

‘E : Size of the i-node list :

;; : Part of the free-block list ‘

Eﬁ : # of free blocks | # of free i-nodes :

| |

i | Part of the free i-node list [

. I |

" | |

;_ Following the super-block comes the i-list, which contains

lg; o, the file definitions for all files on the device. Each
5 t]? definition is called an i-node, which was defined earlier.
.§ The position of each i-node within the i-list defines its
:g unique i-number. Following the i-list are data blocks for
4T storage.

%é Each i-node contains an array of disk addresses. The
§ example in the BSTJ contains 13 addresses, while the source

E; code and commentary used by this class has the i-node
é} defined with 8 addresses. For the sake of continuity, the
Es 13-address example will be used. The first 18 addresses are
S direct pointers to the first 18 data blocks of the file
ii (5,120 bytes under 2.6 and 2.7, and 10,240 bytes under 4.1).
ié The 1llth address, if needed, points to disk block that
b @35 contains more disk addresses. If still more space is needed

e b

then the 12th address points to a block that contains

Pudtn’:

v

A
R DO ATAGY

ot ad el od s g 7,0
K .f.‘.‘.:.‘."n‘ R

'S .
Sttt A

IR ¥

AL - SIRERIRRE: I SR

-

P

TN

L&

¥ q
...............
- 'a Ve

addresses to more indirect blocks, each of which points to a

group of data blocks. The 13th address is used for triple

indirect addressing, and for driving system managers crazy.
A graphical representation follows:

i-node data addresses

/ 7 7 7 7 a7 7 7 7 77 7
/ /7 i/ /7 /7 /7 1 1 |
/ VY A A V7 7 /7 1 1|
/ /= /7 ! VW /7 7 I
\/ 7 / I
I7%F7) |7F) TR TR TR N/ 7/ I
R T T I U O N I | 7/ / I
/ /__/ b
/ 7/ 7 7 7 T
/|
I7* | &) "%) |7*% | 7% / /|
S T U T O I O O / 1/
/ /
* = Data / /
Block | /

Up t6 128 more | Single

o
| I |
| pointers to data | Indirect | |
{ blocks as above | Block : :

|

| |
Up to 128 more	Double	
pointers to single	Indirect __	
indirect blocks	Block	

I
| Up to 128 more | Triple |
| pointers to double | Indirect |
| indirect blocks | Block
| |

This concludes the coverage of the UNIX file system. Most

of the information in this section was obtained through the
combined readings of the BSTJ and the source code/commentary
of John Lions. This information is based almost entirely in

version 2.6 of UNIX, but is compatible with versions 4.1 and

B13

4
]

2~

el e

gt

A

: "-'ﬂ:‘l' sy

% *

has

K < ., 2 £ N
AP S e T

‘__
L0

Py :’ .b: B
hY

b o .' 't ..l
LTI &

¥ RS
lrdl

A

P
[

>
r «-r_ b
iy .’3‘.!‘ b .

- (.Q~l-

LAk
£l

L ey
»

o

-

2.7. The use of these structures will be covered in more
detail in the later sections concerning modification of the
UNIX system.

UNIX Utilities

By far the greatest bulk of the UNIX system is comprised
of the utilities package, while the kernel of the operating
system is relatively small, All the utilities are available
in source form on tape for modification by the AFIT
programming staff.

Version 4.1 of UNIX has between 150 and 200 utilities

available, an ,alphabetical list of which has been made
available as an attachment to this document. The massive
amount of’matetial available makes inclusion in this paper
with any degree of justice impossible, so the reader is

directed to the UNIX Programmers Manual for assistance in

wading through the system.

UNIX Documentation

As just mentioned, the most valuable source of
documentation for UNIX is the UNIX Programmers Manual. This
massive set of volumes enshrines all the information about
the utilities (commands), system calls, subroutines, special
files, file formats, GAMES!, macro packages, and maintenance
procedures for the UNIX system.

Additionally, the learn command is available to run the
user through a tutorial on a variety of subjects, including
C, the editor, files, morefiles, and others. The strength
of learn is that it actually allows the 'student' to give

commands and run exercises under UNIX, while regaining

B1l4

LA AL & SN LN AN L LR SO N AT o N A N AN A R O S R SRR TN ST

*
2
% ‘
=
g
iq
AL

ity

™

>

E.]
rd

" ‘?";;“f_',a"!'ﬁ,ﬂ o m YCA) A

Fiabl

» "

p N3 PRI I DN 0 203 S VB [W %aa By TP i S M S] ;':._1,:,»:_.‘_\'_‘._:\- AL ._‘f_.,‘:._f_‘._ij..{:._-‘f..—_.'

constant data. These thiree subdivisions are covered in the

next few sections.

The "proc” structure

The proc structure is contained within the coresponding
array named proc (358). Each structure of this array
contains the following data:

l) The process status

2) The process flags

3) The process priority

4) Storage for a signal sent in to the process

5) The user ID for the process

6) How long the process has been resident

7) How much CPU time the process has used

8) A priority bias (nice)

9) The controlling TTY number

18) The unique process ID number

11) The process ID of the process' parent

12) The address and size of the swappable image of the
process (size is in blocks, address is memory address
if in core, disk block if swapped)

13) what event the process is blocked for.

14) A pointer to the text structure for the process

Each process has a status code, one of:

Sleeping

Waiting

Running

Being Created

Being Terminated

Being Traced (by parent)
These status codes are mutually exclusive (i.e. a job can't
be sleeping and running at the same time). In addition to
the primary status indicator, there are several additional
codes used by UNIX to indicate further status of the
process. These are:

In core

Is a system process (scheduling)

Locked in core (no swap)

Being swapped out

Being traced (again)

These codes may be ORed together (i.e. a job may be in core

B16

LR T L S -
~ FEAREEA AR S AU AR S S S DA T SN R AT

LI A N AT S AU S T S S A
PP AN W L R S Sl T TRt S SR Rt Tl S, S

L IPRL I

iy ;'ﬁ:.‘ &

-
ree

il e
RAPAFF S

ay 4"+ o

,u,_.‘
STV

s ¢
PR

T wtad & 7, A
F RERARIRT LR » -

-

SR Y

P X NS

..0.‘I‘ 3
o

4

& -s.!i.-..“.s"&:k 3

QR Ikt S A e I 0 Ak IO S R U SR R S P S DY o S oty

and locked at the same time).

Each process running under UNIX must have a proc structure
in the proc array, which remains core-resident at all times.
As shown in the source (376), this limits the number of
concurrent processes to NPROC. Theoretically, a linked list
could be used instead of an array to contain the proc
Structures and remove the limitation on the number of
concurrent processes. In real 1life, however, this would
Probably be more trouble and cost more in overhead than it
would be worth,

The Data Segment

The process data segment is the bortion of the process
which is 'swappable'...that is, which must be written to
disk in its entirety if the process is to be removed from
main memory. For the purposes of this paper, the data
segment contains program code and data, the contents of the
stack, and a copy of the user structure for the process.
One point to notice is that on a PDP-11 running UNIX, there
are as many kernel stacks as there are processes, making it
impossible for the stack information of the kernel to
migrate from one process to another, even in the event of a
machine failure. The user structure (413) contains the
following process data:

1) Storage for various registers

2) 1/0 flag

3) An error code

4) The effective and real user and group IDs
5) A pointer to the proc structure

6) 1/0 data (file offset, etc)

7) A pointer to the inode for the current directory
8) Storage for the current pathname component

B17

e

N

.‘,’.':)

[AL
g

‘l
1
.t

N

L \d
Wi
0

4

J
o
W9

i

wx

.V,.w-‘w
FNRERG
U LRTIEN &

PR G RCALRA,

YA
» $
. &
s

r

.-I',‘l.
el

b
“r
¥

AN
.‘
F 2 PR DA

¥

[Z0)
"

L3

- <M Con Bk ¥ 0 W, Y AN A e AR AN e Y, SRR L LI i,

9) A pointer to the current inode

10) Storage for the current directory entry
11) Pointers to open file descriptors

12) Storage for the arguments of system calls
13) ©Sizes for the different segments and stack

14) various flags
15) User and system times for this process and its

child processes.

The Text Segment

The text segment is optional for the process. Most
programs written by standard users will not contain a text
segment. The only advantages to having a text segment are
that the text is sharable by more than one user, saving
memory when many users are accessing it, and that when
swapping is necessary, the text segment is not rewritten to

disk, as it has not been changed.

Other Structures

There are several structures used by UNIX. The two of

greatest interest to this class (proc and user) have just

- been presented. Others exist that don't concern this class

at the level we are examining UNIX. Presented below are a
few of the other structures of interest.

It should be pointed out that the authors of the UNIX C
code had a highly questionable habit of declaring a
structure named with a descriptive name, then declaring an

array of the structures using the same name. For example,

struct mount {
int m_dev; /* Device mounted */

int *m_bufp; /* Pointer to superblock */
int *m_inodp; /* Pointer to mounted on inode */

}
mount [NMOUNT] ;

which declares a structure (defines a type, for Pascal

then declares an array of NMOUNT mount structures,

freaks),

E I A T e [N

LY

Ay et i Bt o K e e A e, e B R K AN ORI S e LR .E\'f.‘.'.."':'-'r.‘i.‘-‘) N

¥

;g% Egg naming the array mount also. Bad news for many C compilers
% - today.

if This is a good place to start, though. The "mount® array
Efi contains structures in core to allow UNIX to find the super
! . block of any mounted device. This is essential to allowing
E' multiple devices to be accessed throught the rooted tree
ii type of file system.

' 2 The next structure of interest is the text structure
ffg ~ (4306). This structure contains information ccncerning the
‘gg disk address of each pure text segment currently in use by
;Ff processes, how many processes are using the text, its main
:§ﬁ memory address if loaded, and an inode pointer. The main
é% point of this structure is to see that for any text segment,
2% iﬁ; no matter how many processes are accessing it, there is only
f%& one entry in the text array, thus saving memory space.

s& The file structrue (5587) contains a flag (read, write, or
ﬁ? pipe), a pointer to an inode structure, a reference count,
Véﬁ and a pointer to a read/write offset value. This structure
‘§§ (again contained in an array by the same name) defines any
pighd file open under UNIX, and is always resident in main memory.
ﬁéé The filesys structure (5561) contains the definition of
;% the super block for each mounted file system device, plus
5§ status flags. This structure appears to be used as a
jé; template to overlay and give structure to the block of data
:% read in from disk as the super block. The contents of this
ﬁi block were defined earlier.

g

B19

4, il 2 v AR WY TR T L™ g P Y g .
3 5 P et e *w e Fa Y,
A Y A R Ty ® Ty g v, Wl W Y

LIPTTY,

viia

BARTES
:
o, =8 o8 0 L)
FLAIL PR

L

." ARCNURG
- - »

&,
r LY »

] ‘) f;‘.‘:"‘f'.'.'j'.‘ |
XY

) n.l

¢

50
e
;

P f
f.. x""_ﬁ._-,'h‘afs

P
\Y

oy
aate NS5

O d
’

T

o AR

-
£
Nt R

o
ey

ed
LA

i e Tl S Vel G NP VY S N DA N AN I A N R AN ORI AL R S R A e N A L P S oA, WL S VD

"

3

X

e

o
R4

.

Initialization

Hardware (memory management, etc) is not referenced in
this discussion, as each configuration is different. The
low levels of UNIX are too hardware-dependent for a general
0S class. Discussion begins here with the "main" procedure
(15508) which performs the following functions:

l) 1Initializes memory - a pair of memory-management

‘registers is used to step sequentially upward through
memory in blocks, initializing the blocks to contain
Zeros. When any block cannot be read, it is assumed
that the maximum of physical memory has been reached.

2) The maximum memory size per process is set by taking

the minimum of the physical memory size, the MAXMEM

site-dependent definition, and the physical 1limit
imposed by the hardware.,

3) Disk swapping space is defined and initialized.

4) The system clock is initialized.

5) The charactér buffer pool is initialized.

6) The large buffer pool is initialized.

7) The table entries for the root device are initialized.

8) Process @ is kicked off.
This discussion will not get into the details of how the
buffer pools are used by I/0 devices. Suffice it to say
that there éte two types of devices recognized by UNIX.
These are character-oriented devices and block-oriented
devices. Examples are terminals and disk drives,
respectively.

As noted above, the last step of initialization is to
start process @, which executes sched (1948). Sched handles
the 1/0 procedures necessary to swap processes in and out of

main memory. NOTE: sched is itself a process, being

B20

. LAl ek ; g A - 0 ik n e~ ¢ y e A A Y % il i 4t ‘it - W W Caiad] v
2y oo & it WL BTN A SR SRR St e 30 S NS ST, N L FORFPL AT A S N A S S e R

‘&;' executed in the space of process #. The logical states of
XV
é iﬁg sched consist of the following:
" 1) Waiting for swapping I1/0 to complete
X 2) Waiting because none of the swapped processes are
X% ready to run.
"l : 3) Waiting because none of the processes swapped out
A have been out for more than 3 seconds and/or none
o of the main memory resident processes are inactive
- or have been in memory for more than 2 seconds.
! 4) Running (scheduling a processes to run)
A
&{ When sched is able to run (i.e. a process may be
iy scheduled), the following algorithm is used to select which
;& process to enable:
o]
N 1) Disable clock interrupts to prevent timing
;Q' information from being changed.
2) Scan the proc array to find the process that is
AR ready to run AND has been inactive for the longest
-y time.
e 3) If not found, case 2 above holds.
=N 4) Search for a block of memory to hold the swapped
gy - Process. Note that if a text segment is needed,
™ @& and is swapped out, the memory needed is the data
- segment size PLUS the text segment size, required
o as a contiguous block of memory.
N 5) If no memory block large enough is found, search
s through the in-memory processes to find a process
Ry that is waiting or stopped (not sleeping, locked
W or process @, the scheduler itself). If found,
" swap the process out to disk and load the
ﬁ% ‘new'process back into main memory.
o 6, If a process is not found in step 5), and the
] Process to be swapped in hasn't been out for more
R than 3 seconds, then case 3 above holds.
- 7) 1If the process has been swapped for more than 3
seconds, search for a resident process which is
¥ Sleeping of ready to run and swap out the selected
2 pProcess that has been in memory the longest time
5 IF the process has been in memory longer than 2
N seconds. ELSE, case 3 holds again.
oY 8) Swap in the ‘'new' process.
3 Following a successful swap, the area of disk used to
N
. contain the swapped out process is freed for the system to
fﬂ use in future swaps.
At
fﬁ; RN This explains how processes are swapped into and out of
o
N B21
:

e Ll A DLt e R I T e R R L/ o5 N A AR T IR W Il I 00 P 5

N main memory, but how does processor allocation occur between
&
’ processes that are memory resident? The answer is that a

o switch may occur in one of two general ways: ﬁ
e
.“ 1) The process may initiate an action which results
‘, in it being inactivated.
e 2) An interrupt (clock, device controller, etc) may
force the start of a system process, which will
- cause rescheduling of the CPU after it finishes.
,»" ‘ In either case, ultimately a call is made to the swtch
;;“ routine (2178). This routine searches the proc array for
Yo ¥yl
- the process that is ready to run and has the highest
%2 priority (the lowest priority number). The priority value
i
"‘“5 of a process is changed frcm time to time through the setpri
e routine (2156). This routine basically sets the priority of
=
:“:"; the process proportionally to the CPU time used, also
25
:’5 @ factoring in the value found in p_nice of the user
25 structure. P_nice may be altered by the system of the
7 user/super user, making the priority externally setable.
Rl
g2
03
<2y
i
Ny
X
f::ggg
a8
iy O
Vel
s
i
B22

NN, IR N W L s wrew ™ " e ” Saiet ol .
WA AN S OV O S N SO S R OO IO S ORIy KN

Appendix C
AMOS Bootstrap and Interrupt Service Routines

This appendix deals with the logical requirements for
the implementation of the AMOS bootstrap and the AMOS
interrupt service routines. The actual implementation will
depend heavily 6n the host processor choosen for the
implementation and the server devices (i.e. disk controller,

serial I/0 controller, etc) available to that host device.

Bootstrap
The AMOS bootstrap should be implemented to allow for

the greatest of ease in system modifications. When the host

system is powered up, control may be directed either toward

S

[. -
RS
W

a monitor ROM or toward a power-on bootstrap loader. In the

first case, the capabilities of the monitor may vary from

system to system, but the option of bootstrapping from disk
must be available.
The AMOS bootstrap program should consist of the
following steps:
1) Load the first sector of code (128 bytes) from
track @, sector 1 of the system device, placing
it into a known location in memory. Begin
executing this code (the bootstrap loader).

2) The bootstrap loader will call the AMOS low-

level device drivers to load the rest of the
bootstrap program from within the system data

area of the system device.

Y%y

e 3) The bootstrap program Qill again use the low-

‘

sd
-f
S
2
4
|

(|

«

4
%

P

Cl

e e A e o e e
T e SRR e L e

€N T T P .
) S . e e T e e e Mt . . L e e e e . .
PP A AL N T A A AR ot e e e T T e e T R O R
S Saanda . a ' . - N .

..............................

level AMOS drivers to search for and load a
file with the pathname "/AMOS”" from the root

area. This file (AMOS) is the executable image

;f: of the AMOS operating system. Once this file

XA

o is loaded, control will passed to this image

.:-,:.:

h and AMOS will begin execution (Level 8).

ﬁ?; The bootstrap is configured in this manner to allow for
b

ey modifications to AMOS, which after compilation will be

placed into the file "/AMOS", without the need to
reconfigure the bootstrap mechanism. A test mechanism
should be provided to‘force AMOS, while executing, to reboot
from a temporary test image. This will allow the system
manager to simply reboot the system normally (from the
console) if the new image -doesn't work. (Assuming, of
course, the the test image doesn't clobber the file system.)

Interrupt Service Routines

The interrupt service routines of AMOS have not been
specified, largely due to the hardware-dependent nature of
such code. However, a few restrictions apply regardless of '

the implementation hardware.

First, to implement AMOS in a manner as responsive as

. -(..~

-4 .
vesio L O

possible to the user, interrupts should be disabled for as
short a time as possible. Prioritization mechanisms should
be implemented to allow for high-priority requirements to
break into low-priority processing.

Second, the user-generated interrupt (system call)
_f% service routine must be capable of retrieving arguments

passed by the user process and placing them into an area

c2

.vr -
- .

X ,...c -.n'-ﬂ. _'

DAY,

K]

KO
AL
etets

NI
(I
e,

(AR
’» .

Cw XY W s
ER A

YATXA

BT T YO L0 e PO P

ML I I T A A L N A A S S S A ALY DN AN IS IO P

accessible to the AMOS kernel. This process is device
dependent also, as many ot the newer processors allow for
separation of memory into system, normal, data, code, and
stack spaces (all permutations). Careful attention must be
given to not disturb data areas that may be needed by the
for a file name

user process in later processing (i.e.

search, the service routine must not overwrite the name
string when retrieving it. The user task may recieve an
error flag from AMOS that will require further processing on
the name).
Summary

The AMOS bootstrap and interrupt service routines are

essential parts of the implementation details. This

investigation has not specified implementation details for
these routines, due to the expectation of varied hardware
availability in the future. The minimal requirements listed

above should be followed, however, in future implementation

to allow the greatest flexibility in system modifications.

c3

.......

s » ; N o Lo - o v e T T RN
RTINS T A AV ML LR IR G A A I MR U S A A S PRI b

Appendix D

5]
CLEPN AMOS Structure Charts
©- This appendix contains the module structure charts for

ig AMOS developed in the main body of the report. The charts
. have been spatially expanded for increased readability.

Full discussion of the logic of development for these charts

> is found in the main report body .

£ Q‘ln

n e
" ”
PRISS tll &

e

D1

ol o Rl o R I ogts SN SIS LY SRR U SRR PN R AT SN P IR] " a " i " aTa" Y T, - T T S N N T I TN TR T TAE S
" .., - N LTINS T . . - 3 -,

NG PRI : M ey o ~) ChaC R - “Be gl . - 4 S 1
Z‘ R R L WO A N AR R O A L A S 2 ST Ty O A N A Y W GO L G i
)

o
3 -
L

A B

ey r—
4, 15w, SRR * o
tade? wle
"
(XA

-~

AU Index

_:.- Executive (Level D) cccececoccoccoccsscsccssscacccscscscses D3

Service Interrupts (Level 3.0) cecocececcccocscccccccccocoee D4
iy Service System Calls (Level 3.3) ..cccecccacecscscccccssse DS
. Service File System Requests (Level 3.31)sceccccecccosses D6

Create File (Level 3.311)..ccccecccsccccccscacascosccssss D7

RN
4

Translate Name to DDB (Level 3.3111)cccecccescccccosccces D8

»
2r8,e

oy "’.“ AN

Search Directory for Component (Level 3.31112).cccccceess D9

£ i et

openpilé(Level 3.312)I....................'.....‘.‘.... Dla

. $"l .:.:!

[
Tty

b, ot 2
o ¥«

e
- T

KRNI 7

¥
2

’ ’t‘
AR
AL
S
¥ p

D2

I I . -
T e et Y T T e N ¥ vt W e LRSS S AL S I .
NSRRI A NPT, T RS \".;',h.‘_s.‘:.\ R R At j

7 S gt gl s S s S I WA S S S AL AE AT A ST o N PN INCNIEINC NG NCIPNL S ILAIC SLIPEY YL RN IR Wt NOIE R IE R R

oo i,
O
M

Executive
\ {==--= Interrupts
Level 0 (Asynchronous)

N

s (No downward I *arglist
T flow, if cntrl user/proc
7 comes up, boot structs.

?ﬁ Init'ed Modified Modified

o globals user/proc current
S structures process
v ' v v

»ﬂ

¥£ﬁ Boot Initialize Service Reschedule
S System System Interrupts CPU

Level 1 Level 2 Level 3 Level 4

oy Figure 3-2

o A

iy v o W i I ' X O g s Sl m T
Y Y S I SN A W N S 20 BN T R T e I et AR A M ot A I RGN SN VLS B A DL R R
A
"
P

-,

Eagalee
Sty

RV IR

modified
*arglist user/proc
structures

5

R A P Y
e

‘ Service
2 Interrupts

- Level 3.0

7 AN

(undecided (undecided *arglist
. linkage) linkage)

N

o error,
. user struct
K v v v

fﬁ Service timer Service other Service a User

o Interrupt hardware inter. interrupt (SC)

f; Level 3.1 Level 3.2 Level 3.3

Figure 3.3

"a(;-.,-'
CEPS

T 'Q
S :

s
Fay
Ta'e

it
LRy CIXY)

>
.

20

D4

AN

2K 2

1
C
)

}

- ';'('-r*v'».;;\“\'“v')w'\ ".7' i '. A S Ot AT R R et et T T T T AT T (T T T T e T e LT WS

3 P —— WA R LA A ; TG
St nh R S Ot i A A SR AR AR AN A S A 00 s U A AN R U AT A A SN A N RO "T"'.‘T'T‘iq

X Vg g MR £
YOI i A A A 2
h-J AL PP 1 Yol

.

R R
7
\z

-
- &

user struct

y

.
A YIS

Ch I S

|

error, | i *Arglist
|
\'/

-4
WY

5

o o
-0

..‘ 2

Service System
Calls

" .

3.3

o

s
i

42 .

All branches carry
*arglist into sublevel,
return error.
[l

vy
SN '

¥ A'.‘,",ﬁ,'»
. A

! R s
el s ians

5? |

2

et Service User data
N modification req.
. 3.32

! ! v

oervice Process Service System data Service Comm.
data mod req. modification req. request
3.33 3.34 3.35

D)

il
-
"
=
<
%
v
.

SN

Figure 4.1

.‘o.;" ." ‘.‘i

Ay

Sy

\P 77 e

NAAAR) :'.
&

3
2
L3

Leimwetel
o i
B4

YN H XX
G T

&5

&
.

{,
.
Sl

.;'32_!'._‘.'._9'.8:

D5

ot
&

C e e T Ry P WL ETL N 0T N g® a® v m % o e 4 o+ e - . s L mos
3 L R i o A R e e T " - L SRS LT R Tt RIPRC I I
-:\-.Lu,. AT T PP I P RS " Wi D Y, WA, a PRI ALY DN

heF To-Rrth » P s - - LN W T L bl D M

5

’ q - ey e
PSS Y a e T e e T e T et e e e e,

. . - - . — Ty ik " v : o . L) .
\"!-‘.s.*z-_-..;-.. ot I Gt Bl T ACT A S ARSI R I I) T e e N A R e P I AL e R L
s

.
¥ .
[ICREE
.

NN r *arglist
.:,;‘: . error

N Service File

System Requests

K , 3.31

A error I I *arglist

Close ead
file file

3.313 3.314

' I i

Delete Position Get File
et file file R/W pointer status

g 3.315 3.316 3.317 3.318

TR Figure 6.1

.
PR

e-aaan

2

e/
5 f;

Y AR,
v
oSalals
L4

D6

] 3

¥

)
o

- 0 - R0 " T T 1 SO L S e LB Rl T TR T RN PO SN) R ol TAdE I FUSE TR M S N
Rh ‘4.|‘Ie -‘\“i;. -»u~ . ASA %a Sty Ty VO 't

%
ridd
g

AR 4

B
XN

st

;‘w,t,
i&&ﬁ&f& s

N
+.

X3

-, %
2.9 « Ty ;
(P

«

SR AT T e 0 et IR S N LR R LSRR M

*name,
mode

AV

fnumb,

error

' Al

IR

Create
File

3.311

*tddb,
error

Translate

name to
ddb

3.3111

v, ""v"v""i"'-'u.‘n\’ * '\-‘h".'m ST

*name,
mode,
*tddb

AR e SR S S S S A et e e e e

Create a

new ddb

3.3112

*name,
mode
WRITE,
error *tddb fnumb
error
Access

Figure 6.2

D7

[
AR TP

File

3.3113

error mode

*tddb, 1 *name,

Translate name
to d4db

3.3111

—

- *name *comp, *comp,
' error mode error

Extract Search
pa component Directory
e from for
pathname component
3.31111 3.31112

At

2B

SO TR

-
S

) Figure 6.3

e e Lo A A i L Tt e e s G e R RN T N N N N L Lt et e e

% o

bF)

v
-ls

P A

EOREETRK

-t P £

l”.:
AR
L)

'.':?y‘ -

P
[7 =1 Agy 1

*comp,
mode error

‘.l
B4
4@

Search |
Directory
for
component
Ny 3.31112

PR AR

N X
Lo

;’ll.-"l.'..{ RS
sy SO

N7 *dirblk, *dirblk
0 *dirblk, *comp

error

s

N

: ‘.I‘-l.v

match

! ! !

- Read next Search block for Release block
‘E§ block of component match from buffer
. ddb entry pool

. 3.311122
£ 3.311121 3.311123
,-:._;{

«

Y

Figure 6.4

4
o
e

LT
3
ML

2
P

e A
[3

; -.x:.'\.‘.- %
s

ks

D-‘ . Dg

e .
B

S O CR S b o T S N Te T
ALK Y i Pi7e 27 0 0k W3 s

B e a AT o o i . - - ™Y w Tm TEe W0 Nt i o -
L, 3 IS o W a8 e L Bl I ia e e T e M b e e e T vw T Tt " PO U a? oMM e A A \".\.-‘-':"-'.'-1'-.-\ VJ-'._.‘~-\
I
]

".

"’ M "y
T

SN

Ly
Y

fnumb, r *name,
error mode
Open
File

e

et i
R0

3.312

*name,
mode

o | *tddb,
N error

Translate Access
name to File
ddb

3.3111 3.3113

e Figure 6.4

4 NOTE:

'y

Both submodules of level 3.312 are previously defined

e’y
a*atata

common routines of the CREATE system call, containing

..
i
2t

LS

multiple sublevels.

AR

e
!

D19

2

R0
T
,

. P — ~ e v
— ey L T MM e TN
oo SN I D ST TR e i I S N S IO o G S (Y S A0 CCA R LR i A VA
G e e PRGN 1 F2 7 W e Ny W™ A R, A o g
\‘k"t':
.l;v:m
iy
[N

Appendix E
Qﬁ@ : AMOS Source Code

This appendix contains the source code (in C) for the

Dy partial implementation of the AMOS system. Included are the
N
;g files:
B2
AMOS.H

vl a General purpose equates . No Ref.
LN
;é: SYSCALL.H
N System call equates Fig. 4-1, p. 32
\l’.p‘)
A STRUCT.H
el SystemStructuredefinitionsand Chap. V
2 - 9global variable declararions
3
oy
Y DRIVER,C
g Driverroutineto accept userinput Chap. 7
. and format the entry data to Level #
b
¥{ Initialization routine for Fig. 3-2, p.24
§§ global data
2o N

& SYSCALL.C
& System Call handling routines Fig. 4-1, p. 32
2 PARSER.C '
;é Routines oriented toward converting a Fig., 6-3, p.52
o given pathname into a ddb pointer
s ============z===sza:sassaasn=====a====ssa=a=s===s==
sy,
L
Lo AFORM.C |
7 AMOS floppy disk formatter for the
et CP/M operating system (BIOS oriented)
«. Ls.C
Koy AMOS disk statistics reporting utility
A also CP/M BIOS oriented.
e
Gt
u
ik
Bs
Y
4
o
B
8
;1;1 B 1
" . J:"-"!,;’],:f’,\.m.ﬁ'.‘ .f,!. \ ‘b'\rv -y "uj‘u -y "‘gl’v.\'h '- .t :f-;' ' '}o "' R AR L) "- R N R N AN

L PN N Yo Vi et el i s o
Vol e tn i a st DO M Al Ay ; T B A N T A T AN T £ S A 2 .. v -
L L R Rl N DR I R PR S B L CE TR

VaA AR A2 2 22 2 22 22222222 222 222 2 X 22222222 XX X222 222222 2 2 2

** General System Parameter Equates for AMOS bl
L 2 4 t X]
** Date last modified: 38 Nov 82 bl
E 2 xk
* & * &

******t*******i*****ﬁ*t**tt*t********t***t*tt*t******t*******t*/

struct ddbdef *rootddb;

int error; /* Gotta have a global error value */
#define SEPARATOR A /* Pathname separator */
#define NAMESIZ 12 /* 12 characters/name */
#define NULL e /* Null value */
#define MAXDEV 4 /* 4 devices can be mounted */
#define MAXFILES 16 /* Up to 16 files open */
$define NUMDDB 40 /* 40 spaces for in-core ddb */
‘#define DDBSIZ 32 /* DDB is 32 bytes long */
#define STATSIZ 20 /* Size of status block of integers...
used to store off user status in a
context switch. */

#define NAMESIZ 12 /* Number of characters per name?*/
#define TRUE 1 /* Boolean value */
#define MAXPROC 30 /* Try 30 concurrent processes */
/* Error codes */
#define E_NOFILE 1 /* No file */
#define E EXISTS 2 /* File already exists */
$define E_NOPERM 3 /* No/invalid permissions */
/* File access modes */
#define M_READ 1
$define M_WRITE 2

L

;”'\

ﬁ..

m

@

e

i

s

=

:3 R,

>

%,

2

i o2

HﬁA

B N e o o T T e o e e

a ”
YA

L.
LUK YRS

X .-
g

. e ¥

1)
¥

« v
(A

L2 Y

R R

U PP
efalutayie

oA .
Wi
PO S

\&

‘avts-%s .l*"n'-
P 4 o~
AL

XN
)
i, .

RTINS
RS

VAR A A R L R Y R R R 3 A I I

** Specific System Call Parameter Equates for AMOS *h
** SYSCALL.H LA
L 2 L 2]
** Date last modified: 2 Nov 82 *
E L 4 L X
& k&

******t****t**********************t****t**********************t/

/* The first section of system calls are requests made
to AMOS to manipulate the normal file system. */
§define CREATE 1 /* Create a file */
#define OPEN 2 /* Open a file for I/0 */
$define CLOSE 3 /* Close a file */
#define READ 4 /* Read a file */
#define WRITE 5 /* Write to a file */
4define SEEK 6 /* Position R/W pointer in a file */
#define FILE_STAT 7 /* Returns status of an open file */
#define DELETE 8 /* Delete a file link */
/* The second section of system calls are requests made
to AMOS to manipulate the directory and inode
portion of the file system. */
#define LINK 15
/* Create an alternate pathname for a file */
tdefine MAKE_NODE 16
/* Create an inode */
#define CHNG_MODE 17
/* Change access modes for a file */
#define CHNG_OWNER 18
/* Change the owner of a file */
#define NODE STAT 19
~ /* Returns an inode's status from disk */
#define COPY FD 20
~ /* Duplicate an open file descriptor */
/* The third section of system calls are requests to
supply or modify data in the user descriptor area.*/
#define CWDIR 29
/* Change the current working directory */
$define GET_USERID 30
/* Get the current userid */
$define SET_USERID 31
/* Set the current userid */
VA The fourth section contains requests for AMOS to
return or modify data in the process descriptor
area. */
#define GET_PROCID 39
/* Get the id # for the current process */
#define SET_PRIOR 40
E3
e P A e e, e e e, e ;i

. Al b ¥a Talln Cuwa T
{j
4 tdefine
g . .
SRR tdefine
= #define
X #define
3
ol $define
) §define

; t$define
/>
s fdefine
EZ $define
?: #define
2y tdefine
2 tdefine
fz
R ¥ .
o
;3 $define
3 $define
3 #define
Xy tdefine
R $define
33
3
‘
SV
I

y

»
DAt
Saate oy

UM PO OO AT A A L

/*
KILL_PROC
—PROC,
FORK_PROC
—PROC,
WAIT_PROC
/%
DIE
/*
GET_PTIME
_PTIME
EXEC
MEMREQ

............

Set the priority for a process
41
Kill a specified process
43
Create a new process
44
Suspend process until child terminates
45
Normal term. call for all process
46
Get process times
47
48

The fifth section contains requests to get/modify
system parameters, execute new tasks, modify
resource allocation, etc

GET STIME
- /%
SET STIME
- /+
MOUNT
/*
UNMOUNT
/*
SAVE
/%

55
Get system time
56
Set system time
58
Enters a device into mounted-on table
59
Deletes an entry made by MOUNT
62
Update system data to disk

Communications section

PIPE
GET_TERM
SET_TERM

E NOFILE
- I
E EXISTS-
— /%

P I R A ','l!""..""‘,"' LS S VLUV IS N L . S T e .
L A S R, A I T S VR A R PR A A A PR AP Ty

70
71
72

/* Standard errors that can be encountered */

1

File named doesn't exist */

File named already exists */

E4

.. -

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/

*/

’’’’’’’’

VAdA A A Al 2 A R Y Y R Y Y 2 2 2 R R LI I I

** Structure definitions for AMOS data areas LA
** STRUCT.H *
L 2 L & 4
** Date last modified: 18 Nov 82 *h
L 2 3 &%

ﬁtt******t****i*t**t***t****ti*t***t******t********t****i*t*t**/

#include "amos.h"

VAR A AR A A A A L e Y R Y Y R I I I

bk Definitions for the proc_table array, which bkl
*w contains the in-core information needed by *
bl AMOS for keeping track of current processes. okl

'*it********i*************t*****ti***i**********t**********ttt/

struct process {

char p_flag; /* Process flags */
char p_prior; /* Process priority */
char p int; /* Storage for an interrupt */
char p_userid; /* User ID of this process */
char p_coretime; /* How long in core */
char p cputime; /* How much CPU time given */
char p_bilas; /* Bias for priority calcs */
char p term; /* Terminal connected to proc */
int p_id; /* Process ID # */
int p_idp; /* Parent's 1D § */
int p_loc; /* Address of start of process */
int p_size; /* Size of process in blocks */
int p_reason; /* Reason process is blocked */
} proc_table [MAXPROC] ; /* Allocate the space needed */

/rrwhkrarit Now define the status and flag values *arsnsansann/

/* Status codes */

#define CURRENT 9; /* Currently running proc */
#define SLEEPING ; /* Waiting for external event */
$define NATAL 2; /* Process is being created */
#¢define DYING 3; /* Process is terminating */
- /* Flag codes */
o
Fﬁ; #define RESIDENT 1; /* In main memory */
Xt #define SWAPPED 2; /* Out on disk */
v g§define LOCKED 4; /* Can't be swapped (ie sys) */
;f
X
L
g

¥ Es

. .o --
IS T NS T s . T e e L
PARSAS KRG OSSO COR S LT S) L T R T R T U TP

JSL TR AT ST o, BN
.p‘-.‘.r‘xil-"}‘t.h~-‘.'\‘-".-A.t"n.‘"-‘_--A‘. B T I NP

.........

. - ~ - A 3
R R e _'.:_,,-_.'l‘. _.-_-..--._-‘— PR e T e e e R e -T"*—I S leat Riar gy

it e " it e L L it e S i Yl L A eSS S S A Y A% S BN M a4 e g AL "'.f et - v
b o N g WA o ot O I gl e Kt ORI T A SRR I Y o .-;'. Dy “.v. '.'_..‘: BRI LA - -'.\
LR I I YA A Nk .. o s ., TN

¥

_?.: /**t*t***ti****t***t*t****t**t***itt****tt*t**tt***ttti**iti*i

LI *h Definition of the ddb, or disk descriptor block. "

S * The ddb entry contains all information necessary **

2 *k to access a disk file, 4 *h

("h*****i****t*tt***tt***t***tt***t*ttt**t***t*t**t**t*t*****t*,

¥ struct ddbdef {

:- char dstat; /* In core status of ddb */

¥ char refcount; /* Number of refs to core copy %/

N int device; " /* Which device does it refer to */ |
int doffset; /* and what offset in the list */

. int mode; /* Access, etc for file */

i char links; /* Disk links to file */

~3 char owner; /* Owner id # */

K int numblocks; /* Number of blocks allocated */

¥ int numchars; /* Number of chars in last block */

. int curblock; /* Current block read (last one) */

< int blocks (8] ; /* Offsets for blocks of file */

% } ddb_table [NUMDDB) ;

:. /t*i*t*tiﬁ**i**t*t**ﬁt***ﬁ***t**tﬁi*t********i*i*tt**ttttti**i

] *a Definitions for the user structure, which b

e *a contains the swappable information not needed by bl

i okl AMOS while processes are swapped out to disk. kol

:.: **********fi*it*t**i*i*i*i*t*********t*tt*t*t*tt***titi*tiiit/

P s #define ddbptr struct ddbdef

y U

c struct user

o int u_stat [STATSIZ]; /* User status (registers, etc) */

s char u error; /* Last error reported */

- char u”eid; /* User's effective ID */

) char u rid; /* User's real ID */

: ddbptr *u wddb; /* Pointer to work dir ddb entry */

, char u_wname [NAMESIZ]; /* Working directory name */

p - ddbptr *u_tddb; /* Pointer to temp dir ddb entry %/

. char u_tname [NAMESIZ); /* Temporary directory name */

> int u_files [MAXFILES]; /* Pointers to open files */

-, int u_arglst([10]; /* Argument block for syscall */

- char u_argstr(80]; /* Storage for argument string */

e int u psize; /* Size (128-byte blks) of task */

> }Juser_table [MAXPROC];

o struct devices {

. int dev_num; /* Number of device installed */
int *mblock; /* Pointer to Master Block */

v int *root_ddb; /* Pointer to root DDB */

i } dev_table [MAXDEV];

¥ struct files {

% char access; /* Access type %/

i char refnum; /* Number of active references */

" R int #*refddb; /* Pointer to file's ddb */

by int offval; /* Read/write offset pointer */ ‘

A } file_table (MAXFILES]; !

b, /

1 '

E6 |

........

- P T VT g ma v
\\ T ATAT P gt Lt Y e Y N .. [T S T T . N
O S 0 g . . B L T S SRR J T T R R
&._P_,LY‘. L A LR SR L S T LS N T AL Sl N ST AR VhdrSLAF AP P T A TN .

oINS e amadt St St a e ke ‘—v_‘.-!_-.-‘_ﬁ“ ‘-_:;~ AC R R IR I R A Tl R S .- = -v..-;;-', :v-. ? —v“r‘-—i' -{\1
B T L S . S P LAg W T e

24
rd
4
¥
b
[
‘j
[
I
4
14

03
]
¢
[}
’
'
»
X)
s
1]
]
t
(}
»
»
.
’
rf
'3
1]
b
i
’l
]
1
»
&
I
l

E ".";

3
e
2& /i*t*ttt*t*t*t*t*ttttt*tt**t*t**tt***tt**tt*t*tt**t*iti**tt**ti*
s .. ** Driver Routine for AMOS System Call Handler Code L
LA BN *h .
R ** Date last modified: 30 Sep 82 **
{ * % L 2]
o * & MAIN() is a driver to accept keyboard input to emulate **
! * & AMOS system calls., The driver asks the user to input #**

s *h a system call number then, depending on the system **
- ** call desired, querries the user for the information #*+*
e bkl necessary to accomplish the task. The arguments are **
e passed in an array of 10 integers. If an arqument is #*
"k a character or integer value, the argument itself is **

'

2: k& passed in the array. String arguments are passed by **

3: :: placing a pointer to the string in the arqument array. **
.2 . ek

': t*****************t***************t**********i******tt*t****tt*/

i; #include "bdscio.h" /* Grab standard I/O routines */
5 t#include "syscall.h" /* and the syscall definitions*/
3 main ()

{

.- int syscall; /* System call number */

.2 int end_test; /* Boolean for testing */

5 int argTist[l0]; /* Room for 18 pointers */

b char argstr([16)([40]; /* Argument storage */

L35 ~ init(); /* Initialize data areas */

end test = FALSE;

N printf ("\@33E\n\n\@@7\B07Please remove your system disk and");

i printf (" place the AMOS-formatted disk into the drive.\n");

- printf("\n NOT RESPONSIBLE FOR GARBAGED DISKS IF YOU DON'T
g printf ("DO IT!!!\n\nHit RET when ready =---- *);

getchar ();

printf ("\@33E\@33x1\033Y8 *);

printf ("AMOS System Call Routine Driver
printf (" (C) 1982 by Douglas S. Huneycutt, Sr\033k'),

o ‘while (lend_test) f
printf ("\n\033gEnter the System Call number (8 to quit): *);
scanf (“%d4",&syscall);

if (syscall 1= @) /* Build parameters for test #*/
switch (syscall) {
case CREATE:
case OPEN:

MASLRLLARL AL
prate e byt
A A S

’i% arglist([@] = gargstr(0)(0); /* First parameter */

S printf ("File to ");

o printf (“$s? ", (syscall == CREATE) ? "create"™ : "open");
:ﬁ /* SCANF is passed the content of the first element of

& - the arglist array, which is the address of the first

e il element of the argument text array. */
i scanf ("$s",arqglist(@]);

a2

Y

E7

..

e .
v1—1'$~l.." ! "lf'..'_‘.

ity b, Yy

.J.A&).'.}.!;."’.'!‘ R

A

faury G U
P At

8 40,
8 8 .

Lol
¥y

A e,

S LY

o tmin s b SN YN Lo TR --‘_.:A e _;“. ~__‘._' RO A o .,‘_.-,- -, _.“‘.‘ -',.\..‘_‘_. o '::i.t\--:.l'-.b-..:.\'{- ﬂ’?‘-:;t'- {_?:. ‘;:.'7-‘-.1.]
printf ("Mode (8 = READ, 1 = WRITE) ? ");
:§$. /* SCANF is passed the address of the second element of
- the arglist array, which is filled with the mode number.

scanf ("%d\n",sarglist(l]);
break;

}
else
end_test = TRUE;

|
if (lend_test) { |
printf(*\@e33p"); /* Set rev video for system responses

Sys_request(syscall,arglist);

}
printf (*\@33E\n\nPlease replace your system disk and hit RET (waiti

getchar();
?rintf('\ﬂ33y1\0338');

(A

£8

............. .
O T e AT v e, A N Y SN -

AN et Aot e T W G T

EA R AT AL I -
A nl e s oy AT 2R IAN T e o S LSOO

A
"
:_-.".:~ /**iti**t*t***iti*t*i**i*i*t*tt*t*tttttittttttt**ttit*ttt***itt*
e *¢+ INIT.C Routine for AMOS System s
N 3 N ' T T3
ORI - *%* Date last modified: 3@ Sep 82 *e
Sy L 2] | 3
‘1 bk INIT() is called to initialize global data areas in the **
Fos ** AMOS structures. e
Y nh 1 1]
:; ****tt*****ﬁttt********i***t***t*t**i*t**t*t*t*tt**t*t*tt**titt/
e
Y #include "struct.h"”
fdefine D_LOCKED 4

T {nit()
jﬁ? struct ddbdef *tmp;

2 tmp = &ddb_table[8);
. tmp->dstat = D_LOCKED; /* Root ddb locked in core */
e tmp-~>refcount = 1; /* Test driver is only access */
D tmp~>device = 1; /* Drive A for now */

o tmp~>doffset = 1; /* Root ddb is first in line */
-5 tmp->mode = M_READ; , /* Read access for now */

3 tmp->numblocks = 1; /* Only 1 block allocated */
s tmp->numchars = 28; /* 2 directory entries */

£ tmp~>curblock = 8;
2% tmp->blocks (@8] = 5; /* Set block 5 for root dir */

'

R s tmp = &ddb_table(l];

et iﬁﬁ tmp->device = 1;
. g tmp~>doffset = 2;
N tmp~->mode = M_READ;
Y tmp~>numblocks = 1;
i tmp~>numchars = 28;
,?ﬁ tmp-~>curblock = @;
v tmp~->blocks (8] = 6;

3; rootddb = &ddb_table[d]; /* Point to root ddb entry */

-3 cu.u_wddb = &ddb_table(l]; /* Point to work ddb entry */

= } B

o

AL
-
oo
b % ‘o
o

"

~ E9

....................

Y

»
~ l. ..l.\.

NPT

T T TR T Mt BTN
G 2 M L I S I I N R iy A, i A A ra o
~ - - - . -- Lm L. - - ..\,‘ Y

VAAAR A A2 22 2 R 2 2 222 X2 22222 22222 2 222 2 R 22222222 R at sl tlld]

** System Call handler routines for AMOS ::
* %

** Date last modified: 28 OCT 82 ke
kh *h

** sys request(syscall,argptr) accepts input from the **

** driver routine. syscall is an integer system call and **
** argptr is a pointer to an array of 18 integers, having **
** been formated by the driver. If an argument is a **
** character or integer value, the argument itself is ¥
** passed in the array. String arguments are passed by #*

:: placing a pointer to the string in the argument array. :*
*

2 I R R Y Yy Py X R Y R R S Y Y R SRR R X RS 2 22 222222l

$include “syscall.h" /* Grab system call defines */

int error;
int fnumber;
$define Op Write 1

sys_request (syscall,argptr)
intTsyscall; /* System call number */

%nt *argptr; /* Pointer to pointer array */
switch (syscall) {

case CREATE: case DELETE:
case OPEN: case CLOSE:

case READ: case WRITE:
case SEEK: case FILE_STAT:

N_Filesys(syscall,argptr);
break;

case LINK: case COPY_FD:
case CHNG_MODE: case CHNG_OWNER:
case NODE_STAT:

D_Filesys(syscall,argptr);
break;

case GET_USERID: case SET_USERID:
case CWDIR:

User Mod(syscall,argptr);
break;

E10

T T N A T S A O
J | VS SRR G RNV I N o e e o

'y
2
&y

72

% _V'.'l
O B Fd

k

(i 4 o
LR,

P
L WAL

ettt e
e

Patata®e

D

Wty

wfelag Vol '
S POA IR

A\

-
L)
[SR

H 1]
KA

L p;—bL‘L.u r.

e
e

S

R v e R
o f N A

case GET_PROCID: case SET_PRIOR:
case KILL PROC: case FORK PROC:

i case WAIT PROC: case DIE:
e case GET PTIME: case EXEC:

case MEMREQ:

Proc Mod (syscall,argptr);
break;

case GET_STIME: case SET_STIME:
case MOUNT: case UNMOUNT:
case SAVE:

Sys_Mod (syscall,argptr);
break;

case PIPE: case GET_?ERM: case SBT_TERM:

Comm_Req(syscall,argptr);
break;

default: printf(*"\@87Sorry...not implemented\n®);

}

N Filesys(syscall,argptr)

Y g int syscall;
int *argptr;

char *name;
int mode;

switch (syscall) {

case CREATE:
name = argptr[9];
mode = argptr(l];
f_create(name,mode);
break;

case OPEN:
f_open();
break;

case CLOSE:
f close();
break;

case READ:
f_read();
break;

case WRITE:
f write();

break;
o case SEEK:
N f_seek();

break;

Ell

- ., "

S LI RIS A S S S I e e A e A . . . e e s -, ca e
P A AR RN T RN W I PN 2 -'A\"J' PR AR I RO R, P 3

S gl a® PO IACHAS SARPE R I P IPUINC ML IR I R R TR S LT AR R A R R ORI R S A AR .‘b‘.‘.\‘-'..".-r"_.—'..~'..l'..'.-"'..;.-.'--.'-.-;.- K
s;' ‘
i case FILE_STAT:
[Nn f stat();
T break;
e case DELETE:
N f_dele();
- break;
2 }
% }
’*l
e D_Filesys(syscall)
T %nt syscall;
o switch (syscall) ({
g case LINK:
o~ i_link();
by break;
Lo case CHNG_MODE:
© i _cmode();
e break;
P case CHNG_OWNER:
=2 i_chown();
L break;
ace case NODE STAT:
. i_nstat{);
L break;
4 case COPY FD:
oy £d_copy();
N break;
o9 |
_ﬁ User_Mod (syscall)
N int syscall;
2 printf ("User area modification control module reached.\n");
s
3§ Proc_Mod (syscall)
o %nt syscall;
¢
=% printf ("Process modification control reached.\n");
23 Sys_Mod (syscall)
x %nt syscall;
?{ printf ("System modification control module reached.\n");
;% Comm_Req(syscall)
o int syscall;
i
‘: printf ("Communications Modules control reached.\n");
)
23
A
r;;
e El2
i
z’il
ii""fﬁﬁﬁff'?'fﬂy"'?'ﬁ(?J‘Tﬁ’f'?{“éfi"“f*”{*i'i" DO et A T T T N N N T

ol ST SURIRIRN 6 Y-y e I0% B d Wiy Tl T, ATy ALY Gl Al B S R A IR R R IR ~ "'TT:::#:’: “\"_\._ e :'v
15
k
.4
"v{
:‘j ’:.77 /ii***t**t***i*t**tttt**itf*ttttt*t*tti*t*********t**t***ti*i*
e WP ak bkl
g ** Module ~-- f_create(name,mode) b
™ ** Purpose -- Creates a file of 1length @ with the **
e * & name and mode supplied by the caller. If #*
L) "k the call is successful, the file is opened **
<. b for writing. *
63 o : e
** Date modified - 5 Nov 82 **
} * % t 2]
:' Y3 . 'Y
.f: ** Items passed ~- 1) Pointer to an ASCII name string * &
= k& 2) Integer MODE value *h
&N LA * returned ~- 1) Integer file number, if successful *#
& t 24
ﬁa *k NOTES: f_create, as, noted above, returns an error **
e L if the file to be created already exists ##
N * on disk. This does NOT conform to Unix, **
- *h which will truncate an existing file {f #%
.:;' *% foundo bded
E 3] L 2]
. **t************t*t*****tt***tt**t******t**********tt***t*****/
%n f_create(name,mode)
e char *name; /* Pointer to a pathname */
N s int mode; /* Mode for the created file */
v { |
ﬂ Parse_Name (name,mode) ; /* See if it's okay to make the file */

: /* Now check to see if an error occured. There are init-
h{ fally three possibilities....that the file already
exists, that an error occured in walking the pathname,
and that no file of that name exists (in this case, the

2} desired result). */

N

3 if (error != E_NOFILE) { /* Something went wrong...*/

22 if (error == NULL) {

- error = E_EXISTS; /* No error means it exists %/
= return;

R

;j return; /* For other errors, i.e. no access */
o } /* to a subdirectory, the Parse_Name */
i /* routine has already set the ERROR */
¥

&

-

¥

o

*

E13

e “

-

P G N TRNAN L,

B /* At this point, it's okay to create a new file. The steps
are:

gi a) make a disk descriptor block (DDB)

33 b) open the new file for writing

§3 i c) return the file identification number */

-f;: .:}-.%

;i' x Make_DDB (name,mode) ;

if (error 1= NULL) return; /* Make_DDB sets error codes */
fnumber = (F_Open(name,Op Write));
return (fnumber);

f_open()

printf ("File open routine called.\n");

f close()

——

printf ("File close routine called.\n");

gt

o £ read()
£ t
o }
£ write()

printf ("File read routine called.\n");

printf ("File write routine called.\n"):

f seek()

printf ("File seek routine called.\n");

f_stat()
{

printf ("File status routine called.\n");
}

£ dele()

{
printf ("File delete routine called.\n");

_link ()

printf ("File link routine called.\n");

}
i
{
}
i_make ()
{

printf ("I-node creation routine called.\n");

El4

ol

Y

g

T
RFAEY

A FURU LA NN AN

- v
T

-

o P i)
VR AR AT

-

T
e}

2tiea 0

- 3

bk} NV

PR ¥ LAY

i Mt)

+

EIREY §-« il r i irts B

‘ i_cmode ()
e printf ("Mode change routine called.\n");

_chown ()

printf ("Owner change routine called.\n");

_hstat()

— b ot putny, (e a—

printf ("Node status routine called.\n");

fd_copy 0

printf ("File descriptor copy routine called.\n");

E15

A A O I I A I O LC I Pl L Sy e P o £ i e O P e g s gD
’?':I R B B S S TP S e T AP P R
X
¥
g.- /******t*****ttt*****i*t*********t***t**********tt******tt***i
) "k *
ar ** PARSER.C -- contains routines needed to parse down a **
{ hbd pathname into the correct ddb (disk &
et ik descriptor block) pointer. kel
o bl *h
é *t*t*i*t***tt***************t**t****t*****t*********t*i*tt**t[
‘k \d
"E"
o /i***************************t*****it*****************i******t
*& k&

LI »
25 ** Module --~ parse_name hal
KNS ** Purpose -- to retrieve a ddb pointer (disk desc. *k
e bl block) when passed a pathname %
2 " **
. ** Globals used ~-- ERROR (one or more of the following) bkl
A kel ERRSEXISTS ~- File already exists k&
. * & ERRSBADNAME - Bad pathname given ok
- Ll ERRSNOPERM ~- No permissions Ld
. *k *h
*& *h
B ***ttt****t***t*i****tt***t*****t*************tt***t********t/
&, =
.
et #include "struct.h"®

.:,x

3]

Y

parse_name (name,mode)
b > "char *name;
int mode;

i
”
§ -

:ﬁ int w_ddb; /* Temporary ‘walker' variable #/
s int tmp; /* Same */
o char comp[NAMESIZ]; /* Array for pathname components */
ﬁ‘ int more; /* Boolean/length for path calcs */
» /* First, set the walker value to start search correctly
S If the first char of the path is a '/', start search
T at the root, otherwise start at the working direct. */
o if (*name == '/')
-3 w_ddb = rootddb;
o else
5 w_ddb = cu.u_wddb;
-
ﬁ: /* Now search the starting directory for a name that matches
’: the component of the path being looked at....done by copying
': the path component into the user temporary name space. */
ol while (1) {
K7y more = extract (name,comp);
;2 tmp = srch_dir(w_ddb,comp,mode);
by if (error 1= NULL)
i; return;
2 e {f (more == NULL) /* End of pathname */
,a R return(w_ddb);
oy else {
o
?s El6
by

............
...............

\ name = name+more;

£.. w_ddb = tmp;
E'E.: £ }
L)
; }
/****************t*************t*****t**********t***************t
P * extract - extracts a string of length not to exceed b
- " NAMESIZ and places it into the array addressed **
' ** by comp. Returns a length value defined as *
’ * & the length of the string PLUS the number of **
*k separators found (to be used to offset a *h
=5 ko pointer for repeated extractions. *k

.y, AR AR AR R RN R R AR AR R AR AR R AR AR R AR R R AR AR AR AR AR R RN R A A AR kk /

extract (name,comp)

char *name; /* Pointer to string to extract */
char *comp; /* Array to put component into */
i;_ {
i% int seps; /* Number of separators found */
- int index; /* Array index value */

index = seps = 8;
while (*name == SEPARATOR) {

N seps++;

"5 name++;

% }

o while (1) {

o SN if (index < NAMESIZ)

@ comp[index] = *name;

o index++;

N name++;

- compf[index] = '\@°';

;i if (*name == '/') return(index+seps);

;f (*name == '\@') return(NULL);

s 3 v A
4. 9
ettty

=
>
.

E17

e
»

rei}

/***t*i******t*************t****tt*tt****t*ii********tt**ti***t*

A s
JORSEY]

R0 &k srch_dir(ddb,name,mode) - searches for a directory *
- hdd entry that matches name, *
o Tk pointed to by the ddb entry **

fold with the given mode perms *
ﬁ- L 3 'Y
e, ** ddb = disk descriptor block for directory to be searched **
a2 ** pame = text pattern to be matched against ok
) ** mode = @ (search), 1 (read), 2 (write) k&
1 L 2]

*k
RRRER RN R RN R AR R AR R R R A AN AR AR RN AR AR R RRANR AR AN N AR RN AR Ak h bk h bk /

srch_dir (ddb,name,mode) /* Returns the matched ddb, if found */
int *ddb;
char *name;
int mode;

Al e B2 du g
JURTREALANRS S .

int bufptr; /* Pointer to directory block read */
int match; /* Matching ddb value */

Printf("srch_dir -> Searching %s, mode $d\n",name,mode};
error = NULL;

. match = NULL;

Ky while (match == NULL) {

o bufptr = get_block(ddb);

. if (error) /* error -- EOF */

XN - return;

= 0 match = scan block (bufptr,name); /* Match data in block */
{el_block(bdfptt); /* Release dir block */

} error = NULL;

2 return (match);

: }

%

:

5‘

.'0

X

N

. ..'..’.'

El8

I R T IR a

x
..4
~¥

"

L]

.'

l‘ ot
‘v T
rel

M
AR NN A AL
Py . ..

/* STUB.C =~- contains program stubbs.

acc_file (ddb,mode)

int ddb;

}nt mode ;

Printf(“"#* STUBBED - acc_file **\n");
}

get_block (fnumb)

%nt fnumb;

Printf(“** STUBBED - get_block #*\n®),;
}

scan_block (bufptr,pattern)

char *bufptr;

char *pattern;
{

printf("** STUBBED - scan_block #*#*\n");
}

Take_ddb()

Printf (“** STUBBED - make ddb #**\pv);
} -

rel_block(fnumb.bptr)
int fnumb;

char *bptr;

{

Printf("** STUBBED - rel_block**\n");
}

*/

v 3 SR P st Y T R W v WA . v v . AR N ‘& RSP -
N‘h‘: R ey Wi W1 0. M AR Sl Sl Th U, L P PREIA R ST, Al St ST SR I AN L D S R S

-
o8 .‘."‘ .
(A

a8 n b y
.‘.3':"-"» e’
) k)

RINT
A

N3
':_::: c!:'-‘.'i * 2

A
w4
oy

A, .
Y WYV ary L N

/t*****t*i******i****t*t*****ti******itt**ttitt******t**t***itt

AFORM.C - Disk formatter for the AMOS system

Written : 12 October 1982 by Douglas S. Huneycutt, Sr
Modified: 13 November 1982

standard 8" floppy disk (preformatted for CP/M) be placed
in drive B with the write-protect notch covered (write
enabled), AFORM draws information from the DPB and DPH
information written by the CP/M formatting process to

* *
* *
*]
* *
* *
* *
: Formatter for the AMOS Operating System, requires that a *
*
* *
* *
* *
* correctly format the disk. *
* *
* *

A AR R A L Y R R A I I T I I /

#include "bdscio.h"
#define SELDSK 9

#define SETTRK 18
#define SETSEC 11
#define SETDMA 12
#define READS 13
#define WRITES 14

#define dpb struct DPB

struct DPB {
int spt; /* Sectors per track */
char bsh; /* Block shift factor */

. char blm; /* Block mask */
ei% char exm; /* Extent mask */

unsigned dsm; /* Max data block number (BLS units)®*/
unsigned drm; /* Total § of directory entries */
char alg; /* Reserved directory block info */
char all; /* . . " - */
int cks; /* Size of directory check vector */
%nt off; /* § of reserved tracks */

#define dph struct DPH

struct DPH
unsigned x1lt; /* Translation table address */
char resll [6] ; /* Scratchpad buffers */
char *dirbuf;/* Pointer to the direct. buffer */
dpb *pdpb; /* Pointer to the Disk Param Block */
char *csv; /* Pointer to the changed disks area */
char *alv; /* Pointer to the allocation vector */
};

£20

B N LA T

. W : . il i k5 ’ . PR IS i NE) - - e . . " - s » ~
Dy pROPRLP LI O TR e SN M e O G I S R N A I N S A . SN ORISR Ao

L3
.%g' #define mblock struct MBLOCK
o . struct MBLOCK { /* AMOS Master block definition %/
! N int m devsize; /* Size in blocks of dev. (33.28 Mb) */
! int m_blktrk; /* Blocks per track for device */
A int m_reserved; /* Reserved tracks on device (from 0)*/
o int m”ddblsize; /* Size of ddb list in blocks */
3 int m_ddblist([9); /* Double-indir. pointers to list */
;] char m locked; /* Flag for locked-mounted */
char m_mod; /* Flag for mblock modified */
éy int m_freeptr; /* Pntr to next block of freelist */
int m_numfree; /* § of free block pntrs in this blk */
- int m_free[238]; /* Pntr to 230 free blocks on disk */
e int unassigned(10];/* Reserved for future expansion */
~%§ }master;
N #define d_ddb struct DiskDDB
struct DiskDDB { ‘
o int cr_date; /* Date created */
e int ac_date; /* Date last accessed */
%t int mod_date; /* Date last modified */
i int mode; /* Mode of file */
AN char 1links; /* Disk links to file */
., char owner; /* Owner number for file */
X int numblocks; /* Number of blocks allocated to file*/
[0 int numchars; /* Number of chars in the last block */
e int blocks([9]; /* Allocation array for file */
L d ddb *ddbptr;
; < char dskbuf[512]); /* Disk buffer */
2 #define dir_ent struct DirEntry
i struct DirEntry {
v char fname([l14); /* ASCII name of file */
§P int ddb_number; /* Position in ddb list */
’
‘ﬁﬁ struct dir_block {
LEN dir_ent entry(32];
N }i
o
':f main ()
:@3 dph *header; /* Disk parameter header */
4 dpb *pblock; /* Parameter block */
" int blk trk; /* § of blocks per track */
T int waste track; /* § of sectors wasted per track */
e int blk_dTsk; /* Blocks per disk */
e int date;
:,‘:»:: int ind;
i
S
kg
T
. E21

P e *“'F’i TR ANy, W i e e
Gyt "-ﬁ"‘” B S T ju "‘\c‘) Ll
4 . th Lol 4 p e o ok i

-) L Botay -
o et N K‘“..,W.;z A A RS R N e Se e

PO
PaE A PN “A-.gq_--\.'u\l

printf ("\@33E\n\n");

o~ printf ("AFORM -- Amos Floppy Disk Formatter Program\n");
Sy printf (* (C) 1982 Douglas S. Huneycutt Sr.\n\n");

printf ("Please place a CP/M formatted disk into drive B, ");
printf ("then hit RETURN.\nNOTE: Any disk in Drive B will be ");
printf(®"rendered useless for further CP/M use.\n");
"getchar ();
header = dphaddr(l); /* Select B, get header address */
gblock = header->pdpb;
lk_trk = pblock=->spt/4;
waste track = pblock->spt$4;
blk_dTsk = blk_trk * 73;

printf (*\@33E\n\n");
printf (*"DISK INFORMATION:\n");

printf (* Reserved Tracks : 2 (@ and 1)\n");

printf(* S5l2-byte blocks per track : %d\n",blk_trk);

printf (* Sectors waste per track : %d\n',waste track);
printf (" Master Block location : Track 2, block @\n®);
printf(' Total blocks on disk : %d\n",blk_disk); \

pPr ntf(® =c===zzzasssszzs=s=zTaTIITI=ISSISSSSIZTIITEEITIIE n*);
printf (® TOTAL STORAGE ON THIS DISK : %dK bytes\n",blk_ disk/2);

/* Fill out initial master block information from what the
CP/M disk parameters show, plus our knowledge of the
AMOS structure., */

LT master.m_devsize = blk_disk; /* Device size in blocks */
<@ master.m blktrk = blk trk; /* Blocks per track of disk */
master.m reserved = 27 /* Number of reserved tracks */
master .m_ddblsize = 1; /* Initially, only the root ddb*/
master.m ddblist([08]=2; /* Block ldedicatedto mblock */

for (ind=1; ind<=9; ind++)
master .m_ddblist[ind) = @; /* Block out rest of ddblist */

master.m freeptr = 3; /* Block 3 is next in free list*/
master .m_numfree = 230; /* Mblock contains 242 pointers*/
for (ind=8; ind<=229; ind++)

master.m free(ind] = ind+5; /* Point to 5-235 as free */

master .m_locked = TRUE;
master.m_mod = FALSE;

printf ("\nWriting Master Block to AMOS block 1l.\n");
write block (&master,l);
ddbptr = dskbuf; /* Set ddbptr to disk buffer area */
/* Set values in root ddb for disk dump */
ddbptr->cr_date = get_date();
ddbptr->ac_date = ddbptr-)cr date;
ddbptr->mod_date = ddbptr->cr_date;
ddbptr->mode = 0;
ddbptr->numblocks = 1;
ddbptr->numchars = 32;
ddbptr->blocks (8] = 4;
printf (*writing Root DDB to AMOS block 2\n");
égﬁ write block (ddbptr,2);
g bdos (13); /* Reset disks, forcing flush of BIOS buffers */

e

-

o rk "L %
ST §

T4

Yol
A4

L

N * Dphaddr - return the address of a disk parameter header

Nt * This is performed by bios call 9, but the Bios() function
*; can not be used, because it returns a <A> not <HL>
dphaddr (drive)

%nt drive;
unsigned *warmstart,seldsk,result;

warmstart = 1;
seldsk = *warmstart + 24; /* address of SELDSK routine */
result = call(seldsk,®,0,1,8); /* bios seldsk routine */
return(result);

}

write_block(buffer,block)
char *buffer;
}nt block;

int sector,index,newsec;
char *dmaadr;

sector - ((block-=1)*4)+1;

dmaadr = buffer;

for (index=0;index<4;index++)

@ newsec = transec(sector-l);
bios (SELDSK,1);
bios (SETTRK, 2);
printf (*\tWriting log. sector #%d, phys sec #%d\n",
sector ,newsec);

bios (SETSEC,newsec);
bios (SETDMA ,dmaadr);
bios (WRITES);
sector = sector+l;

} dmaadr = dmaadr+128;

}

transec (sector) /* Translate log. to phy sector */
int sector;

unsigned *warmstart,
trans,
seldsk,
result,
*tdpb,
table;

L CRPRA

warmstart = 1;

seldsk = *warmstart + 24; /* Select disk routine */
o trans = *warmstart + 4§5; /* Translate sec routine */
3 tdpb = call(seldsk,9,0,1,0); /* Select drive B */
table = *tdpb; /* Get trans table address */

T » B . -

L4 ™ -
73"
‘{“l"“..i

4.'

&g result = call(trans,8,8,sector,table);
return(result);

?et_date()
int month,day,year,tnp;

printf ("\nwWhat's today's date ? (mm/dd/yy) ");
scanf (“%d %4 %d",&month, &day,&year);

tmp = month << 12;

tmp = tmp | (day << 7);

tmp = tmp | (year - 82);

return(tmp);

/*i***t**if**i**t*t*.**it***i**it**tt**tt*t**t**i***tt*tt***

E LS.C - Disk checker for the AMOS system E
* Written : 13 November 1982 by Douglas S. Huneycutt, Sr *
: Modified: 28 November 1982 :
: Checks the root directory for dates, etc *
*t*ittii*iiitt*tt*i*tttt*****tt**t*t*tt****tt*ttit***t**t*t:/

v #include “bdscio.h"
$include "blockio.h”

main()
{

dir_ent *direntry;
int nument;

int index;

int in2;

/* Read in master block */

get_block(1l,1,émaster);

printf ("\@33E\n\n");

printf (“Master Block specifications :\n\n");

printf ("\t\t Blocks on device : %d\n”",master.m_devsize);
printf ("\t\t Blocks per track : \d\n',master.m blktrk);

i~ printf ("\tNumber of reserved tracks : td\n",master .m_reserved) ;
printf(*\t Current size of ddb-list : %d blocks\n* ,master.m _ddb)]
s1) printf("\t Next block of ddb-list : %d\n",master.m_ ddblist (0]
=y printf (*\t\t Device Locked ? : $s\n", (master.m_ locked) ? "Yes
gj printf ("\t\tDevice changed ? : %s\n", (master.m_mod) ? “Yes" :

/* Read in Root DDB block #*/

$ get_block(2,1,dskbuf) ;
- ddbptr = dskbuf;
printf ("\nRoot DDB specifications :\n\n");

printf ("\t Date Created : ");
p_date (ddbptr->cr_date);

E24

"'ﬁ)}ﬂ?‘ﬂ'\-'\- I N O R

. adiee i 3 Lol A - T AT P e O D T AR S P St et S It SRS *
L P LIME PRGN N oA Wi Mt i e A N M N A A A A AR A R A T A

] ‘i I“

'34
R .
o] printf (*\tDate last accessed : *);
ot p_date (ddbptr->ac_date);
Ty printf (*\tDate last modified : ");
R p_date (ddbptr->mod_date);
;‘ printf ("\nHit “C to exit, CR to continue.\n");
"3 getchar();
20 printf ("\C33E\n");
25 printf ("Now you can either \n\n");
o printf ("\tl) Do a directory listing.\n");

: printf (®*\t2) Create a file.\n\n");

printf ("Enter the number of the command you wish to perform --> '”

i if (getchar()=='2"')
A {
e }
<i) ?lse
¢ printf (*\@33E\nDirectory listing for ROOT\n\n");

i get_block(2,1,dskbuf);
=2 ddbptr = dskbuf; /* Point to buffer as a ddb structuy
£ nument = (ddbptr->numchars) / 16;
{; get_block (ddbptr->blocks[@],1,dskbuf);
4 direntry = dskbuf;
- for (index=1; index<=nument; index++) {
8 for (in2=0; in2<14; in2++)
Ny putchar (direntry->fname{in2]);
2Ny printf ("\tDDB Number %d\n",direntry->ddb_number);
N N ?1rentry = direntry + 1;
, L }
7 }
)
FL% p_date (date)
:% int date;
-4 {
» int tmp;
s tmp = (date >> 12) & 0x@000F; /* Get month field */

;ﬁ printf("%d4/",tmp);

Y tmp = (date & Ox@FFF) >> 7;
’ printf ("%4/",tmp);
tmp = (date & Px087F) + 1982;
é% printf (*%d\n",tmp);
;':‘.'.: }
léﬁ
£
23
o
X
4

-

T

E25

. e, e, ,..._.. q-.‘.g"" e AR Yy -‘-“-\;\ 57.\ i .-,-\ .‘ - . s>

B
[:
e e
i T
et
BT
e

i

. .-

<‘:.ﬁ'.“.\ e
- .

AN

)
-

)

T T
B NIV TN A AT

g, f‘—.‘-’ Nt AN G LT
i

b e M s ey T 2 —

b M) LA e 2
oS RSO PO AL It I) PRI s

- w T

Vita

Captain Douglas S. Huneycutt, Sr. was born on October
13, 1956 in Salina, Kansas. 1In 1974, he graduated from
Summerville Senior High School in Summerville, South
Carolina. He attended Clemson University and the College of
Charleston, South Carolina from which he recieved a Bachelor
of Arts deqgree with a major in Physics and concentration in
Pre-medicine in 1978, Following graduation, he attended the
Air Force Officer Training School at Medina Base, Texas,
followed by the Computer System Design Officer school at
Keesler AFB, Mississippi. Between February 1979 and June
1981 he served in the Directorate of Data Automation,
Headquarters, Air Force Systems Command at Andrews AFB, DC.
He entered the Air Force Institute of Technology in June

1981,

Permanent Address:
120 President Circle
Summerville, SC 29483

e Pl g et fad sk) Rl Pl v ot ki e Sy
S TR e sl e e ‘J-.}...j ._'_;\‘)' L L IV _'J:_‘-__'T

'!::ﬁ“,;’(i‘ﬁ.'ﬂi‘:'\..'ﬁ..ﬁi'-".\l\‘u TR WA N..:"@\“ L

. o q i " - el e P s, TV 2 e et i DA R
’ o " > N » v PN e, e e
SRS Iw SR DS CRMIL CA EREMCRICMCIVION, 103 A0 DO A A S ol DI WA SRR A P S .t L

N
";-, ! SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) ,
v REPORT DOCUMENTATION PAGE BEF O O O RM

-, 3n 1. REPORT NUMBER 2. GOVT ACCESSION 3. RECIPIENT’S CATALOG NUMBER

X3 AFIT/GCS/EE/82D-20 Al24 7 ﬁ

T o TITUE tend Sebtiiiey S. TYPE OF REPORT & PERIOD COVERED
sy DESIGN OF A MULTIPROCESSING - MS THESIS
::: i g:gaagéggpggggggoggn SIXTEEN- ' p:nroawm. ORG. REPORT NUMBER
-‘5 [T AUTHOR() ' . CONTRACT OR GRANT NUMBER(s)

;? Douglas S. Huneycutt, Sr, Captain, USAF

. * |5 PERFORMING ORGANIZATION NAME AND ADODRESS 10. PROGRAM ELEMENT, PROJECT, TASK
= ; Air Force Institute of Technology (AFIT) AREA & WORK UNIT NUMBERS

! Wright-Patterson AFB, OH 45433 ‘

o " R TR e st Ttute "o rechnology (APIT) e ecember 1982

- Wright-Pattetson AFB, OH 45433 3. NUNBEB OF PAGES

S T4 MONITORING AGENCY NAME & ADDRESS(// different from Controlling Office) | 15. SECURITY CLASS. (of thie report)
UNCLASSIFILD

i 15a. DECL ASSIFICATION/ DOWNGRADING
. SCHEDULE ‘

:‘? - [76 OISTRIBUTION STATEMENT (of this Reporf)

5~

- i%(i. Approved for public release; distribution unlimited

::.-f : ‘7. DISTRIBUTION STATEMENT (of tlho abstract entered in Block 20, if different from Report)

& A
b

% Approved for public release; IAW AFR 190-17

! 4

. 5 18. SUPPLEMENTARY NOTES
; -:’ . mw releczer 1AW RFR 12017, \g
:;é [/ 4 - - Dean tor Ru:x‘:hazmd Professional Dcw!opmed 4 JAN
: ‘:.: ' o Afr Force lnsutute of Technology (ATG),

. Wright-Polterson AFR OH 45433

_ 19. XEY VIORDS (Continue on teverse aide if necessary and identify by block number)

‘;z . Operating Systems"

™~ , . Timesharing

2 .’ Multiprogramming

. | : Multiprocessing |

‘ 120. A ontinue on reverse side if necessary and identify by block mbgr) J

iﬁ See reverse

Sl

..'Z'

" : DD , 5% 1473 coimion oF 1 Nov e8 1s oBsOLETE

SECURITY CLASSIFICATION OF THIS PAGE {When Data En(.rq
os ——— s ¥ e eete e P - - . . . -. . ".;‘ - - - - - . L Ce - -
N . : - e VT : T

h) , . . 2 . , 4 W

.;ﬂ’ N)

: » . . . 5
T “J' .""yf ,- -~ *{' -‘- A P A .!~p-!.‘ . "n.‘"- - IS " et -.'

........
..........

Ml St W N B T o . AN S i R T T S R N
it 0 T A WSO IO A O L L IR SO L S IR O R ARV S R o

p .‘
~
E

/s
(%4
?:
2

]

-

A

A

Wt
Eﬁ Ve 20. Abstract

A multiprocessing operating system for the Air Forc
Institute of Technology Digital Engineering Laboratory wa
designed and partially implemented. The requirements for such
design were developed by a thorough literature search and throug
an abstraction of the works of Ross and Yusko. The resultan
design is functionally compatible with UNIX, version 2.7.

Because of the broad scope of such a project, this effort wa
geared toward the total design of the file system, with a high
level design to cover all other areas. Further research i
needed to complete the design, as the high-level areas are no
’ sufficiently detailed for full implementation.

' .
il «

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

JUINE' B

- ". D .! -

‘-

.- 9-oO
o

A T N T e e,

I

