
D-A124 709 A MINICOMPUTER IMPLEMENTATION OF A DATA MODELi/
IDEPENDENT USER'-FRIENDLY I..(U) AIR FORCE INST OF TECH

WRIGHT-PATTERSON AFI OH SCHOOL OF ENGD! M D GUIDRY

UNCLASSIFIED 5 DEC 82 AFIT/CS/EE/2D-6 F/G 5/9 NEhhhhhhhhhhiE
mhhhhhhhhhhhhE
EhhhhhhhhlhhhIEllllllllllllI

ENIIIIIIIIIImhhhhhlhhhhhhE

alll

A"

I

4)
_,

,J ..

- B E

mD

.liii,..

lIU2~111 ____ 11 .

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARS-963-A

- -

a -"

1 < . ,. . ..- , •,, -

~OF

i s 1 0 1 pb0en has entBw ~ E 2 21983
disi=ibuio n Is u nlmtd

DEPARTMENT OF THE AIR FORCEA

Q.. AIR UNIVERSITY (ATC)

- ~ AIR FORCE INSTITUTE OF TECHNOLOGY
* Lu

: .~Wright- Patterson Air Force Base Ohio
* 02 024038

: '.- . * *-

* AFIT/GCS/EE/89!6 Maj. Lillie
Dr. Potoczny
Dr. Hartrum

A MINICOMPUTER IMPLEMENTATION OF A

DATA MODEL INDEPENDENT, USER-FRIENDLY

INTERFACE TO DATABASES

THESIS

AFIT/GCS/EE/82p-/(o Michael D. Guidry
Capt USAF &

-A

Aprvdfrpbicr-ae itiuto niie..
4'

I IIOPTRIMLMNAINO

."AFIT/GCS/EE/82

A MINICOMPUTER IMPLEMENTATION OF A

DATA MODEL INDEPENDENT, USER-FRIENDLY INTERFACE

TO DATABASES

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University (ATC)

In Partial Fulfillment of the

Requirements of the Degree of

Master Of Science

I, f i ..

by 4* 1-

. . t r *

Michael D. Guidry A
Capt USAF .

Graduate Information Systems

15 December 1982

I .

Preface

With the advent of local area networks and the ability

of users to access many different database management

systems (DBMS), there is a need for a user-friendly

interface which will allow users to query a database

without worrying about which machine it is on or which DBMS

it is stored under. Thus, Maj. Chuck Lillie, on the

faculty of the AFIT/EN Electrical Engineering Department,

proposed that such a system be developed as a Master's

Degree thesis. This project was undertaken with the idea

that a fully operational system would be delivered at

termination; however, no such existing system could be

found whose software and/or documentation could be used as

a guide. It was decided that a base system be chosen and

that the implementation part of this project consist of one

major part of this system, and research would be done on

the proposed capabilities that the base system did not

possess.

Thanks are due to my thesis committee members for

their comments during the development and preparation of

this document. They were Maj. Chuck Lillie (advisor), Dr.

4Thomas Hartrum, and Dr. Henry Potoczny. Thanks are also

due the AFIT/ENE technicians, especially Dan Zambon who

kept the LSI-ll's working. Finally, and certainly not

least, I would like to thank my wife, Cathy, who managed to

"survive AFIT" with me.

4i

Table of Contents

Preface ,................... iii

List of Figures , , vi

List of Tables , vii

Abst act ,,, ,,,....,,, ,,, ,,, ,,,, ,,, ,,, viii

Chapter 1 Introduction 1

1 .1 Background,... 1
1.2 Statement of Problem......., ,,''' ''' '' 4

.:1.3 5cp,

1.4 General Aprah.....................5
1.5 Sequence of Presentation................ 7

Chapter 2 Choosing the Base Query Resolution System.. 8

i 2.2 The REGIS System 8
2.3 The EUFID System *000000000000 9
2.4 The UTOPIA System.,,,, 10
2.5 Comparing the Systems.. 996699000*69669* 12
2.6 Conclusion , 15

Chapter 3 A Universally Translatable Query Definition 16

.!3.1 Introduction 16

3.2 Defining the Query Definition Structure. 16
3.3 Relating the Query to the Tree.......... 23
3.4 Conclusion 27

Chapter 4 A Universal Data Manipulation Language 28

4.1 Inrdcin28
* 4.2 Discussion of the Concept 28

4.3 Definition of the Data Structures

4.4 ForeseeableProblems,............... 33
4.5 Conclusion....,,,,,,,. ... , , 37

Chapter 5 The Query Resolution System.... ,, 39
A 5.1 It o u t o .. . ,, , , , , , , , ,. .. 39
2 5.2 Overview of theSystem................ 39

5.3 Description of the Implementation....... 42
5.4 Testing the ANALYZER Program 48
5.5 Conclusion 50

iv

Chapter 6 Summary, Recommendations, and Conclusion... 51

H 6.1 Sum r 51
6.2 Recommendations......................... 53
6.3 Conclusion.... 55

Unreferenced Bibliography..... 58

APPENDIX A Structured English Example of the
Application Program for a Sample Query... 59

APPENDIX B User's Guide: Changing the System....... 62

APPENDIX C Hierarchical, Block Diagram of the
Modules (Including Statii) of AQERS...... 71

Volume II ANALYZER Program Listings (available from

the AFIT/ENG office)
-I

4

4".

1.

.V

List of Figures

Figure Page

1-1. Examples of Relations in a Relational Data
Model Representation of the Suppliers-and-
Parts Database 2.......

1-2. Example of the Structure and Relation of the
Segments of an Education Database Using a
Hierarchical Data Model Representation........ 3

1-3. (Part of) the Suppliers-and-Parts Database
Represented in a Network Data Model Format.... 3

3-1. A Parse Tree Representation of a Relational
-. Query9 17

3-2. The Tree Generated by the ANALYZER Program.... 24

. 3-3. The Query Definition Tree..................... 26

* vi

List of Tables

Table Page

I Attributes of the RELATIONNAMES Relation 17

II Attributes of the DATAITEMNAME Relation 18

III Attributes of the DATA-.ITEM Relation 18

IV attributes of the COMPARABILITY Relation 19

V Attributes of the PATH-IDENTIFIER Relation 19

VI Attributes of the PATH-NODE Relation 20

VII Attributes of the CONNECT Relation............. 20

vii

Abstract

An interface system was proposed that would give the

user the ability to query a database, regardless of the

host DBXS, as long as the user's computer could communicate

with the database's host computer.

Investigations were made into existing query

resolution systems, and query definition structures and

universal data manipulation languages were researched.

With this background, a base query resolution system was

chosen, and additional capabilities for an improved final

- query definition structure and a universal data

manipulation language were proposed.

In this project, the syntactic analysis part of the

query resolution system was implemented. The use of the

improved final query definition structure within the query

resolution system was defined, and a high level design of

the UNIVERSALDML (including a pseudo-code representation

-1 of the resultant application program) is presented.

4

viii

S .* .Chapter 1 Introduction

1.1 Background

More and more, people are finding reasons to use

computers and Database Management Systems (DBMS) to help

them solve their problems. Using a DBMS has some

considerable advantages: the amount of redundancy in the

stored data can be reduced, inconsistency in the stored

data can be avoided, the data can be shared, security

restrictions can be applied and standards and data

integrity can be maintained. However, using a database, or

a computer in general, does have some drawbacks. Computers

can only do what users tell them to do, not what the users

meant to tell them, nor what they wanted to tell them to

do. This interaction yields very hostile feelings,

sometimes, toward the computer. This problem is software

related, and programs can be written so that the user will

not feel like he is at the mercy of the machine. Software

can be written that would show a menu of possible actions

at any time, provide help in choosing an action (definition

of the parameters and consequences for a particular

action,) and provide meaningful, informative, error

messages when necessary. Programs written in such a way

'A.! can be classified as "user-friendly" since the user is able

to percieve what is happening or why it happened and does

not feel so hostile tovqrd the , chine.

'- Another of the prob"-.ts with using computers is the

inability of some systems to work together (specifically

the software aspect.) Consider database management

* systems; there are very many to choose from (DATAPRO lists

over one hundred [ref 4].) Even though every DBMS

manages data, one DBMS may not be able to access another's

data. There are three different data model types commonly

used in current DBMSs: network, hierarchical, and

relational. Each type has a specific way in which it

stores and accesses the data, and by which it defines the

structure and relationships involved in the database.

Examples of sample databases of each type are shown in

Figures 1-1, 1-2, and 1-3.

S IS# SNAME STATUS CITY SP S# P# OTY
S1 SMITH 20 LONDON S1 P1 300
S2 JONES 10 PARIS Si P2 200
S3 BLAKE 30 PARIS Si P3 400
S4 CLARK 20 LONDON S1 P4 200
S-5 ADAMS 30 ATHENS Si P5 100

_-__-_SI P6 100
P P# PNAME COLOR WEIGHT CITY S2 P1 300

P1 NUT RED 12 LONDON S2 P2 400
P2 BOLT GREEN 17 PARIS S3 P2 200
P3 SCREW BLUE 17 ROME S4 P2 200
P4 SCREW RED 14 LONDON S4 P4 300
P5 CAM BLUE 12 PARIS S4 P5 400
P6 I COG I RED 19 LONDON

Figure 1-1. Examples of Relations in a Relational Data
Model Representation of the Suppliers-and-
Parts Database.

2

~COURSE

L EOURSE# I TILE DESCRIPTION1

PREREQ OFFERING::]

[COURSE# TITLE IDATE LOCATION I FORMATI

TEACHER STUDENT
.EMP# I NAME JEMP# INAME IGRADEJ

Figure 1-2. Example of Structure and Relation of the
Segments of an Education Database Using
a Hierarchical Data Model Representation.

S S
-. $I2 ,JONES1 10, PARIS iS4 ,CLARK 120, LONDONJ

,. SP SP / SP SP SP
" ~~P 300S2 IP2 1400 _,S4 Ip21200r-'r'S4 iP4-1300 qS4 P5 400 i

4 3

: P-SP P-SP P-SP P-SP

" IP1lNUTIREDI 2 BOLTIGREEN "I41SCREWIREDI ,P5lCAMIBLUE
i1121LONDON I 171 PARIS I11LONID3N 1 2IPARIS
41P P P P

i i Figure 1-3. (Part of) the Suppliers-and-Parts Database
,ii Represented in a Network Data Model Format.

• . 3

Problems occur not only among DBMSs of different data

model types, but also when DBMS of the same type interact.

It would be advantageous if a person using a single system

could make meaningful queries against any DBMS. It would

be a monumental task to write the programs for every

possible DBMS that would interpret the necessary

information from the data definition language, data

dictionary, etc., so that a query might be formed.

Development of these 100-plus user-friendly query

resolution systems must be regarded as an impossible task.

A better way to provide this capability would be to devise

a way of representing, regardless of data model type, the

structure and relationships involved in the database.

1.2 Statement of Problem

The purpose of this thesis is to 1) research the

feasibility of defining queries in some universally

translatable form, 2) research the feasibility of defining

a data manipulation language that could perform queries

against a database, regardless of data model type, and 3)

implement a user-friendly query resolution system (using

the UCSD Pascal programming language) on one of the DEC

LSI-11 computers available in the Digital Engineering

Laboratory (DEL) using the results provided by the research

done for parts 1 and 2. If this can be achieved, then, not

only would databases be accessible through a user-friendly

interface on a minicomputer, but the user will not have to

be concerned with the data model of the database he is

4

accessing.

1.3 Scope

The original scope of this thesis was to adapt an

existing user-friendly system, design any additions or

improvements as necessary according to the research done,

and implement the system, AQERS (Another QuEry Resolution

System), for testing with the Roth DBMS. The Roth DBMS

was chosen because it is a relational system implemented

on the DEL LSI-11 computer and is planned to be operational

in time for the testing of AQERS.

1.4 General Approach

A literature search was made to find documents

concerning the subjects that were to be researched. An

effort was made to acquire those documents, and a list of

all sources accessed or referenced is presented in the

bibliography.

The next step was to identify some existing

user-friendly interface systems and determine their

potentials for this application. Three systems were

identified for comparison: REGIS [ref 7] (Relational

General Information System, currently in use within General

Motors,) EUFID [ref 8] (End User Friendly Interface to

Data Management Systems, developed by System Development

Corporation,) and UTOPIA [ref 3]" (developed through

academic research efforts at the University of Southwestern

Louisiana.) The main purpose of each of these systems is

5

to serve as a user-friendly man-machine interface between

" the user and the database. The pertinent information

concerning the design and implementation of each system and

why one was chosen over the others is the subject of

Chapter 2 of this thesis.

Next, the question of a universally translatable form

for a query definition was examined. The way hierarchical

and network databases are pictorially depicted in books,

such as An Introduction To Database Systems [ref 5 p. 300,

409], leads one to believe that these types of databases,

and therefore queries made against them, can be defined

with a tree structure. One article [ref 6 p. 375-376] was

found confirming this idea for hierarchical systems. Trees

are used to define queries in relational systems such as

UTOPIA [ref 3 p. 73] and the Roth DBMS [ref 10 p. 52].

More information about the use of trees to define queries

is presented in Chapter 3.

Using the concepts involved with defining the

universally translatable query definition structure from

Chapter 3, the possibility of defining a universal data

manipulation language was examined. Research consisted of

examining the available DBMS manuals to find out, given a

starting tuple (in a relational DBMS), segment occurrence

(in a hierarchical DBMS), or record occurrence (in a

network DBMS) how one physically finds the next logically

sequential tuple, segment occurrence, or record

occurrence. The results showed that the algorithm for
_.J

- 6

finding the next sequential storage entity varied from

DBMS to DBMS. A discussion on the development of such a

data manipulation language is presented in Chapter 4.

1.5 Sequence of Presentation

This thesis is broken into six chapters. Following

this chapter, the Introduction, there is a chapter on each

of the three topics referenced in the Statement of Problem

section of this chapter. Chapter 5 contains a description

of AQERS and the software implementation involved in this

project. Chapter 6 presents conclusions and recommendations.

I,

• . 7

Chapter 2 Choosing the Base Query Resolution System

2.1 Introduction

This chapter deals with the identification and

comparison of some query resolution systems, one of which

will serve as a base system for AQERS. Research provided

these three user-friendly query resolution systems for

comparison: REGIS (RElational General Information System),

EUFID (End User Friendly Interface to Data Management

Systems), and UTOPIA. This chapter will provide some

background and an overview of each system, the criteria

used in comparing the systems, and the results of the

comparison.

2.2 The REGIS System

REGIS is an interactive system designed to provide

convenient, powerful, and flexible information manipulation

facilities for the storage, retrieval, and analysis of

data. It is designed primarily for an interactive mode of

operation in which the user extracts and analyzes

information and continues analysis based upon the

information just learned. Capabilities are integrated into

the system to provide simple access to flexible graphical

tools and statistical programs.

REGIS runs on an IBM 370/168 computer under the TSS

4 operating system (the programming language of REGIS is not

mentionned.) REGIS is based on the relational data model

and is implemented in the REGIS Relational Data Management

4 8

System. The system is in use within the General Motors

Corporation. The user must be familiar with simple

terminology of the concepts and ideas involved, e.g. the

data is made of rows ('tuples') and columns ('attributes')

which compose rectangular tables of information

('relations') called sets. The user is shown how the

command language works on these sets by means of a tutorial

showing simple examples. The command language ia a non-

procedural relational algebraic language which includes the

most useful of the relational functions [ref 7].

2.3 The EUFID System

EUFID is a user-friendly, interactive interface to

Data Management Systems (DMS) with the emphasis being on

the user's use of natural language to communicate with the

system. EUFID was designed by System Development

Corporation to be easily transportable. It has been

interfaced to a network type database (the World-Wide Data

Management System on the Honeywell H-6000 computer) and a

relational type database (the INGRES DMS on the PDP-11/70

computer.) It is implemented in both FORTRAN and C for

ease of portability to other computers.

The EUFID system is composed of three main modules:

'1 QUESTION ANSWERING, SYNONYM EDITING, and HELP. The

QUESTION ANSWERING module performs in the following manner:

the user types in a question which is forwarded to the

analyzer; the analyzer interprets the question and produces

'I 9

a semantic representation of it; the mapper maps the

routing of the flow of data from the database necessary to

perform the query and generates an intermediate language

representation of the question; the translator, which is

DMS dependent, takes the intermediate language and

generates the query statements for the DMS; finally, the

DMS processes the query statements, accesses the database,

and sends the answer back to the user. The SYNONYM EDITING

module allows the user to create his own synonym dictionary

to redefine words in the semantic dictionary. This

supports the central idea of the use of natural language in

that the user may redefine words that he is not comfortable

with with words that are more familiar to him, e.g instead

of using the system word 'OUTPUT', he might substitute the

words 'LIST' or 'PRINT'. The HELP module is essentially an

. on-line User's Manual providing examples of queries which

can and cannot be understood by EUFID and examples of EUFID

and DMS error messages along with what they mean [ref 8].

2.4 The UTOPIA System

UTOPIA is an interactive query resolution system that

1 gives the casual user, communicating in natural language,

the ability to query multiple relational type databases.

The system was designed at the University of Southwestern

Louisiana as an educational research tool by a doctoral

student and three assistants. It is based on the

I relational data model and implemented in the PL/1

*programming language on the Honeywell H-6000 computer,

110

|-4

operating under the MULTICS operating system, to interface

with the MULTICS Relational Data Store DBMS.

UTOPIA is composed of four main modules: QUERY,

ANALYZER, SEMANTICS, AND RUNPROC. QUERY is the calling

program for the other three modules. QUERY asks for some

sign-on information such as the na ie of the database to be

queried, the user dictionary (DIALOG) to be used, and other

security and accounting related data. QUERY then calls the

ANALYZER module. Under ANALYZER, the user may modify his

database's representation and user dictionary and he may

input his query to the database. After the user states his

query, ANALYZER checks it for syntactical correctness

against the user and system dictionaries, and returns to

the QUERY module with the query in an intermediate form.

The QUERY module then calls SEMANTICS which analyzes the

query against the database for semantic correctness, i.e.

properly defined relations, properly defined attributes

within the referenced relations, valid domains for

relational and arithmetic expressions, etc. SEMANTICS also

analyzes the query with respect to routing and implied

access paths of data during execution of the query. After

returning to QUERY, the RUNPROC module is executed.

RUNPROC interprets the valid query into executable query

:1t language for the MULTICS Relational Data Store DBMS which

then executes the query and presents the results to the

user.

2.5 Comparing the Systems

The following criteria were used in comparing the

three systems (listed in order of importance):

1 - It must be user-friendly.

2 - It must be implementable on a minicomputer.

3 - It must be based on the relational data model.

4 - The code must be available, at little or no
cost, for modification and improvement.

5 - The code must be written in a well-known, high
order language supporting structured
programming techiniques.

6 - It must be able to interface with different
data model type DBMSs.

7 -It must be able to interface with multiple
databases.

These criteria represent the query resolution system that

the statement of problem of this thesis would consider

ideal. Therefore, it is doubtful that any system meeting

all of these criteria can be found; however, one of the

proposed systems may meet a large enough subset of the

criteria to serve as a base system to which improvements

and/or modifications could be made toward attaining the

ideal.

First, match the specifications of REGIS against the

criteria. It is user-friendly and relationally based. It

is implemented on a large computer and no specification is

made of the programming language used or its ability to

interface with different data model type DBMSs or multiple

* databases. Since the system is owned by the General Motors

Corporation, it is doubtf.l that the code would be

12

available at little or no cost, so only criteria 1 and 3

are met.

Matching the specifications of EUFID against the

criteria, one finds criteria 1, 2, 5, and 6 are met

explicitly. EUFID is not stated to be relationally based;

o: however, it is described as table-driven, i.e. "To support

i a new application in EUFID, we implement a new set of

* . tables" [ref 8 p. 380]. The contents of the tables

closely resemble the UTOPIA system's Meta-Base

Dictionary/Directory [ref 3 p. 35] and the user and

database vocabularies [ref 3 p. 941. No specification is

made as to the ability to interface with multiple

databases, and, again, since the system was commercially

developed it is doubtful that the system would be available

at little or no cost. EUFID meets over half the criteria,

but the possibility that it is not relationally based is a

serious possible shortcoming.

UTOPIA meets criteria 1, 3, 4, 5, and 7. Although the

system is implemented on a large computer, the code is

modularly written (using procedures and functions as

functional units) and could probably be implemented on a

* minicomputer in some form, i.e. a program for each module

with intermediate data stored in disk files. Criterion 6

is not possible with UTOPIA since the possible databases

- are restricted to relational databases (supported by the

MULTICS Relational Data Store DBMS) [ref 3 p. 111.

Judging by the number of criteria met by each system,

13

either EUFID or UTOPIA would be preferable to REGIS.

Choosing between EUFID and UTOPIA is more difficult. The

concepts and basic flow of control of the query processing

are very similar for both systems. This similarity is

probably attributable to the influence of the RENDEZVOUS

system [ref 2] on both EUFID [ref 8 p. 381] and

UTOPIA [ref 3 p. 9]. The RENDEZVOUS system, one of the

first natural language projects, was designed for very

casual users, handled the difficult problems of how to

interact with the user in the user's own words, and even

helped the user form his query. Using a case by case

analysis of both systems against the criteria, the

following comparison is given:

- Both are user-friendly.

- EUFID has been implemented on a minicomputer and

UTOPIA probably could be.

- UTOPIA is based on the relational data model and

EUFID might be.

- Both are written in well-known high order languages

supporting structured programming.

- EUFID can interface with different data model type

databases, where UTOPIA can interface with

multiple databases.

Using this information the two systems would be

equally suited to serve as a base system; however, UTOPIA

- met one of the criteria that EUFID did not -- number 4 -

availability of the code at little or no cost. The code

14

-I

for UTOPIA is available for the cost involved with making a

listing of the system on the computer and mailing the

listing to this school. Because both systems are

* relatively equally suited to serve as the base system for

* AQERS, the cost involved becomes the deciding factor in

choosing between them, and the final decision is to use

UTOPIA.

2.6 Conclusion

In this chapter, three query resolution systems were

compared to find the best one to serve as the base system

for AQERS. An overview was given for each system.

Criteria were stated for making the comparison, and the

nr three systems were rated against these. The systems were

compared by noting how many and which of the criteria each

met. Of the three systems, UTOPIA was judged to be one of

the two best and the most economically feasible.

15

Chapter 3 A Universally Translatable Query Definition

3.1 Introduction

One of AQERS features will be the ability to access a

database of any of the three data model types, so the

system must be able to communicate meaningful queries to

the DBMS. This does not mean that AQERS will, necessarily,

generate the particular DBMS's query language statements,

but rather that the information necessary to define a query

for any DBMS will be placed in some easily translatable

form. This chapter will define a universal query definition

structure, show what information is necessary to

I implement such a structure, demonstrate that UTOPIA, the

* system on which our query resolution system is based, is

a sufficient system to handle the implementation, and give

an example of how the implementation should work.

3.2 Defining The Query Definition Structure

IRelational queries are clearly and easily defined in a
1 tree structure. A parse tree structure [ref 12 p. 221, Fig.

6.1] could serve as a base structure for relational

queries. Information would be necessary in the data

dictionary to perform the data access path analysis,

basically what the parse tree depicts, for queries to

relational, hierarchical, and network type databases.

16

PROJECT(TITLE)

SELECT(DATE < 1/1/78)

PROJECT(TITLEAUTHORBOOKS.LCNO,
NAMEPNAMEADDRCITY,
BORROWERS.CARD_NODATE)

SELECT(BOOKS.LCNO = LOANS.LCNO
AND BORROWERS .CARD_NO

I= LOANS.CARD_NO)

x

BOOKS

LOAS BORROWERS

Figure 3-1. Parse Tree Representation of a Relational
Query.

Among the many definitions contained in UTOPIA's data

dictionary, several are necessary to perform the semantic

and data access path analyses. The information used in

semantic analysis is provided by the data base

administrator. The RELATIONNAMES and DATA_ITEM_NAMES

relations [ref 3 p.44,45] contain the information

Table I
Attributes of the RELATIONNAMES Relation

ATTRIBUTE NAME DESCRIPTION

Relation ID (key) Coded relation identifier
Relation name The name of the relation

:{ 17

necessary to accomplish the mapping of the coded

identifiers back into the administrator supplied names.

Table II

Attributes of the DATAITEMNAMES Relation

ATTRIBUTE NAME DESCRIPTION

Relation ID (key) Coded relation identifier
Data Item ID (key) Coded data item identifier
Data Item Name The name of the data item

Table III

Attributes of the DATAITEM Relation

ATTRIBUTE NAME DESCRIPTION

* Item Name (key) The administrator assigned,
system-wide, data name

- Item Type Identifies the data type, e.g.
char, decimal, binary, etc.j (Low Range The lowest permissible value
(used for range checking)

j High Range The highest permissible value

Item Description DBA supplied natural language
description of the data item

Item Status Current Status, i.e., real,
virtual, or proposed

Domain The domain over which the item
is defined

Relation Name The relation for which the item
is an attribute

Position The relative position of the
item in a tuple

Decimal Positions The number of decimal positions
(for a numeric item)

Duplicates The number of items in the model
which have a duplicate name

Owner The owner of the data item
Creating Procedure The name of the procedure that

_7 creates the data item
Class Indicates if this is an actual

* item or the name of a Rel.
Key Indicates if the item is part

of the primary key
4 Number of Keys The number of data items which

make up the primary key

18

---- ---

Any data item in a target relation, one from the database

being queried, will have an entry in the DATAITEM

relation [ref 3 p. 40].

The COMPARABILITY relation [ref 3 p.44] is used for data

access path analysis and is loaded through interaction

with the database administrator.

Table IV

Attributes of the COMPARABILITY Relation

ATTRIBUTE NAME DESCRIPTION

Relation ID 1 (key) Coded relation identifier
Data Item ID 1 (key) Coded data item identifier
Relation ID 2 (key) Coded relation identifier

. Data Item ID 2 (key) Coded data item identifier

The PATHIDENTIFIER, PATH-NODE, and CONNECT relations

[ref 3 p.45-48] also contain data access path information,

but are loaded by the algorithms that perform the

analysis.

Table V
Attributes of the PATHIDENTIFIER Relation

ATTRIBUTE NAME DESCRIPTION

Path Number (key) Concatenation of relation id's
which identify the target

'I relations of the access path
Duplicate Count (key) Counter used to uniquely

identify an access path
Number of Paths The number of access paths that

exist for a particular
combination of relations

Path Length The number of nodes in an
access path

19

Table VI

Attributes of the PATHNODE Relation

ATTRIBUTE NAME DESCRIPTION

Path Number (key) Concatenation of relation id's
which identify the target
relations of the access path

Duplicate Count (key) Counter used to uniquely
identify an access path

Node Counter (key) Counter used to uniquely
identify each node of each
access path

Relation ID 1 Coded relation identifier for a
relation in the node

Relation ID 2 Coded relation identifier for
the other relation in the
node

Root Relation The relation from which a tuple
is retrieved as the result of
processing the node

Production Type The relation comparability type
Connect Count The number of data items which

.connect" the two relations

Table VII
Attributes of the CONNECT Relation

ATTRIBUTE NAME DESCRIPTION

Path Number (key) Concatenation of relation id's
which identify the target
relations of the access path

Duplicate Count (key) Counter used to uniquely
identify an access path

Node Counter (key) Counter used to uniquely
identify each node of each
access path

Connect Counter (key) Counter used to uniquely
identify each pair of
connecting data items

Data Item ID 1 Coded data item identifier for
the first connecting data
item

Data Item ID 2 Coded data item identifier for
the first connecting data
item

20

.L - -

A data access path for two relations R and S is the

sequence of pairs of sets of attributes which "connect" R

to S, or in mathematical notation:

A sequence <(Al,Bl) , ... , (AnBn)> is a
logical access path from R to S iff
3 RI, ... , Rn+l, Rl=R, Rn+l=S, and
for i=l, ..., n, Ri is directly comparable
to Ri+l via (AiBi) and
Ri <> Rj for i <> j [ref 3 p.57].

The requirement that Ri <> Rj for i <> j guarantees that

the path will be acyclic, which is very important if this

analysis is to work on network type databases.

The main function of each of the three relations is to

maintain some record of the uniqueness of each access

path. Between specific relations, there may be multiple

access paths, so in the PATH_IDENTIFIER relation, part of

the primary key includes a counter used to identify a

specific path. An access path may be composed of many

nodes, so a node counter is used in the PATH_NODE relation

to identify a specific node within a specific path. Two

target relations of a node may be "connected" by many

comparable data items, so a connect counter is used in the
_J

CONNECT relation to identify and maintain the number of

connections possible for a given target relation. By

analyzing the information in these relations, it is

possible to find out if an access path exists between

specified relations, and if so, which one is the shortest.

The information placed in these relations is generated by

two algorithms during data access path analysis [ref 3

p. 63].

21

* .UTOPIA stores attribute comparability relationships in

! ithe COMPARABILITY relation. The attribute comparability

* relationships define which relations have attributes in

common, i.e. which data items in which relations have

similar data item descriptions [ref 3 p. 55]. This concept

can also be applied to network type databases since they

also duplicate data items in the "link" records.

Hierarchical databases, on the other hand, do not duplicate

data items in the segments, so they need another means to

define the link. Occurrence dependencies could be stored

instead of the attribute comparability relationships. The

-occurence dependency would define the condition, that given

two segments SI, S2, if an occurence of segment S1 exists,

then it may have a pointer to an occurrence of segment S2.

For example, consider the sample database structure as

defined in Fig 1-2. Suppose the following occurrence

dependencies are specifed: OFFERING --> TEACHER, and

OFFERING --> STUDENT. This means for a given course

1 offering there may be a list of the teacher(s) teaching the

course and a list of student(s) taking the course. Since

the COMPARABLITY relation expects a comparable attribute to

be defined within the segments, the common attributes could

either be pointer fields or some dummy attribute defined to

be empty, either of which would make them common, maintain

the integrity of the actual stored segments in the stored

database, and still allow the data access path analysis to

be done relative to the comparability of the segments. Keep

* 22

in mind that the purpose of this query definition is not to

build the DBMS dependent query language statements, but to

show the path (via which relations, segments, or records)

that the data is to be accessed at any time during the

query.

3.3 Relating The Query To The Tree

Next, we will analyze the basic parts of a query and

show how each relates to constructing the query definition

tree.

There are three basic components of a query. First,

there must be a verb. This part tells the system what the

user wants to do with the resultant data, e.g. STORE would

place the data in a new file, PRINT would send the data to

the line printer, SHOW would display the data on the CRT

screen, and so on. Somewhere in the query, the user must

specify what data he wishes the verb to act on. This

part, called the object part, contains a list of data

items which is the object of the verb. Most query

languages require that a record (for network type

databases), a segment (for hierarchical type), or a

relation (for relational type) be specified to define a

data item; however, our user-friendly system will find

them itself through semantic analysis using the data

dictionary, or if an item is undefined or ambiguously

defined, through interaction with the user. The last

component of a query is the qualification phrase. This

23

part consists of qualifications which the data items

accessed during the processing of the query must meet in

order for the respective record, segment, or relation

occurrence to be considered for further processing; i.e.

the qualification phrase specifies which record, segment,

or relation occurrences are important for a given query.

Under UTOPIA, the query is transformed by the

ANALYZER module into a tree structure as shown by the

example in Figure 3-2.

4REQUEST
.OBJ .VERB .TREE| , LIST I

*1 LOCATION i COURSE# I= IEE700 rDATE 1= 982

QUERY -- LIST THE TITLE, LOCATION, AND NAME FOR
COURSE# = EE700 AND DATE = 1982.

• During semantic analysis, the user will be asked
if he wanted TEACHER's NAME or STUDENT's NAME.

4(TEACHER's NAME will be used for future reference.)

ji Figure 3-2. The Tree Generated by the ANALYZER Program.

4 ANALYZER is described in detail in Chapter 5 of this

thesis under section "5.3 Description of the

Implementation".

24

, i "/ ". -...... ii : /"" "........ I-.~

UTOPIA describes how the access path detection and

.* generation [ref 3 ch. 4] are accomplished for the

* "relational model. The employment of occurrence

dependencies or attribute comparability relationships

provides the necessary information so that the same

algorithms for generating the data access paths for the

relational model can be applied to a UTOPIA data dictionary

representing a hierarchical or network type database.

UTOPIA uses two algorithms to perform the access path

analysis [ref 3 p. 63]. Algorithm #1 uses the information

contained in the COMPARE relation to generate a graph with

labeled edges representing which nodes (target relations)

are "connected" to which other nodes. This information is

used to load the CONNECT relation. Algorithm #2 uses the

graph to compute all of the paths from one node to all

other nodes by concatenating the labels of the edges

traversed from the starting node to all other nodes. The

associated path represented by the concatenation of the

node identifiers (relation id's which identify the target

relations) is also generated. Algorithm #2 loads the

necessary data into the PATH-IDENTIFIER and PATHNODE

relations.

Semantic analysis of the tree provided by ANALYZER

yields, among other things, a list of records, segments, or

relations that contain the items specified in the object

and qualification parts of the query. Comparing this list

with the possible access paths for the database, an access

" "25

e

path can be chosen, if one exists, which provides access to

all of the records, segments, or relations in the list.

The access path, the object and qualification parts,

and the verb are all the information needed to build the

final query definition tree structure. An example of a

query definition tree is provided in Figure 3-3 for the

sample query described in Figure 3-2.

LIST

Choose only the TITLE, LOCATION, and NAME
fields from existing segmentsI I

iJ Choose only segments with DATE = 1982

Choose only segments with COURSE# = EE700

Combine COURSE/OFFERING with TEACHER CE~HER

Combine COURSE with OFFERING

COURSE OFFERING

1. Assume the Occurrence Dependencies are:
COURSE-->PREREQ, COURSE-->OFFERING,
OFFERING-->TEACHER, and OFFERING-->STUDENT

2. Assume the access path to be used is:
COURSE -- OFFERING -- TEACHER

Figure 3-3. The Query Definition Tree.

The access path defines the records, segments, or

relations necessary, so they should appear first (at the

.2

.. . , - -- w .. ad mm md ----,- mm - W hmmmm " - -- NW mmmm ,26

bottom of the tree, using postfix ordering). Next, the

*data file length" to be used for subsequent processing

should be narrowed down by processing the qualification

statements which appear next up the tree. Next, only the

data items in the object are necessary for the action of

the verb, so an additional qualification statement would

appear next up the tree which would reduce the "data file

width" to only those data items. Finally, the verb would

be placed at the top of the tree.

3.4 Conclusion

In this chapter, a universal query definition

structure for AQERS has been defined. UTOPIA was shown to

provide support for the implementation of such a

structure. Finally, an example was provided to show the

query at different stages during query resolution

:(completion of syntax checking and building the final
query definition tree).

- 27

* : Chapter 4 A Universal Data Manipulation Language

4.1 Introduction

In Chapter 3, a universal query definition tree

structure for AQERS was presented, and it was shown that

our query resolution system can generate this query

°i definition for queries against a database of any of the

three data model types. The next step in the processing

is the execution of the query against the database. This

requires that a translator program take the query

definition tree and create the actual query language

program that accesses the database. These translator

programs are DBMS dependent since the acceptable inputs

91 and definitions vary from one DBMS to another. It would

be necessary to have a translator program for each DBMS

with which the query resolution system interacts. In this

chapter, a data manipulation language (DML) system is

presented that can process queries against a database,

regardless of its data model type. The presentation

consists of a discussion of the concept, a definition of

the data structures used, a Structured English depiction

of the data structures and algorithms defined, and a brief

discussion of the foreseeable problems with implementing

the system.

4.2 Discussion of the Concept

, To reduce the need for terminologies for each of the

data model types involved, terms are defined that will be

4I 28

used throughout the remainder of this chapter: a tuple,

segment occurrence, or record occurrence will be called a

record; individual data item fields within a record will be

known as elements; and, records (in network type systems),

segments (in hierarchical systems), or relations (in

relational systems) will be referred to as files.

This DI4L system would use an automated computer

program generating system to create a source file for an

application program that would use the database's files as

data files and process the query given in the query

definition tree. The programming language generated would

have to support sophisticated record structures and define

and access the database's and the program's data files.

The program generator would have to be able to access the

data dictionary and query definition tree in order to

define the file and record structures needed. After the

source file is created, the DML system would cause the

application program source file to be compiled and

executed, and return to the DML system when the application

program's execution was finished.

The basic concept of the application program is to

create a single file of valid sequentially stored record~s

- 1 from all of the files specified in the object part of the

quer deiniiontree. Another intermediate file would be

created which would contain only-those records from the

previous file which meet the qualifications specified in

the query definition tree. Yet another intermediate file

6 29

would be built that would contain records whose only

elements would be those specified in the object-part of the

query definition tree. Finally, the verb would tell the

system what to do with this final intermediate file. Each

of these steps is discussed in detail.

The query definition tree defines which files will be

used for the query. The DML system needs access to the

data dictionary of the database to get information about

the number, location, and types of elements in each record

on each file so that the respective records and files can

be defined within the application program. For each

database file to be accessed, there should be a "while not

end-of-f ilew loop. The loops should be nested according

to a postf ix retrieval ordering of the file nodes within

the query definition tree. Before entering each loop, the

file should be RESET to the first logical record in the

file. Inside each loop, the next loop is executed followed

by reading the next (REAPNEXT) logically sequential record

in from the file. Inside the deepest nested loop, the

4k

records are concatenated and written to a SYSTEMFILE.

This file becomes the current SYSTEM..FILE.

4 The next step in building this single file is to check

*for the attribute comparability relationships that occur

*1 within each record. The current SYSTEM-FILE is scanned,

and each record is checked to see if each set of

* comparable attributes within the record has the same value.

If they do, then the record is written to a new

* 30

SYSTEMFILE; otherwise, the record is considered an invalid

record and skipped. On end-of-file on the current

SYSTEMFILE, the new SYSTEM-FILE becomes the current. This

file represents the "natural join" of the target

QUERYFILEs.

The next part of the application program is the

satisfying of the qualifier part of the query. The steps

involved in this iterative process are: 1) retrieve the

qualifier part of the query from the query definition tree,

2) RESET the current SYSTEMFILE, 3) compare the specified

value of the element in the first (second, third, ...)

qualification against the value of the same element in the

record, 4) if the record's element qualifies, then the

record is written to a new SYSTEMFILE, 5) READNEXT record

from the current SYSTEM_FILE, and 6) if not end-of-file on

the current SYSTEMFILE, then repeat steps 2-6; else if

end-of-file is true, then make the new SYSTEMFILE the

current SYSTEM-FILE, and repeat steps 2-6 for each

qualification.

The next step in the application program is to build a

file, from all of the qualifying records, whose only

elements are those specified in the object part of the

*~ query definition tree. This is done by 1) RESETing the

current SYSTEM-FILE, 2) putting the values of the elements

specified by the object-part into the elements of a

SYSTEMRECORD and writing this SYSTEMRECORD to a new

SYSTEM_FILE, 3) READ_NEXT record from the current

31

SYSTEM_FILE, and 4) if not end-of-file, repeat steps 2-4;

else if end-of-file, then make the new SYSTEM_FILE the

current one.

The last part of the application program is the

processing of the action of the verb, from the query

definition tree, on the current SYSTEM_FILE. This could be

handled by a case statement or an if-then-else statement in

which all possible verbs are specified. When the verb

matches a "case" or an "if", then the action would be

carried out, e.g. SHOWing the file on the CRT, PRINTing the

file on the line printer, or STOREing the file on the disk.

4.3 Definition of the Data Structures Involved

All of the information necessary to define the data

structures involved in the algorithms is available in the

query definition tree and the data dictionary. For each

file used in the tree, a QUERYFILE would be defined whose

elements correspond in definition to those in the file. An

assumption is made here that the name of the file in the

tree is the same as the DBMS system name for that file.

This may be an invalid assumption, and if so, another data

dictionary table could be defined in which the DBA would

"4 provide the DBMS system name associated with each target

file in the database. This relation could be used in

conjunction with the query tree to define the names of the

QUERYFILEs. Two SYSTEM_RECORDs are necessary for any

query. SYSTEMRECORD_1 contains all the elements in all

32

L. the QUERYFILEs so that their records can be concatenated

and written to and read from a SYSTEMFILE; SYSTEM_RECORD_2

contains only those elements specified in the object part

of the query so that these elements can be written to and

read from a SYSTEMFILE in a record format. Three

SYSTEM_FILEs, those into which intermediate data is placed,

are necessary to perform any query. The first one is for

the combination of all the QUERYFILEs; the second one is

used with the first during the creation of the natural join

from the initial combination of the QUERYFILEs and during

the processing of the qualification part of the query. The

second SYSTEMFILE acts as the new SYSTEM-FILE when the

first is the current SYSTEM_FILE and vice versa. The third

!(SYSTEM_FILE is the file generated containing only those

elements specified in the object part of the query

definition tree and is necessary since it is of a different

record type.

.IAPPENDIX A provides a Structured English example of

the application program described by the data structures

and algorithms presented. The query and query definition

tree used in this example are those defined in Figures 3-2

and 3-3, respectively. The example query is made against

!0' the database described by Figure 1-2, and it is assumed

that the DBMS system names for the files are the same as

" those that appear in the tree.

4.4 Foreseeable Problems

Three problems are immediately obvious in discussing

- I 33

this system: getting access to an acceptable automated

computer program generating system, defining the DBMS

dependent functions used within the algorithms, i.e. RESET

and READ_NEXT, and being able to schedule the compilation

and execution of a source file from a program and then

returning to the scheduling program.

There is currently no automated computer program

generating system that can generate the application program

described using the database's data dictionary and the

S- query definition tree as inputs. This problem could be

solved by either buying such a system commercially or

developing the system "in-house" via future class projects

or thesis work.

* The definition of the DBMS dependent function is a

more complex problem. The functions depend upon how the

particular DBMS physically stores the data in the files.

The storage method may vary not only between the DBMSs, but

between the files within a DBMS. Consider the storage

methods of the following DBMSs, one from each data model

type.

-! System R is a relational system. Relations in System

R are represented as stored files. The file is identified

at the Research Storage Interface by a numeric identifier

called a relation ID (RID). The relational data system is

responsible for mapping relation names to RIDs. Records in

the stored file represent rows of the relations and are

stored a string; however, each string consists of a prefix

34

containing control information followed by the stored

representation of the tuple information. All elements

within the record are stored as string type data (including

floating point numbers) and variable length elements

contain an indication of the element's length [ref 5

p. 173].

IMS is a hierarchical type DBMS. The records

comprising a physical database can be stored in any one of

four methods: the Hierarchical Sequential Access Method

(HSAM), the Hierarchical Indexed Sequential Access Method

(HISAM), the Hierarchical Direct Access Method (HDAM), and

the Hierarchical Indexed Direct Access Method (HIDAM). The

stored database segment occurrence contains the data

-- exactly as the user expects -- along with a prefix which

the user does not expect. The prefix contains control

information for the record consisting of deletion flags,

71 segment type code, pointers and so on depending on the type

of access method chosen [ref 5 p. 313].

TOTAL is a network type DBMS. The data structures

within a TOTAL database are of two types: master records

(containing data elements which are not usually subject to

change) and variable records (which link master records and

contain more dynamic information). Referencing Figure 1-3,

the records labeled P and S are master records, while the

records labeled PS are variable records. The stored master

• records and variable records consist of control information

as well as data; however, all of the elements within a

*35

record are defined by the user and are thus definable in

the data dictionary. Where a master record is stored

within a file is determined by hashing the control key

field in the record to an address and chaining, if

necessary, to the next available space in the file. (The

hashing is done by a proprietary hashing algorithm.) The

variable records are stored sequentially in the variable

data files. Variable records relating to the same master

record are chained together in their file via pointers

contained in the control information of the record [ref 1

p. 221] [ref 11 p. 33-38].

As shown by these examples, a set of RESET and

READNEXT functions will have to be defined for each

target database within each DBMS. These routines should

consist of instructions in a language that are compatible

with our application program and the target DBMS and should

effect the return of the first logically sequential record

in a given file (RESET) and each succeeding logically

. sequential record in the given file (READ-NEXT). The

READNEXT routine should also be able to detect and set the

1 end-of-file condition.

The final problem represents an impossible situation

for the currently configured LSI-l1's in the DEL. They

can run in only a monoprogrammed environment (one program

4]in memory for execution at a time). The ability to

schedule the execution of a program, e.g. the compilerb

from an originating program and then reenter the

4 36

originating program requires 1) an operating system which

allows a multiprogramming environment and 2) more memory

i* than is currently available.

The new operating system would have to allow a program

to schedule another program and suspend its own execution,

which would be restarted upon completion of the scheduled

program. AQERS, with its large COMMON unit for the data

dictionary, requires all of the current memory. In order

to suspend the original program and compile and execute the

application program, more memory would have to be available

to load the compiler (or the operating system would have to

dump memory out to a disk file and read it back in when the

original program is to be restarted).
To solve this problem, an upgrade of the LSI-11 is

-I

necessary. The new system would need a more sophisticated

operating system and more memory.

4.5 Conclusion

In this chapter a universal DML system has been

defined. Algorithms were provided for combining the data

files, selecting only those records which qualify according

to the query, building a file with only the elements

4i desired for the action of the verb specfied by the query,

and performing the action of the verb. The data structures

used with these algorithms were defined and a sample

application program using Structured English was provided.

Finally, some potential hinderances to implementation of

ai 37

this DML system were discussed including additional

software needed (i.e. an automated source code generating

facility, DBMS dependent RESET and READNEXT functions, and

an improved operating system) and additional hardware

needed (more memory).

* .3

38

Chapter 5 The Query Resolution System

5.1 Introduction

The structure of AQERS resembles that of UTOPIA. The

purpose of this chapter is to provide an overview of

AQERS, a description of that part of AQERS that is

implemented, ANALYZER, and a discussion of the testing

facilties that were used (and are still available) for

testing ANALYZER.

5.2 Overview of the System

This system is divided into two parts: those routines

which perform the actual query resolution and those

routines used by the administrators to create and maintain

system information.

The QUERY program calls the other main programs in the

system: ANALYZER, SEMANTICS, and UNIVERSALDML. The QUERY

program asks the user to identify himself and the database

he wishes to query. This information is used to identify

which DIALOG the user will be using during syntactic

* analysis. If desired, the user's DIALOG may be updated at

this time. The database identified is referenced to a

table that defines where the target database exists and

:1 any other information that is necessary to interact with

the host DBMS and computer. Messages are sent to that

computer requesting the AQERS data dictionary for the

target database. When the data dictionary is received, the

QUERY program calls the ANALYZER system.

6| 39

The ANALYZER system allows the user to input his query

and analyzes it for syntactical correctness against the

user, database, and system DIALOGs, as well as the system

defined standard query constructs. The ANALYZER program is

described in more detail later in this chapter. The

output of the ANALYZER system is a tree representation

called REQUEST that defines the verb of the query, the

resultant data items which are the object of the verb, and

a subtree which contains the relational and logical

expressions comprising the qualifications for the query.

Upon completion of the construction of this tree, ANALYZER

returns to QUERY.

SEMANTICS is then called by QUERY. SEMANTICS performs

semantic analysis on the query defined by REQUEST and

chooses a logical data access path for the host files

(relations, segments, or records) of the data items

involved in the object part of the query. The semantic

analysis includes verifying that the data item names exist

in the database, finding out which host files contain each

of the data items (including resolving any ambiguities

involving the same item name in different files through

interaction with the user). The domains of each argument

in the qualification part are checked for validity

*" (according to the data item definition in the data

dictionary), and the arguments on both sides of the

relational and arithmetic operators are checked for

compatibility. After the data access path is defined (if

40

possible), the output from SEMANTICS is generated. This

output consists of the query definition tree as described

in Chapter 3, and following the completion of its

construction, SEMANTICS returns to QUERY.

UNIVERSALDML is the next routine called by QUERY.

Before UNIVERSALDML is called, QUERY sends messages to the

target database's host computer requesting the database's

file access routines, i.e. RESET and READNEXT. After

receiving them, UNIVERSALDML is called. UNIVERSALDML,

using a source code generating facility, creates an

application program for the query defined by the query

definition tree. UNIVERSALDML then causes this source

code file to be compiled and executed. During execution,

the application program interacts with the host DBMS of the

target database via the RESET and READNEXT routines.

This interaction yields a local data file whose records

are a valid combination of the records in each of the files

defined by the query definition tree. Subsequent files are

built from this file whose contents represent the selection

of only qualifying records and, finally, the projection of

only selected data items. The action of the verb is

4I performed on this final file. With the query completed,

control is returned to QUERY, and the user may continue

processing or exit the system.

Routines necessary for the creation of the data

dictionary include routines that allocate and initialize

the storage and call the remaining creation functions. The

b.4
' . " ' P ' , ' • " " " ' d I.,. ' , d m " ,- '--,d,, ~ m, " :' " mmm~41m "

.different data dictionary tables have to be loaded with the

basic structural and syntactic information from the target

database schema. The administrator will also have to

supply attribute comparability information, the location of

the target database (and other information necessary to

access it), and the names, as stored by the host DBMS, for

each of the relations, segments, or records defined in the

data dictionary so that the UNIVERSAL_DML will work

properly. (These last two tables are not defined by UTOPIA

and are not in the current implementaton of the data

dictionary.) Finally, routines which generate and store the

" 'data access path information in the data dictionary are
-i.1

necessary.

To maintain the DIALOG files, routines are necessary

to allow additions and deletions (changes can be effected

with these two options) to each of seven files at each of

three levels (user, database, and system). Recall that the

user may update his DIALOG during execution of the QUERY

program. The ability to repack files from which deletions

are made must be available to keep used file space at a

minimum.

7-i 5.3 Description of the Implementation

As part of this thesis effort, one portion of AQERS

was implemented, i.e. ANALYZER -- the program which accepts

* the query and analyzes it for syntactical errors. The

analysis is done via a set of files, called the DIALOG, and

*I 42

several procedures.

The DIALOG is what allows ANALYZER to handle the

"natural language" quality in queries. The DIALOG consists

of seven files: PATTRNJATCH, NOISEPHRASE, VERBS,

SEPARATOR, ATTRIBUTESYNONYM, OPERATOR, AND VALUESYNONYM.

In each case except NOISE-PHRASE and SEPARATOR, the records

contain substitute values for some part of the query which

allows the query to be transformed from something the user

wants to something the system can understand. Each record

in a file has a two character prefix which identifies

"whose DIALOG" that record belongs to. The record in a

DIALOG file can exist at one of three levels: the user

level, the database level, and the system level. Each of

these levels defines a separate DIALOG within the same

file. For example, a user's DIALOG consists only of those

records in the file that have his prefix code (the

INDEX_USER value in the program) in them, and the same is

true for other users, different databases (the DB_INDEX

value), and the system DIALOG. (There is only one system

DIALOG, prefix code of '00', but there can be any number of

user and database DIALOGs.)

The routines comprising ANALYZER are ANALYZER, the

* COMMON unit, the common procedures (POSTFIX and

FIND_RIGHT_PAREN), COMMENTDRIVER, FREEOBJECTLIST,

FREETREE, PREPAREPHRASE, FIND_PATTERN, NOISEWORDDELETE,

* VERBSEARCH, FINDPHRASE, FIND_EXPRESSION,

- .FIND_VALUE_SYNONYM, BUILDTREE_UP, RELATION_PHRASE_

.43

ANALYZER, FINDRELATIONALORLOGICALOPERATOR (FIRLLGO),

EVALUATE_EXPRESSION, BUILDTREE, LIST_OBJECTS, and

LISTTREE. Some of these procedures contain internally

defined procedures, usually because of UCSD Pascal compiler

limitations on the size of a procedure, which will not be

discussed. The size of the ANALYZER program and the AQERS

COMMON unit required that segmentation be used, therefore

*several procedures are grouped together under module driver

routines which form the segments. These routines are

named MODIDRIVER, MOD2DRIVER, MOD3DRIVER, REL_PH_ANL, AND

FINVALSY. For more information on the segments see

APPENDIX B, Bringing Up the ANALYZER Program.

The ANALYZER program is the starting point for

Sprocessing a user's query. A TRACE may be turned on which

allows the user to view the flow of control through the

different procedures as well as the values of key variables

during analysis of his query. The user may input comments

about the system (COMMENT_DRIVER is not currently

implemented), and the user may input his query.

A query is expected to have a verb and an object

(unless the user chooses to use the default verb, LIST, in

which case, the query needs only an object). For example,

in the query "LIST ADDRESSES.", LIST is the verb and what

the user wants to see listed is ADDRESSES (the object). A

query may contain a qualification part separated from the

object by a separator. For example, in the query "LIST

ADDRESSES WHERE NAME=SMITH.", LIST is the verb, ADDRESSES

44

is the object, WHERE is the separator, and NAME=SMITH is

the qualifier of the query so that only the addresses of

the people named SMITH will be listed. Suppose the user

has input a query. The analysis of the query follows these

steps:

1. The pointers to the object and qualification parts

in REQUEST are set to NIL by FREEOBJECTLIST and

FREETREE.

2. The query is prepared for analysis by

PREPAREPHRASE. The system keys off of a blank to

define entities within the query (e.g. item names,

arithmetic, logical, and relational operators,

-'l numbers, etc.) so it makes sure that there are

blanks separating these things. It also changes

the exponentiation operator ("**") to "I" to remove

ambiguity with the multiplication operator ("*").

3. FIND_PATTERN checks to see if any patterns in the

valid records of the PATTRN_MATCH file occur in the

query. If so, then patterns are replaced by the

substitute values in the records.

4. NOISEWORD_DELETE checks each entity in the query

against the valid records of the NOISE-PHRASE file.

When matches are found, the entity is deleted from

the query.

5. VERBSEARCH checks the query for a valid verb

according to the valid records in the VERBS file.

The first entity in the query is expected to be a

4| 45

valid verb, and if it is not, the default value

LIST is assumed to be the verb. If the first

entity is a valid verb, then the substitute value

in the record is used (e.g. LIST, PRINT, OUTPUT,

and SHOW might all have the same substitute value

of LIST) and the first entity in the query is

deleted.

6. FINDPHRASE checks each entity in the query against

the valid records in the SEPARATOR file, looking

for a separator. If a separator is not found then

OBJECTPHRASE (the object) is assumed to be the

rest of the query. If a separator is found, then

OBJECT_PHRASE becomes everything before the

separator and RELATIONPHRASE (the qualification

part) becomes everything after the separator.

7. FIND_EXPRESSION checks for any relational

expression (delineated by parens) within

1OBJECTPHRASE. If any are found, they are deleted
from OBJECTPHRASE and added to the object list.

8. FINDVALUESYNONYM checks the entities in the

OBJECTPHRASE against the valid records of the

VALUESYNONYM file. Matches are assumed to be

adjectives that qualify some object element, so the

entity is deletd and a value substitution is added

to the subtree (via BUILDTREEUP) representing the

qualification part of the query. For example,

K suppose "LOCAL ADDRESS" appears in OBJECTPHRASE

46

and LOCAL appears in the VALUESYNONYM file. LOCAL

would be deleted from OBJECTPHRASE and some value

substitution, e.g. "ADDRESS=DAYTON", would be added

to the subtree.

9. FIND_OBJECTS checks for each entity in

OBJECTPHRASE against the valid records of the

ATTRIBUTESYNONYM file to see if the entity has a

synonym. Entities with valid suffixes (currently

only "S" and "ES" are implemented) that were not

found are checked again. If an entity is matched,

then the synonym is added to the object list. If

no match is made, the entity itself is added to the

list. In no case will "AND" be added to the list.

Additions to the list are made by

BUILDOBJECTLIST.

10. If there is a RELATIONPHRASE, RELATION_PHRASE_

ANALYZER processes it. FIND_VALUESYNONYM is

called to make any necessary substitutions in

RELATIONPHRASE, and RELATIONPHRASEANALYZER

finds where in the subtree the elements of

RELATIONPHRASE will be added. BUILD_TREE is

called to identify the elements and add them to the

subtree. Arithmetic expressions are placed in

postfix order (by POSTFIX) beford being added to

the subtree by EVALUATEEXPRESSION. The only valid

6 logical operators are AND, OR, NAND, and NOR. the

only valid arithmetic operators in POSTFIX are "I"t

6- 47

"* "/" "+ "-", and the unary operators "+"

and "-'. FINDRELATIONALORLOGICALOPERATOR

(FIRLLGO) matches each word in the phrase

against the valid records of the operator file to

find either a relational or logical operator.

FIRLLGO sets a return parameter whch BUILD_TREE

uses to process a relation phrase or a logical

phrase. BUILD_TREE processes the left and right

sides of a phrase separately, recursively calling

itself until the entire RELATION_PHRASE is

processed.

11. Finally, if TRACE is active, the REQUEST object

I list and subtree information will be printed out by

(1 LISTOBJECTS and LIST-TREE, respectively.

] 5.4 Testing the ANALYZER Program

The current implementation is very well suited to

testing. Part of this was by design and part grew out of

necessity. The TRACE option allows the user to follow the

flow of control from one procedure to the next and watch

the values of key parameters as the query resolution

process takes place. A SEGMENT PROCEDURE must reside

inside of a program in order to be compiled, and these

programs are usually "dummy" programs consisting only of

"BEGIN END." However, the dummy programs of this

implementation are calling programs for the segment, and

they allow the segments to be executed separately. The

dummy programs allow an option of which procedure in the

S. 48

K

segment is to be tested amd then request values for the

appropriate input parameters for the chosen procedure.

* With this configuration, the tester can input any

variation of input parameters to a given procedure until

he is satisfied that the entire procdeure has been

tested. In this mode of testing the TRACE option is

always turned on. An additional program called TEST.TEXT

was necessary to test the COMMON units procedures, POSTFIX

' and FINDRIGHT_PAREN, since a unit does not require a

program to be compiled. The TEST program works much like

the dummy programs mentioned except no option is necessary

-1 (FIND_RIGHTPAREN is so short that no separate testing was

unnecessary).

Time ran out for coding before the procedures could be

written that would allow the DIALOG files to be loaded and

1 maintained. Code was added to the procedures that use the

files so that a tester can define a file record to be used

as if the record was found on the file itself. The tester

must accustom himself to this process, since, depending on

the procedure, the tester may be asked if he wishes to

define a record once, three times (once for each level of

DIALOG), once for each entity, or three times for each

entity.

Each procedure was thoroughly tested in the segment

test mode before being linked into the single code file

mode for system testing. The benefit of testing a system

like this is that for a given input parameter, if the

49

procedure works in the segment test mode, it should work in

the system test mode. This is true because the same code

file used in the segment test is the one linked into the

system code file. (See APPENDIX B for more details about

linking the system.) If the system test does not work for

the same input values, it can be safely assumed that the

problem is external to the segment being tested.

5.5 Conclusion

This chapter covers the proposed query resolution

system, AQERS. An overview of how the system will work and

what will be included in the system is provided. The

implementation of ANALYZER is discussed including the

ET DIALOG concept-and implementation, the formation of queries

for the system, the flow of control through the procedures

during the syntactical analysis, and the testing

facilities available for ANALYZER.

4

50

Chapter 6 Summary, Recommendations, and Conclusion

6.1 Summary

The purpose of this thesis was to provide an interface

system, to be executed on a minicomputer, that would allow

a user to query a database, without regard to the host

DBMS, as long as the subject computers could communicate

with each other. To this end, research was done on

existing query resolution systems, query definition

structures, and universal data manipulation languages.

In Chapter 2 of this thesis, three qu ry resolution

systems (i.e. REGIS, EUFID, and UTOPIA) were presented. An

overview was provided for each of the systems. A set of

judging criteria was presented, and each of the syctems was

rated against these criteria. The systems were then

compared and UTOPIA was chosen to be the base system for

this thesis effort since it was one of the two best and the

least expensive to acquire of those two.

A query definition structure that can define a query

of a database of any data model type is proposed in Chapter

3. The idea for the structure came from the parse tree

structure which can be used to describe relational queries.

The information necessary to build the structure as well

as the information the structure would contain is defined.

This structure would be generated during execution of the

SEMANTICS part of the query resolution system and would be

used as input to UNIVERSALDML.

51

The Universal Data Manipulation Language System

(UNIVERSALDML), as described in Chapter 4, would generate

a source code file that represents an application program

for the query as defined by the query definition structure.

UNIVERSALDML would also compile and execute this source

code file, thereby completing the query resolution process.

Algorithms are provided for generating the source code

file, and there is a discussion of some problems with

implementing the UNIVERSALDML system.

In Chapter 5, an overview of the proposed query

resolution system, AQERS, is provided along with a

description of the implementation of this effort, the

ANALYZER program. The overview includes an analysis of the

flow of control during the query resolution process, the

inputs and outputs of each part of AQERS, and the programs

that database administrators will need to support AQERS.

The description of the implementation includes a discussion

of the DIALOG concept which allows the system to resolve

queries made using natural language, a brief discussion on

the possible structure of queries for ANALYZER, and a

detailed analysis of the flow of control during the

syntactical analysis part of query resolution. Finally, a

description of the testing facilities available in ANALYZER

are provided, including the ability to monitor the flow of

* control from one procedure to the next, the ability to

watch the values of key parameters during syntactical

analysis, and the ability to input records, simulating

S 52

DIALOG files.

6.2 Recommendations

APPENDIX C is a hierarchical chart depicting the

modules of AQERS and their current statii. The following

is a list of future projects necessary to implement AQERS

in its proposed form.

1. Develop the system for DIALOG file creation and

maintenance. This system has not been designed; however,

the record structures for each file are defined in the

ANALYZER program, and the actual coding should be trivial.

When coded, the actual files must be implemented in the

ANALYZER program via Pascal "OPEN" and "CLOSE" commands in

the procedures that use the files.

2. Perform a requirements analysis on the size of the

arrays, relations, etc. in the data dictionary necessary to

define a single database. The sizes used in UTOPIA are to

handle up to 10 database declarations in a "Meta-base". In

the AQERS implementation, each database would have its own

data dictionary. Reducing the size of these storage

elements would reduce the size of the COMMON unit, as

implemented. Currently, the entire COMMON unit cannot be

implemented and much of it is "commented out". Reducing

the size of COMMON would allow larger segments or a

combination of segments, in ANALYZER's case. Combining the

MOD1DRIVER and MOD3DRIVER segments in ANALYZER would free a

segment. The QUERY calling program could then be

implemented as the main program, and SEMANTICS could be

53

*implemented under this configuration.

3. Develop the data dictionary creation routines.

These routines have not been designed; however, this

function is already performed in UTOPIA. Using this code

*i as a guide and remembering to include the two proposed

tables not in UTOPIA (one for associating a machine with a

database and one for associating the DBMS system names with

the data dictionary names for the records, segments, or

relations) (see Chapter 5.2 for more detail of these

tables), this coding should not be difficult.

4. Develop the software necessary to communicate and

transfer files (i.e. the data dictionary and the RESET and

READNEXT procedures) between computers.

5. Convert (from the PL/l programs in UTOPIA),

develop, and implement the SEMANTICS part of AQERS. This

should include the implementation of the universal query

definition structure.

6. Improve the hardware and software configuration of

the LSI-11 so that the UNIVERSAL_DML part of AQERS can be

implemented. The changes would consist of more memory and

an improved operating system (OS). The amount of

additional memory needed would not be known until the sizes

of the new operating system, the UNIVERSALDML system, and

the compiler were known (all would have to be in memory at

* the same time). A virtual operating system would take care

of the memory problem, but the new OS would at least allow

a program (AQERS) to suspend itself while another program

54

-(the query application program) is compiled and executed,

and then restart itself upon completion of the scheduled

program.

7. Develop the UNIVERSALDML system (including the

source file generating facility) which would create,

compile and execute an application program for a query

defined by the query definition structure.

6.3 Conclusion

AQERS, when implemented, will be a very powerful tool

in a network environment. From a mini-computer, a user

will be able to query any database on any machine with

which his computer can communicate. His query may be

(E formed using a natural language, and the user will not be

worried with which DBMS he must work with, what data model

type it is, which application programs he must use, etc.

All he will need to know is which database he wishes to

access and what his query is. AQERS will be a very useful,

user-friendly tool.

4'

I

4 55

References

1. Cardenas, Alphonso F. Data Base Management
Systems. Boston, Mass: Allyn and Bacon,
Incorporated, 1979.

2. Codd, E. F. et al "RENDEZVOUS Version 1: An
Experimental English-Language Query Formulation
System for Casual Users of Relational Data Bases,
IBM Research Report RJ2144 (January 1978).

3. Cousins, Thomas R. "A Methodology for the
Inferential Derivation of Retrieval Semantics
Utilizing a Relational View of a Meta-base," a
dissertation presented to the University of
Southwestern Louisiana, (December 1978).

4. ----- "Datapro 70 The zDP Buyer's Bible," volume 3,
section 70E. Delran, New Jersey: Mc Graw Hill
Book Company, 1982.

5. Date, C. J. An Introduction to Database Systems
(Third Edition). Reading, Mass: Addison-Wesley
Publishing Company, 1981.

6. Hardgrave, Terry W. "Ambiguity in Processing
Boolean Queries on TDMS Tree Structures: A Study
of Four Philosophies," Proceedings of the 5th
International Conference on Very Large Data Bases,
p. 373-397, (1979).

7. Joyce, J. D. and N. N. Oliver "REGIS -- A
relational information system with graphics and
statistics," AFIPS Proceedings of the National
Computer Conference (volume 45), p. 831-844,
(1976).

8. Kameny, I. et al "EUFID: The End User Friendly
Interface to Data Management Systems," Proceedings
of the 4th International Conference on Very Large
Data Bases, p. 380-391, (1978).1

9. Lien, Y. Edmund "On the Equivalence of Database
Models," Journal of the A.C.M. (volume 29 #2),
(April 1982).

10. Roth, Mark A. "The Design and Implementation of a
* Pedagogical Relational Database System," a thesis

presented to the Air Force Institute of Technology,
* Wright-Patterson A.F.B., Ohio, (Fall 1979).

56

11. ----- TOTAL Training Notes for VAX Computers.
Cincinnati, Ohio: CINCOM Systems, Incorporated,
1980.

12. Ullman, Jeffrey D. Principles of Database
Systems. Rockville, Md: Computer Science Press,
Incorporated, 1980.

"1 - 57

Unreferenced Bibliography

1. Chen, Peter The Entity-Relationship Approach to
Logical Database Design. Wellesley, Mass: Q.E.D.
Information Services, Incorporated, 1977.

2. Hsiao, David K. and M. Jaishankar Menon "Design
and Analysis of a Multi-Backend Database System for
Performance Improvement, Functionality Expansion,
and Capacity Growth," Ohio State University
Computer and Information Science Research Center
TR-81-7 (Part I, Chapter 3), (July 1981).

3. Kirby, J. and R. L. Kasyhap "An Approach for
Communicating with a Data Base Using English
Queries," IEEE Procedures of COMPSAC, p. 650-656,
(1977).

4. Lozinskii, E. L. "On query-answering in
relational data bases," AFIPS proceedings of the
National Computer Conference (volume 48),
p. 717-720, (1979).

5. ----- MULTICS PL/I Reference Manual (Series 60
Level 68). Honeywell Information Systems,
Incorporated, June 1976.

6. Pollack, Seymour V. and Theodore D. Sterling A
Guide to PL/l. New York: Holt, Rinehart, and
Winston, Incorporated, 1969.

7. Schneider, Lowell I. and Michael Levin "Data
Independent Accessing Methodology (DIAM)
Distributed Access," Rome Air Developmpnt Center,
Griffiss A.F.B., New York, (June 1981).

58

. . . I - . ..- ---

APPENDIX A

Structured English Example of the Application Program
for a Sample Query

PROGRAM QUERYAPPLICATION_PROG;

VARIABLES

QUERYFILE DECLARATIONS

(* THERE ARE AS MANY QUERY_DATA FILES AS ARE USED *)

(* IN THE FILES PART OF THE QUERY DEFINITION TREE *)

COURSE : FILE OF RECORD(COURSE#,TITLEDESCRIPTION);
OFFERING : FILE OF RECORD(DATELOCATIONFORMAT);
TEACHER : FILE OF RECORD(EMP#,NAME);

S(*SYSTEM_RECORD DECLARATIONS

(* ONLY TWO SYSTEMRECORDS ARE NECESSARY, ONE TO
(* COMBINE THE RECORDS OF ALL OF THE QUERY_DATA
(* FILES, AND ONE TO BUILD THE FILE WITH ONLY THE *)
(* OBJECT ELEMENTS IN IT

SYSTEM_REC_I : RECORD(COURSE#,TITLEDESCRIPTION,
DATELOCATIONFORMATEMP#,
NAME);

SYSTEM_REC_2 : RECORD(TITLELOCATION,NAME);

SYSTEM_FILE DECLARATIONS

(* THREE SYSTEMFILES ARE NECESSARY TO PERFORM THE *)
(* QUERY: ONE TO COMBINE THE QUERY_DATA FILES, ONE *)

4_ (* MORE TO CREATE THE NATURAL JOIN OF THE COMBINED *)
(* QUERYFILES AND PERFORM THE QUALIFICATION CHECKS,*)
(* AND A THIRD ONE TO REDUCE THE NUMBER OF ELEMENTS *)
(* TO ONLY THOSE SPECIFIED IN THE OBJECT PART OF
(* THE QUERY.

SYSTEM_FILE_1 : SYSTEM_RECORD_l;
SYSTEM_FILE_2 : SYSTEM_RECORDl;i
SYSTEM_:FILE_3 : SYSTEMRECORD_2;

BEGIN (* PROCESSING

(* SETUP_SYSTEMFILES MAKES FIRST PARAMETER READY
FOR READING AND SECOND PARAMETER READY FOR
WRITING *)

0 59

SETUP_SYSTEM_FILES(DUMMYFILESYSTEM_FILE_1);

RESET(COURSE); (* RETURNS FIRST LOGICALLY
SEQUENTIAL RECORD IN
FILE *)

WHILE NOT EOF(COURSE) DO
BEGIN

RESET (OFFERING) ;
WHILE NOT EOF(OFFERING) DO
BEGIN

RESET (TEACHER);
WHILE NOT EOF(TEACHER) DO
BEGIN

SYSTEMRECORD_1 := CONCAT(COURSEOFFERING,
TEACHER);

WRITE(SYSTEM FILE_ ,SYSTEM_RECORD_ jI);

(* READNEXT PROVIDES THE NEXT *)
(* LOGICALLY SEQUENTIAL RECORD *)
READ_NEXT (TEACHER);

END;
READ_NEXT(QUERYFILEB)

END;
READ_NEXT (QUERYFILEA)

END; (* COMBINING THE RECORDS OF THE QUERYFILES *)

(I€ SETUPSYSTEM_FILES(SYSTEMFILEISYSTEMFILE_2);
READ (SYSTEMFILE_1, SYSTEMRECORDI);
WHILE NOT EOF(SYSTEMFILEI) DO
BEGIN

(* CHECKCOMPARABLEATTRIBUTES IS A FUNCTION
WHICH CHECKS ALL OF THE COMPARABLE
ATTRIBUTES FOR AN INPUT RECORD AS DEFINED
BY THE "COMPARABILITY" TABLE IN THE DATA
DICTIONARY. IT IS TRUE IF EACH SET OF
COMPARABLE ATTRIBUTES IS EQUAL AND FALSE
IF THEY ARE NOT *)

IF CHECKCOMPARABLE_ATTRIBUTES(SYSTEMRECORDI)
= TRUE THEN WRITE(SYSTEMFILE_2,

SYSTEMRECORD_l);

READ(SYSTEMFILE_1,SYSTEMRECORDI)

END; (* NATURAL JOIN OF COMBINED QUERYFILES *)

4
(* COMPARE RECORDS AGAINST QUALIFICATIONS OF THE *)
(* QUERY DEFINITION TREE

GETNEXTQUALIFICATION; (* RETURNS FIRST

A QUALIFICATION WHEN CALLED
THE FIRST TIME *)

" . WHILE (MOREQUALIFICATIONSTOPROCESS) DO
BEGIN

SETUPSYSTEMFILES(SYSTEMFILE_2,SYSTEMFILEl);

60

READ(SYSTEMFILE-2,SYSTEMRECORDJ1);
WHILE NOT EOF(SYSTEMFILE-.2) DO
BEGIN

IF QUALIFICATION = SYSTEMRECORD_1l.SAMEELEMENT
THEN WRITE(SYSTEM FILEJrSYSTEMRECORD_1);

READ(SYSTEMFILE_2,SYSTEMRECORDJ-)
END;
GET_-NEXT-QUALIFICATION (*RETURNS THE NEXT

QUALIFICATION WHEN
CALLED AGAIN *

END;

(EXTRACT ONLY THOSE ELEMENTS AS SPECIFIED IN THE *
(OBJECT PART OF THE QUERY DEFINITION TREE AND
(PUT THEM IN A FILE

(MAKE CURRENT READY FOR READING AND SYSTEMFILE_3 *
(READY FOR WRITING

SETUP_-SYSTEMFILES(SYSTEM-FILE_1,SYSTEMFILE_3);

READ(SYSTEMFILE_1,SYSTEMRECORDJ-);
* I WHILE NOT EOF(SYSTEM-FILE..1) DO

BEGIN
SYSTEMRECORD_2.COURSE#:

SYSTEM-..RECORD_1 l.COURSE#;
SYSTEMRECORD_-2.LOCATION:

SYSTEM-RECORD_1 .LOCATION;
SYSTEMRECORD_2.NAME := SYSTEMRECORD_1.NAME;

* WRITE (SYSTEMFILE-3,SYSTEMRECORD_2);
READ (SYSTEMFILE1 ,SYSTEMRECORDJ1)

END;

(PERFORM THE VERB, AS SPECIFIED IN THE QUERY DEF *
(TREE, ON THE OBJECT FILE

GET-VERB; (* RETRIEVE VERB FROM QUERY DEFINITION
.4 TREE

(MAKE SYSTEMFILE_3 READY FOR READING *
SETUPSYSTEMFILES(SYSTEMFILE3,DUMMY.YILE);

IF VERB = 'PRINT' THEN
OUTPUT(LINEPRINTERSYSTEMFILE_3);

* ELSE IF VERB = 'LIST' THEN
OUTPUT (CRT, SYSTEM-FILE-3)

ELSE IF VERB = 'STORE' THEN
WRITE(CRTr'SYSTEM-FILE_3 IS STORED ON DISK')

ELSE WRITE(CRTVERBr' IS NOT AN IMPLEMENTED VERB');

END. (~QUERYAPPLICATIONPROG *

6 61

-APPENDIX B

User's Guide: Changing the System

Overview

Please refer to sections 3.3.1 and 3.3.2 of the UCSD

Pascal Version II.0 reference manual and current program

listings before trying to change the system.

The program is currently divided into a main body

segment, five segment procedures and a unit. Each segment

is contained in a dummy program in order to permit separate

compilation. The unit contains all types, variables, and

procedures which are global to more than one segment. Thus

by including the unit in each dummy program, access is

allowed to those elements. The format for each segment

procedure is:

PROGRAM dummy-name;
USES COMMON; (*the unit is named COMMON*)
SEGMENT PROCEDURE name(parameter-list);

Local types, variable, and procedures;
BEGIN

1body of name;
END; (*name*)
BEGIN
END. (*dummy name*)

-4 Since the segments are separately compiled, the

parameter list of the segment procedure must contain all

global variables accessed or modified by the procedure.

*The program or segment procedure'which calls each segment

procedure must have a dummy segment procedure with the same

name, so that it may compile properly. The format for the

62

main body segment is:

PROGRAM main;
USES COMMON;
local labelstypes,constants, and variables;

SEGMENT PROCEDURE namel(---
BEGIN
END; (*namel*)
SEGMENT PROCEDURE name2(---
BEGIN
END; (*name2*)

other local procedures;
BEGIN

body of main;
END. (*main*)

The format for segment procedures which use other

segments is the same as the previous format for a segment

procedure except dummy segment procedures are included as

local procedures.

Each segment procedure has a particular segment number

from 11 to 15 associated with it. The main body segment

has number 1 and the unit has number 10. Other numbers are

for Pascal use only. The way numbers are assigned to the

segment procedures is in first compiled, first numbered

order. Thus, in the above format for the main body segment

namel would be assigned 11, name2 assigned 12, etc.

Therefore, in each dummy program used to define a segment

procedure, an appropriate number of dummy segments must

'exist before the defined segment to ensure that the segment

count is the same. Thus, for example, the format for

segment name2 would be:

63

._ _ _ ~ - - - - ~ , . .~~------_-

PROGRAM dummy name;a USES COMMON;
SEGMENT PROCEDURE dummy namel;
BEGIN
END; (* dummy namel *)
SEGMENT PROCEDURE name2(---

local labels, types, etc.
BEGIN

body of name2
END; (*name2*)
BEGIN
END. (*dummy name*)

The unit -- COMMON -- is compiled and placed in the

system library using the librarian program, LIBRARY.CODE.

(See section 4.2 of the UCSD Pascal manual.) When each

program is compiled, the unit is retrieved from the system

library and used in the program. However, each program

must still be linked with the system library in order to

, .bind the external variable and procedure references into

* ~ the unit. After each program is compiled and linked, then

the librarian may be used to put all the segments together

into one code file. Each code file containing the segment

is retrieved and linked into the proper space of the final

code file using its assigned segment number into the

overall file.

The UCSD Pascal INCLUDE directive (see section 1.6.1

of the UCSD Pascal Manual) allows text files to be included

*in a segment without inserting the actual source code. The

location of the include files, relative to the segment

procedure, becomes very important since the disk that the

include file is on must be stated in the segment procedure

source code.

64

If a particular segment, including the main body

segment, is to be changed then the steps to be followed

are:

1) Change the source code for the segment.

2) Compile the program containing the segment.

3) Link the code file to the system library.

4) Using the librarian create a new overall file

passing all unchanged segments to the new file and

linking in the changed segment.

If the unit has to be changed then after compiling it

and placing it into the system library, each program must

be recompiled, linked to the system library, and then put

together with the librarian.

Bringing Up the ANALYZER Program

To bring up the Data Definition Facility the following

steps should be followed:

1. First, compile COMMON.TEXT, making sure that its

include files (POSTFIX and FIND_RIGHT_PAREN) are

available such that the object code resides in

COMMON,*CODE.

2. Execute the System Librarian by typing OX" at the

system level. The following prompt line will

appear on the CRT:

EXECUTE WHAT CODE FILE --- >

65

3. Enter "LIBRARY".

4. Next, the following prompt will appear:

OUTPUT CODE FILE --- >

5. Enter a "*" or "SYSTEM.LIBRARY".

6. Next, the user will be prompted as follows:

LINK CODE FILE --- >

7. Enter #COMMON.CODE where # is #4/15 and the screen

will appear as follows:

LINK CODE FILE --- > #COMMON.CODE

0- 0 4- 0 8- 0 12- 0
1- 0 5- 0 9- 0 13- 0
2- 0 6- 0 10-COMMON 14- 0
3- 0 7- 0 11- 0 15- 0

OUTPUT CODE FILE --- > *

The user may now link the COMMON segment into segment 10 of

the output code file by typing a "10", (<sp>) and "10". In

addition to linking this segment into the SYSTEM.LIBRARY,

which resides on the system disk, the two segments PASCALIO

and DECOPS must also be linked back into the System

library, SYSTEM.LIBRARY. In order to do this, type "N" for

new. This indicates to the librarian that segments from a

new code file are to be put into the output code file.

The librarian will respond with the following prompt:

LINK CODE FILE --- >

S . Enter a or "SYSTEMLIBRARY".

66

-9. To link PASCALIO, type a "2", followed by a (<sp>),

then a "2".

10. To link DECOPS, type a "3", followed by a (<sp>),

then a "3".

Now, the SYSTEM.LIBRARY should look like the following:

0- 0 4- 0 8- 0 12- 0
1- 0 5- 0 9- 0 13- 0
2-PASCLIO 1824 6- 0 10-COMMON 14- 0
3-DECOPS 2092 7- 0 11- 0 15- 0

To exit from the Librarian do the following:

11. Type "Q" for QUIT.

12. ENTER (<cr>) to exit LIBRARIAN.

At this point, the ANALYZER software can be compiled.
This software resides in the following TEXT files:

ANALYZER - the executive for the ANALYZER program.

MODIDRIVER - the file that contains the source code

for the MODIDRIVER segment consisting of

a module driver and the following INCLUDE

TEXT files: COMMENTDR, FRE_OBJLS,

FREETREE, and PREPPHRAS.

MOD2DRIVER - the file that contains the source code

for the MOD2DRIVER segment consisting of

a module driver and the following INCLUDE

I TEXT files: FINDPATTE, NOIS_WRDD,

VERB_SEARC, FINDPHRAS, and FINDEXPR.

MOD3DRIVER - the file that contains the source code

for the MOD2DRIVER segment consisting of

a module driver and the following INCLUDE

67

TEXT files: LISTOBJEC, LISTTREE,

BLDOBJ_LS, and FIND_OBJEC.

RELPHANL - the file that contains the source code

for the RELPHANL segment consisting of

the REL_PH_ANL procedure and the

following INCLUDE TEXT files: FI_RL_LGO,

EVALEXPR, and BUILD_TREE.

FINVALSY - the file that contains the source code

for the FINVALSY segment consisting of

the FINVALSY procedure and the

BLD_TRE_UP INCLUDE TEXT file.

To link the ANALYZER source code together, continue

with the following steps:

13. Compile ANALYZER.TEXT, MODIDRIVER.TEXT,

MOD2DRIVER.TEXT, MOD3DRIVER.TEXT, REL_PHANL.TEXT,

and FINVALSY.TEXT making sure that their INCLUDE

files are available.

7 14. Once all the source files have been compiled

• ..•properly into their appropriate CODE files, they

can be linked together into one CODE file using

S4i~ the LIBRARIAN. To invoke the LIBRARIAN, repeat

:~j steps 2 thru 4. Once, the prompt has been

displayed, enter a valid CODE file name.

15. Next, the following prompt will be displayed:

LINK CODE FILE --- >

16. Enter the code file for ANALYZER. To link the

68

ANALYZER program into the output code file link

segment 1 to segment 1. Next, enter a "N" for

new. This will indicate to the LIBRARIAN the fact

that segments from a new code file are to be

linked into the output file. For the new code file

enter the code file for MODDRIVER. To link this

segment into the output code file, link segment 11

to segment 11. Continue this process, linking

MOD2DRIVER into segment 12, MOD3DRIVER into

segment 13, RELPH_ANL into segment 14, and

FIN_VAL_SY into segment 15.

17. To finish the linking process, PASCALIO, DECOPS,

and COMMON must all be linked into this output

code file. To do this type "N" and for the LINK

CODE FILE enter "" or SYSTEM.LIBRARY. To link

these segments into the output code file, link

segment 2 to segment 2, segment 3 to segment 3,

and segment 10 to segment 10. The output code file

should look like the following:

0- 0 4- 0 8- 0 12-MOD2DRIVER1-ANALYZER 5- 0 9- 0 13-MOD3DRIVER
2-PASCALIO 1824 6- 0 10-COMMON 14-REL_PHANL
3-DECOPS 2092 7- 0 11-MODiDRIVER 15-FINVAL_SY

18. The final step is to link the output code file by

executing the LINKER. To do so, type an "L" at the

Pascal system level. The following prompts will be

displayed:

69

Host file? enter output code file that contains all
segments to be linked.

Lib file? enter (<cr>).
Map file? enter any valid file name.
Output file? enter ANALYZER.CODE or some other

valid code file name, this will be the
executable code file.

Bringing Up Segments

Using the procedures mentioned above in step 18, a

segment can be linked for execution. This is posible

because the dummy programs in ANALYZER's segments are not

simply "BEGIN END.", but calling programs for the segment

procedures. After the segment is compiled, perform step 18

above. Instead of providing the code file that contains

all of the segments to be linked to the host file prompt,

Qr- give it the name of the segment code file to be executed.

When prompted for a lib file, return a "*" or

SYSTEM.LIBRARY. (You will be asked for another lib file

but give it a (<cr>) to signify there are no more.) Give

the same responses as specifed in step 18 for the last two

prompts, and your segment is now executable.

7

70

APPENDIX C

Hierarchical, Block Diagram of the Modules (Includig Statii)

of AQER3

PI

:1F

Vita

Michael D. Guidry was born on April 11, 1955 at San

Antonio, Texas. He graduated from Mc Allen High School at

Mc Allen, Texas in May, 1973. He attended the University

* of Texas at Austin on a four year Air Force ROTC

scholarship. Upon graduation in May, 1977, he received a

Bachelor of Arts degree in Computer Science and a reserve

commission in the Air Force. He went on active duty in

July, 1977, as was assigned to Headquarters 21st Air

Division, Hancock Field, New York, where he spent four

years in the Division of Program Maintenance. In June,

1981, he entered the School of Engineering at the Air Force

Institute of Technology.

Permanent Address: 330 Clovis Place
San Antonio, Tx 78221

72

r. UNCLASSIFIED
SECURI 'CLASSIFICATION OF THIS 014E (Whmemt,)j.nteed)__________________

KU REPORT DOCUMENTATION PAGE EFRE COSTRUTINSOR

1. REPORT NUhiDER 2 OVT ACCE SION NO. 3. RECIPIFtT'S CATALOG NUMBER

AIT/GC$/U/. ___________

4. TITL (and Sbtill)S. TPE OF K~p'.4 pAJ RIOO COVERED

DATA MODEL LNDDWUDKNT*, US~1 D 4 ___________

IUTMUACS TO P4XAW4#3I ,I "O ," * FRGR.ORT NUM99M

7. AUTHOR(s) 11 T. CQ4PACTPRGAe;TUERe

Capt UA

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PPOGPAM ELEMENT. PROJECT. TASK I

Air Force Institute of Tecbmlogy (AWIT/0) AE OKUI UBR

Vrigt-?attersoa An, Ohgj 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Doesdor 1922
IS. NUMBERPOF PAGE195

1.MONITORING AGENCY NAME 6 ADORESS(I different from, Controling Office) III. SECURITY CLASS. (of ti r"Pod)

4SSI DEkAIICATION/ OWNGRADING

1S. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution uinlialted.

tA~abh~7.. DISTRIBUTION STATEMENT (of the abstroct entered In, Block 20. It different *am, Report)

IS. SUPPLEMENTARY NOTES I S~1O-17.

Approved for public roles"e IM Anl 194 feeWpnI

It. KEY WORDS (Contirnue en reverse old* linecessy end identify by block nuinbor)

User-f riemdlyg Qmery Resoluton systee, Data model epm mt

UCID Pascal, Uaiversal Data Nestpulattow Lassuo"*

20. ABSTRACT (Contiu an fever"e side If nocoewy and Identify by block n11Imer)

A Interface systin was proposed that would give the usew the ability to
query a database, regardless of the boat ur. as long as the user's
comter could comunicae with the datsbase's beat computer

Iavestigations were "ado late misting query resolution systom, a"
query defiaItlon structures and usiversal data usaipulathca lesegss
were researced. WiLth this be@* Suad a base query resel"Ati @yet=

Do I ,,* 1473 EDITION OF I NOV 6S IS OBSOLETE

AN7

SURITY CLASSIFICATION OF THIS PAGE(When beta Bnte,.d)

was chosen, and additional capabilities for an aproved final query

. .. def Inition structure and a universa data manipulation gLumpae -wmr

proposed.

In this project, the syntactic analyst part of' the query resolutim
system was Implmented. The use of the Iaproved- .flutr'query
definition structure within the query resolution system was eid,
and a high level design of the UNIVERSAL DEL (Including a

V " pseudo-code representation of the resultant applicattm-Progsem),-14
presented. J J

V W

V.V,
*t".' jI

- *J,:2 .. L &j2

SECURITY CLAI1 FICATIO OF THIS PAGE{bIr Di.o

• - -J J,-",J- t " l- - IN I

