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Preface

The linear regression model is one of the most widely used quantit-

ative tools of the applied social sciences and many of the physical

sciences. The most common used techniques in this kind of model, is the

ordinary least squares because of its low computational costs, its in-

tuitive plausibility in a wide variety of circumstances, and its support

by a broad and sophisticated body of statistical inference. The least

squares tool could be used on 3-basic levels:

1. It can be applied mechanically, or descriptively, as a means of

curve fitting.

2. It enables us to perform hypothesis testing.

3. It gives a reasonable way of understanding complex physical

and social phenomena.

Let us now denote the regression model by

Y = X 6 + £ , where

X - is an N x k + 1 matrix,

-is an k + 1 x 1 vector,

- is an n x 1 vector, and

Y - is an N x 1 vector,

The assumptions for the least square method are:

1. E(c) = 0 i.e.

The expected value of the error term is zero

2 22. E(= - = a I: i.e.

All error terms have constance variance a and they are independent.

' 3. The X matrix is nonstochastic with rank p(x) = k + 1 i.e.

none of the columns of x is a linear combination of other columns.
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:: The estimators for the coefficients vector 0 which are-given as 0:

=(x x) - x Y

These estimators have the properties:

B1. is a linear function of Y.

2. E(O) = s i.e. unbiasedness

3. ' - (^- = a 2 -1

and the estimate for a is given by S where:

-2 Error sum of squares
SN-(k + 1)

4. The basic and most important assumption for that model is the assump-

tion of normality. The confidence interval and testing procedures are

all based on the normality assumption. It is true that normality assump-

tion is an important case and that it can sometimes be justified by the

central limit theorem, but it is equally true that the assumption is made

in many cases in which it does not really hold. There are two basic

questions arising in th**e case:

* 1) How serious are the consequences?

2) To what extent is a test "robust"?

i.e. To what extent is a test insensitive to departures from the assump-

tion under which it is derived?

In that concern appears two basic issues: - First: Tests which con-

• cern first moments (such as t-tests for elements of the parameter vector

0 of the expectation X0 in the standard linear model, are relatively in-

sensitive to departures from normality.

Second: Tests concerning second moments such as F-tests are much

less robust (see Kendall and Stuart 1967, pp. 455). Thus our search here

will be bascially for a robust technique that could be applied for estimat-

*" ing parameters of the linear model Y = X0 + c

v



Foreward

During the course "Linear Statistical Models" given in AFIT, I

started to be interested in the regression models due to their wide use
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applications themselves.

Robust linear regression model is an area of greater interest since

in many sets of data, there .are fairly large percentages of "Outliers"

due to heavy tailed models of errors in collecting and recording. Due

to the fact that these outliers have an unusually great influence on

"least squares" estiniators (or generalized least square estimators),

robust procedure attempts to modify those schemes. During a course by

Dr. A. H. Moore, Professor in the Department of Mathematics, Air Force

Institute of Technology, School of Engineering in robust statistics, I
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Dr. Moore about my interest in robust regression, we decided to make

-*i a search in robust multiple linear regression.
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multiple linear regression.
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Abstract

An extensive Monte Carlo analysis is conducted to determine the

performance of robust linear regression techniques with and without

outliers. Thirteen methods of regression are compared including least

squares and minimum absolute deviation. The classical robust techniques

of Huber, Hampel were studied and robust techniques using the Q-statistic

as a discriminant were introduced.

The model studied contained eleven variables with 27 observations.

The error distributions considered were uniformly normally, double

exponentially distributed.

Least squares gave the best fit without outliers. In the presence

of gross outliers a rejection of outliers technique gave the best fit.
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I. Introduction

Problem Statement

Regression analysis is a statistical technique for expressing the

relationship between variables in a mathematical form. Moreover it is

considered one of the most widely used statistical techniques due to its

large applications in almost every field. An earlier search has been

done by James E. Flanagan GOR/81-D to examine the use of Lp-norms and

distance estimation. Due to computer and algorithm limitations it was

only possible to examine the following linear models:

y= o+ XI + .

and

y= 0 + 1  X + 2 X2 +

However, the application envisioned is to try to improve the "pre-

dictive" operations and maintenance cost model (ALPOS model) developed

for Air Force Avionics Laboratory Systems Evaluation group. However,

their linear model used 20 independent variables. The earlier search

demonstrated the feasibility of a generalized approach to the regression

problem but was unable tohandle many independent variables.

This thesis envisions using a different approach (Adaptive) so that

many independent varialles (up to 100) can generally be handled.

Verification of the model can be made by comparing its prediction

capability with the prediction capability of the ALPOS model.

Review of Applicable Literature

The possible existence of non-normal error distribution having

infinite variance or with large tails, has led the statistician to a

search for estimators that are more "robust" than least squares (L.S.)
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estimators. By "robust" here one means a reasonably efficient estimator

regardless of the form of the underlying error distribution. When the

errors are i.i.d., normal random variables, L.S. estimator are efficient,

and so, the search is for estimators that are not much worse than L.S.

when the errors are normally distributed but are really better for non-

normal errors.

A large number of estimators, were suggested in a considerable body

of literature. For example, the surveys of Huber (Ref 43:1041) in which

a selective review on robust statistics, centering on estimates of loca-

tion and extending into other estimation and testing problems. In 1973

Huber (Ref 45:799) defined the maximum likelihood type robust estimates

of regression, and investigated their asymptotic properties both theor-

tically and empirically. Koenker and Bassett (Ref 55:33) introduced a

new class of linear model called "regression quantiles", which is a

simple minimization problem yielding the ordinary sample quantiles in

location model. This model generalizes naturally to the linear model.

The estimator which minimizes the sum of absolute residuals i5 an import-

ant case. Estimators were suggested, which have comparable efficiency

to least squ".-es for normal linear model while substantially out-perform-

ing the least squares estimator over a wide class of non-normal error

distributions. Another study was made by McKean, J and Hettmansperger,

Thomas for the general linear model based on one step R-estimates

(Ref 60:571). One step iterations based on a second derivative approxima-

tion to the surface was proposed. These estimates, can be obtained quick-

ly from initial estimates. Further the analysis resulting from these

estimates is asymptotically equivalent to the minimum dispersion analysis.

Thus it can be recommended for large data sets. In addition Maddala

2 2
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(Ref 57:308) surveyed the work done by Huber and Anscombe for minimizing
;..

S Yi k Xik Ok)

, with different definition of f for each of them. Then a discussion of

least absolute deviation minimization was discussed. Also a relevant

part of Mosteller (Ref 64:105) discussed different suggestions for solu-

, tion of non-normal error linear models. Finally, Narula (Ref 66:185)

suggested the minimization of the sum of relative errors (MSRE) as an

alternative to least squares. The problem is formulated as a linear

programming problem and a solution procedure is given.

Model Selected

The model selected is

y = 0 + 81 X1 + +- X + C

for the problem of property valuation. The objective is to predict y,

the sale price of a home for known value, of the variables X1 through

X which represent (taxes, number of baths, lot size, ..-. , lot size,

number of fireplaces). The data, 27 observations on variables (y, X1,

X 1) were obtained from Multiple Listing, Vol. 87 for area 12 (Erie,

PA).

Choice of Error Models

In order to see the behavior of the proposed adaptive technique, it

was necessary to add different error distributions to an exact fit of

data. The way it is done here is through getting an estimation for the

value of 8 as 8o and generating exact values for the y by multiplying

X by 0o

y = X 0

The choice of non-normal error distribution is basically dependent on the

3



tail length of the distribution. For the uniform case, it has smaller

tails, while for the double exponential it has thicker tails relative

to the normal distribution.

4



II. Methods of Estimation

As in the general decision problem, there is no single, best pro-

cedure for estimating the parameters of a distribution. In a given case

under study, it may be advisable to use the method of moments, Bayes

estimates, minimax estimates, or maximum likelihood estimates.

Methods of Moments

This method is oldest method of estimating parameters, which was

devised by K. Pearson about 1894. If there are K parameters to be

estimated, the method consists of expressing the first K population mom-

ents in terms of these K-parameters, equating them to the corresponding

sample moments and taking the solutions of the resulting equations as

estimates of the parameters. The method usually leads to relatively

simple estimates.

The estimates obtained in this way are clearly functions of the

sample moments. Since the sample moments are consistent estimates of

population moments, the parameter estimates will generally be consistent.

Although the asymptotic efficiency of estimates obtained by the

method of moments is often less than 1, such estimates may conveniently

be used as first approximation from which more efficient estimates may

be obtained by other means.

Bayes Estimates

In the methods of point estimation the assumption is that the ran-

dom sample came from density f(.; ), where the function f(.;#) is assumed

to be known. Moreover # was some fixed, though unknown, point. In some

,. real world situations which the density f(.;#) represents, there is often

additional information about *.i.e. 0 itself may act as a random variable

5



for which one could postulate a realistic density function.

It has been seen that the Bayes action for a given observation Z = z

, * is that which minimizes the expected value of the loss with respect to

the posterior distribution. This expected loss, assuming a quadratic

loss function (f- a)2 , is

EH (4 - O)2 = 2 ( -

where H(4) is the distribution f~nction for the posterior distribution.

Since this expected loss is a second moment of a distribution, it is

minimized when taken about the mean of the distribution. That is, the

minimizing action and hence the Bayes estimate of * is

EH (0) = fodH()

Maximum Likelihood Estimates

We shall suppose first that the population of interest is discrete,

so that it is meaningful to speak of the probability that X = X, where

X denotes a sample (X1 ,...,X ) and X a possible realization (Xi...Xn).

This probability that X = X depends cn Y, of course, but it also depends

on the state of nature which governs. As a function of 4 for given

X, it is called the likelihood function.

L(*) = P (X= x)44

Thinking of a state of nature as a possible "explanation" of ob-

served data, the maximum likelihood considers the "best" explanation to

" be the state of nature ( that maximizes the likelihood function - that

* :maximizes the probability of getting what was actually observed. A max-

imum likelihood procedure is then one that is best when the state of nat-

4 ure is the maximum likelihood state, 0. This is determined from the loss

function as the action that minimizes the loss function as a function of

6
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*and a (i.e. the loss resulting from an action ai wh'en the-state of

nature is take as )

The best. explanation * of a given observation X = x depends on X,

and so defines a function of X or a statistic. The rule that says take

the action that minimizes a(, c), where t is the loss function, assigns
". " A

this action to the X that leads to t, and so the maximum likelihood

principle defines a decision function, called the maximum likelihood

decision function.

Thus a maximum likelihood estimate is a value of 4 that maximizes
A

the likelihood function. If * is multidimensional, so is f, and the

components are said to be joint maximum likelihood estimates of the

corresponding components of 4.

Some Other Techniques

A brief mention will be made in this port of certain other techni-

ques for obtaining estimators involving somewhat more mathematical pre-

paration than has been provided or assumed. As in general, a decision

procedure can be replaced by one based on a sufficient statistic, so in

estimating a parameter an estimator can be replaced by a function of a

sufficient statistic without deterioration of the risk. In particular,

given an unbiased estimate U of the parameter h( ), an unbiased estimate

based on the sufficient statistic T can be constructed whose variance is

not greater than that of U. In some instances the method yields an un-

biased estimate of minimum variance.

Given the statistic U, then, consider the function

4! g (t) = E (UIT = t)

If T is sufficient, the conditional distribution of X, and therefore that

7



of the statistic U, are independent of the state *. The function g(t)

really depends, then, only on t, as the notation implies. It defines a

statistic

V= g(T),

Whose mean is the same as that of U:

E(V) = E(E(UIT))

= E(U)

* Consequently, if U is an unbiased estimate -f h(+), so is V.

The variance of U can be expressed as follows:

Var(U) = E((U - E(V))2

= Var (v) + E((U - V) 2 ) + 2E ((U - V) (V - E(v)))

The assertion that Var (U) >var(V) will e established as soon as it is

shown that the cross product term vanishes. So, Consider

f i (E((U- V) (V - E(V))) =LE((U - V) (V - E(V))l T = t) D FT(t), where

F (t) is the distribution function of T. Now,

T
E (V - U T = t) = E (VIT = t) -E (UIT = t)

= g(t) - g(t)

-0

and

E ((U - V) (V - E(V))jT = t) = E ((U - V) (g(t) - h(t))IT = t)

= (g(t) - h(O)) E(U - VIT = t)

=0

Thus the above integral vanishes, and Var (u) > Var (V). The variance

of V is actually smaller if U does not depend on the data through the

value of T only, and so one can do better using V than using U. Clearly,

any estimator that is unbiased and has a smaller variance than does g(T)

would also have to be a function of the suf'icient statistic T (since

8



otherwise the preceding technique would yield a function of T that does

at least as well). But if there is such a function, K(T), also unbiased

in estimating h(#), then

EK(T) = h(#)

= Eg(T)

for all *. Frequently the family of densities for T has the property

of completeness, which says that if

K(t) FT(t) d(t)dF (t)LKtdt)T T

for all #, then K(t) is essentially the same function as g(t). In this

event g(T) is actually an unbiased estimate of h(4) with minimim variance.

Thus, although maximum likelihood estimates are known to be consist-

*ent, asymptotically efficient, and asymptotically normal, there are usu-

ally other estimates that have these properties and which would then

appear to serve just as well for large samples (they might even be bet-

ter for small samples). Such estimates are called best asymptotically

normal, or BAN, and can be obtained in various ways.

One class of BAN estimates consists of certain "Minimum Chi-square"

estimates, defined as follows: Consider a sample X1,---, X, from a

vector valued population X with mean vector (4) and covariance matrix'

!('*), 4 being the parameter to be estimated (it could be multidimensional).

* The Juadratic expression

2 1
^A (R - ]()- (4*)T1 (i -

is minimized as a function of # for given X , ----- Xn .  The minimizing

value o (X1 , ---,Xn ) is called minimum Chi-square estimate of 4. It is

known to be BAN when X has a distribution belonging to the exponential

9



family, Various modifications of the minimum Chi-square method also

yield BAN estimates.

10



III. Robust Procedures

General

A mathematical model is basically based upon a set of assumptions.

These assumptions are not supposed to be exactly true - they are math-

ematically convenient rationalizations of an often fuzzy knowledge or

belief. These rationalizations or simplifications are vital, and one

justifies their use by appealing to a vague continuity or stability

principle. This principle states that "A minor error in the mathemati-

cal model shouldcause only a small error in the final conclusions.

,' A statistical inference model being a branch of the mathematical

model should be consistent with the stated principle for a mathematical

model. In the simplest cases there are implicit and explicit assump-

tions about randomness and independence, about distributional models,

perhaps prior distributions for some unknown parameters and so on.

During the last decade a "robust" procedures have been introduced

to solve the conflict between the model assumptions and the real system

being studies to get insensitivity to small deviations-from assumptions.

Basically, we consider the distributional robustness which means that the

true underlying distribution deviates slightly from the assumed model

(usually the Gaussian law).

As an example for that Tukey (Ref: 78 ) introduced a case of a

contaminated normal distribution with contamination factor c from two

normal distributions N(U,o) and N(p, 2). So the observations Xi will

be independent, identically distributed with cojmnon underlying distribu-

tion F(x) where:

F(x)= (1 - ()x (x-1) + (

11



where
X 2

:- *(x) = - fe-Y2 dy is N(O,1)

Two measures of scatter are the mean absolute deviation

dn 1 Z xi -X1I,- n -

and the mean square deviation.

n n (Xi -))2

These two measures indicate different characteristics of the error

distribution. The performance of these two measures is summarized by

Huber (Ref:46 ) according to their asymptotically relative efficiency

(ARE) of Sn relative to dn versus the contamination factor given in the

following table.
Var (Sn)I(E (Sn)2

ARE..J2 ) Lt v r ( )(E
n Var" (d) i ( E (d)
nn n

C ARE(c)

0 0.876

0.001 0.948

0.002 1.016

0.005 1.198

0.01 1.439

0.02 1.752

0.05 2.035

0.10 1.903

0.15 1.689

0.25 1.371

0.5 1.017

1.0 0.876

12



From this Huber concluded that:

1. The above does not imply that we advocate the use of the mean

absolute deviation (There are still better estimates of scale).

2. The contaminating observations could be considered as outliers

and on treating them one can gct a better estimate of the mean square

error.

Till this point it seems reasonably to clear Lhe data by rejecting

thc outliers and then using classical estimation and testing procedures

for the remainder one can end with a better estimating model. In reality

this approach faces three basic pitfalls in application:

1) It is difficult to identify the real outliers unless one uses a

robus estimating model (case multiple linear regression).

2) Even if the original set of observations consists of normal with

some gross erros, the cleaned data will not be normal, and the situation

is even worse with a non-normal distribution.

3) As an empirical fact the best rejection procedure do not quite

reach the performance of the best robust procedure. Because robust pro-

I cedures make a smooth transition between full acceptance and full rejec-

tion of an observation.

AThus a robust procedure should have the following features:

1) It should have a-reasonably good (optimal or near optimal)

efficiency at the assumed model.

2) Small deviations from the model assumptions should affect the

model performance only slightly.

3) Relatively larger deviations Xrom the model should not complete-

ly spoil the behavior of the model.

I.
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Basic Types of Robust Estimators

The basic types of robust estimators are

", 1) M-Estimator

(The maximum likelihood tpes estimates)

2) L-Estimaotr

(The linear combinations of order statistic estimator).

,; 3) R-Estimator

(The estimator derived from r and k tests)

1. The M-Estimator

This kind of estimates is the most flexible one, and it generalizes

straight forwardly to multiparameter problems, even though ( or, perhaps
because) it is not automatically scale invariant and has to be supple-

mented for practical applications by an auxiliary estimate of scale.

Definition: Any estimate T defined by a minimization problem of the

form

Z p (XiTn) min
1\

or by an implicit equation

E - (Xi, Tn ) 0
i n

i.e.

7..z (XiSTn)= 0

Where 1 (X.,Tn ) = p(Xi,T n ) is called an M-estimate. (This estimate
In an i

, is the orginary M.L.E. if

p (X;#) = -logf (X;#)

In the linear model we have

y = XB + £

and we are interested in the expected value of the response

14
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- - E (y) = E(x0 8+

= E(X 0)+ E(C)

- = XE(B) + E (C)

So in case of E(e) = 0, we get

E(y) XE(O)

i~e. we basically will be interested in the location parameter. Thus

assuming

0 (Xi -Tn) = (Xi -Tn), then

- O(X -Tn) =min

or

Zii(X i -T n)=O0

Assuming

W.- Tn)
1 nthen

1 Xi-T

in

Where the weights are dependent on the sample.

For the functional form of

E i (Xi; Tn ) = 0
i. n

C iC it is not possible to generally define T(F) to be a value of t which

minimizes

(X ;t) F(dx)

For example the median corresponds to

p (X;t) = li-tI while

15



identically in t unless F has a finite first absolute moment. A simple

solution to that is obtained by replacing p(X;t) by p(X;t)- p(X_;t
.0

- .for some fixed to i.e. in case of the median minimize

f(x-t-lx ) F (dx )

In a similar way the functional form of s(Xi,t) is

j .(X;T(F))F(dx) = o,

This form of *(X,t) does not suffer from the previous difficulty, but

it might have more solutions corresponding to local minima.

Influence Function of M-Estimates

The influence function describes the effect of adding one more

observation with value x to a very large sample on the value of an

estimate or test statistic T(Fn ) where F is the empirical distributionn n

function.

In case of M-Estimates the influence function was found to be pro-

portional to and given as
T(X T(F))

" C(xpF,T) =

.(X.T(F) F(dx)

. . and in case if *(X;O) = *(x - 0) we obtain

IC(X FT) = __(X - T(F))

[X T(F)IF(dx)

2. The L-Estimates

Consider a statistic that is a linear combination of order statistics,

• " or more generally, of some function h of them:
n

T = ). ani h(Xli))
'.. " i=l

We assume that the weights are generated by a (signed) measure M on (u,1)

interval:

16
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a. + M . •

ni n nJ 2 n. n~

(This choice of the weights preserves the total mass, Zani = M ,

and symmetry of the coefficients, if Mis symmetric about t = 2)

Then T = T(F ) derives from the functional T(F) h (F-1 (s))M (ds)
n nJ

and this gives exact equality T n T(F ) if the integral is regularized

k:. at its discontinuity points and will be equal to

1 -1 1 -1
h (F (s - 0) + - h(F (S + 0)),

2 n 2 n

where the inverse of any distribution function F is defined in the usual

way as

F- (s) = inf{x IF(x) > s) 0<s<1

Influence Function of L-Estimates

In a similar way like that for the M-Estimate we can find the

influence function of Ts where Ts = Ft I(S)

IC(X;F,Ts) =s- for X<F -(s)(S _s))

s for X>F- 1 (s)f(F- (s))

It is worthwhile to note here that the influence function has a value

only if F has a non-zero finite derivative f at F- (s).

Using the chain rule for differentiation, the influence function of

h(T ) is

"sC(XFh(Ts) IC(X.FT) h(Ts)

and thus the influence function of the estimator T itself will be

[C(XF,T) =fIC(XF,h(Ts)) M (ds)

4 17
1



3. R-Estimates

R estimation is a procedure based on ranks. To illustrate the

general procedure, consider replacing one factor in the least squares
2

objective function ( n (Y2 X 8
)
2 ) by its rank; Thus if R. is the

i=4

n
rank of Yi - Xi 8, then we wish to minimize Z (Y X. )Ri (Ref 1:894)

i=l 1

Now consider a two sample rank test for shift: let X1 , ---,Xm and

Y1 ---P Y n be two independent samples from the distributions F(x) and

G(x) = F(X -A), respectively merge the two samples into one of size

m + n and let R. be the rank of X. in the combined sample. Let a. = a(i),
1 1 1

1 <i <m + n, be some given scores; then base a test of A= 0 against

A>O on the test statistic
m

S a(Ri)am, n =

Usually, we assume that the scores ai are generated by some function J -i

as follows

ai m + n,+ )
1

In case of the Wilcoxon test, J(t) t - 2.

Estimates of shift A and of location T can be derived from such

rank test:

(1) In the two sample cases, adjust An such that S n,n 0 when cbmputed

from (X1 ,---IXn) and (Y1 - AnD --- , Yn - An).

(2) In the one sample case, adjust Tn such that Sn,n= 0 when computed

from (X1 ,----,Xn) and (2Tn - X1, --- , 2Tn - X n). So a mirror image

of the first sample is used as a second sample.
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Influence Function of R-estimates

The influence function in this case is given as

IC(X. .F,T) - fux -fUsx&fx

where

U(x) J1 .1 (ix + 1 - F (2T(F) -X))

.f(2T(F) - x) dx

For symmetric F this can be simplified, since U(x) =J(F(x)), then

IC~xFT) J(F(x))
IC~xFT) = fJ>Fxmf 2dx
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IV. Multiple Linear Regression

A regression model that involves more than one regressor variable

is called a multiple regression model. Here we are going to discuss

the fit and analysis of this model and some lightspot on the measures of

adequacy that are useful in multiple regression.

Multiple Regression and Least Squares

Suppose that we have a certain response y which may be related to

' K regressor variables by the model

y = + B1X1 + 02 X2 + + BkXk + C

This model is called a multiple linear regression model with k-regressors.

The parameters B0, j = O,l,--,k are called the regression coefficients.

This model describes a hyperplane in the k-dimensional space of the

regressor variables X.. The parameter B. represents the expected change

. J

in the response y per unit change in X. when all the remaining regressor
J

variables Xi (i € j) are held constant. For this reasQn the parameters

Oj = 1,2,---,k are often called partial regression coefficients.

Multiple linear regression models are often used as approximating

functions. That is, the true functional relationship between y and

X , X2,---,Xk is unknown, but over certain ranges of the regressor

variables the linear regression model is an adequate approximation.

Models that are more complex in structure may often still be analy-

zed by multiple linear regression techniques. For instance the poly-

4'" nomial model of degree k in one variable which has the form:

k i
y = B X

i=0
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can be easily modeled by using the substitution

X. = X. and B. = 8. with X 1
1 J 0

Thus the model will be the original linear model

y.= 0 + aiX + + BkXk

Similar transformations could transform the model under consideration

into the general form of the linear model, keeping in mind that the

linearity of the model means linearity in the 0 coefficients and not in

the independent variables.

So, the basic idea behind multiple linear regression model is to

fnd a linear relation that can adequately approximate an unknown rela-

tion between a set of independent variables (k independent variables)

and a certain respons y.

Mathematical Model

A scientific model is a representation of some subject of inquiry

(such as objects, events, processes, systems) and is used basically for

prediction and control. This scientific model is basically divided into

three basic types:

1. Iconic model: which pictorially or visually represents certain as-

pects of a system (as does a photograph or model airplane).

2. Analogue model: which employes one set of properties to represent

some other set of properties which the system being studied possesses.

.. 3. Mathematical (or symbolic model): which employs symbols to designate

propertis of the system under study (by means of a mathematical equation

or set of equations).

Consequently the mathematical model often used by scientists has

three main types:

1. The function model,
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2. The control model,

3. The predictive model

1. The functional model

This kind of model exists if the true functional relationship

between a response and the independent variables in a problem is known,

so the response could be easily understood, controlled, and predicted.
I

In practice there are few cases which can be easily modeled by a function-

al model. Even though those models turn to be very complicated, difficult

to interpret and usually of nonlinear form. In this kind of models, the

the linear regression procedure do not apply or else linear models can

be used only as approximations to the correct models in itterative

estimation procedures.

2. The control model

Even if it is known completely, the functional model is not always

suitable for controlling a response variable. For example if the model

contains the ambient temperature as an independent variable in the model,

this temperature is not controllable in the sense that other variables

in the model are controllable. Thus a model which contains variables

under the control of the experimenter is essential for control of a

response.

A useful control model can sometimes be constructed by multiple

regression techniques, but they should be used carefully because they

are very dangerous if improperly used or interpreted.

, * 3. The predictive model

When the functional model is very complex and when the ability to

4 obtain independent estimates of the effects of the control variables is

limited, one can often obtain a linear predictive model which, though

it may be some senses unrealistic, at least reproduces the main features
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q
of the behavior of the response under study. This type of model is very

useful and under certain conditions can lead to real insight into the

process or the system under study. It is in the construction of this

type of predictive model that multiple regression techniques have their

greatest contribution to make. These problems are usually referred to

as "problems with messy data". That is, data in which much intercorrela-

tion exists. The predictive model is not necessarily functional and

need not be useful for control purposes. This, of course, does not make

it useless. If nothing else, it can and does provide guidelines for

further experimentation, it pinpoints important variables, and it is a

very useful variable screening device.

Non-Normal Error Distribution

1. Consequences of Non-normal Disturbances

Here I'll discuss the violation of the normality assumption of the

error term in the regression model:

~y=X8+c

The discussion will be made in two phases, according if the variance

of the error has a finite or infinite variance.

a. Finite Variance Case

In this case the basic definitions and assumptions of the model are

exactly the same i.e.

1) Y is called the response, 8 is the vector of coefficient, x is

d the independent variables matrix, and c is the error term.

2) X is nonstochastic of rank (P)

3) The Lt N-1XX is a finite nonsingular matrix, and
N+-

14 4) The random vector c is such that

E (c) = 0 and

2 2.
E (c c| = o2I, o is finite.
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Furthermore if c is normally distributed

1) The L.S. estimator b (x x) X y is unbiased minimum variance

among the class of unbiased estimators, assymptotically efficient and

consistent.

2) The variance estimator
A2
a- = (y - xb) (y - xb)/(N-P) is best quadral-ic unbiased, i.e.

it has minimum variance of all estimators of a that are unbiased and

quadratic in y, in addition it is asymptotically efficient and consistent.

3) b.normally.
2 22

(N-P) a /l2" X (N-P)

and they are independent

4) The F-test (for Ra=r) and t-test (for the individual coefficients)

are valid in finite samples.

On the other hand if c is not normally distributed, we shall have:

1) b is unbiased minimum variance among the class of linear un-

biased estimators, and consistent.

•22) a is unbiased and consistent.

3) b and a are no longer efficient or asymptotically efficient.

If the form of error distribution is known, we can use the likelihood

2function of y to estimate B and a . In this case the estimator for B

will be nonlinear in general and, under appropriate regularity conditions
- ^2

B o will be asymptotically efficient. Otherwise it is better to use

nonlinear robust estimators.

2- 2
4) b will not be normal and (N-P) 2/ 2 also will not be X This

means that the F- and t-test for 0 are not necessarily valid in finite

samples.

b. Infinite Variance Case

In this case the error distribution has an infinite variance. As

an example for this case take the Pareto distribution
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f (c) = C(e - O)- -C oO are constants

For a> 2 the variance does not exist.

Due to the fact that infinite variance distribution has "thicktails",

so outliers will frequently occur. As an implementation of these out-

liers the L.s technique will no longer lead to sensitive estimation of B

i.e. 0 will considerably vary in repeated samples. Also, it will be

2impossible to get a meaningful estimate for a and 0 will no longer have

the minimum variance property which in addition means that F- and t-

test will be misleading.

Malinvaud (Ref 58:308) mentioned that, in practice, one can assume

that the error distribution is bounded and this will lead to a finite

variance. However this will not solve the problem and in case of rela-

7 tively large number of outliers 3 will be unstable in repeated samples

and the estimates will behave as if the variance is infinite.

The Double Exponential .and L1 Technique to Estimate B Coefficients

4 To demonstrate why it may be desirable to use an alternative to

least square when the observations are double exponential, consider

the simple linear model

Yi = o +BiXi + , i 1.2,---,n

1 0 i i

Where the error terms are independent random variables that follow the

double exponential distribution.

IN eIcil/a

( i)  2a , -O <mi<

The double exponential distribution is more pointed in the middle

than the normal and tails go to zero as 1eil goes to infinity. How-

ever, since the density function goes to zero as e t goes to zero,

and the normal density function goes to zero as e 1 goes to zero, so

the double exponential distribution has heavier tails than the normal.
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Here, we shall use the method of maximum likelihood to estimate B

0

and s The likelihood function is
i n

w - 1 e' • L(8o090 = w -' e l i / (
0i =1 2

(2 2)n
n

So to maximize L(00 ,0) is the same as maximizing the exponent - E1147

i. n

or minimizing l ill the sum of the absolute errors. Knowing that thei=1

method of maximum likelihood applied to the regression model with normal

errors leads to the least squares criterion. Thus the assumption of an

error distribution with-heavier tails than the normal implies that the

method of least squares is no longer an optimal estimation technique.

However the absolute error criterion would weight outliers far less than

would least squares ( is much greater than II in case of outliers).

Minimizing the sim of the absolute errors is often called the L 1 -norm

regression problem. The least squares is the L2-norm regressing problem.

The L1-norm regression problem can be formulated as a linear pro-

gramming (LP) problem.

Now let X i.,i = 1,2, --- ,n, and j = 1,2, --- ,K denote the set

of n observational measurements on k independent variables, and Yi,

i =I, --- ,n, denote the associated measurement on the depeddent var-

iable (response). The L1 technique wishes to find the regression co-

efficient 6 that:

Minimize X Oj y.I
, 3 Xj J 1

Chranes, Cooper and Ferguson (Ref 16)introduced a reduction which can

transform the problem into

Minimize i +  i 2i

qSubject to
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L. Xi .+ i - 2 i Yi i = 1,2, n,

i. s unrestricted,

: -', 1i' c2i > 0
|,--

Where cli is the vertical deviation above the fitted line and c2i is

-.4 t
the vertical deviation below the fitted line for t observation. Thus

.. .i . will be the absolute deviation between the fit 4. X. .O and
11 2J ii 0

Yi" By the nature of the linear programming model, e1i and c2i cannot

both be strictly positive in an optimal solution. So, the problem is

formulated as L.P problem of the form:

Minimize ClZ + --- + C Zii k k

subject to

.- Z1 a,, + -- + Z k a lk{ d i if Z N1

dif I cN2

Z 2

and

Z >OVheM,

Unrestricted V h e M

where

M1, M2 is a partitioning of the linear relations (mutually exclusive and

completely exhaustive partitioning) and similarly N1, N2 partions for

the set of the variables.

The solution of the model in ou, case will be

'i X8=y

Where B is the vector (0o,01,- )

It worths here to mention that if the number of observations is

large enough, the present model will be somewhat computationally difficult

and it will be better to use the dual problem for determining p.
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The dual model is still large since it contains k + 2n relations.

To reduce it, let

f. = D. + 1 1

and the dual model will be equivalent to

Maximize i Yifi -i Yi

Subject to

E X ij f' < XJj M1

• ij j 213.1,- 13

13 2

0 < f. < 2

Which will give a model with k linear relations and n non-negative bound-

ed variables. This final model could be solved quite rapidly for k

(<10) by simplex algorithm for bounded variables problems. On solving

this model we can determine the values for 0.

The Uniform Dist. and Minimax Criterian

Again we shall consider that the error term is distributed uniform-

ally with mean equal to zero and standard deviation equal to unity i.e.

U-) Now consider also the case of a simple linear model

Yi = X. + ,

where

. i  U (-1 3 a, then

. where

I (e.) is the indicator function.

The maximum likelihood function as function of the coefficients
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0O 9 Bis given as
n

L009 1 1 n~ r
7*L~ -fc f(31 1  a r

-This function will achieve its maximum when the difference between the

* first and last order statistic will be minimum i.e. the criterion for

obtaining a maximum likelihood estimators for 0 and B will be by mini-

mizing the difference (c - (1) in other words by minimizing the

(n) c(1)

maximum difference of c. (in absolute value) or equivalently will be to

Minimize {maximum fJi

or in a general multiple linear model will be

Minimize{ maximum IZ X a j }
- i j ijj

Paralleling Kelley transformed this pioblem intu an L.P model:

"-' Minimize 8 , 8> 0

-subject 
to

- < ; X. . - y < , i 1,2,---,n
- j 1 j j -

Where 8 is the minimized value.of the maximum absol-

ute deviation I J X. ; - yil. Using the same approach as in the case

of minimizing the sum of absolute deviation briefly discussed in the

double exponential case, the model formulation will be:

Minimize a

subject to

4 - X.. 8>- + ' = 1,2, --- , n

" Xij 1 + > Yi =
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Oj > G V C M,

unrestricted V j M2

and the dual Formulation will be

Maximize - yi d + Yi d~i

subject to

.X j d i + X i d z
1 13 1 1jZ

-0 Vj £ M2

d + d . < 1
-1 1 -

d d > 0

This dual model is a regular L.P problem in k + 1 relations and could

be solved by a standard simplex algorithm. If d ii(d 2iis positive in

the optimal solution of the dual problem, then the maximum deviation

occurs for the ith point and this point will lie above (below) the fitted

line. Thus the solution of this L.P model will give the value of 0 as

the estimated value of B in our multiple linear regression model.
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V. Results

In this part of my study I'm going to summarize the research done

to find some ,technique that could handle the model of 27 observation in

11 independent variables.

The model chosen was obtained from Multiple Listing, Vol. 87 for

area 12 (Erie, PA). To search for a technique that will handle such

types of multiple linear regression, it was necessary to find some real

hyperplane (fit) to take as reference for how good the assumed technique

is. In order to do that a least squares regression was performed for the

observed Y and X. The coefficient vector 1 from this model (L.S.) was

multiplied by the X matrix after being augmented by a vector of l's to

give vector Y which was considered as a real value of Y which gives

an exact fit
" Yt = BX

The values of the matrix X and the vector 0 are shown in Table I.

Description of Methods

The basic idea that was used at the very beginning of the study

was to use the Q - statistic introduced by Hogg (Ref 40) and defined as:

4Q = [U(.05) - E(.05)I/[U(.5) - E(.5)]

where U (0) is the average of the largest no order statistics (fractional

items are used if no is not an integer) and where L (0) has a similar

* definition using the smallest items. The Q statistic was basically used

as a discriminator for the error distribution tail length. The reason

for choosing Q to be used as a discriminator was due to its convergence

4 properties which are much better than those of the Kurtosis, since Q is

a ratio of two linear functions of order statistic. In addition it is
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easy to see some similarity between Q and the following measure of tail

length of the distribution function f:

[F- (.975) - F- (.025)]/[F-1).75) - F- (.25)]

The next step was to choose some value for the Q statistic upon

which it will be possible to determine the tail length of the error

distribution. As a matter of fact the basic idea was to come up with

a comparative study between the three known regression techniques

discussed earlier: least squares (L 2), Minimization of the absolute

deviation (L ), and Minimization of the maximum error (L ). As it was

pointed out these three techniques will give maximum likelihood estimators

for normal, double exponential and uniform error distributions. Thus

these estimators will be of desirable properties expressing the unknown

relation. To do that a set of random deviates was generated from the

three distributions and added to in succession to give a new value of

Y which is considered as the observed value for Y t i.e.,

Y = Y t + E

Trying different values for Q statistic to get reasonable bounds

(QL' QU) to discriminate the tail length of the distribution, it turns

out to use QL = 2.21 and QU = 2.81 i.e., if Q < 2.21 then we can say

that the distribution is uniform, if 2.21< Q< 2.81 the distribution is

normal, while if Q > 2.81 the distribution will be double exponential.

The number of times these bounds will dibcriminate the distribution for

the known three underlying ones and for monte carl of size 1000 is ax

follows:
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1. For Uniform: 872 times uniform
127 times normal
1 time D.E.

P 2. For Normal: 135 uniform

619 normal

246 D.E.

3. For D.E.: 17 uniform

229 normal

754 D.E.

As a start for knowing the distribution of the residuals through

the use of the Q-statistic, a linear least squares fit was performed for

each of 1000 different cases of added error vector from the three

considered distributions. Addition of an outlier to one of the observa-

tions at multiple values of standard deviations is also considered during

the start of the search. The results from this step is shown in Table

A-i for the number of times Q will discriminate each of the residuals

distriubtion when the underlying distribution is known. While Table B-i

exhibits the average error sum of squares which is defined as:

1000 2
ESS = E (Yti - Yi) /1000

i= 1

4 for the different cases discussed above. The steady increase in the

values of ESSay with the outlier location with respect to the real line

prevail the effect of the so called leverage point effect on the fit

which can be demonstrated by the following graph:
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* Using the residuals from L.S. and making a decision on using L , L2 or

L1 according to the Q values (QL = 2.21, QU = 2.81) is shown in Table

B-2. It is clear from this table that ESS is still steadily increasingav

since the Q statistic is discriminating the residual most of the times

(Table A-1) as normal due to the previously mentioned effect by leverage

points. So it seemed to be a better notion to use L1 instead of using

L 2 ' The way how Q discriminates the distribution for this case is

displayed in Table A-2 and ESSay for L1 is in Table B-3. Using the

residuals from L and with two limits again for Q the decision was

taken for the choice between L., L or L1 . Table B-4 shows ESSay

for this case. It seemed to be a reasonable idea to use only one limit

for Q to discriminate between thick tail (D.E.) and thin tail (uniform

" . and normal) distriubutions directly. The resulting ESSay is shown in

Table B-5 which improves the values of ESS
av

The previous approaches for taking the problem led to the notion

of using Dneof the robust iterative techniques for handling leverage

.1 points and as a result will give what could be called as robust Q that

will give a better discrimination for the distribution without being

effected by the outliers. As starting step for this approach Huber's

4I function defined by:

if 121 < 2

4 (Z)= 2 igng (Z) IZ > 2

T and calculating weight matrix

=. = (Yi - XiBolSJ if YV XiB0

S(Y - Xio)Is

if Y = 6.
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which will give the coefficient vector as

0 =(Xw 0X) XW0 Y

This Huber's function has an influence function which will get rid of

the effect of outlier by weighting them with constant weights, The

influence function for this case is as hown in the following figure.

t

The iterative technique for robust regression needs an initial value to

start iterations with. In this context a comparison was done between

using L.S. or L as initial estimation. The ESSav for these two cases

are shown in Table B-5 and Table B-6 respectively. While Table A-3

and Table A-4 show the number of times Q discriminates each distribution.

In this case only two iterations were used. Using the residuals from

Huber, ESSav is calculated again and displayed in Table B-7. Till this

point an improvement in the values for ESSay for outliers at more than

100 S.D. is achieved over using the robust technique alone but still

very high value of ESSav. Trying some other robust techniques we ended

with using Hampel function defined as:

0f(z) = z , JzJ < .7

= 1.7 sign (Z) , 1.7< P1 < 3.4

= 1.7 sign (Z) (8.5- IZl)
5.1 , 3.4 << 

8 .5

-0 IZI > 8.5
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which has influence function as shown in the following figure

iNN,,.-b - 0 a b

The ESS from Hampel with L.S. and L as initial estimation is
av

shown in Table B-8 and Table B-9 respectively. In Table B-10 the

resulting ESS from using Hampel's residual is shown.i12i  av

Coming to this point we started to search for a different approach

to handle our problem. This search basically took 3-phases. Each phase

is based on using the residual themselves as our tool to make the decision:

a. Phase I:

Using the residual from L1 and testing if its greater than 3 S.D.

then use L1 technique, if not use L (least squares) Table B-i shows

ESS from this phase.
av

b. Phase II:

In this phase the residual from Hampel iterative technique was used

and choice of technique was done as in Phase I. Table B-12 shows the

resulting ESS from this phase.;.'- av

c. Phase III:a
This is really a different approach which gives the nearest fit to

the real line throughout our study. The idea is to perform an initial

fit and by replacement of all points that are more than 3 S.D. apart

from this initial fit back to the initial line. Then by redoing the fit
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. a lower ESS could be easily obtained. Table B-13 shows the resulting
av

ESS avfrom thise phase.
:av

Conclusions

* 1. Presence of outlier's mode discrimination of distribution outliers.

(Tables A-i - A-4) difficult.

2. With no outlier's Least Squares gave the best fit.

3. Iterating Robust Estimators resulted in no improvement.

4. The Hampel Robust Estimator did not provide outlier protection.

5. The technique of detecting outlier and using Li if it is greater

than 3D and least squares otherwise was the best method of handling

the outliers without modifying the data (B-12).

6. The method of mapping the outlier back onto the regression line if

res*iual is greater than 3SD and using Li gave the best fit using

all data points.

7. Alternatively the best fit is obtained by rejecting the points whose

residuals are greater than 3SD and repeating the L.S. fit. See 0

line of B-i.
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Table 1

The values of independent variables and the calculated 8 coefficient

used to generate the real line.

1 2 x x x x x x x x1 2  X3  X4  5  X6 X7  8  9 ' X1o 11W ;4.9176 1.0 3.4720 0.9980 1.0 7 4 42 3 1 0
5.0208 1.0 3.5310 1.5000 2.0 7 4 62 1 1 0
4.5429 2.0 2.2750 1.1750 1.0 6 3 40 2 1 0
4.5573 1.0 4.0500 1.2320 1.0 6 3 54 4 1 0
5.0597 1.0 4.4550 1.1210 1.0 6 3 42 3 1 0
3.8910 1.0 4.4550 0.9880 1.0 6 3 56 2 1 0
5.8980 1.0 5.8500 1.2400 1.0 7 3 51 2 1 1
5.6039 1.0 9.5200 1.5010 0.0 6 3 32 1 1 0

15.4202 2.5 9.800 3.420 2.0 10 5 42 2 1 1
14.4598 2.5 12.800 3.0000 2.0 9 5 14 4 1 1
5.8282 1.0 6.4350 1.2250 2.0 6 3 32 1 1 0
5.3003 1.0 4.9883 1.5520 1.0 6 3 30 1 2 0
6.2712 1.0 5.5200 0.9750 1.0 6 2 30 1 2 0
5.9592 1.0 6.6660 1.1210 2.0 6 3 32 2 1 0

X =5:0500 1.0 5:0000 1:0200 0.0 5 2 46 4 4 18.2464 1.5 5.1500 1.6640 2.0 8 4 50 4 1 0

6.6969 1.5 6.9020 1.4880 1.5 7 3 22 1 1 1
7.7841 1.5" 7.1020 1.3760 1.0 6 3 17 2 1 0k ( 9.0384 1.0 7.8000 1.5000 1.5 7 3 23 3 3 0
5.9894 1.0 5.5200 1.2560 2.0 6 3 40 4 1 1

* 7.5422 1.5 4.0000 1.6900 1.0 6 3 22 1 1 0
8.7951 1.5 9.8900 1.8200 2.0 8 4 50 1 1 1
6.0931 1.5 6.7265 1.6520 1.0 6 3 44 4 1 0
8.3607 1.5 9.1500 1.7770 2.0 8 4 48 1 1 1
8.1400 1.0 8.0000 1.5040 2.0 7 3 3 1 3 0

Li 9.1416 1.5 7.3262 1.8310 1.5 8 4 31 4 1 0
12.000 1.5 5.0000 1.2000 2.0 6 3 30 3 1 1

The B coefficient used as real fit

3.2621860

.84373136
8.2369984
.2566089014.035590

B = 1.6223667

-1-.0604545
-.32560404
-.074490869
.96740379
1.0447037
2.6899793

L
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Table A-i

Number Q discriminates the tail length for uniform,jnormal, and double

exponential error distributions after performing least squares fit.

Underlying Dist.

Uniform Normal D.E.

NS.D UR N D.E UR N D.E UR N D.E

0 222 633 145 126 596 278 61 450 489

1 231 623 146 131 593 276 79 435 486

r 3 247 600 153 151 584 265 98 458 444

6 283 584 133 206 608 186 162 527 311

9 319 578 103 268 606 126 234 574 192

100 8 992 0 12 988 0 9 991 0

1000 0 1000 0 0 1000 0 0 1000 0

10000 0 1000 0 0 1000 0 0 1000 0
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Table A-2

Number of times Q discriminates the tail length for uniform, normal and

double exponential error distribution after performing L1 .

Underlying Dist.

Uniform Normal D.E

NS.D UR N D.E UR N D.E UR N D.E

0 . 246 595 159 136 550 314 64 446 490

1 218 554 228 115 506 379 64 437. 499

3 63 327 '610 27 252 721 10 139 851

6 23 94 883 14 88 89P 3 73 924

9 22 93 885 15 86 899 3 71 926

100 22 93 885 15 86 899 3 70 927

1000 22 93 885 15 86 899 3 70 927

10000 22 93 885 15 86 899 3 70 927
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Table A-3

Number of times Q discriminates the tail length for uniform, normal

and double exponential error distribution after performing Huber robust

technique with L.S as initial estimation.

Underlying Dist. -

Uniform Normal D.E

NS.D UR N D.E UR N D.E UR N D.E

0 217 535 248 122 476 402 58 320 622

1 223 515 262 127 461 412 75 299 626

3 239 511 250 147 470 383 98 338 564

6 274 503 223 202 500 298 160 414 426

9 309 510 181 258 515 227 222 479 299

100 3 753 244 10 722 268 4 723 273

1000 0 671 329 0 681 319 0 656 344

10000 0 867 133 0 869 131 0 888 112
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Table A-4

Number of times Q discriminates the tail length for uniform, normal,

and double exponential error distribution after performing Huber robust

technique with L asinitial estimation using only one limit Q = 2.81.

Undcrlying Dist.

Uniform Normal D.E

NS.D N D.E N D.E N D.E

0 752 248 598 402 378 622

1 738 262 588 412 374 626

3 750 250 617 383 436 564

' 6 777 223 702 298 574 426

9 819 181 773 227 701 299

100 756 244 732 268 727 273

1000 671 329 681 319 656 344

10000 867 133 869 131 888 112
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Table B-1

Ess from L.S with an outlier at N*S D (at multiples of standard
av

deviation) for monte carlo of size 1000.

14 UNIFORM NORMAL D.E.--

0 12.03 11.69 12.0

1 12.96 12.49 12.9

31.619.3.3 19.73

16 22.84 22.60 22.78

100 84.15E2 84.02E2 84.12E2

1000 83.95E4 83.94E4 83.95E4

10000 83.94E6 83.94E6 83.94E6
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Table B-2

ESS for using L.S and calculating Q from its residuals and choos'e

between L , L2 or L acc,,rYding to the value of Q (Q2 2.21, Q = 2.81)

with throwing an outlier at N S.D (multiple of S.D)

.I T2;FORM NOR AL D.E

0 14.86 14.03 13.03

1 15.33 14.92 14.40

3 22.83 22.82 21.95

6 46.58 96.63 45.35

9 84.17 81.84 80.15

100 63.91E2 61.90E2 61.44E2

1000 56.34E4 57.17E4 55.67E4

10000 72.78E6 72.94E6 74.54E6

71
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Table B-3

aESS from L with an outlier at N*S.D (at multiple of standard
av1

deviation) for monte carlo of size 1000

N UNIFORM NORMAL D.E

0 20.06 17.22 13-.73

11 21.23 18.35 14.95

3 29.87 26.98 23.53

6 52.66 48.53 43.86

9 73.02 67.68 59.09

16 84.93 80.51 70.06

100 85.13 81.09 70.65

1000 85.13 81.09 70.65

10000 85.13 81.09 70.65
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Table B-4

ESSay for making decision according to Q statistic calculated from

tt residuals and using L , L.S or L, according to Q value (Q2 2,21m Q = 2.81)

N UNIFORM NORMAL D.E

0 13.49 13.67 13.02

1 14.92 14.89 13.93

3 26.25 25.08 23.16

6 54.03 50.05 45.34

9 78.53 72.72 63.20

100 10•41E2 91.75E1 67.68E1

1000 96.53E3 84.76E3 61.29E3

10000 84.77E5 96.53E5 61.27E5

Table B-4 (cont.)

ESSav for using L1 with Q for making the decision and with only one limit

F for Q (Q 2.81) and using either L.S or LI.

N UNIFORM NORMAL D.E

0 13.73 13.46 12.80

1 14.87 14.49 13.91

3 21.92 21.69 21.56

6 45.67 44.40 44.57

9 81.52 79.42 77.11

100 63.87E2 61.75E2 61.38E2

1000 56.34E4 57.17E4 55.07E4

10000 71.78E6 72.94E6 74.54E6
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Table B-5

ESS from Huber with an outlier at N*S.D (at multiple of standard devia-

tion) for monte carlo of size 1000 usinR L.S as initial estimation.

1. One Iteration

N UNIFORM NORMAL D•E

0 12.28 11.79 11.53

1 13.22 12.60 12.44

3 20.16 19.31 19.43

6 43.27 42.05 42.67

9 81.52 79.91 80.88

100 81.12E2 80.78E2 80.90E2

1000 78.98E4 78.98E4 78.97E4

10000 78.75E6 78.75E6 78.75E6

2. Two Iterations

N UNIFORM NORMAL D.E

0 12.37 11.85 11.46

1 13.31 12.67 12.37

3 20.26 19.40 19.40

6 43.43 42.18 42.74

9 81.75 80.14 81.06

100 78.37E2 77.82E2 77.97E2

1000 74.48E4 74.49E4 74.47E4

10000 74.78E6 72.94E6 74.54E6
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Table B-6

ESS from Huber with an outlier at N*S.D (at multiple of standard devia-
av

tion for monte carlo of size 1000 using L1 as initial estimation

1. One Iteration

N UNIFORM NORMAL D.E

0 12.19 11.72 11.52

1 13.13 12.53 12.43

3 20.03 19.22, 19.43

6 43.06 41.91 42.57

9 81.26 79.73 80.68

100 81.12E2 80.78E2 80.90E2

1000 78.98E4 78.93E4 78.97E4

10000 78.75E6 78.75E6 78.75E6

2. Two Iterations

N . UNIFORM NORMAL D.E

j0 12.25 11.75 11.44

S0A1 13.19 12.57 12.36

3 20.09 19.27 19.40

6 43.16 42042.64

49 81.42 79.89 80.80

100 78.37E2 77.82E2 77.97E2

1000 74.48E4 74.49E4 74.47 E4

4!10000 74,02E6 74.03E6 74.03E6
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Table B-7

• ' ESS for the decision according to Q calculated from the residual fromav
Huber with L.S as initial estimation and using QL = 2.21, Q = 2.81 i.e.

using L , Lsor L according to the value of Q (Adaptive)
S .1

N UNIFORM NORMAL D.E

0 14.86 14.03 13.03

1 15.87 15.04 14.34

3 22.83 22.82 21.95

6 46.58 96.63 45.35

9 84.17 81.84 80.15

100 63.91E2 61.90E2 61.44E2

1000 56.34E4 57.17E4 55.07E4

10000 72.78E6 72.94E6 74.54E6

L'

.
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Table B-8

ESS ay from Hampel with an outlier at N*S.D (at multiple of standard devia-

tion) for monte carlo of size 1000 using L.S as initial estimation.

1. One Iteration

N UNIFORM NORMAL D.E

0 21.50 11.86 11.40

1 13.44 12.68 12.32

3 20.44 19.49 19.41

-A6 43.68 42.40 42.85

9 82.01 80.29 81.02

16 21;86E1 21.16E1 20.50E1

100 77.78E2 77.49E2 77.53E2

1000 75.52E4 75.56E4 75.56E4

10000 75.39E6 75.39E6 75.39E6

* 2. Two Iterations

N UNIFORM NORMAL D.E

0 12.68 12.01 11.35

1 13.63 12.84 12.30

3 . 20.66 19.68 19.46

6 44.01 42.70 43.11

9 82.53 80.76 81.38

16 20.52E1 19.17E1 17.24E1

100 71.52E2 70.97E2 71.02E2

1000 67.70E4 67.61E4 78.60E4

10000 67.29E5 67.29E5 67.29E5
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Table B-9

ESS av from Hampel with an outlier at NS.D for monte carlo of size 1000

S using L as initial estimation.

1. One iteration

N UNIFORM NORMAL D.E

0 12.23 11.71 11.30

1 13.16 12.53 12.25

3 3 20.09 19.30 19.35

6 43.09 41.91 42.42

9 80.91 78.87 79.17

16 21.86E1 21.16E1 20.50E1

10000 75.39E6 75.39E6 75.39E6

2. Two Iterations

N -UNIFORM NORMAL D.E

0 12.31 11.80 11.24

1 13.25 12.61 12.20

3 20.19 19.43 19.41

6 43.19 41.98 42.50

9 80.65 78.06 77.65

16 20.52E1 19.17E1 17.24E1

100 13.57E2 24.45E2 64.17E2

10000 67.29E6 67•30E6 67.29E6
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Table B-10

-ESS avfrom using L 1 or L2after making decision according to Qcalculated

from residuals of Hampel (L.S as initi-al estimation)

N UNIFORM 
NORMAL 

D.E

0 14.45 13.85 12.90

1 15.43 14.88 14.02

3 22.78 22.25 21.85

6 46.50 44.94 44.56

9 81.80 79.11 75.95

1100 30.91E2 28.81E2 28.8OE2

1000 85.13 81.09 70.65
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Table B-li

ESS avusing residual from L and making decision to use LIorL2

* . according if the residual is greater than 3 S.D or not.

N UNIFORM NORMAL D.E

0 13.49 13.67 13102

1 14.92 14.89 13.93

3 26.25 25.08 23.16

6 54.03 50.05 45.34

9 78.53 72.72 63.20

100 10.41E2 91.75E1 67.68E1

1000 96.53E3 84.76E3 61.29E3

10000 96.53E5 84.77E5 61.27E5
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Table B-12

ESS ay from using residual from Hampel to make the decision. If residual

is greater than 3 S.D use Lif not use L.S

N UNIFORM NORMAL D.E

0 12.03 11.69 12-0

1 12.96 12.49 12.90

3 19.86 19.11 19.65

6 42.48 41.04 41.45

9 78.59 74.96 71.66

16 17.23E1 15.31E1 12.89E1

100 10-99E1 13.14EI 12.10E1

7..
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Table B-13

ESS from Phase III (rep'-cement of outliers).av

N UNIFORM NORMAL D.E

0 20.06 17.22 131.72

1 21.23 18.35 14.95

3 29.87 26.98 23.53

6 52.66 48.53 43.87

9 73.01 67.66 65.32

16 84.93 80.49 70.02

100 85.08 81.08 70.59
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An extensive Monte Carlo Analysis is conducted to determine the per-
formance of robust linear regression techniques with and without outliers.
Thirteen methods of regression are compared including least squares and minimum

4 absolute deviation. The classical robust techniques of Huber, Hampel were
.' ,studied and robust techniques using the Q-statistic as discriminant were

ii introduced.
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The model studied contained eleven variables with 27 observations.
The error distributions considered were uniofrmly, normally and double
exponentially distributed.
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Least squares gave the best fit without outliers. In the presence
of gross outliers a rejection of outlier technique gave the best fit.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAOS(Whee Date Entered)



m p


