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ABS&RACT
<~/

Mode-I crack growth under conditions of generalized plane

stress has been investigated. It has been assumed that near the
plane of the crack in the loading zone, the simple stress components
corresponding to a central fan field maintain validity up to the
elastic-plastic boundary. By the use of expansions of the particle
velocities in the coordinate y, and by matching of the relevant
stress components and particle velocities to the dominant terms of
appropriate elastic fields at the elastic-plastic boundary, a
complete solution has been obtained for ?§>in the plane of the ‘
crack, The solution is valid from the propagating crack tip up

to the moving elastic-plastic boundary. A self-similar crack .

nucleating at a point and steady-state crack propagation have been

considered as special cases.
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1. INTRODUCTION

The asymptotic structure of quasi-static near-tip fields of stress
and deformation for a growing crack in an elastic perfectly-plastic
material has been discussed by several authors. A detailed discussion
of near-tip fields has recently been given by Rice (1982), who reviewed
the earlier contributions and retrieved them as special cases of a
general formulation for materials of arbitrary yield condition and
associated flow rule. In general, the analytical near-tip results
must be supplemented by numerical calculations to obtain certain
arbitrary functions that enter in the asymptotic considerations of
the near~tip fields.

In this paper analytic expressions have been obtained for the
strain in the plane of the crack, which are valid from the propagating
crack tip to the moving elastic-plastic boundary. The analytical
approach employs expansions of the particle velocities in powers of
y (the distance from the plane of the crack), and yields ordinary
differential equations with respect to x for the coefficients. The
arbitrary functions that enter in integrating these equations have
been obtained by matching the fields in the plastic loading zone to
the dominant terms of the corresponding elastic fields at the elastic-
plastic boundary.

The method is first demonstrated for anti-plane strain, and the
results of Rice (1968) are recovered. Next, the case of generalized %

plane stress has been considered in detail. It has been assumed that

roos o a .

the stress components for a centered fan field (see e.g. Hutchinsom,




1968), which satisfy the yield condition and the equilibrium
equations, are valid up to the elastic-plastic boundary (at least

in the plane of the crack). An explicit expression has been obtained
for the total strain ey(x.O,t). Self-gimilar crack growth fields
and steady-state fields have been considered as special cases. The

results of this paper are particularly suited for use in conjunction

with a critical strain criterion.
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2. Governing Equations

The x3-axis of a stationary coordinate system is parallel to
the crack front, and Xy points in the direction of crack growth. The

position of the crack tip is defined by X, = a(t). A moving coordinate
system, X,y,2 1s centered at the crack tip, with its axes parallel to
the X)X, and x4 axes. Relative to the moving coordinate system we
also define polar coordinates r,6, with 6 = 0 coinciding with the
positive x direction. The geometry is shown in Fig. 1.

Relative to the stationary coordinates the equilibrium equations

are

aioij =0 (2.1)
where oiJ = oji is the stress tensor (i,j,k = 1,2,3), ai = 3/8xi,
and the summation convention applies.

The Huber-Mises yield criterion may be stated as

1 = k2

2;Asijsij k (2.2)

where s, ., 1s the deviatoric stress tensor and k is the yield stress

13

in pure shear.

The rate of deformation is defined by

. 1
Dij = eii = i(ajvi + aivj) (2.3)

Here ¢ 13 is the (infinitesimal) strain, the superposed dot denotes

time rate at a fixed material point, v, is the velocity field, and

i
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vi = ui, where ui

are defined by

is the displacement field. The total strain rates

= D¢ P
Dij Dij + Dij s (2.4)

where the elastic strain rates are related to the stress rates by

e 1 .
D, = E[(l‘“’)"i

13 | I (2.5)

3 - vaijokk
and the plastic strain rates are

P .
Dij Asij (2.6)

In (2.5)-(2.6), E and v are Young's modulus and Poisson's ratio,
respectively and Ais a positive function of time and the spatial
coordinates.

The spatial derivatives with respect to the cartesian coordinates
in the stationary and moving coordinate systems are directly related by

9, =9, 93, =23 » 9, =23 (2.7)
In the moving coordinate system the material time derivative is

() = at - aax (2.8)
vhere a = da/dt is the speed of the crack tip.

3. Anti-plane Strain

In the moving coordinate system the only non-vanishing displacement
component is w(x,y,t). The non-vanishing stress components are
- - - 1
Oz ™ %py and oyz ozy. The Huber-Mises yield criterion (2.2)

reduces to
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(0, )% + (5, )% = & (3.1) ;
In the loading region ahead of the crack tip, the stresses may ?
be written as
o = k cos® , a = - k sin® (3.2a,b)

yz Xz
It may be verified that (3.2a,b) not only satisfy (3.1), but also the
equilibrium equations (2.1).

For small values of 68 (i.e., y/x << 1) the plastic fields in the
loading zone will be matched to the dominant terms of the elastic
fields. 1In polar coordinates R,y centered at point E the dominant
terms of the elastic solution on the elastic side of the elastic-plastic

boundary are taken in the general form

W= R) %_Z K sinlw p = shear modulus (3.3)

2r) u III 2° ° ) :
O, = (—LTK sinlw (3.4)
Rz 27R II1 2 :
o = (-—]-'—-TK COB"]'.‘# (3.5)
Yz 27P II1 2

It should be noted that the center of the elastic field is not taken
to coincide with the crack tip. The center 1is located at a moving
point E, whose position is defined by X = e(t). The geometry is
shown in Fig. 2.

From the condition that the elastic field should just reach the

yield condition (3.1) at the elastic-plastic boundary, we obtain by

the use of (3.4)-(3.5)




‘ # 5 K. =k (3.6)
) “iox :

where R = Rp defines the radius of curvature of the elastic-plastic

boundary, at least for small values of Y. Another condition is that

%Rz (i.e. the shear stress component in the R,y system) should be

continuous at the elastic-plastic boundary. We find by using (3.2a,b):

Oz = oyzcosw + oxzsinw = k sin(y-6) (3.7)

Thus, by the use of (3.4) and (3.6)

sin%w = gin(y-8) , i.e., 8 = %w (3.8a,b)

For small 6 and y this result implies that the center of the elastic

field E is located at

1 - 1 =1
Xg = 3 xp, and thus e(t) = a(t) + 3 xp(t), Rp(t) 2 xp(t) s (3.9a,b,c)

where xp(t) defines the x-coordinate of the elastic-plastic boundary in
the plane y = 0. Thus, just as for the case of a stationary crack, the
elastic field is centered halfway between the crack tip and the elastic-
plastic boundary.

The third condition requires that the particle velocity is
continuous at the elastic-plastic boundary. In the moving coordinates

R,¥, the material time derivative may be written as

() =3, - ¢ (cosy 3 - ‘—1%“& %) (3.10)

vhere e is the velocity 1in the xl-direction of the center E of the

elastic field. By applying the operator (3.10) to the expression for




w given by (3.3), we obtain at R = Rp

. k . . 1
wp= ” (Rp + e) Siﬂ§¢ (3.11)

where the relation (3.6) has been used. Since e = a +-% X

P
and ip = %-ip s Eq.(3.11) further reduces to
w=X(24x) sine (3.12)
P U P

where (3.8b) has also been used.

For quasi-static growth of cracks in anti-plane strain, the

particle velocity in the loading region, has been derived by Rice (1968)

in terms of the position of the elastic-plastic boundary. The

corresponding expression for the total strain in the plane of the

crack in between the crack tip and the elastic-plastic boundary

depends only on a(t) and xp(t). This interesting result suggests that

it should be possible to obtain the strain independently from a

closed system of equations valid only near y = 0. We will show the

derivation of the relevant equations primarily as a preliminary to

the corresponding analysis for the more complicated plane stress case.
As point of departure we take the following expansions for

y/x << 1:
W(x,y,t) = W (x,t) y + Wy(x,t) y¥ + 0Gy°) (3.13)

Axayst) = A (x,8) + £, (x,t) y2 + 0(y") (3.14)

The strain rates follow from (3.13) as
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1 ¥

sz = E-a;— y + O(y5) (3.15)
1- 3 2 u

Dyz =W tsw, ¥+ oGy*) (3.16)

From Eqs.(2.4)-(2.6) we find by using (3.2a,b)

D = - k a sinbcosB - Aksing (3.17)
Xz 2ur
D =-%.2 3i1% 4+ Akcoso (3.18)
vz 2ur

i For small 6 ~ y/x << 1, equality of terms of crder unity in (3.16)

and (3.18) yields

L 1 -
Aok =23v (3.19)

Equality of terms of order y in (3.15) and (3.17) gives

. . aw
lka k 1 1
-Zu;cT-on 2 9x (3.20)

By combining (3.19) and (3.20) we then find

w ; .
. L1, 1__ka
1 = + = m -x-z' (3.21)
‘ Integration of (3.21) yields
i
‘ .
! e -ka g X,y AR
§ vy rx R,n(xp) + - (3.22)

where x = xp(t) is the length of the plastic zone in the plane of
the crack. Evidently, A(t)(y/x) is the particle velocity at the
elastic plastic boundary near y=0. For small values of g it

follows from (3.12) that A(t) = (k/u)(a + ip). Integration of (3.22)

over time in the fixed coordinates yields for t > tp:




t
- dx

v k. k ] 1 x)-a(t) 4

ay(xl’o’t) u T ' x;-a(t) t in xp(c) ]dt T }de

p

where tp is the time that the elastic-plastic boundary arrives at
position X i.e., a(tp) + xp(tp) =% and k/p is the elastic strain
at the elastic~plastic boundary.

Several interesting observations based on (3.23) have been
made by Rice (1968). As discussed by Rice a criterion of critical
plastic strain yp at a distance ps ahead of the crack tip (McClintock
and Irwin, 1965) may be employed in conjunction with (3.23) to compute
the required xp(t) for quasistatic extension of the crack over a
distance a(t). We note that the corresponding value of Rp(t) is

given by (3.9c), while the required external load subsequently follows

from (3.6).

(3.23)

R e e e e RN
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4. Generalized Plane Stress

For generalized plane stress the Huber-Mises yield criterion (2.2)
becomes
2

02 +02 -0o0 + 36% = 3K? (4.1)
y X'y Xy

In the loading region ahead of the crack tip expressions for the

stresses which satisfy both (4.1) and the equilibrium equations are

o, = kcos?®e, cy = k(2cos’®6 + 3sin?6 cos), oxy = - ksin’e (4.2a,b,c)

For small values of 6 (i.e., y/x << 1) the field in the plastic

loading zone will be matched at the elastic-plastic boundary to the

dominant terms of a corresponding elastic field. For the elastic field I
we do, however, not take the field for a crack, but rather that for a

notch with %p as radius of curvature at its tip. In polar coordinates

R,y, the appropriate Mode-I stress fields are given by Creager and Paris

(1967) as
o = (—l— i K {coslw [l—sinlw sin§¢] -2 coséw} 4.3)
x 21R ) 1 2 2 2 2R 2 ‘
o, = L N K {cosl¢ [1+sinlw sinéw] + & coséw} (4.4)
y (2nR) 1'°°%2 2 2V TR 0% .
b5
1 1 1 3 P 3
O’xy = (m) KI{SinEﬂJ COSEQP COS;!]) 3R sin?p} (4.5)

Note that the tip of the notch, which is not the tip of the crack
nor the elastic-plastic boundary, is a distance %p from the origin E,
as shown in Fig. 3. Just as for the Mode~III case, the center of the
elastic field E, whose position is defined by X = e(t) » 1 = 0, is

located in between the crack tip and the elastic-plastic boundary
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defined by x-xp(t). For generalized plane stress, the displacements
corresponding to (4.3)=(4.5) are

C () Lk tcoods [e-t + 2 s1n2k4) + & condy) @.6)
u= (Zn 2u I 2 2 g cosyv :
s 1 1 1 1
(R \ L - 2 [P
v —( Zn) o KI{sin§¢ [k+l ~ 2 cos Ewl + R 81n§w} 4.7

where ¢ = (3-v)/(1+v).
From the condition that the elastic field should just reach the
yield condition at the elastic-plastic boundary, we obtain by the use of (4.1)

and (4.3)-(4.5)

1
[(—zi—R;)QKI]Z [1+3(§—§;)2] = 3k? (4.8)
where R = Rp at the elastic-plastic boundary, at least for small
values of y. Another condition is that o, should be continuous
at the elastic-plastic boundary on y=0. By the use of (4.2a) and
(4.3) we find
1\

k = (ﬁg) K (1 --2-1‘-:;) (4.9)

From (4.8) and (4.9) it follows that

L .2
R 3 (4.10)
P
Hence (4.9) yields
b
1 3
(mzp) Kp = 2% (4.11)

Equations (4.8) and (4.11) show why we have taken elastic fields for
a notch rather than for a crack. For an elastic crack-tip field the

conditions of reaching the yield condition at the elastic-plastic

'




boundary would conflict with the condition of continuity of o,

as can be checked by setting p = 0 in (4.8) and (4.9).

For small values of 6 and | we next consider the continuity of

on and OR (i.e., the shear stress and the radial stress in the R,y

system). We use

ch (cos®y - sin w)oxy + (oy ox)sinwcosw

and

- 2 2
% 20xysinwcosw + o, cos Y + oysin ¥

in conjunction with (4.2a,b,c) and (4.3)-(4.5). It may be
verified that on is continuous to first order in {y. The stress

o, is continuous to order unity by virtue of Eq.(4.11). Collecting

R

terms to order 62 and y? yields the relation

8 = y¢ , where y = /172,
This result implies that for small values of 6 and ¥ the center of
the elastic field E is located at

Xp = (l-y)xp, and thus Rp- yxp

For y/x << 1 it follows from (4.2a,b,c) that

3 2 4
oy =1 =31 +0Q)

L]
= + .z
[+ 2k 0( )

3
= k(&L ¥y®
Ty = kG +0Q)

From the stress-strain relations (2.4)-(2.6) we find by using
(4.16)~(4.18)

(4.12)

(4.13)

(4.14) ‘

(4.15a,b)

(4.16)

(4.17)

(4.18)
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b, = -a(t)f 20 - k@ + o) (4.19)

e ek 33,2 A 1y.? 3y
D = a2 + k1 +3&) 1+ oD (4.20)

- ca(ey K 3y 3y ? ¥° j
Dy = —3(8) === 26 - M) +0(D) (4.21) |

Now consider the following expansions for y/x << 1

a(x,y,t) = ﬁo(x.t) + ﬁz(x,t)yz +0@y" (4.22)
V(x,y,t) = vy (x,t)y + 0(y?) (4.23) |

AG,y,t) = /’\o(x,:) + /'\z(x,c)y2 + 0(y") (4.24)
The strain rates follow from (4.22)-(4.23) as l
i, du, , ,

"% T (4.25)

Dy =V (4.26)

.y
ny = (2u2 + 3;—)y 4.27)

By equating terms of the same order in (4.19)-(4.21) to the corres-
ponding ones in (4.22)-(4.24) we obtain

du du

o 2 ka I
—a-x—- =0, -3-1_(— = = 3 E ;{1’ ;2' Aok (4.28a,b)
vl - Aok (4 .29)
- . a\'rl

2 ax

[RT —




- Ve
bt b e o . A AU S I A & 2 d
e

By combining (4.28), (4.29) and (4.30) we obtain

v v .
1 1 1 k a
Iw TR TYEY (4.31)

The general solution to (4.31) is

v, =% { 22 g + 28 B(") + C(t)x?) , (4.32)
and (4.30) subsequently yields |
5, =% - [1-2n &= )+ 3 239 e, 4.33)

while it follows from (4.28a) that

u, = (k/E) D(t)
The functions B(t), C(t) and D(t) must be determined from continuity
of the particle velocity at the elastic-plastic boundary.
By the use of (3.10) we obtain from (4.6) and (4.6) at the elastic-

plastic boundary

= (k/E)[U_(t) + U,(t)62] + O(e*) (4.35)
\‘rp- (k/E)V, (t)6 + 0(6%), (4.36)

where (4.10), (4.11) and (4.14) have been used. In (4.35)-(4.36)
U () = %{ (o= -3y + D% - 30 - Darem 4.37;

Up(t) = —': [(- 2y-2¢y + .<+5)ip + (c+5)a) (E/u) (4.38)
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v, (0) = -i—ﬁl; (.<+1)(;cp+é) (Efw) (4.39)

By comparing (4.32)-(4.34) to (4.35)-(4.36) we conclude

s = B.a X .40
_. B(t) = B,a(t) + Bzxp(t) (4.40)
- o - 3
c(t) [Cla(t) + szp(t)ll[xp(t)] , (4.41)
where
B, = L L (k45 + 4y (c+) ) (/W) - 2 (4.42)
1 3272 Y L .
B, =3, (k45 + 2y (x+1) ] (E/ (4.43)
2 32 Y K Y (x+1) J(E/u) .
C, =i L[ _(c45)+ 2y (1) 1 (B/) + 2 (4.44)
17322 *+ 2v(x W +3 .
c, =1L [—(ues (4.45)
2 = 33 37 [-(e45) + 4y (cH) 1 (E/) ~

In the plane of the crack we have ey =V At the elastic plastic

boundary (4.7) yields for small y

(

3kl 1
), = o ;(K- 3) (4.46)

“y’pB
where (4.11), (4.14) and 6 ~ y/x have been used. In the stationary

coordinate system, (4.32) can now be integrated to yield the total

strain as
C ok x,-a(t) 2 k . . x,-a(t)
ey(xl’t) = (ey)PB + -E-[zn —xl;-(—t)—] - 'E(Bl + B, xp/a)f,n _’;(_t)_
t .
: k ;( d ,* . xl_a(t) . . X
] *3: J; {[2 ;2 + B, a‘g(xp/a)]!n —W - (B,+8, xp/a) ;ti} dt
1 P P

.. Ixa(e)]? v
[Cla + szp] —[;‘,—(E')Tg— dt (4.47) 1

+
|
vn‘\,n
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ﬁ Here tp is the time that the elastic-plastic boundary arrives at

position Xy» i.e., a(tp) + xp(tp) =X

For a given external load, we presumably know KI in terms of the

increase in "crack length" a(t) + (l—Y)xp(t). A relation between

i xp(t) and a(t) can subsequently be obtained by the use of (4.15b) and
(4.11). Hence, in principle, a(t) is the only unknown quantity in
(4.47). An equation for a(t) and é(t) can be obtained from (4.47)

by the use of the critical strain criterion for crack propagation.

This criterion stipulates that crack growth will proceed when a critical
strain level €er is maintained for Ey' in the plane of the crack at a
characteristic distance A ahead of the crack tip. It appears,

however, that it will be very difficult to solve a(t) and ;(t) from

the integral equation that can be extracted from (4.47).

It is of interest to note that 61 as defined by (4.32), (4.40)
and (4.41) contains terms proportional to a(t) and terms proportional
to ip(t). The former correspond to crack propagation, while the
latter are equally valid for a stationary crack under monotonic
loading. By setting Q(t) = 0, we obtain

2
B sz dx

P
+ [xé?t)]s } ac (4.48)

a_v];-l‘-{—z.
ot E 'x

This result shows that for a stationary crack and plane stress, the
strain ey has a singularity of order 1/x at the crack tip, in agreement

with the results of Rice (1973).
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The solution for ey in the plane of the crack simplifies con-
siderably for two special cases, The first of these is the case of
a self-similar field. A self-similar solution materializes when
a(t) is proportional to xp(t).

a(t) = A xp(t) (4.49)

Substitution of (4.49) into (4.47) and subsequent introduction of the

o0

new variable

8 = [xl-a(t)]/xp(t) = [xl-Apxp(t)]/xp(t) (4.50)

reduces (4.47) to

k X 2k _X
ey(xlxp) = (ey)PB + E(Q'“(W)] - E(Bl+32/Ap)ln((xp(t))

x/xp x/xp
k f ds k s’ds
E J [22n(8) - (Bl+32/Ap) ] —S'FAP -F ] (ClAp+C2) _s"'Ap (4.51)

where we have used that x = X = a(t). It is noted that the strain ey
comes out to depend only on the self-similar variable x/xp(t)-

For the second special case all fields are assumed to be time-
invariant to an observer traveling with the crack tip. This is the

steady-state case when ey depends on x = X = a(t) only. Now we have

that a = ip = constant = Cps and (') = - ax. Equation (4.32)

F
becomes

dvy

=-kd zn(:—p) - $B#B)) - (CHCx* /) (4.52)

FYVORETE R I
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where Bl.Bz.C1 and C2 are defined by (4.42)-(4.45), and xp = constant.

Equation (4.52) may be integrated to yield

2
e (0 = () +§{[zn(}:—;)1 - (3,48, )

- Ly .53)
3Y1 72 xp *

Equation (4.53) offers better possibilities for the application
of a critical strain criterion. If ey "€y at x = A, (4.53) can be

solved for the constant value of xp. The corresponding external load

can subsequently be computed by the use of (4.15b) and (4.1l).
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Fig. 1: Moving crack tip
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Fig. 2: Center of elastic field E and elastic-
plastic boundary
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