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ABSTRACT

Mode-I crack growth under conditions of generalized plane

stress has been investigated. It has been assumed that near the

plane of the crack in the loading zone, the simple stress components

corresponding to a central fan field maintain validity up to the

elastic-plastic boundary. By the use of expansions of the particle

velocities in the coordinate y, and by matching of the relevant

stress components and particle velocities to the dominant terms of

appropriate elastic fields at the elastic-plastic boundary, a

complete solution has been obtained for SY)in the plane of the

crack. The solution is valid from the propagating crack tip up

to the moving elastic-plastic boundary. A self-similar crack

nucleating at a point and steady-state crack propagation have been

considered as special cases.
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1. INTRODUCTION

The asymptotic structure of quasi-static near-tip fields of stress

and deformation for a growing crack in an elastic perfectly-plastic

material has been discussed by several authors. A detailed discussion

of near-tip fields has recently been given by Rice (1982), who reviewed

the earlier contributions and retrieved them as special cases of a

general formulation for materials of arbitrary yield condition and

associated flow rule. In general, the analytical near-tip results

must be supplemented by numerical calculations to obtain certain

arbitrary functions that enter in the asymptotic considerations of

the near-tip fields.

In this paper analytic expressions have been obtained for the

strain in the plane of the crack, which are valid from the propagating

crack tip to the moving elastic-plastic boundary. The analytical

approach employs expansions of the particle velocities in powers of

y (the distance from the plane of the crack), and yields ordinary

differential equations with respect to x for the coefficients. The

arbitrary functions that enter in integrating these equations have

been obtained by matching the fields in the plastic loading zone to

the dominant terms of the corresponding elastic fields at the elastic-

plastic boundary.

The method is first demonstrated for anti-plane strain, and the

results of Rice (1968) are recovered. Next, the case of generalized

plane stress has been considered in detail. It has been assumed that

the stress components for a centered fan field (see e.g. Hutchinson,

.~~~~~~~ .
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1968), which satisfy the yield condition and the equilibrium

equations, are valid up to the elastic-plastic boundary (at least

in the plane of the crack). An explicit expression has been obtained

for the total strain ey (xO,t). Self-similar crack growth fields

and steady-state fields have been considered as special cases. The

results of this paper are particularly suited for use in conjunction

with a critical strain criterion.
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2. Governing Equations

The x3-axis of a stationary coordinate system is parallel to

the crack front, and x1 points in the direction of crack growth. The

position of the crack tip is defined by x1 = a(t). A moving coordinate

system, x,y,z is centered at the crack tip, with its axes parallel to

the x1 ,x2 and x3 axes. Relative to the moving coordinate system we

also define polar coordinates r,6, with 6 = 0 coinciding with the

positive x direction. The geometry is shown in Fig. 1.

Relative to the stationary coordinates the equilibrium equations

are

ai = 0 (2.1)

where a = oia is the stress tensor (i,j,k = 1,2,3), 3, = 3/axi'

and the su-ation convention applies.

The Huber-Mises yield criterion may be stated as

1 =k
8 s =k 2  (2.2)

where sij is the deviatoric stress tensor and k is the yield stress

in pure shear.

The rate of deformation is defined by

Dii = -" (a vi + Biv1 ) (2.3)

Here eij is the (infinitesimal) strain, the superposed dot denotes

time rate at a fixed material point, vi is the velocity field, and

, • , m I[ I •
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v u where ui is the displacement field. The total strain rates

are defined by

e D

D = De + J (2.4)
i ji ii

where the elastic strain rates are related to the stress rates by

Di [(14) - a 1I, (2.5)

and the plastic strain rates are

DP = As (2.6)

ii ij

In (2.5)-(2.6), E and v are Young's modulus and Poisson's ratio,

respectively and A is a positive function of time and the spatial

coordinates.

The spatial derivatives with respect to the cartesian coordinates

in the stationary and moving coordinate systems are directly related by

a1 = x a2 - a y P a3 = az  (2.7)

In the moving coordinate system the material time derivative is

(') at - ax (2.8)

where a = da/dt is the speed of the crack tip.

3. Anti-plane Strain

In the moving coordinate system the only non-vanishing displacement

component is w(x,y,t). The non-vanishing stress components are

axz and ayz a zy. The Huber-Mises yield criterion (2.2)

reduces to
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(xz )2+ (a yz)2 k(3.1)

In the loading region ahead of the crack tip, the stresses may

be written as

a ffi k cosO , f- k sine (3.2ab)
yz xz

It may be verified that (3.2a,b) not only satisfy (3.1), but also the

equilibrium equations (2.1).

For small values of O (i.e., y/x << 1) the plastic fields in the

loading zone will be matched to the dominant terms of the elastic

fields. In polar coordinates R,* centered at point E the dominant

terms of the elastic solution on the elastic side of the elastic-plastic

boundary are taken in the general form

(, A 1) P sin , = shear modulus (3.3)

wsin (3.4)
h Rz = K111  (

It should be noted that the center of the elastic field is not taken

to coincide with the crack tip. The center is located at a moving

point E, whose position is defined by x1 
= e(t). The geometry is

shown in Fig. 2.

From the condition that the elastic field should Just reach the

yield condition (3.1) at the elastic-plastic boundary, we obtain by

the use of (3.4)-(3.5)
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KII I -k (3.6)

p-;where R -R pdefines the radius of curvature of the elastic-plastic

boundary, at least for small values of *. Another condition is that

aRz (i.e. the shear stress component in the R,J system) should be

continuous at the elastic-plastic boundary. We find by using (3.2a,b):

a 0  a COS* + a sin* - k sin(i-O) (3.7)
RZ yz xz

Thus, by the use of (3.4) and (3.6)

si sin(-) , i.e., e V (3.8a,b)

For small e and 1 this result implies that the center of the elastic

field E is located at

E 1 and thus e(t) = a(t) +1 (t), R (t) = x (t) , (3.9a,b,c)
-E- -P Pp 2 p

where x (t) defines the x-coordinate of the elastic-plastic boundary inP

the plane y - 0. Thus, just as for the case of a stationary crack, the

elastic field is centered halfway between the crack tip and the elastic-

plastic boundary.

The third condition requires that the particle velocity is

continuous at the elastic-plastic boundary. In the moving coordinates

R,*, the material time derivative may be written as

() - at - • (cos* aR - sin* (3.10)

t R R

where ; is the velocity in the x1-direction of the center E of the

elastic field. By applying the operator (3.10) to the expression for
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w given by (3.3), we obtain at R R
P

w- + ) si (3.11)p IA pV
• 1*

where the relation (3.6) has been used. Since e = a +-
2 p

and R X , Eq.(3.11) further reduces to
p 2p

= P (a + x p) sine (3.12)

where (3.8b) has also been used.

For quasi-static growth of cracks in anti-plane strain, the

particle velocity in the loading region, has been derived by Rice (1968)

in terms of the position of the elastic-plastic boundary. The

corresponding expression for the total strain in the plane of the

crack in between the crack tip and the elastic-plastic boundary

depends only on a(t) and x (t). This interesting result suggests thatP

it should be possible to obtain the strain independently from a

closed system of equations valid only near y = 0. We will show the

derivation of the relevant equations primarily as a preliminary to

the corresponding analysis for the more complicated plane stress case.

As point of departure we take the following expansions for

y/x << 1:

w(x,y't) - 4 I(X.t) y + 3 (x,t) y
3 + O(y5 ) (3.13)

A(xy,t) - A (xt) + A2+ (3.14)

The strain rates follow from (3.13) as

U



8

D z (315xz 2 x Y +O(y 3 ) (3.15)

D 2 1 2 2
Vyz 2' l + w3 y + O(y ') (3.16)

From Eqs.(2.4)-(2.6) we find by using (3.2ab)

D _ k a sinecos6 - Aksin6 (3.17)
xz 2p r

k 2eD --- sin2 + AkcosO (3.18)
yz 2v r

For small 0 - y/x << 1, equality of terms of order unity in (3.16)

and (3.18) yields

Ak - -1 5 (3.19)
0 2 1

Equality of terms of order y in (3.15) and (3.17) gives

i k a k 1 1 (3.20)
A 2 3x

-i z- ox =  x- 3.0

By combining (3.19) and (3.20) we then find

-1 + - - -  (3.21)

x X Uxr

Integration of (3.21) yields

in*E- A ()(3.22)

where x - x (t) is the length of the plastic zone in the plane of
p

the crack. Evidently, A(t)(y/x) is the particle velocity at the

elastic plastic boundary near y-0. For small values of 6 it

follows from (3.12) that A(t) - (k/)(a + zp). Integration of (3.22)
p

over time in the fixed coordinates yields for t > t
p

. .. .
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Bw k k t x-a (t) da dxT(xlOt) x 1-a(t) - tn x(] dt- d dt (3.23)
p P

where t is the time that the elastic-plastic boundary arrives atp

position xI, i.e., a(t p) + x p(tp) = xI and k/P is the elastic strain

at the elastic-plastic boundary.

Several interesting observations based on (3.23) have been

made by Rice (1968). As discussed by Rice a criterion of critical

plastic strain yp at a distance p ahead of the crack tip (McClintock

and Irwin, 1965) may be employed in conjunction with (3.23) to compute

the required x (t) for quasistatic extension of the crack over aP

distance a(t). We note that the corresponding value of R (t) isP

given by (3.9c), while the required external load subsequently follows

from (3.6).

I
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4. Generalized Plane Stress

For generalized plane stress the Huber-Mises yield criterion (2.2)

becomes

a2 + a2 - 00 + 3a2 = 3k2  (4.1)
x y x y xy

In the loading region ahead of the crack tip expressions for the

stresses which satisfy both (4.1) and the equilibrium equations are

a = kcos 3e, a = k(2cos 3e + 3sin 2  cose), a = - ksin3e (4.2a,b,c)

x y xy

For small values of e (i.e., y/x << 1) the field in the plastic

loading zone will be matched at the elastic-plastic boundary to the

dominant terms of a corresponding elastic field. For the elastic field

we do, however, not take the field for a crack, but rather that for a

1
notch with as radius of curvature at its tip. In polar coordinates

R,*, the appropriate Mode-I stress fields are given by Creager and Paris

(1967) as

a K { ico4 Il-si4 s in.:ip - co",1p (4.3)

1 1 3 c 3
= 1 co~~[l+sin~ s irr:p] + -R co", (4.4)

ax = R )$ K. fsi41 co 'i cosi -' si~p (4.5)

Note that the tip of the notch, which is not the tip of the crack

1nor the elastic-plastic boundary, is a distance -i from the origin E,

as shown in Fig. 3. Just as for the Mode-Ill case, the center of the

elastic field E, whose position is defined by xl- e(t) , y- - 0, is

located in between the crack tip and the elastic-plastic boundary



defined by x-xp(t). For generalized plane stress, the displacements
p

corresponding to (4.3)-(4.5) are

1[-+ 2 1 1(4.6)
2nO~ 2Pc- s= + 2 si 7  + -cos pl

R 1 1 21 P 1
v =i- Ki{sr [K+Il - 2 cos 2i] + sin } (4.7)

where K = (3-v)/(l+v).

From the condition that the elastic field should just reach the

yield condition at the elastic-plastic boundary, we obtain by the use of (4.1)

and (4.3)-(4.5)

[(lp) ]2 [l+3(ya)1 = k (4.8)

where R = R at the elastic-plastic boundary, at least for smallP

values of y. Another condition is that o should be continuous

at the elastic-plastic boundary on y=0. By the use of (4.2a) and

(4.3) we find

k = ( ' K, (1 (4.9)

p p

From (4.8) and (4.9) it follows that

p_ .2 (4.10)
R P 3

Hence (4.9) yields

Equations (4.8) and (4.11) show why we have taken elastic fields for

a notch rather than for a crack. For an elastic crack-tip field the

conditions of reaching the yield condition at the elastic-plastic

-lI' i"/11I
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boundary would conflict with the condition of continuity of ax

as can be checked by setting p E 0 in (4.8) and (4.9).

1For small values of e and * we next consider the continuity of

a R and aR (i.e., the shear stress and the radial stress in the R,*

system). We use

aRiPR= (cos 2  - sin2 x)a + (a - )sincosp (4.12)

R xy y x

and

a R  2a xysincos* + axCOS 2* + a sin2 p , (4.13)

in conjunction with (4.2a,b,c) and (4.3)-(4.5). It may be

verified that aR* is continuous to first order in *. The stress

oR is continuous to order unity by virtue of Eq.(4.11). Collecting

terms to order 02 and *
2 yields the relation

o = Y7 , where y - /IM. (4.14)

This result implies that for small values of e and 1 the center of

the elastic field E is located at

XE a (1-y)X , and thus Rp= yxp (4.15a,b)

For y/x << 1 it follows from (4.2a,b,c) that

a k 1 b 2x (4.16)

a -2k + 0 (4.17)

Ty - -k(i) + 0(Y) (4.18)

From the stress-strain relations (2.4)-(2.6) we find by using

(4.16)-(4.18)

• i ' + ' '
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(Y) 2 2 +O 4
D =-at)(-Y))Ak(X +_ (X (4.19)

x E xx X xX

D = ;(t)kv 1 +  + k 4 (4.20)
y E xx 2 (

xy E xxx

Now consider the following expansions for y/x << 1

i(X,Y,t) - ; 0(x, t) + 2 (X~t)y 2 + 0(y 4 ) (4.22)

(xvyqt) = ;1 (x,t)y + 0(y) (4.23)

i(xyt) = A (x.t) + A 2 (Xt)y2 + O(y4) (4.24)

The strain rates follow from (4.22)-(4.23) as

ad au
D o 22y (4.25)x x ax

D (4.26)
y

Dy (2u +-)y (4.27)

By equating terms of the same order in (4.19)-(4.21) to the corres-

ponding ones in (4.22)-(4.24) we obtain

0 d 3 ~.! k (4.28a,b)
2FX_ ax E- x

v .A 0k (4.29)

av1
2d + -L. 0 (4.30)



By combining (4.28), (4.29) and (4.30) we obtain

1 - 1 - -4 a (4.31)

The general solution to (4.31) is

k a- + B(t) +CtX}(4.32)

p

and (4.30) subsequently yields

u2 = ~{~ l (.2x-)]1 + Bi t ---- Ci7t[-t}, (4.33)
p

while it follows from (4.28a) that

0u (kIE) D(t)

The functions B(t), C(t) and D(t) must be determined from continuity

of the particle velocity at the elastic-plastic boundary.

By the use of (3.10) we obtain from (4.6) and (4.6) at the elastic-

plastic boundary

p- (k/E)[U 0(t) + U 2(t)6
2 ] + 0(04) (4.35)

p(k/VI W + 0(03)9 (4.36)

where (4.10), (4.11) and (4.14) have been used. in (4.35)-(4.36)

112(t) - %L 1 2Y- 2,cY + K+5)x + (K+5)a](E/j) (4 .3("j
p
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v(t) 31 p (E/) (4.39)

By comparing (4.32)-(4.34) to (4.35)-(4.36) we conclude

B(t) - B1a(t) + B2p (t) (4.40)

C(t) - [C1a(t) + C2 (t)/[x p(t)] 3 , (4.41)

where
1 1 2

B =3 [K+5 + 4y(K+1)](E/u) - (4.42)
1 1

B2 - [iK+5 + 2y(K+I)](E/u) (4.43)

11 2
C1 "3---2* I[ -(K+5)+ 2y(K+I)] (E/V) +3 (4.44)

C2 = 3-.1. [-(K+5) + 4y(K+i1)](E/U) (4.45)

In the plane of the crack we have c - v1. At the elastic plastic

boundary (4.7) yields for small y

(C) I -- (K- 1) (4.46)
y PB 8 1 Y 3

where (4.11), (4.14) and e - y/x have been used. In the stationary

coordinate system, (4.32) can now be integrated to yield the total

strain as

k 1-a(t) 7 k + B n a(t)
Cy(X lit) - (C y)PB + tn (t) JB 2 Xp(t)

+ h_ dtxp/ +]B x l-a(t ) _pa I
k (12 + 2 "(k (BI+B2 _i } dt+ J p (t) p p

p p

t [xl-a(t)]2

+.h f [Cla + C Xp(t)] 2 dt (4.47)

P
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Here t is the time that the elastic-plastic boundary arrives atP

position xi, i.e., a(t ) + x (t ) M xI.
p p p V

For a given external load, we presumably know KI in terms of the

increase in "crack length" a(t) + (l-y)x (t). A relation between
p

X p(t) and a(t) can subsequently be obtained by the use of (4.15b) and

(4.11). Hence, in principle, a(t) is the only unknown quantity in

(4.47). An equation for a(t) and a(t) can be obtained from (4.47)

by the use of the critical strain criterion for crack propagation.

This criterion stipulates that crack growth will proceed when a critical

strain level c is maintained for E , in the plane of the crack at a

characteristic distance A ahead of the crack tip. It appears,

however, that it will be very difficult to solve a(t) and a(t) from

the integral equation that can be extracted from (4.47).

It is of interest to note that v as defined by (4.32), (4.40)

and (4.41) contains terms proportional to ;(t) and terms proportional

to x (t). The former correspond to crack propagation, while theP

latter are equally valid for a stationary crack under monotonic

loading. By setting a(t) = 0, we obtain

avI x2 dxV1  k B2  C2x p (4.48)

t I { + [x (t)" dt

This result shows that for a stationary crack and plane stress, the

strain cy has a singularity of order 1/x at the crack tip, in agreement

with the results of Rice (1973).
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The solution for £ in the plane of the crack simplifies con-y

siderably for two special cases. The first of these is the case of

a self-similar field. A self-similar solution materializes when

a(t) is proportional to x p(t),

a(t) - A x (t) (4.49)

Substitution of (4.49) into (4.47) and subsequent introduction of the

new variable

s [x1-a(t)]/x p(t) = [x1-Apxp (t)]/x p(t) (4.50)

reduces (4.47) to

(xix) (C +~ &kL( X /A x
y( P (y)PB E FT EZ'n 0 ) 'i !-(Bl+B 2 Ap (x )

pt)p  p

k XIx p sX/x ps dkds k (C-I(4.51)
- f [2tn(s) - (BI+B2/A)] - - (CA+C(4.)

1 p p 1 p

where we have used that x x - a(t). It is noted that the strain cY

comes out to depend only on the self-similar variable x/x (t).
P

For the second special case all fields are assumed to be time-

invariant to an observer traveling with the crack tip. This is the

steady-state case when cy depends on x x 1 - a(t) only. Now we have

that a - - constant - cF, and ( ) ax- c . Equation (4.32)

becomes

[4

1 k 2- n (B - B :1C W~ /~1 -. 2 x'x (4.52)
Tx ix x1 2 2p



18

where B1,B 2 C1 and C2 are defined by (4.42)-(4.45), and xp - constant.

Equation (4.52) may be integrated to yield

k x 2 X
EWy(X) (y)P + ---{[In(=--)] -).n(-)

p p

I (C +C2)[(j-) -11 (4.53)
p

Equation (4.53) offers better possibilities for the application

of a critical strain criterion. If e - cr at x - A, (4.53) can bey c

solved for the constant value of x . The corresponding external load
p

can subsequently be computed by the use of (4.15b) and (4.11).



19

ACKNOWLEDGEMENT

This work was carried out in the course of research sponsored by

the U.S. Office of Naval Research (Contract No. N00014-76-C-0063).

The authors gratefully acknowledge helpful comments by J. R. Rice on an

earlier version of this paper.

REFERENCES

Hutchinson, J.W. (1968) Plastic Stress and Strain Fields at a Crack

Tip, J. Mech. Phys. Solids, 16, 337-347.

Creager, M. and Paris, Paul C. (1967) Elastic Field Equations for Blunt

Cracks with Reference to Stress Corrosion Cracking, Int. J. of

Fracture Mechanics, 3, 247-252.

McClintock, F. A. And Irwin, C. R. (1965) Plasticity Aspects of Fracture

Mechanics, Fracture Toughness Testing and Its Applications, ASTM

STP 381, 84-113.

Rice, J. R. (1968), Mathematical Analysis in the Mechanics of Fracture,

in Fracture: An Advanced Treatise, Vol. II, (H. Liebowitz, ed.),

Academic Press, New York and London, 192-314.

Rice, J. R. (1973) Elastic-Plastic Models for Stable Crack Growth, in

Mechanics and Mechanisms of Crack Growth (M. J. May, ed.),

British Steel Corp. Physical Metallurgy Centre Report (1975),

14-39.

Rice, J. R. (1982) Elastic Plastic Crack Growth, in Mechanics of Solids

(H. G. Hopkins and M. J. Sewell, eds.), Pergamon Press, Oxford and

New York, 539-562.



20

x 2  y

r

Fig. 1: Moving crack tip

x2 y

RE (t)

a ett)

go x E ((t

Fig. 2: Center of elastic field E and elastic-

plastic boundary



21

x 2

x

e (t)

L x P(t)
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