AD - A124 432 MULT]-SAMPLE CLUSTER ANALYSIS USING AKAIKE'S |/I )
INFORMATION CRITERION..(U) ILLINDIS UNIV AT CHICAGD
CIRCLE DEPT Of QUANTITATIVE METHODS M BOZDOGAN €T AL.

UNCLASSIFIED 20 DEC 82 TR-AB2-2 ARO-19008.3-MA F/Q 12/1 ‘NL

I K




M

o st
==k L w2 -
=§ LS
: 2
““ £ =
== 1.8

)
o

i s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963~ A

——— ————




e e fp— e - 1+ T

A 124439

ALD

LTI-SAMPLE CLUSTER ARALYSIS
USINh AKAIKE S INFURNMATION CRITERIUNT™
oy

HAMPARSUM BUZJUGAN
Department of yuantitative ilethods
University of 1llinois at Chicaygo

and

STANLEY L. SCLuUVE
Department of yuantitative ilethods
University of [llinois at Chnicago

To appear in ANNALS UF INSTITUTE JF STATISTICAL MATHAEAATICS

TECHNICAL REPURT MU. Ad2-2
December 2U, 13382

PREPARED FUR THE
ARMY RESEARCH OFFICE
UNDER
CUNTRACT DAAG29-82-K-Uls3,
with the University of I[llinois at Chicayo

Statistical Models and 'lethods for
Cluster Analssis and Image Segmentation

Principai [nvestigator: 3tanley L. 3clove

Reproaguction in wnoia or in part is permitted
far any purpose of the United ¢ i
JQUANTITATIVE METHUUS UEPARTMENT
COLLEGE UF BUSINESS AUMINISTRATIUN

UNIVERASITY JF ILLIMIS AT CHICAWO
BUX 4348, CAICAGY, ILLIdUI3 aUodu

i

Approvec for pudiic r~z2lease,; ais

“Prasantag oy n
1da°

Clustar Anaiysis, 739tnh !
M3ssacnusatts, 4mnerst, YA, Jctocer 19-1d. L23..

Statas Government.

19085, 3-mA

. o~
P y 1
4

ey L ae BV

y Yaper 3

trioution uniimitaa

ne First i or 3s an Iavitaa Paper, Speciiai 3Sessicn an
‘eetiny, 4merician ilat~ematical So¢iety, unijarsicy of

|



desotnton For 'ﬁ
“yris eRAMS

PRIC TAB L
Sansnsusesd a
Syatiftcation ————

By

pisteibution/
[ aveiledirity Codes |
" lvall apd/ef

Diat Special

Al L

pt¥'¢

coP?
epeCTE?
3

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED [N THIS REPORT ARE
THOSE OF THE AUTHOR(S) AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL

DEPARTMENT CF THE ARMY POSITION. POLICY, OR DECISION, UNLESS SO
JESIGNATED BY OTHER DOCUMENTATION.




GNCLASSIFIED

SECLMITY CLASSIFICATION OF THi§ PAGE ‘When Darte Zniered)

REPORT DOCUMENTATION PAGE ; READ INSTRUCTIONS

UEFORE COMPLETING FORM

REPOAT NUMBER 2. RV cqu ry HECIPIENT'S CATALOG NUMBER
Technical Report A82-2 | ,}/£ m

»

]
TITLE and Subitiie; ‘775
Mulri-Sample Cluster Analysis Using
Akaike's Information Criterion Technical Report

TYPE OF HEPORT 4 PEMCD COVERED

§ PERFCAMING QRG. REPQRAY myuMBER

7. AYTHORACS) |8 CONTRACT OR GRANT NuUMBEAR(e)
Hamparsum Bozdogan and Stanley L. Sclove DAAG29-82-K-0155
$. PERFOANING ORGANIZATION MAME ANO ADORESS 0 PROLHAM ELEMEMNT PROLUECT TAaSK

AREA 3 WORK UNIT NUMBERS

University of I1linois at Chicago
Box 4348, Chicago, IL 60680

1. CONTROLLING OQFFICE NAME ANO ADORESS '3. REPOAT OATE
Y. E. Army Research Jffice December 20, 1982
Pust Lrvize Box 12211 13 NUMBER OF PAGES
Sesear-~: Triangle Park, NC 27739 27+ 1i

Ts.

MONITORING AGENCY NAME & ACORESS(I! different from Controliing Oftice) 15 SECURITY CLASS. 7of thie repun)

Uncausdsified

15%¢ DECL_ASSIFICATION: COWNGRADING

SCHEDULE
16. NSTMIBUTION STATEMENT (ol thie Repore)
Approved for public release; distribution unlimited.
17 OISTAIBUTION STATEMENT (of the sdetzect entered in Block 20, il Jifterant iram Reporr)
o
BN
8. SUPPL_EMENTARY NOQTES
The view, opinions, and/or findings contained in this report are tnose of the
autpor(s) and.>nould not be construed as an official Department of the Army
pasition, policy, or decivion, unless so designated by ather dooudient gt o
{" REY WOMDS (LonN(iNuUe ON (6veree 01ue | NOCOOOETY GND 1JONLITY IY GIui A NwnBer) T -

Multi-sample cluster analysis; W-square Criterion; Akaike's Information
Criterion (AIC); MANOVA model; multivariate model with varying mean vectors
and variance-covariance matrices; maximum likelihood.

ia

L

AGETRACT Tantiines an rovwes otdd |/ “ocovowry apd !deniiiv 8y dioc kR numnber:

Multi-sample cluster analysis, the problem of grouping samples, js studied
from an information-theoretic viewpoint via Akaike's Information Criterion (AIC)a
This criterion combines the maximum value of the likelihood with the number of
parameters used in achieving that value. The multi-sample cluster problem is
defined, and AIC is developed for this problem. The form of AIC is derived in

[ 4
DO . % n 1473  cormom oF ' wov ¢3 15 omsOLETE

e NN -
WMLLASCS IR 23

SEZLMTY CLASSIPIC A M OF Tuis MAGE When Dste Enceren)




Unclassified

SECUATY CLASRMCATION OF THIS PAGE (Than Date Eutered)

(Abstract, continued)

both the multivariate analysis of variance (MANOVA) model and in the
multivariate model with varying mean vecrors and variance-covariance
matrices. Numerical examples are presented for AIC and another criterion

called w-square. The results demonstrate the utility of AIC in identifying

the best clustering alternatives.

Unclassified

SESURI®Y S, ABMPISATIGN 3P “uig SAZE Then Jors Entered)

A e




4,
5.

wja
MULTI-SAMPLE CLUSTER ANALYSIS
USING AKAIKE'S INFURMATIUN CRITERION®
Hamparsum Bozdogan and Stanley L. Sclove
University of I1linois at Chicago

CUNTENTS

Abstract; Key Words and Phrases

Introduction

The Multi-Sample Cluster Problem

Derivation of AIC for Two Multivariate Models

3.1. AIC for the Multivariate Analysis of Variance (MANUVA)
Model: AIC (commen )

3.2, AIC for the Multivariate Model with Varying Parameters:
AIC(varying y and L)

Numerical Examples of Multi-Sample Cluster Apalysis on Real Data Sets

Conclusions and Discussions

Acknowledgements

References

Cluster Analysis, 789th Meetiny, American Mathematical Society, University of

*Presented by the first author as an Invited Paper, Special Session on

Massachusetts, Amherst, MA, October 16-18, 198l.




-ji-
MULTI-SAMPLE CLUSTER ANALYSIS
USING AKAIKE'S INFORMATION CRITERIUN=*

{ Hamparsum Bozdogan and Stanley L. Sclove
' University of I1linois at Chicayo

ABSTRACT

Multi-sample cluster analysis, the problem of grouping samples, is
studied from an information-theoretic viewpoint via Akaike's Information
Criterion (AIC). This criterion combines the maximum value of the likelinood
i with the number of parameters used in achieving that value. The multi-sample
cluster problem is defined, and AIC is developed for this problem. The form of
AIC 1s derived in both the multivariate analysis of variance (MANOVA) model and
in the multivariate model with varying mean vectors and variance-covariance
matrices. Numerical examples are presented for AIC and another criterion
called w-square. The results demonstrate the utility of AIC in identifyiny the

best clustering alternatives. (f’
\_"___________'-d

Key Words and Phrases: Multi-sample cluster analysis; w-square Criterion;
Akaike's Information Criterion (AIC); MANOVA model; multivariate model
with varying mean vectors and variance-covariance matrices; maximum

4 likelinood.
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MULTI-SAMPLE CLUSTER ANALYSIS
USING AKAIKE'S INFURMATIUN CRITERIUN*

Hamparsum Bozdogan and Stanley L. Sclove
University of I1linois at Chicago

1. Introduction

In this paper, we shall develop Akaike's Information Criterion (AIC) for
multi-sample cluster analysis with common and also with varying variance-
covariance matrices, since often in practice the assumption of equal variance-
covariance matrices is a rather dubious requirement.

The problem of multi-sample cluster analysis arises when we are given a
collection of samples (groups, treatments), to be clustered into homoyeneous
groups.

Many practical situations require the praesentation of multivariate data
from several structured samples for comparative purposes and the grouping of
the heterogeneous samples into homogeneous sets of samples. Thus, it is
reasonable to provide a practically useful statistical procedure that would use
some sort of statistical model to aid in comparisons of various collections of
samples, identify homogeneous groups of samples, telling us whicn samples
should be clustered together and which should not.

Examples of milti-sample clustering situations are abundant in practice.
We shall give two of these examples later and illustrate numerically.

The concept of multi-sample cluster analysis presented in this paper is
relatively new. It has not been definitively studied before either using the
conventional simultaneous test procedures (STP's) which are based on inference
for the multivariate analysis of variance (MANOVA) model, or from an informa-

tion-theoretic viewpoint, which we snall adopt in this paper via Akaike's

*Presented by the first author as an Invited Paper, Special Session on
Cluster Analysis, 789th Meetiny, American Mathematical Society, University of
Massachusetts, Amnherst, MA, Uctober 16-18, 198l,
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Information Criterion (AIC).
Multivariate analysis of variance (MANOVA) is a widely used model for
comparing two or more multivariate samples with a common covariance matrix. In

this model, the likelihood ratio principle leads to Wilks' [17] lambda, or in

short Wilks' A Criterion as the test statistic. It plays the same role in

multivariate analysis that F-ratio statistic plays in the univariate case.

Often, however, the formal analyses involved in MANUVA are not revealiny or
informative. Moreover, the test statistics used under this model are derived
under the assumption of equal covariance matrices. I[f we have a reason to doubt
equality of covariances, then we may first want to test the equality of covari-
ances. In the multivariate case the equality of covariance matrices is
certainly more hazardous. If the covariance matrices are unequal, a bias occurs
in the test for equality of mean vectors. Therefore, for this reason we may
want to first test the equality of covariance matrices instead of immediately
leaping to the MANOVA hypothesis. This is an important option to use in
clustering groups or samples when we are not willing to assume equal covariance
matrices between the samples or groups in the multi-sample data.

Once the MANOVA hypothesis of equality of mean vectors is rejected at some
prescribed significance level a, then it is necessary to study in detail the
discrepancies between the null hypothesis and the data.

In the statistical literature, in the MANOVA case, there are a variety of
conventional multiple comparison procedures for studying the discrepancies
between the null hypothesis and the data. These test procedures are: Step-down
Methods, Union Intersection Tests, and Simultaneous Confidence Intervais. For
more details on these test procedures refer to Gabriel (71, Krishnaiah ([1lu],

[11]), Srivastava [16], and others.
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As noted in Consul [4], the exact distributions of these conventional
test procedures are either unknown or are known for some particular cases
only. Moreover, the problem of finding the percentage points of these statis-
tics has become rather difficult. For these reasons, and for our purposes,
these test procéedures have little practical use. Furthermore, they create
additional problems in terms of how to control the overall error rate a, Ssince
we can no longer use the same a to discover where the discrepancies between
the null hypothesis and the data might occur.

In the case of testing the equality of covariance matrices, we find our-
selvas in the same situation as in the MANUVA model. For this problem also,
there are in the statistical literature several test procedures. For example,
one of the most commonly used tests is Box's M test despite the fact that it
is very restrictive. For instance, Box's approximation seems to be only yood
if each sample size, ng exceeds 20, and if the number of samples, K, and the
number of variables, p, exceed 5. It is also very expensive to compute it on
a high speed computer, even on an IBM 370.

Once the nypothesis of equality of covariance matrices is rejected at
some prescribed significance level a, then again it is necessary to study in
detail the discrepancies between the null hypothesis and the data.

Further reviewing the statistical literature, we see that there are no
conventional simultaneous test procedures (STP's) in this case in studying tne
discrepancies between the null hypothesis and the data. uJne can perhaps
construct a sequential likelihood ratio type test, but as is mentioned in
Muirhead ([14], p. 296), the likelihood ratio test in testing the eyuality of

1
are not all equal, it is biased. Therefore, in the multi-sample cluster

covariance matrices has the defect that, when the sample sizes n ’"2""'"K
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problem with varying parameters, carrying out a sequence of likelihood ratio
tests leaves much to be desired in identifying nomoyeneous yroups of samvles.
More recently, however, in the statistical literature, we see a likelihood

based approach, called w-square criterion given in Mardia et al. L12] to aid

in comparing various collections of samples, identifyiny homoyeneous gyroups of
samples, and telling which should be clustered together. For normal samples

with equal covariance matrices, the w-square criterion is defined by

2 K - = ~ - =
= Y e tpal/y..
(1.1 W 921 I nj(Xj-Xg)'Z-l{Xj-Xg)

XjeCy

where
Cg = the set of X; assigned to the gth group, y=l, 2,...,K,

=
Xg = the weighted mean vector of the means in the
= gth group, or the cluster set Cy of groups,

L =W/(n-K), the pooled estimate of Z,
K

W = ] Ay is tne within-samples SSP matrix,
g=1

!

n = ng, and

g=l ¥

K = the number of groups or samples to be clustered.

If the matrix of Mahalanabis distances U4 given by

2 - e A e
D = (Xi-Xj)'E=l(Xi-
i3 (X1-X3) "2 (Xi-X3)




-5

2
is available, then for computational convenience, W can be written as
a

2 K -1 2
(1.2) w =1/2 T N ¥ ninjo
a e*l 9 Gy i]
where
Ngai'Ec nJo
=i 9

Thus, when we are given multi-sample data and wish to cluster the samples,
we compute w: in (1.1) or (1.2) for some or all of the alternative groupings of
samples, and choose the minimum of wj to be the "best" alternative clustering
of samples. Tnis is appropriate, since maximizing the likelihood implies
minimizing wz.

a 2

Even though the "a criterion is a step forward in identitfyiny nomoyeneous
groups of samples and evaluating multi-sample clusters, it has some aisadvan-
tages. For instance, it does not make any allowance for m, the number of
parameters estimated within the model and the subsequent alternative submodels.
It is always zero when the groups or samples are clustered as sinyletons, as we
shall see later in Section 4. As it is yiven in (l.l), we can only work with
w: criterion when we assume equal covariance matrices.

For the above stated reasons, and the problems encountered in the conven-
tional test procedures which we discussed above, in this paper we shall propose
Akaike's Information Criterion (AIC) as a new and unifying proceaure for
evaluating muiti-sample clusters, and use it to identify the best clusteriny
alternatives.

In 1971, Akaike first introduced an information criterion, referrea to as
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a Model Identification Criterion or Akaike's Information Criterion (AIC), for
the identification and comparison of statistical models in a class of competing

models with different numbers of parameters. [t is defined by
(1.3) AIC = (-2)loge(maximized likelihood)
+ 2 (number of free parameters within the model).

It was obtained by Akaike ([2], [3]) based on the recognition that the classi-
cal method of maximum likelinood could be viewed as a method of identification
of a statistical model realized by maximizing an estimate of the yeneralized
entropy, or the expected log likelihood, of the model beiny fitted. It esti-
mates minus twice the expected log likelihood of the model whose parameters are
determined by the method of maximum likelihood. When several competiny models
are being comgared or fitted, AIC is a simple procedure which measures the

badness of fit or the discrepancy of the estimated model from the true mode |

when a set of data is given. The first term in (1.3) stands for the penalty of

badness of fit when the maximum likelihood estimators of the parameters of the

model are used. The second term in the definition of AIC, on the other nand,

stands for the penalty of increased unreliability or compensation for the bias

in the first term as a consequence of increasing number of parameters., [f more
parameters are used to describe the data, it is natural to get a laryer
1ikelihood, possibly without improving the true goodness of fit by penaliling
the use of additional parameters.

Thus, when there are several competing models, the parameters within the
models are estimated by the method of maximum likelihood and the AlC-values are

computed and compared to find a model with the minimum value of AIC. This
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procedure is called the minimum AIC procedure. The model with the minimum AIC

is called the minimum AIC estimate (MAICE) and is desiynated as the best model.

Thus, in applying AIC the emphasis is on comparing the "goodness of fit" of
various models with an allowance made for parsimony. .

In Section 2, we shall define the general multi-sample cluster problem.
In Section 3, we shall derive the AIC procedure both for the miltivariate
analysis of variance (MANOVA) model, and for the multivariate model witn vary-
ing covariance matrices. We shall, in Section 4, give different numerical
examples of multi-sample cluster analysis on different real data sets to demon-
strate our results from applying minimum AIC procedures in different computer
analyses. Finally, in Section 5, we shall present our conclusions and

discussion.

2. The Multi-Sample Cluster Problem

Suppose each individual, object, or case, has- been measured on p response

or outcome measures (dependent variables) simultaneously in K independent

groups or samples (factor levels). Let

(2.1) X(nxp)=|.

be a single data matrix of K groups or samples, where Xg (nyxp) reﬁresents the

observations from the yg-th group or sample, g¢=1,2,...,K, and n = | Ng. The
y=1
goal of cluster analysis is to put the K groups or samples into k homogeneous
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groups, samples, or classes where k is unknown, but k<K.

Often individuals or objects have been sampled from K>1 populations. The
data lmtrix my be represented in partitioned form as above. Let ng represent
the number of individuals in the y-th (random) sampie, g=1,2,...,K. The ng are
not restricted tc being I%qual or proportional to other ng's. The total number
of observations is n = § Ng. Let J_(gi be the pxl vector of observations in

group g=1,2,...,K, and for individual 1=1,2....,n9.

3. Derivation of AIC for Two Multivariate Models

3.1 AIC for the Multivariate Analysis of Variance (MANUVA) Model:

AIC (common E)

We now turn our attention to consider situations with several multivariate

normal samples.

For example, we may have multi-sample data with sample sizes N, N

saee ﬂ
2’ »

K

which are assumed to come from K populations, the first with mean vector ¥, and

covariance matrix I, the second with mean vector u,  and covariance matrix I,...,

2
the Kth with mean vector B and covariance matrix . Therefore, throughout this
section we shall suppose that we may have independent data matrices
X 5—2""’51(’ where the rows of Xy(ngxp) are independent and identically distri-
buted (i.1.d.) according to a mulitivariate normal distribution, Np(gg,g),
g=1,2,...,K. We may want to compare the K sample mean vectors given that all K
distributions have a common covariance matrix L. This is the well known multi-
variate analysis of variance (MANOVA) model. In terms of the parameters the
MANOVA model is 9'(‘11"32"""3,('5) with m=kp+p(p+1)/2 parameters, where k is the
number of groups, and p is the number of variables.

We shall derive the form of AIC for this model. Recall tnhe definition of

AIC from Section 1,
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AIC = -2 loge L(8) + 2m

s -2 loge (maximized likelihood) + 2m ,

where m denotes the number of free parameters within the model.

Consider K normal populations with different mean vectors ug, ¢=1,2,...,
KyseosKe Let 591, g=1,2,...,K; i=1,2,...,ng, be a random sample of observations
from the g-th population Np(gg,z). If the groups or samples can differ only in

their mean vectors, we can write the multivariate one-way analysis variance

(MANOVA) model as
(3.1.1)  Xgi = uy + ggi» 9%1,2,...,K; i21,2,...,ng,

where 591 is the (pxl) response or outcome vector in the g-th
group for the i-th individual or object,
ug are vector parameters, and

egi are independent Np(0,Z) random vector errors.

Thus, the basic null hypothesis we usually are interested in testiny is

given by

(3.1-2) Ho:gl'u’oco’uu

The alternative hypothesis is given by

H1 : Not all EK are equal.

Wilks' lambda is a general statistic for handling this problem. Althougnh
there are several other conventional statistics for this purpose, they all can

be viewed as special cases of Wilks' A which we shall not discuss here.
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For notational purposes, we shall denote by T the “total" sum of squares
and products (SSP) matrix, by W the “within-group” or “within-sample" SSP

matrix, and by B the "between-group" SSP matrix. Hence, it can be shown that

(3.1.3) T sW+B,

where
K nq - -
(3.1.4) T= [ T (Xgi - X)(Xgi - X)',
g=l i=sl -~
K ng - -
p (3.1.5) W= X Z (Xqi = Xq)(Xqi = Xq)'»
gl i3l -9 -g/3egi <9
and
K - - - -
(3.1.6) B = [ ng (Xg - X)(Xg-X)"
g=1
with
- ng
X B x 1 N ’1,2,...,'( Y
g =75 (1, ot - 8

Nq ' K

g
Z ggi , N = Z ng .
g=1

K
= 1
X ==
= gzl isl

Therefore, we can present multivariate one-way analysis of variance

(MANQVA) table as follows.
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TABLE 3.1. MANQOVA TABLE

Source d.f. SSP matrix Wilks' criterion
Between sampies K-1 B |W]
i
1Tl
Within samples n-K W -A(p ;3 n-K;K-=-1)
Total n-1 T

K

or by

-np/2

X
g=1

K .1

g=1

K
where n= Jngand Ag = |
g=1 j=

The log likelihood function is

ﬂg - -
1(591 - Xg)(Xgi = %g)* .

Now, we derive the form of Akaike's Information Criterion (AIC) for the
MANOVA model given in (3.1.1), subject to the constraint yiven in (3.1.2).

i The likelihood function of all the sample observations is given by

-n /2

9 x

K 1

exp {-1/2tr | £g Ag - 1/2tr | nglg (Xg - ug)(xg = ug)'} ,

g=l




(3.1.9)
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1(ugsZg:X) = Togl (pg,Zg:X)

g= o=l
K a1 _ -
- 1/2tr Zlnggg (xg - g)(xg - pg)' -
g'

Since the common covariance matrix is £, the log likelihood function

becomes

- (3.1.10)  1({pg),Z:X) = TogL({ug},Z:X)

A K
= - (np/2)10g9(2x)-(n/2)10g |Z| - 1/2tr II_A_g
g‘

LK -
- lr2trp Xlng(gsg - pg){xg = g’ »
g’

and the maximum-1ikelihood estimates (MLE's) of ug, and T are

(3.1.11)

and

where

(3.1.12)

By = 59 y 901,2,...,K,

Substituting these back into (3.1.10) and simplifying, the maximized
tikelihood becomes

K K .1
- (np/2) log(2x) - 1/2 Xlngmglggl - 1/2tr § g5 Ag

log
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(3.1.13) 1{ughZiK) = log L({ug},E:¥)

=1
- (np/2)10g(2x) - (n/2)log{n W| - (np/2),

where W is the “within-group" SSP matrix.

Since

(3.1.14) AIC = -2 logeL(8) + 2m ,

where m = kp + M%ﬂl is the number of parameters, then AIC becomes

(3.1.15) AIC (common L) = nploge(2r) mloge]n‘lﬁl + np + 2[kp+ +l J.

Since the constants do not affect the result of comparison of models, we

could ignore them and reduce the form of AIC to a much simpler form

(3.1.16) AIC* (common £) = nlogy|W| + 2[kp + M%Lll]

K
where n = ] ng = the total sample size,
9=l

|=
]

the determinant of "“within-group" SSP matrix,

»x
[ ]

number of groups or samples compared,

p = number of variables.

However, for purposes of comparison we retain the constants and use

AIC (common I).
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3.2. AIC for the Multivariate Model with Varying Parameters:

AIC (varying p and )

As we mentioned in Section 1, the assumption of equality of covariance
matrices in MANOVA can cause serious problems. For this reason we may want
first test the equality of covariance mtrices against the alternative that
not all covariance matrices are equal, given no restriction on the population
mean vectors. Therefore, throughout this section we shall suppose that we may
have independent data matrices _)_(_1,12,...,51(. where the rows of lg (ngxp) are
independent and identically distributed (i.i.d.) Np(gg-Eg)' g=1,2,...,Kk. In
terms of the parameters with varying mean vectors and covariance matrices,

the miltivariate model we shall consider is

g = (EI’EZ’...’&K’EI’EZ’...'EK)

with m = kp + kp(p+1)/2 parameters, where k is the number of groups, and p is
the number of variables.

Thus, the basic null hypothesis we usually are interested in testing is

given by

(3.2.1) H: E

'z .ooo.:c

=2

The alternative hypothesis is given by
HI: Not all K covariance matrices are equal.

In nultivariate analysis this is known as the test of homogeneity of

covariance mtrices.
To derive Akaike's Information Criterion (AIC) in this case the log
1ikelthood function is given ty

i o e gy
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(3.2.2) ]({l_lgyighl) log L({Egoig}i_x_)

W

K K
- (np/2) Tog(2x) =~ 1/2 §n log|z | - 172 I n trr-'A
g=l ¢ g g=1 CI

K
Tz Linglxg - ug)(xg - ug) -

The MLE's of ug and g are

Y

(3.2-3) Eg b gg ’ 9'192’~-0:Ks

and

(3.2.4) zg * Ag/ng.

Substituting these back into (3.2.2) and simplifying, the maximized loy

1ikelihood becomes

- -

log L({ug»Zg};X)

(3.2.5)  1({ygsZgh:X)

K <l
- (np/2)log(2%) = 172 §J n login A | - (np/2).
g=1 g 97y

Since
(3.2.6) AIC = -2 logeL(g) +2m,

where m = kp + kp(p+1)/2 is the number of parameters, then AIC becomes

e e e o
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K -l
(3.2.7) AIC(varying u and g} = nploge(Zw) + Zlng]og Ing Agl + np
g e

+ 2[kp + kp(p+l)/2l.
Since the constants do not affect the result of comparison of models, we
could ignore them and reduce the form of AIC to a much simpler form

X
(3.2.8) AIC*(varying u and ) = gzlng]ogelﬁgl + 2[kp + kp(p*l)/2],

where ng » sample size of group or sample g=1,2,...K,

|Agl

the determinant of sum of squares and cross-products (SSCP)
matrix for group or sample g=1,2,...,K,

k = number of groups or samples compared, and

p = number of variables.
However, for purposes of comparison we retain the constants and use AIC given

by (3.2.7).

4. Numerical Examples of Multi-Sample Cluster Analysis on Real Data Sets

In this section we shall give two different numerical examples of muilti-
sample cluster analysis, cluster the samples, and choose the best clusterings
by using Akaike's Information Criterion (AIC) as derived in Section 3.1 and
3.2. In example 4.2 we shall also present the numerical resuits of using the
w-square criterfion as an alternative approach. We shall briefly discuss the
relative merits of AIC over w-square criterion. Une should note that these
criteria are qualitatively and quantitatively different.

Qur computations were carried out for all the examples we shall present

here on an IBM 4341, configured as a 370, by using a newly aeveloped

B e
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statistical library software by the first author for muiti-sample cluster
analysis using AIC, called MSCA.AIC.
We shall illustrate our results first on the Fisher [5] iris data.

Example 4.1. Clustering of Irises by Groups: The iris data set is composed

of 150 iris species belonging to three groups or species, namely Iris setosa

(S), Ilris versicolor (Ve), and Iris virginica (Vi) measured on sepal and petal

length and width. Each group is represented by 50 plants.

This data set has been quite extensively studied in classification and
cluster analysis since it was published by Fisher (5], and still today, is
being used as a “testing ground” for classification and clustering methods
proposed by many investigators such as Friedman and Rubin (6], Kendall (8],
Solomon [15], Mezzich and Solomon (13], and many others, including the present
authors.

For each of the 15Q plants we already know the group structure of the

iris species, namely K=3 groups or samples. Even though the two species, Iris

setosa and [ris versicolor were found growing in the same colony, and Iris

virginica was found growing in a different colony, Fisher reports in his
linear discriminant analysis the separation of l. setosa completely from [.

versicolor and I. virginica. Since then other investigators have shown

similar results in their studies such as the ones we mentioned above.

With this in mind, we cluster K=3 samples (species) into k=1,2, and 3
groups on the basis of all the four varfables. We obtain in tc:al five
possible clustering alternatives. (In general, the total number of
possibilities 1s a Stirling Number of the Second Kind; see, e.y., Abramowitz
and Stegun [1]). Oenoting I. setosa by S, [. versicolor by Ve, and

I. virginica by Vi, we have (S) (Ve) (Vi), (S, ve) (Vi), (S, Vi) (Ve), (Ve, Vi)(S),




and (S, Ve, Vi) as the possible clustering alternatives.
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Using the MANOVA model

and the multivariate model with varying parameters discussed in Sections 3.1 and

3.2 as our underlying models for clustering these three iris species, we obtained the

following results.

TABLE 4.1. THE AIC'S FOR IRISES BY GROUPS UN ALL VARIABLES UNDER MANOVA MODEL
b
Alternative | Clustering nloge(2x) | nloge|n="W|{ np | k | 2m | AIC (common %)
1 (S) (Ve) (vi) | 1,102.724 -1,504.2 60U | 3| 44 242,524
2 {S, Ve) é\lig 1,102.724 -1,085.9 600 | 2] 36 692.824
3 S, Vi) (Ve 1,102.724 - 988.3Y 600 | 2 | 36 750.334
4 (Ve, Vi) (S) | 1,102,728 | -1,299.6 600 | 2| 36 439,124b
5 (S, Ve, Vi) | 1,102.724 - $41.73 600 | 1| 28 788.994

n = 150 plants, p = 4 variables

m = kp + p(p+1)/2 parameters

AIC (common £) = nplog (2r) + nloge|n='W|+ np + 2m
e

aFirst Minimum AIC

bSecand Minimum AIC

TABLE 4.2. THE AIC'S FOR IRISES BY GROUPS UN ALL VARIABLES UNUER THE MUDEL WITH
VARYING PARAMETERS
K . R
Alternative | Clustering nploge(2x) | § n loge|ng="Agl! np | k | 2m | AIC (varying
e el 2g
g=L ¢ u and )
i (S) (Ve) (Vi) | 1,102.724 -1,653.895 60V | 3| 84 132.8292
v 2 (S, Ve) (Vi) | 1,102.724 -1,251.675 600 | 2 | 96 §U7.U49
- 3 (S, Vi) (ve) | 1,102.724 1,144,480 600 | 2 | 56 614,244
s (Ve, Vi) (S) | 1,102.724 -1,463.770 600 | 2 | 96 294,954D
5 (S, Ve, Vi) | 1,102.724 - 941.580 600 [ 1 | 28 789.144
) n = 150 plants, p = 4 variables
' m = kp + kp(p+l)/2 parameters ¢
AIC(varying y and £) = nploge (2v) + [ nglogeln=! Agl + np + Zm
- Y

o aF{rst Minimum AIC

O -

bsecond Minimum AIC

g=l
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Looking at Tables 4.1 and 4.2, we see that, using all four variables
simultaneously under both models, the MAICE clustering is (S) (Ve) (Vi). This
indicates that indeed there are three types of species. Not shrprisingly, the
the second minimum AIC occurs at the alternative submodel 4 (Ve, Vi) (S),
under both models, telling us that if we were to cluster any one of the two

iris groups, we should cluster 1. versicolor and I. virginica together as one

homogeneous group, and we should cluster I. setosa completely separately. We
note that the AIC values under submodel 2 and 3 are quite large indicating the

inferiority of these submodels. We can see the effect of clustering I. setosa

with 1. versicolor in submodel 2, and also with I. virginica in submodel 3,
by comparing the difference of AIC's in these submodels with that of submodel 4

in which I. versicolor and I. virginica were clustered together and I. setosa

was clustered as a separate cluster on its own. According to AIC, we never
cluster three iris species as one homegeneous yroup (submodel 5). Again by
comparing the differences of AIC's of submodel 5 with that of submodels 4, 3,
and 2, respectively, we can measure the amount of heteroyeneity contributed oy

I. setosa, I. versicolor, and I. virginica, respectively, in each clustering

alternative under the MANOVA model and the multivariate model with varying mean
vectors and covariance matrices. The larger this difference, the greater the
heterogeneity or separation of that group or sample from that of homegeneous
groups or samples in each clustering alternative.

In comparing the AIC's in Tables 4.1 and 4.2, we further notice that
AIC (varying M and £) values are much less than the AIC (common £) values for each
of the clustering alternatives except for the last clustering aiternative (i.e.,
alternative 5) in clustering the iris groups or species. Since according to tne

definition of AIC, the model with the minimum AIC is chosen to be the best model,
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then the above results suggest that when we are clustering iris data, and in

general, we should use different covariance matrices rather than using equal

covariance matrices.

We now present our results on the iris data by using the w-square

criterion given by (1.1) in Section 1, when we assume equal covariance matrices

between the iris groups or species.

We should note here that in w-square

criterion given by (1.1) and in Mardia et al. ([12], p. 367), the estimated

pooled-within groups covariance matrix of £ is computed only once across all

the groups or samples to be clustered regardliess of the number of clustering

alternatives.

In our version of w-square criterion we follow the same proce-

dure, but we recompute the estimate of L in each clustering alternative when we

vary the number of clusters of groups or samples, X, when we are given,
number of groups or samples to be clustered.

tion of equal and separate covariance matrices between the iris groups.

K, the

We do this both under the assump-

There-

fore, our numerical values on w-square criterion are gquite different then the

original w-square criterion given in Mardia et al. [12], despite the fact that

we get the same results.

We give the computational results as follows.

TABLE 4.3. THE VALUES OF wi FOR IRISES BY GROUPS ON ALL VARIABLES
2 a 2 b 2 c
Alternative Clustering wa(common L) wa(common‘g) w (varying I)
a

1 (S) (ve) (Vi) ceveenane cacmanaa * cemeaeaa?
2 (S, Ve) (Vi) 2246.6046 137.9722 94,4149
3 (S, Vi) (Ve) 4484.6178 142.3345 96,0706

4 (Ve, Vi) (S) 430.0267** 109.5511** 76.8212**
5 (S, Ve, Vi) 4774,1661 175.2u91 17%.2091

— e e
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n = 150 plants, p = 4 variables
a 2
Original wa given in (1.1)
)} 2
*“Our version of w
a
2
*w cannot be computed (always equal to zero)
a
2
**Minimum of w
a

Hence, we interpret the resuits in Table 4.3 in the same manner as we did
2
for AIC's. We see that at the alternative submodel 1, "a cannot be computed and

is always equal to zero when the iris groups are clustered as singletons. This

2
-is always the case in general. Certainly this is a definite disadvantaye of “a

as compared to AIC which has a value even if the iris groups are clusterc~ °s
singletons, so that AIC can aid us in determining and uncerstanding the amount
of heterogeneity ur separation of the groups on a unigue scale. the minimum of
w: occurs at the alternative submodel 4, telling us again that, if we were to

cluster any one of the two iris groups, we shcild cluster I. versicolor and

1. virginica together as one homogeneous group, and we should cluster I. setosa
completely separate as one heterogeneous group.

In short, w-square criterion gives the same results as AIC does, but as we
mentioned in Section 1, it does not make any allowance for m, the number of
parameters estimated within the clustering alternatives. AIC makes such an
allowance to achieve a parsimony when we compare “the ygoodness of fit" of vari-
fous models as we do in comparing different clustering alternatives. W-square
criterion 1s short of having this important feature. Also as we saw, when we

have singleton clusters, it cannot be computed.

T e min i e ks e 74 1w st A b
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Therefore, in our next example, we shall only give our results on AIC,
since our purpose is to introduce AIC in this paper as a new approach to be used

in evaluating multi-sample clusters.

Example 4.2. Clustering Graduate Students by Their Classification Groups:

A data set for applicants to admission to a Graduate School of Business given in
Johnson and Wichern ([9], p. 528) is composed of data for U85S applicants who were
classified by the admissions officer as Admit (A), Not Admit (NA), and Borderline (B),
based on undergraduate grade point average (GPA) and graduate management aptitude test
(GMAT) scores. The group sizes are n; = 31, nz = 28, and n3=26 applicants.

With this in mind, we cluster K=3 groups of applicants into k=1,2 and 3 homoye-
neous groups on the basis of the two varfables. Using the MANUVA model and the multi-

variate model with varyinj parameters, our results are as follows.

TABLE 4.4, THE AIC'S FOR APPLICANTS BY THEIR CLASSIFICATIUN GROUPS UNUER

MANOVA MUDEL
) [
Alternative Clustering nloge(2x) nloge|n="W| np | k | 2m | AIC (common )
1 (A) (MA) (B) 312,439 406.1716 170 | 3 | 18 9u6.61v72
2 (A,NA) (B) 312.4391 566.7477 1720 | 2 | 14 1063.1868
3 (A,B) (NA) 312.4391 491.7043 170 | 2 | 14 984,1434C
4 (B NA) (A) 312.4391 474.0420 170 1 2| 14 970.48110
5 8, NA) 312.4391 581.9931 170 1| W 1074.4322

n = 85 applicants, p = 2 variables

m = kp + p(p+l)/2 parameters

AIC (common £) = nploge(2x) + nloga|n=1W|+ np + 2m
*F1rst Mintmum ALC

bSecond Minfmum AIC

“Third Minimum AIC
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TABLE 4.5, THE AIC'S FOR APPLICANTS BY THEIR CLASSIFICATIUN &ROUPS
UNDER THE MUDEL WITH VARYING PARAMETERS

K
Alternative| Clustering nloga(2s) | } nglogelngJﬁgl np | k | 2m | AIC (varying y
g=1 and )
1 (A) (NA) (B) 312.4391 388.7472 170 | 3 { 30 9ul1.18634
2 (A,NA) (B) 312.4391 509.4198 170 | 2| &u 1011.8549
3 (A,B) (NA) 312.4391 480.2378 170 | 2| 20 9Y82.6769¢
4 (8,NA) (A) 312.4391 465.7116 170 | 2 | 2v 968.1507b
5 (A, B, NA) 312.4391 581.9931 17201 1] 10 1074.4322
n = 85 applicants, p = 2 variables
m = kp + kp(p+1)/2 parameters ‘
-1
AIC = (varying u and £) = nploge(2x) + § n loge|n Ag| + np + 2m
g=1l 9 g

a
First Minimum AIC
b

Second Minimum AIC

c
Third Minimum AIC

Hence, looking at Tables 4.4 and 4.5, we see that, under both modeis, the first
mintmum AIC occurs at the alternative submodel 1, that is, wnen (A) (NA) (B) are all
clustered separately. This indicates that indeed there are three groups of applicants.
Therefore, the MAICE is submodel 1. The second minimum AIC occurs at the alternative
submodel 4 again under both models, telling us that if we were to cluster any one of
the two groups, then we should cluster Borderline (B) and Not Admit (NA) yroups
together as one homogeneous group, and we should cluster Admit (A) group compietely
separate as one heterogeneous group. On the other hand, if we want to make a third
choice, then the third minimum of AIC occurs at the alternative submodel 3, indicating
to us the closeness of the Admit (A) group to the Borderiine (B) group as one homoge-
neous cluster, and leaving Not Admit (NA) group on its own as a singleton cluster.

Therefore, this way, we can check the significance of each of the the clustering
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alternatives in the decision making process. In this example, we also never
cluster the three groups as one homogeneous group (submodel 5).

In comparing the AIC's in Tables 4.4 and 4.5. for this example we also
notice that, AIC (varying y and I) values are less than the AIC (common £)
values for each of the clustering alternatives except for the last clustering
alternative (i.e., alternative 5) in clustering the applicant groups. These
results suggest that we should use different covariance matrices. However,
the values of AIC (varying y and £) and AIC (common L) are significantly
closer to one another that if we were to assume eyual covariance matrices
between the applicant groups a priori, it would not have been a dubious
assumption for this particular data set.

Thus, it should be noted that via AIC we can now easily check the validity
of our assumptions in terms of using equal covariance matrices as opposed to
separate covariance matrices in a particular data set which is important in the

multi-sample clustering situation, and in general.

5. Conclusions and Discussion

From our numerical results in Section 4, we see that AIC and consequently
minimum AIC procedures can indeed successfully identify the best clustering
alternatives when we cluster samples into homogeneous sets of samples both in
the MANOVA model and the multivariate model with varying covariance matrices.
We can measure the amount of homogeneity and heterogeneity in clustering
samples. We can determine a priori whether we should use equal or varying
covariance mtrices in the analysis of a data set.

The fact that AIC does not require the table look-up, which is the case in

conventional procedures, adds to the importance of the results obtained. This
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is one of the important virtues that AIC breaks away from conventional proce-
dures which try to test whether a parameter is "significant" or not using a
significance level a which is essentially arbitrary. The other important
virtue of AIC is that the penalty represented by the term 2 x {number of free
parameters) clearly demonstrates the necessity of choosing a class of models,
at least one of which will be able to provide a good approximation to the
distribution of data without adjusting too many parameters.

Thus, in concluding, we see that the use of AIC shows how to combine tne
information in the likelihood with an appropriate function of the number of
parameters to obtain estimates of the information provided by competing
alternative models. Therefore, the definition of MAICE gives a clear
formulation of the principle of parsimony in statistical model building or
comparison as we demonstrated by numerical examples. And MAICE provides a
versatile procedure for statistical model identification which is free from
the ambiguities inherent in the application of conventional statistical

procedures.
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