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CONCEPTS AND METHODS IN MULTI-PERSON
COORDINATION AND CONTROL*

U TAMER BA$AR and JOSE B. CRUZ, JR.
Department of Electrical Engineering and

Coordinated Science Laboratory
University of Illinois
1101 W. Springfield Avenue
Urbana, Illinois 61801 USA

Abstract

In this chapter we discuss some key concepts and methods relevant

to multi-person decision-making and optimization in deterministic and sto-

chastic dynamic systems. Specifically, we consider systems defined in

discrete-time, and treat the team, Nash and Stackelberg (leader-follower)

solution concepts under different information structures. We provide an

up-to-date survey of the literature on these topics, and also present some

new results.

This paper will appear as a chapter of the book "Optimization and
Control of Dynamic Operational Research Models," edited by S. G. Tzafestas,
North Holland, 1982.
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1. INTRODUCTION

Much of decision and control theory is concerned with a single

decision-maker with a single objective function. Multiple objective functions

have been considered also, but usually these are associated with a single

decision-maker. Large scale systems and dynamic operations research models

p are likely to have a multiplicity of decision-makers. Each decision-maker

may have multiple objectives. Even when each decision-maker has only one

objective function, the optimization problem is significantly much more complex

than that for a situation with only one decision-maker.

This chapter provides a discussion of some of the key concepts and

methods that are appropriate to multiperson decision-making. When two or

to more decision-makers have separate objective functions, it is generally not

possible to simultaneously optimize all the objective functions. One

important exception is the case when all the objective functions are the

same. Even in this case, the information available to each decision maker

may be different from those available to others, and the problem of determining

the mapping from the information space to the decision space for each

decision-maker is more complex than that for a central decision-maker.

When cooperation among the decision-makers can be expected, an

appropriate solution concept is that of Pareto-optimality. Otherwise, a

natural concept is that of Nash equilibrium. In situations where a hier-

archical decision structure is relevant, the Stackelberg or leader-follower

concept is useful. These concepts will be discussed in both a deterministic

and a stochastic setting.

..... • .:. -, '. . .. : .-; '... .-.- ' -." . :- :i"- -. .'. .' > .' > ii - .., " " " -'. ' •".i ..-. -.7 -
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In Section 2 we set the stage by providing motivational examples,

*- modeling the multiperson decision problem, and defining the various solution

concepts. In Section 3 we develop the concepts and methods appropriate for

U- multiperson decision problems in deterministic systems and deterministic

operations research models. The stochastic decision problem is formulated

and treated in detail in Section 4. Section 5 briefly describes some exam-

ples, and Section 6 includes some concluding remarks. An extensive bibliog-

raphy is included at the end of the chapter.

S-..*..
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2. MULTI-PERSON DECISION PROBLEMS

In this section we provide a general discussion on the formulation

of multi-person, and possibly multicriteria, coordination and control problems

that involve uncertainty, informational decentralization and possible conflicts

of interests (among the decision makers). We also discuss possible solution

p concepts for such decision problems. Before going into a formal presentation,

let us first consider a few examples (in Section 2.1) to motivate the general

formulation in the sequel.

2.1. Examples for Motivation

a) Optimum resource allocation under uncertainty

Consider a firm with (for simplicity) two divisions. The upper-

level division (the headquarters) has the task of coordinating the units (of

i production) at the lower-level division, under incomplete information as

regards to their production capabilities, availability, and quantity of

resources, etc. Furthermore, there are a common resources which are to be

used by some or all units in production, and therefore the headquarters has

to allocate these to the units in accordance with their needs. The units may

communicate their needs to the headquarters; and based on this information and

some other measurements, the headquarters will have to decide on the optimal

allocation that maximizes the profit to the firm (or some other appropriate

utility function). One other task of the headquarters is to design an

incentive scheme for remuneration of the production units, which will induce

'- each such unit to report his true need (i.e. not to cheat in his transmittal

of information) and to utilize the allocated resources most efficiently (so as,
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say, to maximize the unit's share of the profit of the firm). An optimum

coordination effort on the part of the headquarters will therefore force the

units to behave as a team, even though the units may have their somewhat

U different objectives (from that of the headquarters) and operate under

decentralized information.

This problem is one of multi-person coordination and control, which

P-: exhibits a hierarchy in decision making--the coordinator (headquarters) being I
in a position to dictate his policy on the other decision-makers (the units of

the lower-level division). It also involves incomplete information, uncertainty,

and a dynamic decision process with multi criteria.

b. Arms race between two nations

There is a dynamic model--known as Richardson's arms race model [1171--

which describes qualitatively the armament buildup between two nations and in
.1

which the decision variables may be taken as the rates of increases or

decreases in the armament levels. In making its decision as to whether to

increase or decrease its current armament level, each nation will have to

*: take a few factors into account, namely (i) the current armament level of the

other nation, (ii) the economic burden assoziated with any possible increase
* in the current armament level, (iii) the response history of the other nation

" to past armament policies, and (iv) uncertainty associated with all this

information. Yet another factor that affects the decision process is the

nations' grievances and hatreds towards their "opponents". The objective of

each nation will be to maximize an expected utility function that reflects a

tradeoff between expected economic prosperity and national security.

This is clearly a dynamic decision process which involves two decision-

makers with different objectives and whose decisions are intercoupled. It

S ° - . -- °. . . . . .. _ ° . . . . .,- . . .

... . . -. . , , , 7 .' . -" -" . - - . . , , • _ ~~.~ ~~~~~ .. . . . . -.I.-~ .- 2,7 -. : . ".- . ,7 .
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involves uncertainty, incomplete information and noncooperative decision

making.

c. Water pollution control

There are M chemical plants, located on the shores of a river, whose

waste discharges pour directly into the river with no (or very little) pollution.I

treatment. The municipality decides to take measures against this, either

P through a subsidy program or by penalizing those who do not properly treat

their waste discharge. Assuming that the municipality is in a position to

collect data from the river, the question is what type of a subsidy (or

penalty) program to adopt, which will force the chemical plants to treat their

waste discharges properly so that the pollution content of the river is below

certain preset limits which become more stringent over the years. This is a

dynamic multi-person decision problem which involves uncertainty and multi

criteria. There is a conflict of interest between the municipality and the

chemical plants, and there may also be some conflicts of intersts between the

individual plants.

p2.2. A General Formulation
A general formulation of a multi-person decision problem requires

delineation of the following information:

i) A set of decision makers (DMs), or the so called agents. Denote

this set by M= {l,2,..,M} and a typical element by m.

(ii) An underlying probability space (9,3,0 for the uncertainties,

which are beyond the control of the DMs.

(iii) The length of the horizon on which the decision process is

defined. Here we will adopt a discrete-time formulation with a finite horizon,

.' ,,:;:. , :: ,:.- -'. ,;: :, ,:, , . - - .:. . , "- .:;? ; " , ' . . ' . .. . . : :
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and denote the number of stages by N. Let a typical element of N-{l,..,N}

be denoted by n.

(iv) A set of possible alternatives (decisions) for DM m at stage

n, to be denoted by Li, with umE Ulm being a typical element. In the mostn n n

general setting, en may depend on the present and past decisions of the other
nm

agents (i.e. it may not be rectangular); but here we will assume T to be

1P rectangular for every nE 9, mEM.

(v) A mathematical description of the interaction of the DMs

within the system and among themselves, and with the uncertain states of the

F. environment, i.e. specification of a system equation of the type

Xl f1 ,u ...,u e (2.1)n n xn n n n

where xxne X (the state space), and e denotes the uncertainty affecting

the outcome of the decisions at stage n. An alternate description would be

specification of the probability distribution of xk+l conditioned on the set

of vectors {x ,u1,...,u }: but we will adopt the state-space description (2.1).

(vi) An information structure for each DM, which characterizes the 'V

precise static or dynamic information gained and recalled by that DM at each

stage of the decision process. Each such information structure will generate

man appropriate information space (say Z ) for DM m at stage n. In the case
n

of deterministic information patterns, each DM will have access to some or

all components of the present and past values of the state vector, as well

as to the past control values of some of the other DMs. In the case of

stochastic information patterns, DMs will 1 ve accese to noise corrupted

mneasurements of the state vector, say

um a my" h(xne) (2.2)

AmI-

!
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for DM m at stage n, where 8m denotes the uncertainty corrupting the measure-
n

"ment. Then, the information available to DM m at stage n (denoted I ) will

comprise a sub-collection of the set of vectors {ym;y 1 .., ...;y19 ...,y;

n u1 l uM. 1~
1n-l'"'"n-l ;U ..,u }. If all these vectors take values in finite-

* dimensional spaces, then the information space Z will also be finite

dimensional. [Further discussion will be devoted to this topic in the

following sections; see in particular Section 4.1.]

(vii) Permissible strategies (decision laws) for each DM, defined

as appropriate mappings from his information space into his decision space.

m w m m m
Le ={y,Y2,...,y}, where : zm- is a measurable mapping. Wc refer2"N n n

to vm as a strategy (decision law, control law) of DM m, and denote the class

of all permissible strategies for DM m by ?. Each permissible sub-strategy

I will be assumed to belong to a sub-strategy set rm which will have to be
nn

appropriately aefined for the problem under consideration.

Permissible strategies, as introduced above, are also known as pure

strategies, as opposed to mixed strategies which are defined as probability
N m

measures on X r, or behavioral strategies which are defined as independent

probability measures on r , neN. In the sequel we will deal only with pure

strategies and refer to them simply as strategies.

(viii) An obJective functional for each DM, that summarizes

(mathematically) his preference ordering among different alternatives and for

*each fixed permissible strategy of the remaining DMs. Hence, we assume

existence of a real-valued function Jm: fx M R, for each mE which

DM1 m strives to optimize (say minimize) by his choice of strategy v mem.:

Note that the effect of uncertainty (if any) is absorbed n this formulation

through a possible expected utility approach. This point will be further

w!
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-- discussed in Section 4, where a more precise description for a subclass of

problems can be found.

We should note in passing that, in the class of problems described

above, the order in which each agent acts is predetermined; there exist more

general formulations, however, [see, Witsenhausen (1971a)] which would allow for

the order of action to be determined by a chance mechanism (which is a part of

the uncertainty) and the past actions of the agents. We do not discuss such

generalizations here.

2.3. Solution Concepts

The general formulation of Section 2.2 is not complete unless we

L specify the precise mode of decision making among the agents. Even though each

agent will attempt to minimize his corresponding objective functional, this

goal cannot certainly be achieved independently of the decisions of the other

agents, unless the objective functional of that DM happens to be independent of

all the other DMs' strategies. Hence, in order to complete the formulation of

a multi-person decision problem, we have to introduce rational modes of decision

making. Some selective possibilities are discussed in the sequel.

Team solution

When all agents have a common goal, we have a team problem with a

single objective functional J J = J2 ., and then an optimum (team)* .. { r7

solution ,..., is defined by

J(7*) < J(7), 4W Gn (2.3)

where we use the notation 6 11 to denote {7m 6em, meM}.
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In this context, a solution concept that is somewhat weaker than the

team solution is that of person-by-person optimality. Let A

11 . rn m-i r+l M Then, 7r*EH is person-by-person optimal if, for

all me M,

m m mJN(w*) < Jm(W.'* ), fr= 1n. (2.4)

Note that every optimum team solution is person-by-person optimal, but not

vice-versa.

Pareto-optimal solution

When the agents do not all have the same goal, but still act

cooperatively, a reasonable equilibrium concept is provided by the Pareto-

optimal solution. We call a subset ip Cit a Pareto-optimal set if there exists j
no element in np which is dominated by a strategy from n, i.e. there does not

exist 7 p e1 and 7 el with the property

P P

pp

Jm(i) _ J"(ir) Vm on .

and (2.5)
J() < Ji(r) for at leastoni M

In other words, n is the collection of nondominated strategies in n.
p

Any element of the Pareto-optimal set is known as the Pareto-optimal

solution for the problem under consideration, which is in general not unique.

Under certain conditions (see DaCunha and Polak (1967)], the set of Pareto-

optimal solutions can be obtained by considering a convex combination of the

Jm's

M ME; A r J, 0 < Xm < 1, E- X =1,
m.l - m mml m

.1

.1

- - -- -
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and by minimizing J,(v) over It, and for fixed X- (l1 ,AM This yields a

solution which is parameterized by X, which generates the Pareto-optimal set.

It should be noted that a critical assumption in Pareto-optimality

p is cooperation. Specifically, if v * is a Pareto-optimal solutian adopted by

all the agents, one of them, say the m'th one, may attain a better performance

by minimizing

- over eI; but he has to refrain from adopting this policy (under the cooperative

mood of decision making) since a better performance for one DM (at a Pareto

solution point) necessarily implies a worse performance for some other DM.

,,- Nash equilibrium solution

When cooperation cannot be enforced in a multi-person multi-criteria

- decision problem, a solution concept that safeguards against cheating by a

single DM is the Nash equilibrium. We say that an M-tuple of strategies

*= (WI*,..,M*} provides a Nash equilibrium solution if, for all meR,

P Note that, for the special case when .9, .. h, are identical, this solution

concept coincides with person-by-person optimality; furthermore, when

:R-i {1,2}, and Jl.j'Mj, we have a single inequality

,T 1*,P1 2 ) .S JlW*) 1 ,.T1 ,1 2 . )  r 1.l TI 1 w.2e 12 (2.7) i

which is known as the saddle-point inequality and the corresponding equilibrium

'. solution is known as a saddle-point solution. This latter case characterizes

, a situation in which the two MW., have completely conflicting goals.



* Stackelberg solution

Consider the class of systems with two agents and in which the roles

are not symmetric. One of the DMs, known as the leader, is in a position to

announce his strategy ahead of time and enforce it on the other DM, known as

11
the follower. For each announced strategy, Gil el, of the leader, we assume

that the follower acts rationally and determines his response by minimizing

J(W Vir)

2
over 11 The set of all such solutions

1 {f2* 2 2 1, 2* 2 12 J
ROir { R G J (W~ 7i < min J (It 7r) (2.8)

" is known as the rational response (reaction) set of the follower. In case

this is a singleton, we have the unique reaction function (mapping)

1 2
T : TI nf2  (2.9a)

so that the leader will now determine his equilibrium strategy by minimizing

J (It ,T)r 4

over . Any strategy I GlT with the property

I *1* I1( TI) V11 H (2.9b)

is known as a Stackelbers strategy for the leader. Note that T is determined

W:. here as the unique mapping satisfying

2 1 1 2 12 2 2i
( 1Tt) <J (7t 97t), ¥2 2 (2.10)

1 1 2 2* 1*

for every il 1 and with the property TfI Gl The strategy, r - TT , for

1*
the follower, that corresponds to w under this mapping, is known as the

eauilibrium stratey of the follower under the Stackelberg mode of decision

making.
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* If R(OI) is not a singleton, there is no unique way of defining

the Stackelberg solution. One possibility is for the leader to secure his

losses against nonunique rational responses of the follower, and accordingly
1* 1'

to select a Tr e 1I that satisfies

1 1

sup jl(W I ) sup jl(r W,2) (2.11)

w"2 R(w1.) Tr2 R(?rI)

for all wIel. This, we shall also call the Stackelberg strategy for the

leader.

It is also possible to extend the Stackelberg solution concept to

systems with more than two DMs and possibly more than two levels of hierarchy.

In this extension, if there is more than one DM at any level of hierarchy,

we have to adopt either the Pareto-optimality or the Nash solution as an

equilibrium concept at that particular level. As a specific case, consider

an M-person decision problem with one leader and M-1 followers, and two levels

of hierarchy. Suppose that there is no cooperation among the followers; then

we adopt the Nash solution concept at the lower level of hierarchy and further

1 1
assume that the Nash solution is unique for every w Ie i. Then, there exist

i 1±1
M-l reaction functions T : 11 , i-2,3,...,M, such that

3 i (W 1 YT T ) 1~ 3_ (it ,iOrTir ) 7r i i-2,3,...,M, (2.12a)

where

T T2 1  3 1 i-ll 111 1
T ,T7 r... ,T 7-l T T ...,TM rl). (2.12b) i

A Stackelberg (hierarchical) strategy for the leader in this decision problem

1** is a it 61n that satisfies

11( TW ...,TM 1 .  < .. ,TM 1)  (2.13)111

for all t el1.
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U Decision problems that incorporate a hierarchy in decision making

Pre also known as coordination problems, and the leader is referred to as

the coordinator, since presence of a hierarchy enables him to coordinate

the actions of the other decision makers. This is particularly true if the

leader's objective function comprises a convex combination of the objective

functions of the followers, in which case a Stackelberg strategy may force

Pthe followers to a Pareto-optimal solution even though they will be acting

noncooperatively. Such possibilities will be discussed in the sections to

follow.

I-

I.
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s3. COORDINATION AND CONTROL IN DETERMINISTIC SYSTEMS

In this section we discuss coordination and control problems in the

context of deterministic systems and under deterministic information patterns.

Firstly we identify deterministic problems within the framework of the formula-

tion of §2.2 and delineate several deterministic information patterns (see §3.1).

Then, we provide a brief discussion on team and Pareto-optimal solutions and

.- representations of strategies on trajectories (in §3.2), discuss Nash equilibria

(in §3.3) and Stackelberg solutions (in §3.4); finally we discuss general coor-

dination and control problems in deterministic systems.

3.1 Deterministic Systems and Deterministic Information Patterns

lt The class of deterministic systems to be considered in this section

., - will be a special case of the general formulation of §2.2, obtained by taking

all probability measures to be one-point; in other words, we take the state .1

equation to be given by

1 M n
x , )XX+ 1 E (3.1),: n+l n. ,s ," n .,1

with the value of x1, the initial state, specified a priori, and the stage- -

additive cost function to be given as

Lr..,um~(
0m(uI N.' M En u .' M 'x(32 .7

nnn+ n unxn) (

for DMm.

If a decision maker has access to only the initial value of the state

and does not acquire any (dynamic) information on the values of state (or con-

trols) at other stages, we say that he has open-loop information. If, however,
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he acquires perfect information concerning the current values of the state and

*" has perfect recall on the past acquired information, we say that his informa-

tion pattern is closed-loop (with memory). Hence, in the former case

T- (xl), n EN, (3.3a)

and in the latter case

m im

n Ix ,X-1 ,..,X,), nEN, (3.3b)

for DMm, and these two information structures constitute the two extreme pos-

sibilities as regards deterministic information structures that involve state

measurements. Two important cases "iti between" are the feedback (or closed-

loop no-memory) information structure in which case the decision maker recalls

"" only the current value of the state (and also the initial state, which is :

known a priori), i.e.,

. (x, nE N, m EM, (3.4)

'.4

and the partial closed-loop information structure in which case the dynamic

state information that the decision maker acquires and recalls is only partial,

i.e.

n (y~l,yn n n EN, n 1 I, m E M, (3.5a) -

,- where m* m--

Y m hn(x) n E N, n 1, m E M, (3.5b)

and h is an appropriate function which is not necessarily one-to-one. Note
n
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that in the partial closed-loop information structure each decision maker's

m
current observation (or measurement) yn may be different, and there is in

general no sharing of information. An information structure which permits

such sharing is, for example,

In -ynYn-l'Yn.2'-'J 2, Xl) (3.6a)

l

. where

12 M
Yk Yk'Yk'' ' y k ) 3.6b)

which is known as the one-step delay observation sharing pattern. It is,

of course, possible to introduce other information patterns which involve

j sharing of only a subset of past observations and with possibly more than

one stage delay. Each such information structure leads to an appropriate

strategy space for each decision maker, for which we use the notation already

5introduced in §2.2.

I "1
3.2 Team and Pareto-optimal Solutions

When all agents have a common goal (the case of a team problem) or

have different goals but act cooperatively (the case of Pareto-optimal solu-

tion), the optimum solution can be obtained by utilizing techniques of optimal

control theory since in the former case there is a single objective functional

to be minimized and in the latter case one may in general consider a parame-

• -, terized convex combination of all the agents' cost functionals as a single

objective functional to be minimized, whose parameterized solution character-

izes the Pareto-optimal set. Furthermore, in order to obtain a solution under

U!'

. *
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a given general deterministic information pattern, a standard approach is

first to obtain the minimizing solution under the open-loop information struc-

ture and then to synthesize a closed-loop solution as a representation of that

open-loop solution in the strategy spaces compatible with the given dynamic

- information. Before discussing this point further, let us introduce the

notion of "representations" of a strategy [cf. Baqar (1980b)].

Definition 3.1. For an M-agent deterministic control (decision) problem with

m .K.  strategy spaces n n; m E M ] , let the strategies of all the agents, except the

mth one, be fixed at n E 1 i E H, i 0 m. Then, a strategy rr E 11 for DMm

is a representation of another strategy 1TE e, with E 1 (i E M, i 0 m)

fixed, if
(i) the M-tuples [(TP,1i; i E M, i m} and £rmJi; i M i A m

generate the same unique state trajectory, and

(ii) Tm and ;n have the same open-loop value on this trajectory. 0

A salient feature of team-optimal and Pareto-optimal solutions is

that under a given dynamic deterministic information structure, every repre-

-" sentation of a solution M-tuple also constitutes a solution to the problem.

However, in the cases of Nash equilibrium and Stackelberg solutions, this pro-
V..

perty no longer holds true.

3.3. Nash Equilibria

Derivation of Nash equilibria, when M agents have different cost

S-functionals to minimize, involve the solution of the set of M inequalities (2.6),

which, depending on the underlying information structure, may be quite a dif-

ficult problem, because each inequality defines an optimal control problem
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that depends structurally on the other agents' strategies. However, if the

underlying information pattern is open-loop, the structure of each of these

optimal control problems is not affected by the other agents' control vectors,

and hence derivation of Nash equilibria in this case becomes equivalent to

. solving (jointly) M optimal control problems. This argument then readily

leads, by using the minimum principle, to the following set of first-order

necessary conditions that yield the candidate open-loop Nash equilibrium so-

lutions (cf. Baqar (1979a)].

Proposition 3.1. For the multicriteria decision problem described by (3.1)

* - I m 1
and (3.2), let fn(xn, u, . ,Un) and x  ' .., ,xn) be continuously dif-
, erentiable in x, and xn+l, n E N, m E M. Then, if (x* ) u ; m EM]

I provides an open-loop Nash equilibrium solution and n EN] is the

corresponding state trajectory, there exists a finite sequence of costate

vectors Ip2,..,p+l )for each m E H such that the following relations are

satisfied:

* *

af ,xu f..u) x-x* n+l n nn n ' 1l

S* m 1* m-l* m m+l* M-n (xl) a u - arg mn H n(pn+lun,..,un  ,UnU n  , nn • • u~u ., ,X

SEU

m ._.-f"- * ( u +a*, m 1* M**
Pn axn n 'n ,,Un [Pn+l +(- g-(x"1 ,un n

+ m M I .. uM1

: +[ _ m* 1* 14* *'":

x gn(xn+lUn ,.,un n

"PN+l " O m E M n EN



19

where
m M u M 1".: .." * gn :1x n n: " "

+ P Inx Du ,..,Un), n E ' No €m 6
nt+l n in c

" For further discussion on the derivation of this set of first-order necessary

S conditions, and elucidation of some special cases as regards the structures of

mfn and gn, we refer to (Bapar and Olsder (1982), chapter 6).

Another tractable class of problems, as far as derivation of Nash

equilibria is concerned, is the class of multicriteria decision problems with

closed-loop no-memory (feedback) informstion structure. Since everyopen-loop

Nash equilibrium solution is also a Nash equilibrium solution under the closed-

loop no-memory information structure, the Nash equilibrium solution to this

class of problems cannot be unique, and in fact it exhibits "informational non-

uniqueness" (see, Baqar and Olsder (1982)]. One way of eliminating this infor-

B mational nonuniqueness under the feedback information pattern is to require

the Nash equilibrium solution to have the additional property that its restric-

tion to the interval (n,%] is a Nash solution to the truncated version of the

original problem, defined on In,N], and this being so for all n F N. Such a

solution is known as a feedback Nash equilibrium solution, which is free of

any informational nonuniqueness, and whose derivation follows a dynamic pro-

8rain8 type argument, as summarized in the following proposition.

Proyosition 3.2. For the multicriteria decision problem described by (3.1) '

and (3.2), and under the closed-loop no-memory (or closed-loop) information
*

pattern, the set of strategies Cym(xn); n E N, m E i] provides a feedback

Nash equilibcriu solution if, and only if, there exist functions V (x),

.. . . . . . . . , • .. . • .-. . . . . - . . . -. . . _ . _ . . , -
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!-,A

n , m E M, such that the following recursive relations are satisfied:

i "m * m M- 1-*, MV(x) min Isnf n (XUn), y (x),..,y 1  (x),u
mEm

n uMr P n n n n n n
n n

. n[ (x, )1

IM* * *
SiUlU CX~Ym (x))'Y Wx IY (x),xJ +?'m (x W

na n+lX1

V.I. (x)nO, ME? 12
L N+l

where

m m m-I m m+l M*
n U n n n, un ,n(x)

It should be clear from the above that feedback Nash equilibrium solu- '

tion can be obtained recursively, by solving a set of static Nash problems at

each stage, which is a feature that makes it computationally attractive. Yet

another important feature that should be recorded is that feedback Nash solution

is indeed a Nash equilibrium solution under the closed-loop no-memory or closed-

r loop information patterns (satisfying inequalities (2.6)), but one of many "in-

formationally nonunique" equilibria under those dynamic information structures.

As already mentioned above, when we have the closed-Loop information

pattern, or any dynamic information pattern that exhibits redundancy in informa-

tion, Nash equilibria are informationally nonuniqua and there exists in fact

an uncountable number of such equilibria. A set of reasons for this is now

provided.in the following definition and proposition, where a proof for the

latter can be found , (Bqaar and Olsder (1982), chapter 6).
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p
Definition 3.2. Let A and B be two M-person N-stage deterministic multicri-

teria decision problems which admit precisely the same extensive form descrip-

tion (as in §2.2) except the underlying information pattern (and, of course,

also the strategy spaces whose descriptions depend on the information pattern).

Let (respectively, N) denote the information pattern of DMm in problem A

(respectively, B), and let the inclusion relation 7A c M imply that whatever
I ..

DMm knows at each stage of A he also knows at the corresponding stages of B,

but not necessarily vice versa. Then, A is informationally inferior to B if

:.,m cB Y m E M, with strict inclusion for at least one m. 0
' 1 -B

"- Propo ition 3.3. Let A and B be two deterministic decision problems as intro-

duced in Definition 3.2, so that A is informationally inferior to B. Further-

more, let the strategy spaces of the decision makers in the two problems be com-

patible with the given information patterns and constraints (if any) imposed

on the controls, so that I F implies ml c rI, m E M. Then, (i) any Nash

equilibrium solution for A is also a Nash equilibrium solution for B, (ii) if

1 MTr is a Nash equilibrium solution for B such that TT E for all

m E M, it is also a Nash equilibrium solution for A. -

Hence, multicriteria deterministic decision problems with dynamic

information patterns that exhibit redundancy in information are not well de-

* - fined under the Nash solution concept (since they admit a plethora of informa-

r__ tionally nonunique equilibria) unless some additional selection criteria are

introduced --such as the requirements imposed by the feedback Nash solution

discussed earlier. We do not pursue this point any further here, but note

that one such criterion is in fact provided in §4.3 under a stochastic set-up.

.2 - - * . - - - - -
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3.4. Stackelberg (Leader-Follower) Solutions

In this subsection, we treat the problem of optimal control and

coordination of deterministic systems under a hierarchical decision structure,

and investigate derivation of optimal control and coordination strategies by

employing the Stackelberg solution concept introduced in §2.3. As discussed

earlier in §2.3, while introducing the Stackelberg solution concept, existence

of a hierarchy in decision making results in an asymnetry in the roles of the

agents, with some of them being in a position to dictate their strategies on

the others.

In general, derivation of Stackelberg solutions in dynamic decision

problems is quite challenging, the difficulty being mostly of conceptual nature.

However, for some special information structures, the problem becomes tractable

because some standard methods and techniques of optimization and optimal con-

trol theory become applicable. One such class of problems is characterized by

b open-loop information structure, and say two agents (i.e. M - 2) for the sake

structure is open-loop, the optimization problem faced by the follower in the

determination of his optimal response set (2.8) is structurally independent of

different choices of strategies by the leader, and therefore the first phase

of the derivation of the Stackelberg solution is a feasible (tractable) optimal

control problem. In particular, if the follower's cost functional is strictly

convex in his control, the rational response set R(T will be a singleton and

the reaction function T [see (2.9a)] will be determined completely by a set of

necessary and sufficient conditions which, under certain structural assumptions

on f and g n E N, will lead to an analytical solution for T. If such an

n n

. ° **
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analytic solution can be found, then the leader's optimization problem

min J (r,TT T) is again a standard optiml control problem which can readily

be solved using the available techniques for dynamic optimization, and the

open-loop representation of this solution (in case it is obtained as closed-

loop solution) will constitute a Stackelberg strategy for the leader. In case

an analytic expression for T does not exist, the necessary and sufficient con-

ditions that describe T will have to be treated as constraints in the leader's

optimization problem which again involves no difficulties of conceptual nature.

A set of equations from which the solution of this constrained optimal control

problem can be obtained can be found in (Baqar and Olsder (1982), chapter 7);

we do not discuss this class of problems any further here. It is worth noting

here that the preceding derivation is valid not only under the open-loop infor-

mation structure for both agents, but also when the follower has access to

dynamic state information -- the only requirement is that the leader should have

only open-loop information. Furthermore, one can envisage direct extensions

of this procedure to M-agent problems with one leader and M-1 followers, with

the latter determining their policies according to the Nash or Pareto-optlm=m

solution conept, and with the leader having access to only open-loop informa-

tion; there appears to be no difficulties of conceptual nature in such an ex-

tension.

When the leader has access to dynamic state information, derivation

of the Stackelberg solution constitutes a challenging problem, and the stan-

dard techniques of optimization do not apply, since the optimal control pro-

blem characterizing the rational response set R(r ) is now structurally de-

pendent on the leader's choice or strategies. One way out of this difficulty

~ Ar -.
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U
would be to fix the structure of the leader's possible strategies parametri-

-., cally, find the follower's rational response as a function of these parameters

and then optimize the leader's cost functional over these parameter values,

also in view of the follower's response; this definitely leads to suboptimal

strategies for the leader --the degree of suboptimality depending on how

representative the fixed structure is in the general class of policies.

: Another way of making the Stackelberg problem tractable is to re-

quire the solution have a feedback property (under the closed-loop no-memory

of closed-loop information sharing pattern), analogous to the case of the feed-

back Nash equilibrium solution, which would lead to a recursive derivation in

retrograde tim that involves solution of static Stackelberg p oblems at every

stage. The solution obtained through such a recursive procedure is called a

t_ ck 3tackelbera solution [cf. Simaan and Cruz (1973a,b)] and satisfies

the conditions given in the following proposition.

U L.t.!esttion -3.4. For the two-agent ulticriteria decision problem described by

(3.1) and (3.2) with M a 2, and under the closed-loop no-memory (or closed-loop)

I* 2*
informtion structure, the set of strategies lYn (xn),y (x n); n EN ] provides

P a feedback Stackelbers solution with DM 1 as leader, if

-11 2 -1 1* 2*
min Gn (y n y,x) G n(Yn ,yn x) for all x E X, n E N,

n n E 1nnn ,

where R (y ) is a singleton set defined by
n n

(y1) -~2 E i 2 2 1  2 ' a i 2122 r!- 12: G (y ,,x min Pn) P2 2& L -

n Yn n n n n nn 2 n Ynn n

- - 2

~ P r.. .4t. k. ~ .. t.. I * * . . - *
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-m 12 Gm 1 2 1 2Qn(yn,?n , n) G. nfn(xnyn(Xn),Yn(xn)),Yn(xn),Yn(Xn),Xn ) ,

m M 1,2, n E N,

and Gm is defined recursively by
n

G[ 2)(x),x Gm  [* *

n n+l, n ft n n f +l n-I-i

*2
(x ,t,+l + m + r. 0 m 1,2. C3

n-i-i n+l 'Y+l(xn+l),Kn~ n ; ~ a0m 12

The feedback Stackelberg solution corresponds to the case when the

leader can enforce his strategy on the follower only stagewise; however, if

he has the power and ability to declare and enforce his strategy several stages

. in advance throughout the decision process, or from the very beginning for the

entire duration of the decision process, the cost that the leader incurs will

definitely be less (or at least not higher) than his optimal cost under the

feedback Stackelberg solution. In other words, in contrast to the feature re-

corded after Proposition 3.2 in the case of feedback Nash solution, the feed-

back Stackelberg solution is not necessarily a Stackelberg solution, i.e. it

need not satisfy (2.9b); conversely, a Stackelberg solution obtained under the

- closed-loop no-memory information structure is not necessarily a feedback

Stackelberg solution. On the other hand, derivation of a Stackelberg solution I
under dynamic state equation is a relatively much more difficult problem, for

* which the standard techniques of optimization cannot be used.

Another case treated in the literature recently is the closed-loop

"' "A
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no-memory information structure where the leader's strategy is a function of

the current state. This problem leads to a nonclassical control problem

where the partial derivative of the leader's strategy with respect to the

state appears. It is shown in Papavassilopoulos and Cruz (1979a) that the

optimal values of the state, controls, and objective functions are not changed
by using controls which are more general than affine functions of the state.

*.- When the measurement is a function of the state (possibly nonlinear) the

v*. strategy may be assumed to be affine in the measurement without loss of gen-

.- erality.

Quite recently, an indirect approach has been developed towards the .2

solution of such nonclassical optimization-decision problems when the leader

* has access to redundant information (such as the closed loop state informa-

tion). In the sequel we discuss some aspects of this new approach and deriva-

* tion of the dynamic Stackelberg solution.

Now, for the general two-agent decision problem of this subsection, A

and with the leader having access to closed-loop state information, consider

the following sequence of optimization problems.

STEP 1. For a fixed set of state vectors (x , n EN, n 0 I say xn -
nn n

n E N, n A 1), and leader's control vectors (u', n E 3), minimize

N- 1J2 1 2 - (3.72 - ) 2 2 - 1 2t N(XN+l.,.,, uN.XI4) + E: g_(xn .,un , n  n 0u~ l (21.71)

2 2-over u E Un , n E N, and subject to the constraint

x.,. f,( u. 1, 2)"

- 12 -(3.8)

x1', m (x ,uu n < N-1 , .
cil fn n n 1 V.
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Denote the solution of this problem by

u2

U n n(x 2 ,..,xNlNt )p n N. (3.9)U
STEP 2: Now consider minimization of the function

1 1 2 - 1 12 + 1- -12gN(XN+1,UNuNXN) + E g l'n (n u n n ) + g0 (x2,u 1 u 1 x1 ) (3.10)
n=2

over the leader's controls (u1 E U1, n E N), and the state values ,xn, n E N,
1*

n # 1), subject to (3.8) and (3.9). Denote the minimizing solution by (u

n E N) and [x*, n E N, n 0 1) and the corresponding value of expression (3.10)

1*n
by J

The quantity J , thus obtained, provides, under a fairly general

set of conditions, a tight lower bound on the Stackelberg cost J (•TT TTT

of the leader (as defined by 2.9b)). These conditions basically involve exis-

1*U tence of a strategy TT E IT , for the leader, which is
I i(i) a closed-loop representation of the open-loop policy lun ,n E N]

*n
1 *

on the trajectory (x - x", n E N], where u and x are as defined above,n n n n

with x* x

(Li) forces the minimum value of (3.7) to be attained at (un  ( z(x2
• I* I* '

-N ..,x;u1 ,.. ), n E N, with the minimization problem defined by replacing
1 1" *in (3.7) and (3.8) by y (.), n E N, and x" n E N, in (3.8) by x n and

retaining this new form of (3.8) as a constraint. Note that this latter re-

• }quirement is equivalent to the statement that the follower's rational response
.*

to the leader's announced strategy nI should lead to the trajectory (x*,

-loop represen 1 1:'.-"n EN]and have the open-o rereetation z(x*,..,NU*  ,', )-"

U n 2 ~ui.U
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n E N).

Several recent papers have investigated, in special contexts, sat-

isfiability of these two conditions, and derivation of corresponding strategies
(*
(TT ) for the leader. Ba~ar and Selbuz (1979a,b) have shown that when the

system equation is linear and cost functionals are quadratic, there are cases

1*1when J coincides with the global miiimum value of J (in particular, if the

follower does not act in the last stage of the game) and a corresponding Stackel-

berg strategy for the leader is of the linear, one-step memory type. Tolwinski

(1981) has shown that for the same class of problems, use of nonlinear strat-

egies by the leader extends the parameter region for which the preceding pro-

perties of the solution hold true. Papavassilopoulos and Cruz (1980), Bafar

.and Olsder (1980) and Baqar (1981d) have investigated counterparts of these

results and their extensions in the continuous time. Ho, Luh and Muralidharan

(1980), Ho, Luh and Olsder (1980), and Salman and Cruz (1981) have drawn

parallels between these results and incentive scheme design problems in eco-

nomics and have discussed applications of these concepts to microeconomics and

social choice theory. Ba~ar (1981e) and Tolwinski (1980) have discussed pos-

sible extensions to multi-agent cases when there exist more than two levels of

hierarchy and several agents at every level of decision making.Bafar and Selbuz

(1979b) show that if there exist two levels of hierarchy and more than one

agent in the follower's group, the leader can still retain his powerful posi-

tion by announcing an appropriate linear one-step memory strategy (for linear-

quadratic problems) that would force the followers (who are making their deci- I
sions noncooperatively and under the Nash solution concept) to minimize glob-

ally the leader's cost function. Baqar (1980b) has further discussed coordina-7

tion aspects of such problems and has investigated the possibilities for the
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leader to coordinate the followers in such a way that the resulting solution

will be Pareto-optimum, even though the followers may be acting noncoopera-

tively.

0 It is possible to extend the two-step derivation of the closed-loop

Stackelberg solution, outlined earlier and defined through the optimization

problems (3.7) - (3.10), to the case when the leader's information is partial

closed-loop (see (3.5)]. In thie case the two optimization problems at Steps

1 and 2 will be replaced, respectively, by the following:

STEP I Let the observation vector y defined by (3.5b), belong to the

space Y n. For a fixed set of observation vectors lyn E Yn, n E N, n 0 lJ,say

- ~n E N, n 0 1), and leader's control vectors (u, n E Nminimize

N 2 1 2
E n uU, x) (3.11)

"n-0nnnn

U over u2n E U2n, n E N, and subject to the constraints

12
xn+1  fn(xU ,u ) (3.12a)

h hn(x n y n E N, n 0 1. (3.12b)

-* Denote the solution of this optimization problem by

21 1
un " n(n'' N;u 1  ) (3.13)

SSTE 2 Now minimize the function

N
1 2~(xn~1'u'u 2'x) (3.14)

nal
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1 1
Y E Y n E N, n 0 1], subject to (3.12a), (3.13)and

n 1
y1 = h 1(xn) , n E R, n l

n n n

Denote the minimizing solution by (u1 , n E Ni and (Y:, n E N, n 0 1), the

*resulting state trajectory by (x*, n E N] and the corresponding values of

1*n
expression (3.14) by J

- The conditions for J to provide a tight lower bound on the Stackel-

berg cost J 1(Tl ,TTTI ) involve, in this case, existence of a strategy rr1 E n1

[TI is defined here as the class of all mappings compatible with the informa-

l
tion structure T given by (3.5a)] that satisfy condition (i) in the perfect

information case and, in addition

(i) forces the minimum value of (3.11) to be attained at (u2 - Zn(y2,
* "1* 1*

"'IN; ul "., )u n E N ) with the minimization problem defined by replacing
1 * nE1

1 in (3.11) and (3.12a) by y () n E , by replacing Y in (3.12b) by
n n n n

and by retaining these new forms of(3.12a)-(3.12b) as constraints.

For further details on the satisfiability of these two conditions

P- and derivation of dynamic Stackelberg solution under partial state informa-

tion, we refer to Bapar (1980c) and Zheng and Ba#ar (1981); the latter re-

ference also investigates existence and derivation of affine Stackelberg

strategies in such problems.
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4. COORDINATION AND CONTROL IN STOCHASTIC SYSTEMS

In this section we discuss coordination and control problems in the

context of stochastic systems and under both deterministic and stochastic in-

formation patterns. We first delineate (in 4.1) several different informa-

tion structures that we shall encounter in our analysis, and then discuss (in

4.2) derivation and properties of optimal solutions in stochastic team pro-
m

blems. Subsequently in §4.3 we discuss Nash equilibria and in §4.4 the Stackel-

berg solution, for stochastic systems and under different information patterns.

4.1. Information Structures in Stochastic Systems

In stochastic systems we encounter two general classes of information

patterns, viz. deterministic and stochastic patterns:

- . a) Deterministic information structures

We have discussed these thoroughly in § 4.1 in the context of deter-

ministic systems. The same patterns, namely, closed-loop perfect state, feed-

back, one-step (k-step) delay perfect state, and partial closed-loop informa-

tion structures, are appropriate also in stochastic systems, whenever the

ragents have access to the value of the initial state and to some deterministic
information on the current and/or past values of the state.

b) Stochastic information structures

Assume that each agent has access to noisy measurement on the current

value of the state through a measurement equation of the type (2.2), and that

agents are also in a position to exchange some of their information (with or

without delay). In such a case we have basically three general types of in-

" formation structures as described below:

1--
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i) Centralized information pattern: All agents exchange their

measurements without any delay, and also recall their past information, i.e.

If Yn' y l y . , yl } , m E M, n ElN (4.1)

*' where

A y1  2 Ha - k' yk$ yk)s k E N.

This is also known as a classical information pattern, and it could also in-

volve the past control laws, i.e.

I M nYn.l, .)Y, UnmlUn- 2, " " 'uijm E M, n E N (4.2)

where
U u1 2 M
u (uk' ' Uk)"

The two information structures (4.1) and (4.2) are not equivalent (even though

they generate the same sigma-field for each fixed set of control laws), but

* - only in team problems may they be used interchangeably without affecting the

r minimum value of the couon objective functional --a point which will be

further discussed in § 4.2.

ii) Quasi-classical information patterns: In this group we have

the "one-step delay observation (measurement) sharing pattern", in which case

n -M y, Yn-l' " " y m EM, n E N, (4.3a)

and the "one-step delay information sharing pattern" with

L' " " " " " " " " "" " ' " "' " "" " " -. . . , ,, ".r.,.., = -' '
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Smm ymy- " .y; -'u,.- ' " " ul] m E n a . (4.3b)
n Yna- 1n-ln n-2,1

In the former case all measurements are shared with a delay of one stage,

I while in the latter case also the past control values are shared. Our earlier

coments regarding the equivalence of (4.1) and (4.2) are equally valid here

in the context of (4.3a) and (4.3b); more discussion on this issue will be

included in § 4.2.

A more general type of a quasi-classical information structure is

, Ithe so-called partially nested information structure which we introduce next.

-. Towards this end, assume that the joint probability distribution of the random

-" variables associated with the stochastic system (2.1) and the measurement

> system (2.2) is independent of the values of the state and the controls. Then,

by iterative substitution, (2.1) can be written as

Sn+ l  = fna(xa a Un n)

a- f f.l(xn.l,ul,enl),uaa n ;uul; 8 n-l

Sf I(x ;u ,U n u .. ,u; , , ), (4.4a)

a I n~ni9 I ;n' n-l'' I

- and thus the state at any stage can be expressed solely in terms of the past

controls, the past noise vectors and the initial state. in terms of this

- notation, the measurement equation (2.2) can be written as

nhfl ., a ul; en ..Ist),e3yn n nIxI, unUn-1,  n

(4.4b)

Emf(xl; un,..Iu1; an" at;8i ):U s5
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that is, in this new form it depends only on the "primitive" random variables

and the control vectors. Now, we call an information structure {nmc{yl,..,yi.Ln- n n
1 M 1 M

Yn-l,..Yn-l;... ; yl,.•,yl; Un l,.,u1 }, n E N, m M partially nested if

m i
w~henever nrn depends on U.k for some k < n and i G 1M [either directly or through

a measurement equation in the form (4.4)], the inclusion relation nm n
n- k

holds --this being so kor every such dependence. In other words, if an infor-

mation structure is partially nested, an agent's information at a particular

stage n can depend on the control of some other agent at some stage k < n

only if he also has access to the information available to that agent at that

stage k.

The one-step-delay observation sharing pattern and the one-step

* delay information sharing pattern introduced earlier are special types of

partially nested information patterns. The reason why we are interested in

partially nested information patterns is that stochastic optimization and in

particular team problems with such information patterns are considerably more

tractable than those with nonclassical information patterns --this latter con-

cept to be defined in the sequel.

iii) Nonclassical information patterns. An information pattern is

m
said to be nonclassical if it is not partially nested. Equivalently, if { y

n e N, m e R} is nonclassical, there exists some set of indices {n, ke N,

m i m i
m, i r M, n > k} such that n depends on uk but nn nk.

tThis inclusion relation can be replaced by the somewhat more general require-

* ment that "the elements of ni can be recovered by measurable transformations
on the elements of nn" k
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4.2. Solutions of Stochastic Team Problems

Under the centralized stochastic or deterministic information pat-

Iterns, stochastic team problems become equivalent to stochastic control pro-
* blems, and therefore the solution techniques developed for this latter class

of problems [see e.g. Bertsekas (1976)] are directly applicable to team pro-

blems. In this context, it is immaterial whether the agents also have access

* to values of past controls, since there is a single goal and a single objec-

tive functional to minimize. In other words, the minimum value of a team

cost functional J will be the same regardless of whether it is computed under

(4.1) or (4.2); in that sense we call the two information structures equiva-

lent as far as the optimal team solution is concerned. However, this

feature is no longer valid in multi-criteria problems (under Nash or Stackel-

berg solution concepts).

If the underlying information structure is not centralized, the

derivation of the optimal team solution is in general quite intractable. For

some special types of stochastic team problems and under the partially nested

information pattern, however, the derivation becomes tractable by conversion

into an equivalent static formulation. Before discussing this conversion, we

first state a related result (Proposition 4.1] on an important property of

" partially nested information patterns in stochastic team problems:

etnm  1 Ml 1 1 H uLet {nm C {Yn' 'Yn; Yn-l'" Yn-1; .; YI'..Yl; un-l' 1'U 1

n E N, m e M} be a partially nested information pattern, with the correspond-

4W ing strategy spaces denoted by {IF, m E M} and the corresponding sub-strategy

spaces by {r, n • N, m E M}. Let 6m denote, for each n EN, m 6M,the inter-
nn
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section of the finite sets n m and y n. .y n; y n 1l y1,.. y .
n n n' n-i'*'*Yn-i*** . l..

Note that {n, n F N, m E M} is also a partially nested information struc-
n2

ture, which does not involve any explicit dependence on past control vectors

m
[whereas n may explicitly depend on controls]. Denote the corresponding

strategy spaces by {, m e M land the sub-strategy spaces by {r, n e N,n
1 2m e M}. Consider a stochastic team problem with cost functional J(w 9 2..

M M
7. ) to be jointly minimized [over X I ] by all agents. Then, we have the

m=1

following important result.

Proposition 4.1.
(i) To every fixed M-tuple (y, m ,.Y ImE Hm , m M,

1f 2 N

there corresponds a unique set of strategies (;m= ' ' m H } .'M
m withm m m

such that the sigma-field generated by nn with um = n (nn), n e F, m E M, is

equivalent to the sigma-field generated by n with um - ,n
m̂ )m  n E , m EM.

n w n n

(ii) J admits a global minimum over X If, if and only if it admits

* a global minimum over XA!", and the minimum values of J in both cases are

the same. -

This proposition is a consequence of the ob ervation that, under

the partially nested information structure, any direct information concerning

the value of control is redundant since it can be recovered from the measure-

ment information once the control law is known. Consequently, additional in-

formation concerning the values of past controls [provided that we still have

a partially nested information structure] does not help to improve upon the

globally optimal team solution. An implication of this property is that,

given a specific partially nested information pattern for a stochastic team

* problem, we can construct an equivalent (larger or smaller) partially nested
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information structure that is equivalent to it, and reconsider the original

team problem under this new information structure without affecting the opti-

mal value of the objective functional. What we gain in return for such a

conversion is a possible simplification in the derivation of the optimal team

solution. The team solution obtained under the new information structure can

then be expressed in terms of the original information structure. Examples

of such an indirect derivation of optimal solutions in stochastic team pro-

blems can be found in Ho and Chu (1972) and Bagchi and Baqar (1980), and

they are primarily linear quadratic problems. A CAVEAT for the reader, at

this point, is that neither Proposition 4.1 nor any of these conversion tech-

niques have counterparts in multi-criteria problems (under Nash or Stackelberg

solution concept).

Let us now consider one special class of stochastic team problems
r

in some detail. Assume that the information structure is partially nested,

and that the measurement equations (4.4b) are separable in the control vari-

ables, i.e. (4.4b) can be written as

Yn ";en, .. ,8l e)+ 3D(u,..,u n Cc3, me 6. (4.5)

Here, the function depends on the control vectors in a way that is consis-

nntent with the underlying partially nested information structure (n n; n 6 N

- im i m* m
m E 4}; i.e. G is a function of uk only if nm includes n . Now, if (W et

n n k

m 4 Mdenotes an optimal team solution for a stochastic team problem with such

a partially nested information structure, and with a cost functional J, where

1 M in mmJ(i) " E(L(&,u ...,u )u w (nm), me
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and denotes the collection of all primitive random variables, we have (from

-" the definition of team optimality)

J(W*) < J(r) , V m e n"m m EM,

which implies the NM-tuple of inequalities

1* m-l* m* m* m m* mi m+l* ;*-- "" ;Yl ''''~ n-l n 'n+I"' YN '  ;'J(*<J( ;.;•)

m m - -

SYn e rn;n EN,m M.

This set of inequalities (also known as person-by-person optimality, if we

mview each u to be controlled by a different agent) therefore provides a
n

necessary condition for ir to be a team-optimal solution. Note that here,

all sub-strategies are held at their optimal values and the resulting cost
- m Fm

functional is minimized over possible strategies y n e hence each minimi-n" n'

zation problem is basically of the form

E {"mi f Lm-,um)dP(,M)} (4.6)
n n nm

un

where

m ) ml*(nl );..y . m*, m m m(n'))

p.'

and Pn(&Inm) is the conditional probability distribution of the primitive

random variables & given the information vector n'. This conditional pro-

bability distribution is also known as the sufficient statistics for DM m
m

at stage n. E{.) denotes the expected value over the statistics of nn, after

*m m m m
u n Y(n) is determined. The reason why Ln can be determined explicitly
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as a function of (,u ) is because the information structure is causal, and

hence elimination of other variables by iterative substitution is possible.

Whenever I is partially nested and the measurements that appear

in TP satisfy the separability condition (4.5), the sufficient statistics
n

have a simpler form which is basically static in nature. To see this,

firstly construct (in view of Proposition 4.1) the largest partially nested

.- information structure (say, in) that is equivalent to " This new informa-n n

tion structure Tn clearly has the property that whenever _C - for any

k < n, i E M, we have uk E . Because of separability of (4.5) and the

partially nested property of Tn' we have the further (sigma-field)equiva-

lence

'nn

g'in i
'*i:". where ir is obtained from Tn by replacing all yk withn ~ nk

Yk = H(x ; en,..,el; ek).

Therefore,

o.M

F:P(&IP(& -(4 III ) -
n ~ nn

But, since m is also partially nested, the presence of the control values in
.m

n_ does not provide any additional information, and we may as well consider

the smaller set

- ^m - m 1 M 1 M 1 M
In =In n {y n'''Yn; Yn-l ' ' y n- 1 ; Yl''Yl

- - - -- - - -
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which is totally static. Hence,

. which implies that there exists an equivalent static sufficient statistics

for 11 m at stage n. This leads to the following important conclusion.

Propositidn 4.2.

(i) Any stochastic team problem with dynamic partially nested

information structure {C , n 6 N, m 6 M } , whose measurement equations also
satisfy the property (4.5), is equivalent to one with a static information

structure n E g, m e M} as constructed above, in the sense that the

optimal solution of one can be obtained from the optimal solution of the other.

M* m* m-
(ii) If {Um*  ; n 6 N, m E M} denotes the optimal team

solution under the equivalent static information structure, the solution of

M* m* m*
the original team problem can be expressed as {u yn (IF); n 6 N, m E M}

where 1C is obtained from by replacing y k with

i -u Mi;.Yk - G k ,u..,u )i

and by appropriatelyreplacing some of the controls with their optimum values,

in a way compatible with the underlying information structure. (If the orig-

Im
inal information structure n is the largest partially nested information

n

structure that is equivalent to itself, this latter phase is not required]. C3

Remark. The separability condition (4.5) of the Proposition can be relaxed

to some extent. The real requirement here is that the conditional probability

ILII
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mm
P( I n) should be independent of the control laws, so that there can be found

a static information structure ^ with the property P(&I m) - P(&I '). A
n n n

more relaxed condition [than (4.5)] that achieves this is given in Ho and

Chu (1973). 0

The result of Proposition 4.2 is very useful in stochastic team pro-

blems, because derivation of the optimal team solution under static informa-

tion is in general much simpler than the derivation under dynamic information.

In particular, for the special case when (i) the measurement equations are

linear in the primitive random variables and the controls, (ii) the primitive

random variables are jointly Gaussian distributed, (Iii) the cost functional

L is quadratic in the control vectors and the primitive random variables, and

(iv) L is further strictly convex in the control variables, the unique team

optimal solution is affine in the available information and can readily be

computed by solving the set of minimization problems (4.6) [see Radner (1962),

Ho and Chu (1972)]. Therefore, every linear-quadratic-Gaussian stochastic

team problem with strictly convex cost functional and partially nested infor-

mation structure admits a team-optimal solution that is affine in the avail-

able information -a result which directly follows from Radner's above men-

tioned result in view of Proposition 4.2. Fucthermore, team-optimal control

laws can be obtained recursively when the partially nested information pat-

tern is one-step delay information sharing [Kurtaran (1975), Sandell and

*' Athans (1974), Yoshikawa (1975)] or one-step-delay observation sharing [Bafar

(1978a)]. The solution is unique in the latter case and nonunique in the

former case -the nonuniqueness arises because the one-step delay information

sharing pattern includes redundant information which gives rise to several

E
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different "representations" [see, Bafar (1978a)].

If the underlying information structure in a stochastic team problem

is nonclassical, derivation of the optimal team solution meets with formidable

P difficulties. Even in the simplest type of a linear-quadratic-Gaussian teem

problem with a two-step delay information sharing pattern (i.e. a nonclassical

information pattern) the optimal solution is nonlinear and cannot be obtained

1analytically; moreover even a numerical derivation is a challenging task be-

cause such problems admit several person-by-person optimal solutions and local

optima [see, Witsenhausen (1968)]. There are also no simple sufficient sta-

tistics for such problems with nonclassical information patterns [see,Yoshikawa

and Kobayashi (1978), and Varaiya and Walrand (1978)]. These difficulties are

due to the fact that each control has in general a "triple" role in stochastic

team problems [Ho (1980)]: (i) the deterministic control effort of reducing

the error, (ii) to improve the future knowledge of uncertainty, (iii) to

"signal" the agents acting in the future some useful information which they

will not necessarily acquire [in the case of classical or quasi-classical in-

formation patterns, this third role is absent]; and these three roles are in

general in conflict with each other. Only if these roles are isolated, the

stochastic team problems with nonclassical information patterns tend to be

* comparatively tractable [see, Witsenhausen (1975), and Ho, Kastner and Wong

(1978)] --but this is indeed a very special class of problems and the more

general nonclassical stochastic team problems await innovative ideas, tech-

niques and approaches.

4.3 Nash Equilibria

Derivation of Nash equilibria for stochastic systems controlled by
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several agents with different objective functionals is, in general, an ex-

tremely challenging problem when the information pattern is nonclassical

-- the reasons being similar to those we have discussed above at some lengthU
in the context of team problems. Therefore, we will confine our discussion

in the sequel to deterministic, and stochastic classical and quasi-classical

information patterns.

We have seen in §3.3 that in the case of deterministic systems with

deterministic dynamic information patterns, there exists, in general, a multi-

tude of Nash equilibria -- the reason being that in such problems (i) every con-

" trol law has several different "representations" and (ii) every Nash equilibrium

obtained under an information structure that is inferior to the original deter-

ministic information structure constitutes a Nash solution also under the

original information structure. We call such equilibria "informationally non-

unique" Nash solutions. For stochastic systems of the type (2.1), however, in-

formationally nonunique Nash equilibria cannot occur, even under deterministic

dynamic state information, provided that (roughly speaking) the noise vector

- en "influences" all points in the state space X, and for every n E N [Bagar

(1976, 1979a)]. A more precise statement can be given for the case when en has

*,-;an additive effect, that is when (2.1) is written as

SXn+l - fn(Xnu ,.., +O (5.7)

The requirement here is that the probability measure * associated with n

n n ,

should assign positive probability to every open subset of x [assuming that

,* an appropriate topology is defined on X] (Van Daue(1980)]. Such a stochastic

formulation ensures existence of a unique representation for every strategy and

-----------------------------------
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hence eliminates the possibility of having informationally nonunique Nash

equilibria under dynamic state information (such as the closed-loop perfect

state information). The only nonuniqueness (if any) will be due to the struc-

tures of the cost functions and the state equation.

Consider now the case when the system equation is given by (4.7)(with

the probability measure of e having the property discussed above], the under-
n

lying information structure is closed-loop perfect state, and the cost func-

tional of DM m (m IEl is given by

N
~ gmx , 1  MxIm Ymfmniml}

n 1 n n+l' n n annn n

For such problems the Nash equilibrium solution can be computed recursively,

*by following a dynamic programming type argument and by solving at each stage

*a static Nash problem. Assuming that each f (.) and g (n C ,m4e is
n n

continuously differentiable in its arguments, and {8 e, n ) }is an indepen-

dent sequence, the recursive relation that yields the Nash solution { m
n

Ym(x) n 6Ng m Hr=j)eads [c.f. Ba~ar (1979a): (x un ,U xnd O

f{7: (mxl.u~x ~G , 1* M*e141* x)d

nn+l'n''n'n 1n+l~xn+2,un+l,",un+l~xn+l n+l

+m( 1 14
gnn+l Un~ n n

.4.0, mE M, n eN
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U' where
* 1 M*

Xl Af (x ,U .,u ) + 8
-n+l n n9 n n n

and 0n denotes the probability measure of 8 . It should be noted that "infor-
n n

mational nonuniqueness" is absent here, mainly because of our assumption on

n (n C N), and it is for this reason that every solution set will be a func-n

tion of only the current value of the state. When the state equation is lin-

ear and each cost functional is quadratic, a unique solution can be obtained

under some invertability conditions on system matrices, and the Nash control

laws are affine functions of the current values of the state (depending only

on the mean value of 9e) (Balar (1979a)].
n

When the underlying information structure is quasi-classical, dern-

vation of the Nash equilibrium solution is a more subtle issue. Firstly,

Propositions 4.1 and 4.2 do not have any counterparts here, which totally

removes the possibility of simplifying the information structure (such as

3reconsidering the original problem under an "equivalent" static information).
Secondly, if the underlying information pattern is the one-step delay infor-

mation sharing pattern, there exists, in general, a plethora of "informs-

tionally nonunique" Nash equilibria, because that particular information

pattern incorporat es redundancy in dynamic information (each agent having

access to past measurements as well as to past control values of the other

T,. agents].[See Baqar (1978a) for a class of such informationally nonunique Nash

equilibria.] In order to avoid informationally nonunique equilibria, we have

to restrict our attention to those quasi-classical information patterns

which are free of any redundancy in dynamic information --such as the one-

step-delay observation sharing pattern.
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S The derivation of Nash equilibria under the one-step-delay observa-

• -tion sharing pattern is not a totally intractable problem, and, depending on

the structures of the cost functions, measurement equations and state equa-

U tion, one can utilize a partially recursive procedure (of the dynamic pro-

gramming type) that would yield the optimal solution. This procedure (when-

ever it works) involves, at each stage, the solution of static stochastic Nash

problems and satisfaction of some consistency conditions; however, as a

caveat for the reader we should mention that such a derivation is not routine

and it involves several pitfalls, mainly due to the fact that the conditional

distribution of the state at each stage (given the past and present acquired

information) depends in general on the past control laws [hence, the deriva-

tions at each stage cannot totally be isolated, as in the case of stochasticS
team problems discussed in §4.2].

Let us nowoutline this procedure in some general terms, by pointing

out the difficulties as they arise. Suppose that the Nash equilibrium solu-

tion has been determined up to the last stage, and we are faced with the

-" "static" last stage Nash problem which has the cost function

E m + aI -. '.

N N (n Ji M

for DM m, where the probability distribution of xN depends on the past controls ]
through the state equation (4.7). Denote the Nash solution of this problem by

Sm Mm. .m,

y (n) ..;y , m eM. (4.8)

Na1
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* °[Derivation of this solution will in general be quite difficult; however, the

difficulty is not a conceptual one but rather a computational one. We will

discuss this point further, in the sequel, for the special case of linear-

I quadratic problems.] Here, 0 m will depend on the conditional probability
N

distribution of xN, and thereby on the past control laws. Now, if the struc-

m m
. tural dependence of 0 N on YN depends explicitly on the past control laws,

the procedure cannot be carried over to the next stage, since y also depends

on {ul; i EM land therefore the general structure of the Nash problem at

stage N-1 will depend (implicitly) on the solution that is being sought. This

difficulty can, however, be avoided, if (4.8) happens to be separable in m

i.e.

m m M m m
N YN'YN- '  ' y I +N(Y-ON y 1(4.9)

mwith the further property that N is functionally independent of the past

control laws. In such a case, the dependance of the Nash equilibrium strat-

mmegies at stage N on the controls at stage N-l [i.e. { Ul_, m 6 H }] are

-.-j completely determined by the functions (&N, m E R }], and therefore we can

proceed to the next stage (N-l) for determination of the Nash control laws

{YN-1, m 6 R I by substituting

umM -M.M( my) + k(Ym l, . yl) m (4.10)

in the state equation and the cost functionals, where k is any measurable

•-
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function of its arguments. The "static" Nash problem (of interest) at stage -4

N-i will then involve the cost functionals

" .. M-i i + .m m 1  M 1  M

.- E.g -I -uN _'u- + a :N-1 ._Ni .N

+ [N('u'-"6> + e', N, 11 N 'NN d

. where uN is given by (4.10), xN is related to the controls at stage N-i through

-M + e:." xN "fN-l(xN-lu,.l,.-1) eN.IV

and ym is related to the past controls through
N

YN W-h (N , •9.

* Now suppose that, for a fixed set of sub-strategies at stages N-2,N-3,..,i,

the solution of this Nash problem exists and is given by

. .m .( ') + ( m EM, (4.11) H

" where - is functionally independent of the past control laws, but it may

depend on , E M which in turn depends on the value of yN-I at equilib-

rium through the second term in (4.9). Invoking the consistencycondition, and

. re-solving for yN. from (4.11), we obtain the structural form

YN. -. IyN. ) + .N E(YN.2, I
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where c-k does not depend on either the past controls or i E MI. Hence,

we can now let

pm -m *m"N - u- - + .P(YN.2,..,yI m E M,

. where k-I is any measurable function of its arguments, and repeat the deeds

of stage N-1 at stage N-2. Then, the solution can be obtained inductively by

invoking the consistency requirement at every stage, under the assumptions

that at every stage a Nash equilibrium solution to the related static problem

exists, and it satisfies a separability condition of the type (4.9) or (4.11).

The above outlined procedure has been implemented in Baqar (1978b)

for the class of linear-quadratic-Gaussian (LQG) systems under the one-step-

*delay observation sharing pattern, and existence of a unique hash solution,

* linear in the available information, has been verified under some sufficiency

conditions that involve the system parameters. The "static" stochastic Nash

problem to be solved at each stage is of the linear-quadratic type, whose solu-

tion is discussed in Ba~ar (1975) and Ba~ar (1978a), which may be considered

C_ as an extension of Radner's result [Radner (1962)] referred to in §4.2 to pro-

r ble with different objectives for different agents. We should mention that

the solution of the general LQG problem given in B&#ar (1978b) is highly corn-

plicated in terms of the equations which yield the coefficient matrices of

the linear control laws, and it does not satisfy any separation property (as

- opposed to the solution of the LQG team problem under the rame information

pattern).

When the underlying information structure is nonclassical, derivation

- of the Nash equilibrium solution is in general not tractable, since even the
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special case of nonclassical team problems involve formidable difficulties,

as discussed earlier in §4.2. However, there exists a subclass of problems

with totally conflicting goals, whose Nash equilibrium solutions (rather

called saddle-point solutions in this context) can be obtained explicitly

(and analytically) even under nonclassical information patterns, mainly be-

cause in such problems controls of the agents do not have "triple" role (i.e.

the signaling aspect is absent). For example, Witsenhausen's counter example

[Witsenhausen (1968)], when cast in such a framework, admits unique Nash

(saddle-point) equilibrium that is linear in the available nonclassical in-

formation [see, Baqar and Mintz (1972)]. For more discussion on such solv-

able stochastic problems with nonclassical information patterns, see Bapar

and Mintz (1971, 1973).

4.4. Hierarchical Decision Structure

In this subsection, we discuss the problem of optimal control and

coordination of stochastic systems under hierarchical decision structure, by

employing the Stackalberg solution concept introduced in §2.2 and elaborated

on in §3.4 for deterministic systems. Let us first direct our attention to

the case of two agents with different goals, and with DM 1 (called the leader)

being in a position to enforce his strategy on DM2 (known as the follower).

Information structure again plays a trucial role in such problems,

and solvability of a specific problem depends to a great extent on the nature

of the underlying information pattern. We should mention, at the outset, that

_ stochastic decision problems in which the leader has access to static or

dynamic redundant information (such as the one-step delay information sharing

pattern) are much more tractable as compared with those in which the leader
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has dynamic (non-redundant) information (such as the one-step delay observa-

tion sharing pattern) --this latter class of problems is in fact extremely

challenging and as to date no general method exists that would aid in their

solution.

Static information

When the leader has access to static information [more precisely,

if the leader's information does not depend on the controls of the follower],

the stochastic Stackelberg problem is tractable because the rational response

set of the follower does not structurally depend on the strategy of the leader.

Such problems are then essentially equivalent to one-stage stochastic Stackel-

berg problems which we now discuss. In terms of the standard notation, let

J. E 12, ui T , 1, 1,2 ,m- 1,2,

where

( [y') , y . hi(c), i- 1,2,

and 9 denotes a collection of primitive random variables with known probability

distributions. Let TI E II be fixed, where 11 is appropriately defined. Then,

the follower is faced with the stochastic minimization problem

min E (g2(17(hl(9)). T 2 (y 2 ),g]}

(4.12)

Smin E (g 2 [r(h (9)), u2 ,C]y 2 ],
u2

tWhen the follower has access to dynamic information, there is no loss of

generality in replacing it with an appropriate static information.
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whose structure does not depend on the choice of iT Since iT does not carry

2 2 2
u in its argument. If g is strictly convexc in u ,this minimization pro-

blem admits a unique solution [regardless of the choice of Tr ]which we denote

by T: II1 - 1?, so that n2 - T Tt uniquely solves (4.12). The Stackelberg

strategy Tl* is then any solution of the stochastic minimization problem

*min EIs [Tr I(yI TI(y),I J

~l ElI 1 (4.13)

a min Etg1[u,Tu1,CJjy1

The two optimization problem (4.12) and (4.13) can be solved (at least numer-

ically) without any major difficulty of conceptual or methodological nature,

and in a few cases the solution can be obtained analytically. one such specific

case is the class of linear-quadratic-Gaussian systems [g Iand g 2quadratic,h h

and h2 linear, and C Gaussian], for which the Stackelberg solution is affine.

More precisely, we have from Balar (1979a, 1980a).

Proposition 4.3.

1 2Let - (X,e aG be Gaussian distributed with mean zero and covari-

ance diag(E, A1 A ). Further let

I.~~~ ~~ gUxD 2) ~ mDum + urnD ui + .uiD Ui'g+ U x

+ u C mi x; m,i 1,2; 1 m, D m> 0,

_and hm(x,S ) 0.H + e' m 1,2.

Then, the stochastic Stackelberg problem with static information
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Im (ym3  m -1,2, admits the unique solution

y I(y I mAy 1;y2 (y 2 )'- -D- 1[C2 2 12 y2 + D 2 lElyl(y ) y2]]

where A is the unique solution of the Lyapunov-type equation

DA + D' D D - - D D D - DID' D IJEH

11 2122 1 3D22D2 1  12 22 21 21 22 12 2 1

um(D 1 -D2#'D D)D 1 C + D' 1 C Y 2 Z -: ll:

and

Z A flmmDm + Am)', -1,29

provided that the condition

01+Dl/[D'DlD D D D D1 D DI D1ID' D I
112122 13 2221 D12D2 2 2 1  21 22 12 11 < 21

holds. 1

* Remark. The preceding result may be considered as an extension of Radner's

result on LQG team, cited in §4.2, to problem with different objective

functionals for the &ants and with a hierarchical decision structure. Even

though this specific result pertains to the two-agent case, its extensions

to the multi-agent case with more than two levels of hierarchy (in decision

making) can be envisioned -- such problem (when cast in the LQG framework)

also admit unique affine solutions, but the verification and the derivation

are much more complicated than in the two-agent case [Baqar (1981c)). Yet

another extension (and application) of Proposition 4.3 would be to dynamic
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decision problems under the feedback (stagewise) Stackelberg solution concept,

in which case the leader enforces his strategy on the follower only stagewise.

For LQG dynamic systems and under the one-step-delay observation sharing pat-

tern, it can be shown by repeated application of Proposition 4.3, together

with a dynamic programming type argument, that the feedback Stackelberg solu-

tion is affine in the information available to the two agents [see, Bagar

(1979)].

Dynamic redundant information

We have earlier discussed in §4.3 that presence of redundancy in the

dynamic information structure gives rise to ill-posed problems in the case of

Nash equilibria, because it leads to a plethora of informationally nonunique

U solutions. For problem with hierarchical decision structure, however, the

situation is quite the opposite. This time, presence of redundancy in the

dynamic information actually helps to simplify the derivation of the Stackel-

berg solution, because the extra freedom allotted to the leader through the

- redundancy enables him to provide incentives or implement threats for the

follower, so as to force him to the most favorable solution [from the leader's

rpoint of view]. We have already elucidated this property of redundant dynamic

information in §3.4 for deterministic systems, and in the following we discuss

it for stochastic systems within the context of a specific model.

- Consider the general two-agent decision problem treated earlier in

this subsection, but under the amended information structure

1 y 1 y2f2) 2 a y21
that is ya,y2,us], ,cs t my t,

that is, the leader has also access to the mesuremet and control value of
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the follower. [Of course, this makes sense only if the follower acts before

the leader does, which we assme to be valid in this case]. Now let

timEn 1 [ (yly 2 2 2

min EyV)j]
a. E ,11 Tr2 E n

2

exist and be determined uniquely by

u = r 1(y ,y 2), u2 r 2 (y )

2(ut 2 tLet E Cg (,u iu 2 g , and let there exist a fil E ill such that

min E Cg2(,fl(yl,y 2 ,u2),u2]j u2 - W2 (y2)] > g2t .

V2 E 12

Then, by announcing the strategy

l" ) ju t  if u2 mTlr2t(y 2

[i" l otherwise

+. _ 2t
,

the leader can force the follower to adopt the strategy w 2 and thereby incur

an overall favorable cost value. We can therefore declare 1 as a Stackelberg

strategy for the leader and consider the problem solved. However, for several

reasons, one may wish to replace the essential threat Tr with a "softer" in-

centive scheme which penalizes the follower proportionately to his deviation

"' i+ from the desired solution. Such incentive schemes (which are basically dif-

ferent representations of ri do exist, and for several discussions and

?;2: derivations, as well as on extensions of this approach, we refer to Baqar

•. - .2. 6,
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(1980a), and also to Ho, Luh and Mulidharan (1981). Extensions to the case of

multi-levels of hierarchy are discussed in Bafar (1981a).

3Non-redundant dynamic information
For the procedure outlined above to work, the information structure

of the leader should be such that if, at stage n E N, depends on ufor some

* k < n [either directly or through the measurement equation], then he should
2 2

know both the value of 2 and the information 2 on which it is based. With

such an information structure, which incorporates redundancy, the leader can,

in general, enforce the solution that is most favorable to him. If the i.for-

mation structure is dynamic, but does not incorporate any redundancy, the

Stackelberg solution is extremely difficult to obtain, unless one parameterizes

the desired solution and converts the original dynamic optimization problem to

a static one (over those parameter values). Such an approach, of course, leads

in general to suboptimal Stackelberg solutions. Even for linear-quadratic sto-

chastic systems with perfect state measurements, there is no known method to

obtain the closed-loop Stackelberg solution, and the linear suboptimal solu-

tion can only be obtained numerically, with the coefficient matrices depending

on the statistical parameters of the additive system noise [see, Bapar (1979a)].

kon The following table [Table 1] now recapitulates, in a nutshell, the

-known results and the yet-unsolved problems in the control and coordination

of stochastic systems with multiple decision makers and under different types

of information, together with related references. We have classified the pro-

blems in four categories.
-q.

(1) Completely solved ones --remaining details are of minor nature.

(2) Not completely solved. Any new result on this class of problems

-. '1

, °
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will constitute a contribution to the field, but a totally innovative approach

is not required.

(3) Some "positive" and"negative" partial results on special cases

exist; but this general class of problems is extremely challenging, and innova-

tive approaches have to be introduced in order to solve a sufficiently general

class of such problems.

(4) These problems are ill-posed, mainly because they lead to a

plethora of solutions which cannot be strictly ordered.

The references quoted in the Table are not meant to be exhaustive; we

have chosen to list the most recent or the most representative ones in each sub-

category.

m7
a...|
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5. APPLICATIONS

In this section we consider a few simplified situations where the

concepts of multiperson decision-making are meaningful. The examples are

intended to suggest potential areas where the concepts may be used as guides

*i in decision-making.

5.1. Nash Equilibrium Model of an Arms Race

Richardson's model [Richardson (1960)] of arms race between two

7 nations:

t) a ax2 t) - axL1 t) + g (5.1)

i2(W Px (t) -rx 2 (t) + h (5.2)

has generated some interest in political science in further exploration of

mathematical models in international relations. The arms levels (at time t)

of two nations are represented by x(t) and x 2 (t), a and p are called r

defense coefficients, a and y are called fatigue coefficients, and g and h

are grievance coefficients. Discretizing time, the model may be represented

in multistage form as

x1 (k+l) . a1 2 (k)x 2 (k) + a11 (k)x1 (k) + b1 (k) (5.3)

x2(k+l) = a 2 1 (k)x 1 (k) + a2 2 (k)x 2 (k) + b2 (k). (5.4)

In an attempt to model how the coefficients a (k) might evolve and to
ij

* attempt to explain how the nations' decision processes might lead to the

model in (5.1) and (5.2), Simaan and Cruz (Simaan and Cruz (1975a)] proposed

a Nash equilibrium model for the following multiperson decision problem:
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The fundamental model for the arms levels is given by the pair of equations:

x 1 (k+l) - 01xl(k) + Zl(k) (5.5)

x2 (k+l) - B2x2 (k) + Z2 (k) (5.6)

where Blx 1(k) and B2x2 (k) are the depreciated values of the arms stocks at

stage k+l, and Z1 (k) and Z 2(k) are investments in arms. We seek strategies

U which are feedback Nash equilibrium strategies with respect to some objective

functions. Thus Z (k) and Z(k) will be functions of the current arms levels
12

:-7 xW(k) and x2 (k). The objective functions are modeled to be

2
Ji(Zl z2) 1 Qi(N+1)(xi(N+l) - Pi(N+l)xj (N+1) - V (N+I))

N 2+2 E I (k (zi(k)-Wi(k))

2+ Qi(k)(xi(k)-Pi(k)xj(k)-Vi(k))}, i- 1,2, (5.7)

where Rl(k) and R2 (k) are strictly positive real numbers and Q1 (k), Q2 (k),

P1 (k), and P2 (k) are nonnegative real numbers for each k. Thus each nation

wishes to narrow the gap between its armament level and an affine function of

its opponent's armament level, while at the same time minimizing its armament

expenditures.

Using dynamic programming the feedback Nash equilibrium solutions

i are found to be

Zl(n) = &l(n)xl(n) + A 1 2(n)x2 (n) + Bl(n) (5.8)

Z2(n) - A21(n)xl(n) + A22(n)x2(n) + B2(n) (5.9)

where Aij (n) and Bi(n) satisfy some recursive equations. When substituted in

(5.5) and (5.6), the final feedback Nash equilibrium model is given by
.9]
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xl (k+l ) = (0 1 +Al(k))x 1 (k) +A 1 2 (k) x 2 (k) + B(k) (5.10)

x2 (k+1) = ( 2 +A2 2 (k)) x2(k) + A21 (k)xl (k) + B2 (k). (5.11)

* Thus the coefficients in the discrete-time Richardson model of (5.3) and (5.4)

may be related to the depreciation coefficients in (5.5) and (5.6), and to

the coefficients of the objective functions in (5.7) associated with a multi-

person decision problem. Thus the modeling problem is shifted to a choice of

weighting coefficients in the objective functions of (5.7). For more details

see Simaan and Cruz (1975a). An outline for obtaining the feedback Stackelberg

solution for this arms race problem is given in Simaan and Cruz (1976).

5.2. Dynamic Duopoly with Production Constraints

In Simaan and Takayama (1978), a dynamic duopoly model with a

linear demand of the form

- C-ap-b(Xl+x 2 ) (5.12)

where p is the couodity price and x is the output of firm i. The cost of

production is

g9 (Zi " L x '  i 1,2, (5.13).:

and the total profit for firm i over the horizon T is

T1

' i(x l ,x 2) f f exp(-rt)[px 1  ix2]dt (5.14) 
0

for i-1,2. The productions xi are to be chosen as functions of the instan-

.' taneous price p(t) and it is assumed that the production capacity constraints

are
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u 0 _ xi[tp(t)] _ Xi , i=1,2. (5.15)

Open-loop and feedback Nash equilibrium solutions are investigated in

Si-aan and Takayama (1978), where nine possibilities are explored,

depending on whether firm i is not producing, producing at maximum capacity,

*i acting as a monopolist, or playing as a true duopolist. For more details,

see Simaan and Takayama (1978).

5.3. Electricity Pricing

Consider a simple model for electricity pricing, where the consumer

chooses a level of consumption q to maximize his "consumer surplus" which is

affected by the price of electricity. The electric utility chooses the

revenue function r(q) to maximize its profit subject to capacity and subject

to regulation. Such a problem was considered as a Stackelberg problemwith

the utility as leader and the consumer as follower by Ho, Luh, and

uralidharan (1981). Let the consumer surplus be modeled by

17 S~ -2 (516J- s[q2_ (q-) r(q) (5.16)

where S and are positive constants, r(q) is a monotonic increasing piece-

wise linear function representing cost to the consumer (revenue to the utility).

The profit of the utility is

1 2
J = r(q) - cq (5.17)

* the capacity constraint is

q j q, (5.18)

and the regulation constraint is
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JL < kq (5.19)

+*' where c, 4, and k are positive constants. The information structure is

5n no information

nL: q.

Ho, Luh, and Muralidharan (1981) determined that
U

r(q) - pq + F (5.20)

is a Stackelberg strategy, where

p - S(q-,) ! 0 (5.21)

+ 1 4j j qj (5.22)

The solution in (5.20), (5.21), and (5.22) has the property that JL is

maximized with respect to r and q. Furthermore, with r(q) given as in (5.20),

the optimum value of q for the consumer is q, the capacity of the utility.

* The resulting value of the utility profit, JL9 is kq, which is the maximum

allowed by regulation.

P

k,
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6. CONCLUDING REMARKS

In this chapter we discussed some key concepts and methods relevant

to multi-person decision-making and optimization in dynamic systems. In large

scale physical models, dynamic operations research models, and policy and

planning models, it is important and crucial to explicitly model the roles

of multiple decision makers if, indeed,there is more than one entity that

makes choices. For certain purposessuch as in policy analysis, it may be

adequate to recognize only one decision maker and subsume other decision-

making aspects in general sectors. However, in the investigation of effects

of significant policy changes, based on a model calibrated from data on

previous policies, the predicted outcome may be misleading because when the

policy is changed, the reactions of the subsumed decision makers may change

so that the fixed model being used may not be satisfactory anymore. It would

be preferable to explicitly model the presence of the other decision makers.

For situations where cooperation among decision-makers is desir-

able, the concept of Pareto optimality is appropriate. However, in non-

cooperative situations the Nash equilibrium concept is more natural. Hier-

archies in decision-making lead to the concept of Stachelberg or leader-

follower strategies. These concepts are described in this chapter for both

deterministic and stochastic systems.

A critical consideration in multi-person optimization problems is

the information structure. In contrast to single person decision making

which necessarily involves centralized information, the multi-person decision-

making problem may involve decentralized information. Furthermore, the
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assumption of memory in the measurement, even in the deterministic case, gen-

erally leads to a solution different from that with no-memory in the nulti-

person case. In contrast, memory in the measurement has no effect on the

optimal solution for single person optimization problems.

For simplicity in exposition, only the class of discrete-time dynam-

ic systems is treated. The concepts discussed in the chapter are also applica-

ble to continuous-time dynamic systems.
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policy is cnangea, the reactions ot the subsumed decision maiters may change

so that the fixed model being used may not be satisfactory anymore. It would

be preferable to explicitly model the presence of the other decision makers.

For situations where cooperation among decision-makers is desir-

* able, the concept of Pareto optimality is appropriate. However, in non-

*cooperative situations the Nash equilibrium concept is more natural. Hier-

archies in decision-making lead to the concept of Stachelberg or leader-

follower strategies. These concepts are described in this chapter for both

*- deterministic and stochastic systems.

A critical consideration in multi-person optimization problems is

the information structure. In contrast to single person decision making

- -. which necessarily involves centralized information, the multi-person decision-

making problem may involve decentralized information. Furthermore, the
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