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CONCEPTS AND METHODS IN MULTI-PERSON
COORDINATION AND CONTROL*

TAMER BASAR and JOSE B. CRUZ, JR.

Department of Electrical Engineering and
Coordinated Science Laboratory

University of Illinois

1101 W. Springfield Avenue

Urbana, Illinois 61801 USA

Abstract

In this chapter we discuss some key concepts and methods relevant

to multi-person decision-making and optimization in deterministic and sto-

chastic dynamic systems. Specifically, we consider systems defined

in

discrete-time, and treat the team, Nash and Stackelberg (leader-follower)

solution concepts under different information structures.

We provide an

up-to-date survey of the literature on these topics, and also present some

new results.

*This paper will appear as a chapter of the book "Optimization and
Control of Dynamic Operational Research Models,' edited by S. G. Tzafestas,
North Holland, 1982,
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1. INTRODUCTION

TSN e 2 Fa LIRS A

Much of decision and control theory is concerned with a single
i' decision-maker with a single objective function. Multiple objective functions

have been considered also, but usually these are associated with a single

et chensd o et

decision-maker. Large scale systems and dynamic operations research models

P SN IR

B are likely to have a multiplicity of decision-makers. Each decision-maker

; may have multiple objectives. Even when each decision-maker has only one
objective function, the optimization problem is significantly much more complex
than that for a situation with only one decision-maker.

This chapter provides a discussion of some of the key concepts and

-~ methods that are appropriate to multiperson decision-making. When two or ;
* more decision-makers have separate objective functions, it is generally not a
;I possible to simultaneously optimize all the objective functions. One ;
‘ important exception is the case when all the objective functions are the ;
i' same. Even in this case, the information available to each decision maker 2
o may be different from those available to others, and the problem of determining

the mapping from the information space to the decision space for each
!E decision-maker is more complex than that for a central decision-maker.

When cooperation among the decision-makers can be expected, an
appropriate solution concept is that of Pareto-optimality. Otherwise, a
= natural concept is that of Nash equilibrium. In situations where a hier-
archical decision structure is relevant, the Stackelberg or leader-follower
EE concept is useful. These concepts will be discussed in both a deterministic

and a stochastic setting.
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In Section 2 we set the stage by providing motivational examples,

modeling the multiperson decision problem, and defining the various solution

. concepts. In Section 3 we develop the concepts and methods appropriate for 1
" multiperson decision problems in deterministic systems and deterministic ﬁ

operations research models. The stochastic decision problem 1is formulated :

and treated in detail in Section 4. Section 5 briefly describes some exam- ;
!! ples, and Section 6 includes some concluding remarks. An extensive bibliog- ;
. raphy is included at the end of the chapter. E
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2. MULTI-PERSON DECISION PROBLEMS ¥

In this section we provide a general discussion on the formulation

i' of multi-person, and possibly multicriteria, coordination and control problems 5
that involve uncertainty, informational decentralization and possible conflicts
of interests (among the decision makers). We also discuss possible solution

. concepts for such decision problems. Before going into a formal presentation,
let us first consider a few examples (in Section 2.1) to motivate the general

formulation in the sequel.

2.1. Examples for Motivation

;; a) Optimum resource allocation under uncertainty
' Consider a firm with (for simplicity) two divisions. The upper-

level division (the headquarters) has the task of coordinating the units (of
production) at the lower-level division, under incomplete information as
regards to their production capabilities, availability, and quantity of
resources, etc. Furthermore, there are m common resources which are to be
used by some or all units in production, and therefore the headquarters has

to allocate these to the units in accordance with their needs. The units may

1
LR SL Y B Y FEULIS IR ¢ 7 SRR M SLPE 35§ PEPD-V - -PI

communicate their needs to the headquarters; and based on this information and

some other measurements, the headquarters will have to decide on the optimal

e

T each such unit to report his true need (i.e. not to cheat in his transmittal

fi allocation that maximizes the profit to the firm (or some other appropriate ﬁ
~ utility function). One other task of the headquarters is to design an j
L; incentive scheme for remuneration of the production units, which will induce g
g
;

of information) and to utilize the allocated resources most efficiently (so as,

%
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say, to maximize the unit's share of the profit of the firm). An optimum
coordination effort on the part of the headquarters will therefore force the
units to behave as a team, even though the units may have their somewhat
different objectives (from that of the headquarters) and operate under
decentralized information.

This problem is one of multi-person coordination and control, which
exhibits a hierarchy in decision making--the coordinator (headquarters) being
in a position to dictate his policy on the other decision-makers (the units of
the lower-level division). It also involves incomplete information, uncertainty,
and a dynamic decision process with multi criteria.

b. Arms race between two nations

There is a dynamic model-~known as Richardson's arms race model [117]--
which describes qualitatively the armament buildup between two nations and in
which the decision variables may be taken as the rates of increases or
decreases in the armament levels. In making its decision as to whether to
increase or decrease its current armament level, each nation will have to
take a few factors into account, namely (i) the current armament level of the
other nation, (1i) the economic burden assouiated with any possible increase
in the current armament level, (iii) the response history of the other nation
to past armament policies, and (iv) uncertainty associated with all this
information. Yet another factor that affects the decision process is the
nations' grievances and hatreds towards their "opponents'. The objective of
each nation will be to maximize an expected utility function that reflects a
tradeoff between expected economic prosperity and national security.

This 18 clearly a dynamic decision process which involves two decision-

makers with different objectives and whose decisions are intercoupled. It
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involves uncertainty, incomplete information and noncooperative decision

& making.

.‘ V'-_‘

c. Water pollution control

‘.

There are M chemical plants, located on the shores of a river, whose
waste discharges pour directly into the river with no (or very little) pollution

treatment. The municipality decides to take measures against this, either

3

ll through a subsidy program or by penalizing those who do not properly treat

i

their waste discharge. Assuming that the municipality 1is in a position to

e

collect data from the river, the question is what type of a subsidy (or

penalty) program to adopt, which will force the chemical plants to treat their

3

€ .v' .—;
D

waste discharges properly so that the pollution content of the river is below

certain preset limits which become more stringent over the years. This is a
dynamic multi-person decision problem which involves uncertainty and multi
;f. criteria. There is a conflict of interest between the municipality and the
chemical plants, and there may also be some conflicts of intersts between the

individual plants.

!! 2.2. A General Formulation
A general formulation of a multi-person decision problem requires

;ﬁi delineation of the following information:

(1) A set of decision makers (DMs), or the so called agents. Denote
iy this set by M= {1,2,..,M} and a typical element by m.
(11) An underlying probability space (Q,8,6) for the uncertainties,

which are beyond the control of the DMs.

Ef (111) The length of the horizon on which the decision process is

defined. Here we will adopt a discrete~time formulation with a finite horizon,
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and denote the number of stages by N. Let a typical element of N={1,..,N}
be denoted by n.

(iv) A set of possible alternatives (decisions) for DM m at stage
n, to be denoted by U::, with u:E U: being a typical element. In the most
general setting, U: may depend on the present and past decisions of the other
agents (i.e. it may not be rectangular); but here we will assume ﬁ: to be
rectangular for every ne N, me M.

(v) A mathematical description of the interaction of the DMs
within the system and among themselves, and with the uncertain states of the

environment, i.e. specification of a system equation of the type

1 M
X 41 fn(xn,un,...,un,en) (2.1)
where X X nﬂex (the state space), and en denotes the uncertainty affecting

the outcome of the decisions at stage n. An alternate description would be

specification of the probability distribution of sl conditioned on the set

of vectors {xn,ui,...,u:}; but we will adopt the state-space description (2.1).

(vi) An information structure for each DM, which characterizes the
precise static or dynamic information gained and recalled by that DM at each
stage of the decision process. Each such information structure will generate
an appropriate information space (say z:) for DM m at stage n. In the case
of deterministic information patterns, each DM will have access to some or
all components of the present and past values of the state vector, as well
as to the past control values of some of the other DMs. In the case of
stochastic information patterns, DMs will ' ave accesrs to noise corrupted

measurements of the state vector, say

m
-
n

n o
y hn(xn,en) (2.2)
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for DM m at stage n, where 8: denotes the uncertainty corrupting the measure-

ment. Then, the information available to DM m at stage n (denoted T]l::) will

comprise a sub-collection of the set of vectors {yt:;yt];_l, cee ,y:_l; cee ;yi, cee ,yi{;
uI];_l, ‘e ,u::_l; e ;ui, cae ,ulf} . If all these vectors take values in finite-

dimensional spaces, then the information space z: will also be finite
dimensional. [Further discussion will be devoted to this topic in the
following sections; see in particular Section 4.1.]

(vii) Permissible strategies (decision laws) fo; each DM, defined
as appropriate mappings from his information space into his decision space.
Let wm=-{YT,y?,...,y;}, where y: :Zz-»U: is a measurable mapping. We refer
to as a strategy (decision law, control law) of DM m, and denote the class
of all permissible strategies for DM m by Hm. Each permissible sub-strategy
Y: will be assumed to belong to a sub-strategy set F: which will have to be

appropriately aefined for the problem under consideration.

Permissible strategies, as introduced above, are also known as pure
strategies, as opposed to mixed strategies which are defined as probability

N

measures on XlI‘:, or behavioral strategies which are defined as independent
ns=

probability measures on I’:, ne€N. In the sequel we will deal only with pure
strategies and refer to them simply as strategies.

(viii) An objective functional for each DM, that summarizes

(mathematically) his preference ordering among different alternatives and for
each fixed permissible strategy of the remaining DMs. Hence, we assume
existence of a real-valued function J® : r[lx 112 X, .0X nM-> R, for each m€ M, which
DM m strives to optimize (say minimize) by his choice of strategy wmenm.

Note that the effect of uncertainty (if any) is absorbed n this formulation

through a possible expected utility approach. This point will be further
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discussed in Section 4, where a more precise description for a subclass of
problems can be found.

We should note in passing that, in the class of problems described
above, the order in which each agent acts is predetermined; there exist more
general formulations, however, [see, Witsenhausen (1971d)] which would allow for

the order of action to be determined by a chance mechanism (which 1s a part of

the uncertainty) and the past actions of the agents. We do not discuss such

generalizations here.

2.3. Solution Concepts

The general formulation of Section 2.2 is not complete unless we

specify the precise mode of decision making among the agents. Even though each

2

G em ettt e

agent will attempt to minimize his corresponding objective functional, this =
goal cannot certainly be achieved independently of the decisions of the other ;ﬁ
agents, unless the objective functional of that DM happens to be independent of Ei

~-dq

all the other DMs' strategies. Hence, in order to complete the formulation of

as 4

a multi-person decision problem, we have to introduce rational modes of decision

a s

making. Some selective possibilities are discussed in the sequel.

Team solution

When all agents have a common goal, we have a team problem with a

single objective functional J= Jls.JZE eee = JM, and then an optimum (team)

* *
solution T*s= {ﬂl ,...,nM } 1s defined by

J(r® < J(m), yrel (2.3)

where we use the notation 7€l to denote {Tl’me nm, me M}.




In this context, a solution concept that is somewhat weaker than the

team solution is that of person-by-person optimality. Let = s

m
{171, .o ’“m-l’"m+l’ .o ,nM} . Then, n*e 1l is person-by-person optimal if, for

all me ﬁ,
Pr*y < Jm(rr;,nm), “ernt. (2.4)

Note that every optimum team solution is person-by-person optimal, but not

vice-versa.

Pareto—-optimal solution

When the agents do not all have the same goal, but still act

cooperatively, a reasonable equilibrium concept is provided by the Pareto-

optimal solution. We call a subset IIPCH a Pareto-optimal set if there exists
no element in IIP which is dominated by a strategy from NI, i.e. there does not

exist npen and m€ 1l with the property

I < J‘“(np) Vme i

and (2.5)

Ji(n) < Ji(np) for at least one ie M

In other words, IIp is the collection of nondominated strategies in II.

Any element of the Pareto-optimal set is known as the Pareto-optimal

solution for the problem under consideration, which is in general not unique.
Under certain conditions [see DaCunha and Polak (1967)], the set of Pareto-
optimal solutions can be obtained by considering a convex combination of the

Mg

M
= A J° 0<A <1, T =1,

JA =1l M m m=1 0
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)+ This ylelds a

.. solution which is parameterized by A, which generates the Pareto-optimal set.

. and by minimizing J’A(n‘) over 11, and for fixed \ = (Al,...,A

It should be noted that a critical assumption in Pareto-optimality
i is cooperation. Specifically, if ™ is a Pareto-optimal solution adopted by
B all the agents, one of them, say the m'th one, may attain a better performance

: by minimizing
» I (n* 2"

- over nm; but he has to refrain from adopting this policy (under the cooperative
mood of decision making) since a better performance for one DM (at a Pareto

- solution point) necessarily implies a worse performance for some other DM.

“.. Nash equilibrium solution

When cooperation cannot be enforced in a multi-person multi-criteria
;, decision problem, a solution concept that safeguards against cheating by a
.- single DM is the Nash equilibrium. We say that an M-tuple of strategies

* * -
! - {wl ,..,WM } provides a Nash equilibrium solution if, for all me€M,

: Fr*) s It Tenr. (2.6) ;
p_»' Note that, for the special case when Jm. neE ﬁ, are identical, this solution 3
- concept coincides with person-by-person optimality; furthermore, when
_ M={1,2}, and le -JZQJ, we have a single inequality 1
4
* *
“ 10t 0h s 30 g 36te?),  dlent, ofen? @)

LIS |

. which is known as the saddle-point inequality and the corresponding equilibrium

PN

, solution is known as a saddle-point solution. This latter case characterizes

a situation in which the two DMs have completely conflicting goals.
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Stackelberg solution —1
Consider the class of systems with two agents and in which the roles

are not symmetric. One of the DMs, known as the leader, is in a position to )
9

announce his strategy ahead of time and enforce it on the other DM, known as
the follower. For each announced strategy, wle 111, of the leader, we assume

that the follower acts rationally and determines his response by minimizing

2t d

I YO N

over IIZ. The set of all such solutions

2 2,1 2% 2

t J° (T, ) < mianz(wl,n) (2.8) ﬁ
b ™

r(rly = (n2 e

is known as the ratiomal response (reaction) set of the follower. In case

this is a singleton, we have the unique reaction function (mapping) V]

T : II1 -+ 1'[2, (2.9a)

so that the leader will now determine his equilibrium strategy by minimizing

Pttty
1 1*_ 1
over [I". Any strategy #° €II" with the property
% *
et mt) < fatd,  wlert (2.9b)

is known as a Stackelberg strategy for the leader. Note that T is determined

here as the unique mapping satisfying

Jz(nl,Twl) < Jz(wl,nz), 'v"rrze 1'I2 (2.10)

1_ 1 1_2 2% 1*
for every n"€ll”, and with the property Tn €ll". The strategy, ® =Trn" , for

*
the follower, that corresponds to 1\'1 under this mapping, is known as the

equilibrium strategy of the follower under the Stackelberg mode of decision

------------



12

. 1f R(rrl) is not a singleton, there is no unique way of defining
the Stackelberg solution. One possibility is for the leader to secure his

losses against nonunique rational responmses of the follower, and accordingly
*

. to select a nl enl that satisfies
*
sup Jl(wl ,1r2) < sup Jl(wl,ﬂz), (2.11)
n2er(nl¥) nZER(wl)
] for all wle IIl. This, we shall also call the Stackelberg strategy for the

leader.

It is also possible to extend the Stackelberg solution concept to
systems with more than two DMs and possibly more than two levels of hierarchy.
In this extension, if there is more than one DM at any level of hierarchy,

we have to adopt either the Pareto~optimality or the Nash solution as an

equilibrium concept at that particular level. As a specific case, consider
; an M-person decision problem with one leader and M-1 followers, and two levels
I- of hierarchy. Suppose that there is no cooperation among the followers; then
i we adopt the Nash solution concept at the lower level of hierarchy and further
assume that the Nash solution is unique for every nle l'Il. Then, there exist
M-1 reaction functions '1‘i : IIl-»IIi, i=2,3,...,M, such that
P fotg, e s fataleh,  dlent, 1s2,3,...y, (2.12a)
i where
- WI = {T21r1,‘1‘31r1,...,1‘1-1 1 iﬂ' 1 ...,TM'IT (2.12b)

Stackelberg (hierarchical) strate for the leader in this decision problem

*
is a 1r1 €1l that satisfies

® *
AT Cie O L S e Y R S . R (2.13)

- v~
¥ .

for all nle 1'[1.
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Decision problems that incorporate a hierarchy in decision making
are also known as coordination problems, and the leader is referred to as
the coordinator, since presence of a hierarchy enables him to coordinate
the actions of the other decision makers. This is particularly true if the
leader's objective function comprises a convex combination of the objective
functions of the followers, in which case a Stackelberg strategy may force
the followers to a Pareto-optimal solution even though they will be acting
noncooperatively. Such possibilities will bé discussed in the sections to

follow.
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3. COORDINATION AND CONTROL IN DETERMINISTIC SYSTEMS

In this section we discuss coordination and control problems in the
context of deterministic systems and under deterministic information patterms.

Firstly we identify deterministic problems within the framework of the formula-

tion of §2.2 and delineate several deterministic information patterns (see §3.1).

Then, we provide a brief discussion on team and Pareto-optimal solutions and
representations of strategies on trajectories (in §3.2), discuss Nash equilibria
(in §3.3) and Stackelberg solutions (in §3.4); finally we discuss general coor-

dination and control problems in deterministic systems.

3.1 Deterministic Systems and Deterministic Information Pattexrns

The class of deterministic systems to be considered in this section
will be a special case of the general formulation of §2.2, obtained by taking
all probability measures to be one-point; in other words, we take the state

equation to be given by

n

1 M
- fn(xn,un,..,un), x ,x ., €ER 3.1)

x n’ n+l

n+l

with the value of xl, the initial state, specified a priori, and the stage-

additive cost function to be given as

N
1 1 M
1%wl, .. uh) - Zlg:(xm_l,un,..,un,xn) (3.2)
n=

for DMm.
If a decision maker has access to only the initial value of the state
and does not acquire any (dynamic) information on the values of state (or con-

trols) at other stages, we say that he has open-loop information. If, however,

vy
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he acquires perfect information concerning the current values of the state and

has perfect recall on the past acquired information, we say that his informa-

) tion pattern is closed-loop (with memory). Hence, in the former case ;
m -—
. T, = {x}, neN, (3.32)
and in the latter case
-
m -
- T]n = {xn,xn_l,..,xl}, n €N, (3.3b)
.
T for DMm, and these two information structures constitute the two extreme pos-
N sibilities as regards deterministic information structures that involve state :
:; measurements. Two important cases "in between' are the feedback (or closed- :
) loop no-memory) information structure in which case the decision maker recalls B
2 g
- only the current value of the state (and also the initial state, which {s ;i
... known a priori), i.e., i
. :
. m - - K
F: ﬂn - [xn,xl}, n €N, m €M, (3.4) E
!! and the partial closed-loop information structure in which case the dynamic -
N state information that the decision maker acquires and recalls is only partial,
i.e.
m m _m m = = -
* Mo = Uy poreospx b n €N, nd 1. méN, (3.5a) :1
N where
= y oh(x), n€N,nfél, mEMN (3.5b)
n n n’ ' ’ ’ :

and h: is an appropriate function which is not necessarily one-to-one. Note
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that in the partial closed-loop information structure each decision maker's
current observation (or measurement) y: may be different, and there is in
general no sharing of information., An information structure which permits

such sharing is, for example,

LRI S A AP A (3.6a)
where

e 4 {y;,yi,--.yt} 3.6b)
which is known as the one-step delay observation sharing pattern. It {is,

of course, possible to introduce other information patterns which involve
sharing of only.a subset of past observations and with possibly more than
one stage delay. Each such information structure leads to an appropriate
strategy space for each decision maker, for which we use the notation already

introduced in §2.2.

3.2 Team and Pareto-optimal Solutionms

When all agents have a common goal (the case of a team problem) or
have different goals but act cooperatively (the case of Pareto-optimal solu-
tion), the optimum solution can be obtained by utilizing techniques of optimal
control theory since in the former case there is a single objective functional
to be minimized and in the latter case one may in general consider a parame-
terized convex combination of all the agents' cost functionals as a single
objective functionsl to be minimized, whose parameterized solution character-

izes the Pareto-optimal set. Furthermore, in order to obtain a solution under
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a given general deterministic information pattern, a standard approach 1is
first to obtain the minimizing solution under the open-loop information struc-

ture and then to synthesize a closed-loop solution as a representation of that

open-loop solution in the strategy spaces compatible with the given dynamic
information. Before discussing this point further, let us introduce the

notion of '"representations' of a strategy [Ef. Bagar (1980b)].

Definition 3.1. For an M-agent deterministic control (decision) problem with

strategy spaces {nm; m € ﬁ'}, let the strategies of all the agents, except the
mth one, be fixed at ﬂi € Hi, i¢g ﬁ, i #m. Then, a strategy n € nm for DMn

is a representation of another strategy ™ € Hm, with ni € ni 1 G‘E, i#m)

fixed, 1if

(1) the M-tuples {ﬂm,n"; 1 €M, 1 # m} and {?rm,ni; 1 €EM, 1 #m}
generate the same unique state trajectory, and

(i1) ™ and T have the same open-loop value on this trajectory. Q

A salient feature of team-optimal and Pareto-optimal solutions is
that under a given dynamic deterministic information structure, every repre-
sentation of a solution M-tuple also constitutes a solution to the problem.

However, in the cases of Nash equilibrium and Stackelberg solutions, this pro-

perty no longer h¢lds true.

3.3. Nash Equilibria

Derivation of Nash equilibria, when M agents have different cost
functionals to minimize, involve the solution of the set of M inequalities (2.6),
which, depending on the underlying information structure, may be quite a dif-

ficult problem, because each inequality defines an optimal control problem
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that depends structurally on the other agents' strategies. However, if the 3
k underlying information pattern is open-loop, the structure of each of these

optimal control problems is not affected by the other agents' control vectors,
! and hence derivation of Nash equilibria in this case becomes equivalent to
solving (jointly) M optimal control problems. This argument then readily

leads, by using the minimum principle, to the following set of first-order

. necessary conditions that yield the candidate open-loop Nash equilibrium so-
. lutions [cf. Bagar (1979a)].
Proposition 3.1. For the multicriteria decision problem described by (3.1)
2.’3 1 M m M
and (3.2), let fn(xn,un,..,un) and gn(xn+l,un,..,un,xn) be continu:usly dif-
- - * -
.. ferentiable in X and X4 0 €N, m € M. Then, if [nm (xl) = u® ; mEM }

provides an open-loop Nash equilibrium solution and {x: 1’ @ € E} is the

corresponding state trajectory, there exists a finite sequence of costate

vectors {p;',. .,p;_l } for each m € M such that the following relations are

v
; .

satisfied:
% %*
* o »* *
*n+l fn(xn’un""un) s T |
p ” * * % * *
- m _ .m m, m 1 m-1" m m+l M %
v Yn (xl) = un - ar: minm Hn(pn+1’un""un sU Yy s--»“n’xn)
. u €U
. n n
- m 3 * 1* M m 3 m, ¥ M *, 4
o Py © axn fn(xn'un 2oy ) [pn-l-l + [axn+18n(xn+1’un e ¥y ’xn)” H!
K
N
; * - "
o _m, * 1 M™ ! ¢
g + [axn 8n(xn+1’un AR ’xn)] _J
o - »
pm_l-o, mE€M n €N,

RIS B
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u where 4
. m 1 M o 1 M, 1 M
Hn(pnd-l’un"‘ :un’xn) g 3n[fn(xn’uns- 0’“n) oun:“:un’xn) _
- o' 1 M = = -
' + Pmlfn(xn’un""un); n €N, m € M. o

, - For further discussion on the derivation of this set of first-order necessary

3 ' conditions, and alucidation of some special cases as regards the structures of

T B OUPR SR

fn and g:, we refer to (Basar and Olsder (1982), chapter 6).
' Another tractable class of problems, as far as derivation of Nash
equilibria is concerned, is the class of multicriteria decision problems with
i+, eclosed-loop no-memory (feedback) information structure. Since every open-loop

Nash equilibrium solution L{s also & Nash equilibrium solution under the closed-

®::

]
iad g el i

loop no-memory information structure, the Nash squilibrium solution to this

P class of problems cannot be unique, and in fact it exhibits "informational non- :
, uniqueness' [see, Bagar and Olsder (1982)]. One way of eliminating this infor- ,J
' mational nonuniqueness under the feedback information pattern is to require "
' the Nash equilibrium solution to have the additional property that its restric- ‘
= tion :o.:ho interval [n,N] is & Nash solution to the truncated version of the

p original problem, defined on [n,N], and this being so for all n €N. Such a -:
solution {s known sas & feedback Nash equilibrium solution, which is free of .
' any informational nonuniqueness, and whose derivation follows a dynamic pro- *
o gramning type argument, as summarized in the following proposition. 1

AR
42 aea’x

.- Proposition 3.2. For the multicriteria decision problem described by (3.1)
“ and (3.2), aad under the closed-loop no-memory (or closed-loop) information
pattern, the set of strategies {y::xn); n €N, m € M} provides a feedback %
: Nash equilibrium solution if, and only if, there exist functions V:(x), ;‘?
i .
b T T e e T e s Tt s
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n €'§, m € ﬁ; such that the following recursive relations are satisfied:

m=m™ m 1* m-1% m
V:(x) = min isn[fn (x,un), \(n(x),.-n(n (X),un,

uw €U
n n
%*

%*
YL @), e axd + VRG]

¥ ™ %* %* % L
= 0E @yt @)ys @hensys G)xl + 0 E GyE )]

\f§+l(x) =0, mEM

where

" y 1t . m L, M
(x’un) éfn[x:Yn(x)a'o’Yn (x):“n,Yn (x)’t-:Yn x)]. a

It should be clear from the above that feedback Nash equilibrium solu-
tion can be obtained recursively, by solving a set of static Nash problems at
each stage, which is a feature that makes it computationally attractive. Yet

another important feature that should be recorded is that feedback Nash solution

is indeed a Nash equilibrium solution under the closed-loop no-memory or closed-
loop information patterns (satisfying inequalities (2.6)), but one of many "in-
formationally nonuaique"” equilibria under those dynamic information structures.
As already mentioned above, when we have the closed-loop information
pattern, or any dynamic information pattern that exhibits redundancy in informa-
tion, Nash equilibria are informationally nonunique and there exists in fact
an uncountable number of such equilibria, A set of reasons for this i3 now
provided in the following definition and proposition, where a proof for the

latter can be found - . (Bagar and Olsder (1982), chapter 6).
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Definition 3.2. Let A and B be two M-person N-stage deterministic multicri-
teria decision problems which admit precisely the same extensive form descrip-

tion (as in §2.2) except the underlying information pattern (and, of course,

'-'
.
“ BN

also the strategy spaces whose descriptions depend on the information pattern).

Let Tl: (respectively, ‘n:) denote the information pattern of DMm in problem A

A
- G

(respectively, B), and let the inclusion relation ‘!1::.l c 1’1;1 imply that whatever

DMm knows at each stage of A he also knows at the corresponding stages of B,

but not necessarily vice versa. Then, A is informationally inferior to B if

'I']:;1 c ’n: ¥ m €M, with strict inclusion for at least one m. Q

Proposition 3.3. Let A and B be two deterministic decision problems as intro-
1~ duced in Definition 3.2, so that A is informationally inferior to B. Further-
more, let the strategy spaces of the decision makers in the two problems be com-
patible with the given information patterns and constraints (if any) imposed

on the controls, so that 'ﬂ:g T]g implies n: c IL:, m € M. Then, (i) any Nash

l equilibrium solution for A is also a Nash equilibrium solution for B, (ii) if
(!

m € 1-4, it is also a Nash equilibrium solution for A. |

,..,ﬂM} is a Nash equilibrium solution for B such that m € 1'[: for all

Hence, multicriteria deterministic decision problems with dynamic

Ay )

information patterns that exhibit redundancy in information are not well de-
- fined under the Nash solution concept (since they admit a plethora of informa-
l: tionally nonunique equilibria) unless some additional selection criteria are
| introduced --such as the requirements imposed by the feedback Nash solution

discussed earlier. We do not pursue this point any further here, but note

that one such criterion is in fact provided in §4.3 under a stochastic set-up.
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3.4. Stackelberg (Leader-Follower) Solutions

In this subsection, we treat the problem of optimal control and
coordination of deterministic systems under a hierarchical decision structure,
and investigate derivation of optimal control and coordination strategies by
employing the Stackelberg solution concept introduced in §2.3. As discussed
earlier in §2.3, while introducing the Stackelberg solution concept, existence
of a hierarchy in decision making results in an asymmetry in the roles of the
agents, with some of them being in a position to dictate their strategies on
the others,

In general, derivation of Stackelberg solutions in dynamic decision
problems is quite challenging, the difficulty being mostly of conceptual nature.
However, for some special information structures, the problem becomes tractable
because some standard methods and techniques of optimization and optimal con-
trol theory become applicable. One such class of problems is characterized by
open-loop information structure, and say two agents (i.e. M = 2) for the sake
of simplicity in the discussion to follow. Since the leader's information
structure is open-loop, the optimization problem faced by the follower in the
determination of his optimal response set (2.8) is structurally independent of
different choices of strategies by the leader, and therefore the first phase
of the derivation of the Stackelberg solution is a feasible (tractable) optimal
control problem. In particular, if the follower's cost functional is strictly
convex in his control, the rational response set R(nl) will be a singleton and
the reaction function T [see (2.9a)] will be determined completely by a set of
necessary and sufficient conditions which, under certain structural assumptions

on fn and gﬁ, n € ﬁ, will lead to an analytical solution for T. If such an
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analytic solution can be found, then the leader's optimization problem
min Jl(nl,Tﬂl) is again a standard optimal control problem which can readily
bglsolved using the available techniques for dynamic optimization, and the j
open-loop representation of this solution (in case it is obtained as closed-
loop solution) will constitute a Stackelberg strategy for the leader. In case
an analytic expression for T does not exist, the necessary and sufficient con-
ditions that describe T will have to be treated as constraigts in the leader's
optimization problem which again involves no difficulties of conceptual nature.
A set of equations from which the solution of this constrained optimal comtrol
problem can be obtained can be found in (Bagsar and Olsder (1982), chapter 7);
we do not discuss this class of problems any further here. It is worth noting
here that the preceding derivation is valid not only under the open-loop infor-
mation structure for both agents, but also when the follower has access to
dynamic state information --the only requirement is that the leader should have
only open-loop information. Furthermore, one can envisage direct extensions

of this procedure to M-agent problems with one leader and M-1 followers, with

the latter determining their policies according to the Nash or Pareto-optimum

B d o A b ke e NN o

solution conept, and with the leader having access to only open-loop informa-

tion; there appears to be no difficulties of conceptual nature in such an ex-
tension.

When the leader has access to dynamic state information, derivation
of the Stackelberg solution constitutes a challenging problem, and the stan-
dard techniques of optimization do not apply, since the optimal control pro-
blem characterizing the rational response set R(ﬂl) is now structurally de- j

pendent on the leader's choice or strategies. Omne way out of this difficulty

A B NS, R N . . PP O D " - = ad




24

would be to fix the structure of the leader's possible strategies parametri-
cally, find the follower's rational response as a function of these parameters
and then optimize the leader's cost functional over these parameter values,
also in view of the follower's response; this definitely leads to suboptimal
strategies for the leader --the degree of suboptimality depending on  how
representative the fixed structure is in the general class of policies.
Another way of making the Stackelberg problem tractable is to re-
quire the solution have a feedback property (under the closed-loop no-memory
of closed-loop information sharing pattern), analogous to the case of the feed-
back Nash equilibrium solution, which would lead to a recursive derivation in
retrograde time that involves solution of static Stackelberg p.oblems at every
scage. The solution obtained through such a recursive procedure is called ‘a

feedback Stackelberg solution [cf. Simaan and Cruz (1973a,b)] and satisfies

the conditions given in the following proposition.

Proposition 3.4. For the two-agent multicriteria decision problem described by

(3.1) and (3.2) with M = 2, and under the closed-loop no-memory (or closed-loop)
* *

information structure, the set of strategies {y; (xn),yi(xn); n € N } provides

a feedback Stackelberg solution with DM1 as leader, if

%*

~1-1 2 ~1, 1 2% =
. . -;n . Gn(yn,yn,xn) - Gn(yn Vg +%y) for all X €X, n €N,
Ya € rﬁ'Yn € Rn(Yn)
where Rh(Y:) is a singleton set defined by
1 2 ~2, 1 .2 ~2 1 2
R (v = (82 € 2: Bylel,x) s & (vyvgrip) 1
Yo
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8 GPLE (e Lyh(x ) ,y2 (%)) v (e ),vo(x ) ),

~m, 1 2
Gn(Yn’Yn’xn) a2 “n'"'n''n

m=1,2, n€ ﬁ,

and G: is defined recursively by

* *
m 1 2 - R 1 2
Gn[xn+l,Yn(xn)’Yn(xn)’xn] Gn+1[fn+1(xn+1’¥r+fxn+l)’ n+1(xn+l))’

¥ *

2 m m
Y . s =
n+1(xn+1)’Yn+1(xn+l)’xn+1] + &y 3 GN+1 0, m =1,2. @

The feedback Stackelberg solution corresponds to the case when the
leader can enforce his strategy on the follower only stagewise; however, if
he has the power and ability to declare and enforce his strategy several stages
in advance throughout the decision process, or from the very beginning for the
entire duration of the decision process, the cost that the leader incurs will
definitely be less (or at least not higher) than his optimal cost under the
feedback Stackelberg solution. 1In other words, in contrast to the feature re-
corded after Proposition 3.2 in the case of feedback Nash solution, the feed-
back Stackelberg solution is not necessarily a Stackelberg solution, i.e. it
need not satisfy (2.9b); conversely, a Stackelberg solution obtained under the
closed-loop no-memory information structure is not necessarily a feedback
Stackelberg solution. On the other hand, derivation of a Stackelberg solution
under dynamic state equation is a relatively much more difficult problem, for
which the standard techniques of optimization cannot be used.

Another case treated in the literature recently is the closed-loop
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no-memory information structure where the leader's strategy is a function of
the current state. This problem leads to a nonclassical control problem
where the partial derivative of the leader's strategy with respect to the
state appears. It is shown in Papavassilopoulos and Cruz (1979a) that the
optimal values of the state, controls, and objective functions are not changed
by using controls which are more general than affine functions of the state.
When the measurement is a function of the state (possibly nonlinear) the
strategy may be assumed to be affine in the measurement without loss of gen-
erality.

Quite recently, an indirect approach has been developed towards the
solution of such nonclassical optimization-decision problems when the leader
has access to redundant information (such as the closed loop state informa-
tion). In the sequel we discuss some aspects of this new approach and deriva-
tion of the dynamic Stackelberg solution.

Now, for the general two-agent decision problem of this subsection,
and with the leader having access to closed-loop state information, conside;

the following sequence of optimization problems.

STEP 1. For a fixed set of state vectors {xn, n € ﬁ, n ¢ 1} say [xn =X,

n €N, n # 1}, and leader's control vectors [u:, n € N}, minimize

N-1
2 1 2 - 2,- - - 1
3N(’51+1’"N’“N”‘N)+ Ezsn(xn_*_l,u;.ui.xn) + si(xz,ul.ui.xl) 3.7
n‘

over “:21 € U:, n €N, and subject to the constraint

- 1 2
el = B Oyouyeyy)
(3.8)

xl = xl.

- = 1 2
X" fn(xn,un,un), n <N-1,

J

Jallat ey

A
l; L e T Y
N s

P
alaladalaalon

R PRI
- _mal

v - s

R R

—A .aca

TR e

F VO P W IPSUROV RSN, 3

Sy g e e et
- 1.;.‘.."._"_»‘_‘1




..........................

27 1

]

Denote the solution of this problem by

2 - - 1 1 -
u = zn(xz,..,xN,ul,..,uN), n € N. (3.9)
STEP 2: Now consider minimization of the function

N-1 ‘
1 1 2 - 1. - 1 2 - 1= 1 2
" BN ) E By (it Xy) + go(Rpaupiupaxp)  (3.10)

ST W LA RIY

=2

over the leader's controls {ui € Ui, n € N}, and the state values {in, n €N, ;

* .
n # 1}, subject to (3.8) and (3.9). Denote the minimizing solution by {ul R 1

n € N} and {x:, n €N, n# 1} and the corresponding value of expression (3.10)

* ]
o by J1 .. y

*
The quantity J1 , thus obtained, provides, under a fairly general

%* *
. set of conditions, a tight lower bound on the Stackelberg cost Jl(n1 ,Tﬁl )

of the leader (as defined by 2.9b)). These conditions basically involve exis-

*
II tence of a strategy nl € Hl, for the leader, which is
* -—
(1) a closed-loop representation of the open-loop policy {u: ,n € N}
*

on the trajectory {xh = x:, n € ﬁ}, where ui and x: are as defined above,

LN W% 3 PPy

E with x‘]‘.' = x5
- *

(11) forces the minimum value of (3.7) to be attained at {ui - zn(x .
* *
..,x;;u{ ,..u& ), n € ﬁ}, with the minimization problem defined by replacing

*
u: in (3.7) and (3.8) by y1 (.), n €F, and X, n € ¥, tn (3.8) by x , and

FEYYY o W

=1

retaining this new form of (3.8) as a constraint. Note that this latter re-
quirement is equivalent to the statement that the follower's rational response

*
to the leader's announced strategy nl  should lead to the trajectory {x:, R

* * i
= 2 1
n € N} and have the open-loop representation {un = zn(x*,..,x;;u1 ,..,u; )
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n € N}.

Several recent papers have investigated, in special contexts, sat-
isfiability of these two conditions, and derivation of corresponding strategies
(nl*) for the leader. Bagar and Selbuz (1979a,b) have shown that when the
system equation is linear and cost functionals are quadratic, there are cases
when Jl* coincides with the global minimum value of J1 (in particular, if the
follower does not act in the last stage of the game) and a corresponding Stackel-
berg strategy for the leader is of the linear, one-step memory type. Tolwinski
(1981) has shown that for the same class of problems, use of nonlinear strat-
egies by the leader extends the parameter region for which the preceding pro-
perties of the solution hold true. Papavassilopoulos and Cruz (1980), Bagar
and Olsder (1980) and Basar (1981d) have investigated counterparts of these
results and their extensions in the continuous time. Ho, Luh and Muralidharan
(1980), Ho, Luh and Olsder (1980), and Salman and Cruz (1981) have drawn
parallels between these results and incentive scheme design problems in eco-
nomics and have discussed applications of these concepts to microeconomics and
social choice theory. Basar (198le) and Tolwinski (1980) have discussed pos-
sible extensions to multi-agent cases when there exist more than two levels of
hierarchy and several agents at every level of decision making.Bagar and Selbuz
(1979b) show that if there exist two levels of hierarchy and more than one
agent in the follower's group, the leader can still retain his powerful posi-
tion by announcing an appropriate linear one-step memory strategy (for linear-
quadratic problems) that would force the followers (who are making their deci-
sions noncooperatively and under the Nash solution concept) to minimize glob-
ally the leader's cost function. Bagar (1980b) has further discussed coordina-

tion aspects of such problems and has investigated the possibilities for the
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leader to coordinate the followers in such a way that the resulting solution
will be Pareto-optimum, even though the followers may be acting noncoopera-
tively.

It is possible to extend the two-step derivation of the closed-loop
Stackelberg solution, outlined earlier and defined through the optimization

problems (3.7) - (3.10), to the case when the leader's information is partial

. closed-loop [see (3.5)]. In thies case the two optimization problems at Steps
1 and 2 will be replaced, respectively, by the following:
STEP 1': Let the observation vector yi, defined by (3.5b), belong to the
space Yi. For a fixed set of observation vectors {yi € Y;, n € ﬁ, n# 1},say
. {yi = ;n’ n €N, n$ 1}, and leader's control vectors {ui, n € N}, minimize
.
N
2 1 2
o z sn(xm-l’un’un’xh) (3.11)
s n=0
“u 2 . .2 =
B over ui € U, n €N, and subject to the constraints
1 2
LN fn(xn’un’un) (3.12a)
r 1 . -
- hn(xn) =y, B €N, n$ 1, (3.12b)

Denote the solution of this optimization problem by

2 - = .1 |
u zn(yn,..,yN,ul,..uN). (3.13)
;: STEP 2': Now minimize the function
N
1 1 2
nflsn(xn,,_l.un,un,xn) (3.14)
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1

over the leader's controls {ui € LA € N}, and the measurement values

(y} € Yi, n €N, n # 1}, subject to (3.12a), (3.13)and

1 1 -
Yo = b (x), n €N, n4é L

*
Denote the minimizing solution by {u:, n € N} and {y:, n €N, n# 1}, the

resulting state trajectory by {x:, n € ﬁ} and the corresponding values of

*
expression (3.14) by J° .
*

The conditions for Jl

*
1

to provide a tight lower bound on the Stackel-

1

* *
berg cost Jl(ﬂ ,Tﬂl ) involve, in this case, existence of a strategy nlen

[nl is defined here as the class of all mappings compatible with the informa-
tion structure ﬂ; given by (3.5a)] that satisfy condition (i) in the perfect
information case and, in addition

(i1) forces the minimum value of (3.11) to be attained at {u> = z_ (55,

* *
.,yg; ui ,..,u; ), n €N }Jwith the minimization problem defined by replacing

ui in (3.11) and (3.12a) by y;*(.), n € ﬁ, by replacing ;n in (3.12b) by yi,
and by retaining these new forms of (3.12a)-(3.12b) as constraints.

For further details on the satisfiability of these two conditions
and derivation of dynamic Stackelberg solution under partial state informa-
tion, we refer to Bagar (1980c) and Zheng and Bagar (1981); the latter re-

ference also investigates existence and derivation of affine Stackelberg

strategies in such problems,
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4. COORDINATION AND CONTROL IN STOCHASTIC SYSTEMS

In this section we discuss coordination and control problems in the
context of stochastic systems and under both deterministic and stochastic in-
formation patterns. We first delineate (in § 4.1) several different informa-
tion structures that we shall encounter in our analysis, and then discuss (in
§ 4.2) derivation and properties of optimal solutions in stochastic team pro-
blems. Subsequently in §4.3 we discuss Nash equilibria and in §4.4 the Stackel-

berg solution, for stochastic systems and under different information patterns.

4.1. Information Structures in Stochastic Systems

In stochastic systems we encounter two general classes of information

patterns, viz. deterministic and stochastic patterns:

a) Deterministic information structures
We have discussed these thoroughly in § 4.1 in the context of deter-
ministic systems. The same patterns, namely, closed-loop perfect state, feed-
back, one-step (k-step) delay perfect state, and partial closed-loop informa-
tion structures, are appropriate also in stochastic systems, whenever the
agents have access to the value of the initial state and to some deterministic
information on the current and/or past values of the state.
b) Stochastic information structures
Assume that each agent has access to noisy measurement on the current
value of the state through a measurement equation of the type (2.2), and that
agents are also in a position to exchange some of their information (with or

without delay). In such a case we have basically three general types of in-

formation structures as described below:

 Mcmcmemc -
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1) Centralized information pattern: All agents exchange their

measurements without any delay, and also recall their past information, i.e.

o= v ,mEN, nEN (4.1)

1 2 M =
Yk g (yk, yk’ LA | Yk)) k e N.
This is also known as a classical information pattern, and it could also in-

volve the past control laws, i.e.
m -— -—
- {yn, SRTIRIRINS FE AL SPPLINPPRPE ,ul},m €M, n €N (4.2)

where

1 2 M
u 4 (uk, Ups « o s uk).

The two information structures (4.1) and (4.2) are not equivalent (even though
they generate the same sigma-field for each fixed set of control laws), but
only in team problems may they be used interchangeably without affecting the
minimum value of the common objective functional --a point which will be
further discussed in § 4.2.

11) Quasi-classical information patterns: In this group we have

the "one-step delay observation (measurement) sharing pattern", in which case

T]: - {}':, Yn_l, o e Yl}. m € -ﬁ’ n € ﬁ’ (4.33)

and the "one-step delay information sharing patterm" with
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Tlm - {}’m.Y 1’ ,Yl; un-l’un-Z’ o« ,ul}, m GE, n Eﬁ. (4.3b)

n n“ne-

In the former case all measurements are shared with a delay of one stage,
while in the latter case also the past control values are shared. Qur earlier
comments regarding the equivalence of (4.1) and (4.2) are equally valid here
in the context of (4.3a) and (4.3b); more discussion on this issue will be
included in §4.2.

A more general type of a quasi-classical information structure is
the so-called partially nested information structure which we introduce next.
Towards this end, assume that the joint probability distribution of the random
variables associated with the stochastic system (2.1) and the measurement
system (2.2) is independent of the values of the state and the controls. Then,

by iterative substitution, (2.1) can be written as

el fn(xn’un'en)

-1
fn[fn-l(x -l’un-l’en-l)’un’en] é f: (xn-l’un’un-l’en’en-l)

L. . .
- fu(‘l’“n’“n-l""“1’°n’°n-1’"'°x)' (4.4a)

and thus the state at any stage can be expressed solely in terms of the past
controls, the past noise vectors and the initial state. In terms of this

notation, the measurement equation (2.2) can be written as

m m. .1l . .
o ° hn[fn-l(xl’ e WS RRRE A T en""el)’e:]

(4.4b)
4 H:(xl; U seesYy; en,..,el; 9:);
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that is, in this new form it depends only on the "primitive" random variables

M

and the control vectors. Now, we call an information structure {nﬁg{yi,..,yn;

1 M 1 M - -
SANEPRTE AUEE RPRS I PRI By “n-l""“l}’ n€ N, m€E€ M partially nested if

whenever n: depends on ui for some k < n and 1 € M [either directly or through

i
k

holdsT --this being so for every such dependence. In other words, if an infor-

a measurement equation in the form (4.4)], the inclusion relation n:‘B n

mation structure is partially nested, an agent's information at a particular
stage n can depend on the control of some other agent at some stage k < n
only if he also has access to the information available to that agent at that
stage k.

The one-step-delay observation sharing pattern and the one-step
delay information sharing pattern introduced earlier are special types of
partially nested information patterns. The reason why we are interested in
partially nested information patterns is that stochastic optimization and in
particular team problems with such information patterns are considerably more
tractable than those with nonclassical information patterns --this latter con-
cept to be defined in the sequel.

i11) Nonclassical information patterns. An information pattern is
said to be nonclassical if it is not partially nested. Equivalently, if {n:-

n € E, me ﬁ} is nonclassical, there exists some set of indices (n, k€& N,

m,1€M, n > k} such that n: depends on u]t but nﬁ 2 "lt'

1'Th:t.s inclusion relation can be replaced by the somewhat more general require-

ment that "the elements of nt can be recovered by measurable transformations
on the elements of n:".

ST LA
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4.2, Solutions of Stochastic Team Problems

Under the centralized stochastic or deterministic information pat-
terns, stochastic team problems become equivalent to stochastic control pro-
blems, and therefore the solution techniques developed for this latter class
of problems [see e.g. Bertsekas (1976)] are directly applicable to team pro-
blems. In this context, it is immaterial whether the agents also have access
to values of past controls, since there is a single goal and a single objec-
tive functional to minimize. In other words, the minimum value of a team
cost functional J will be the same regardless of whether it is computed under
(4.1) or (4.2); in that sense we call the two information structures equiva-
lent as far as the optimal team solution is concerned. However, this
feature is no longer valid in multi-criteria problems (under Nash or Stackel-
berg solution concepts).

If the underlying information structure is not centralized, the
derivation of the optimal team solution is in general quite intractable. For
some special types of stochastic team problems and under the partially nested
information pattern, however, the derivation becomes tractable by conversion
into an equivalent static formulation. Before discussing this conversion, we
first state a related result [Proposition 4.1] on an important property of

partially nested information patterns in stochastic team problems:

m 1 M 1 M 1 M
Let {nn E {Yn,--,}'n; Yn_l.--,}’n_l;-u; yla"’yl; un_l,--yul} ’

n € ﬁ; m € M} be a partially nested information pattern, with the correspond-
ing strategy spaces denoted by {HP, m € M} and the corresponding sub-strategy

spaces by {P:, n€EN, m€ M}. Let ﬁ: denote, for each n € N, m € ﬁ;the inter-

"
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m 1 M 1 M 1 M
section of the finite sets n, and {yn, T A AETITN AURE YR I AFREN 4 }.

Note that {ﬁ:, ne 31-, ne -ﬁ} is also a partially nested information struc-
ture, which does not involve any explicit dependence on past control vectors

[whereas n: may explicitly depend on controls]. Denote the corresponding

strategy spaces by {ﬁm, me ﬁ} and the sub-strategy spaces by {f‘:, n€ N,

m € ﬁ}. Consider a stochastic team problem with cost functional J(nl,nz,.. ,
M

nM) to be jointly minimized [over mzslrfn] by all agents. Then, we have the

following important result.

Proposition 4.1.

(1) To every fixed M- tuple (Y?, Y‘;,..,Y;) 4 ™ e l'[m, m e ﬁ;
there corresponds a unique set of strategies {7~ - (?T,??,..,?g), me M}
such that the sigma-field generated by nz with u: = yz(n:), ne N, me ﬁ, is
equivalent to the sigma-field generated by ﬁ: with u: = ?:(ﬁ:), neN, me M

(11) J admits a global minimum over mglﬂn’ if and only if it admits
a global minimum over mglﬁn’ and the minimum values of J in both cases are

the same. 0O
This proposition is a consequence of the ob' ervation that, under

the partially nested information structure, any direct information concerning
the value of control is redundant since it can be recovered from the measure-
ment information once the control law is known. Consequently, additional in-
formation concerning the values of past controls [provided that we still have
a partially nested information structure] does not help to improve upon the
globally optimal team solution. An implication of this property is that,
given a specific partially nested information pattern for a stochastic team

problem, we can construct an equivalent (larger or smaller) partially nested

i
|
-
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information structure that is equivalent to it, and reconsider the original
team problem under this new informatiom structure without affecting the opti-
mal value of the objective functional. What we gain in return for such a
conversion is a possible simplification in the derivation of the optimal team
solution. The team solution obtained under the new information structure can
then be expressed in terms of the original information structure. Examples
of such an indirect derivation of optimal solutions in stochastic team pro-
blems can be found in Ho and Chu (1972) and Bagchi and Bagar (1980), and
they are primarily linear quadratic problems. A CAVEAT for the reader, at
this point, is that neither Proposition 4.1 nmor any of these conversion tech-
niques have counterparts in multi-criteria problems (under Nash or Stackelberg
solution concept).

Let us now consider one special class of stochastic team problems
in some detail. Assume that the information structure is partially nested,
and that the measurement equations (4.4b) are separable in the control vari-

ables, 1.e. (4.4b) can be written as

m

~ .‘n - -
Vo H:(xl; 0000815 e:) + Gn(“n”"“l)’ n€ N, m €M (4.5)

Here, the function E: depends on the control vectors in a way that 1is consis-
tent with the underlying partially nested information structure {n:; neN,

me ﬁ}; i.e. E: is a function of u; only if n: includes ni. Now, if {ﬂm*é Hm,
m é'ﬁ}denotes an optimal team solution for a stochastic team problem with such

a partially nested information structure, and with a cost functional J, where

Im = ELEul,.,dh [P 0D, ne¥ ,

L. v~ PEIPC Oy
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and £ denotes the collection of all primitive random variables, we have (from 1

the definition of team optimality) ?
' J*) < J(m) , Vot e 1, m€E M, »
:;j
which implies the NM-tuple of inequalities 5
* 1* m-1* p* o* .o _m* n*_m+1* M* J
- J(" ) iJ(‘" ;"‘;‘" ;Yl ’..’Yn"l’Yn ,Yn+l!"’YN;" ;"';“ )’ =
w m m = = ]
) v YypaE€T3sneEN, meM : 3
.- .:
This set of inequalities (also known as person-by-person optimality, if we :

view each u: to be controlled by a different agent) therefore provides a

necegsary condition for 1" to be a team-optimal solution. Note that here,
- all sub-strategies are held at their optimal values and the resulting cost :‘
R functional is minimized over possible strategies y: € I‘:; hence each minimi- ]
u. . ¢
zation problem is basically of the form .1
] m m y
E { mi: an(g,un)dP(glnn)} (4.6) 1
- u -
n -4
P where -

* ] *
%D 3 Lt Dt 0Dl ym ™ ™)

and Pr:(g|n:) is the conditional probability distribution of the primitive

— :
: random variables g given the information vector n::. This conditional pro- -1‘
L bability distribution is also known as the sufficient statistics for DM m

= at stage n. E{.} denotes the expected value over the statistics of n:’ after _1
if. u: ] y:(n:) is determined. The reason why L: can be determined explicitly i
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as a function of (g,u:) is because the information structure is causal, and
hence elimination of other variables by iterative substitution is possible.
Whenever ﬂﬁ is partially nested and the measurements that appear
in ﬂ: satisfy the separability condition (4.5), the sufficient statistics
have a simpler form which is basically static in nature. To see this,
firstly construct (in view of Proposition &4.1) the largest partially nested
information structure (say, ﬁ:) that is equivalent to ﬂ:. This new informa-

tion structure ﬂz clearly has the property that whenever ﬂé c ﬁ: for any

k<n, 1 € E, we have uli‘e T.ll; Because of separability of (4.5) and the
partially nested property of ﬁ:, we have the further (sigma-field)equiva-

lence

T

whereﬂ: is obtained from ﬁ: by replacing all y; with

o
nn

~1 ~1 i
yk = Hk(xl, en’-o’el, ek).

Therefore,

PE[M) = PG| = RCe|TD .

But, since*ﬁ: is also partially nested, the presence of the control values in
'52 does not provide any additional information, and we may as well consider

the smaller set

~Mm ~ M 1 M 1l M }
1

= n { 1 Mo .
T‘n 'nn Yn.--,Yn, yn_l.--,}’n_l, ylt"'y

. L Al ‘
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which is totally static. Hence,

PED = PR,

which implies that there exists an equivalent static sufficlent statistics

for DM m at stage n. This leads to the following important conclusion.
Proposition 4.2.

(1) Any stochastic team problem with dynamic partially nested
information structure {n:, n€E ﬁ, m€E ﬁ} , whose measurement equations also
satisfy the property (4.5), is equivalent to one with a static information
structure {ﬁ; neE ﬁ, me ﬁ} as constructed above, in the sense that the
optimal solution of one can be obtained from the optimal solution of the other.

~m* o* .m = -

(11) 1f {un = Y, (‘nn); n € N, m € M} denotes the optimal team
solution under the equivalent static information structure, the solution of

o* o* . _o* - —
the original team problem can be expressed as {Un * Y ('f[n ); n €N, m €M)

* m ~1
where Tf:: is obtained from T by replacing Yie with

1
Y

- Ei(ul,--,un)

and by appropriatelyreplacing some of the controls with their optimum values,
in a way compatible with the underlying information structure. [If the orig-
inal information structure : is the largest partially nested information
structure that is equivalent to itself, this latter phase is not required]. O

Remark. The separability condition (4.5) of the Proposition can be relaxed

to some extent. The real requirement here is that the conditional probability

. R R P .- .
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P(EI :) should be independent of the control laws, so that there can be found
a static information structure “: with the property P(Z| :) - P(El"z). A
more relaxed condition [than (4.5)] that achieves this is given in Ho and
Chu (1973). a
The result of Proposition 4.2 is very useful in stochastic team pro-
blems, because derivation of the optimal team solution under static informa-
tion is in general much simpler than the derivation under dynamic informationm.
In particular, for the special case when (i) the measurement equations are
linear in the primitive random variables and the controls, (ii) the primitive
random variables are jointly Gaussian distributed, (iii) the cost functional
L is quadratic in the control vectors and the primitive random variables, and
(iv) L is further strictly convex in the control variables, the unique team
optimal solution is affine in the available information and can readily be
computed by solving the set of minimization problems (4.6) [see Radner (1962),
Ho and Chu (1972)]. Therefore, every linear-quadratic-Gaussian stochastic
team problem with strictly convex cost functional and partially nested infor-
mation structure admits a team-optimal solution that is affine in the avail-
able information —a result which directly follows from Radner's above men-
tioned result in view of Proposition 4.2. Fucsthermore, team-optimal control
laws can be obtained recursively when the partially nested information pat-
tern is one-step delay information sharing [Kurtaran (1975), Sandell and
Athans (1974), Yoshikawa (1975)] or one-step-delay observation sharing [Bagar
(1978a)], The solution is unique in the latter case and nonunique in the
former case --the nonuniqueness arises because the one-step delay information

sharing pattern includes redundant information which gives rise to several
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different "representations" [see, Bagar (1978a)]. =
é: If the underlying information structure in a stochastic team problem %
L 3

is nonclassical, derivation of the optimal team solution meets with formidable g

l. difficulties. Even in the simplest type of a linear-quadratic-Gaussian team

problem with a two-step delay information sharing pattern (i.e. a nonclassical

information pattern) the optimal solution is nonlinear and cannot be obtained

!! analytically; moreover even a numerical derivation is a challenging task be- R
cause such problems admit several person-by-person optimal solutions and local E:

optima [see, Witsenhausen (1968)]. There are also no simple sufficient sta- g

- tistics for such problems with nonclassical information patterns [see,Yoshikawa ;f
< and Kobayashi (1978), and Varaiya and Walrand (1978)]. These difficulties are ié
fo due to the fact that each control has in general a "triple" role in stochastic ii
#' team problems [Ho (1980)]: (i) the deterministic control effort of reducing ﬁg
{ the error, (ii) to improve the future knowledge of uncertainty, (iii) to %
ﬁi "signal" the agents acting in the future some useful information which they 5
will not necessarily acquire [in the case of classical or quasi-classical in- g

f; formation patterns, this third role is absent]; and these three roles are in ]
| general in conflict with each other. Only if these roles are isolated, the ;i

J; stochastic team problems with nonclassical information patterns tend to be ?%
FD comparatively tractable [see, Witsenhausen (1975), and Ho, Kastner and Wong ;2
. (1978)] --but this is indeed a very special class of problems and the more i;

Eﬁ general nonclassical stochastic team problems await innovative ideas, tech- 3

niques and approaches.

o 4.3 Nash Equilibria ]

Derivation of Nash equilibria for stochastic systems controllad by
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several agents with different objective functionals is, in general, an ex-
tremely challenging problem when the information pattern is nonclassical
--the reasons being similar to thcse we have discussed above at some length
in the context of team problems. Therefore, we will confine our discussion
in the sequel to deterministic, and stochastic classical and quasi-classical
information patterns.

We have seen in §3.3 that in the case of deterministic systems with
deterministic dynamic information patterns, there exists, in general, a multi-

tude of Nash equilibria --the reason being that in such problems (i) every con-

trol law has several different "representations" and (ii) every Nash equilibrium

obtained under an information structure that {s inferior to the original deter-
ministic information structure comstitutes a Nash solution also under the
original information structure. We call such equilibria "informationally non-
unique" Nash solutions. For stochastic systems of the type (2.l), however, in-
formationally nonunique Nash equilibria cannot occur, even under deterministic
dynamic state information, provided that (roughly speaking) the noise vector
en "{nfluences" all points in the state space X, and for every n € N [Bagar
(1976, 1979a)]. A more precise statement can be given for the case when Sn has

an additive effect, that is when (2.1) is written as

x = £ ul v (5.7)

n+l

The requirement here is that the probability measure On associated with Gn
should assign positive probability to every open subset of X [assuming that
an appropriate topology is defined on X] (Van Damme(1980)]. Such a stochastic

formulation ensures existence of a unique representation for every strategy and
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hence eliminates the possibility of having informationally nonunique Nash
equilibria under dynamic state information (such as the closed-loop perfect
state information). The only nonuniqueness (if any) will be due to the struc-
tures of the cost functions and the state equation.

Consider now the case when the system equation is given by (4.7)(with

the probability measure of en having the property discussed above], the under-

lying information structure is closed-loop perfect state, and the cost func-
tional of DM m (m €M) is given by

N

J* = E{ nZl g:(xn+1,ui,..,u§,xn) lu: = Y:(ﬂ:), n€N, m EM}.

For such problems the Nash equilibrium solution can be computed recursively,
by following a dynamic programming type argument and by solving at each stage
a static Nash problem. Agsuming that each fn(.) and g: meEN, meM is

continuously differentiable in its arguments, and {en’ n € Nlis an indepen-
*
dent sequence, the recursive relation that yields the Nash solution f uﬁ =

Y:*(xn); n €N, me M }reads [c.f. Bagar (1979a)]:

* * * * * *
M m, % 1 M m, * 1 M
v v =
seesl ) oGn(x ELNTEFL xn)+ G (x l’un""un’xn)don 0

mn ok

1
J;{ vmfn (xn ™

* *
m 1 M m * 1l M
Gn (xn+1’un’ o ’un’xn) {( <;n+1 (xn+2 S S LA ’un+1’xn+1)d0n+1

m 1 M
+ 8 (x l!un’oo’“n,xn)

n ok

0, m€EM, n€EN

=h
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Y

|I where
* *
* 1 M
A . e
X4l = fn(xn’un’ U ) + n
I' and-@n denotes the probability measure of en' It should be noted that "infor-

mational nonuniqueness' is absent here, mainly because of our assumption on
'?n'(n € N), and it is for this reason that every solution set will be a func-

. tion of only the current value of the state. When the state equation is lin-

‘ ear and each cost functional is quadratic, a unique solution can be obtained

under some invertability conditions on system matrices, and the Nash control
laws are affine functions of the current values of the state (depending only
on the mean value of 0 ) [Bagar (1979a)].

" When the underlying information structure is quasi-classical, deri-

vation of the Nash equilibrium solution is a more subtle issue. Firstly,

if Propositions 4.1 and 4.2 do not have any counterparts here, which totally
removes the possibility of simplifying the information structure (such as

'

I' reconsidering the original problem under an "equivalent" static information).

Secondly, if the underlying information pattern is the one-step delay infor-

mation sharing pattern, there exists, in general, a plethora of "informa-

p tionally nonunique” Nash equilibria, because that particular information

i pattern incorporatés redundancy in dynamic information [each agent having

ff access to past measurements as well as to past control values of the other

~ agents].[See Bagar (1978a) for a class of such informationally nonunique Nash

y equilibria.] In order to avoid informationally nonunique equilibria, we have

b to restrict our attention to those quasi-classical information patterns
which are free of any redundancy in dynamic information --such as the one-

step-delay observation sharing pattern.
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The derivation of Nash equilibria under the one-step-delay observa-
tion sharing pattern is not a totally intractable problem, and, depending on
the structures of the cost functions, measurement equations and state equa-
tion, one can utilize a partially recursive procedure (of the dynamic pro-
gramming type) that would yield the optimal solution. This procedure (when-
ever it works) involves, at each stage, the solution of static stochastic Nash
problems and satisfaction of some consistency conditions; however, as a
caveat for the reader we should mention that such a derivation is not routine
and it involves several pitfalls, mainly due to the fact that the conditional
distribution of the state at each stage (given the past and present acquired
information) depends in general on the past control laws [hence, the deriva-
tions at each stage cannot totally be isolated, as in the case of stochastic
team problems discussed in §4.2].

Let us nowoutline this procedure in some general terms, by pointing
out the difficulties as they arise. Suppose that the Nash equilibrium solu-
tion has been determined up to the last stage, and we are faced with the

“static" last stage Nash problem which has the cost function

B o= ELghlf(xut, ., u) + 0ul,. ., x| up =

i, 1 =
Ty(ny)> 1€M]

for DM m, where the probability distribution of Xy depends on the past controls

through the state equation (4.7). Denote the Nash solution of this problem by

m, m m, m, .. =
Ty = PyOysvygs-svy) » wEM (4.8)
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[Derivation of this solution will in general be quite difficult; however, the
difficulty is not a conceptual one but rather a computational one. We will
discuss this point further, in the sequel, for the special case of linear-
quadratic problems.] Here, ¢; will depend on the conditional probability

distribution of xN, and thereby on the past control laws. Now, if the struc-

tural dependence of 2"

on y; depends explicitly on the past control laws,
the procedure cannot be carried over to the next stage, since y; also depends
on {u;_l; 1 € M }and therefore the general structure of the Nash problem at
stage N-1 will depend (implicitly) on the solution that is being sought. This
difficulty can, however, be avoided, if (4.8) happens to be separable in y:,

i.e.

m, m ~m, M “m
¢N(YN9YN_19--01Y1) = ‘pN(YN) + wu(yu-li"! YL) (4‘9)

with the further property that 3; is functionally independent of the past
control laws. In such a case, the dependance of the Nash equilibrium strat-
egies at stage N on the controls at stage N-1 [i.e. { u;—l’ m €M} are
completely determined by the functions {P ;, meEM }1, and therefore we can

proceed to the next stage (N-1) for determination of the Nash control laws
*

{Y§-1, m € M} by substituting
n

of = ag = SRR + Ky p,eeyy)s mEH, (4.10)

in the state equation and the cost functionals, where k: is any measurable
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function of its arguments. The "static'" Nash problem (of interest) at stage

N-1l will then involve the cost functionals

m m 1 1 M
IN-1 ™ E"{gn-llfn- N-12YN-1 Y N LRI IR TL WISERRFL WIPYL WPY

+ Bty Gl 08 + 8ot B | W =Y s

L€M)}, meEM,

where G;: is given by (4.10), X is related to the controls at stage N-1 through

1

N a1yt 1"’“N1)+° -1’

and y: is related to the past controls through

by g9y

Now suppose that, for a fixed set of sub-strategies at stages N-2,N-3,..,1,

the solution of this Nash problem exists and is given by

Y-1My-1) = Ry Oop) * Ry Gygageeoo¥y)> @ €1, (4.11)

where &:_1 is functionally independent of the past control laws, but it may
depend on {k;', £ €M} which in turn depends on the value of Y:-l at equilib-
rium through the second term in (4.9). Invoking the consistency condition, and

re-solving for Y;-l from (4.11), we obtain the structural form

YN I(TIN 1) l(yN 1) + % l(yN 2»-:»Y1). m E M

e e L
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where éﬁ-l does not depend on either the past controls or {k;, i€ ﬁ}. Hence,

we can now let

LSRR LR Bt RR R SR SRR
where k:-l is any measurable function of its arguments, and repeat the deeds
of stage N-1 at stage N-2. Then, the solution can be obtained inductively by
invoking the consistency requirement at every stage, under the assumptions
that at every stage a Nash equilibrium solution to the related static problem
exists, and it satisfies a separability condition of the type (4.9) or (4.1l).

The above outlined procedure has been implemented in Bagar (1978b)
for the class of linear-quadratic-Gaussian (1QG) systems under the one-step-
delay observation sharing pattern, and existence of a unique Nash solution,
linear in the available information, has been verified under some sufficiency

conditions that involve the system parameters. The "static" stochastic Nash

problem to be solved at each stage is of the linear-quadratic type, whose solu-

ﬁion is discussed in Bagar (1975) and Ba;ar‘(1978a), which may be considered
as an extension of Radner's result [Radner (1962)] referred to in §4.2 to pro-
blems with different objectives for different agents. We should mgﬁtion that
the solution of the general LQG problem given in Bajar (1978b) is highly com-
plicated in terms of the equations which yleld the coefficient matrices of
the linear control laws, and it does not satisfy any separation property (as
opposed to the solution of the LQG team problem under the rame information
pattern).

When the underlying information structure is nonclassical, derivation

of the Nash equilibrium solution is in _general not tractable, since even the
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special case of nonclassical team problems involve formidable difficulties,
as discussed earlier in §4.2. However, there exists a subclass of problems
with totally conflicting goals, whose Nash equilibrium solutions (rather
called saddle-point solutions in this context) can be obtained explicitly
(and analytically) even under nonclassical information patterns, mainly be-
cause in such problems controls of the agents do not have "triple" role (i.e.
the signaling aspect is absent). For example, Witsenhausen's counter example
[Witsenhausen (1968)], when cast in such a framework, admits unique Nash
(saddle-point) equilibrium that is linear in the available nonclassical in-
formation [see, Bagar and Mintz (1972)]. For more discussion on such solv-
able stochastic problems with nonclassical information patterns, see Bagar

and Mintz (1971, 1973).

4.4, Hierarchical Decision Structure

In this subsection, we discuss the problem of optimal control and
coordination of stochastic systems under hierarchical decision structure, by
employing the Stackelberg solution concept introduced in §2.2 and elaborated
on in §3.4 for deterministic systems. Let us first direct our attention to
the case of two agents with different goals, and with DM1 (called the leader)
being in a position to enforce his strategy on DM2 (known as the follower).

Information structure again plays a crucial role in such problems,
and solvability of a specific problem depends to a great extent on the nature
of the underlying information pattern. We should mention, at the outset, that
stochastic decision problems in which the leader has access to static or
dynamic redundant information (such as the one-step delay information sharing

pattern) are much more tractable as compared with those in which the leader
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has dynamic (non-redundant) information (such as the one-step delay observa-
tion sharing pattern) --this latter class of problems is in fact extremely
challenging and as to date no general method exists that would aid in their
solution.

Static information

When the leader has access to static information [more precisely,
if the leader's information does not depend on the controls of the follower],
the stochastic Stackelberg problem is tractable because the rational response
set of the follower does not structurally depend on the strategy of the leader.
Such problems are then essentially equivalent to one-stage stochastic Stackel-

berg problemsfwhich we now discuss. In terms of the standard notation, let

Pk bl o artah, 1=1,2), n=1,2,

where

i

e ty, v =nl@, 1=1,.2,

and § denotes a collection of primitive random variables with known probability
distributions. Let nl € nl be fixed, where Hl is appropriately defined. Then,

the follower is faced with the stochastic minimization problem

1
ain  E (g2 h (B)), P(v2),E1)
7 e

(4.12)

= min E (2[R @), 2,81 ¥% )
2
u

1’thn the follower has access to dynamic information, there is no loss of
generality in replacing it with an appropriate static information.
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' whose structure does not depend on the choice of 111 since “1 does not carry !
u2 in its argument, 1f 32 is strictly convex in uz, this minimization pro-

blem admits a unique solution [regardless of the choice of Trl] which we denote

LRI N SO WP S PG W, W'Y

! n by T: Hl - l'Iz, so that Trz = Tﬂl uniquely solves (4.12). The Stackelberg
%*
strategy nl is then any solution of the stochastic minimization problem ]
n mia 2 et oh, mhoh.e) )
o 1 .
™ en (4.13)

¥ mn E {gtul,Tul, 810yt 1.
u

T S G

The two optimization problems (4.12) and (4.13) can be solved (at least numer-
ically) without any major difficulty of conceptual or methodological nature,
| and in a few cases the solution can he obtained analytically. One such specific 3

case is the class of linear-quadratic-Gaussian systems [gl and 32 quadratic, hl

and h2 linear, and § Gaussian], for which the Stackelberg solution is affine, .
“ More precisely, we have from Bagar (1979a, 1980a).
W Proposition 4.3.
) Let § = (x,el,ez) be Gaussian distributed with mean zero and covari-
g: ance diag(Z, Al, Az). Further let
. 1 ' ' '
' gm(x,ul,uz) = -;"um Dmum + u‘Il Dmiui + %’u" Dm3“1+ u” me
[
T 1'
+ut Coyx; mi=1,2; 1 ¢m, Do > o,
u and h‘"(x,e“') - i + 68" , ms= 1,2,

. Then, the stochastic Stackelberg problem with static information
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T « {y"}, m = 1,2, admits the unique solution
* * *
1 1 -1 2 1 2
Yo (v = Ay 542 0D = DyplCy,5,¥ + DyElvt 7| ¥ 1)
where A is the unique solution of the Lyapunov-type equation
tn -1 - - o D' D Tt 2
DA+ ["21”2;"13”22”21 "12”2;”21 Dz1°z;°12] ALHZ,
= - ] - ‘1 ’ '1 2 -
(@, D21"221"13)"22‘:22 +DyyD,5,Cp 1T, H'E) - €)%y
and
' ' -
T, AT @Dt o+ A 1 na1,2,
provided that the condition
‘12, -l oL el o1, . -1/2
0 <I+Dy [”211’22”13”2;”21 Du”zzl"zl °21°zz];°12] D1 <21
holds. o

Remark. The preceding result may be considered as an extension of Radner's
result on 1QG teams, cited in §4.2, to problems with different objective
functionals for the agents and with a hierarchical decision structure. Even
though this specific result pertains to the two-agent case, its extensions
to the multi-agent case with more than two levels of hierarchy (in decision
making) can be envisioned -- such problems (when cast in the IQG framework)
also admit unique affine solutions, but the verification and the derivation
are much more complicated than in the two-agent case [Bagar (198lc)]. Yet

another extension (and application) of Proposition 4.3 would be to dynamic
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decision problems under the feedback (stagewise) Stackelberg solution concept,
in which case the leader enforces his strategy on the follower only stagewise.
For LQG dynamic systems and under the one-step-delay observation sharing pat-
tern, it can be shown by repeated application of Proposition 4.3, together
with a dynamic programming type argument, that the feedback Stackelberg solu-
tion is affine in the information available to the two agents [see, Bagar

(1979)]. Q

Dynamic_redundant information

We have earlier discussed in §4.3 that presence of redundancy in the
dynamic information structure gives rise to ill-posed problems in the caseof
Nash equilibria, because it leads to a plethora of informationally nonunique
solutions. For problems with hierarchical decision structure, however, the
situation is quite the opposite. This time, presence of redundancy in the
dynamic information actually helps to simplify the derivation of the Stackel-
berg solution, because the extra freedom allotted to the leader through the
redundancy enables him to provide incentives or implement threats for the
follower, so as to force him to the most favorable solution [from the leader's
point of view]. We have already elucidated this property of redundant dynamic
information in §3.4 for deterministic systems, and in the following we discuss
it for stochastic systems within the context of a specific model.

Consider the general two-agent decision problem treated earlier in

this subsection, but under the amended information structure

e fylyRell, 1 - {y*}],

that is, the leader has also access to the measurement and control value of
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the follower. [Of course, this makes sense only if the follower acts before

the leader does, which we assume to be valid in this case]. Now let

min  E (glg,nlet, D), w2oDI]
atenl, n2 en?

exist and be determined uniquely by

t t 1 t t
W s wlgyh, W= e o).

t

t t
Let E {gz(g,ul ,u2 )} = 32 , and let there exist a ﬁl € nl such that

t
min E {g2[g,# oty2ud),u?] u? = nl@d)} > 8.
n2€n2

Then, by announcing the strategy

t t
1* 1 ul if uz = n2 (yz)
(M) =

#l otherwise ’

t
the leader can force the follower to adopt the strategy nz , and thereby incur

*

an overall favorable cost value. We can therefore declare nl as a Stackelberg

strategy for the leader and consider the problem solved. However, for several

:.; -

e *

fji . reasons, one may wish to replace the essential threat ﬂl with a "softer" in-
e -

T ' centive scheme which penalizes the follower proportionately to his deviation
ﬁg; ii from the desired solution. Such incentive schemes (which are basically dif-

*
ferent representations of nl ) do exist, and for several discussions and

';; ;% derivations, as well as on extensions of this approach, we refer to Bagar




“rey iy

¢

..........

.

56

(1980a), and also to Ho, Luh and Mulidharan (1981). Extensions to the case of

multi-levels of hierarchy are discussed in Bagar (198la).

Non-redundant dynamic information

For the procedure outlined above to work, the information structure
of the leader should be such that if, at stage n € ﬁ; n& depends on qﬁfdrsome
k < n [either directly or through the measurement equation], then he should
know both the value of ui and the information ﬂﬁ on which it is based. With
such an information structure, which incorporates redundancy, the leader can,
in general, enforce the solution that is most favorable to him., If the iafor-
mation structure is dynamic, but does not incorporate any redundancy, the
Stackelberg solution is extremely difficult to obtain, umnless one parametecizes
the desired solution and converts the original dynamic optimization problem to
a static one (over those parameter values). Such an approach, of course, leads
in general to suboptimal Stackelberg solutions, Even for linear-quadratic sto-
chastic systems with perfect state measurements, there is no known method to
obtain the closed-loop Stackelberg solution, and the linear suboptimal solu-
tion can only be obtained numerically, with the coefficient matrices depending
on the statistical parameters of the additive system noise [see, Bagar (1979a)].

The following table [Table 1] now recapitulates, in a nutshell, the
known results and the yet-unsolved problems in the control and coordination
of stochastic systems with multiple decision makers and under different types
of information, together with related references. We have classified the pro-
blems in four categories.

(1) Completely solved ones --remaining details are of minor nature.

(2) Not completely solved., Any new result on this class of problems
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will constitute a contribution to the field, but a totally innovative approach
is not required.

(3) Some "positive'" and'negative'" partial results on special cases
exist; but this general class of problems is extremely challenging, and innova-
tive approaches have to be introduced in order to solve a sufficiently general
class of such problems,

(4) These problems are ill-posed, mainly because they lead to a
plethora of solutions which cannot be strictly ordered.

The references quoted in the Table are not meant to be exhaustive; we
have chosen to list the most recent or the most representative ones in each sub-

category.
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5. APPLICATIONS

In this section we consider a few simplified situations where the
concepts of multiperson decision-making are meaningful. The examples are
intended to suggest potential areas where the concepts may be used as guides

in decision-making.

5.1. Nash Equilibrium Model of an Arms Race

Richardson's model [Richardson (1960)] of arms race between two

nations:
il(t) = oxz(t)-axl(t) +g (5.1)
iz(t) = pxl(t)-yxz(t) +h (5.2)

has generated some interest in political science in further exploration of
mathematical models in international relations. The arms levels (at time t)
of two nations are represented by xl(t) and xz(t), o and p are called
defense coefficients, o and vy are called fatigue coefficients, and g and h
are grievance coefficients. Discretizing time, the model may be represented

in multistage form as
xl(k+1) - alz(k)xz(k) + all(k)xl(k) + bl(k) (5.3)
xz(k+1) = 321(k)x1(k) + azz(k)xz(k) + bz(k). (5.4)
In an attempt to model how the coefficients aij(k) might evolve and to
attempt to explain how the nations' decision processes might lead to the

model in (5.1) and (5.2), Simaan and Cruz [Simaan and Cruz (1975a)] proposed

a Nash equilibrium model for the following multiperson decision problem:
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The fundamental model for the arms levels is given by the pair of equations:
xl(k+1) = lel(k) + zl(k) (5.5)
xz(k+1) = Bzxz(k) + Zz(k) (5.6)

where lel(k) and Bzxz(k) are the depreciated values of the arms stocks at

stage k+l, and zl(k) and zz(k) are investments in arms. We seek strategies

which are feedback Nash equilibrium strategies with respect to some objective
functions. Thus Zl(k) and zz(k) will be functions of the current arms levels ;

xl(k) and xz(k). The objective functions are modeled to be

3(2,2) = % QL) (x, (N+1) - By (W+L)x, (N+1) - v, (1))’

cguy - -1~

i
2

+ Q0 (x (0-P (0%, (O-V, )}, 11,2, (5.7)

N
2
+ kEI{Ri(k)(Zi(k)-wi(k))

11

Iy 1A

where Rl(k) and Rz(k) are strictly positive real numbers and Ql(k), Qz(k),

Pl(k), and Pz(k) are nonnegative real numbers for each k. Thus each nation
wishes to narrow the gap between its armament level and an affine function of
its opponent's armament level,while at the same time minimizing its armament
expenditures. .
Using dynamic programming the feedback Nash equilibrium solutions }

are found to be

(5.5) and (5.6), the final feedback Nash equilibrium model is given by

Z,(8) = A (0)x, (@) + A ,()x,(n) + B (n) (5.8) 7

2,(8) = Ay ()%, (@) + Ay (n)x,(a) + B,(n) (5.9)

where Aij(n) and Bi(n) satisfy some recursive equations. When substituted in ;
|
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xl(k-l-l) = (81+A11(k))x1(k)+A12(k)x2(k) +Bl(k) (5.10)

x, (k+l) = (32 + Azz (k) )x2 (k) + Azl(k) X, (k) + Bz (k). (5.11)

Thus the coefficients in the discrete~time Richardson model of (5.3) and (5.4)
may be related to the depreciation coefficients in (5.5) and (5.6), and to

the coefficients of the objective functions in (5.7) associated with a multi-
person decision problem. Thus the modeling problem is shifted to a choice of

weighting coefficients in the objective functions of (5.7). For more details

see Simaan and Cruz (1975a). An outline for obtaining the feedback Stackelberg

solution for this arms race problem is given in Simaan and Cruz (1976).

5.2. amic Duopoly with Production Constraints
In Simaan and Takayama (1978), a dynamic duopoly model with a

linear demand of the form
P = C-ap-b(x; +x,)) (5.12)

where p is the commodity price and x, is the output of firm i. The cost of

production is

gi(xi) - 32'- aixi, i=1,2, (5.13)

and the total profit for firm 1 over the horizon T is

T
ni(xl,xz) - £ exp(-rt)[pxl-v% aixildt (5.14)

for i=1,2. The productions x, are to be chosen as functions of the instan-

taneous price p(t) and it is assumed that the production capacity constraints

are
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u 0 < xi[t,P(t)] s X i=1,2. (5.15)

Open-loop and feedback Nash equilibrium solutions are investigated in
Simaan and Takayama (1978), where nine possibilities are explored, {

depending on whether firm i is not producing, producing at maximum capacity,

AL as L g

acting as a monopolist, or playing as a true duopolist. For more details,

see Simaan and Takayama (1978).

"
5.3. Electricity Pricing
nt Consider a simple model for electricity pricing, where the consumer 1
- choosss a level of consumption q to maximize his "consumer surplus" which is ‘
affected by the price of electricity. The electric utility chooses the
L]
revenue function r(q) to maximize its profit subject to capacity and subject r
- to regulation. Such a problem was considered as a Stackelberg problem,with 3
o the utility as leader and the consumer as follower, by Ho, Luh, and
u Muralidharan (1981). Let the consumer surplus be modeled by
=2 - y
Ip = 3 813%- @D~ r@ (5.16) .,
t where S and q are positive constants, r(q) is a monotonic increasing piece- :

wise linear function representing cost to the consumer (revenue to the utility).

The profit of the utility is

PGP WS Y NI [T S . )

L. 1 2
X = r(q) -3 eq7, (5.17)
the capacity constraint is
q =4, (5.18)

and the regulation constraint is
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JL < kq (5.19)
where ¢, 4, and k are positive constants. The information structure is
u Ng: mo information
nL: q. 4
Ho, Luh, and Muralidharan (1981) determined that
n
r(q) = pq + F (5-20)
Ejj is a Stackelberg strategy, where
p=5(3-9q 20 (5.21)
a1l A2 _a- A '
F = kq + s Sq(q-q) . (5.22) 1
‘ L
The solution in (5.20), (5.21), and (5.22) has the property that JL is ‘
maximized with respect to r and q. Furthermore, with r(q) given as in (5.20),
the optimum value of q for the consumer is q, the capacity of the utility. :
The resulting value of the utility profit, J_,is k&, which is the maximum

L’
allowed by regulation.




6. CONCLUDING REMARKS

In this chapter we discussed some key concepts and methods relevant
'I to multi-person decision-making and optimization in dynamic systems. In large
scale physical models, dynamic operations research models, and policy and
planning models, it is important and crucial to explicitly model the roles
of multiple decision makers if, indeed,there is more than one entity that
makes choices. For certain purposes, such as in policy analysis, it may Dbe
%: adequate to recognize only one decision maker and subsume other decision-
making aspects in general sectors. However, in the investigation of effects
of significant policy changes, based on a model calibrated from data on
previous policies, the predicted outcome may be misleading because when the
i policy is changed, the reactions of the subsumed decision makers may change
so that the fixed model being used may not be satisfactory anymore. It would
be preferable to explicitly model the presence of the other decision makers.
l' For situations.where cooperation among decision-makers is desir-
able, the concept of Pareto optimality is appropriate. However, in non-
cooperative situations the Nash equilibrium concept 1s more natural. Hier-
fﬁ archies in decision-making lead to the concept of Stachelberg or leader-
| follower strategies. These concepts are described in this chapter for both
deterministic and stochastic systems.
- A critical consideration in multi-person optimization problems 1is
the information structure. In contrast to single person decision making
which necessarily involves centralized information, the multi-person decision-

making problem may involve decentralized information. Furthermore, the

................

.......... W e R . K . . c - . . .
a o PO - PR, S o . F VR Gy TP SR SN SR . ) NP Y Y PPN ST . N . e el o




- T -_". ~ " - - < . . 0 -~ -
LI AN N, PR PN I I, W I O WG W WP P i Y By (RS L S L LY L P SR

65

assumption of memory in the measurement, even in the deterministic case, gen-
erally leads to a solution different from that with no-memory in the multi-
person case. In contrast, memory in the measurement has no effect on the
optimal solution for single person optimization problems.

For simplicity in exposition, only the class of discrete-time dynam-
ic systems is treated. The concepts discussed in the chapter are also applica-

ble to continuous-time dynamic systems.
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poliicy 18 cnanged, the reactions orf the subsumed decision makers may change
so that the fixed model being used may not be satisfactory anymore. It would
be preferable to explicitly model the presence of the other decision makers.

For situations-where cooperation among decision-makers is desir-
able, the concept of Pareto optimality is appropriate. However, in non-
cooperative situations the Nash equilibrium concept i1is more natural. Hier-
archies in decision-making lead to the concept of Stachelberg or leader-
follower strategies. These concepts are described in this chapter for both
deterministic and stochastic systems.

A critical consideration in multi-person optimization problems is
the information structure. In contrast to single person decision making

which necessarily involves centralized information, the multi-person decision-

making problem may involve decentralized information. Furthermore, the




