AD-A124 348 HIDDEN LINE ELIMINATION IN PROJECTED GRID SURFACES(U)
WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER
D P ANDERSON DEC 82, MRC-TSR-2447 DAAG29-80-C-0041
UNCLASSIFIED F/G 12/1

e T

1.0 &K K
Lo B2
Pk “2.0

L

“ 1.8

22 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963.a

i
1

MRC Technical Summary Report #2447

HIDDEN LINE ELIMINATION IN PROJECTED
GRID SURFACES

David P. Anderson

T T 1 R it BT Mt T

DA 124348

Mathematics Research Center
University of Wisconsin—Madison

610 Walnut Street |
Madison, Wisconsin 53706

December 1982

D T o
3 ’
Al

‘ s *w .-

(Received November 3, 1982) [Y ,i ~,

FEB15 1983
'3

- -

'

’

A

Apprroved for public relsase
Listribution unlimited

SN

D &
Q.
O
O
Sponsored by
* L_':" U. S. Army Research Office National Science Foundation
—"P O. Box 12211 Washington, D. C. 20550

Research Triangle Park

Euorth Carolina 27709
88 02 (14 116

UNIVERSITY OF WISCONSIN-MADISON

MATHEMATICS RESEARCH CENTER

HIDDEN LINE ELIMINATION IN PROJECTED GRID SURFACES
David P. Anderson

Technical Summary Report #2447
December 1982

. ABSTRACT

“Hidden line and hidden surface problems are often
simpler when restricted to special classes of objects.
An example is the class of grid surfaces, i.e. graphs of
bivariate functions represented by their values on a set
of grid points. Projected grid surfaces have geometric
properties which permit hidden line or hidden surface
elimination to be done more easily then in the general
case. These properties are discussed in this paper and
an algorithm is given which exploits them.AQ“
CR Category Number: 1I.3.7 (Visible line/surface algorithm)
Key Words: Hidden line elimination, hidden surface

elimination, function graphing, grid surface

Work Unit Number 5: Mathematical Programming

Sponsored by the United States Army under Contract No.
DAAG29-80-C-0041. This material is based on work supported
by National Science Foundation Grant MCS-8200632.

AP 2 0 2 i £ ¢ N A

SIGNIFICANCE AND EXPLANATION

A problem of great practical importance is that of
graphically constructing realistic 2-dimensional models
of 3-dimensional grid surfaces. In this report a fast
algorithm is developed for doing this. A number of complex

surfaces are modelled to illustrate the power of the

algorithm.

Aunvremsgxis-l';-'i?;r
NY1S GRAAI
DTIC TaB
Unanmnounced

O
Justification

By.
Diltribqﬁign/

"~ Avallability Codes
Avail andjor]
D1 Spesial

-

The responsibility for the wording and views expressed in this
descriptive summary lies with MRC, and not with the author

of this report.

HIDDEN LINE ELIMINATION IN PROJECTED GRID SURFACES

David P. Anderson

1) INTRODUCTION

The graph of a function defined on a rectangle is a
surface in three-space, and can be represented in a two-
dimensional medium by a contour map or a projected image.
While a contour map contains more exact information about
the function, a projected image is more helpful in
visualizing the surface's shape. 1In practice, a function is
often presented as a set of values on the points of a grid.
Its graph can then be approximated by a "grid surface"
consisting of straight-edged regions. The task of
generating images of grid surfaces can be performed by
general hidden line algorithms (ref. 3, 5). However, the
relative slowness of these algorithms has prompted the
development of methods specifically for grid surfaces (ref.
2, 4, 6, 7). |

Previous methods for drawing grid surfaces have
achieved speed at the expense of exactness and generality.
Butland's algorithm (ref.2) is exact and linear-time but is
restricted to parallel projection using a viewing direction
whose projection on the xy plane makes an angle with the x
axis which is a multiple of 45 degrees. The algorithm of
Kubert, Szabo and Gulieri (ref. 4) uses time of order nl-S
and is not exact because segments which are partially hidden
are not drawn at all. Williamson's algorithm (ref.6) can be
used to draw x- or y-direction lines in\the grid exactly,

but not both. PFurthermore, it is based on the assumption

Sponsored by the United States Army under Contract No. DAAG29-
80-C-0041. This material is based on work supported by
National Science Foundation Grant MCS-8200632.

oy

e

that the perimeter of the image of a grid surface can be
divided into upper and lower parts such that all “"vertical"
lines in the image space intersect each part at most once.
This assumption does not hold in general if perspective
projection is used and the viewing direction has a nonzero

component in the direction of increasing function value.

Figure 1 illustrates such a case. Wright's algorithm
(ref.7) is also based on this assumption, and in addition is
inexact because the perimeter is approximated by a vector of

its heights at equally spaced polints.

We will work in three-space with rectangular (x,y,2)
coordinates. It will be assumed that the surface is being
viewed from a viewpoint VP = (VPx.VP

Y
'VA,) . Object points are projected

,VPz) with viewing .
direction VA = (VAx,V'Ay
through VP onto an "image space” normal to VA, We regquire
that the entire grid surface be contained in an open half-
space whose boundary contains VP and has normal VA. A
method for finding a viewing direction satisfying this
requirement whenever one exists is given in ref. 1. an
equivalent condition is that the image be bounded. We will

be concerned with computing the entire image; of course,

clipping in the image space may also be needed in practice.

A W

.

R Y WA §
Y111 % 1

111131

e

jnictNNAESS e

MERRERE)

\\\ aw A

InpwnENEN.

aNsERENENNEREN.
N NSRS NN N

t1y by
drawn coxrrec
i would not be
urface which

INNEAEENENENREA

Iy ENEEENERENER|

A S

Figure 1:

ithms.

some previous algorl

o e el I Gl

Sy .

2) DEFINITION OF GRID SURFACE

Suppose Xgo seer Xp and Ygr veer Y are strictly
increasing sequences of real numbers (the spacing need not
be uniform).. Points in three-space of the form (xi,yj,n)
will be called "grid points®. Planes of the form X=X, or
yayj will be called "grid planes®. The "grid element®™ with
index (i,j) is the rectangle in the xy plane bounded by the

planes X=X X=Xy 40 ysyj and y=y The image of a grid

3+1°

element under a function will be called a "facet".
Suppose that the values of a bivariate function are

given on a set of grid points. A “"grid surface" is a

continuous function g from R2

to R which has the given
values at the grid points and also satisfies: (1) g is
linear between adjacent grid points and (2) the projection
of any facet (i.e., imdge of a grid element under g) is
bounded by the projection of the boundary of the facet.
These conditions ensure that the image of the grid surface
consists only of line segments which are projections of
facet boundaries. The conditions are satisfied, for

example, by the least-area surface containing the given

points.

A surface defined over a rectangular region
[sl,szlx[tl,tzl will be said to be viewed "face-on" if
Vch[sl,sZ] and VPY c[tl,tzl. It is viewed "edge-on" if

exactly one of these containments holds, and “corner-on®" if

neither holds. These terms will be needed when discussing

b
4
b
:
{
{

o T VIR

C kA

the position of the viewpoint relative to facets or to the

grid surface.

3) MOTIVATION FOR THE ALGORITHM

Consider the following method for solving the hidden
line or hidden surface problem for an object consisting of

facets or other polygons satisfying condition (2) above:

(1) Enumerate the facets as Fl' coor Fk in such a way that

j then i ¢ j. Call such an order

Yocclusion-compatible®”,

if Pi occludes F

(2) Initialize a description of the polygonal perimeter of
the region in the image space drawn so far (referred to
henceforth as the "perimeter”). This region is

initially empty.

(3) Por each i from 1 to k draw the part of facet Fi (for
shaded-region drawings) or its boundary (for line
drawings) which lies outside the current perimeter, and

then update the perimeter to include the facet.

In general, there are problems with this approach. First, an

occlusion-compatible order may be hard to compute. 1If there
are intersecting or mutually occluding facets then such an
order does not exist. Secondly, the task of merging
arbitrary polygons (to update the perimeter) is fairly

complex, since in general there can be holes, disjoint

ot s

- 4 o

pleces, and various pathological cases.

For grid surfaces, however, the method works, and is

simplified in two ways:

(1) For a given viewpoint it is easy to enumerate the

facets in an occlusion-compatible order.

(2) When the facets are processed in such an order, the
region drawn at any stage of the process has a simple
form: it is connected (i.e. in one piece) and is star-
convex (explained below). As a consequence it is
computationally simple to update the perimeter as new

facets are processed.

4) GEOMETRIC PROPERTIES OF GRID SURFACES AND THEIR

PROJECTIONS

In this section we discuss further the above two claims
about grid surfaces. First we will give an occlusion-
compatible enumer;tion of the facets. This enumeration
depends on the relative viewpoint; there are three cases

(see figure 2):
Case A) The surface is viewed face-on. Suppose VP

lies directly above or below grid element (ia,jo). The
enumeration is given in the notation of FORTRAN implied do-
loops. For future reference, the relative orientation of

the facets is also given.

(ig.jo) (face~on)

((1B'j)lj.ja+llm'1) (edge-on)

T W DANE, T e O g 1t

ey

TN LTS T M Th Yt S e o

Case B

Case C

T A e e o By

TR R U i et A

((io.j),j-jo-l,a.-l) (edge-on)
((1rjo),i-io+1.n-1) (edge-on)
((i,ja),iaia-l,o,-l) (edge-on)
(((1,3) ,i=i +1,n-1),j=],+1,m=1) (corner-on)
(((i,j),i-1ﬂ+1,n-1).j-jﬂ-l,ﬂ,-l) (corner-on)
(((1,3) ,i=1,-1,1,-1) ,j=j4+1,m=1) (corner-on)
(((1,j),1:10-1.1.-1).j-ja-l,l.-l) (corner-on)

The enumeration begins with the facet which is viewed
face~-on, goes outwards along the row and column of that
facet, and finally £fills in the four remaining rectangular

areas,.

Case B) The surface is viewed edge-on. Suppose x; £
)
< Yg The enumeration is:

VPx < xig+1 and VPY

((15,3) /3=1/m=1) (edge-on)
(((icj),j'lam-l)'i'ig+1,n-1) (corner-on)
(((i:j)rj'lum-l),i'ia-l,ﬂ,-l) (corner-on)

Case C) The surface is viewed corner-on, say V?x < Xy

and VPy < Yoo The enumeration is:
(((1,3),i=1,n=-1) ,j=1,m-1) (corner-on)
The other possibilities are equivalent to one of the

above under symmetry.

We now turn to the form of the perimeter. The
following analysis applies not only to the perimeter of the

entire projected surface but also to the perimeter at any

stage when the facets are processed in an occlusion-

]

compatible order.

The perimeter form depends on both the relative
viewpoint and the orientation. There are three cases (see

figure 3):

Case 1) (Overhead view) The surface is viewed face-~
on. .Under the assumption that the image is bounded, the
viewing direction must have a nonzero z component, so
projected z-direction lines converge to a point VZ in the
image space (this is the vanishing point property of
perspective projection). VZ is the intersection of the
viewing plane and the z-direction line passing through VP.
In a polar coordinate system for the image space whose
origin is VZ, the perimeter vertices have monotonic angles
as the perimeter is traversed in one direction. If the
viewpoint is not on a grid plane then the angles are

strictly monotonic.

Case 2) (Oblique view) The surface is not viewed
face-on and the viewing direction has a nonzero z component.
Again, projected z-direction lines converge to a point VvZ,
and we consider a polar coordinate system with origin vz.

In this case the perimeter lies entirely within an acute
sector with vertex VZ, and any ray in this sector intersects
the perimeter exactly once or twice. Hence the perimeter
has "inner" and "outer” parts, each of whose vertices, when

traversed in one direction, have monotonic angles. The two

parts share endpoints, and at any angle the outer part is at

iqure 3: The forms of the perimeter.

11

least as far from VZ as is the inner part. 1If the viewpoint
does not lie on a grid plane then the angles of the vertices

are strictly monotonic.

In cases 1 and 2 the projection of the surface at any
stage is star-convex around VZ. This means that if two
image points lie on a ray from VZ, then all points on the
segment between them are also in the image. 1In case 1, VZ

is inside the perimeter and in case 2 it is outside.

Case 3) (Horizontal view) The viewing direction has
Zero z component. Here projected z-direction lines are
parallel in the image space. If we cill this direction
up/down, then the perimeter has top and bottom parts each of
whose vertices go monotonically left to right. If the
viewpoipt does not lie on a grid plane then the vertices are

strictly monotonic left to right.

5) SOME COMPUTATIONAL DETAILS

As shown above, the natural coordinate system in which
to repregsent the perimeter is either a polar coordinate
system having as its origin the vanishing ﬁoint of projected
z-direction lines (overhead and oblique views) or a
rectangular system in which one coordinate direction is that
of projected z~direction lines (horizontal view). In what

follows we will focus on the first two cases. The relevant

parts of the analysis apply also to case 3 if "angle” and

12

*radius® are replaced by right/left and up/down coordinates

relative to some fif%d point.

We now discu;s-the polar coordinate system in more
detail. First, if we wish to assign a unique angle to
points in the image space there is necessarily a
discontinuity in the angle function along the direction

where the angle wraps around from 2% to 6. To exploit the

¥ angle monotonicity of the perimeter, it is necessary to

'2 define the angle function so that the discontinuity lies
outside the portion of the perimeter currently being used.
In case 2 this can be accomplished by making the
discontinuity lie outside the sector containing the
perimeter. 1In case 1 {t is necessary to redefine the angle '

function in the middle of processing.

Secondly, the algorithm does not need to know the exact
radius or angle of any point P, since only the angular and
radial order of points are important. It suffices to compute
functions r(P) and a(P) which are strictly increasing in the
radius and angle respectively. Call such functions pseudo-
angles and pseddo-radii respectively. The easiest pseudo-
radius to compute is the square of the distance between P
and VZ. The function
a(P) = x/y if -y

= 2-(y/x) 1f -x

IA

E
[
<

In
<
(oY

X

= 4+ (x/y)y 1if vy
= 6-(y/x) if «x

in
E 3
A
~l<

In

<

in
)
x

e e gty

13

(where (x,y) = P - VZ) is a pseudo-angle discontinuous in
the (-1,1) direction (see figure 4). By changing the
additive constants in the four parts of the definition, the

discontinuity can be made to be any of (+1,+1).

The main data structures used by the algorithm are the
cartesian coordinates, pseudo-angles and pseudo-radii of the
projected grid surface points and of the vertices of the two
parts of the perimeter. These are stored in matrices for
the grid points and doubly linked lists for the perimeter

vertices.

Assume for the remainder of this section that the
viewpoint does not lie in any grid plane, so that it is
unambiguous whether the surface or a facet is viewed face,

edge or corner-on.

It is convenient to initialize the perimeter not as
empty but as consisting of the facet edges which are always
visible given the relative viewpoint. These segments are
drawn as part of the initialization. The initial perimeter
depends on the position of VP relative to the surface as

follows (see figure 2):

Face~on: The initial perimeter is the boundary of the
facet which {s viewed face-on. This facet is not processed

further.

Edge-on: The initial perimeter is the edge of the

surface which faces the viewpoint.

14

a(p) = x/y

a(P) = 6-(y/x) N/ a(P) = 2-(y/x)

a(P) = 4+(x/y)

Figure 4: A pseudo-angle function discontinuous in the

(-1,1) direction.

15

Corner-on: The initial perimeter is the two edges of

the surface containing the corner which faces the viewpoint.

There are several benefits from initializing the
perimeter in this way. One is that the angular extrema of
the final perimeter are already attained in the initial
perimeter, so we never have to worry about searching off the
ends of the perimeter. More importantly, the perimeter
initialization together with any occlusion-compatible facet
processing order ensure that all facets can be dealt with

according to one of the following two cases:

(1) If the facet is viewed edge-on then the facing edge
will have already been processed by the time the facet
is processed. There are four subcases for the relative
positions of the edges of the facet. 1In each subcase
it is possible to deduce that some or all of the facet
edges cannot leave the inner or outer perimeters. The
subcases are distinguished by the signs of the scalar
products ((P,~P,)",(P3=P,)), ((P,-P)",(P,-P,)), and
((P3—P2)t,(P4-PZ)), where (x,y)r denotes (y,~-x) and
Pl,...,P4 are the projected facet vertices in ordef of

increasing angle (see figqure 5).

(2) If the facet is viewed corner-on then the two facing
edges will have already been processed by the time the

facet is processed. The are six subcases for the

relative positions of the edges (see figure %).

ATy

16

P, I
P e M\ s ‘\, ~o
3 ‘yf\‘\) /- - \\ "’ ~ o .
Py (b) (c) “ @
(a) ’/” s .
’ ~ n ”’ - - f)
\/ N) /s “\ - < = w’
N 7)
© v ()
(£)
vz
(a) (d) (c) (d) (e) (£f) (8 (h)
((py=py) "+ (P5=Py)) + o+ o+ o+ - - =
((p,~p) %+ (P,=Py)) T T T
((ps'pz)t’(p[‘-pz)) - + + - + - + -
vertex indices of 123 =~ 123 123 - 123 12 23

part vhich may leave
outer perimeter

vertex indices of ~ 123 23 12 123 - 123 123
part vhich may leave
inner perimeter

Pigure 5: The eight classes of facets viewed corner-on.
Dotted lines represent the closcr edges, which

have already been processed.

P

QRS

17
P3
(a)

vz

(a) (b) (e)
((P(.’pl)ro (Pz'pl)) - + -
((P[.'Pl)r' (Pa'Pl)) - + +
vertex indices of 1234 - 123
part which may leave
outer perimeter
vertex indices of - 1234 234

part vhich may leave
inner perimeter

Figure 6: The four classes of facets viewed edge-on.

(d)

234

123

18

Thus we are left with the following simplified problem:
given a perimeter part (say the outer part) whose vertices
have strictly increasing angles, and a list of two, three,
or four points in strictly increasing angular order such
that the first and last are not outside the perimeter, £ind
the visible parts of ghe new segments and update the
perimeter to include them. A fast way to do this is to scan
concurrently through the facet and perimeter vertex lists in
order of increasing angle, searching for points where the
facet boundary leaves or enters the perimeter. When a
matched exiting and entering crossing pair is found, the
perimeter vertices between the two points are deleted from
the perimeter, and the facet boundary vertices between the
«wo points are added. The 1line segments between the
crossings and the intervening facet vertices are drawn (see
figure 7). 1In the case of shaded drawings, the region
bounded by these segments and the deleted portion of the

perimeter is drawn.

It is not necessary to search the entire perimeter for
the first point in the angular range of the current facet.

This is because the facet processing order given above goes

along rows and columns. By maintaining pointers into the
perimeter near the most recent facet and near the first

facet of the current row or column, global searching can be

avoided.

D P M~ e ey eyt

2 e (Ol - * Sl o in”

pr—

19

AN

Figure 7: An example of appending a facet to the perimeter.

 EEr eyl

D

20

Note that the crossing pairs will occur sequentially in
the search through the 1ists. The search ends when the last
facet vertex is reached, so only the perimeter vertices
within the angular range of the facet are scanned. The task ;

of deciding when and where the crossings occur can make use

of the pseudo-distances of the various vertices. The only
types of arithmetic calculations that are necessary are to
decide if a point is to the right or left of a line (this ¢
need be decided at most once for each vertex in the search)

and to calculate the intersection of a pair of segments

(this need be calculated only for crossings which are the

proper intersection of a perimeter and a facet segment).

When the surface is viewed face-on there is no inner

perimeter. In the other cases the perimeter has inner and

L, e

outer parts, and the visible portion of a facet is that
which is inside the inner part or outside the outer part.
It is desirable to have the same routine handle both parts.
This can by done by negating the angles and radii of the

vertices of the inner perimeter and the facet vertices, and

then proceeding as for the outer perimeter.

21

) SPECIAL CASES OF THE RELATIVE POSITION

We now consider the cases where VP lies in a grid
plane, say VPx = Xy A difficulty arises because the
perimeter will no longer have strictly monotonic angles.
This possibility makes the facet processing logic
considerably more complicated. The problem can be
circumvented, however, by processing separately the parts of
the grid on different sides of the plane x = X This
separation is possible because neither part can ever occlude
the other. Each part is processed as described in the
previous section, except that one or both angular extrema
(depending on whether the surface is viewed edge-on or

face-on) must be treated as a special case.

If the viewpoint lies above a grid point not on the
boundary of the grid (say (VPx.VPY) = (xi,yj)) then the
surface must be divided into the four parts determined by
the planes x = Xy and y = yj. The four parts are mutualiy
non-occluding and can be drawn as described above, with both

ends of the perimeter treated as special cases (see figure
8).

In many applications it is not necessary to implement
special handling of the above cases. Instead the program
can move the viewpoint slightly if it lies in a grid plane,
Por applications involving animation, where the viewpoint

might move continuously through grid planes, it would be

worthwhile to add the extra logic. A similar remark applies

o LeweTH AT 4 SRR NP,

Bt e T 7

23

to case 3 (horizontal view), which can be changed to case 2

by an arbitrarily small perturbation of VA.

7 DRAWING OTHER OBJECTS

A program for drawing grid surfaces should allow the
user to draw projected objects other than the surface
itself. Hidden line elimination for the additional objects
can be done within the framework of the present algorithm as
long as the objects are of the wire-frame type and each
object either does not occlude the grid surface or is not
occluded by it. In the latter case the object is drawn in
its entirety. 1In the first case only those portions of the
object which lie ocutside the perimeter are drawn., For a
given line segment in the object, this visible portion
consists of the parts which lie outside the angular range of
the perimeter, lie further than the outer perimeter, or lie
closer than the inner perimeter. These parts are easily

calculated, the latter two using the same methods as for
drawing the facets.

The author's implementation allows axis grids, text,
and contour maps to be drawn. All of these can be
positioned and oriented arbitrarily in three-space and are

drawn in perspective. An example showing these features is

given in fiqure 9.

24

t - ’
(w1
\ mr Y /
VAN N
./ N/

€

A surface image with secondary objects (axis grids,

Figure 9:

text and contour map).

8) PERFORMANCE

The methods described in this paper were implemented in
a FORTRAN program on a Harris Slash 7 minicomputer with
floating point hardware. The program has been tested on
many surfaces. Performance results are given in Table 1 for
the function f(x,y) = exp(—xz-yz) and for a surface
consisting of samples from the uniform random distribution
on [(@,1]. These were generated on uniform grids of varying
fineness on the square [-2,2) x [-2,2). The resulting
surfaces were drawn from the vieawpoint (f,R,2) (see figure
16). It can be seen from the graph in figure 11 that
execution time, in these cases, appears to increase
approximately‘linearly as a function of the number of

facets.

These results suggest that-the algorithm as implemented
is approximately linear-time for commonly-encountered
surfaces, It is particularly interesting that the random

sur face, which appears to be at least as complex as any

sur face arising in applications, is handled in only about

50% more time than the smooth sur face.

A proof of linear expected or worst-case time would
require an upper bound on the average number of perimeter
vertices in the angular range of each facet. Finding such a

bound (possibly for a restricted class of surfaces) is posed

as a challenge to interested readers.

26

TABLE 1
Grid size Number of facets Execution time (seconds) ’
Smooth surface Random surface
10 by 10 81 .184 .221
20 by 20 361 .725 .921
30 by 30 841 1.623 2,315
40 by 40 1521 2.886 3.969
50 by 50 2401 4.527 6.515

60 by 60 3481 6.532 9.534

28

-
~
i
LR

2 St B S

Execution time (seconds)

' 'l A l__l A 'y ‘ ke i H L ' Hl

000 2000 3000

¢
g
L) 1 %
Number of facets

Figure 11: Execution time data with best-fit lines for smooth
(solid line) and random (dotted line) surfaces.

29

9) CONCLUSION
It has been shown that projected images of grid
sur faces have a geometric structure which allows a fast and

fairly simple algorithm for hidden line and hidden surface
elimination. The key properties are:

1) The existence of a trivially computable occlusion-

compatible order for processing the facets.

2) The star-convexity of the perimeter, which makes it
easy to represent and modify the perimeter and also means
that only the perimeter segments in a small angular

neighborhood of each facet need be checked for crossings.

The implementation of the algorithm has proved to be
very robust and efficlent. It is possible that some of the

ideas behind the algorithm may be relevant to hidder. line

and hidden surface elimination for other classes of objects.

4 s 1t Y g

Trom

T T T D RSN 3 1o 1953 T 10

S

30

REFERENCES

(1)

(2)

(3)

(4)

(S)

(6)

(7)

Anderson, D.P. An orientation method for central
projection programs. Computers and Graphics 6,1

(1982), 35-37.

Butland, J. Surface drawing made simple. Computer-

aided Design 11,1 (January 1979), 19-22.

Franklin, W.R. A linear-time exact hidden surface
algorithm. Computer Graphics 14,3 (July 198¢), 117~
123.

Kubert, B.R., Szabo, J. and Gulieri, S. The perspective
representation of functions of two variables. JACM

15,2 (April 1968), 193-204.

Sutherland, 1.B., Sproull, R.F. and Shumacker, R.A. A
characterisation of ten hidden surface algorithms.

Computing Surveys 6 (1974), 1-55.

Williamson, H. Algorithm 420 - hidden-line plotting
program (J6). CACM 15,2 (February 1972), 109-103.

Wright, T.J. A two-space solution to the hidden line

problou for plotting functions of two variables. IEEE

Trans. Comput. ¢c22,1 (Januvary 1973), 28-33,

R PTG GRME T T .

T i a1

N e YT

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

Y. REPORY NUMBER 2. GOVT ACCESSION NO]
2447 AD‘IA)). 43#5/

READ INSTRUCTIONS
BEFORE COMPLETING FORM
3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Jubtitte)

HIDDEN LINE ELIMINATION IN PROJECTED GRID
SURFACES

8. TYPE OF REPORT & PERIOD COVERED
Summary Report - no specific
reporting period

6. PERFORMING ORG. REPORT NUMBER

Y. AU THOR(s)

David P. Anderson

[} PERFORMING ORGANIZATION NAME AND ADODRESS

8. CONTRACY OR GRANT NUMBER(®) |

DAAG29-80-C-0041
MCS-8200632

Mathematics Research Center, University of
610 Walnut Street Wisconsin

Madison, Wisconsin 53706

0. PROGRAM ELEMENT, PRO ECT, TASK
AREA & WORK UNIT NUIIJIRS

Work Unit Number 5 -
Mathematical Programming

11. CONTROLLING OFPICE NAME AND ADDRESS

See Item 18 below.

| T ——ra ey
13. NUMBER OF PAGES

12. REPORT DATE
December 1982

30

[YIWONITORING AGENCY NAME & ADDRESS(({ different from Controlling Ottice)

15. SECURITY CLASS. (of thie report)

UNCLASSIFIED
1iE‘EEEEzﬁﬁfﬁﬁﬁﬁﬁﬂiaiiiiiaﬁﬁr__

[16. OISTRIBUTION STATEMENT (of this Report)
Approved for public release: distribution unlimited.

17. OISTRIBUTION STATEMENT (of the abetract entered in Block 20, 1 ditferent trom Report)

8. SUPPLEMENTARY NOTES

U. S. Army Research Office
P. O. Box 12211

Research Triangle Park
North Carolina 27709

National

Washington, D. C.

Science Foundation
20550

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)
hidden line elimination

hidden surface elimination

function graphing

grid surface

20. ABSTRACT (Contfnue on reverse éide il necossary and identify by block numbes)
to special classes of objects.
points.

case. These properties are discussed in this paper
which exploits them.

Hidden line and hidden surface problems are often simpler when restricted
An example is the class of grid surfaces, i.e.
graphs of bivariate functions represented by their values on a set of grid
Projected grid surfaces have geometric properties which permit hidden
line or hidden surface elimination to be done more easily then in the general

and an algorithm is given

0D 58" 1N

EDITION OF 1 NOV 68 1S OBSOLETR

UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE (Wen Dote Entorst)

I 0.0 g g g
R S TR

