
AO A124 348 HIDDE N NE ELIMINATION IN PROD ECTED GRID SURFACES(U 1 /

WI SCON IN UNIV-MADISON MATHEMATICS RESEARCH CENTER

0 P ANDERSON DEC A2 MRC-TSR-2447 DAAG29 RD C-D4i

UNCLASSIFIED F/G 12/1EIIIIIIII.IE
IIIIIIIIIIIIIIhf

I fllflfflfllfl

L!

1.0 o 12M

Sg L3.
I

1.8
MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

MRC Technical Summary Report #2447

GRID SURFACES

David P. Anderson

Mathematics Research Center
University of Wisconsin- Madison
610 Walnut Street
Madison, Wisconsin 53706

December 1982

(Received November 3, 1982)

Approved for public release
Listrihution unlimited

C,
Sponsored by

.jU. S. Army Research Office National Science Foundation
M:P. 0. Box 12211 Washington, D. C. 20550

Research Triangle Park

UNorth Carolina 27709

8802 0114 116

UNIVERSITY OF WISCONSIN-MADISON

MATHEMATICS RESEARCH CENTER

HIDDEN LINE ELIMINATION IN PROJECTED GRID SURFACES

David P. Anderson

Technical Summary Report #2447

December 1982

ABSTRACT

~Hidden line and hidden surface problems are often

simpler when restricted to special classes of objects.

An example is the class of grid surfaces, i.e. graphs of

bivariate functions represented by their values on a set

of grid points. Projected grid surfaces have geometric

properties which permit hidden line or hidden surface

elimination to be done more easily then in the general

case. These properties are discussed in this paper and

an algorithm is given which exploits them.

CR Category Number: 1.3.7 (Visible line/surface algorithm)

Key Words: Hidden line elimination, hidden surface

elimination, function graphing, grid surface

Work Unit Number 5: Mathematical Programming

Sponsored by the United States Army under Contract No.
DAAG29-80-C-0041. This material is based on work supported
by National Science Foundation Grant MCS-8200632.

SIGNIFICANCE AND EXPLANATION

A problem of great practical importance is that of

graphically constructing realistic 2-dimensional models

of 3-dimensional grid surfaces. In this report a fast

algorithm is developed for doing this. A number of complex

surfaces are modelled to illustrate the power of the

algorithm.

A ,O8sion For

NTIS ORA&I
DTIC TAS
Unannounced
JustifIoatio

Distribution/

Availability Codes

Di spesial

The responsibility for the wording and views expressed in this
descriptive summary lies with MRC, and not with the author
of this report.

-
• U

HIDDEN LINE ELIMINATION IN PROJECTED GRID SURFACES

David P. Anderson

1) INTRODUCTION

The graph of a function defined on a rectangle is a

surface in three-space, and can be represented in a two-

dimensional medium by a contour map or a projected image.

While a contour map contains more exact information about

the function, a projected image is more helpful in

visualizing the surface's shape. In practice, a function is

often presented as a set of values on the points of a grid.

Its graph can then be approximated by a "grid surfacew

consisting of straight-edged regions. The task of

generating images of grid surfaces can be performed by

general hidden line algorithms (ref. 3, 5). However, the

relative slowness of these algorithms has prompted the

development of methods specifically for grid surfaces (ref.

2, 4, 6, 7).

Previous methods for drawing grid surfaces have

achieved speed at the expense of exactness and generality.

Butland's algorithm (ref.2) is exact and linear-time but is

restricted to parallel projection using a viewing direction

whose projection on the xy plane makes an angle with the x

axis which is a multiple of 45 degrees. The algorithm of

Kubert, Szabo and Gulieri (ref. 4) uses time of order n 1.5

and is not exact because segments which are partially hidden

are not drawn at all. Williamson's algorithm (ref.) can be

used to draw x- or y-direction lines in the grid exactly,

but not both. Furthermore, it is based on the assumption

Sponsored by the United States Army under Contract No. DAAG29-
80-C-0041. This material is based on work supported by
National Science Foundation Grant MCS-8200632.

..__ _ _ _ _ _ i]

2

that the perimeter of the image of a grid surface can be

divided into upper and lower parts such that all *vertical"

lines in the image space intersect each part at most once.

This assumption does not hold In general if perspective

projection is used and the viewing direction has a nonzero

component in the direction of increasing function value.

Figure 1 illustrates such a case. Wright's algorithm

(ref.7) is also based on this assumption, and In addition is

inexact because the perimeter is approximated by a vector of

its heights at equally spaced points.

We will work in three-space with rectangular (x,y,,Z)

coordinates. it will be assumed that the surface is being

viewed from a viewpoint VP - (VP x IVP~ y VP2) with viewing

direction VA - (VAXVA y VA Z). Object points are projected

through VP onto an *image space* normal to VA. We require

that the entire grid surface be contained in an open half-

space whose boundary contains VP and has normal VA. A

method for finding a viewing direction satisfying this

requirement whenever one exists is given in ref. 1. An

equivalent condition is that the Image be bounded. We will

be concerned with computing the entire image; of course,

clipping in the image space may also be needed in practice.

3

r-T -T -rA I- --

Figure
p. 1 surf ace which

w~ould not be drawn correctlY by

som~e previou1s
algoritMS-

i0.

4

2) DEFINITION OF GRID SURFACE

Suppose x0, ... , x n and y., '...# ym are strictly

increasing sequences of real numbers (the spacing need not

be uniform). Points in three-space of the form (xiYji')

will be called "grid points". Planes of the form x=x i or

Y=Yj will be called "grid planes". The "grid element" with

index (i,j) is the rectangle in the xy plane bounded by the

planes x-x 1 , x-xt+ 1 , y=yj and y-yj+. The image of a grid

element under a function will be called a "facet".

Suppose that the values of a bivariate function are

given on a set of grid points. A "grid surface" is a

continuous function g from R2 to R which has the given

values at the grid points and also satisfies: (1) g is

linear between adjacent grid points and (2) the projection

of any facet (i.e., image of a grid element under g) is

bounded by the projection of the boundary of the facet.

These conditions ensure that the image of the grid surface

consists only of line segments which are projections of

facet boundaries. The conditions are satisfied, for

example, by the least-area surface containing the given

points.

A surface defined over a rectangular region

(sls 2 1x1tlt 2] will be said to be viewed "face-on" if

VPx C[Sl's2] and VPy eftlt 21. It is viewed "edge-on" if

exactly one of these containments holds, and "corner-on" if

neither holds. These terms will be needed when discussing

.I III- -

5

the position of the viewpoint relative to facets or to the

grid surface.

3) MOTIVATION FOR THE ALGORITHM

Consider the following method for solving the hidden

line or hidden surface problem for an object consisting of

facets or other polygons satisfying condition (2) above:

(1) Enumerate the facets as F I, .0.' Fk in such a way that

if FI occludes F. then i < J. Call such an order

"occlusion-compatible*.

(2) Initialize a description of the polygonal perimeter of

the region in the image space drawn so far (referred to

henceforth as the "perimeter"). This region is

initially empty.

(3) For each i from 1 to k draw the part of facet Fi (for

shaded-region drawings) or its boundary (for line

drawings) which lies outside the current perimeter, and

then update the perimeter to include the facet.

In general, there are problems with this approach. First, an

occlusion-compatible order may be hard to compute. If there

are intersecting or mutually occluding facets then such an

order does not exist. Secondly, the task of merging

arbitrary polygons (to update the perimeter) is fairly

complex, since in general there can be holes, disjoint

*.....

6

pieces, and various pathological cases.

For grid surfaces, however, the method works, and is

simplified in two ways:

(1) For a given viewpoint it is easy to enumerate the

facets in an occlusion-compatible order.

(2) When the facets are processed in such an order, the

region drawn at any stage of the process has a simple

form: it is connected (i.e. in one piece) and is star-

convex (explained below). As a consequence it is

computationally simple to update the perimeter as new

facets are processed.

4) GEOMETRIC PROPERTIES OF GRID SURFACES AND THEIR

PROJECTIONS

In this section we discuss further the above two claims

about grid surfaces. First we will give an occlusion-

compatible enumeration of the facets. This enumeration

depends on the relative viewpoint; there are three cases

(see figure 2):

Case A) The surface is viewed face-on. Suppose VP

lies directly above or below grid element (it,J,). The

enumeration is given in the notation of FORTRAN implied do-

loops. For future reference, the relative orientation of

the facets is also given.

(iorje) (face-on)

((i0 ,j) ,j=j8+l,m-l) (edge-on)

7

Cas A Case 5

Figure 2: The initial perimeter and the facet processing order.

8

((00j) ,j-jO-l,0,-1) (edge-on)

((i,J 0) ,i-ni 0+l,n-1) (edge-on)

((ij 0) - 1E-10,-1) (edge-on)

(((i,j) ,i-i0 +l,n-1) ,j-j,+l,m-1) (corner-on)

(((i,j),imi6 +l,n-1),j-j,-l,0,-I) (corner-on)

(((i,J),i-i-l, 1,-l),jmjo+l,m-l) (corner-on)

(((ij),i-i 0 -l,l,-l),j-j -l,l,-1) (corner-on)

The enumeration begins with the facet which is viewed

face-on, goes outwards along the row and column of that

facet, and finally fills in the four remaining rectangular

areas.

Case B) The surface is viewed edge-on. Suppose x i <

VPx < xi +1 and VP y < Y." The enumeration is:

((i 0 ,j) ,j-l,m-1) (edge-on)

(((ij) ,j-l,m-l) ,-i 0+l,n-1) (corner-on)

(((i,j) ,j-l,m-l) ,i-i 0 -l,0,-l) (corner-on)

Case C) The surface is viewed corner-on, say VP~ < x

and VPy < YO. The enumeration is:

(((i,j) ,i-l,n-l) ,j-l,m-l) (corner-on)

The other possibilities are equivalent to one of the

above under symmetry.

We now turn to the form of the perimeter. The

following analysis applies not only to the perimeter of the

entire projected surface but also to the perimeter at any

stage when the facets are processed in an occlusion-

9 -. *

9

compatible order.

The perimeter form depends on both the relative

viewpoint and the orientation. There are three cases (see

figure 3):

Case 1) (Overhead view) The surface is viewed face-

on. Under the assumption that the image is bounded, the

viewing direction must have a nonzero z component, so

projected z-direction lines converge to a point VZ in the

image space (this is the vanishing point property of

perspective projection). VZ is the intersection of the

viewing plane and the z-direction line passing through VP.

In a polar coordinate system for the image space whose

* origin is VZ, the perimeter vertices have monotonic angles

as the perimeter is traversed in one direction. If the

viewpoint is not on a grid plane then the angles are

strictly monotonic.

Ca se 2) (oblique view) The surface is not viewed

face-on and the viewing direction has a nonzero z component.

Again, projected z-direction lines converge to a point vZ,

and we consider a polar coordinate system with origin vZ.

In this case the perimeter lies entirely within an acute

sector with vertex VZ, and any ray in this sector intersects

the perimeter exactly once or twice. Hence the perimeter

has "inner" and *outer" parts, each of whose vertices, when

traversed in one direction, have monotonic angles. The two

parts share endpoints, and at any angle the outer part is at

10

Case 2

Case 3

Figure 3: The forms of the perimeter.

least as far from vZ as is the inner part. If the viewpoint

does not lie on a grid plane then the angles of the vertices

are strictly monotonic.

In cases 1 and 2 the projection of the surface at any

stage is star-convex around VZ. This means that if two

image points lie on a ray from VZ, then all points on the

segment between them are also in the image. In case 1, VZ

is inside the perimeter and in case 2 it is outside.

Case 3) (Horizontal view) The viewing direction has

zero z component. Here projected z-direction lines are

parallel in the image space. if we call this direction

up/down, then the perimeter has top and bottom parts each of

whose vertices go monotonically left to right. If the

viewpoint does not lie on a grid plane then the vertices are

strictly monotonic left to right.

5) SOME COMPUTATIONAL DETAILS

As shown above, the natural coordinate system In which

to represent the perimeter is either a polar coordinate

system having as its origin the vanishing point of projected

z-direction lines (overhead and oblique views) or a

rectangular system In which one coordinate direction is that

of projected z-direction lines (horizontal view). in what

follows we will focus on the first two cases. The relevant

parts of the analysis apply also to case 3 if "angle" and

12

"radius" are replaced by right/left and up/down coordinates

relative to some fied point.

We now discuss the polar coordinate system in more

detail. First, if we wish to assign a unique angle to

points in the image space there is necessarily a

discontinuity in the angle function along the direction

where the angle wraps around from 2w to 0. To exploit the

angle monotonicity of the perimeter, it is necessary to

define the angle function so that the discontinuity lies

outside the portion of the perimeter currently being used.

In case 2 this can be accomplished by making the

discontinuity lie outside the sector containing the

perimeter. In case 1 it is necessary to redefine the angle

function in the middle of processing.

Secondly, the algorithm does not need to know the exact

radius or angle of any point P, since only the angular and

radial order of points are important. It suffices to compute

functions r(P) and a(P) which are strictly increasing in the

radius and angle respectively. Call such functions pseudo-

angles and pseudo-radii respectively. The easiest pseudo-

radius to compute is the square of the distance between P

and VZ. The function

a(P) - x/y if -y < x < y

- 2-(y/x) if -x < y < x

- 4+(x/y) if y j x < -y

- 6-(y/x) if x < y <-x

.,

13

(where (x,y) - P - VZ) is a pseudo-angle discontinuous in

the (-1,1) direction (see figure 4). By changing the

additive constants in the four parts of the definition, the

discontinuity can be made to be any of (+l,+l).

The main data structures used by the algorithm are the

cartesian coordinates, pseudo-angles and pseudo-radii of the

projected grid surface points and of the vertices of the two

parts of the perimeter. These are stored in matrices for

the grid points and doubly linked lists for the perimeter

vertices.

Assume for the remainder of this section that the

viewpoint does not lie in any grid plane, so that it is

unambiguous whether the surface or a facet is viewed face,

edge or corner-on.

It is convenient to initialize the perimeter not as

empty but as consisting of the facet edges which are always

visible given the relative viewpoint. These segments are

drawn as part of the initialization. The initial perimeter

depends on the position of VP relative to the surface as

follows (see figure 2):

Face-on: The initial perimeter is the boundary of the

facet which is viewed face-on. This facet is not processed

further.

Bdge-ont The initial perimeter is the edge of the

surface which faces the viewpoint.

i

14

a (P) -x/y

y

a(P) --6-(y/x) \ /a(P) -2-(y/x)

/4% x

a(P) -4+(x/y)

Figure 4: A pseudo-angle function discontinuous in the

(-1,1) direction.

15

Corner-on: The initial perimeter is the two edges of

the surface containing the corner which faces the viewpoint.

There are several benefits from initializing the

perimeter in this way. One is that the angular extrema of

the final perimeter are already attained in the initial

perimeter, so we never have to worry about searching off the

ends of the perimeter. More importantly, the perimeter

initialization together with any occlusion-compatible facet

processing order ensure that all facets can be dealt with

according to one of the following two cases:

(1) If the facet is viewed edge-on then the facing edge

will have already been processed by the time the facet

is processed. There are four subcases for the relative

positions of the edges of the facet. In each subcase

it is possible to deduce that some or all of the facet

edges cannot leave the inner or outer perimeters. The

subcases are distinguished by the signs of the scalar

products ((P2-P1)r,(P 3-P 1)), ((P2-Pl) r,(P 4-P 1)), and

((P3-P2)r,(P4-p2)), where (x,y) r denotes (y,-x) and

Pl,...,P4 are the projected facet vertices in order of

increasing angle (see figure 5).

(2) If the facet is viewed corner-on then the two facing

edges will have already been processed by the time the

facet is processed. The are six subcases for the

relative positions of the edges (see figure 6).

4.

16

P2 - -"

P1 -~4(b) ()(d)

(a) %

(e ' I (w.

v (g)
(e))

Vz

(a) (b) (c) (d) (e) (f) (g) (h)

((p2-Pl)r. (p3-Pl)) + + + +

((p2 pl) (p4 pl)) - _ + - - +

((p -P2)T,(p 4 -p2)) + + - - + -

vertex indices of 123 - 123 123 - 123 12 23

part which may leave
outer perimeter

vertex indices of - 123 23 12 123 - 123 123

part which may leave
inner perimeter

Figure 5 The eight classes of facets viewed corner-on.

Dotted lines represent the closer edges, which

have already been processed.

2 17

P2 p3

P4 (b) cC)

(a)

Vz

(a) (b) (c) (d)

((4P (P2-P)) + . +

((P4 F, (P3tP)) +-

vertex indices of 1234 -123 234
part which may leave
outer perimeter

vertex indices of - 1234 234 123
part which may leave
inner perimeter

Figure 6: The four classes of facets viewed edge-on.

18

Thus we are left with the following simplified problem:

given a perimeter part (say the outer part) whose vertices

have strictly increasing angles, and a list of two, three,

or four points in strictly increasing angular order such

that the first and last are not outside the perimeter, find

the visible parts of the new segments and update the

perimeter to include them. A fast way to do this is to scan

concurrently through the facet and perimeter vertex lists in

order of increasing angle, searching for points where the

facet boundary leaves or enters the perimeter. When a

matched exiting and entering crossing pair is found, the

perimeter vertices between the two points are deleted from

the perimeter, and the facet boundary vertices between the

;.wo points are added. The line segments between the

crossings and the intervening facet vertices are drawn (see

figure 7). In the case of shaded drawings, the region

bounded by these segments and the deleted portion of the

perimeter is drawn.

It is not necessary to search the entire perimeter for

the first point in the angular range of the current facet.

This is because the facet processing order given above goes

along rows and columns. By maintaining pointers into the

perimeter near the most recent facet and near the first

facet of the current row or column, global searching can be

avoided.

Is- Al .

19

N fscet boundar?? 0

Figure 7: An~ example of appending a facet to the perimeter.

20

Note that the crossing pairs will occur sequentially in

the search through the lists. The search ends when the last

facet vertex is reached, so only the perimeter vertices

within the angular range of the facet are scanned. The task

of deciding when and where the crossings occur can make use

of the pseudo-distances of the various vertices. The only

types of arithmetic calculations that are necessary are to

decide if a point is to the right or left of a line (this

need be decided at most once for each vertex in the search)

and to calculate the intersection of a pair of segments

(this need be calculated only for crossings which are the

proper intersection of a perimeter and a facet segment).

When the surface Is viewed face-on there is no inner

perimeter. In the other cases the perimeter has inner and

outer parts, and the visible portion of a facet is that

which is inside the inner part or outside the outer part.

It is desirable to have the same routine handle both parts.

This can by done by negating the angles and radii of the

vertices of the inner perimeter and the facet vertices, and

then proceeding as for the outer perimeter.

EllI

21

6) SPECIAL CASES OF THE RELATIVE POSITION

We now consider the cases whore VP lies in a grid

plane, say VP x W x A difficulty arises because the

perimeter will no longer have strictly monotonic angles.

This possibility makes the facet processing logic

considerably more complicated. The problem can be

circumvented, however, by processing separately the parts of

the grid on different sides of the plane x - x i . This

separation is possible because neither part can ever occlude

the other. Each part is processed as described in the

previous section, except that one or both angular extrema

(depending on whether the surface is viewed edge-on or

face-on) must be treated as a special case.

If the viewpoint lies above a grid point not on the

boundary of the grid (say (VPxVPy) (xtYj)) then the

surface must be divided into the four parts determined by

the planes x - xi and y = yj. The four parts are mutually

non-occluding and can be drawn as described above, with both

ends of the perimeter treated as special cases (see figure

8).

In many applications it is not necessary to implement

special handling of the above cases. Instead the program

can move the viewpoint slightly if it lies in a grid plane.

For applications involving animation, where the viewpoint

might move continuously through grid planes, it would be

worthwhile to add the extra logic. A similar remark applies

* ~ '...-*

-.-. 21

221

Figure 8: Cases where the viewpoint lies in a grid plane.

23

to case 3 (horizontal view), which can be changed to case 2

by an arbitrarily small perturbation of VA.

7) DRAWING OTHER OBJECTS

A program for drawing grid surfaces should allow the

user to draw projected objects other than the surface

itself. Hidden line elimination for the additional objects

can be done within the framework of the present algorithm as

long as the objects are of the wire-frame type and each

object either does not occlude the grid surface or is not

occluded by it. In the latter case the object is drawn In

its entirety. In the first case only those portions of the

object which lie outside the perimeter are drawn. For a

given line segment in the object, this visible portion

consists of the parts which lie outside the angular range of

the perimeter, lie further than the outer perimeter, or lie

closer than the inner perimeter. These parts are easily

calculated, the latter two using the same methods as for

drawing the facets.

The author's implementation allows axis grids, text,

and contour maps to be drawn. All of these can be

positioned and oriented arbitrarily in three-space and are

drawn in perspective. An example showing these features is

given in figure 9.

24

Figure 9: A surface image with secondary objects (axis grids,

text and contour map).

25

8) PERFORMANCE

The methods described In this paper were implemented in

a FORTRAN program on a Harris Slash 7 minicomputer with

floating point hardware. The program has been tested on

many surfaces. Performance results are given in Table I for

the function f(x,y) - exp(-x 2-y 2) and for a surface

consisting of samples from the uniform random distribution

on (0,11. These were generated on uniform grids of varying

fineness on the square r-2,2] x t-2,21. The resulting

surfaces were drawn from the vieAwpoint (6,R,?) (see figure

10). It can be seen from the graph in figure 11 that

execution time, in these cases, appears to increase

approximately linearly as a function of the number of

facets.

These results suggest that-the algorithm as implemented

is approximately'linear-time for commonly-encountered

surfaces. It is particularly interesting that the random

surface, which appears to be at least as complex as any

surface arising in applications, is handled in only about

50% more time than the smooth surface.

A proof of linear expected or worst-case time would

require an upper bound on the average number of perimeter

vertices in the angular range of each facet. Finding such a

bound (possibly for a restricted class of surfaces) is posed

as a challenge to interested readers.

26

TABLE 1

Grid size Number of facets Execution time (seconds)
Smooth surface Random surface

10 by 10 81 .184 .221
20 by 20 361 .725 .921
30 by 30 841 1.623 2.315
40 by 40 1521 2.886 3.969
50 by 50 2401 4.527 6.515
60 by 60 3481 6.532 9.534

27

Figure 10: Smooth and random surfaces used as test cases.

E M I R * W i ll

28

8

6-

Executign time (seconds)

4

1000 2000 3000

Number of facets

Figure 11: Execution time data with best-fit lines for smooth

(solid line) and random (dotted line) surfaces.

. . AONE"

29

9) CONCLUSION

it has been shown that projected images of grid

surfaces have a geometric structure which allows a fast and

fairly simple algorithm for hidden line and hidden surface

elimination. The key properties are:

1) The existence of a trivially computable occlusion-

compatible order for processing the facets.

2) The star-convexity of the perimeter, which makes it

easy to represent and modify the perimeter and also means

that only the perimeter segments in a small angular

neighborhood of each facet need be checked for crossings.

The Implementation of the algorithm has proved to be

very robust and efficient. it is possible that some of the

ideas behind the algorithm may be relevant to hidder. line

and hidden surface elimination for other classes of objects.

30

REFERENCES

(1) Anderson, D.P. An orientation method for central

projection programs. Computers and Graphics 6,1

(1982), 35-37.

(2) Butland, J. Surface drawing made simple. Computer-

aided Design 11,1 (January 1979), 19-22.

(3) Franklin, W.R. A linear-time exact hidden surface

algorithm. Computer Graphics 14,3 (July 1980), 117-

123.

(4) Kubert, B.R., Szabo, J. and Gulieri, S. The perspective

representation of functions of two variables. JACM

15,2 (April 1968), 193-264.

(5) Sutherland, I.E., Sproull, R.F. and Shumacker, R.A. A

characterisation of ten hidden surface algorithms.

Computing Surveys 6 (1974), 1-55.

(6) Williamson, H. Algorithm 420 - hidden-line plotting

program (J6). CACH 15,2 (February 1972), 108-103.

(7) Wright, T.J. A two-space solution to the hidden line

problem for plotting functions of two variables. IEEE

Trans. Comput. c22,1 (January 1973), 28-33.

SECURITY CLASSIFICATION OF THIS PAGE (Man boo Efdeem

REPORT DOCUMENTATION PAGE Rx m u'o
I. REPORT NUMER 12. GOVT AC1CESSION No: I ReciiIET-SCATALOG NUMBER

2447 ADIAI:LA43 f _ __ _ _ __ _ _

4L TITLE (and &SuSA) S. TYPE OF REPORT A PERI0D COVERED

Summary Report - no specific
HIDDEN LINE ELIMINATION IN PRJECTED GRID reporting period

'ISURFACES 6. PKRFORMING0 ONG. REPORT NUMBER

V. AUTI4OR(at) S. CONTRACT OR GRANT NUMMER()

David P. Anderson DAAG29-80.C.00 41
MCS-8200632

11- PERFORMING ORGANIZATION NAME AND ADDRESS 10- PROGRAMU 2LEMNT.NPROJECT. TASK

Mathematics Research Center, University of AorEA R U T N UMer5RS
610 Walnut Street Wisconsin Mathematical Programming
Madison, Wisconsin 53706____________

ICONTROLLING OFPICE NAME AND ADDRESS I2. REPORT DATE
December 1982

See Item 1.8 below. IS. NUMBER OF PAGES

14. MONITORING AGENCY RhME a ADDORESS(&EIfemt bu Ci.*'.*lA, 0) It. SECURITY CLASS (of &i -at.eps)

UNCLASSIFIED
I". Oack,0FIC ATIIWNRDG

IS. DISTRIBUTION STATEMENT (of Ci. *tepge)SO

Approved for public release; distribution unlimited.

IT. DISTRIBUTION STATEMENT (of fte abbot mtewed ian.0 0 Stoc offeeeuat he Ropge)

IS. SUPPLEMENTARY NOTES
U. S. Army Research Office National Science Foundation
P. 0. Box 12211 Washington, D. C. 20550
Research Triangle Park
North Carolina 27709

Is. KEY WORDS (Condo... en m~& ie .U eeei, a SmtisbySea amb
hidden line elimination
hidden surface elimination
function graphing
grid surface

2. AISTRJACT (Caatou .,v.ieIneneNa tt yb. ihe
Hidden line and hidden surface Problems are often simpler when restricted

to special classes of objects. An example is the class of grid surfaces, i.e.
graphs of bivariate functions represented by their values on a set of grid
points. Projected grid surfaces have geometric properties which permit hidden
line or hidden surface elimination to be done more easily then in the general
case. These properties are discussed in this paper and an algorithm is given
which exploits them.

00 1 JA 73 EDITION OF I NOV 68 t 15 OSOLSTS UNCLASSIF7D
SECURITY CLAISIPICATOW OF 11118 PAGE (WWag. WV

BlkI
,'OMN L Mso lw-

