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1. INTRODUCTION

The most commonly used formulas for the analysis of fiber-reinforced and

laminated beams are those given by the familiar "law of mixtures"-[ I
their most general form, these formulas are derived by the methods of

elementary strength-of-materials theory, on the basis of the Bernoulli-Euler

assumptions. In general, of course, these formulas are only approximate: for

example, when calculating the deflection of the simplest type of laminated
beam, namely a sandwich, it is known that the inclusion of the effect of shear

is essential E23e-I cause of their simplicity, however, it is desirable to
use them whenever one may do so with sufficient accuracy. It is therefore the

purpose of the present work to examine the validity of the simple formulas,
. and to determine how, and when, they should be corrected More specifically,

* it will be shown that the generalized law of mixtures is4'xact for the case of

uniform, uni-directionally reinforced beams under certain simple spanwise

bending moment distributions, and a means of determining the required

-* corrections when these conditions are not precisely met will be developed.

The work presented here is the counterpart, for reinforced beams, of that of
* [3]. Analogous developments have been carried out to show that the elementary

formulas were valid if the derivations from uniform depth are small and smooth

along the span, respectively in [4] for homogeneous and in [5] for fiber-
reinforced beams. The basic method in these works was first introduced in [6]

to study the effect of spanwise variations of temperature distributions on the

validity of the elementary formulas for the case of rectangular, beams, and was

extended in [7,8] to beams of arbitrary cross-section.

In the analysis presented here the inhomogeneous beam is considered, at the

outset, as one composed of a single material but with variable properties.

The basic formulation of the problem thus contains spatial partial derivatives

of the elastic constants, which are meaningless at the interfaces between 13

adjacent layers, since sudden jumps in the material properties occur there.
As one important conclusion of the present work, it will however be shown that

the final results, both for stress and for deformations, can be expressed

solely in terms of integrals, rather than derivatives, of the moduli: the

difficulties which might arise because of discontinuities In material lea
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properties have therefore been eliminated, and the results obtained are valid

and can be directly used for reinforced beams.

It will be seen that the present theory leads rather quickly to fairly

cumbersome results, particularly if the geometry of the beam is at all

complex. For this reason, it would be desirable to carry out, in subsequent

research, a certain number of crucial examples, and thus to be able to reach

some hopefully simple criteria for the identification of cases when

corrections to the elementary formulas are indeed necessary. Furthermore, the

.* development of a computer program for the numerical calculation of stresses

and deformations from the techniques developed here would be useful as well.

Lacking this additional work, it is felt that the results which follow present

a valuable step towards the accurate and practical analysis of laminated beams

and all circumstances. Some further details on the present work, and in

particular on the numerical results, may be found in [9].

2. ELEMENTARY RESULTS

We consider in this paper a rectangular beam (occupying the space O<x<L,

-cy<c, O<z<w) unidirectionally reinforced, i.e., with E - E(y) and

" 4- V(y). The elementary formula for the axial stress is the generalized law-

of-mixtures, i.e.,

The corresponding axial displacement u is easily calculated from the equation

-u S /E* ) 4 ,while the curvature is

(2)

where

.. ' e..(3)

i~
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T is the temperature, dA a wdy and the other symbols have the usual

meanings. Obvious simplifications occur, for example, if the origin of

coordinates is chosen at the "centroid," i.e., if 5 EydA - 0.

3. BASIC THEORY

Under the normal thinness assumptions (c/L<(1, w/L<(1) and with E - E(x,y)
and V -V(x,y), the problem requires [6] the solution for the Airy stress

functiont 9(x,y) from the equation

v q ~ @5 ~ 1~ eE ) T ) ( 4 )J - -~~ - - - -

under boundary conditions to be presently discussed. The solution may be
written [4,5] in the form

if the quantities t(x,y) satisfy the equations:

(5a)

4) I y ~j (5b)

t \Y_,_lc),, ltf. ) 'i \e !.. (Sc)
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The boundary conditions depend on the details of the load application. We

will consider for simplicity here only the isothermal case of a transverse

load q(x) - -d2M/dx 2 applied on y - c (case I of [3J); the boundary conditions

are then:

oU - o) (6)

and are all met if one sets

- _ (6a)

' ; (6b)

S4. STRESS COMPONENTS

Integration of eq. (5a) with T 0 0 gives, after use of (6a) and of integration

by parts,

• It is evident that'.-lft/l)y 2 "Cxxl (i.e., the first term in a series similar

to (5) for the axial stress) is identical with the elementary one of

eq. (1). The first terms of similar series for the other stress components

are

~~3~4E4~(8b)

Further terms of the series are obtained in a straightforward manner by

integration of (Sb,c), under conditions (6b), integration by parts again being

W4-
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used to eliminate all partial derivatives of the moduli with respect to y.

The result tends to be rather complicated: for example, Y 2 is given in

SAppendix A, and is indeed expressed solely in terms of moduli and their

integrals, rather than derivatives with respect to y.

For the important special use of symmetrical reinforcements (i.e., with

dyEda u ydy a 0, such as, for example, an ordinary sandwich beam) the stress

components take the form:

41L JE V3 4 (ga)

- (9b)

4t
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where the weighted moment of inertia I* - w§Ey2dy and where

c~ m *j~x~i -~i~i ~~i~(10)

qSx f* V 1

A discussion of these results will be given in a later section.

It is important to show that is is indeed possible to obtain expressions to

all values of i which are free of derivatives of the moduli with respect to

y. To prove this in general one may proceed by induction, i.e., by showing

that, if any value of i exists for which - 2and

derivatives with respect to y can be expressed in a form which is free of such

derivatives, then, will itself be free of them. This follows immediately by

rewriting (5c) explicitly for!b and noting that it is, by our hypothesis,

* free of moduli derivatives; itt en follows that and Yi have the same

character. But we have already noted that 1 andf2 l1kewi se have this

property, and thus the proof is complete.



5. DISPLACEMENTS

The strain components are found, once the stresses are known, directly from

Hooke's law; from these, integration of the strain-displacement relations in

the usual manner [3] gives the desired displacement components. The series

for the axial displacement u is of the form

where the second and third terms (i.e., u2 and u3) are given explictly in

Appendix A. The expression for the curvature 2v/ 2 is as follows:

(12)

6. DISCUSSION OF RESULTS

Several observations regarding the results obtained above may be made:

=.

1. All results obtained for non-homogeneous beams contain no

spatial derivations of the moduli. They are thus in the

desired form, and no computational difficulties arise at the

interfaces between component materials.

2. At each interface the shear stresses, the stresses normal to

the interface and the transverse displacements are continuous

(as they should be), but the axial normal stress and the axial

displacement are not.

3. The results are all in series form, successive terms of which

are proportional to progressively higher spanwise derivations

of the bending moment and on higher powers of the thickness

dimensions. They are therefore entirely analogous to the

corresponding ones for homogeneous beams, and hence the

-7-



conclusions well known for that case can be immediately carried

over to reinforced beams. In particular, note that the law-of-

mixtures (i.e., the first term) is complete solution for the

axial stress and for the curvature if the bending moment is of

the form M - a + bx. The sum of the first and second terms is

the complete solution of M is at most a cubic polynomial in x,
and in general the accuracy of the elementary formulas

increases as one considers thinner and thinner beams and

smoother and smoother moment distributions. For further

discussions of the meaning of "smooth" and of further

conclusions, the reader is referred to the previous treatments

(e.g., [3] or [7]). Of course, all the present results reduce

to the known ones valid for homogeneous beams if simplified by

taking both E and V to be constants.

4. In the calculation of stresses in sandwich and multi-layer

beams, the terms other than the first one, as can be expected,

are of very minor importance. This is, of course, not true in

the calculation of deflections, where the second term, for

example, includes the effect normally referred to as shearing

deformations and is therefore of substantial magnitude when one

of the component materials is weak in shear. Such matters as

the bending rigidity of sandwich faces, and the normal-stress

carrying capacity of the sandwich core are automatically

included in the present theory; they are normally (cf. [2])
neglected in sandwich analyses, and their effect can therefore

be estimated with the aid of the present formulas.

5. In complete analogy again with homogeneous beam results, the

; correction terms in the series are often more important for

thermal-stress analysis than for isothermal beams [7]. This

occurs because non-trivial cases in which the first term

vanishes can arise, as for example, that of a free multi-layer

beam under a temperature linear with y, if the various layers

have different moduli but the same coefficient of expansion.

In such cases of course the entire stress is given by the

*1
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"correction" terms, and they cannot therefore be neglected,

although no detailed consideration of the thermal case is

included here.
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APPENDIX A

, The expression for for the case in which E - E(y) and V- V(y) Is obtained
by the process described in Section 3 to be as follows:

Ur

~-10

4%4

Tv a) j., ~4 
- (l

d.10



Here

The stress components obtained from ? 2 are now easily calculated (cf. [91),

but are not explicitly listed here for the sake of brevity. They form the

first-order correction to be app-'ed to the stress components listed in

eqs. (7) and (8). It is easily seen that all these stress components are

themselves free of derivatives with respect to y.

Eq. (Al) and the corresponding stress components reduce identically to those

of [3] for the special case of homogeneous beams. Simplifications resulting

in the case of symmetrically placed reinforcements are given in eq. (9).

The displacement components are obtained by means of the steps outlined in the

text. For the axial components, the result is:

-11
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