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1. INTRODUCTION

The most commonly used formulas for the analysis of fiber-reinforced and
laminated beams are those given by the familiar “law of mixtures”-{lJ&leg____
their most general form, these formulas are derived by the methods of
elementary strength-of-materials theory, on the basis of the Bernoulli-Euler
assumptions. In general, of course, these formulas are only approximate: for
example, when calculating the deflection of the simplest type of laminated
beam, namely a sandwich, it is known that the fnclusion of the effect of shear
is essential £2}.%Because of their simplicity, however, it is desirable to
use them whenever one may do so with sufficient accuracy. It is therefore the
purpose of the present work to examine the validity of the simple formulas,
and to determine how, and when, they should be corrected., More specifically,
it will be shown that the generalized law of mixtures 1s‘§:3ct for the case of
uniform, uni-directionally reinforced beams under certain simple spanwise
bending moment distributions, and a means of determining the required
corrections when these conditions are not precisely met will be developed.

The work presented here is the counterpart, for reinforced beams, of that of
[3]. Analogous developments have been carried out to show that the elementary
formulas were valid if the derivations from uniform depth are small and smooth
along the span, respectively in [4] for homogeneous and in [5] for fiber-
reinforced beams. The basic method 1n these works was first introduced in [6]
to study the effect of spanwise variations of temperature distributions on the
validity of the elementary formulas for the case of rectangular, beams, and was
extended in [7,8] to beams of arbitrary cross-section.

In the analysis presented here the inhomogeneous beam is considered, at the
outset, as one composed of a single material but with variable properties.
The basic formulation of the problem thus contains spatial partial derivatives ?
of the elastic constants, which are meaningless at the interfaces between 0
adjacent layers, since sudden jumps in the material properties occur there. O

As one important conclusion of the present work, it will however be shown that
the final results, both for stress and for deformations, can be expressed
solely in terms of integrals, rather than derivatives, of the moduli: the
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properties have therefore been eliminated, and the results obtained are valid
and can be directly used for reinforced beams.

It will be seen that the present theory leads rather quickly to fairly
cumbersome results, particularly if the geometry of the beam is at all
complex. For this reason, it would be desirable to carry out, in subsequent
research, a certain number of crucial examples, and thus to be able to reach
some hopefully simple criteria for the 1dentification of cases when
corrections to the elementary formulas are indeed necessary. Furthermore, the
development of a computer program for the numerical calculation of stresses
and deformations from the techniques developed here would be useful as well,
Lacking this additional work, it is felt that the results which follow present
a valuable step towards the accurate and practical analysis of laminated beams
and all circumstances. Some further details on the present work, and in
particular on the numerical results, may be found in [9].

2, ELEMENTARY RESULTS

We consider in this paper a rectangular beam (occupying the space 0<x<L,
-c<{y<c, 0<z<w) unidirectionally reinforced, i.e., with E = E(y) and

v=Y(y). The elementary formula for the axial stress is the generalized law-
of-mixtures, i.e.,

0:“=- «ET + -;{(?{.Q_‘_ﬁ{edk - }9)54&3‘\' Q’\-‘-M&}QEdﬁ - §3 €4 ﬁl} (1)

The qsrresponding axjal displacement u 1s easily calculated from the equation
us se;‘/g* dl') dx , while the curvature is
[
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where
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T is the temperature, dA = wdy and the other symbols have the usual
meanings. Obvious simplifications occur, for example, 1f the origin of
coordinates is chosen at the "centroid,” i.e., if § EydA = 0,

3. BASIC THEORY

Under the normal thinness assumptions (c/L<<1, w/L<<1) and with E = E(x,y)
and V=Y(x,y), the problem requires [6] the solution for the Airy stress
function tf(x.y) from the equation
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i under boundary conditions to be presently discussed. The solution may be 1
written [4,5] in the form
cg =%, T, - Cate.. (5) |
if the quantities 1’1 (x,y) satisfy the equations: \
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The boundary conditions depend on the details ‘of the load application. We
will consider for simplicity here only the isothermal case of a transverse

load q(x) = -dZM/dxz applied on y = ¢ (case I of [3]); the boundary conditions
are then:

0;1;(_?,&)*:‘% n(%-) o @ \ = O (é)

and are all met if one sets

T .
3 ?s()‘,"—) . 3'€ (’h"’ - ?;‘_'ﬁ@)u\ =0 (6a)
Y k!" 31{ «9an
. =?& A *c Ly (6b)
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4. STRESS COMPONENTS

Integration of eq. (5a) with T = 0 gives, after use of (6a) and of integration
by parts,

"-S’;%B‘E %@S}E by - S{'E‘*‘a)" 51% (}Sga}— iy :aﬁhl (7)

It is evident that}zﬂn/éyz ";xl (i.e., the first term in a series similar
to (5) for the axial stress) is identical with the elementary one of
eq. (1). The first terms of similar series for the other stress components

\oTe ﬁff"‘:}u‘.& Sy Yo - fesdy| E%‘l (82)
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Further terms of the series are obtained in a straightforward manner by
integration of (5,c), under conditions (6b), integration by parts again being




used to eliminate all partial derivatives of the moduli with respect to y.
: The result tends to be rather complicated: for example, 2 is given in
l ~ Appendix A, and is indeed expressed solely in terms of moduli and their
: integrals, rather than derivatives with respect to y.

& For the important special use of symmetrical reinforcements (i.e., with
! &yEdy n{}y?dy = 0, such as, for example, an ordinary sandwich beam) the stress
£ components take the form:

e L i
+v)$~15&" 5 54»1/-\-CE~3+C E‘.\*

T, e ek S e - e
S AT UL A e B
€ J4Eay 2§ eaa;\..,
T welohea) iy Fee Tl anse

ey fav g ey B hasdndgy -

SE} hv A"ld“], }s v&-(ch‘-\-JEJS vd:,d; “+ (9¢)
<3y Jy5tnty oy Jos dus-affriededs +afeos
+C‘(%S:Fﬁ-h‘*“ﬂ)*‘%(ﬂ“;'S:“""%*"‘

.........




) where the weighted moment of inertia I* = w §Ey2dy and where
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A discussion of these results will be given in a later section.
3 It 1s important to show that is is fndeed possible to obtain expressions to
all values of 1 which are free of derivatives of the moduli with respect to
y. To prove this in general one may proceed by induction, {.e., by showing

0y that, if any value of | exists for which 'fi-l and }01_2 and their first two
Xy derivatives with respect to y can be expressed in a form which {s free of such
derivatives, then 4 will itself be free of them. This follows immediately by
' )

rewriting (5¢c) explicitly fori ;vand noting that it 1s, by our hypothesis,

free of moduli derivatives; it tt?en follows that%ﬁ*’ and ¥y have the same
character. But we have already noted that'-h and'f?; 1ikewise have this
property, and thus the proof is complete.
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5. DISPLACEMENTS
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The strain components are found, once the stresses are known, directly from
Hooke's law; from these, integration of the strain-displacement relations in
the usual manner [3] gives the desired displacement components. The series
for the axial displacement u is of the form

, i od :
¥ 3
Thmyfnde < 48] ]+ 4% e, (1)
“ dx ar’
where the second and third terms (i.e., u, and u3) are given explictly in
Appendix A. The expression for the curvature:}zvibxz is as follows:

_1‘2—:‘1:,7.!“\«— ‘j-\-%‘@ ;VJ’F- Cx\ .., (12)

6. DISCUSSION OF RESULTS

Several observations regarding the results obtained above may be made:

1. A1l results obtained for non-homogeneous beams contain no
spatial derivations of the moduli. They are thus in the
destred form, and no computational difficulties arise at the
interfaces between component materials.

2. At each interface the shear stresses, the stresses normal to
the interface and the transverse displacements are continuous
(as they should be), but the axial normal stress and the axial
displacement are not.

3. The results are all in series form, successive terms of which
are proportional to progressively higher spanwise derivations
of the bending moment and on higher powers of the thickness
dimensions. They are therefore entirely analogous to the
corresponding ones for homogeneous beams, and hence the
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conclusions well known for that case can be immediately carried
over to reinforced beams. In particular, note that the law-of-
mixtures (i.e., the first term) is complete solution for the
axfal stress and for the curvature if the bending moment is of
the form M = a + bx. The sum of the first and second terms is
the complete solution of M is at most a cubic polynomial in x,
and in general the accuracy of the elementary formulas
increases as one considers thinner and thinner beams and
smoother and smoother moment distributions. For further
discussions of the meaning of “smooth" and of further
conclusions, the reader is referred to the previous treatments
(e.g., [3] or [7]). Of course, all the present results reduce
to the known ones valid for homogeneous beams if simplified by
taking both E and ¥ to be constants.

4, In the calculation of stresses in sandwich and multi-layer
beams, the terms other than the first one, as can be expected,
are of very minor importance. This is, of course, not true in
the calculation of deflections, where the second term, for
example, includes the effect normally referred to as shearing
deformations and is therefore of substantial magnitude when one
of the component materials is weak in shear. Such matters as
the bending rigidity of sandwich faces, and the normal-stress
carrying capacity of the sandwich core are automatically
included in the present theory; they are normally (cf. [2])
neglected in sandwich analyses, and their effect can therefore
be estimated with the aid of the present formulas.
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5. In complete analogy again with homogeneous beam results, the
correction terms in the series are often more important for
thermal-stress analysis than for tsothermal beams [7]. This
occurs because non-trivial cases in which the first term
vanishes can arise, as for example, that of a free multi-layer
beam under a temperature linear with y, 1f the various layers
have different moduli but the same coefficient of expansion.
In such cases of course the entire stress is given by the
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“correction” terms, and they cannot therefore be neglected,
although no detailed consideration of the thermal case is
included here.
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APPENDIX A

The expression for 72 for the case in which E = E(y) and V= ¥(y) is obtained
by the process described in Sectfon 3 to be as follows:
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The stress components obtained from‘fz are now easily calculated (cf. [9]),
but are not explicitly listed here for the sake of brevity. They form the
first-order correction to be app°‘ed to the stress components 1isted in

eqs. (7) and (8). It is easily seen that all these stress components are
themselves free of derivatives with respect to y.

Eq. (Al) and the corresponding stress components reduce identically to those
of [3] for the special case of homogeneous beams. Simplifications resulting
in the case of symmetrically placed reinforcements are given in eq. (9).

The displacement components are obtained by means of the steps outlined in the
text. For the axial components, the result is:

* , ~
Tw= \{\S.:V\Aqo - %%\ngsgsjg );JAA} - ‘3\3“"\,,-\,}4.
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