AD-A124- 030

UNCLASSIFIED

GUIDELINES FOR CODING FORTRAN PROGRAMS(U) NAVAL OCEAN /1
RESEARCH AND DEVELOPMENT ACTIVITY NSTL STATION MS
J J CORNYN JUL 82 NORDA-41

F/G 9/2 NL

||||| 1.0 &8 e

= w B o,

=== ¥ s m"§
=

||||| T =

- 1.8

22 s |

B

L

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

WA 124030

NCRDA Report 41

Guidelines for Coding FORTRAN Programs

John J. Cornyn

- Numerical Modeling Division
Ocean Science and Technology Laboratory

July 1982

j"\ ""3\
\

DTlC

Approved for Public Release
Distribution Unlimited E LECT
JAN3 1 1983

Naval Ocean Research and Development Activity
NSTL Station, Mississippi 39528

Foreword
m

This guideline 1is designed to assiat individuals in
writing FORTRAN programs. Adherence to the conventions
described herein should lead to readable and maintain-
able programs. In addition, 1t should significantly
reduce the amount of time and effort required to
transfer a program froa one computer to another. Al-
though this document was written to serve as a coding
guideline, which the Acoustic Modeling Manager of the
Surveillance Environmental Acoustic Support (SEAS)
Project could provide to contractors and other Navy
organizations supporting the SEAS effort, 1t could
also be used, without modification, by any organiza-
tion writing, or contracting for, FORTRAN programs.

g JO. D Pfuline

G.T. PHELPS, Captain, USN
Commanding Officer, NORDA

AD-Al124 030

Guidelines for Coding Fortran Programs

Naval Ocean Research
NSTL Station, MS

UNCLASSIFIED
* SECUMITY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE BER D Ry O R
1. REPORT NUMBER IZ. GOVY ACCESSION Nn | 3. RECIPIENT’'S CATALOG NUMBER
NORDA Report 41 AD/A124030
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Final
Guidelines for Coding FORTRAN Programs

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)

John J. Cornyn

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :sgiﬂkb‘ ELEMENT. PROJECT, TASK

ORK UNIT NUMBERS
Naval Ocean Research and Development Activity
NSTL Station, Mississippi 39529

PE63759N
1Y, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Naval Ocean Research and Development Activity July 1982
Code 320 13. NUMBER OF PAGES
NSTL Station, Mississippi 39529 57
14 MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a. DTCLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, i1 dilferent from Repott)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae side if necessary and identily by block number)

FORTRAN coding software maintenance
FORTRAN guidelines
computer programming standards
software configuration management
20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

‘ This document provides a set of conventions to be followed when writing FOR-
4 TRAN programs. Enforcement of and adherer. e to these conventions should
minimize problems in transferring programs to other computers, should lead to
i more readable programs, and should make programs more maintainable. For ease !
of reference, the guidelines have been arranged in the order the subjects they
apply to would normally be covered in a FORTRAN reference manual. The final
sections contain a FORTRAN program before and after the guidelines were

! UNCLASSIFIED

' DD ,55%"; 1473 eoimion oF 1 oV 6813 ORen = e
$/N 0102-LF-014-6601

e e e e e !
e CURITY CLASBIFICATION OF THIS PAGE (Wher Dats Bntered) H

SSIFIED
SECUMTY CLASHFICATION OF THIS PAGE (When Dots Entered)

applied, and describe techniques for implementing structured programming
constructs,

/-& UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Bntered)

Executive Summary

This document provides a set of conventions to be fol-
lowed when writing FORTRAN programs. Enforcement of,
and adherence to, these conventions should reduce
problems in transferring programs to other computers,
should lead to more readable programs, and should make
programs more maintainable. For ease of reference, the
guidelines have been arranged in the order that the
subjects to which they apply would normally be covered
in a FORTRAN reference manual. The final section shows
the text of a FORTRAN program both before and after
applying the guidelines. An appendix describes how to
emulate with FORTRAN code the constructs of structured
programming .

1-L-

Acknowledgements

The author is indebted to numerous individuals. Many
of the 1deas presented appear in works by J. E.
Fleiss, G. W. Phillips, A. Edwards, L. Relder (Fleiss,
1974), H. F. Ledgard and L. J. Chmura (Ledgard, 1978),
and G. Jacobs (Jacobs, 1976). The author especially
wishes to thank Richard Lauer of NORDA and Gil Jacobs
of Ocean Data Systems, Inc. (ODSI), Rockville, Mary-
land, for reviewing the document, engaging in discus-
sions regarding 1its content, and offering numerous
helpful suggestions. Finally, the author is indebted
to CDR Kirk Evans, formerly Acoustic Modeling Program
Manager, Surveillance Environmental Acoustic Support
(SEAS) Project, NORDA Code 522, for funding this work,
Program Element 63759N.

Contents

= o
1. INTRODUCTION 1
1.1 Scope 1
2. CODING FORTRAN STATEMENTS 2
2.1 General Remarks and Sug- 2

gestions
2.2 FORTRAN Character Set 3
2.3 FORTRAN Statements 3
2.4 Continuation Lines 3
2.5 Statement Separator 4
2.6 Statement Labels 4
2.7 Comments 4
2.8 Blank Lines 5
3. LANGUAGE ELEMENTS 5
3.1 Constants 5
3.1.1 Integer Constants 6
3.1.2 Real Constants 6
3.1.3 Double Precision 6

Constants
3.1.4 Complex Constants 6
3.1.5 Octal Constants 6
3.1.6 Hollerith Constants 6
3.1.7 Logical Constants 6
3.2 Variables 6
3.2.1 Integer Variables 7
3.2.2 Real Variables 7
3.2.3 Double Precision 7

Variables
3.2.4 Complex Variables 7
3.2.5 Logical Variables 7
3.3 Arrays 7
3.3.1 Subscripts 8
3.3.2 Array Structure 9
4. EXPRESSIONS 9
4.1 Arithmetic Expressions 9
4.1.1 Evaluation of Expressions 9

SR— - e ——

Contents

6.3

6.3.1

6.3.2

Type of Arithmetic Expres-
sions
Exponentiation

Relational Expressions
Logical Expressions
Masking Expressions

ASSIGNMENT STATEMENTS

Arithmetic Assignment
Statements

Logical Assignment
Masking Assignment
Multiple Assignment

CONTROL STATEMENTS
GO TO Statement

Unconditional GO TO
Statement

Computed GO TO Statement
ASSIGN Statement
Assigned GO TO Statement

Arithmetic IF Statement

Three-Branch Arithmetic
IF Statement

Two-Branch Arithmetic
IF Statement

Logical IF Statement

Standard Logical IF
Statement
Two—Branch Logical
IF Statement

DO Statement

DO Loops
Nested DO Loops

CONTINUE Statement
PAUSE Statement
STOP Statement

10
10

11
11
11
11
11
11
11
11
12
12
12
12
12

13

13

13

13

14

14
15

15
16
16

Contents

6.8 END Statement
6.9 RETURN Statement
7. SPECIFICATION STATEMENTS
7.1 Type Statements
7.1.1 Explicit Type Statements
{ 7.1.2 IMPLICIT Type Statements
: 7.2 DIMENSION Statement
7.3 COMMON Statement
7.4 EQUIVALENCE Statement
7.5 LEVEL Statement
7.6 EXTERNAL Statement
7.7 DATA Statement
8. PROGRAMS, SUBPROGRAMS, AND
PROCEDURES
8.1 Main Programs
8.2 Block Data Subprogram
8.3 Procedures
8.3.1 SUBROUTINE Subprograms
g 8.3.2 FUNCTION Subprograms
o 8.3.3 Basic External Functions
T 8.3.4 Intrinsic Functions
P 8.3.5 Additfonal Utility Sub-
i programs
8.3.6 Statement Functions
8.3.7 Procedure Communication
9. INPUT/OUTPUT

9.1 FORTRAN Record Length
9.2 Carriage Control
9.3 READ and WRITE Statements

1 Formatted
«2 Unformatted

9.4 FORMAT Statements

9.5 File Manipulation Statements
9.6 BUFFER Statements

9.7 NAMELIST

9.8 ENCODE and DECODE

16
16

16
16

16
17

17 z
17 i
18
18
18
18

19

19
20
20

21
21
21
22
22

22
22

23

23
23
23

24
24

24
25
26
26

26
26

b= - e —— o PPN w—

contentS(Conﬁnued)

10. MISCELIANEQOUS MACHINE/ 26
SYSTEM DEPENDENCIES
11. SUMMARY OF FORTRAN STATE-~ 27
3 MENTS AND RECOMMENDATIONS
12. EXAMPLE PROGRAM 32
' 12.1 CNOISE Model Before 32
Application of Guidelines
12.2 CNOISE Model After Applica- 33
tion of Guidelines
13. CONCLUSION 36
14. REFERENCES 36
APPENDIX A. FORTRAN KEYWORDS 37
APPENDIX B. BASIC EXTERNAL 38
FUNCTIONS
APPENDIX C. BASIC INTRINSIC 39
FUNCTIONS ﬂ
APPENDIX D. FORTRAN STRUCTURES 40
‘ FOR EMULATING STRUC-

i TURED PROGRAMMING
‘ CONSTRUCTS

Guidelines for Coding FORTRAN Programs

1. Introduction
1.1 Scope

This document provides a set of conven-
tions to be followed when writing
FORTRAN programs. Adherence to these
guidelines should make it easier for
programmers to understand the programs
they write, especially when they review
them three weeks, three months, or
three years after their inception.
This increased understanding will also
allow developers to concentrate on
solving the problems that their pro-
grams were originally designed to
address, rather than resolving the
problems created by programming in an
arbitrary, undisciplined style.
Adherence to these guidelines should
make program maintenance less time-
consuming for the individual, and less
expensive for the organization
chartered with this responsibility.
Adherence to these guidelines should
also facilitate transferring a program
from one computer to another.

Most of the conventions contained here
are concrete and specific to facilitate
enforcement.

This document assumes that the reader
is conversant in FORTRAN, and thus does
not attempt to explain the purpose or
the meaning of FORTRAN statements and
assoclated constructs. Readers inter-
ested in achieving a better understand-
ing of the syntax and semantics of the
FORTRAN statements mentioned herein are
referred to the books by McCracken
(1972a) and Control Data Corporation
(1976) mentioned in the reference
section of this report.

The American Standards Institute (ANSI)
USA Standard FORTRAN X3.9-1966 was used
as a starting point in writing this

L am e T e e b S————n v m o a

Ty

document. Photocopies of this standard
may be purchased from the American
National Standards Institute, Inc.,
1430 Broadway, New York, NY 10018
(Telephone: (212) 354-3300). At the
time of writing, X3.9-1966 cost $24.95,
and X3.9-1978 cost $16.50, with a $4.00
shipping charge. USA Standard Basic
FORTRAN X3.10~1966 was not used because
most programs for the underwater acous-—
tics community do not run on the small
systems for which this standard was
designed. Although a more recent FOR-
TRAN standard (ANSI Standard X3.9-1978,
sometimes referred to as FORTRAN 77)
exists, we have chosen not to use it
because many FORTRAN compilers in the
Navy do not support it, even though it
was declared the approved standard on 3
Apr 78 and X3.9-1966 was withdrawn. The
new FORTRAN Standard was designed, how-
ever, to minimize con.licts with X3.9-
1966. We have modified this report to
further reduce these conflicts. Unfor-
tunately, adherence to these standairds
does not guarante: that programs will
be written clearly or concisely, or
will have a well-structured design. And
X3.9-1966 does not permit many desira-
ble FORTRAN constructs, such as speci-
fication of Hollerith characters with-
out character counts. To achieve maxi-
mum transferablility of software,
developers must consider other factors
not addressed by the standard, and even
avoid the use «. some statements per-
mitted by the standard. Because many
programmers may not be exactly sure
what i{s, or what is not, permitted bv
the ANSI standard, this document com-
ments on many commonly used constructs
which are not permitted by the stand-
ard, and specifically states when they
must be avoilded.

This document was developed by consid-
ering coding conventions suggested in
the works of Berkowlitz (1976), Flelss

(1974), Jacobs (1976), Ledgard (1978),
McCracken (1972a and 1972b), Roberts
(1969), Jensen (1979) and Yourdon
(1975), as well as the author's pro-
gramming experlence. At times, it was
necessary to choose between conventions
that appeared to have equal merits, byt
which were either conflicting or incon-
sistent with one another.

For ease of reference, the guidelines
have been arranged In the order that
the subjects would normally be covered
in a FORTRAN reference manual. Pre-
ceding each coding convention described
in this document is a letter: M, S,

or L. An M next to a convention indi-
cates that it must, in the author's
opinion, always be followed. Any vio-
lations of such a convention must be
approved by the individual in the
organization who is responsible for
enforcing the coding guidelines. An S
indicates the coding convention should
be followed whenever possible. An L
indicates that it would be helpful to
follow this convention because it most
likely would improve program clarity.

Section 11 provides a summary of the
possible FORTRAN statements, indicates
the sections of this document where
they are discussed, and offers overall
recommendations concerning their use.

Section 12 is divided into two parts.
The first part shows the original
coding of an ambient noise model
(CNOISE). This code was written prior
to the formulation of the guidelines
suggested herein and is an actual
model, rather than an example designed
exclusively for this report. It is
typical and, in many respects, better
than most of the coding found today.
Its major deficiency 1s the general
lack of comments. The second part
shows this same program after being
revised to abide by the guidelines
described herein.

Appendix D describes in detail how to
emulate the control structures of
structured programming (Jensen (1979),
Yourdon (1975)). Exclusive use of
these structures is highly recommended.

Their value has been well-established
by the software engineering community.

This document was designed to serve as
a guideline to be followed by private
contractors and other organizations
when writing FORTRAN programs in sup-
port of the SEAS Project Office. The
need for this document was clearly
indicated by the lack of attention many
software developers gave to the clar-
ity, transportability, and maintain-
ability of their progams. This neglect
needlessly resulted in high program
conversion costs, numerous malntenance
headaches, and untold hours of wasted
time trying to decipher the meaning of
uncommented, spaghetti-like logic.
Since other organizations have similar
problems, it is hoped that this docu-
ment will prove to be useful to them as
well. It {s believed that even a
casual reading of this document will
improve most programmers' style.

2. Coding Fortran Statements
2.1 General Remarks and Suggestions

M - All source code must (whenever
possible) be written in a subset of
American National Standards Insti-
tute (ANSI) FORTRAN, as described
in X3.9-1966. The limits of this
subset are defined below.

M - Extensions to the above standard
must not be used, unless 1lmplemen-
tation of the program is impossible
without their use. (Some manufac-
turers, e.g., Control Data Corpora-
tion, have compilers that will
check for and flag noncompliance
with the ANSI standard.)

M - If the conventions described herein
are adopted as standards by an
organization, any violation of
those conventions designated by the
letter M must be approved by the
individual appointed to enforce
them. Standards that are not
enforced are useless.

M - Don't subvert the intended purpose
of the language, i.e., avoid pro-
gramming tricks.

——

[

M - Do not write programs that modify
themselves as they execute.

For each installation and applica-
tion, users should follow an
adopted set of standard variable
names. This procedure will make
programs easler to understand and
interface, if required, at a later
time.

S - Build as many error checks into the
program as possible, under the
assumption that it will do some-
thing incorrectly. This will help
reduce debugging time.

S - Avoid having one module (group of
statements that perform a specific
function) "fall" into another. It
is better to have explicit
transfers between modules than to
rely upon the sequential execution
of code.

S - Adopt the KISS (Keep 1t Simple,
Stupid) philosophy. Always use the
simplest language features that
will solve the problem adequately.

S - Design the program listing so that
it is pleasing to the eye.

S - Avoid including more significant
digits in the output of a program
than can be justified by its

input.
2.2 FORTRAN Character Set
M - Do not use characters other than:
= equal sign) right parenthesis
+ plus sign , comma
* agterisk . decimal point
/ slash - minus sign
(left parenthesis blank

alphabetic (A-Z)
' apostrophe

numeric (0 to 9)

Only these characters are permitted by
the ANSI standard X3.9-1978. The quote
(") and not-equal (#) symbols are not
permitted. The currency symbol (§)

was permitted by X3.9-1966 but the
apostrophe (') was not.

23

2.4

FORTRAN Statements

LORTRAN keywords must be clearly
set off by a blank character or
other separator to improve program
clarity.

The executable statements in the
range of a DO loop must be indented
at least three spaces from the DO
statement and terminating CONTINUE
statement.

FORTRAN statements should be
numbered in columns 73-80.
facilitates communication of
updates and reconstruction of
dropped decks.

This

All elements related to a specific
level of the control structure
should be aligned to the same
column.

All dependent processes associated
with a structure should be indented
by a fixed amount, usually two to
five spaces. The optimum amount is
three spaces. The dependent proc-
ess could also be a control struc-
ture, in which case processes sub-
ordinate to the dependent control
structure should again be indented
to indicate their relative position
in the structure.

Continuation Lines

Do not use more than nine (9) suc-
cessive continuation lines. Nine-
teen is the maximum permitted by
the ANSI standards 3.9-1966 and
X3.9-1978. But the subset language
of X3.9-1978 permits only nine.

Continuation lines must be desig-
nated by nonzero alphanumeric char-
acters in column 6. They must be
numbered sequentially, starting
with 1 through 9, then, if needed,
go A through K. Column 7 of a
continuation line must always be
left blank, except when this pre-
vents outputting a Hollerith string
begun on the previous line. This
step 18 especially important in

25

26

FORMAT statements, since the inte-
gers in column 6 could be adjacent
to integers in format fields,
thereby reducing readability. For
example, 25X where the 2 is in
column 6 might be incorrectly
interpreted as ''skip 25 blanks.'

Columns 1-5 of a continuation line

must contain blanks. This step 1s

included to increase agreement with
X3.9-1978. :

Statement Separator

Do not put more than one statement
on a line. Use of more than one
statement per line can make pro-
grams extremely difficult to read.
Also, it 1is not permitted by the
ANSI standard.

Statement Labels

Statement labels (numbers) on
statements (other than FORMAT
statements) which are not trans-
ferred to from other points in the
program must be eliminated from the
source code. Extraneous labels
make programs difficult to read and
debug.

Assign statement numbers in ascend-
ing sequence of value, initially by
10's or 100's, so that additional
statements can be inserted without
renumbering.

Statement-label numbers must appear

only on CONTINUE and FORMAT state-~
ments; e.g.,

100 CONTINUE
B = SQRT(A+C)
not
100 B = SQRT(A+C)

Do not put a statement number on an
END statement. Its use on an END
statement 1s not permitted by ANSI
standard FORTRAN.

The statement labels used in a con-
trol statement must be associated
with executable statements within

27

the same program unit in which the
control statement appears.

Keep statement numbers from one to
four digits in length. Although
ANSI X3.9-1966 FORTRAN permits up
to five digits, four digits seems
adequate and helps to prevent
errors due to diglits accidentally
being typed in column 6.

Make all FORMAT statement numbers
begin with the digit 9 and total
four digits.

Statement-label numbers should be
left justified in columns 2 through
5. This will help to prevent
errors that can occur when one of
the digits is accidentally punched
in column 6. Also by starting in
column 2, the first digit stands
out more clearly than if the number
started in column 1, since often
there are comment cards, with Cs in
column 1 befcrc and after this
card.

Comments {Also see Sect. 8.1)

All comment cards must begin with C
in column 1. Other comment indica-
tors, such as /, *, and $§, are not
permitted by the ANSI gtandard.

Programs must be divided into
sections, each of which performs a
given task. Before each section,
comment cards must briefly describe
the task being done by the section.

Include enough explanatory comments
so that the reader can easily fol-
low the code. Consider commeats to
be the equivalent of the text of a
book. A well-documented FORTRAN
program will often have more com-
ment statements (C-statements) than
executable statements. Contrary

to some people's belief, comment
statements do not slow down the
execution of a program. Thelr
absence, however, significantly
impedes human comprehension.

Groups of comment statements must
be set off by at least one blank

.
- — ————

by

comment card before and after the
group.

Write comment statements so that
they will help the reader to under-
stand the program. A program
comment of the form "add 1 to N"
before the statement N=N+l1 is no
help. The goal is to anticipate
the questions the reader will have
and to answer them in advance.

Display comments so that they will
stand out clearly.

Do not refer to specific statement
labels (numbers) in comment state-
ments or in FORMAT statements (for
debugging printout for example).
Because the program may be rese-
quenced later, such comments and
printed messages could, as a
consequence, become incorrect and
grossly misleading.

Each major decision point in a
subroutine or main program must
have comment cards explaining the
decision.

Do not extend the text of comments
into columns 73 through 80, because
these columns may be used to
sequence the card deck at a later
time.

Arrange code and comments into
visual groups reflective of the
program logic.

Break up long routines into sub-
divisions. Each subdivision might
correspond to a chapter in a math-
ematical textbook, with numerical
labels and subheadings. Display
these subdivisions by using special
columns and "ruling lines across
the page,” that is, comment state-
ments containing complete rows of
dashes, asterisks, etc. Actually,
if routines are well written they
should not be so long as to make
this procedure necessary.

Whenever 2 difficulty can be
foreseen, insert a “"warning” com-
ment which 1is easily visible in the

listing, e.g., by using asterisks
or by punching WARNING in columns
that are normally blank.

S - When using identation, keep the
spacing conventions as consistent
as possible.

S - Programs should be "commented” as
they are written, not afterward.
This will help expose errors in
logic and inadequacies in the code.
Also it should be easier to anno-
tate a plece of code while it is
fresh in one's mind as opposed to
several days (or weeks) after it is
written.

S - Meaningful comments should be added
to critical sectlons of code, but
care should be taken not to
detract the reader's eye fram the
code itself.

L - Use blank space liberally, both
inter-line and intra-line.

2.8 Blank Lines

M - Do not use blank lines. Instead
use a blank line with a C in column
one. Some compilers do not accept
completely blank lines.

M - Make heavy use of blank lines (with
a C in column one) to improve
program clarity. They are espe-
cially useful for separating
modules of a program and highlight-
ing critical sections.

3. Language Elements
3.1 Constants

M - Use only integer, real, double
precision, complex, logical, and
Hollerith constants. Only these
constants are permitted by ANSI
standard X3.9-1966.

S - Whenever possible, constant data
items should be isolated in DATA
statements. This separation leads
to greater readability and easier
program modification.

e e j

Edag

- ————

3.1.1 Integer Constants

No recommended guidelines.

3.1.2 Real Constants

M -

Do not divide by 0.0, as it is

not permitted by the ANSI standards.
Division by zero may result in
values such as O., 10“41, etc.,
depending on the system.

3.1.3 Double Precision Constants

No recommended guidelines.

3.1.4 Complex Constants

No recommended guidelines.

3.1.5 Octal Constants

M -

Do not use octal or hexadecimal
constants, such as 525B, in FORTRAN
programs. These, unfortunately,
are not permitted by the ANSI
standard. This constraint is indeed
regrettable because an octal con-
stant can often be more easily
understood than a real constant
when doing operations such as mask-
ing and shifting. Their use, how-
ever, could reduce the transfer-
ability of the program.

3.1.6 Hollerith Constants

M - Hollerith constants used in expres-

sions and data statements must not
have more than four, nor less than
one, characters, e.g., 4HABCD is
permissible but H6HABCDEF i{s not.
This restriction is due to the
limited word length of some
machines.

Do not use right-justified with
binary zero fill (NRf) or left-
justified with binary zero fill
(NLf) Hollerith constants, e.g., do
not use

A = 4LABCD or A = 4RABCD.

Although these constructs are very
valuable, they are not allowed by
ANSI standard X3.9-1966.

M~

Do not use Hollerith constants in
statements other than in the
argument of a CALL statement or in
a data statement. Their use in
other statements is not permitted
by the ANSI standard X3.9-1966.

Avoid use of the apostrophe or
other characters, such as * or §

to establish limits of size of
Hollerith constants, e.g., A =
'ABCD'. Although this construct is
extremely valuable and time-saving,
it, regrettably, is not permitted
by ANSI Standard X3.9-1966.
Apostrophes are permitted by ANSI
X3.9-1978 (see section 9.4).

3.1.7 Llogical Constants

M -

3.2

M -

Do not use .T. or .F. to designate
logical constants, use only .TRUE.
or .FALSE. The abbreviated forms
are not permitted by ANSI Standard
X3.9-1966.

Put a blank character on either
side of a logical constant to
improve readability. For example,

LOGICAL X1, X2
Xl = OTRUEO
X2 = L.FALSE.
Variables

Variable names must have no more
than six alphanumeric characters
and no speclal characters. This
restriction is unfortunate, but
necessary, due to the inadequa-
cles of some FORTRAN compilers and
the definition of ANSI standard
FORTRAN X3.9-1966.

The characters of a name must not
be separated by blanks.

The first character of a variable
name must be alphabetic.

The standard naming conventions,
namely, using the letters A through

H and O through Z as the first
characters of real variables, and 1

throvegh N as the first characters
of integer variables, must be used
and not overridden.

Variables that are never used in a
program or a routine must be
eliminated. Thelr presence reduces
program readability and wastes
storage space.

Variable names must not correspond
to FORTRAN keywords. A table of
FORTRAN keywords is provided 1n
Appendix A.

Variable names must be as descrip-
tive as possible to improve read-
ability, e.g., the variable name
for the number of ships should be
NSHIPS, not simply N, or NS.

All variables must be clearly
defined before being used in state-
ments. Programmers must not assume
that variables are initialized to
zero (or any other value) at the
beginning of a job.

Do not put part of a variable name
on one line and the rest of it on a
continuation line below. Keep
variable names on the same line.

Variables ending with the letter O

should be avoided. This letter has
a tendency to be confused with the

number zero.

One should not use the same vari-
able name in different contexts to
save memory space. Doing so is
confusing to the reader and leads
to massive confusion if someone
later changes any of the meanings.
Modern computers typically are
never so storage-space-limited that
this practice is justified, except
possibly for very large arrays.

Use symbolic variables, rather than
integer constants, for array dimen-
sions in the text, e.g., in DO-
loops, IF statements, I/O lists,
etc. Put them all together in
COMMON, and initialize them all in
one routine. Then only this routine

and the COMMON/DIMENSION statements
need be altered if the dimensions
need to be changed, e.g., to put
the program on a smaller machine.

S - Avoid changing variable names
across subroutine boundaries. For
example, when passing a parameter
from one routine to another, do not
change its name unless it is
unavoidable. Changing names across
boundaries makes the program less
readable.

3.2.]1 Integer Variables

M - All integer variables must begin
with the letter I, J, K, L, M,
or N.

S - In general, counters (variables
which are incremented and tested)
should be integer. The increment-
ing and testing of integers is
faster than the incrementing and
testing of flnating point (real)
numbers.

3.2.2 Real Variables

M - All real variables must begin with
one of the letters A through H, or
O through Z.

3.2.3 Double Precision Variables

M - Do not use the implicit declaration
of double-precision variables.

3.2.4 Complex Variables

M ~ Do not use integer complex vari-
ables. They are not permitted by
the ANSI standard.

3.2.5 logical Variables
No recommended guidelines.

3.3 Arrays

S - The total storage for any one array

should not exceed 32767 (decimal)
words .

S - The number of subscripts of an
array in a calling program should

be the same as the number of
subscripts of the corresponding
array in the called subroutine.

For example, passing a two-
dimensional array to a one-
dimensional array via a subroutine
call is a confusing and error prone
practice and should be avoided.
That 1s, avoid constructs such as

PROGRAM A
DIMENS ION 8(10,10)

CALL SUBL (B)
END

SUBROUTINE SUBl (C)
DIMENSION C(100)

RETURN
END

This is not a "must” because there are
instances, where this procedure is very
valuable, such as when one wishes to
operate on columns of a multidimen-
sional array with a column-oriented
subroutine. Also the indexing problem
is minimal, since virtually every
machine stores arrays in the same
column-wise manner in accordance with
the following table from ANSI Standard
X3.9-1966:

Value of a Subscript

Dimen Subscript Subscript Maximum

sionality Declarator Subscript Value Subscript Value

1 14 () v A

14 8y [N} g A (0 1) (A B
i 4 KO fa b) u+A (b V)
CC I P P b }

NOTES
(V) 0 1 and ¢ are subsc ipt expressions
12) 4 H and « are dim: 300

3.3.1 Subscripts

M - The number of subscripts in an
array appearing in an executable
statement must always equal the
number of declared dimensions of
the array, except in an EQUIVALENCE
statement .

M -

Do not use expressions other than
the following for subscripts:

C*V+K
C*V-KX
C*v
V+K
V-K

R <

where V is an integer variable, and
C and K are integer constants.
These are the only subscript
expressions permitted by ANSI
standard ¥3.9-1966.

Subscript bounds must never be
exceeded. A subscript must never
be given a value less than one or
larger than the maximum length
specified by the upper bound
declared for that subscript. This
rule is included to increase agree-
ment with X3.9-1978.

Never use more than three sub-
scripts. This number is the
maximum permitted by the ANSI
standard X3.9-1966.

Do not use implicit indices for the
first element of an array. For
example, for a singly dimensioned
array A, declared by

DIMENSION A(5), use
TEMP = A(l)

not
TEMP = A

The lack of parentheses makes the
program significantly less readable.

If the installation's compiler has
an array subscript checking feature
use 1it, at least during the initial
testing phases of the program
development. Since the automatic
array subscript error checking fea-
ture tends to slow down a program
considerably, it may be desirable
to turn it off during production
runs.

L ———

3.3.2 Array Structure

S - Avoid making assumptions regarding
the sequential order in which array
elements are stored in memory. For
example, avoid using data state-
ments of the form

DIMENSION A(2,3)
DATA A/1.,2.,3.,6.,8.,9./

4. Expressions

4.1 Arithmetic Expressions

4.1.1 Evaluation of Expressions

M - Never assume that some finite

value, e.g., 0.0, will be
substituted for a division by O.

<4
|

Always check, 1if possible, for the
case when the denominator of an
expression is zero.

M - Do not use ambiguous statements
such as N+FUNC(N)*N where FUNC(N)
alters N. The results of such a
statement depends upon the compiler
scanning algorithm. 1If the
original value of N is not stored
in a temporary location, FUNC(N)
may destroy it.

<<
|

Make heavy usage of parentheses to
improve program clarity. There is
no penalty in modern compilers for
use of unnecessary parentheses.

Do not rely upon the left to right
evaluation of arithmetic expres-
sions. For example, write the
expression A/B*C as (A/B)*C, even
though it 1s defined this way
according to the ANSI standard.
Some individuals might think it
means A/(B*C). Leave no possible
doubt as to what the compiler will
do.

S - Break long arithmetic expressions
into several simpler expressions.
That is, by using intermediate
variables, break an assignment
statement having a long arithmetic
expression into a series of assign-
ments each of which has a simpler

expression. This will improve pro-
gram readability. For example,
instead of writing

A=(B*C)+(((3**D)/(=3))*X)+(Y*4)

P1=B*C
P2=X*((3**D)/(-3))
P3=Y*4

A=P1+4P2+P3

write

L - Polynomials such as A*X**4+B*X**3+
C*X**2+D*X+E should be programmed
as E+X*(DHX*(CHX*(B+X*A))) when
efficiency is important. The
expanded form is preferable when
efficiency 1s not important because
it is more readable.

4.1.2 Type of Arithmetic Expressions

M - Mixed mode expressions must be
avoided, e.g., do not use A+B/C+
D/7+E/4+F instead of A+B/C+D/7.0+
E/4.0+F, or RCUT + NORDER*PERD
instead of RCUT + FLOATF(NORDER)*
PERD. .ne ANSI standard does not
permit mixed mode expressions.

4...3 Exponentiction

M ~ Integer expressions must be raised
to only integer powers, never real
powers.

M - Do not use double exponentiation
without parentheses, e.g., A*¥*B*%(,
This form is not defined in the
standard, so it may be implemented
as A**(B**C), or (A**B)**C. If it
is necessary to use double exponen-
tiations, use parentheses to
explicitly define the meaning
intended.

4.2 Relational Expressions

The relational operators are: .GT.
(greater than), .GE. (greater than or
equal to), .LT. (less than), .LE. (less
than or equal to), .EQ. (equal to), and
.NE. (not equal to). Relational
expressions have the form Al OP A2,
where Al and A2 are arithmetic or
masking expressions, and OP is a rela-
tional operator.

o ———

M - Relational operators must compare
only integer expressions with inte-
ger expressions or real expressions
with either real expressions or
double precision expressions. Only
these comparisons are permitted by
the ANSI Standard X3.9-1966.

M - Do not use masking expressions with
relational operators to form rela-
tional expressions. For example,
do not use expressions such as (A
.AND. B) .GT. (M .AND. .NOT. 77B).
Masking expressions are not permit-
ted by the ANSI X3.9-1966
standard.

M - Do not use relational operators for
expressions of a COMPLEX data type.
For example, do not use expressions
such as AMT .LT. (1., 6.55). Use
of expressions of the COMPLEX data
type in this context is not defined
by the ANSI X3.9-1966 standard.

M - Put at least one blank space on
each side of a relatiomal operator.
to improve piogram readability,
e.g., A .GT. B.

4.3 Logical Expressions

Logical expressions have the form L1 OP
L2 OP L3...0P LN, where L1, ..., LN are
logical operands or relational expres-~
sions and OP is a logical operator.

The logical operators are .AND., .OR.,
and .NOT..

M - Do not use .N. for .NOT., .A. for
«AND., or .0. for .OR. These
abbreviations are not permitted
by ANSI Standard 3.9-1966, and they
make programs difficult to read.

M - Put a blank character on each side
of a logical operator to improve
program readability.

M - When an IF statement contains
compound conditions, parenthesize
the separate simple conditions to
make the range and strength of the
logical operators (.AND., .OR., and
.NOT.) crystal clear. If there are
more than two simple conditions,
use continuation cards to put each

continuation on a separate line
and align conditions vertically.

S - Avoid unnecessarily complicated
logical expressions, e.g.

IF (A .AND. B .OR. .NOT. C) GO TO 6

S - Avoild negative logical expressions
whenever possible. Their positive
equivalents are generally easier to
understand. For example, instead of
writing

IF (.NOT. FLAG) GO TO 10
X =Y
GO "0 20
10 CONTINUE
A =8B
20 CONTINUE

write

IF (FLAG) GO TO 10
A =B
GO TO 70
10 CONTINUE
X =Y
20 CONTINUE

L - Use only logical variables or
logical constants with logical
operations. This approach is
recommended only to achieve maxi-
mum portabllity of programs through
compliance with X3.9-1966.

4.4 Masking Expressions

Masking expressions are similar to
logical expressions, but the elements
of the masking expression are of any
data type (variable, constant, or
expression) other than logical.

S - Avoid use of masking expressions
(e.g., do not use: KAY .OR. 63, or
«NOT. 55). This guideline is
suggested because such expressions
are not permitted by the ANSI
X3.9-1966 standard, and also
because they often depend upon the
word-length of the computer. Both
of these factors reduce program
portability. This constraint is
indeed unfortunate, since masking
operations are extremely useful for

T

-

<t 2

bit-oriented operations, which are
awkward to verform in FORTRAN in
any other manner.

5. Assignment Statements
5.1 Arithmetic Assignment Statements

M - Do not use assignments of the form
A=B, where (1) A is of the integer
data type and B is of a complex
data type, (2) A is real and B is
complex, (3) A is double precision
and B is complex, or (4) A is com—
plex and B is anything but complex.

S - Avoid "run-on" equations. When
possible, divide large equations
into meaningful parts. This
approach will help improve program
clarity.

S - Do not use assignment statements
requiring implicit conversion to
REAL or INTEGER values. This
should help avoid problems arising
from rounding upon assignment to
variables. For example, avoid
expressions such as XI =1 + 1 or
I =J+ 1.5

S — Put at least one blank character on
either side of each equal (=) sign,
to help improve program readability.

5.2 Logical Assignment
No recommended guidelines.
5.3 Masking Assignment

S - Avoid the use of assignments of the
form V = masking expression. This
type of assignment is not permitted
by the ANSI standard, and the
portability of programs is reduced
by its use.

5.4 Multiple Assignment

M - Do not use assignments of the form
VeV =Vy =V3..,= expression.
For example, do not use X =Y =
Z =4, This type of expression is
not permitted by the ANSI standard.
Also, its meaning can be ambiguous

LA

L

and depend upon the order in which
it is evaluated.

6. Control Statements

6.1 GO TO Statement

M - Do not use the GO TO statement to
achieve small gains in efficiency
and thereby sacrifice program
clarity.

M -~ Always put a blank character
between the keywords GO and TO
when using a GO TO statement.
Also, put a blank to the right of
TO and GO. For example, use GO TO
5, not GOTO 5.

6.1.1 Unconditional GO TO Statement

S ~ GO TO statements should be avoided
wherever possible. Programs con-
taining excessive GO TO's are
inherently difficult to document
and understand, since they tend
to have spaghetti-like logic. If
the GO TO statement is used, it
should be used in a highly-
controlled manner.

S - Where possible, use a DO loop, an 7
IF statement, or a built-in func-
tion in lieu of a GO TO statement.

Example 1 (due to Ledgard and Chmura,
see references)

Instead of:

10 CONTINUE
IF (N .GT. M) GO TO 20
N=N+1
GO TO 10

20 CONTINUE

Use:
DO 10N =1, M

10 CONTINUE

Examgle 2

Instead of:

Use:

Or,

IF (A .GT. B) GO TO 10
C =B -A
GO TO 20
10 CONTINUE
C=A-8B
20 CONTINUE

C=A-8B
IF (C .LT. 0.) C = -C
better still, use:

C = ABS(A - B)

6.1.2 Computed GO TO Statement

M -

Do not use an arithmetic or masking
expression in a computed GO TO
statement. Use only an integer
variable. For example, do not use
G0 TO (10, 110, 11, 12, 13), X/Y.
Use of the latter is not permitted
by ANSI standard X3.9-1966.

The right parenthesis of a computed
GO TO statement must always be
followed by a comma to comply with
X3.9-1966. For example, use

GO TO (10, 20, 30), L
not
GO TO (10, 20, 30) L

Do not assume that an incorrectly
computed GO TO variable will result
in a default condition such a
"falling through.” For example, do
not use statements such as GO TO
(100, 200, 300), M where M is 4.

If a flag has more than three
values and is used for transfer of
control to one of N locations, a
computed GO TO statement is clearer
than testing with multiple IF
statements. For example, use

GO TO (10, 20, 30, 40, 50, 60), L
not
IF (L-2) 10, 20, 25

25 CONTINUE
IF (L-4) 30, 40, 45

45 CONTINUE
IF (L-6) 50, 60, 65
65 CONTINUE

S - Check each computed GO TO statement
for an out-of-~bounds value of its
index variable.

S - Avoid using the computed GO TO
statement, except to simulate
the CASE statement of structured
programming as described in
Appendix D.

6.1.3 ASSIGN Statement

M - Do not use the ASSIGN statement.
6.1.4 Assigned GO TO Statement

M - Do not use the assigned GO TO
statement. It is a form of a pro-
gram modifying itself, and it makes
programs difficult to comprehend
and debug. For example, when one
sees an assigned GO TO statement in
a listing, one has to make an extra
effort to determine to where that
statement transfers control. These
disadvantages outweigh any small
advantages that may be gained in
CPU time and memory savings. Also
it 18 always possible to do the
same thing another way, e.g. using
a computed GO TO statement or an IF
statement.

6.2 Arithmetic IF Statement
6.2.1 Three-Branch Arithmetic IF Statement

M - Use a three-way branch IF statement
only when the three branches are
distinct, e.g., IF (A-80.) 500,
600, 700 is acceptable, but
IF (A-80.) 500, 500, 700 is not.
Instead use

IF (A .GT. 80.) GO TO 700
GO TO 500

M - The expression of an arithmetic
IF statement must be either
integer, real, or double precision.

S - The expression in an IF statement
should explicitly include all
levels of parentheses for clarity.)

e

-

—— -

L - When testing a variable that can
assume N possible values, include
an (N+1)st check for the possibil~
ity that the variable has assumed
an illegal value.

6.2.2 Two-Branch Arithmetic IF Statement

M - Do not use the two-branch IF
statements, e.g., do not use
IF (X*Y) 10, 20. It is not
permitted by X3.9-1966.

6.3 Logical IF Statement

6.3.1 Standard Logicol IF Statement

This statement has the form

IF (eir) stat, where eir is a logical
expression and stat 1s an unlabelled
executable statement other than DO,
END, or another standard-form logical
IF statement.

S - Avoid testing floating-point
variables for equality, since the
results can be misleading and
machine dependent. Due to the
inherent inaccuracies of floating-
point representations, it may
happen that a test for a specific
number will fail when the user
would think it should pass. For
example, A = 1.-3.0/3.0 may result
in A being set to 0.0000001 and a
subsequent test for (A .EQ. 0.)
would fail. Instead of the test

IF (A .EQ. B) GO TO 2
use a statement like
IF (ABS(A-B) .LE. 1.E~08) GO TO 2.

Tests for greater-than-or-equal-to
or less-than-or-equal-to are pre-
ferred to tests for equality. This
guideline is not a "must” because
in some circumstances the value of
the variable may have been pre-
viously set to an "exact” value.

S - In IF statements of the form
IF (A .AND. B) (statement) do not
asgsume that both A and B will be

13

6.3.2 Two-Branch logical IF Statement

M - Do not use the two-branch logical

o

v

evaluated because, according to the
ANSI Standard 3.9-1966, they don't
have to be. For example, on the
Univac 1108 system, if A is false,
B is not checked for 1its status and
the test fails. On the CDC 6600
system, both A and B are checked.
As an example, if C is an array of
size N and if core 1is preset to
negative infinity, the statement

IF ((I .LT. N) .AND. (C(I) .LE.
C(I+1))) GO TO 100

would abort on the CDC machine if
I = N when C(N+l) was evaluated,

but it would not abort oan the Uni-
vac system. This problem could be
avolded on the CDC system by f
replacing 1t with

IF(I .GE. N) GO TO 20
IF(C(I) .LE. C(I+l)) GO TO 100
20 CONTINUE

If a few statements are to be
executed only if some condition is
met, it is a simple matter to set

a logical value TRUE if the con-
dition is true, and then use a
series of logical IF's containing
just that logical variable as the
logical expression. The loss in
computer time involved in repeating
the test of the logical variable is
very small in most cases, and will
be more than compensated by
increased clarity. This step helps
avold use of the GO TO statement.

Examgle

OK = .TRUE.

IF((I .GT. N) .OR. (I .LT. 1)) OK =
.FALSE.

IF(OK) A(I,J) = TEMP

IF(.NOT. OK) WRITE(6,9110) I

IF(.NOT. OK) NERROR = NERROR+1

IF statement. For example, do not
use statements such as

IF (K .EQ. 100) 60, 70.

This statement is no: permitted by
the ANSI X3.9-1966 standard.

S —

6.4 DO Statement

6.4.1 DO loops

M

DO loop variables must not be
assigned a new value within the
range of the DO-loop. Specif-
ically, mj, mp, and m3 should
never be changed while executing a
DO-loop of the form

DOn I =m, my, mjy

or

DOn I = m, mp.

Altering a DO parameter within a
loop may produce varying results,

depending upon how the DO-loop
feature was implemented in the com-
pller (pre-test, post-test, index
in core, index in register, etc.).
Changing of the DO-loop variables
is not permitted by the ANSI
standard. For example, do not
write code such as

DO 15 K = 1,10

K =K+ 1
WRITE(S, 2)K

15 CONTINUE

2 FORMAT (15)

Do not use nonpositive indices (I,
m;, my, m3) in DO-loops.

Loops 1in the form DO 10 I = K,J
where J is less than K may or may
not be executed once, depending
upon where the test for completion
is made. Non-zero values of these
indices are not permitted by ANSI
standard X3.9-1966. Although
statements such as DO 10 I = 0,1
are permitted in Univac FORTRAN,
they are not legal in CDC FORTRAN.
Instead, replace such constructs
with

DO 10 II = 1,2
I = 1I-1

The effects of negative incre-~
menting such as DO 10 I = NP,1,-1
can be achieved with the statements
such as

DO 10 ID = 1,NP
I = NP+1-ID

14

M - Do not use real variables as DO-
loop indices. Although some
machines, such as the Burroughs
B5500, permit this feature, it 1Is
not allowed by the ANSI standard.

M - To improve prugram clarity, the
executable statements in the range
of a DO Jcop must be indented at
least three spaces from the DO
statement and terminating CONTINUE
statement. Three spaces allow the
"DO" to stand out, and nested luops
will not deprive the programmer of
too many card columns. For
example, a DO-loop must appear as
follows:

DO 10 I =1, NSHIPS
Statement - 1
Statement - 2

Statement - n
10 CONTINUE

Do not assume that a DO-loop is
always executed once.

M - Test for the case of zero 1itera-
tions of a DO-loop, 1f this occur-

rence {s a possibility. For
example:
IF((X-J) .LE. 0) GO TO 1
DO 6 M = J,K

6 CONTINUE
1 CONTINUE

M - Do not assume that if m is
greater than mj, the loop will be
executed once. For example, the
scope of DO 10 I=4, N where N=3 may
not be executed once.

M - Always put a blank character
between the keyword DO and the
statement number following 1t, and
between the statement number and
the looping variable following it
to improve clarity. For example,
write DO 10 I =1, 30, not
D0101=1,30.

M -

Do not use large numbers as DO
indices. Example: DO 10 I=1, N
where N=2**17, The maximum size
for a looping index must not exceed
2%*)5-1, i.e., 32767. Although the
ANSI standard does not specify a
value, thls size is the maximum for
some CDC FORTRAN compllers.

Every DO statement must refer to
its own unique CONTINUE at the end
of its range. Some compilers put
special restrictions on nested
DO~loops that terminate on one
statement. The XDS Sigma 5/7, for
instance, only allows the innermost
DO to transfer directly to its
termination point.

Do not assume a value of a DO index
outside a DO loop if the loop ter-
minated because the control varia-
ble is greater than its associated
terminal parameter. In this case
the ANSI Standard X3.9-1966 says
its value 1s undefined. If the
loop was exited by a GO TO state-
ment or an arithmetic IF statement,
i.e., by not satisfying the loop,
the control varlable is defined and
is equal to the most recent value.

Do not transfer into a DO range.
Although such a transfer was per-
mitted by X3.9-1966, it is not per-—
mitted by X3.9-1978. The range of
a DO loop may be entered only by
the execution of a DO statement.
Also, most compilers do not guaran-
tee the results of such illegal
transfers.

Invariant expressions should be
factored out of DO loops to improve
efficiency and program readability.
For example, instead of

DO 25 K = 1,30
C = 3.0
A(K) =C
25 CONTINUE

write

cC =3.0
DO 25 K = 1,30
A(K) =C
25 CONTINUE

T T B B L K B S T IR T 5 s 0 .

15

g ———

S -

Parameterize DO loop indices rather
than using literals whenever pos-
sible. For example, use

DO 10 I = NL, NH Instead of

DO 10 I = 100, 325.

6.4.2 Nested DO Loops

M -

pTe— e -

Do not use the same single CONTINUE
statement to terminate nested DO
loops. Always end each DO Loop
with its own unique CONTINUE
statement. This convention should
help isolate bodies of DO loops and
thereby lead to a clearer code.

For example, instead of

DO 10 I=H,L
DO 10 K=KL,KH

10 CONTINUE
use

DO 10 I =4, L
DO 20 K = KL, KH

20 CONTINUE
10 CONTINUE

DO loops must not be nested more
than 25 deep. Although the ANSI
standard does not have a limit,
certain IBM FORTRAN compilers have
25 as an upper limit. As a
practical matter and to preserve
readability, DO loops should not be
more than four deep.

The range of a contalned DO must be
a subset of the range of the con-
taining DO.

CONTINUE Statement

Always end each DO loop with its
own unique CONTINUE statement.

Use CONTINUE statements liberally
to improve program clarity and
to facilitate debugging.

Put blank comment statements before
and after each CONTINUE statement
that is a major decision point in

6.6

6.7

M -

68

program. Add additional comment
statements to explain the decision
being made.

PAUSE Statement

Do not use the PAUSE statement.
Some computer facilities do not
permit 1ts use, even though it 1is
pernitted by ANSI Standard
X3.9~1966.

STOP Statement

Do not use the form of the stop
statement, STOP #C...C#, where
C...C is a string of characters.
Use only the simple four-character
STOP, or STOP n, where n is an
actual digit string of length one
to five. The character form is not
permitted by ANSI Standard X3.9-
1066,

END Statement

Do not put a statement label
(number) on an END statement.
S5uch a label 1is not permitted by
the ANST standard.

Every program must physically
terminate with an END statement.

RETURN Statement

Do not use return statements of the
form RETURN 1. This form is not
permitted by the ANSI standard.

Use only the six-character form,
RETURN.

Do not use a RETURN statement in
the main program. A RETURN state-
ment may appear only in a procedure
subprogram, according to ANSI
Standard 3.9-1966.

Use at most one RETURN statement
per subroutine. Although the use
of more than one RETURN is permit-
ted by the ANST standard, it can
lead to poorly structured programs,
since it defeats the one-in one-
out principle of structured pro-~
gramming.

- oo —

16

M - A RETURN statement must be used
only as the last executable state-
ment of a subroutine or function.
This convention will help produce
one-in/one~out control structures.
Some machines permit the END state-
ment to act also as a normal RETURN
statement, but other machines
require at least one RETURN state-
ment before the END. Always
include the RETURN statement.

1. Specification Statements

M - Keep all specificatic statements
at the beginning of routines (pro-
grams, subroutines, or functions).

M - When used, specification statements
must appear {n the following order:

TYPE

DIMENS ION

COMMON

EQUIVALENCE {(to be avoided, if
possible; see Section 7.4)

M - Do not scatter specification
statements. Group all DIMENSION
statements together. Similarly,
group COMMON blocks and DATA
statements together. Incremental
compilers cannot handle scattered
type, DIMENSION, and DATA state-
ments; yet this form of compiler
is desirable from a speed/user
interface standpoint.

7.1 Type Statements
7.1.1 EXPLICIT Type Statements

M - The only data types permitted are
INTEGER, REAL, DOUBLE PRECISION,
COMPLEX and LOGICAL

M - The standard naming coaventions,
namely, using the letters A through
H and O through Z as the first
characters of real variables, and I
through N as the first characters
of integer variables, must be used
and not overridden. For example,
do not use INTEGER SUM, A, B, or
REAL ZERO.

M -

Always include the word PRECISION M-
in DOUBLE PRECISION type state-

ments. For example, instead of

using DOUBLE ALIST, J, B, use M-
DOUBLE PRECISION ALIST, J, B.

This statement is required by ANSI

standard X3.9-1966, and also

improves program clarity.

Do not specify the type of a name
more than once in a program unit,
as per X3.9-1978.

7.1.2 IMPLICIT Type Statements

M -

IMPLICIT type statements must not 7.3
be used. For example, do not use

IMPLICIT INTEGER (A-F,H). These M-~
statements are not permitted by the

ANSI standard 3.9-1966. They also

reduce program readability.

DIMENSION Statement

Do not use more than three M -
dimensions in an array. For

example, do not use DIMENSION

A(10,20,30,5). The use of more

than three dimensions is not per-

mitted by ANS1 standard 3.9-1966.

If an array appears in a COMMON M -
area, it must be dimensioned

within the COMMON block and not in

a DIMENSION declaration, e.g., use

COMMON/INK/A(100), B
not

DIMENSION A(100)
COMMON/INK/A, B

This guideline improves clarity and
conclseness.

Do not use ad justable dimensions in

the main program. They may appear

only in procedure subprograms, M-
according to ANSI X3.9-1966. For

example, DIMENSION A(L,K,M) 1s per-

mitted in the main program of

Univac 1108 FORTRAN programs, with

values set by parameter cards. It

is not permitted, however, in CDC

FORTRAN.

17

Ad justable dimensions must only be
integer variables.

In a subprogram, a symbolic name
that appears Iin a COMMON statement
must not identify an adjustable
array.

Group dimensioned variables in
alphabetical order under one
dimension declaration. This group-
ing can improve program clarity by
making it easier to find the
variables.

COMMON Statement

Numbered COMMON must not be used.
It is not permitted by the ANSI
standard X3.9-1966.

COMMON block names must not exceed
six characters.

A given COMMON block must have the
same number 2f variables, and each
variable must have the same number
of elements, independent of the
routine in which the common block
appears.

Do not declare a COMMON block name
more than once in a COMMON state-
ment or program unit.

Corresponding variables in COMMON
blocks must use the same names 1in
all routines.

Include a COMMON area in a sub-
routine only if it is used in
that subroutine. Following this
guideline will improve program
readability.

Do not use more than 60 COMMON
blocks.

Do not use blank COMMON unless
absolutely necessary. If necessary,
lay out blank COMMON in one central
routine and treat variables there
as if they were global. This proce-~
dure assists in avoiding duplica-
tion and is a form of documentation

7.4

%2}
I

Avoid excessive use of labelled
COMMON. (Insufficient blank COMMON
may result in inability to load in
0S/360 due to the loader sharing
that space.)

In specifying COMMON block names,
leave space for six characters,
e.g., COMMON/LINKL /I,J, A(100).
This guldeline will simplify
program modifiations should it be
necessary to change a block name.

When using COMMON be careful to
avoild the hazards of context
effects.

Group associated variables in a
single COMMON area. Data types
having the greatest word length
requirements should appear first.
Within each type of variable,
arrays should appear last. This
grouping helps make programs more
readable.

EQUIVALENCE Statement

Avoild using the EQUIVALENCE state-
ment, except when absolutely neces-—
sary to save storage space.
Although permitted by the ANSI
standard, this statement tends to
make programs less readable.

Always 1include subscripts when
arrays are equivalenced. For
example, do not assume

DIMENSION ZEBRA(10)
EQUIVALENCE (ZEBRA, TIGER)

means the same as

DIMENSION ZEBRA(10)
EQUIVALENCE (ZEBRA(1), TIGER(L))

The number of subscript expressions
of an array element name must cor-
respond in number to the dimen-
sioning of the array or declarator,
in accordance with ANSI Standard
X3.9-1978.

M - The EQUIVALENCE statement is used

to permit the sharing of storage by

7.5

7.6

M -

7.7

two or more entities. Do not use
it to equate mathematically two or
more entities.

Although INTEGER and REAL varilables
should never needlessly be equiva-
lenced to each other, there are

some Instances when this 1is very
valuable, such as when creating

data structures. In general, how~
ever, avold declarations such as
EQUIVALENCE (A,1), since they
severely reduce program readability.

LEVEL Statement

Do not use LEVEL statements. They
are not permitted by ANSI standard
X3.9-1966.

EXTERNAL Statement

If an external procedure name {is
used as an argument to another
external procedure, it must appear
in an EXTERNAL statement in the
program unit in which it is so
used, 1n accordance with ANSI
X3.9-1966.

Avold EXTERNAL statements whenever
possible. Although permitted by
ANST 3.9-1966, they are confusing
to many programmers.

DATA Statement

Do not use parentheses in DATA
statements. For example, do not
use DATA (A = 3.), (B = 4.115).
Instead, use DATA A, B/3.,4.115/.

This is an unfortunate rule since
the first form is inherrently
clearer than the second. The
reason for it is that the paren-
thesized form 1s not permitted by
the ANSI standard. To comply with
the ANSI standard, DATA statements
must have only the form DATA
Vlist,/Dlisty/,...Vist,/Dlist,/
where,

Vlist = a list of array elements or
variable names, separated by com-
mas. Array elements must have

integer constant subscripts.

]

——

Dlist = a list of one or more of
the following forms, separated by
commas: a constant or rf*constant,
where rf is an integer constant.
The constant is repeated rf times.

The number of elements in the V1ist
must equal the number iIn the corre-
sponding Dlist.

The type of the constant in the
Dlist must agree with the type
associated with the corresponding
name in the Vlist.

Do not use an implied DO in a DATA
statement. For example, do not use
DATA (A(I), I=1,10)/1.,2.,3., 7%2.5/.
Unfortunately, the implied loop is
not permitted by the ANSI stand-
ard. It is, however, far superior
to just using the array name
(especially for two or three
dimensional arrays). For example,
the implied loop is easler to read
and write, and is less error prone
than the following:

DATA A /1.,2.
2.5

Unfortunately, the ANSI recommendations
are:

DATA A(l), A(2), A(3), A(4), A(5),

+ A(6), A(7), A(8), A(9),

+ A(10)/1.,2.,3.,2.5,2.5,2.5
+ 2.5,2.5,2.5,2.5/

or

DATA A(1)/1./,A(2)/2./,A(3)/3./,
A(4)/2.5/,A(5)/2.5/,A(6)/2.5/,
A(7)/2.5/,A(8)/2.5/,A(9)/2.5/,
A(10)/2.5/

++ 4+

M - An initially defined variable or
array element may not be in blank
common, according to X3.9-1966.

M - A varlable or array element in a

labeled COMMON block may be
initially defined in only a block
data subprogram, in accordance with
X3.9-1966.

19

S - Avoid defining the value of the
same variable in several places
throughout a program. For example,
avold setting the variable PI =
3.14159 in several subroutines. It
would be better to initialize this
variable once, and pass it to other
routines via a COMMON block.

8. Programs, Subprograms, and Procedures

A program unit consists of a set of
FORTRAN statements, with comments, fol-
lowed by an END card. A main program
is a program unit that does not begin
with a SUBROUTINE, FUNCTION, or BLOCK
DATA statement. It can be used as a
self-contained computing procedure. A
subprogram is a program unit that
begins with SUBROUTINE, FUNCTION, or a
BLOCK DATA statement.
8.1 Main Programs
M —~ The beginning of the text of the
main program must describe, in com-
ment cards, the following:

(1) - The purpose of the program.

(2) - The author(s) name, address,
organization, and phone number.

(3) - The version number of the
program.

(4) - The date of the first program
compilation.

(5) - The date the program was last
updated.

(6) — The organization for which the
program was written.

(7) - The processing performed by the
program.

(8) - A listing of external reports,
books, or other documents describing
the algorithms used, or other infor-
mation about the program.

(9) - A list of COMMON block variables
modified by the main program.

= —

— —

(10) - A description of the card input
required by the program (optional).

(11) - The names and contents (briefly
described) of all files (tape or disk)
written and/or read by the program.

(12) - The names of subroutines in
which the above files are read or
written (optional).

(13) - A description of the output
produced by the program (optional).

(14) - A 1list of "options” avallable in
the program (optional).

(15) - A list of changes made to the
program and dates of those changes
(optional).

M - The main program must have no more
than 50 executable statements.
Longer programs are generally dif-~
ficult to understand and maintain.

If an entity of a given common
block is given an 1initial value in
a BLOCK DATA subprogram, a complete
set of specification statements for
the entire block must be included.
This is required by X3.9-1966.

Use a top-down approach when
designing programs.

Block Data Subprogram

M -~ Do not use BLOCK DATA subroutines
that have names. They are not
permitted by ANSI Standard X3.9-
1966. Use only unnamed BLOCK DATA
statements.

M - A program must contain no more than
one BLOCK DATA subprogram. (In
compliance with X3.9-1978).

Procedures

M ~ Make frequent use of functions and
subprograms to clarify and modular-
1ze the source code.

20

M -

Main programs, subroutines, and
functions should be kept to a mini-
mum number of lines. They must
have no more than 50 executable
statements. This constraint helps
to make programs more understand-
able by reducing the need for the
programmer to keep in mind the
actions of large blocks of code.

At the beginning of each procedure,
a blank comment statement must be
followed by a set of comment state-
ments which describe what the
procedure does and the meaning of
each of the formal parameters.
Parameters must be identified as to
whether they are input, output, or
input-output variables.

At the beginning of each procedure,
there must be a set of comments
indicating which common block vari-
ables are modified by this sub-
routine. These comments are needed
to facllitate maintenance of the
program and to avold wasting time
searching through cross reference
lists.

Procedures must be arranged in the
source code in alphabetic order
following the main program. This
arrangement makes programs signif-
icantly easier to debug and under-
stand, since it cuts down on time
searching for subroutines in large
printouts.

Procedures which are never called
must be eliminated from the source
deck. Extraneous routines waste
others' time trying to determine
their purpose and relevance. They
also waste memory space.

Always put at least one blank
character after the keyword CALL.

Do not use recursive procedures.
Most compilers do not allow them.

Procedures should describe, in
comment statements at the beginning
of each routine, the meaning of

TE O

internal variables used in the
routine.

Sections of code likely to change
in the future should be isolated
into procedures and clearly iden-
tified whenever possible.

Make procedures general purpose
whenever possible.

The comment-statement list of
descriptions of the formal param-
eters of a procedure should appear
in alphabetic order, thereby making
it easier to find the description
of a given variable.

8.3.1 SUBROUTINE Subprograms (also see

Section 6.9, RETURN statement.)

Do not use subroutine calls that
include a return list; for example,
CALL PGMI(A,B,C), RETURNS (5,10).
Instead use the simple RETURN
statement. The return list is not
permitted by ANSI standard 3.9-1966.

Do not use the RETURN 1 form of
returning from a subroutine. Use
the simple RETURN statement. The
RETURN {1 form is not permitted by
the ANSI standard X3.9-1966.

The symbolic name of the formal
parameters of a subroutine subpro-
gram must not appear in an EQUIVA-
LENCE, COMMON, or DATA statement in
the subprogram.

The symbolic name of a subroutine
must not appear in any statement in
in the subprogram except in the
symbolic name of the subroutine
itself. This 18 required by ANSI
X3.9-1966.

Do not use a subroutine when a
function i1s needed. Use the right
tool for the job.

Do not use the ENTRY statement.
Although its use is permitted by
the ANSI standards, it defeats the
one-in/one-out principle of struc-
tured programming, since it allows
more than one entrance into a

program unit. Also 1t is annoying
to search code looking for it,
i.e., it makes 4 program less
readable.

Do not use any language feature
which permits subprograms defined
within other programs to have
access to all parent program vari-
ables. Some compilers, such as the
XDS Sigma 7, allow this to occur.
The use of this feature is not
permitted by tlhie ANSI standards.

8.3.2 FUNCTION Subprograms

M -

Do not declare double-precision
type functions with just the
identifier DOUBLE; always use
DOUBLE PRECISION. The use of
DOUBLE alone is not permitted
by the ANSI standard.

Always include a RETURN statement
in a function, do not assume just
an END stauueent will suffice.

The formal paranmeters of a function
must not be assigned new values
within the body of the function.
That {s, there must not be any
input—-output or output formal
parameters; only input parameters
are permitted. If furmal param-
eters must be changed, a subroutine
must be used.
Do not use 4 function when you need
a subroutine.

Do not alter COMMON block variables
in a function.

8.3.3 Basic External Functions

M -

S -

Appendix B lists the functions
required by X3.9-1966. Avoid
using any other external function,
other than TAN. It is unfortunate
TAN, the tangent function, was not
included in X3.9-1966.

Avoid using the external functions
SINH, DSINH, COSH, COSH, DCOSH,
ACOS, ASIN, DTANH, DTAN, CDABS.
Some systems may not recognize
these routines.

8.3.4 |Intrinsic Functions

M - Appendix C lists the intrinsic

functions allowed by X3.9-1966. Do
not use other intrinsic functions.

Avoid using the following intrinsic
functions since some systems may
not support them:

logical product AND(X, Y, 2)
logical sum OR(X,Y,Z)
exclusive or XOR(X,Y,Z)
complement COMPL(A)
shifting SHIFT(A,I)
masking MASK(I)
random number RANF(A)
location of variable LOCF(Q)

Shifting algorithms are usually
word-size and hardware dependent.
If 1t is necessary to use such
routines, include comment state-
ments describing their purpose.

8.3.5 Additional Utility Subprograms

S - Avoid all operating system inter-

face routines, such as calls to
DATE, TIME, SENSE SWITCH settings,
overlays, and recovery routines.
These routines tend to signifi-
cantly reduce the portability of
programs among different computers.
If they are used, clearly describe
their function in comment cards.

Avoid embedding system—-dependent
debugging aids in programs.

Avold using system—dependent calls
to random number generators.

Avoid calls to system—-dependent
mass storage I/0 routines.

Avoid calls to system-dependent
routines that check for end-of-
file, or parity errors.

Avoid calls to other system-
dependent I/0 routines, such as
those that give information on size
of last buffer read in, or that
define tape labels.

S -

S -

that
of data to
or large

Avoid calls to routines
manipulate the transfer
and from extended (ECS)
(LCS) core storage.
Avoid calls to routines that handle
terminal I/0.

8.3.6 Statement Functions

M -

Do not use statement functions that
include masking expressions.

Aside from dummy arguments, the
expression of a statement function
may only contain non-Hollerith
constants, variable references,
intrinsic function references,
references to previously defined
statement functions, and external
function references.

8.3.7 Procedure Communication

M -~

Do not use more than 60 formal
parameters in each procedure call.
The ANSI standard does not specify
any limit. Some CDC compilers,
however, have a limit of 60
parameters.

With the exception of a Hollerith
constant, the actual arguments in a
subroutine call must agree in type
and number with the corresponding
formal parameters in the sub-
routine, e.g., a call to a sub-
routine using CALL SUB1(1l,1.0) must
be avolded when the subroutine
begins as subroutine SUB1(A,I).

The Hollerith constant 1is an excep-
tion to the rule regarding agree-
ment of type.

Literals must never be used as
arguments in subroutine calls when
their corresponding formal param-
eters can be changed in the called
routine.

Do not use multiple entry points
into a routine. Each subroutine
and function must have only one
entry point. Use of more than one

entry point defeats the one-in/one-
out structured-programming concept.

M - Do not use variable-length argument
strings in procedure calls. Some
compilers will not deal success-
fully with missing arguments (vari-
able length) in a subroutine CALL.

M - The formal parameters of a function
must not be assigned new values
within the body of the function.

M - Do not assume subroutines will be
called with correct arguments.

S - The actual parameters of a sub-
routine should be listed so that
input parameters are given first,
input—-output parameters are given
second, and output parameters are
specified last. This listing order
should help improve the readability
of the programs.

S - Calling sequences should be used as
little as possible. COMMON is a
much more efficient method of com-
munication between program units.

S - Calls to machine-dependent sub—
routines should be avoided.

Parameters should always be checked
for validity when read from cards,
files, or upon entering subrou-
tines. The intent here is to
detect input errors as early during
program execution as possible.

9. Input/Output
9.1 FORTRAN Record Length

M - Logical record lengths must not
exceed 80 characters.

S - The record length for print files
should not exceed 120 characters.
There are some circumstances, how-
ever, such as when making line
printer plots, where the additional
length is necessary.

9.2 Carriage Control

M - Use separate field specification
for printer control, e.g., use
FORMAT (1H1,7HBUFFER=) instead of
FORMAT (8H1BUFFER=).

23

9.3 READ and WRITE Statements

M

Do not use PRINT statements. These
are not permitted by the ANSI

standard X3.9-1966.

Do not use PUNCH statements. These
are not permitted by ANST standard
X3.9-1966.

A simple I/0 list enclosed in
parentheses is prohibited from
appearing in an I/0 list (in com-
pliance with X3.9-1978).

Do not use expressions for unit
nunbers, e.g., READ(2*K+1,10).
They are not permitted by the ANSI
standard X3.9-1966. The unit
number must be either an integer
variable or an integer constant.

Assume the users of a program will
provide it with bad input data.
Always check these data for
validity.

All printed output must be annota-
ted so that 1t is understandable to
a user who does not understand the
inner workings of the program.

All 1input parameters should be
checked very closely for proper
values. Parameters should be
printed out with an identifying
label as soon after input as
possible, to facilitate debugging.

Avoild operator interaction (type-
writer I/0). Some installations
may not support this feature.

Avold using alternative action
flags; for example, READ (N,ERR=
101,END=122). These are not per-
mitted by the ANSI standard. This
is not a mandatory requirement
because with some FORTRAN compilers
(e.g., Univac 1108) they are needed
to check for an end-of-file, and to
perform other file operations.

Check input parameters for reason-
ableness and validity as soon as
possible after they have been read

93.1

in. Avoid beginning calculations
without first checking the inputs.

Incorporate a debug switch in the
program which will print out useful
trace information. This switch
should be designed so that it can
be turned on and off after the
program is compiled (i1.e., at
execution time).

Make use of as many operating sys-
tem checks on tape labels as pos-

sible. By checking tape labels in

the software, one can often avoid

disasterous mistakes.

Formatted

M - For formatted I/0, use only write

statements of the form WRITE
(un,fn) iolist and READ statements
of the form READ(un,fn) iolist.
Here un and fn identify the input/
output unit and format specifica-
tion, respectively.

1/0 device numbers must not be
negative. Negative numbers were
permitted by X3.9-1966, but not
X3.9-1978.

1/0 device numbers (un) often
depend upon the system. They
should, therefore, be referred to
symbolically, e.g., NREAD, NWRITE,
rather than by literals, such as 5
and 6. This practice facilitates
moving the programs to another
machine and also enables the user
to easily modify his program to
output to a private file, instead
of the system output file, if he so
wishes. Only unsubscripted integer
variables should be used for 1/0
device numbers.

9.3.2 Unformatted

M -

S -

For unformatted 1/0, use only the
form READ(u) iolist or WRITE(u)
iolist to comply with ANSI standard
X3.9-1966.

Design magnetic tape outputs for
general compatability with other

24

machines. Avoid complicated block=-
ing or binary (non-formatted) file
outputs.

FORMAT Statements

REAL constants must never be read
fron cards with INTEGER formats and
vice versa.

Do not use octal or hexadecimal
specifications in FORMAT state-
ments, since they are not permitted
by ANSI standard X3.9-1966.

In each program module, all FORMAT
statements must be listed after all
executable statements. This makes
programs easier to debug and read.

Do not use list-directed (free-
field input) 1/0 statements. For
example, do not use statements such
as READ(U,*) iolist or READ

* 1olist. These are not permitted
by ANSI standard X3.9-1966.

Do not perform alphanumeric conver-
sion of the form rRw.

Put a comma after each field
(except groups of more than one
slash (/)) in a FORMAT statement,
even though the compiler may accept
the statement without the commas.

These commas make FORMAT statements
more readable, and some compilers
require thelr presence. For
example, do not write

9510 FORMAT (F10.0,9XL1).
Instead, write
9510 FORMAT (F10.0, 9X, Ll1)

Put at least one blank space after
the comma following each field in a
FORMAT statement. This will make
it easier to read and modify
formats in the future.

When formatted records are prepared
for printing, the first character
The

of the record is not printed.

first character determines vertical
spacing as follows: blank-one line,
O-two 1lines, 1 to the first line of
the next page, +-no advance. These
are the only control characters
allowed by ANSI X3.9-1966, and only
these can be used.

Do not use format-controlled
records of more than 120 char-
acters.

When performing alphanumeric con-
versions in the form rAw, r should
be no greater than 4. This is
because we can only assume that
machines will have at a minimum the
ability to pack four characters per
computer word.

Format statement fields after
slashes(/) should begin on a new
line. That is, the record
terminator “/” that appears in a
format statement should mark the
end of the FORTRAN text as it
appears on a line of the source
listing (except for a succeeding
comma). Thus the end of a line on
the printer output will correspond
to the end of a line on the FORTRAN
source listing, e.g., use

FORMAT (16H NO. OF FREQS =, I3 ,/,
17H NO. OF DEPTHS = , I3)

not

FORMAT(16H NO. GF FREQS = ,I3,/,17H
NO. OF DEPTHS = ,I13).

In FORMAT statements use the spec-
ification form NH~——-- instead of
'-w==—=! , For example, use
4HABCD, not 'ABCD' (or *ABCD¥*).
Although the apostrophe notation 1is
a tremendous timesaver for the pro-
grammer since it alleviates the
need to count characters (which is
highly error prone), it is not
permitted by ANSI standard X3.9-
1966. It is permitted by X3.9-
1978 and 1is generally supported in .
one form or another on most com-
pllers. For maximum portability,
it should be avoided.

S - Repeated spec!’ications in FORMAT
statements should not be more than
two deep. For uvxample, avold
statements like 9110 FORMAT (1X,
3(T5, 2(1X,13,3(14, 2X)))).

S - Separate multiple card format
statements by blank comment state-
ments.

L - Following the E or D in an E or D
output field, .+ + or - should be
used prior to rthe exponent. This
increases conpliance with ANSI
X3.9-1978. Ansl £3.9-1966 per-
mitted a blank 4s & replacement for
a +.

L - All format sta.ement numbers should
begin with 9 :1.d have four digits.

L - Group all i{aput format statements
together an? »recede with a comment
statement with the word TINPUT”.
Put a comme @ card, with all
asterisks be: v and after this
card, to =« i+ stard out.

L - Group all uw . ‘ormat statements
together and edr with the word
"OUTPLT". A* ..t.risk comment
cards as dJde < 0 oow above,

L - Group ali @ - . .~ iur both
input and .1, it rogether and
precede with 1 . wiment statement
with the word “INpUT/OUTPCT" . Add
asterisk comient (ards as described
above.

L - Group all error message format
statements together and precede
with the words "EiROR MESSAGES™.
Add asterisk comment cards as
described above.

9.5 File Manipulation Statements

M - A record must not be written after
an end of file record in a sequen-
tial file. X3.9-1966 does not pro-
hibit this, but X3.9-1978 does.

M - A sequential file must not contain

both formatted and unformatted
records.

E Mixing of the two is permitted by
k X3.9-1966, but not X3.9-1978.

S - The use of overlays should be
avoided (whenever possible). They
are not permitted by X3.9-1966.

S - The use of segmentation should be
avoided (whenever possible). It is
not permitted by X3.9-1966.

S - Avoid speclal disc or drum-oriented
instructions. They are not stand-
ard forms. If necessary, be sure
they are well-isolated and clearly
identified with comments.

S - Avoid making assumptions regarding
number and kind of peripherals
available.

S - Isolate and clearly mark code that
checks for end-of-files. This
practice should help reduce coding
changes necessary to transfer the
program to another computer. Such
statements should be avoided when-
ever possible, because of their
machine dependence.

9.6 BUFFER Statements

M - Do not use BUFFER statements.
They are not permitted by the ANSI
standard X3.9-1966.

9.7 NAMELIST

M - Do not use the NAMELIST capability.
This 1s not permitted by ANSI
standard X3.9-1966.

9.8 ENCODE and DECODE

M - Do not use the ENCODE and DECODE
facilities. Their use is not
permitted by ANSI standard X3.9-
1966.

10. Miscellaneous Machine/System Dependencies

M - Do not assume that memory will be
zeroed before the program runs.

M - Whenever a variable has a chance of
being used without initialization,

26

on another system, always explic-
itly initiali.e scmory to zero,
even it Lhe system presently being
used does it tor you. For example,

C **% (LEAR ARRAYS
DO 2001 - i, 1
X(I) = tou
DO 1y 1 o= 1,81
A(i,J) = 5.
10 CONTINUE

(o

20 CONTINGE

Machine-dependent code that cannot
be climingr.! 1ast he isolated and
cleariy id. ti!ied with comment
cards.

Programs =<t be nmodularized into
machine’sv<t .+ dependent and
independent soctions.

Do not usc¢ any cvode, such as sort-—

ing, that depenuys upon the inter-
nal represcentation of characters.

Do not use how o1 decimal and octal
literals {(an example of internal
representations).

Do not write cude that depends upon
BCD, or EBCHIC (ard code differences.

Do n~' use werd, byte, character,
or system implementation~dependent
coding.

Always assume the character set
will be ditfferent for different
machines. Do not make programs
dependent -ipon the internal charac-
ter representation of a particular
machine.

Do not use programming tricks
dependent upon wmachine idiosyn-
crasies.

Write your programs so the machine
operator can use his time and
talents efficiently. For example,
don't require him to set sense
switches or needlessly mount and
dismount tapes.

Make your programs as operator-
proof as possible. Don't have a

T YT ter==

program ask the operator for
information if this same informa-
tion can be obtained from the
operating system another way. For
example, don't require him to type
in the date.

Avoid assembly language interfaces.
Their use is not permitted by the
ANSI standard.

When writing programs, estimate the
range of values variables can take
and document the same. The preci-
sion of integer and floating-point
arithmetic is machine and software
dependent. If future systems have
fewer bits assigned to the char-
acteristic in floating-point repre-
sentations, for example, the cur-
rent data may generate over/under-
flows (which may go undetected).

Never assume the computer operator
has done everything correctly.

Avold whenever possible multi-
tasking statements, e.g., state-
ments such as ATTACH and DELETE in
System/360, the FORK statement in
the XDS-940, and the ZIP statement
in the Burroughs B5500. The
structure of most multitasking pro~
grams 18 very complex and difficult
to debug.

11. Summary of Fortran Statements and
Recommendations

The following is a list of FORTRAN
statements and recommendations regard-
ing their use. This list contains
statements which must not be used under
any circumstance (--), which can be
used only when necessary (~), which can
be used at will (+), and which are
highly recommended (++).

The notation used here is as follows:

V = variable

Sn = gtatement number

iv = integer variable

mj, mp, m3 = integer constants
n = integer

e e

Section No. Rating
i See 5.1 Assignment Statements
{ See 5.2 V = arithmetic expression +
: See 5.3 V = masking expression -
; See 5.4 Multiple Assignment

V = V;=Vp-——=V =expression -

p Control Statements

See 6.1.1 GO TO Sn -
See 6.1.2 GO TO (Sny, Snp—--Snp), iv -
See 6.1.2 GO TO (Smj, Snp---Sny), expression -
See 6.1.4 GO TO iv (Sny, Snp—--Snp) -
See 6.1.4 GO TO 1iv (Sny,Sny~-—-Sng) -
See 6.1.3 ASSIGN Sn to iv -
i See 6.2.1 IF (arithmetic exp) Snp, Sng, Sn3 +
See 6.2.1 IF (masking exp) Snjy, Snp, Snj -
See 6.2.2 IF (arithmetic or masking exp) Snj, Snp -—
See 6.3.1 IF (logical expression or relational exp) stat +
See 6.3.2 IF (logical express or relational exp) Sny, Sny -
See 6.4 DO Sn iv=m;, mp, m3 +
See 6.4 DO Sn iv=m;, my +
See 6.5 CONTINUE ++
See 6.6 PAUSE -
See 6.6 PAUSE n -
See 6.6 PAUSE #c...c# -
See 6.7 STOP -
See 6.7 STOP n -
See 6.7 STOP Fc...c# --
See 6.8 END +

See 7.1 Type Declar: ‘on
INTEGER namej,....,namey -
TYPE INTEGER namcj,....name, -
REAL namejp,,name, --
; TYPE REAL namej,,namep -
‘ COMPLEX nameq, ...,name, +
‘ TYPE COMPLEX namep, :...name, -
DOUBLE PRECISION namej,.... namey +
DOUBLE namej,---nameg, -
TYPE DOUBLE PRECISION namej, ...namey -
TYPE DOUBLE name), ...namep -
LOGICAL name,, ...namey +
TYPE LOGICAL namej, ...name, -
IMPLICIT type (ac),..-typegp(ac) -

See 7.6 Declaration

EXTERNAL namep, ...namey -

Storage Allocation

See 7.1.1 type namej, (di) -
See 7.1.1 TYPE type name (di) -—
See 7.2 DIMENSION namej (dj)...name, (dn) +
di array declarator, one to three integer constants;
or if name is a dummy argument in a subprogram,
one to three integer variables or constants
See 7.3 COMMON Vi, ...V, -
See 7.3 COMMON /blk name/Vy....,V,
See 7.3 COMMON // Vy, Vg, ...Vy -
where blk name symbolic name or +
1-7 digits -
// blank common -
See 7.4 EQUIVALENCE (glisty,),...(glisty) -
See 7.5 LEVEL n,aj...a, -
See 7.7 Data V1ist)/dlisty/.. Vlist,/dlist,/ +
See 7.7 Data (V1isty + dlisty),...(V1list, + dlist,) -
Viisty List of array elements, variable names, +
separated by commas
List of array names, --
implied DO list -
dlist One or more of the following forms separated
by commas:
constant
rf* constant
(constant list)
rf* (constant list)
constant list: 1list of constauts separated
by commas
rf: integer constant, the constant or
constant list is repeated the number of
times indicated by rf
See 8.1 Main Programs
PROGRAM Name
PROGRAM name (parj,...parg)
‘_ See 8.3 Subprograms
See 8.3.2 Function name (py,+.-ppy)
See 8.3.2 type FUNCTION name (py,...pp)where type {is
COMPLE®R, DOUBLE PRECISION, LOGICAL
where type is DOUBLE, INTEGER, REAL
See 8.3.1 SUBROUTINE name (py,.«+Pp)
See 8.3.1 SUBROUTINE name
See 8.3.1 SUBROUTINE name (py,.:-pp) returns (by,..by)
See 8.3.1 SUBROUTINE name, RETURNS (by,-«-bp)
See 8.3.1 ENTRY name
t
29

sacunbiitin. .

Statement Functions

See 8.3.6 name (p1,+++Pp) = expression +

Subprogram Control Statements

See 8.3.7 CALL name +
See 8.3.7 CALL name (py,-.--Pp) +
See 8.3.7 CALL name (py,+-+Pp) RETURNS (by,...by) —
See 8.3.7 CALL name, RETURNS (by,...bp) -
See 6.9 RETURN +
Se¢ 6.9 RETURN 1 --
See 8.2 BLOCK DATA -
See 8.2 BLOCK DATA name -
Input/Output

See 9.3 PRINT anything --
See 9.3 PUNCH anything -
See 9.3.1 WRITE (u,fn) Vlist +
See 9.3.1 WRITE (u,fn) +

WRITE fn, Vlist -

WRITE fn -
See 9.3.2 WRITE (u) iolist -
See 9.3.2 WRITE (u) -

WRITE (w,*) iolist -

WRITE *, folist -
See 9.3.1 READ (u,fn) iolist +
See 9.3.1 READ (u,fn) +

READ fn, iolist -
See 9.3.2 READ (u) {olistc -
See 9.3.2 READ (u) -
See 9.3 READ (u,*) iolist -
See 9.3 READ *, iolist -
See 9.6 BUFFER IN (n, p) (a, b) -
See 9.6 BUFFER OUT (u, p) (a, b) -
See 9.7 NAMELIST /group name/aj,...an/group name,/ -

a1, ...an/
READ(u, group name) -
WRITE(u, group name) -
‘ See 9.8 Internal Transfer of Data

ENCODE (c, fn, v) iolist -
DECODE (c, fn, v) {olist -

File Manipulation

REWIND u +
BACKSPACE u +
ENDFILE u +
EOF(U) =
Format Specification
| Sp FORMAT (fsy,...fs,) +

. fsi one o: more fleld specifications separated by
\ commas and/or grouped by parentheses

30

Data Conversion

srEw.d Single precision floating-point with
exponent
srEw.dEe Floating point with specified exponent
length
srEw.dDe Floating point with specified exponent
length
stFw.d Single~precision floating-point without
exponent
srGw.d Single-precision floating-point with or
without exponent
srDw.d Double-precision floating~-point with
exponent
riw Decimal integer conversion
riv.z Integer with specified minimum digits
riw logical conversion
rAw alphanumeric conversion
rRw alphanumeric conversion
row Octal integer conversion
row.z Octal with conversion with minimum number
riw Hexadecimal conversion
SrVw.d Variable type coanverslon
s Optional scale factor of from: nP
r Optional repetition factor, non-zero
unsigned integer
w Integer constant indicating field width
d Integer constant indicating diglits to
right of decimal point
e Integer indicating digits in exponent
field
z Integer specifying minimum number of
digits
nX Intraline spacing
See 9.4 nH Hollerith
See 9.4 *,. .k Hollerith
Fes o b Hollerith
Yeal! Hollerith
/ Format separator; indicates
end of FORTRAN record
Tn Column tabulation
v Display code substitution
= Numeric substitution
N Comma (field separator)
Overlays
See 9.5 Call OVERLAY (fname, i, j, recall, k)

31

12.

o " -) — -
Example Program R K
TOTORt S * 10.08A 0GI0: TOTINT (1}
608 CONTINVE
12.1 CNOISE Mode! Before Application of £ areron ouma .

o onaoo

o

Lo

©

eew

3e0

499

e

1730
1480

<908

Guidelines

nocnn cnolsnmﬁuv ouTeyTY, 'A'tt-!"\l? TAPESOUTPUT,
APEL, TAPE ¢, TAPE 38

THIS PROGRAR ANALYTICALLY C‘LCUL"" SHIPPING MO
AUTHOR: J.). CORNMYN (nORDA 321)

COMMON /PARTSA, ALPHA,C,SINT, SRC

DINCNSKON FNARE (B), PHIG(?2: PHIL(TR) RIOO8 1, TLIOOO!, TLOUN 1000

10T 72), 70".'7}) TOVINT ()
LOGICAL EMDRUN.FLELD, PRINTF
DATA TUNLTI. JUNITE, IUNTIE STAMM, |, 4,06, ensS AR,

CALL DATE(IDATE:

REVIND TUNTIE

WRITE ([UNTIE, 5008 SlaRAN

REVIND TumiTY

REGIND luniTe

ENDRUN « FALSE.

CONTINUE

READ(S, 5008 FNARE

xntu L N(.8
ENDRUN - . TR

WRITE LS, ‘ml l’M

GRITE (1UNT16,5000) FHaRg

READ (TUMITe)

IF(EOFcTumit4) .mE. 9.0

WRITE (1UNTIE,7000) 1IDATE, MOSEC

READ (lumlte) anl.!J)..NlllJl Je1,n08EC

WRITE(E,5060) M.N“C,(J [IFRN ’NII(J) Je1,N0SEC)

READ(S,.5100) SAC.PRINTF

WRITE(E,6070) SRC

QEAD (IUNITL 1 FNAME,NOSECT , RDEPTH, FREQ, RINC,FIELD

I €26 0umITL ~E. 8.8 GO 70 S209

GRITE 16,6100 FNARE RDEPT. FRED, RINC

1¥F MCSECT.mE.NCSEC GO Yo

1€ .NGT.FLELD: GO 1O 200

WRITE 6.6158)

G0 T0 B6OO

NTL RRAXTL, GeDPTM, i TLiL:, Lot ,NTL)

LRITE 6 SEI., NTLY, SHDPTH RRAXTL RINC, cTLiL), Le@d, WTL
10 129 L
LR l.-1>ln~c

READ TUNITI) NTLDUM, TLOLA. t,, TLDU™ 21, (TLDUMIL Y, Lo] NTLOUM)

CUNTINGE
< 1.8°2,061@ EnPry B

: .9
D0 3300) NISEC
READ llyhl"l TCTed L JS
F OPRINTF . WRITE. 6, GES.: J.PHI®), PRILOY ., TOT1d), ISR
IF FIELD) GO TO 4«0
READ (TUNIT3) NTL RMAR™. GuDPTH, TLIL',Lel NTL!
NTLL = WYL
IF.PRINTE
D3 108 Ley NTL
L Vs (L-1I8RIN

GN" INUE

REAT TUMITL: WRYLDUM, TLDUM(1 -, TLDUMI 2, (TLDUMIL), Lot NTLDUM)
_OnTImuE

{5 . PRIN"F BITE(6. 6308

TOVINT L

RERD Alunl?n RAIN, RAAX, SHIPS

IF:RAIN, CE.AMAXTL: GO TO 1

ALPNA « SHIPS. (RAAXSRNAX-RRINSRAINIIZ. 6

€]« WRIN/RINCER.0

T . "L'Kl1-'Lln-nwlucunn!n-lvlhxxnu:nd)

1FIR%%x 3. R(K]', GC 70 See
CPLOREL-TLCKE- 1 0 RINCRcRRAR Riki-firettixl-t}

SUm. RNAN-QATN KRN, TLL, RNAX, TL2)

L PARSLAIR(KL) -RAIN APRIN,TLL RIK] L7 K10
RRar LY. 0masTL WO 10 600

e - N
S0 T 908

CNTINGE

P+ RAMAR RINCe] . §

IF'@Man €3 P x@ + GO Y5 990

T.e v L TLIK2el - TLE@ , RINCECRRAN-R (K2 tIeT (K21
Lol TARGUM.RMAX RF2 RK2), TLIK2 RRBNK,TL2)

THTINOE

kg e 2 2-

1Y A G2 TO 1500

Dl 10088 Lo, (2

ChoL PaRoU® BINC,RIL -, TLiL o, Rilel, Th Leg ot
(S AR 4

CHMTINGE

1F SINT . 3.0001: (3 T0 1700
STP » 13 GIALOGINISINT
[[

CINTINGE

SEITR-0ANGE BIN OuYRT

1P IPRINTS WRTTE (65,6390 L. ANIN FRAX, SHIPS, SDB, SINT
TINT. g0 o TOTIMTI JregINT
[XLAST IV 3

HARI A ¥} GT. 0.0001° GO TO 2408

.. lcdl"l 40”!1

SRITE.6,6200, NTL) SHDPTH RRAXTL RINC, (TLIL, L2, NTL)

32

IFIPRINTF . YRITE.G, 6600 J YOTDB: 3, YOTINT ()
WRITE t1uNT3E, 7Y PHIG S PRILLI,TOTODL)
ORN] = OMNIeTOTINT (U

8 COMTInul

WRITE . £.6450 () Pul@)1, PultcS: TOT!) TOTOD), YOTINY (.
[

Jeol WOSEL
1T ORND . CT 9 0881 GO V5 Yao#
URNILD - 400
GO 'L J6ee

1400 (ORTINCE
CANIZE + 10 JsALL .18 AN]
CONTINCE
L6b800 DmNILB CANY
L]

noaa

1
BTN s u N sraERatusaRTnsIvEsasssansstRsesanse

$00Q FORMAT §A: 0
[]

FORAAT 11, iBxaswiP NOISE RUM °0,0410,0°8///)

FORNAT (1M@,8%WE SHIP COUNT FILE 1S IDENTIFIED Bv *3,BR10,8°6///
1SXSTHERE ARCS, lJ L] l(CVOl’ L

AREnISECTOR My “i8 TO Puli (DEGREES)N-

3¢3in1), Ix2F 1.
FORPAT(1=8
ORRAY (§ml

SniP SOUMCE LEvEL 1S8.F7.2,8 DD.&)
<8 THE TRANSRISSION LOSS FILE I§ IDEWTIFIED By °S,

23 THEME 15 & RECEIVER AT, FL1. 2,8 FY., A FREQUENCY on Fi1.2,8 WZ.
3, aND & RANGE INCRERENT OF8.60.2,8 NAUTICAL MILES.s

TORMAT: tr8, 87 nE TRANSMISSION LOSY DATA |8 FOR & unron F1ELD. .81
MAT 1H8, 16xETHERE AREDL, 1S, 3 YRANSAISSION LOSS vALUES FROR & Sl
ING SOURCE DEPTN OF 3, FB. 2.8 FT., OUY TOO,7H.2,9 NAUTICAL RMILES.S

2
II7XeTnE FIRSY _ALUE IS A% RANGE - RANCL INCREMENT (3.F9.2.8 N, M.
4, TMEN PROCEED ALORG £aC™ LINE:D -
Si6x16F8 1

‘gs. t"“ﬂ L ASECTOR NLMBESSN, 1D, 8 (8, F6.1,0 TO02.56.1.8 D(Cl(!ii “AS

AL
[! folunv |~
6159 '0.-.7

F9 2.8 3m1PS [RA, 13,8 SCCTOR-RANGE Biwg.

TRELECTOR-RANLE B! l) 2 19,F8.2,9 TO8,F9.2,8 N. M. 1 HASE
l 5"”5 NCISE 1Su,FLe -1} -l"' INV(NSIVV g, €11.4)
6eb0 fOl PIm8.AFOR SECTORE, 1D, 5(CYOI MOISE 188,F10.4.9 DO VITu [nY
l["il'v [2% SEON PR
6450 FORMAT N1, 8228

1 £3x8- ,

B26XRSECTOR MumPER Pu1® 1O Pmi1L !MG.((SI uirs NOISE (DD

JINTENSTTvE -

4031013, 3x2F 1@.1,F16.2,F11.4,E13.41)
6500 FORRAT! 1M1, 211), 32X70: 1m0 -IQNINE, P21 N1uE

132x30M8 TiE ONNIDIRECTIONAL NOISE IS,F10.4,20% DY wITH INTENSITY «

BE11.4.20 8 32K 1m0, TIKINE - IRKTDING 1)

[
7000 TOREAT A} =l
7100 FORRAT(IF18 .2 |
c

<
COBRBSESUSERINENIRIRASASNESEINRENNERINEIEORAY
RRONS

CESBEBSCIISSEINNS

<

8000 CONTINUE
WRITE<S. B :

FORMAT (198, 3TnE TRANSNISSION LOSS FILE, IUNITI, wag DATA THAY DOES
l NOY ccvn THE SARE NURBER OF SECTORS DEFINED FOR THIS SHIP mOISE

GO VO 2000

08 CONTINLE
WRITE 6. 0700

8300 FORRAT(1ng, IVN[YRANSPISSION LOSS FILE., IUNITI, WAS MO DATA FOR T
318 RUM.3)

GO TO 900

WRITE(6,85

2508 FORRAT 1w wE GEOMETRY AND SMIP COUNT FILE, [unlTe, waS NO DaTa
SFOR ThIS Run. g
Go YO 90N

CONTINGE
1F CENDRUN | STOP

URITE(6. 0700,

FORMAT (1n@, s THERE IS NO TITLE CARD FOR TNIS Run.8)
CONTINCE
WRITE(§.9)

FORMAT(/., W8 == PROGRAN CNOISE ADORTED [N MAIN PROGRAR ---g)
CAaLl apoRY
s$T0P 77777
EnD
SUDROUTINE PARSUN(DELR ST
[
¢
COMRON /PARTER, ALPNA, C,SINT SRC
¢
€1 - 0. Il“lc L
) TL2
[
[3 CHECE FOR FLAT TL CURVE SEQAENT
<
1+ GO0 10 100
.(:‘l. 'l.'..L"‘.. BLRT-BIoEAPC (SRC-TLEI/10.0C)- (R -DISTNP(CIEL 1)
v
c
<

186 CONTINUE

NOT REPRODUCIBLE

non

EVALUATE INTEQRAL FOR SPEC (AL CASE WWEN Y. 1ieTc]ey
SINT - SINTenifHa
LISLL]

(L.}-3

® 0sa.L1: 2 08 MRIM2-

12.2 CNOISE Model After Application of
Guidelines

’IWM CHOISEC INPLTY, DUTPUT, '"Il-l"u' TAPLe-OUTPUT,
TAPCL, TAPL 4, TaPe3g

S8 PURPOSE - ThiS PROGRAR ARALVTICALLY CALCULATES TWE uuumou.v
ss DIRECTIONAL ARRIENT KA NOIBE DUL TO SMIPPING

MTROR - JONN J. CORMYN
HAURL OCEan RESEARCH aND DEVELOPAENT aCTivivy
coBE a1
NETL SYATION, M. JIOSRG
(601 1-600-48)8

BASED On CARLIER VERSION 1.8 BY AUTHOR and
BARRY y. SCAIFE

OCEAM DATA SYSYEMS INC.
6000 EXECLUTIVE SLUD SULTE 61§
"D 20862

VERSION 2.0
DATE OF FIRSY COMPILATION -APRIL, 1979
DATE PROGAAR LAY LPDATED - 4 MOV §
PROGEBAR WRITTEN FOR RORDA CODE I
SPONSOR-BEAS PROJECT, MORDA COBE 520

AR -THE LRPUTS TO CHOISE ARl

3
aans| lou LOSS CURUES FOR KacwW pEctom,
Rangt SECT0R AND SuiP SOURCE LEVELS.
T QUTPUTS .Iﬂll'll an ll N BIRECYIONAL ANS
OMNIDINICTIONAL WOISE LEIVELS. 17 W Auull A PLAY Gal
THE ARE A, OF & RANGE SECTOR DIN I8 GIVEN Bv Tit ll’.l'll.
.8 2 luum\‘n(vn THETAL)
17 TilS BANGE SECTOR BIN uas w un"mu NIVIlMH ul".
THER T BENSITY OF SMIPS PER UNIT RANGL ,Lamdda
THIS RANGE SECYOR DIN CaN BE ODYAINED BV nwunnn "I

17 AREn M ™EYA, 80

. 2Ens
15 WE ASSURE TWE ln:lmunc Ol' BANCE BIn DCM AY POINY
Kiol) ON TME TRANSAISSION LOSS CURVE, and
Meii, AND IF WE ASSUME THE YRANSAISS10M LOSS c
l(’.(i!l"(l AS A LINEAR FUNCTION OF RamGE OVER THE Bim,
THEM THE INTENSITY AT THE RECEIVER LOCATION BETWEEW
AZIALTHAL ANGLES THETAL AND THETAR DUE TO M SUCH Sangl-SECTOR
IIng IS GlvEnm Ov
I+ SURIFOR o1 TO N OFCSUR FOR 1eKiJIT0 i) OF Fel, g1
wHERE
F(l,J:oINTEGRAL OVER R FRORM (1) YO Rils1) OF
[EEE AR 0 REPAY)
AURCE LEVEL Iw DB
ToL.e) C TME TRANSRISSION LOSS Im SECTOR | av
RANGE #
SNAl AN BE EvALUATED £XACTLY.
1 T 1 Rica. | o801 180 KOR [ok(g: 10 i),
ACTL IS LA B SR T4

Fil, L eALPHAL JIBEAP . |8
EXP DrLIBRCIog 1 Q0] B R loti-f -Del.
(A LANAREE LIS NN THRT XY 18 Y 2 13 IR
wHERE Pl c13tS ALL)11@ AMD

“}1-148 amMp

1 LOG FunCTION
EXP-ExPORENTIAL FUNCTION
15 DUl 1e0 THEM
FOl,J1eAlPuarl N1080C1S-ACE1/ 1008 (RITe1 888-0<11308)-2
WHERE ALPHAC S 1«LARBDAIR)I R FOR TaE J-TH PANGE SECTOR BIn

[N SURAAAY, CHOISE DETERRINES THE Fi1,J)), SURS TwlRm,
AND TARES THEIR LOG TO SASE 10 TO OBTAIN TwE SICTOR
AND OMNIDIRECTIONAL NOISE LEVELS DUE TO SURFOCLL Shibs.

THE CROISE SYSTER S COMPRISED OF THRCE, OPYIONALLY POUR,
PROGRARS 1 STARPR, SIARTL CNOISE, AND OPYIONALLY.SIARAD.
PROGAARE SIARPR,SIANTL, AnD S1ANAD WERE ORISINALLY .ll“
70 WORK WITH THE l.ﬂ'l CAALO mu NOTEE ANp 81 “ L]
®OMEL f1an. 'M! SIARAD PROGEAN UAS DEVELOPED A9 o
POST-PROCESSON

BRIEFLY, PROGRAA $1ANPR uunvu INI' le ll mtl'lll

SECTOR-BANGE BINS. SLIANPR U 'ACEED SNIPPING DENGITY
!ILI AND CARD l”uv THAY BE l l l ON - RANGE l!i MONETRY.
(CIALL ro tl 'lmﬂll.lﬂ Loss(TL) FILE

$

» c . TL CURVES ABE INPUT TG SIARYL FROR

A "l’ 'M‘"ll FILE, OF A ‘PACT® FORNATYED FILE.

™ER, F Oﬂ SELECTED YL InPuT FILES FOR EacH SECTOR- ONC
NG

ARD ONE FOR A TARGEY SOURCE - SINNTL QENERATES
11 VO TL CU'U(l HMAUING A CONSTART RANGE INCREACNT. CHOTSL
11 UTILIZES TuE SwlP COUNT and GEOAEYRY FILE, Tl TL fFILE,
(1) AND CAAD [NBUTE TO GENERATE FOR TACH SECTOR TiE NOISE DUl
[} TO SNIPPING. THE SHIPPING MOISE Ml 'i‘ uuu M. $
1) ARE OUTPUY YO A ”Ll IN THE SARE F AR gENERATID
. (1] FILE. Slam PROGEAR THAT IIVINIIVV .” T™™E $1
toR cnoIsSt) NI”!'B NOISE VITH FANRT QERERATED WiND MOISE.

SIAPLE ANALYTICAL ANBIENY
CODE 381, TEMY OF

L.t NOR
PAPLR PRESENTED AT SOYM MEETING OF
(1] ACOUSTICAL SOCIETY OF ARKRICA, ATLANTa, SLONGIA,

AN AN AN OO BANRDBNNNA NN ANCOANNOARACO NN ACAN T ANAARNNARANAANANADONANANNNANANRANNANOHANAARNANRIOANHAONNND

AN A AR AR ;A ARANRNAAORDANARARANANNNOOANANANANANNRNANONAANABANANRGANNANNA

AOARN AAAAAABA ARNCANKAAASEN

onn Aann aonn

no o0 ean

21-28 oPR,(

B.v. BCALIE,'CmOISE COMPUTE
RERD YO . [O@wvn, § OCTOBLR

0GRAN SYSTEN,*
oSl . Inc.

BEOIICEIRAEINRI 002001000 IR
C..D Inrye
3880889

.
CORD FORMAT (OLLAN nn

CFRARECL), 101,800
$BC

[]

Lt ald
(8 Mav B POSITIONED anrvexi(In SPECIFIED COLUMNS WITH
DECImaL POINY ExPeiSSlD

LE "'(DESCRIPTION

(ARG (Y), 1-1. 28 SAr ElGets CHARACTER wEADER FOR THE
DLTPLT FILE
sac $~1P SQURCE LEVEL: IN DD
PRINTY PRINY OUTPLY FLAG
T PRINTY & SUMNARY
T PRINT & SURRARY AND OETAILED
SECTO 1IN DATA AMD
TRANSRISSION LOSS PROFILES
COERIMTE 1S LEFT BLANK L °F* S ASSURED.

BREESISNETRTEI I ISR IEIRIRNEISSINSUSETRREENTLNNESASNENT?

LOMTENTS

CARD ImPyY

nYER OuTRUY

nSRI551 LOSS CURVES QUTPUT
Br SIAATL PROCRAR

) tinipy HL SICTOR-RANGE 31N GEORETRY
ARD SHIP COUNT FILE
* imIIEE 0 CeLv DATE, MURBIR OF SECTOR:

S,
A2!IN.TualL anGES DEFING SECTORS,
~CISE LEVEL In SECTORS(OD)

ALL FILES ARE LR "“ER % Yug MAlN PROGEAR (CNOISE)

”n THE ’Il"'lb TatRLT Ime ULESy

11 CALARER 30 SECTORS AZiNLTeal ANGLES DEFINING

(1] "wJV lnl’ SOURCE LEVEL. TRANSRISSION LOSS

(34 CuRuES FOR £aCx LT3R, [0 (ACH SanGE-SECTOR-SIN

n In A SECTON Twt -.lu- Of $MIPE mOTSE DUE TO THOSE SMIFS
1) INODDINTEAN, LT TL ThIGE SMIBEY, Tk 'ont. NOLSECIN BY)
" FOR Tef SECTOR "O%al wOISE IMTENGITV FOR SLCY

(1] TwE TQYAL ORI BE C kAl wOISE (N BB AND BV lu'!lﬂ'vu
(1]

"

ST EN RO TN RU PRI PRI E NI LI IS DAl OeS 7 BEONRNONREUSINETERRIEREREY)
1]
(ST R IO £ 1L R -

DImgns it~ i m

LN R 008 7. 1000
AARd I BRFENRT L ETE SR F B

Loewlir JEG Ul sECtom
ang E o DEC FOR sEcToR
TAIRT Ty Cullvg

st el 8

TAAmSRISI0N LOSS LvALUES

secrom

aLPus . SBC

" nPue 10 BENSIT. BEA URIT manGE BIVINED Ov BANSE
12 ¢ o comsVamt. | 2 0GI0IERPI1 .01

" soc $n'P SOUNCE .C kL Iw BR

"

" GEFINE LOGICA. ,mlT W BMBERY AND ~SADER IwFO
GATA [COBD (T, (Sn!RE ‘NC Sl MNINT glABN 5. 1. 4. 36.6. anSlaN

(1] W DATE FRON efmaT nG SYRTR
(R4 OLTINg THAT DETURNG TnE DaTE

bt
I (malaCTes FOfRAY In tuE UARIABLE 1DATE

CALL DATE 1DATF -

" MEIND TeE 07O T N IsE P
#CuInp ImOISE

(1] MRITE T wORD “SIMA: w Tue wOISE FILE
WRITECINOTSE, 00081 STame

L] BEUIND Tl SHIPPINC AMT TRANSMISSION LOSS FILES

fuinp ITL
guine l“lll

11 THE FLAC SIGRIFYING END OF CASD 1NPUT IS SLY YO FaLsg
ENDRUN - SaLSE.
CONTImN

(1] READ 1N TIVLL cale

NOT REPRODUCIBLE

oo 00n oone O

o

READIICARD,0008) (FRAREIL), T=1,80)

28 CMECE YO SUK 1F AN ENO-OF-FILE CARD was BEEN ENCOUNTIRED
17 17 HAS 60 YO GTATUMINY B¢

IP(EOFLICARD) .66, 0.9) 40 TQ 30
[L]
IF L. NOT.ENDRUN) QO TO B0w0
63 STOP PROGRAR WORRALLY
:gl(l’lllﬂ.u"l

S008 URITL!IPRINT 9070

LY. Y.

000 onn aoo nann

aon ONn oD o

0Nn nan Aona ana oan

000 0000 anoo o

OOBN DPON NRO O

non ane

13 AJORT PROGRAR
WRITE(IPOINT 0108
LT0P 7777
conTimug
ENbRUN - . TRUE.

s URITE TITLE ON PRINTER AND ON NOISE FILE

“}'(llnllﬂ.““) (FNARECL), 101,200
NRITEIINGISE D000) (FHAREL]),141,20)

st RESD NURBER OF SECTORS AMD YITLE FROW TL FILE
REABLITL) MOSEC, (FNARE(] 1, 1+1,20

S8 CHECK FOR AN END OF FILE
17 COFIITL) €0, 0.0) GO TO 30

1. END OF FILE EWCOUNTERED On YL FILL -URITE REOSAGE AND ABORY
WRLTEIPRINY, 9860
gsl;l’lll'.ﬂ“)
contImut

£ 2] PUT DATE AND MUMBER OF SECTORS ON wOISE FILE
WRITELINOTISE. 9708 [DATL, NOSEC

st READ SECTOR ANGLES
READLITL) (PMIFCIY, PHIBLYY,

1) PRINT OuT

Jey, MOSEC)
TITLE CARD, NUMBER OF SECTORS,SECTOR NU

RS, ANGLES

WRITECIPRINT 0805) (FNAREC(1),1+1,20),.M08€C, (), PKRIL(y),PHIZLY,
H Je1,MO8EC)

" BEAD 1N SHIP SOURCE LEVEL AND PRINTOUT FLAG
READCICARD, 3610} SRC, PRINTF

" PRINY OUT SOURCE LEVEL OF SniP
WRITECIPRINT 980T SRC

L1 READ TITLE. wWURDER OF SECTORS.RECEIVER DEPYN, FREQUENC
" LI 4

INCREAENT, AND FIELD FLAG PROR TeE TL Clﬁvt FILE
READCITL:FNARE (]), 121,200, NOSECT ADEPTH, FREQ RINC,FIELD

” CHECK FOR AN END OF FILE
IF (EOFCITL) .6Q. €.8) @O 7O 40

93 END-OF-FILE ENCOUNTERED On TL FILE -uRITE RESOAGE AND ABORY
YRLTLIIPRINY, D820
“uulnxm,uun
ConTImug

PRINY 6UT TITLE O YL FILE, RECTIVER DEPTH, FREGUENCY,
AND RANGE INCRERENY

b JPELIPRINT D830 (FNAREL]), 121, 00) ROEPTN, FREG, RINC

(1] CHECK 1O SEE IF NURRER OF SECTONS OM TL anD SHIPPING
(1] FILES AQREE

17 1n0SECY .EQ.

St DONT AGARE
NBITE I IPRINTY,
I R
CONY Inuk

” CHECE YO SEC IF THE TL FIELD IS AZIMUTWALLY UNIFORR
TFC .mOY. FIELD) G0 10 300

B8 UNIFOAR FIELD ,50 WRITE OUY AESSARE
VAITELIPRINY 9018

144 SEAD NURBER OF TL POINTS, RANIRLA BANE OF TIL CURVE IR WA,
” 1P SOURCET BAPTM(IN FEET), TRARIES1ON LOSS VALUES

READCITL) MYL,MNAXTL, SUDPTHN, (TLIL), Lol ,NT0)
NYLE N7y =)

nOSEC) GO YO SO
-URITE LAROR RESSAGE AND ABORY
[2]

” PRINT OUT L CuRuE
WEITECIPRINY, OBR0 INTLL, SHDPTH, BRAXTL RINC, (TLCL), L8, WTL)
43 COMPUTL RANGES OF TL POINTS,ASSURING COUALLY SPACED

34

no Aonn

ARG NOO BAO® OOBG ANO AAs oD

ann

non

00 108 L «1,nTL
ReL e lL-§ 1ORING
CONTINUE

READ IN SORE DURAY TL VALUES FROM ¥sf YL FILE
READIITL ! NYLDUR, YLOUR S 1 TLOURI 2, CTLDURIL), Lol NTLBUR

CONY | NUE
CALCULATE A CONSTANT FOR INTEGRAL
Cot.0/ALOGINIEXP(L.0))
ZEMO OUT THE OMNIDIAECTIONAL INTENSITY LEVEL
onj-0.¢
LOOP QuER SECTORS
5O 3008 J-), NOBEC

l‘:? :ull(l QF SNIPS (M JTH SECTYOR, aAND NURDED OF SECTOR Ranel
"

REABCIONIPE) TOY(2, ISR

aneNn 0NNO fANe ONOA 000 DOOOO®O AN 0 BRO

A 8006 066 600n

L L L L LG

"

’I'l.:' :g' 'Nl SECTOR NURDER, SECTOR ANGLES, NO. OF SHiPS,

IF(PRINTF) URITECIPRINT 6461 J PHIS(J). PHIR(IL,TOV(J), IR
CHECK TO SEE 1F THERL 1S5 A UNIFORR TL FIELD

IFIFIELR) GO 1O 4pe
HOY UNIFORR, 60 READ 1IN YL CuURVE SOR TNE SECTOR

READCTTL) MTL ARSXTL, SNDPTM, (TLIL), Lol ,NTL)
NTLI-ATL-t

PRINTOUY TL [NFO 1F REQUESTED

l'l’lll"l ul"(l"lﬂ' PE20) NTLL SHBPTH ARAXTL,RINC,
Tt t)

COMPUTE RANGES FOR TWIS YL CURVE

00 280 L-t,

caunlﬁ;“ nuxnc

QEAD 1IN BURRY VALULS OF TL CURVES

BEARCITL) MYLOUA, TLDURCY), TLBURCR) , (TLDURCL), Ly NTLDAUR)
conTinug

1F PRINTOUT REQUESTED.GO TO A WEV PAGE

1f (PRINTI) GRITE(IPRINT, 9630

a,nrL

ZCRO TOTAL INTEMEITY FOR JTH SECTOR
YOTINTiJie0.0

LOOP OUVER RANGE DINS 708 THE JSTN SECTOR
D0 2008 1-1 ISR

IMITIALIZE InTENSITY FOR THIS RANGE DIm
SINT 0.9

READ RINJAUR RANGE OF BIN (RRINI, RAXIRUR RANGE OF BIN (RARX),
AND MURBER OF SHIPS In DIN (SNIPS)

READ{ISHIPS) WRIN, WRAK, SHIPS

CHECK T0 SKE IF WINIRUR RanGE OF Rin EXCEEDS WaxImym
RANGE OF TL CcumvE

1F0 MAIN . GE. WRAXTL! GO YO 1700

1T DOESM V.50 COMPUTE THE SWIP DEMSITY PER UNIY RANGE
DIVIDED By RANGE,1.E. ALPWA, FOR THIS BIN

ALPHA < (SHIPS/(hAAXIIMAXN-RAINSENINY 182.0
CET APPACPRIATE INDEN (N TL CURVE CORRESPONDING
NINIRUA RANGE OF DIN AND COMPUTE TL AT RRIN Ulllﬁ I.I'(ﬂ
INTERPOLATION

Kio(HRIN/BINCI1+2.0
TLLoCOTL L -TLIRL~4)/ MINCINIRRIN-RIK1 -1 1)eTLIKE~1)

CHECK TO SEE 1IF RANGE-SECTOR DIN 1§ SRALLER THan Ganel
INCREMENT ON TL CURLE

IF(ANaN . GT. R(K|)) GO YO SO0
IT 16.30 INTERPOLAYE & YL valuUE aT BRax
TLR (VLIRS)=-TLIKE=3 1)/RINCISIMRAN-R(KE=5)5 ¢ TRAXE~2?

CALL SUBROUTING PARSUR T0 ZVALUATE THE INTEGRAL OVER T™E
INTERUAL BRAK TO BRIN

CALL PRaRSUR(RRAX-BAIN, ARIN, TLL,ONAR, TLA, BINY)
GO O 1508
CONTINGG

EVALUATE ThE couvnwnu 10 "wunt rm "y
RINTAUR BANGE OF DI 7O THE RANGE

CALL PARSURIRIZL) -FRIN, PRIN, TLY B(K1), TLIEL), SINT)

CHMECK TO SEC IF PANINUR Rangl OF BIN IS LESS TWEN THE MARIAUR
NANGE OF ThE TL CURVE

IFtRRAX LY. BRAXTL 3 GO TO 600

NOT REPRODUCIBLE

s RSOSSN~ . corag IS

e
-
-

~

S T
) [T
; ¢
¢
[a8
} c
! 3
|
! [
! [T
¢
¢
e
¢
' ¢
4 ”
' ¢
[T
[[1}
¢

<
1708

AON fannn Nnoo A
-

~

anee
-
-

2408
600
2]

R

ss

-

AOD O8O0 anon 6A0 06O

Aooo
-

1400
[
[4 [1)
4

890
"

1F 1607 SC 6CT KB EQUAL INDEX OF LAST uALUE OF TL CURVE

X2« WL
co To see

CONTINUE

IT IS LESS ThaM I‘ll'l. lb flﬂﬂ THE INDEX CORRESPONDING
TO ThE RANIAUN RANGE 1| @RA.

N-RINCT ¢ 1.0

CHECR YO SEE IF Bmax CORRESPONDS ENACTLY YO MIRg: YO SE
IF INYERPOLATION 18 NECESSARY

17 anax Q. Rix2)) GO TO P08
EVALUATE CONTRIBUTION TO INTEGRAL FROR RAMGE R(K2) TO RWAX

TL2 » LITLIRQeL)=TLIKZ) I /RINCICIRNAN-RIERD) o 'L(ll)
CALL PARSUA(RRAN-R(KE), (K, TLIKER) ARAX, TLR, SIN

CONT InUE
g- €2-t

ChECE YO SEE INDICES MUN CORRECTLY.
IFc K1 .GT. K2) GO YO 1500

NOw EUAL./.YE CONYRIDUTION TO INTEGRAL FROM RANGE BIK)) TO
BANGE Rix2

00 1000 L sk, k2
CALL PARSUR(RINC,R(LI,TLIL) MELo1), TLILOL), SINT)
COMTINUE

CONT [MUE
CHECK TO SEE OF THE TOTAL IMTENS]ITY CONTRIDUTED 10 Twf RAMGE-BIN
UP YO TWIS POIN® \SINT) IS .LE. 1088(-4) IF [T IS SEY TME
OB VALVE FOR BIN TO -40DD

IFISINY .LE. @. 1! 60 YO 1700

COMVERY [WTENSITY 0 DD

SALOG1O:SINT)
L4

CONY INUE
0 - -d8.

CONTINLE

PRINT OUT INFO FOR SECTOR RANQE SIN,IF REGUESTED BV USER
IF0 PRINTF) yRITC(IARINT, 8636+ [, AATN, ANAX, SHIPS, 8P, SINT

::2 ::':::!::.l";‘::o:"l! RANGE SECTOR BIN YO THAT OF
TOTINT(J) +TOTINTIJ]) ¢ SINTY
END OF LOOP O RANGE BINS FO® JTH SECTOR
CONTINUE

CHECK TO SEE IF TOTAL INTEMSITY
-48DD. IF IT 1SM'Y ,SEY IT YO -

. SECTOR IS GREATER THan

IFLTOTINTLY) .GT. 6.0081) GO TO 2400

TOTDRCJ) « -48. 9

GO 10 3608

COnNTINUE

TOTDR(J! * 18.03ALOGLO(TOTINT(J))

conTimuE

WRITE OUT SURRARY [NFO FOR TWE ENTIRE SECTOR, 1f REQUESTED
IFCPRINTF) URLITYEC IPRINT, 3648 J,TOTDR(J), TOTINT(J)

WRITE SECTOR ANGLES AND TOTAL SECTOR DD ualuE OM NOISE FILL
WRITECINOISE.D710) PMIL(J).PHIZ(J),TOTDRIJ)

ADD IN COMTRIDUTION OF THIS SECTOR T TOTAL
INTENSITv: OMNE)

ORNIBIRECY IOMAL,
OfN] » ORNI « TOTINT(J}

€D OF LOOP ON SECTORS (J!

SORTINCE

PRINT OuT SUAMARY [NFO FOR SECTOAS

WRITE-TPRIAT DEAB (I, PHINII),PNIR(J),TOTCI), TOTDRIS), YOTINTLY),
J *1,W08EC)

1F YME ORNIDIMECTIONAL INTENSITY 1S LESS THAM -40DD, SET IT YO

-40 DY

A1
QRANIDD -
GC 7Y J6ee
ZONT Ul

91) GO YO Jene

TON ERY ORND [NTENSITY TO DB

ORNIDE « I§.08 ALOGLE: ORWI)
CONYINUE

uRITE OMND DB UALUE AND OMNIDIRECTIONAL INTENSITY ON PRINTOUT

wRITE IPRINT, 9650, OANIDD, 0PN}
PETURN 70 REAB NEXY SET OF CARD InPuY

10
(]

[T]
Pyt FORRATS

~mann PR Ane

530 FORMAT (F30.4, BN, L}

35

(3]
FORRATS
isesess

FORBAT(//, 10X, BOHNORRAL TERRINAY [ON OF CHOISE)
FORRAT(1M], . 1ENSWIP NOISE RUN *, BOAE, 1K, ///)
I'Oll.'(lﬂ!. ISHTHE SHIP COumT FILE Il lul'l”(. By ', 20a4,
N, sss,
oniwngne ARE, 13, 9n SECYOR
i‘!. IMSECTOR muABER PmIy TO 'Nll lD(Gl(lSl s,
Iix, 13, Ix, F18.1)
8687 FORRATIING, 20“5"1’ SOURCE LEVEL 1S, F7.2, #n
9610 COIH.‘III=: ses, 46W THE TRANSRISSION LOSS FILE 15 ll[u'"l(b By
L 20A4, |u' ‘e,
23W THERE XS a RECELVER AT, F11.2, 20n FY., A FREQUENCY OF,
Fi1.2, J0n HZ., aND & nnct IncREnEnT or, Vl.l.
16K NAUTICAL AILES.
9615 FORRAT(9, 4THTHE YlMlSllSSlO'l LOSS OATA FOR A URIFORR FLELD.
9620 FORMAT(IMB, 16X, OIHTHERE ARE, 16, C4MTSANSAISEION LOSS VALUES ¢R
10R SHIPPING SOURCE DEPTW OF, FB.2, 12w FY., OUY YO, F9.2,
2 1SHMAUTICAL RILES. ./
3 17X, 4THYME FINST UALUE 1S AT RANGE « RANGE INCREMENY 1, FB.2,
4 ISHNA.), THEM PROCEED ALONG EMCw LINME:, -/,
$ (Sx , 16F9.1)
P62S FORMAT(3Imy, 1INSECTOR WURBER, 13, 2% i, F6.4.
1 2In DEGREES #aS A TOTAL OF, FB.2,
3 19W SECTOR NCE BInS
9630 FORRAT. NG
983§ ’0".'! 17,
l

swm—
-
x

ALe-

am TO, F6.1,
B SWIPS N, 13,

1uSECTOR-MANGE BIN. 1), 2w o,
MAS, FR.2 , 16% SHIPS, NOISE IS, Fi®
l“ ll viTk INTENSIYY o, ElL ¢
uu FORRAT | 1M9, 10HFON SECTOR, IJ 17-'.
I BOM BB WITH INTEMSITy - , (1
n«‘romn ey, Sdx, llNi[C'Ol lnlon-vloa ..
X,

2, W TO, FR.2,

$EC'0I NOISE 1§, F1e.4,

18m-
1] agn, ‘lNIICVO. null(l [e Fhll ‘“0‘((‘1
A (DB INTENE:Y
4w, I3, Ix, l'i. l Fib 2.

S&66 FORMAY((wg, BtCin 3, Jel

Jdx, IME, Tis,

JIN, IeHE T™HE JINXBXIEC'XON‘L lOlﬁ(!5, 'l.-‘.

20k DD wliTH INTEWSITY =+, 1}

32x, I1ne, Tix, tus,

Jax, 7Juimd.

9700 FORRAT Al®, Sx, 1%

9710 FORMAT. J¥i9.2

sMIPS moOIS

Fil e, €13.4
I3iimny, -,

Ve

TRETACEFANEANUSEERANINIE LSS0 URERURETRTSARICABANITIRLIRSSISRINSNS
ERpCR MESSAGES
C ROBIBE SIS RIS ANIRLO SRS SENANTSININTIIILSTASITIRISARRIRANS

Aroane

28.0 FORNAT 1n@_ 120MT. TRANSAISSION LCSS FILE, ('L, MAS DATA THAY DOE
1S NOT COVER TwE Sﬁ'll NURDER OF SECTORS DEF INED FOR TW1S SHIP MOISE

élvn

30 FORMAY Iw8, SEnTHE “OANSRILSTION (€8S FILE, 1TL. MAS MO DATA FOR Y

IMis Run,

'nn FLRRAY ' IND, 57mwmf LEORETR« AN SWIP COUNY FILE. ISHIPS, NAS MO D
1676 FOR Tuls BUN.

4
$878 FORNATI 119, JGHIHERE 1S MO TITLE CARD FON THIS RUM..

9100 SORMAT, /. 18X, 46u --- PROCAAM (NCISE ABORTED IN MAIN PROGRAM- - -
'

[L}]
SUDROUTINE PARSUMIDELR R, TLI, 22, TLY, SINT)

PURPOSE ~Vlﬂ6 SUBROUTInE EVALUATES THE INTEGRAL OF
ARBDA(R)IT1QEB((SRC-TL1/10) OVER A SINGLE
'(“N' OF RANGE .DELR, RUANING FRON RaNGE M)
vo mﬂ(f2. WERE Llllulll 16 DEFIMED Im
AR CHOISE . Thi TIANIII‘SIDI Loss [$
Clllﬂb Y0 DE LINEAR OVER D(

’Qlﬂ?(l TV DESCRIPYION

eyt ANGE INTERAL (IM MR) OF UNICH
INTEGRAL 1S EvALUAT l
L3] Input -INITIAL RANGE OF IntERval
i 1weyy ~TRANSAISELION LO IN DB IAY By
L] TnePuy -Finat A « TERVAL
ne oyt ~TRANSAISEION L“.(ll
SRC 1wryY -SNIP SOURCL LEVEL tIn
SIny QurpuY ~VALUE OF InTEGRAL |IIVI”"V|

COMRON /PAATSA, ALPHA, C,SRC

A NANNNANNOMRBNODOONKNON

€1 (SRC-TLLY
» L1
c
¢ e CHECE TO A FLA? TL CURVE SEGMINT
3
IF 1aDS AT, 0.681 GO 10 i0e
B ~1i-10.01-CIODELR/D)
SINT <SINY + ALPWA 3BR1(R2-DISEXP((SRC-TL2)230.18C)
i IBEXPICEEL)
c
GO YO 9ee
[
[
é' CONTINUE
g [EVALUATE INTEGRAL FOR SPECIAL CASE WMEN Y(JieTijeit
¢ SINT = SINT CALPHAT((16.038(K1)1)/2. 10 RRSNE-RIONY)
0 wrTuan
o™
won

NOT REPRODUCIBLE

13. Conclusion

This document has addressed th e
of programming style. Its ap. -.on
will certainly require more work for
the programmer in the short term, but
in the long term, the rewards to the
programmer, his organization, and other
organizations and individuals using the
programs could be substantial. The
programmer should gain in the long
term, because his programs will be
easier tor him to understand, and will
be more likely t.. be used by others.
The organization will galn because the
costs it incurs tor maintenance and
software conversion will be lower.
Other individuals and organizations
will profit because less effort will be
required to understand, use, extend,
and adapt the programs.

14. References

Berkowitz, R. L. (1970). A Comparison
of Some FORTRAN lLanguages, Naval
Research Laboratory, Washington, D.C.,
October, NRL Memorandum Report 2191,
NRL Computer Bulletin 21, NRL Problem
56R06-41, Project No. A-37-533-00/6521/
WF08-051-702, 34 p.

Control
FORTRAN
Manual,
Series.
Calif.,

Data Corporation (1976).
Extended Version 4 Reference
Revised Edition, Cyber 70
Revision K. Sunnyvale,
Pub. No. 60305601.

Fleiss, J. E., G. W. Phillips, A.
Edwards, L. Rieder (1974). Programming
for Transferabil! .y, International Com-
puter Systems, Inc. (Unpublished).

Jacobs, G. (1976). Computer Programming
Standards, Ocean Data Systems, Inc.,
Rockville, Maryland (Unpublished
internal memo).

Jensen, R. W., C. C. Tonies (1979).

Sof tware Engineering, Prentice-Hall,
Englewood Cliffs, New Jersey, see Chap-
ter 4, “"Structured Programming”, p.
221-328.

Ledgard, H. F., L. J. Chmura (1978).
FORTRAN with Style: Programming
Proverbs, Rochelle Park, New Jersey,
Hayden Book Co., 164 p.

McCracken, D. D. (1972a). A Guide to
FORTRAN IV Programming, New York, John
Wiley and Sons.

McCracken, D. D., G. M. Weinberg
(1972b). How to Write a Readable FOR~-
TRAN Program, Datamation, October

p. 73-76.

Roberts, R. V. (1969). The Publication
of Sclentific FORTRAN Programs, Com-

puter Physics Communication, v. 1,
p- 1-9.

Yourdon, E. (1975). Techniques of
Program Structure and Design, Prentice-
Hall, Englewood Cliffs, New Jersey,
1975, See Chapter 4, "Structure Pro-
gramming”, p. 93-135.

36

——y

Appendix A. Fortran Keywords

The following is a list of FORTRAN
keywords and other character strings
that should be avoided when naming
quantities such as variables, programs,
subroutines and arrays:

ACCESS
AND

ARRAYS
ASSIGN

BACKSPACE
BLANK
BLOCK
BUFFER

CALL
CHARACTER
CLOSE
CLOSEM
CLOSMS
COMMON
COMPLEX
CONTINUE

DATA

DATE
DECODE
DIMENSION
DO

DOUBLE
DUMP

ELSE
ENCODE

END

ENDFILE
ENTRY

EOF

EQ
EQUIVALENCE
ERR

ERRSET
EXIST

EXIT
EXTERNAL

FALSE
FILE

FMT

FORM
FORMAT
FORMATTED
FUNCTION

GE
GET
GOTO
GT

IF
IMPLICIT
INQUIRE
INTEGER
INTRINSICS

LABEL
LOGICAL
LT

MAXREC

NAME
NAMED
NAMELIST
NE
NEXTREC
NOT
NUMBER

OPEN
OPENED
OPENM
OPENMS
OR
OVERLAY

PARAMETER
PAUSE
PDUMP
PLOT
PRECISION
PRINT
PROGRAM
PUNCH

PUT

READ
READMS
READEC
REAL
REC
RECL
RECOVR
REMARK
RETURN
RETURNS
REWIND

SAVE
STATUS
STOP
SUBROUTINE
SYMBOL

TAPE
THEN
TIME
TRACE
TRUE
TYPE

UNFORMATTED
UNIT

WEOR
WRITE
WRITEC
WRITMS

Appendix B. Basic External Functions

(From ANST Standard X3.9-1966)

Number Type of:
of Symbolic
Basic External Functlon Defianition Arguments Name Argument Function
Exponential ed 1 EXP Real Real
1 DEXP Double Double
1 CEXP Complex Complex
Natural Logarithm loga(a) 1 ALOG Real Real
1 DLOG Double Double
1 CLOG Complex Complex
Common Logarithm logyp(a) 1 ALOG10 Real Real
DLOG10 Double Double
Trigonometric Sine sin(a) 1 SIN Real Real
1 DSIN Double Double
1 CSIN Complex Complex
Trigonometric Cosine cos(a) 1 CcoS Real Real
1 DCOS Double Double
1 ccos Complex Complex
Hyperbolic Tangeat tanh(a) 1 TANH Real Real
Square Root (a)l/2 1 SSRT Real Real
1 DSQRT Double Double
1 CSQRT Complex Complex
Arctangent arctan(a) 1 ATAN Real Real
1 DATAN Double Double
arctan(aj/a3) 2 ATAN2 Real Real
2 DATAN2 Double Double
Remaindering aj(mod ajy) 2 DMOD Double Double
Modulus 1 CABS Complex Real

*The function DMOD (aj, aj) is defined as aj- [aj/ap] az, where [x] 1s the integer whose magnitude does not

exceed the magnitude of x and whose sign is the same as the sign of x.

38

L4 . L . »
Appendix C. Basic Intrinsic Functions
3
"~
(From ANSI Standard X3.9-1966)
Number Type of:
of Symbolic
{ Intringic Function Definition Arguments Name Argument Function
] Absolute Value |a] 1 ABS Real Real
IABS Integer Integer
DABS Double Double
Truncation Sign of a times largest integer < |a 1 AINT Real Real
INT Real Integer
i IDINT Double Integer
Remaindering* a) (mod aj) 2 AMUD Real Real
L . MOD Integer Integer
Choosing Largest Min (ay, a2, ves) >2 AMAXO Integer Real
Value AMAX] Real Real
MAXO Integer Integer
MAX1 Real Integer
DMAX1 Double Double
Choosing Smallest Min (ay, az,...) 22 AMINO Integer Real
Value AMINIL Real Real
MINO Integer Integer
MINI Double Double
Float Conversion from integer to real 1 FLOAT Integer Real
Fix Conversion from real to integer 1 IFIX Real Integer
Transfer of Sign Sign of az times |11| 2 SIGN Real Real
ISIGN Integer Inte§er
DSIGN Double Double
Positive a) - Min (a;, ap) 2 DIM Real Real
Difference IDIM Integer Integer
Obtain Most
Significant Part
of Double
Precision Argument 1 SNGL Double Real
Obtain Real Part
of Complex
Argument 1 REAL Complex Real
Obtain Imaginary Part
of Complex
Argument 1 AIMAG Complex Real
Express Single
Precision Argument
{n Double
Precision Form 1 DBLE Real Double
Express Two Real
Arguments in
Complex Form a; +a; -1 2 . CMPLX Real Complex
Obtain Conjugate of
a Complex
Argument 1 CONJG Complex Corplex

*The funciion MOD or AMOD(ay, 83) is defined as a) - [a}/ap] ap where |x] s the integer whose magnitude
does not exceed tne magnitude Lf x“and whose sign is the sédme as Xx.

39

Appendix D. Fortran Structures for Emulating
Structured Programming Constructs

o b

It is generally recognized that FORTRAN
(X3.9-1966) is not a good language for
structured programming (Yourdon, 1975;
Jensen, 1979). Its major deficlencies
are: (1) lack of block structures, as
are available in languages such as
Pascal and Algol; (2) lack of a nested
IF-THEN-ELSE statement; and (3) lack of
DO-WHILE and PERFORM-UNTIL statements.

Although the absence of these state-
ments Increases the difficulty of
writing structured programs in

FORTRAN, it shounld not be assumed that
one cannot write structured programs in
FORTRAN. One merely has to write
control structures corresponding Lo
those advocated by structured
programming enthusiasts. Interestingly
enough, however, to do so in FORTRAN
requires the use of the GO TO
statement, which at one time some
structured programming enthusiasts were
considering making illegal. Now it is
generally agreed that the GO TO
statement itself 1s not bad, but rather
its uncontrolled use. One cannot be
too upset with the original FORTRAN
designers, because the language was
around long before anyone even thought
of structured programming. Some of the
deficiencies of FORTRAN have been
recognized and have been corrected in
the more recent version of FORTRAN
(X3.9-1978). For example, the revised
language now includes the equivalent of
an IF-THEN-ELSE statement. It still
does not, however, include a DO-WHILE
or PERFORM-UNTIL statement, nor does it
include the block structure concepts of
languages such as ALGOL and PASCAL.
Inclusion of the latter would signifi-

cantly change the whole design of
FORTRAN and, in the author's opinion,
block structure unlikely to be stand-
ar 'ized 1in FORTRAN in the near future.
This appendix describes the logical
control structure diagrams, the
equivalent structured programming
pseudocode, and the FORTRAN code for
implementing the following structured
programming constructs: IF-THEN-ELSE,
IF-ORIF-ELSE, CASE (two forms), POSIT
(two forms), DO-WHILE, PERFORM-UNTIL,
ESCAPE and CYCLE. The motivation for
these constructs is described in
considerable detail in Chapter 4 of
Jensen and Tonies excellent book on

sof tware engineering (Jensen, 1979).

It should be pointed out that some of
the above forms are not necessarily
advocated by all software engineers.

In particular, the IF-ORIF-ELSE, POSIT,
ESCAPE and CYCLE constructs were not
described in Yourdon's (1975) book.
Nevertheless, Jensen and Tonies present
good arguments for their inclusion and
thus they are mentioned here. It
should also be pointed out that we have
taken the liberty of adding another
construct, the PERFORM-UNTIL (Form 2).
This construct is equivalent to the
traditional FORTRAN DO loop, which is
so useful for indexing arrays and
performing other counting operations.
It was included here because the author
felt it was unreasonable to request
that programmers implement their
looping operations with the FORTRAN
equivalent code PERFORM-UNTIL (form 1),
which uses the GO TO and IF statemens,
when the standard FORTRAN DO loop could
in many cases do the same task more
concisely.

1. SEQUENCE

1.1 Logical Control Structure

i

Code A

Code B

Code C

Figure D-1

Sequence Structure

1.2 Pseudocode

CODE A
CODE B
CODE C

1.3 FORTRAN Implementation

CODE A
CODE B
CODE C

2. IF-THEN-ELSE

2.1 Logical Control Structure

Code B

Code A

Figure D-2
IF-THEN-ELSE

Structure

2.2 Pseudocode

IF (condition) THEN
CODE A

ELSE
CODE B

ENDIF

2.3 FORTRAN Implementation

IF (condition) GO TO a
CODE B
GO TO ¢

a CONTINUE
CODE A

¢ CONTINUE

e ————— e

3.0 [IF-or-IF-ELSE

3.1 Llogical Control Structure

Code D

Code E

Figure D-3
IF-OR-IF-ELSE

Structure

42

| SR - . ﬁj
3.2 Pseudocode 4.2 Pseudocode
] IF (condition 1) CASE OF (index)
‘ CODE A CASE (1)
ORIF (condition 2) CODE A
CODE B CASE (2)
ORIF (condition 3) CODE B
CODE C CASE (3)
ORIF (condition 4) CODE C
CODE D CASE (N)
ELSE CODE N ;
CODE E CASE ELSE ';
ENDIF CASE E
END CASE |

3.3 FORTRAN Implementation
P 4.3 FORTRAN Implementation

IF (.NOT. Condition 1) GO TO a

CODE A
GO TO e IF (index .LT. 1 .OR. index
4 a CONTINUE «GT. n) GO TO e
IF (.NOT. Condition 2) GO TO b GO T0 (a, b, ¢, ...n), index
CODE B a CONTINUE
GO TO e CODE A
b CONTINUE GO TO g
IF (.NOT. Condition 3) GO TO ¢ b CONTINI'E
CODE C CODE B
GO TO e GO TO g
d CONTINUE ¢ CONTINUE
IF (.NOT. Condition 4) GO TO d CODE C
CODE D GO TO0 g
CODE E . . .
: e CONTINUE .
4. CASE Statement - (Form 1) n CONTINUE
CODE N
4.1 Logical Control Structure GO TO g
e CONTINUE
CODE E
g CONTINUE
nddex
else
1 > 3 n
a b C n e
Code A Code B Code C Code N Code E

Figure D-4
CASE Structure (Form 1)

43

5. CASE Statement (Form 2) 6. POSIT - (Form 1)

5.1 Logical Control Structure 6.1 logical Control Structure

!

Code A

Cone A Coae B Code C Code £

Condition 1

;<>

Code B
Figure D-5

CASE Structure (Form 2)

5.2 Pseudocode

CASE OF (index)
CASE (1,n)

CODE A
CASE (2)

CODE B
CASE (3)

CODE C
CASE EI.SE

CODE E
END CASE

n
-

Code C

o ¢ o-—uif

00 ——

5.3 FORTRAN Implementation

IF (index .NE.l .AND. index

. T
.NE. n) GO TO b °
‘ CODE A eise
GO TO £

b CONTINUE . Code Z
IF (index .NE. 2) GO TO ¢ ,

CODE B
GC TO £ Code D

¢ CONTINUE
IF (index .NE. 3) GO TO d
CODE C fb\
GO TO £
d CONTINUE ;
‘ CODE E Figure D-6

f CONTINUE POSIT Structure (Form 1)

6.2 Pseudocode

POSIT
CODE A

QUIT POSIT IF (Condition 1)
CODE B

QUIT POSIT IF (Condition 2)
CODE C

POSIT ELSE
CODE Z
END POSIT

6.3 FORTRAN Implementation

CODE A
IF (Condition 1) GO TO a
CODE B
IF (Condition 2) GO TO a
CODE C
IF (Conditivn 3) GO TO a
CODE D
GO TO b
a CONTINUE
CODE 2
b CONTINUE

1. POSIT - (Form 2)

7.1 Logical Control Structure

:

Code A

Code x,
F *
Code B
Code x,
F [4
[3
) :
Code C
"Code x3 ——»——(z)
Code D Code 2
D) -
Figure D-7

46

POSIT Structure (Form 2)

o ———

7.2 Pseudocode

7.3

POSIT
CODE A
IF (Condition 1)
CODE X1
QUIT POSIT
ENDIF
CODE B
IF (Condition 2)
CODE X2
QUIT POSIT
ENDIF
CODE C
IF (Condition 3)
CODE X3
QUIT POSIT
ENDIF
CODE D
POSIT ELSE
CODE Z
END POSIT

FORTRAN Implementation

CODE A
IF (.NOT. Condition 1) GO TO a
CODE XI
GO TO z
a CONTINUE
CODE B
IF (.NOT. Condition 2) GO TO b
CODE X2
GO TO 2z
b CONTINUE
CODE C
IF (.NOT. Condition 3)) GO TO ¢
CODE X3
GO TO z
c CONTINUE
CODE D
GO TO d
CONTINUE
Code Z
d CONTINUE

N

8. DO-WHILE

8.1 Logical Contro! Structure

Figure D-8
DCO-WHILE Structure

8.2 Pseudocode

WHILE (condition)
CODE A
END WHILE

8.3 FORTRAN Implementation

a CONTINUE
IF (.NOT. condition) GO TO b
CODE A
GO TO a
b CONTINUE

An alternative, but less popular,
implementation which has the advantage
of a positive test on the predicate 1s:

GO TO a
¢ CONTINUE
CODE A
a CONTINUE
IF (condition) GO TO c¢

8. PERFORM-UNTIL (Form 1)

9.1 logical Control Structure

T Figure D-9
PERFORM-UNTIL Structure
(Form 1)

9.2 Pseudocode

UNTIL (condition)
CODE A
END UNTIL

9.3 FORTRAN Implementation

a CONTINUE
CODE A
IF (.NOT. condition) GO TO a

An alternative implementation which has
the advantage of a positive test on the
predicate is:

GO TO b
a CONTINUE
IF (condition) GO TO d
b CONTINUE
CODE A
GO TO a
d CONTINUE

10. PERFORM-UNTIL (Form 2 - DO LOOP
Equivalent)

10.1 Logical Control Structure

Figure D-10

PERFORM-UNTIL Structure
(Form 2-Do-LOOP equivalent)

T
10.2 Pseudocode

i-ml

UNTIL (i .GT. mz)
CODE A

i={+mg

END~UNTIL

.10.3 FORTRAN Implementation

DO a i=m), mp, m3
CODE A
a CONTINUE

11. ESCAPE

The ESCAPE structure is an uncondi-
tional branch to the "outside"” of its
assoclated structure. If the exit is
from an iterative loop, the branch
would be to the outside of the loop.

This provides a mechanism for an easy
exit from the interior of a set of
nested iterative loops.

11.1 Logical Control Structure

Example of an escape in a
DO-WHILE structure, The code B's

Executed at the time of the escape

Figure D-11
ESCAPE-Structure

11.2 Pseudocode (Example)
S: WHILE (condition)
CODE A
IF (escape~condition)
CODE B
ESCAPE WHILE S
ENDIF
CODE D
END WHILE

11.3 FORTRAN Implementation

a CONTINUE
IF (.NOT. condition) GO TO b
CODE A
IF (.NOT. escape-condition) GO TO d
CODE B
GO TO b
d CONTINUE
CODE D
GO TO a
b CONTINUE

12. CYCLE

The CYCLE structure is an unconditional
branch to the condition controlling the
next iteration, i.e. to the “"inside"” of
the iteration loop. This provides a
mechanism for easily by-passing code in
the loop to advance to the next
iteration.

12.1 Logical Control Structure

Example of a cycle in a DO-WHILE

Figure D-12
CYCLE Structure

12.2 Pseudocode
C: WHILE (condition)
CODE A
IF (cycle condition) CYCLE C
CODE B
END WHILE

12.3 FORTRAN Implementation

a CONTINUE
IF (.NOT. condition) GO TO b
-CODE A
IF (cycle-condition) GO TO a
CODE B
GO TO a
b CONTINUE

e mt Bl ot ol

13. Example of a DO-WHILE Construct
Incorporating ESCAPE and CYCLE

13.1 Logical Control Structure

%
© -

Code D A

Cycle while

Code C

Code B

Escape while

White Condrtion

Figure D-13
DO-WHILE Construction
Incorporating ESCAPE and CYCLE

50

-~

17 Fsevdocode

§: WHILE (while condition)

CODE A

I¥ (condition 2)
CODE B
VSCAPE WHILE S

ENDIF

1¥ (condition 3,
CODE C
CYCLE S

ENDIF
CUDE U

cND WHILE S

:3.3 FORTRAN Implementation

& CONTINUE
17 (.NOT. while condition) GO TO d
CODE A
{F (.NOT. condition 2) GO TO e
CODE B
.0 TO d
« CONTINUE
IF (.NOT. condition 3) GO TO €
CODE C
GO TO &
f CONTINUE
CODE D
GO TO a
d CONTINUE

. ——

DISTRIBUTION LIST

COMMANDER
SECOND FLEET
FPO NEW Y RK, NY 09511

COMMANDER
SIXTH PLEET
FPO NEW YORK, NY 09501

COMMANDER

ANTISUBMARINE WAR FORCE
U. S. SIXTH FLEET

FPO NEW YORK, NY 09501

COMMANDER
OCEANOGRAPHIC SYSTEM ATLANTIC
BOX 100
NORFOLK, VA 23511
ATTN: N3
CODE N34
CODE N36
CODE 012

COMMANDING OFFICER
NAVAL OCEAN RESEARCH & DEVELOPMENT
ACTIVITY
NSTL STATION, MS 39529
ATTN: CODE 110
CODE 125
CODE 115
CODE 300
CODE 320
CNODE 321
CODE 322 (M. Clancy)
CODE 323
CODE 340
CODE 360
CODE 500
CODE 520 FILE

COMMANDER
NAVAL OCEANOGRAPHIC OFFICE
NSTL STATION, MS 39529
ATTN: CODE 7300

CODE 9000

ASSISTANT SECRETARY OF THE NAVY
(RESEARCH ENG. AND SYSTEM)
DEPARTMENT OF THE NAVY
WASHINGTON, DC 20350

ATTN: G. A. CANN

——
— et s (D D P gt e s

—

CHIEF OF NAVAL OPERATIONS
DEPARTMENT OF THE NAVY
WASHINGTON, DC 20350
ATTN: 0P-02

OP-03

0P-05

OP-095

0P-096

0P-951

OP-952

OP-951F

0P-952D

HEADQUARTERS

NAVAL MATERIAL COMMAND
WASHINGTON, DC 20360
ATTN: MAT-0724

PROJECT MANAGER

ANTISUBMARINE WARFARE SYSTEM PROJ
DEPARTMENT OF THE NAVY
WASHINGTON, DC 20360

ATTN: PM-4

CHIEF OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
ATTN: CODE 100

CODE 102B

CODE 220

CODE 230

CODE 460

CODE 480

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
NAVAL ELECTRONIC SYS COMMAND HDQRS
WASHINGTON, DC 20360
ATTN: PME-124

PME-124TA

PME-124/30

PME-124/40

PME-124/60

ELEX-320

COMMANDER

NAVAL SEA SYSTEMS COMMAND
NAVAL SEA SYS COMMAND HDQRS
WASHINGTON, DC 20362

ATTN: NSEA-O6H1

Pt P et bt s pd et g et

el e]

Pt et Pt g o

- —

DEPUTY UNDER SEC OF DEFENSE FOR

RESEARCH AND ENGINEERING
DEPARTMENT OF DEFENSE
WASHINGTON, DC 20361

COMMANDER
NAVAL OCEANOGRAPHY COMMAND
NSTL STATION, MS 39529

COMMANDER 1IN CHIEF
U.S. ATLANTIC FLEET
NORFOLK, VA 23511
ATTN: CODE 358

PLANNIN : SYSTEMS, INC.
7900 Wk TPARK DRIVE
SUITE 500
MCLEAN, VA 22101
ATTN: R. KLINKNER
DR. R.S. CAVANAUGH
B.A. BRUNSON

SCTENCE APPLICATIONS, INC.
8400 WESTPARK DRIVE
MCLEAN, VA 22101

ATTN: DR. J.S. HANNA

TRACOR, INC.

1601 RESERCH BLVD.
ROCKVILLE, MD 20850
ATTN: J.T. GOTTWALD

TRW SYSTEMS GROUP
7600 COLSHIRE DRIVE
MCLEAN, VA 22101
ATTN: 1.B. GEREBEN

UNIVERSITY OF TEXAS
APPLIED RESEARCH LABORATORIES
P.0. BOX 8029
AUSTIN, TX 78712
ATTN: G.E. ELLIS
L.D. HAMPTON
K.E. HAWKER
S.K. MITCHELL
S$.G. PAYNE
J. SHOOTER

ANALYSIS AND TECHNOLOGY, INC.
TECHNOLOGY PARK P.O. BOX 220
NORTH STONINGTON, CT 06359
ATTN: S. ELAM

—

P et et e

DAUBIN SYSTEM! C3RP.
104 CRANDON B:'ULEVARD
SUITE 315

KEY BISCAYNE, JL 33149
ATTN: DR. S.C. DAUBIN

NAVAL OCEAN RESEARCH & DEVEL. ACT.

LIAISON OFFICE

800 NORTH QUINMCY STREET
ARLINGTON, VA 22217
ATTN: CODE 139

COMMANDING OFFICER

NAVAL INTELLICENCE SUPPORT CENTER

4301 SUITIAND ROAD
WASHINGTIN, D 20390

DEFENSE SYSTEMS, INC.
6110 EXECUTIV: 8LVD. SUITE 320
ROCKVILLE, MD 20352
ATTN: G. JACCBS
J. LOCKLIN

THIRD WAVE SYsSTTHNS, INC.
P.0. BOX 7206

ST. PETERSBURC, FL 33734
ATTN: J.J. CORNYN

MR. BRUCE MENDENHALL

SAI

2999 MONTEREY-SALINAS HIGHWAY
MONTEREY, CA 93940

DR. GORDON WILLIAMS

SAL

1200 PROSPECT STREET
LAJOLLA, CA 92038

MR. GEORGE INNIS

SAl

1200 PROSPECT STREET
LAJOLLA, CA 92038

MR. KEN POLLAK
DATA INTEGRATION DEPT.
FNOC

NPGS ANNEX

MONTEREY, CA 93940

-
© e ———

MS. BONNIE HUNTER 1
DATA INTEGRATION DEPT.

FNOC

NPGS ANNEX

MONTEREY, CA 93940

LCDR DUDLEY LEATH 1
DATA INTEGRATION DEPT.

FNOC

NPGS ANNEX

MONTEREY, CA 93940

54

