
AD-A124-030 GAIDOFINES FOR CODING FORTRAN PROGRAMOIO) NAVAL OCEAN I/#
RESEARCH AND DEVELOPMENT ACTIVITY NSTL STATION MS

USI FE J JCORNYN JUL 82 NORDA 41 FG92 N

EmhhhEmhEEEEEE
EEEEEEEEEEEEEI
mhhEEEEEEEohEE
IhhomhhEEEEIK

H -m ~ *32 11112

1.8

11113I III25 1111_L16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF SIANDAFFLF IA A

0 NORDA Report 41

Guidelines for Coding FORTRAN Programs

John J. Cornyn

,- Numerical Modeling Division
Ocean Science and Technology Laboratory

July 1982

Approved for Public Release D T IC
Distribution Unlimited S E L E)

JAN3 :1983

Naval Ocean Research and Development Activity
NSTL Station, Mississippi 39529

L--law

Foreword

This guideline is designed to assist individuals in
writing FORTRAN programs. Adherence to the conventions
described herein should lead to readable and maintain-
able programs. In addition, it should significantly
reduce the amount of time and effort required to
transfer a program from one computer to another. Al-
though this document was written to serve as a coding
guideline, which the Acoustic Modeling Manager of the
Surveillance Environmental Acoustic Support (SEAS)
Project could provide to contractors and other Navy
organizations supporting the SEAS effort, it could
also be used, without modification, by any organiza-
tion writing, or contracting for, FORTRAN programs.

G.T. PHELPS, captain, USN
Commanding Officer, NORDA

I

AD-A124 030

Guidelines for Coding Fortran Programs

Naval Ocean Research
NSTL Station, MS

July 82

'I

UNCLASSIFIED
SECU&IITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOVT ACCESSInWIN 1 3. RECIPIENT'S CATALOG NUMBER

NORDA Report 41 AD/A124030

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Final
Guidelines for Coding FORTRAN Programs

6 PERFORMING ORG. REPORT NUMBER

7. AuTHOR(a) S. CONTRACT OR GRANT NUMBER(&)

John J. Cornyn

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Naval Ocean Research and Development Activity
NSTL Station, Mississippi 39529 PE63759N

I I CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Ocean Research and Development Activity July 1982
Code 320 13. NUMBER OF PAGES

NSTL Station, MississiDi 39529 57
14 MONITORING AGENCY NAME & ADDRESS(If different from Controlltng Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

IS&. OD . L ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, It dtfferent from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse elde it neceesary nd identity by block number)

FORTRAN coding software maintenance
FORTRAN guidelines
computer programming standards
software configuration management

20. ABSTRACT (Continue on reveree elde If neceeeary end identify by block number)

This document provides a set of conventions to be followed when writing FOR-
TRAN programs. Enforcement of and adherer..e to these conventions should
minimize problems in transferring programs to other computers, should lead to
more readable programs, and should make programs more maintainable. For ease
of reference, the guidelines have been arranged in the order the subjects they
apply to would normally be covered in a FORTRAN reference manual. The final
sections contain a FORTRAN program before and after the guidelines were

DD J JA,73 1473 EOITION oF I NOV6SFOP'.. UNCLASSIFIED
S/N 0102-L F-014-6601

CURITY CLASSIFICATION OF THIS PAGE (Whet Data Entered)

UNCLASsmyIR
S1KCrfMV CLASSIFICATION OF THIS PAGE (Nh.. Data 158tm,4

applied, and describe techniques for implementing structured programming
constructs.

"~UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEf(What Dale ERt"00)

Executive Summary

This document provides a set of conventions to be fol-
lowed when writing FORTRAN programs. Enforcement of,
and adherence to, these conventions should reduce
problems in transferring programs to other computers,
should lead to more readable programs, and should make
programs more maintainable. For ease of reference, the
guidelines have been arranged in the order that the
subjects to which they apply would normally be covered
in a FORTRAN reference manual. The final section shows
the text of a FORTRAN program both before and after

applying the guidelines. An appendix describes how to

emulate with FORTRAN code the constructs of structured
programming.

Il

- .-.-- -- .

Acknowledgements

The author is indebted to numerous individuals. Many
of the ideas presented appear in works by J. E.
Fleiss, G. W. Phillips, A. Edwards, L. Reider (Fleiss,
1974), H. F. Ledgard and L. J. Chmura (Ledgard, 1978),

and G. Jacobs (Jacobs, 1976). The author especially
wishes to thank Richard Lauer of NORDA and Gil Jacobs
of Ocean Data Systems, Inc. (ODSI), Rockville, Mary-
land, for reviewing the document, engaging in discus-
sions regarding its content, and offering numerous
helpful suggestions. Finally, the author is indebted
to CDR Kirk Evans, formerly Acoustic Modeling Program
Manager, Surveillance Environmental Acoustic Support
(SEAS) Project, NORDA Code 522, for funding this work,

Program Element 63759N.

,-!

ri

ii

Contents

1. INTRODUCTION 1

1.1 Scope 1

2. CODING FORTRAN STATEMENTS 2

2.1 General Remarks and Sug- 2
gestions

2.2 FORTRAN Character Set 3
2.3 FORTRAN Statements 3
2.4 Continuation Lines 3
2.5 Statement Separator 4
2.6 Statement Labels 4
2.7 Comments 4
2.8 Blank Lines 5

3. LANGUAGE ELEMENTS 5

3.1 Constants 5

3.1.1 Integer Constants 6
3.1.2 Real Constants 6
3.1.3 Double Precision 6

Constants
3.1.4 Complex Constants 6
3.1.5 Octal Constants 6
3.1.6 Hollerith Constants 6
3.1.7 Logical Constants 6

3.2 Variables 6

3.2.1 Integer Variables 7
3.2.2 Real Variables 7
3.2.3 Double Precision 7

Variables
3.2.4 Complex Variables 7
3.2.5 Logical Variables 7

3.3 Arrays 7

3.3.1 Subscripts 8
3.3.2 Array Structure 9

4. EXPRESSIONS 9

4.1 Arithmetic Expressions 9

4.1.1 Evaluation of Expressions 9

wiii

Contents

4.1.2 Type of Arithmetic Expres- 9
sions

4.1.3 Exponentiation 9

4.2 Relational Expressions 9
4.3 Logical Expressions 10
4.4 Masking Expressions 10

5. ASSIGNMENT STATEMENTS 11

5.1 Arithmetic Assignment 11
Statements

5.2 Logical Assignment 11
5.3 Masking Assignment 11
5.4 Multiple Assignment 11

6. CONTROL STATEMENTS 11

6.1 GO TO Statement 11

6.1.1 Unconditional GO TO 11
Statement

6.1.2 Computed GO TO Statement 12
6.1.3 ASSIGN Statement 12
6.1.4 Assigned GO TO Statement 12

6.2 Arithmetic IF Statement 12

6.2.1 Three-Branch Arithmetic 12
IF Statement

6.2.2 Two-Branch Arithmetic 13
IF Statement

6.3 Logical IF Statement 13

6.3.1 Standard Logical IF 13

Statement
6.3.2 Two-Branch Logical 13

IF Statement

6.4 DO Statement 14

6.4.1 DO Loops 14
6.4.2 Nested 00 Loops 15

6.5 CONTINUE Statement 15
6.6 PAUSE Statement 16
6.7 STOP Statement 16

iv

41

Contents

6.8 END Statement 16
6.9 RETURN Statement 16

7. SPECIFICATION STATEMENTS 16

7.1 Type Statements 16

7.1.1 Explicit Type Statements 16
7.1.2 IMPLICIT Type Statements 17

7.2 DIMENSION Statement 17

7.3 COMMON Statement 17
7.4 EQUIVALENCE Statement 18

7.5 LEVEL Statement 18
7.6 EXTERNAL Statement 18
7.7 DATA Statement 18

8. PROGRAMS, SUBPROGRAMS, AND 19

PROCEDURES

8.1 Main Programs 19
8.2 Block Data Subprogram 20
8.3 Procedures 20

8.3.1 SUBROUTINE Subprograms 21
8.3.2 FUNCTION Subprograms 21
8.3.3 Basic External Functions 21

4 8.3.4 Intrinsic Functions 22

8.3.5 Additional Utility Sub- 22
programs

8.3.6 Statement Functions 22
8.3.7 Procedure Communication 22

9. INPUT/OUTPUT 23

9.1 FORTRAN Record Length 23

9.2 Carriage Control 23

9.3 READ and WRITE Statements 23

9.3.1 Formatted 24
9.3.2 Unformatted

24

9.4 FORMAT Statements 25

9.5 File Manipulation Statements 26
9.6 BUFFER Statements 26
9.7 NAMELIST 26
9.8 ENCODE and DECODE 26

v

Contents (Continued)

10. MISCELLANEOUS MACHINE/ 26
SYSTEM DEPENDENCIES

11. SUMMARY OF FORTRAN STATE- 27
MENTS AND RECOMMENDATIONS

12. EXAMPLE PROGRAM 32

12.1 CNOISE Model Before 32
Application of Guidelines

12.2 CNOISE Model After Applica- 33
tion of Guidelines

13. CONCLUSION 36

14. REFERENCES 36

APPENDIX A. FORTRAN KEYWORDS 37

APPENDIX B. BASIC EXTERNAL 38
FUNCTIONS

APPENDIX C. BASIC INTRINSIC 39
FUNCTIONS

APPENDIX D. FORTRAN STRUCTURES 40
FOR EMULATING STRUC-
TURED PROGRAMMING

CONSTRUCTS

vi

z o W

Guidelines for Coding FORTRAN Programs

1. Introduction document. Photocopies of this standard
may be purchased from the American

1.1 Scope National Standards Institute, Inc.,
1430 Broadway, New York, NY 10018

This document provides a set of conven- (Telephone: (212) 354-3300). At the
tions to be followed when writing time of writing, X3.9-1966 cost $24.95,
FORTRAN programs. Adherence to these and X3.9-1978 cost $16.50, with a $4.00
guidelines should make it easier for shipping charge. USA Standard Basic
programmers to understand the programs FORTRAN X3.10-1966 w is not used because
they write, especially when they review most programs for the underwater acous-
them three weeks, three months, or tics community do not run on the small
three years after their inception. systems for which this standard was
This increased understanding will also designed. Although a more recent FOR-
allow developers to concentrate on TRAN standard (ANSI Standard X3.9-1978,
solving the problems that their pro- sometimes referred to as FORTRAN 77)
grams were originally designed to exists, we have chosen not to use it
address, rather than resolving the because many FORTRAN compilers in the
problems created by programming in an Navy do not support it, even though it
arbitrary, undisciplined style. was declared the approved standard on 3
Adherence to these guidelines should Apr 78 and X3.9-1966 was withdrawn. The
make program maintenance less time- new FORTRAN Standard was designed, how-
consuming for the individual, and less ever, to minimize con !icts with X3.9-
expensive for the organization 1966. We have modified this report to
chartered with this responsibility, further reduce these conflicts. Unfor-
Adherence to these guidelines should tunately, adherence to these standaids
also facilitate transferring a program does not guarante, that programs will
from one computer to another. be written clearly or concisely, or

will have a well-structured design. And
Most of the conventions contained here X3.9-1966 does not permit many desira-
are concrete and specific to facilitate ble FORTRAN constructs, such as speci-
enforcement. fication of Hollerith characters with-

out character counts. To achieve maxi-
This document assumes that the reader mum transferability of software,
is conversant in FORTRAN, and thus does developers must consider other factors
not attempt to explain the purpose or not addressed by the standard, and even
the meaning of FORTRAN statements and avoid the use o. some statements per-
associated constructs. Readers inter- mitted by the standard. Because many
ested in achieving a better understand- programmers may not be exactly sure
Ing of the syntax and semantics of the what is, or what is not, permitted by
FORTRAN statements mentioned herein are the ANSI standard, this document coin-
referred to the books by McCracken ments on many commonly used constructs
(1972a) and Control Data Corporation which are not permitted by the stand-
(1976) mentioned in the reference ard, and specifically states when they
section of this report. must be avoided.

The American Standards Institute (ANSI) This document was developed by consid-
USA Standard FORTRAN X3.9-1966 was used ering coding conventions suggested in
as a starting point in writing this the works of Berkowitz (1976), Fleiss

g1

(1974), Jacobs (1976), Ledgard (1978), Their value has been well-established
McCracken (1972a and 1972b), Roberts by the software engineering community.
(1969), Jensen (1979) and Yourdon
(1975), as well as the author's pro- This document was designed to serve as
gramming experience. At times, it was a guideline to be followed by private
necessary to choose between conventions contractors and other organizations
that appeared to have equal merits, but when writing FORTRAN programs in sup-
which were either conflicting or incon- port of the SEAS Project Office. The
sistent with one another. need for this document was clearly

indicated by the lack of attention many
For ease of reference, the guidelines software developers gave to the clar-
have been arranged in the order that ity, transportability, and maintain-
the subjects would normally be covered ability of their progams. This neglect
in a FORTRAN reference manual. Pre- needlessly resulted in high program
ceding each coding convention described conversion costs, numerous maintenance
in this document is a letter: M, S, headaches, and untold hours of wasted
or L. An M next to a convention indi- Lime trying to decipher the meaning of
cates that it must, in the author's uncommented, spaghetti-like logic.
opinion, always be followed. Any vio- Since other organizations have similar
lations of such a convention must be problems, it is hoped that this docu-
approved by the individual in the ment will prove to be useful to them as
organization who is responsible for well. It is believed that even a
enforcing the coding guidelines. An S casual reading of this document will
indicates the coding convention should improve most programmers' style.
be followed whenever possible. An L
indicates that it would be helpful to 2. Coding Fortran Statements
follow this convention because it most
likely would improve program clarity. 2.1 General Remarks ard Suggestions

Section 11 provides a summary of the M - All source code must (whenever
possible FORTRAN statements, indicates possible) be written in a subset of
the sections of this document where American National Standards Insti-
they are discussed, and offers overall tute (ANSI) FORTRAN, as described
recommendations concerning their use. in X3.9-1966. The limits of this

.1 subset are defined below.
Section 12 is divided into two parts.
The first part shows the original M - Extensions to the above standard
coding of an ambient noise model must not be used, unless implemen-
(CNOISE). This code was written prior tation of the program is impossible
to the formulation of the guidelines without their use. (Some manufac-
suggested herein and is an actual turers, e.g., Control Data Corpora-
model, rather than an example designed tion, have compilers that will
exclusively for this report. It is check for and flag noncompliance
typical and, in many respects, better with the ANSI standard.)
than most of the coding found today.
Its major deficiency is the general M - If the conventions described herein
lack of comments. The second part are adopted as standards by an
shows this same program after being organization, any violation of
revised to abide by the guidelines those conventions designated by the
described herein. letter M must be approved by the

individual appointed to enforce
Appendix D describes in detail how to them. Standards that are not
emulate the control structures of enforced are useless.
structured programming (Jensen (1979),
Yourdon (1975)). Exclusive use of M - Don't subvert the intended purpose
these structures is highly recommended. of the language, i.e., avoid pro-

gramming tricks.

2

M - Do not write programs that modify 2.3 FORTRAN Statements
themselves as they execute.

M - !ORTRAN keywords must be clearly

S - For each installation and applica- set off by a blank character or
tion, users should follow an other separator to improve program
adopted set of standard variable clarity.
names. This procedure will make
programs easier to understand and M - The executable statements in the
interface, if required, at a later range of a DO loop must be indented

time. at least three spaces from the DO
statement and terminating CONTINUE

S - Build as many error checks iftto the statement.
program as possible, under the
assumption that it will do some- S - FORTRAN statements should be
thing incorrectly. This will help numbered in columns 73-80. This
reduce debugging time. facilitates communication of

updates and reconstruction of
S - Avoid having one module (group of dropped decks.

statements that perform a specific
function) "fall" into another. It S - All elements related to a specific
is better to have explicit level of the control structure
transfers between modules than to should be aligned to the same
rely upon the sequential execution column.
of code.

S - All dependent processes associated
S - Adopt the KISS (Keep It Simple, with a structure should be indented

Stupid) philosophy. Always use the by a fixed amount, usually two to
simplest language features that five spaces. The optimum amount is
will solve the problem adequately. three spaces. The dependent proc-

ess could also be a control struc-
S - Design the program listing so that ture, in which case processes sub-

it is pleasing to the eye. ordinate to the dependent control
structure should again be indented

S - Avoid including more significant to indicate their relative position
digits in the output of a program in the structure.
than can be justified by its
input. 2.4 Continuation Lines

2.2 FORTRAN Character Set M - Do not use more than nine (9) suc-
cessive continuation lines. Nine-

M - Do not use characters other than: teen is the maximum permitted by
the ANSI standards 3.9-1966 and

- equal sign) right parenthesis X3.9-1978. But the subset language
+ plus sign , comma of X3.9-1978 permits only nine.
* asterisk . decimal point
/ slash - minus sign M - Continuation lines must be desig-
(left parenthesis blank nated by nonzero alphanumeric char-
alphabetic (A-Z) numeric (0 to 9) acters in column 6. They must be

apostrophe numbered sequentially, starting
with 1 through 9, then, if needed,

Only these characters are permitted by go A through K. Column 7 of a
the ANSI standard X3.9-1978. The quote continuation line must always be
("5 and not-equal (#) symbols are not left blank, except when this pre-
permitted. The currency symbol ($) vents outputting a Hollerith string
was permitted by X3.9-1966 but the begun on the previous line. This
apostrophe (') was not. step is especially important in

3

FORMAT statements, since the inte- the same program unit in which the

gers in column 6 could be adjacent control statement appears.

to integers in format fields,
thereby reducing readability. For S - Keep statement numbers from one to

example, 25X where the 2 is in four digits in length. Although

column 6 might be incorrectly ANSI X3.9-1966 FORTRAN permits up

interpreted as "skip 25 blanks." to five digits, four digits seems
adequate and helps to prevent

M - Columns 1-5 of a continuation line errors due to digits accidentally

must contain blanks. This step is being typed in column 6.

included to increase agreement with

X3.9-1978. L - Make all FORMAT statement numbers

begin with the digit 9 and total

2.5 Statement Separator four digits.

M - Do not put more than one statement L - Statement-label numbers should be

on a line. Use of more than one left justified in columns 2 through

statement per line can make pro- 5. This will help to prevent

grams extremely difficult to read. errors that can occur when one of

Also, it is not permitted by the the digits is accidentally punched

ANSI standard. in column 6. Also by starting in

column 2, the first digit stands

2.6 Statement Labels out more clearly than if the number

started in column 1, since often

M - Statement labels (numbers) on there are comment cards, with Cs in

statements (other than FORMAT column I befcrc and after this

statements) which are not trans- card.

ferred to from other points in the
program must be eliminated from the 2.7 Comments (Also see Sect. 8.1)
source code. Extraneous labels

make programs difficult to read and M - All comment cards must begin with C

debug. in column 1. Other comment indica-
tors, such as /, *, and $, are not

M - Assign statement numbers in ascend- permitted by the ANSI standard.

ing sequence of value, initially by

10's or 100's, so that additional M - Programs must be divided into

statements can be inserted without sections, each of which performs a

renumbering, given task. Before each section,
comment cards must briefly describe

M Statement-label numbers must appear the task being done by the section.

J only on CONTINUE and FORMAT state-

ments; e.g., M- Include enough explanatory comments
so that the reader can easily fol-

100 CONTINUE low the code. Consider comments to

B - SQRT(A+C) be the equivalent of the text of a

not book. A well-documented FORTRAN

100 B - SQRT(A+C) program will often have more com-
ment statements (C-statements) than

M - Do not put a statement number on an executable statements. Contrary

END statement. Its use on an END to some people's belief, comment

statement is not permitted by ANSI statements do not slow down the

standard FORTRAN. execution of a program. Their
absence, however, significantly

M The statement labels used in a con- impedes human comprehension.

trol statement must be associated
with executable statements within M - Groups of comment statements must

be set off by at least one blank

4 4

comment card before and after the listing, e.g., by using asterisks

group. or by punching WARNING in columns
that are normally blank.

M - Write comment statements so that
they will help the reader to under- S - When using identation, keep the
stand the program. A program spacing conventions as consistent
comment of the form "add I to N" as possible.
before the statement N=N+l is no
help. The goal is to anticipate S - Programs should be "commented" as

the questions the reader will have they are written, not afterward.
and to answer them in advance. This will help expose errors in

logic and inadequacies in the code.
M - Display comments so that they will Also it should be easier to anno-

stand out clearly. tate a piece of code while it is
fresh in one's mind as opposed to

M - Do not refer to specific statement several days (or weeks) after it is
labels (numbers) in comment state- written.
ments or in FORMAT statements (for
debugging printout for example). S -Meaningful comments should be added
Because the program may be rese- to critical sections of code, but
quenced later, such comments and care should be taken not to
printed messages could, as a detract the reader's eye from the
consequence, become incorrect and code itself.
grossly misleading.

L - Use blank space liberally, both

M - Each major decision point in a inter-line and intra-line.
subroutine or main program must
have comment cards explaining the 2.8 Blank Lines
decision.

M - Do not use blank lines. Instead
M - Do not extend the text of comments use a blank line with a C in column

into columns 73 through 80, because one. Some compilers do not accept
these columns may be used to completely blank lines.
sequence the card deck at a later
time. M - Make heavy use of blank lines (with

a C in column one) to improve
S - Arrange code and comments into program clarity. They are espe-

visual groups reflective of the cially useful for separating
program logic. modules of a program and highlight-

ing critical sections.
S - Break up long routines into sub-

divisions. Each subdivision might 3. Language Elements
correspond to a chapter in a math-
ematical textbook, with numerical 3.1 Constants
labels and subheadings. Display
these subdivisions by using special M - Use only integer, real, double
columns and "ruling lines across precision, complex, logical, and
the page," that is, comment state- Hollerith constants. Only these
ments containing complete rows of constants are permitted by ANSI

dashes, asterisks, etc. Actually, standard X3.9-1966.
if routines are well written they
should not be so long as to make S - Whenever possible, constant data
this procedure necessary. items should be isolated in DATA

statements. This separation leads

S - Whenever 9 difficulty can be to greater readability and easier
foreseen, insert a "warning" com- program modification.
ment which is easily visible in the

5

3.1.1 Integer Constants M - Do not use Hollerith constants in
statements other than in the

No recommended guidelines, argument of a CALL statement or in
a data statement. Their use in

3.1.2 Real Constants other statements is not permitted
by the ANSI standard X3.9-1966.

M - Do not divide by 0.0, as it is
not permitted by the ANSI standards. S - Avoid use of the apostrophe or
Division by zero may result in other characters, such as * or $
values such as 0., 10 - 4 1 , etc., to establish limits of size of

depending on the system. Hollerith constants, e.g., A
'ABCD'. Although this construct is

3.1.3 Double Precision Constants extremely valuable and time-saving,
it, regrettably, is not permitted

No recommended guidelines, by ANSI Standard X3.9-1966.
Apostrophes are permitted by ANSI

3.1.4 Complex Constants X3.9-1978 (see section 9.4).

No recommended guidelines. 3.1.7 Logical Constants

3.1.5 Octal Constants M - Do not use .T. or .F. to designate
logical constants, use only .TRUE.

M - Do not use octal or hexadecimal or .FALSE. The abbreviated forms
constants, such as 525B, in FORTRAN are not permitted by ANSI Standard
programs. These, unfortunately, X3.9-1966.
are not permitted by the ANSI
standard. This constraint is indeed M - Put a blank character on either
regrettable because an octal con- side of a logical constant to

stant can often be more easily improve readability. For example,
understood than a real constant
when doing operations such as mask- LOGICAL X1, X2

ing and shifting. Their use, how-
ever, could reduce the transfer-
ability of the program. X1 = .TRUE.

X2 = -FALSE.

3.1.6 Hollerith Constants
3.2 Variables

M - Hollerith constants used in expres-
sions and data statements must not M - Variable names must have no more
have more than four, nor less than than six alphanumeric characters
one, characters, e.g., 4HABCD is and no special characters. This

J permissible but 6HABCDEF is not. restriction is unfortunate, but
This restriction Is due to the necessary, due to the Inadequa-
limited word length of some cies of some FORTRAN compilers and
machines. the definition of ANSI standard

FORTRAN X3.9-1966.
M- Do not use right-justified with

binary zero fill (NRf) or left- M - The characters of a name must not
justified with binary zero fill be separated by blanks.
(NLf) Hollerith constants, e.g., do
not use M - The first character of a variable

name must be alphabetic.
A - 4L.ABCD or A - 4RABCD.

M - The standard naming conventions,
Although these constructs are very namely, using the letters A through
valuable, they are not allowed by H and 0 through Z as the first
ANSI standard X3.9-1966. characters of real variables, and I

6

through N as the first characters and the CORMON/DIMENSION statements
of integer variables, must be used need be altered if the dimensions
and not overridden, need to be changed, e.g., to put

the program on a smaller machine.
M - Variables that are never used in a

program or a routine must be S - Avoid changing variable names
eliminated. Their presence reduces across subroutine boundaries. For
program readability and wastes example, when passing a parameter
storage space. from one routine to another, do not

change its name unless it is
M - Variable names must not correspond unavoidable. Changing names across

to FORTRAN keywords. A table of boundaries makes the program less
FORTRAN keywords is provided in readable.
Appendix A.

3.2.1 Integer Variables
M - Variable names must be

as descrip-

tive as possible to improve read- M - All integer variables must begin
ability, e.g., the variable name with the letter I, J, K, L, M,
for the number of ships should be or N.
NSHIPS, not simply N, or NS.

S - In general, counters (variables
M - All variables must be clearly which are incremented and tested)

defined before being used in state- should be integer. The increment-
ments. Programmers must not assume ing and testing of integers is
that variables are initialized to faster than the incrementing and
zero (or any other value) at the testing of floating point (real)
beginning of a job. numbers.

M - Do not put part of a variable name 3.2.2 Real Variables
on one line and the rest of it on a
continuation line below. Keep M - All real variables must begin with
variable names on the same line. one of the letters A through H, or

0 through Z.

S - Variables ending with
the letter 0

should be avoided. This letter has 3.2.3 Double Precision Variables
a tendency to be confused with the
number zero. M - Do not use the implicit declaration

of double-precision variables.
S - One should not use the same vari-

able name in different contexts to 3.2.4 Complex Variables
save memory space. Doing so is
confusing to the reader and leads M - Do not use integer complex vari-
to massive confusion if someone ables. They are not permitted by
later changes any of the meanings, the ANSI standard.
Modern computers typically are
never so storage-space-limited that 3.2.5 Logical Variables
this practice is justified, except
possibly for very large arrays. No recommended guidelines.

S - Use symbolic variables, rather than 3.3 Arrays
integer constants, for array dimen-
sions in the text, e.g., in DO- S - The total storage for any one array
loops, IF statements, I/0 lists, should not exceed 32767 (decimal)
etc. Put them all together in words.
COMMON, and initialize them all in
one routine. Then only this routine S - The number of subscripts of an

array in a calling program should

7

be the same as the number of M - Do not use expressions other than

subscripts of the corresponding the following for subscripts:
array in the called subroutine.
For example, passing a two- C*V+K
dimensional array to a one- C*V-K
dimensional array via a subroutine C*V
call is a confusing and error prone V+K
practice and should be avoided. V-K
That is, avoid constructs such as V

K
PROGRAM A
DIMENSION B(10,10) where V is an integer variable, and

C and K are integer constants.
CALL SUBI (B) These are the only subscript

expressions permitted by ANSI
END standard X3.9-1966.
SUBROUTINE SUBI (C)
DIMENSION C(100) M - Subscript bounds must never be

exceeded. A subscript must never
be given a value less than one or

RETURN larger than the maximum length
END specified by the upper bound

declared for that subscript. This
This is not a "must" because there are rule is included to increase agree-
instances, where this procedure is very ment with X3.9-1978.

valuable, such as when one wishes to
operate on columns of a multidimen- M - Never use more than three sub-
sional array with a column-oriented scripts. This number is the
subroutine. Also the indexing problem maximum permitted by the ANSI
is minimal, since virtually every standard X3.9-1966.
machine stores arrays in the same

column-wise manner in accordance with M - Do not use implicit indices for the
the following table from ANSI Standard first element of an array. For
X3.9-1966: example, for a singly dimensioned

array A, declared by

Value of a Subscript DIMENSION A(5), use

Dime,, Subsc ript Subscript Maximum TEMP A(l)
-..nnhI y 0e1er4-t, Subs, qilt Value Subscrlpt V41ue

- - - not

IA I a . AII,. TEMP - A
•4 H (4 1

The lack of parentheses makes the
I : -d iar e' . .b" program significantly less readable.

S -If the installation's compiler has
an array subscript checking feature
use it, at least during the initial

3.3.1 Subscripts testing phases of the program
development. Since the automatic

M - The number of subscripts in an array subscript error checking fea-
array appearing in an executable ture tends to slow down a program
statement must always equal the considerably, it may be desirable
number of declared dimensions of to turn it off during production

the array, except in an EQUIVALENCE runs.
statement.

1 8

3.3.2 Array Structure expression. This will improve pro-
gram readability. For example,

S - Avoid making assumptions regarding instead of writing
the sequential order in which array
elements are stored in memory. For A-(B*C)+(((3**D)/(-3))*X)+(Y*4)
example, avoid using data state-
ments of the form write PlB*C

P2=X*((3**D)/(-3))
DIMENSION A(2,3) P3=Y*4
DATA A/l.,2. ,3.,6. ,8.,9./ A-P1+P2+P3

4. Expressions L - Polynomials such as A*X**4+B*X**3+
C*X**2+D*X+E should be programmed

4.1 Arithmetic Expressions as E+X*(D+X*(C+X*(B+X*A))) when
efficiency is important. The

4.1.1 Evaluation of Expressions expanded form is preferable when
efficiency is not important because

M - Never assume that some finite it is more readable.
value, e.g., 0.0, will be
substituted for a division by 0. 4.1.2 Type of Arithmetic Expressions

M - Always check, if possible, for the M - Mixed mode expressions must be
case when the denominator of an avoided, e.g., do not use A+B/C+
expression is zero. D/7+E/4+F instead of A+B/C+D/7.0+

E/4.0+F, or RCUT + NORDER*PERD
M - Do not use ambiguous statements instead of RCUT + FLOATF(NORDER)*

such as N+FUNC(N)*N where FUNC(N) PERD. ne ANSI standard does not
alters N. The results of such a permit mixed mode expressions.
statement depends upon the compiler
scanning algorithm. If the 4.;.3 Exponentiation
original value of N is not stored
in a temporary location, FUNC(N) M - Integer expressions must be raised
may destroy it. to only integer powers, never real

powers.
M - Make heavy usage of parentheses to

improve program clarity. There is M - Do not use double exponentiation
no penalty in modern compilers for without parentheses, e.g., A**B**C.
use of unnecessary parentheses. This form is not defined in the
Do not rely upon the left to right standard, so it may be implemented
evaluation of arithmetic expres- as A**(B**C), or (A**B)**C. If it
sions. For example, write the is necessary to use double exponen-
expression A/B*C as (A/B)*C, even tiations, use parentheses to
though it is defined this way explicitly define the meaning
according to the ANSI standard. intended.
Some individuals might think it
means A/(B*C). Leave no possible 4.2 Relational Expressions
doubt as to what the compiler will
do. The relational operators are: .GT.

(greater than), .GE. (greater than or
S - Break long arithmetic expressions equal to), .LT. (less than), .LE. (less

into several simpler expressions. than or equal to), .EQ. (equal to), and
That is, by using intermediate -NE. (not equal to). Relational
variables, break an assignment expressions have the form Al OP A2,
statement having a long arithmetic where Al and A2 are arithmetic or
expression into a series of assign- masking expressions, and OP is a rela-
ments each of which has a simpler tional operator.

9

M - Relational operators must compare continuation on a separate line

only integer expressions with inte- and align conditions vertically.
ger expressions or real expressions
with either real expressions or S - Avoid unnecessarily complicated
double precision expressions. Only logical expressions, e.g.
these comparisons are permitted by
the ANSI Standard X3.9-1966. IF (A .AND. B .OR. .NOT. C) GO TO 6

M - Do not use masking expressions with S - Avoid negative logical expressions
relational operators to form rela- whenever possible. Their positive
tional expressions. For example, equivalents are generally easier to
do not use expressions such as (A understand. For example, instead of
.AND. B) .GT. (M .AND. .NOT. 77B). writing

Masking expressions are not permit-
ted by the ANSI X3.9-1966 IF (.NOT. FLAG) GO TO 10
standard. X = Y

GO 'O 20
M - Do not use relational operators for 10 CONTINUE

expressions of a COMPLEX data type. A = B
For example, do not use expressions 20 CONTINUE
such as AMT .LT. (1., 6.55). Use
of expressions of the COMPLEX data write
type in this context is not defined
by the ANSI X3.9-1966 standard. IF (FLAG) GO TO 10

A =B
M - Put at least one blank space on GO TO ?O

each side of a relational operator. 10 CONTINUE
to improve p.ogram readability, X = y
e.g., A .GT. B. 20 CONTINUE

4.3 Logical Expressions L - Use only logical variables or
logical constants with logical

Logical expressions have the form LI OP operations. This approach is
L2 OP L3... OP LN, where LI, ..., LN are recommended only to achieve maxi-
logical operands or relational expres- mum portability of programs through

sions and OP is a logical operator. compliance with X3.9-1966.
The logical operators are .AND., .OR.,
and .NOT.. 4.4 Masking Expressions

M - Do not use .N. for .NOT., .A. for Masking expressions are similar to
-AND., or .0. for .OR. These logical expressions, but the elements

abbreviations are not permitted of the masking expression are of any

by ANSI Standard 3.9-1966, and they data type (variable, constant, or
make programs difficult to read. expression) other than logical.

M Put a blank character on each side S - Avoid use of masking expressions

of a logical operator to improve (e.g., do not use: KAY .OR. 63, or
program readability. .NOT. 55). This guideline is

suggested because such expressions
M - When an IF statement contains are not permitted by the ANSI

compound conditions, parenthesize X3.9-1966 standard, and also
the separate simple conditions to because they often depend upon the
make the range and strength of the word-length of the computer. Both

logical operators (.AND., .OR., and of these factors reduce program
.NOT.) crystal clear. If there are portability. This constraint is
more than two simple conditions, indeed unfortunate, since masking
use continuation cards to put each operations are extremely useful for

10

A-_ -j -

bit-oriented operations, which are and depend upon the order in which
awkward to perform in FORTRAN in it is evaluated.
any other manner. 6. Control Statements

5. Assignment Statements

6.1 GO TO Statement
5.1 Arithmetic Assignment Statements

M - Do not use the GO TO statement to

M - Do not use assignments of the form achieve small gains in efficiency
A=B, where (1) A is of the integer and thereby sacrifice program
data type and B is of a complex clarity.
data type, (2) A is real and B is
complex, (3) A is double precision M -Always put a blank character
and B is complex, or (4) A is com- between the keywords GO and TO
plex and B is anything but complex. when using a GO TO statement.

Also, put a blank to the right of

S - Avoid "run-on" equations. When TO and GO. For example, use GO TO
possible, divide large equations 5, not GOTO 5.
into meaningful parts. This
approach will help improve program 6.1.1 Unconditional GO TO Statement
clarity.

S - GO TO statements should be avoided

S -Do not use assignment statements wherever possible. Programs con-
requiring implicit conversion to taining excessive GO TO's are
REAL or INTEGER values. This inherently difficult to document
should help avoid problems arising and understand, since they tend
from rounding upon assignment to to have spaghetti-like logic. If
variables. For example, avoid the GO TO statement is used, it
expressions such as XI = I + I or should be used in a highly-
I f J + 1.5 controlled manner.

S - Put at least one blank character on S - Where possible, use a DO loop, an
either side of each equal (-) sign, IF statement, or a built-in func-

to help improve program readability. tion in lieu of a GO TO statement.

5.2 Logical Assignment Example 1 (due to Ledgard and Chmura,
see references)

No recommended guidelines.

Instead of:
5.3 Masking Assignment

10 CONTINUE
S - Avoid the use of assignments of the IF (N .GT. M) GO TO 20

form V - masking expression. This
type of assignment is not permitted N = N + I
by the ANSI standard, and the GO TO 10
portability of programs is reduced 20 CONTINUE

by its use.
Use:

5.4 Multiple Assignment
DO 10 N - 1, M

M - Do not use assignments of the form

V - V1 - V2 = V3...- expression. 10 CONTINUE
For example, do not use X - Y -
Z - 4. This type of expression is Example 2
not permitted by the ANSI standard.

Also, its meaning can be ambiguous Instead of:

11

IF (A .GT. B) GO TO 10 45 CONTINUE
C - B - A IF (L-6) 50, 60, 65
GO TO 20 65 CONTINUE

10 CONTINUE
C - A - B S - Check each computed GO TO statement

20 CONTINUE for an out-of-bounds value of its
index variable.

Use:
C - A - B S - Avoid using the computed GO TO
IF (C .LT. 0.) C -- C statement, except to simulate

the CASE statement of structured
Or, better still, use: programming as described in

Appendix D.
C = ABS(A - B) 6.1.3 ASSIGN Statement

6.1.2 Computed GO TO Statement M - Do not use the ASSIGN statement.

M - Do not use an arithmetic or masking 6.1.4 Assigned GO TO Statement
expression in a computed GO TO
statement. Use only an integer M - Do not use the assigned GO TO
variable. For example, do not use statement. It is a form of a pro-
GO TO (10, 110, 11, 12, 13), X/Y.stemn.Iisafrofap-GO To (10, 110,er 11, 12, 13),ittegram modifying itself, and it makes
Use of the latter is not permitted programs difficult to comprehend
by ANSI standard X3.91966. and debug. For example, when one

sees an assigned GO TO statement inM - The right parenthesis of a computed a listing, one has to make an extra

GO TO statement must always be effort to determine to where that

followed by a comma to comply with e et t rne to thes
X3.-196. or xamleusestatement transfers control. These

X3.9-1966. For example, use disadvantages outweigh any small
GO TO (advantages that may be gained in

(10, 20, 30), L CPU time and memory savings. Also

it is always possible to do the
not same thing another way, e.g. using

O TO (a computed GO TO statement or an IFGO TO (10, 20, 30) L statement.

M - Do not assume that an incorrectly 6.2 Arithmetic IF Statement
computed GO TO variable will result
in a default condition such a 6.2.1 Three-Branch Arithmetic IF Statement
"falling through." For example, do
not use statements such as GO TO M - Use a three-way branch IF statement
(100, 200, 300), M where M is 4. only when the three branches are

distinct, e.g., IF (A-80.) 500,
M - If a flag has more than three 600, 700 is acceptable, but

values and is used for transfer of IF (A-80.) 500, 500, 700 is not.
control to one of N locations, a Instead use
computed GO TO statement is clearer
than testing with multiple IF IF (A .GT. 80.) GO TO 700
statements. For example, use GO TO 500

GO TO (10, 20, 30, 40, 50, 60), L M - The expression of an arithmetic
IF statement must be either

not integer, real, or double precision.

IF (L-2) 10, 20, 25 S - The expression in an IF statement
25 CONTINUE should explicitly include all

IF (L-4) 30, 40, 45 levels of parentheses for clarity.

12Kf

L -When testing a variable that can evaluated because, according to the
assume N possible values, include ANSI Standard 3.9-1966, they don't
an (N+l)st check for the possibil- have to be. For example, on the
ity that the variable has assumed Univac 1108 system, if A is false,
an illegal value. B is not checked for its status and

the test fails. On the CDC 6600

6.2.2 Two-Branch Arithmetic IF Statement system, both A and B are checked.
As an example, if C is an array of
size N and if core is preset to

M - Do not use the two-branch IF negative infinity, the statement
statements, e.g., do not use IF ((I LT. N) -AND. (C(I) -LE.
IF (X*Y) 10, 20. It is not
permitted by X3.9-1966. C(I+1))) GO TO 100

would abort on the CDC machine if
6.3 Logical IF Statement I = N when C(N+I) was evaluated,

but it would not abort on the Uni-
6.3.1 Standard Logical IF Statement vac system. This problem could be

avoided on the CDC system by

This statement has the form replacing it with

IF (eir) stat, where eir is a logical IF(I .GE. N) GO TO 20
expression and stat is an unlabelled IF(C(I) .LE. C(I+1)) GO TO 100
executable statement other than DO, 20 CONTINUE
END, or another standard-form logical

IF statement. L - If a few statements are to be

S -Avoid testing floating-point executed only if some condition is

variables for equality, since the met, it is a simple matter to set

results can be misleading and a logical value TRUE if the con-

machine dependent. Due to the dition is true, and then use a

inherent inaccuracies of floating- series of logical IF's containing
pinteren na aions, it fla - just that logical variable as the
point representations, it may logical expression. The loss in
happen that a test for a specific computer time involved in repeating
number will fail when the user
would think it should pass. For the test of the logical variable is
examle, thAn - l.-3.d ays r t very small in most cases, and willexample, A = 1.-3.0/3.0 may result be more than compensated by

in A being set to 0.0000001 and a increased clarity. This step helps

subsequent test for (A .EQ. 0.) avoid use of the GO TO statement.

would fail. Instead of the test

IF (A .EQ. B) GO TO 2
Example

use a statement like OK - .TRUE.
IF((I .GT. N) .OR. (I .LT. 1)) OK

IF (ABS(A-B) .LE. l.E-08) GO TO 2. IFALSE.
IF(OK) A(IJ) = TEMP

Tests for greater-than-or-equal-to IF(.NOT. OK) WRITE(6,9110) I

or less-than-or-equal-to are pre-

ferred to tests for equality. This 6.3.2 Two-Branch Logical IF Statement
guideline is not a "must" because
in some circumstances the value of M - Do not use the two-branch logical
the variable may have been pre- IF statement. For example, do not
viously set to an "exact" value. IF statement For am* use statements such as

S - In IF statements of the form IF (K .EQ. 100) 60, 70.
IF (A .AND. B) (statement) do not This statement is no" permitted by
assume that both A and B will be the ANSI X3.9-1966 standard.

13

6.4 DO Statement M - Do not use real variables as DO-
loop indices. Although some

6.4.1 DOLoops machines, such as the Burroughs
B5500, permit this feature, it is

M - DO loop variables must not be not alLowed by the ANSI standard.
assigned a new value within the
range of the DO-loop. Specif- M - To impruve program clarity, the
ically, mI, m2 , and m3 should executable statements in the range

never be changed while executing a of a DO 3,op must be indented at

DO-loop of the form least three spaces from the DO
statement and terminating CONTINUE

DO n I = ml, m9, m3 statement. Three spaces allow the

or "DO" to stand out, and nested loops
will not deprive the programmer of

DO n I = ml, M2 - too mar,y card colLmns. For

Altering a DO parameter within a example, a D3-loop must appear as

loop may produce varying results, follows:

depending upon how the DO-loop
feature was implemented in the com- DO 10 1 = i, NSHIIPS
piler (pre-test, post-test, index Statenent - 1
in core, index in register, etc.). StatVmiUt - 2

Changing of the DO-loop variables
is not permitted by the ANSI
standard. For example, do not
write code such as Stateoent - n

10 CONTINUE

DO 15 K = 1,10

K = K + 1 M - Do not assunt that a DO-loop is
WRITE(5,2)K always executed once.

15 CONTINUE
2 FORMAT (15) M - Test for the case of zero itera-

tions of a DO-loop, if this occur-

M - Do not use nonpositive indices (I, rence is a possibility. For
mn, M2, m3) in DO-loops. example:

Loops in the form DO 10 1 - K,J
where J is less than K may or may IF((K-J) .LE. 0) GO TO I
not be executed once, depending DO 6 ! = J,K
upon where the test for completion
is made. Non-zero values of these
indices are not permitted by ANSI 6 CONTINUE
standard X3.9-1966. Although I CONTINUE

statements such as DO 10 1 = 0,1
are permitted in Univac FORTRAN, M - Do not assume that if mI is
they are not legal in CDC FORTRAN. greater than m2 , the loop will be

Instead, replace such constructs executed once. For example, the

with scope of DO 10 1=4, N where N=3 may
not be executed once.

DO 10 II - 1,2
1 - II-I M - Always put a blank character

between the keyword DO and the
The effects of negative incre- statement number following it, and
menting such as DO 10 1 -NP,I,-l between the statement number and

can be achieved with the statements the looping variable following it
such as to Improve clarity. For example,

write DO 10 1 - 1, 30, not
DO 10 ID - l,NP DOlOI,.,30.

I - NP+l-ID

14

M - Do not use large numbers as DO S - Parameterize DO loop indices rather
indices. Example: DO 10 1=1, N than using literals whenever pos-
where N-2**17. The maximum size sible. For example, use
for a looping index must not exceed DO 10 1 = NL, NH instead of
2**15-1, i.e., 32767. Although the DO 10 1 = 100, 325.
ANSI standard does not specify a
value, this size is the maximum for 6.4.2 Nested DO Loops
some CDC FORTRAN compilers.

M - Do not use the same single CONTINUE
M - Every DO statement must refer to statement to terminate nested DO

its own unique CONTINUE at the end loops. Always end each DO Loop
of its range. Some compilers put with its own unique CONTINUE
special restrictions on nested statement. This convention should
DO-loops that terminate on one help isolate bodies of DO loops and
statement. The XDS Sigma 5/7, for thereby lead to a clearer code.
instance, only allows the innermost For example, instead of
DO to transfer directly to its
termination point. DO 10 I=H,L

DO 10 K=KL,KH
M - Do not assume a value of a DO index

outside a DO loop if the loop ter- 10 CONTINUE
minated because the control varia-
ble is greater than its associated use
terminal parameter. In this case
the ANSI Standard X3.9-1966 says DO 10 1 = H, L
its value is undefined. If the DO 20 K = KL, KH
loop was exited by a GO TO state- .

ment or an arithmetic IF statement,
i.e., by not satisfying the loop, 20 CONTINUE
the control variable is defined and 10 CONTINUE
is equal to the most recent value.

M - DO loops must not be nested more
M - Do not transfer into a DO range. than 25 deep. Although the ANSI

Although such a transfer was per- standard does not have a limit,
mitted by X3.9-1966, it is not per- certain IBM FORTRAN compilers have

mitted by X3.9-1978. The range of 25 as an upper limit. As a
a DO loop may be entered only by practical matter and to preserve
the execution of a DO statement. readability, DO loops should not be
Also, most compilers do not guaran- more than four deep.

tee the results of such illegal
transfers. M -The range of a contained DO must be

a subset of the range of the con-
S - Invariant expressions should be taining DO.

factored out of DO loops to improve
efficiency and program readability. 6.5 CONTINUE Statement
For example, instead of

M - Always end each DO loop with its
DO 25 K - 1,30 own unique CONTINUE statement.

C - 3.0
A(K) - C S - Use CONTINUE statements liberally

25 CONTINUE to improve program clarity and

to facilitate debugging.
write

S - Put blank comment statements before
C - 3.0 and after each CONTINUE statement
DO 25 K - 1,30 that is a major decision point in

A(K) - C
25 CONTINUE

15

program. Add additional comment M - A RETURN statement must be used
statements to explain the decision only as the last executable state-
being made. ment of a subroutine or function.

This convention will help produce
6.6 PAUSE Statement one-in/one-out control structures.

Some machines permit the END state-
M - Do not use the PAUSE statement. ment to act also as a normal RETURN

Some computer facilities do not statement, but other machines
permit its use, even though it is require at least one RETURN state-
permitted by ANSI Standard ment before the END. Always
X3.9-1966. include the RETURN statement.

6.7 STOP Statement 7. Specification Statements

M - Do not use the form of the stop M - Keep all speciftcatui statements
statement, STOP #C...CA, where at the beginning of routines (pro-
C.. .C is a string of characters. grams, subroutines, or functions).
Use only the simple four-character
STOP, or STOP n, where n is an M - When used, specification statements

actual digit string of length one must appear In the following order:
to five. The character form is not
permitted by ANSI Standard X3.9- TYPE
1 9h 6. DIMENS ION

COMMON
6.8 END Statement EQUIVALENCE (to be avoided, if

possible; see Section 7.4)
M - Do not put a statement label

(number) on an END statement. M - Do not scatter specification
Such a label is not permitted by statements. Group all DIMENSION
the ANSI standard. statements together. Similarly,

group COMMON blocks and DATA
M - Every program must physically statements together. Incremental

terminate with an END statement. compilers cannot handle scattered
type, DIMENSION, and DATA state-

6.9 RETURN Statement ments; yet this form of compiler
is desirable from a speed/user

M - Do not use return statements of the interface standpoint.
form RETURN i. This form is not
permitted by the ANSI standard. 7.1 Type Statements
Use only the six-character form,
RETURN. 7.1.1 EXPLICIT Type Statements

M - Do not use a RETURN statement in M - The only data types permitted are
the main program. A RETURN state- INTEGER, REAL, DOUBLE PRECISION,
ment may appear only in a procedure COMPLEX and LOGICAL
subprogram, according to ANSI
Standard 3.9-1966. M - The standard naming conventions,

namely, using the letters A through
M - Use at most one RETURN statement H and 0 through Z as the first

per subroutine. Although the use characters of real variables, and I
of more than one RETURN is permit- through N as the first characters
ted by the ANSI standard, it can of integer variables, must be used
lead to poorly structured programs, and not overridden. For example,
since it defeats the one-in one- do not use INTEGER SUM, A, B, or
out principle of structured pro- REAL ZERO.

* gramming.

16

J ii _

M - Always include the word PRECISION M - Adjustable dimensions must only be
in DOUBLE PRECISION type state- integer variables.
ments. For example, instead of
using DOUBLE ALIST, J, B, use H - In a subprogram, a symbolic name
DOUBLE PRECISION ALIST, J, B. that appears in a COMMON statement
This statement is required by ANSI must not identify an adjustable
standard X3.9-1966, and also array.
improves program clarity.

L - Group dimensioned variables in
M - Do not specify the type of a name alphabetical order under one

more than once in a program unit, dimension declaration. This group-
as per X3.9-1978. ing can improve program clarity by

making it easier to find the
7.1.2 IMPLICIT Type Statements variables.

M - IMPLICIT type statements must not 7.3 COMMON Statement
be used. For example, do not use
IMPLICIT INTEGER (A-F,H). These M - Numbered COMMON must not be used.
statements are not permitted by the It is not permitted by the ANSI
ANSI standard 3.9-1966. They also standard X3.9-1966.
reduce program readability.

M - COMMON block names must not exceed
7.2 DIMENSION Statement six characters.

M - Do not use more than three M - A given COMMON block must have the
dimensions in an array. For same number of variables, and each
example, do not use DIMENSION variable must have the same number
A(10,20,30,5). The use of more of elements, independent of the
than three dimensions is not per- routine in which the common block
mitted by ANSI standard 3.9-1966. appears.

M - If an array appears in a COMMON M - Do not declare a COMMON block name
area, it must be dimensioned more than once in a COMMON state-
within the COMMON block and not in ment or program unit.
a DIMENSION declaration, e.g., use

M - Corresponding variables in COMMON
COMMON/INK/A(IOO), B blocks must use the same names in

all routines.
not

M - Include a COMMON area in a sub-
DIMENSION A(1OO) routine only if it is used in
COMMON/INK/A,B that subroutine. Following this

guideline will improve program
This guideline improves clarity and readability.
conciseness.

M - Do not use more than 60 COMMON
M - Do not use adjustable dimensions in blocks.

the main program. They may appear
only in procedure subprograms, M - Do not use blank COMMON unless
according to ANSI X3.9-1966. For absolutely necessary. If necessary,
example, DIMENSION A(L,K,M) is per- lay out blank COMMON in one central
mitted in the main program of routine and treat variables there
Univac 1108 FORTRAN programs, with as if they were global. This proce-
values set by parameter cards. It dure assists in avoiding duplica-
is not permitted, however, in CDC tion and is a form of documentation

FORTRAN.

17

S - Avoid excessive use of labelled two or more entities. Do not use

COMMON. (Insufficient blank COMMON it to equate mathematically two or

may result in inability to load in more entities.
OS/360 due to the loader sharing
that space.) L - Although INTEGER and REAL variables

should never needlessly be equiva-
S - In specifying COMMON block names, lenced to each other, there are

leave space for six characters, some instances when this is very
e.g., COMMON/LINKI /I,J, A(100). valuable, such as when creating
This guideline will simplify data structures. In general, how-
program modifiations should it be ever, avoid declarations such as
necessary to change a block name. EQUIVALENCE (A,I), since they

severely reduce program readability.
S - When using COMMON be careful to

avoid the hazards of context 7.5 LEVEL Statement
effects.

M - Do not use LEVEL statements. They
L - Group associated variables in a are not pennitted by ANSI standard

single COMMON area. Data types X3.9-1966.
having the greatest word length
requirements should appear first. 7.6 EXTERNAL Statement
Within each type of variable,
arrays should appear last. This M - If an external procedure name is
grouping helps make programs more used as an argument to another
readable. external procedure, it must appear

in an EXTERNAL statement in the

7.4 EQUIVALENCE Statement program unit in which it is so
used, in accordance with ANSI

S - Avoid using the EQUIVALENCE state- X3.9-1966.
ment, except when absolutely neces-
sary to save storage space. S - Avoid EXTERNAL statements whenever
Although permitted by the ANSI possible. Although permitted by
standard, this statement tends to ANSI 3.9-1966, they are confusing
make programs less readable. to many programmers.

M -Always include subscripts when 7.7 DATA Statement

arrays are equivalenced. For
example, do not assume M - Do not use parentheses in DATA

statements. For example, do not
DIMENSION ZEBRA(1O) use DATA (A = 3.), (B - 4.115).
EQUIVALENCE (ZEBRA, TIGER) Instead, use DATA A, B/3.,4.115/.

means the same as This is an unfortunate rule since
the first form is inherrently

DIMENSION ZEBRA(IO) clearer than the second. The
EQUIVALENCE (ZEBRA(l), TIGER(l)) reason for it is that the paren-

thesized form is not permitted by

M - The number of subscript expressions the ANSI standard. To comply with
of an array element name must cor- the ANSI standard, DATA statements
respond in number to the dimen- must have only the form DATA
sioning of the array or declarator, Vlistl/Dlistl/,...Vistn/Dlistn/
in accordance with ANSI Standard where,

X3.9-1978.
Vlist - a list of array elements or

M- The EQUIVALENCE statement is used variable names, separated by com-
to permit the sharing of storage by mas. Array elements must have

integer constant subscripts.

18

Dlist = a list of one or more of S - Avoid defining the value of the
the following forms, separated by same variable in several places
commas: a constant or rf*constant, throughout a program. For example,
where rf is an integer constant. avoid setting the variable P1 =

The constant is repeated rf times. 3.14159 in several subroutines. It
would be better to initialize this

M - The number of elements in the Vlist variable once, and pass it to other
must equal the number in the corre- routines via a COMMON block.
sponding Dlist.

M - The type of the constant in the 8. Programs, Subprograms, and Procedures
Dlist must agree with the type
associated with the corresponding A program unit consists of a set of
name in the Vlist. FORTRAN statements, with comments, fol-

lowed by an END card. A main program

M - Do not use an implied DO in a DATA is a program unit that does not begin
statement. For example, do not use with a SUBROUTINE, FUNCTION, or BLOCK
DATA (A(I), I=i,1O)/1.,2.,3., 7*2.5/. DATA statement. It can be used as a
Unfortunately, the implied loop is self-contained computing procedure. A
not permitted by the ANSI stand- subprogram is a program unit that
ard. It is, however, far superior begins with SUBROUTINE, FUNCTION, or a

to just using the array name BLOCK DATA statement.

(especially for two or three
dimensional arrays). For example, 8.1 Main Programs
the implied loop is easier to read
and write, and is less error prone M - The beginning of the text of the
than the following: main program must describe, in com-

ment cards, the following:

DATA A /1.,2.,3.,2.5,2.5,2.5,
2.5,2.5,2.5,2. 5/ (1) - The purpose of the program.

Unfortunately, the ANSI recommendations (2) - The author(s) name, address,

are: organization, and phone number.

DATA A(l), A(2), A(3), A(4), A(5), (3) - The version number of the

+ A(6), A(7), A(8), A(9), program.
+ A(IO)/l.,2.,3.,2.5,2.5,2.5
+ 2.5,2.5,2.5,2.5/ (4) - The date of the first program

compilation.
or (5) - The date the program was last

DATA A(1)/l./,A(2)/2./,A(3)/3./, updated.

+ A(4)/2.5/,A(5)/2.5/,A(6)/2.5/,
+ A(7)/2.5/,A(8)/2.5/,A(9)/2.5/, (6) - The organization for which the
+ A(10)/2.5/ program was written.

M - An initially defined variable or (7) - The processing performed by the
array element may not be in blank program.

common, according to X3.9-1966.
(8) - A listing of external reports,

M - A variable or array element in a books, or other documents describing

labeled COMMON block may be the algorithms used, or other infor-
initially defined in only a block mation about the program.

data subprogram, in accordance with
X3.9-1966. (9) - A list of COMMON block variables

modified by the main program.

' 1

C 19

(10) - A description of the card input M- Main programs, subroutines, and
required by the program (optional). functions should be kept to a mini-

mum number of lines. They must
(11) - The names and contents (briefly have no more than 50 executable
described) of all files (tape or disk) statements. This constraint helps
written and/or read by the program. to make programs more understand-

able by reducing the need for the
(12) - The names of subroutines in programmer to keep in mind the
which the above files are read or actions of large blocks of code.
written (optional).

M - At the beginning of each procedure,
(13) - A description of the output a blank comment statement must be
produced by the program (optional). followed by a set of comment state-

ments which describe what the
(14) - A list of "options" available in procedure does and the meaning of
the program (optional). each of the formal parameters.

Parameters must be identified as to
(15) - A list of changes made to the whether they are input, output, or
program and dates of those changes input-output variables.
(optional).

M- At the beginning of each procedure,
M - The main program must have no more there must be a set of comments

than 50 executable statements. indicating which common block vari-

Longer programs are generally dif- ables are modified by this sub-
ficult to understand and maintain, routine. These comments are needed

to facilitate maintenance of the
M - If an entity of a given common program and to avoid wasting time

block is given an initial value in searching through cross reference
a BLOCK DATA subprogram, a complete lists.
set of specification statements for
the entire block must be included. M- Procedures must be arranged in the
This is required by X3.9-1966. source code in alphabetic order

following the main program. This
S - Use a top-down approach when arrangement makes programs signif-

designing programs. icantly easier to debug and under-
stand, since it cuts down on time
searching for subroutines in large

8.2 Block Data Subprogram printouts.

M - Do not use BLOCK DATA subroutines M - Procedures which are never called
that have names. They are not must be eliminated from the source
permitted by ANSI Standard X3.9- deck. Extraneous routines waste
1966. Use only unnamed BLOCK DATA others' time trying to determine

statements. their purpose and relevance. They
also waste memory space.

M - A program must contain no more than
one BLOCK DATA subprogram. (In M - Always put at least one blank
compliance with X3.9-1978). character after the keyword CALL.

8.3 Procedures M - Do not use recursive procedures.
Most compilers do not allow them.

M -- Make frequent use of functions and

subprograms to clarify and modular- S - Procedures should describe, in
ize the source code. comment statements at the beginning

of each routine, the meaning of

20

internal variables used in the program unit. Also it is annoying

routine, to search code looking for it,
i.e., it makes a program less

S - Sections of code likely to change readable.
in the future should be isolated

into procedures and clearly iden- M - Do not use any language feature

tified whenever possible. which permits subprograms defined
within other programs to have

S - Make procedures general purpose access to all parent program vari-

whenever possible. ables. Some compilers, such as the
XDS Sigma 7, allow this to occur.

L - The comment-statement list of The use of this feature is not

descriptions of the formal param- permitted by the ANSI standards.
eters of a procedure should appear
in alphabetic order, thereby making 8.3.2 FUNCTION Subprograms
it easier to find the description
of a given variable. M - Do not declar,- double-precision

type functions with just the

8.3.1 SUBROUTINE Subprograms (also see identifier DOUBLE; always use

Section 6.9, RETURN statement.) DOUBLE PRECISION. The use of

DOUBLE alone is not permitted

M - Do not use subroutine calls that by the ANSI standard.
include a return list; for example,
CALL PGMI(A,B,C), RETURNS (5,10). M - Always include a RETURN statement
Instead use the simple RETURN in a function, do not assume just
statement. The return list is not an END stanL..ent will suffice.

permitted by ANSI standard 3.9-1966.
M - The formal parameters of a function

M - Do not use the RETURN I form of must not be assigned new values
returning from a subroutine. Use within the body of the function.

the simple RETURN statement. The That is, there must not be any
RETURN i form is not permitted by input-oatput or output formal

the ANSI standard X3.9-1966. parameters; only inplt parameters
are permitted. If formal param-

M - The symbolic name of the formal eters must be changed, a subroutine

parameters of a subroutine subpro- must be used.
gram must not appear in an EQUIVA-
LENCE, COMMON, or DATA statement in M - Do not use a function when you need

the subprogram. a subroutine.

M - The symbolic name of a subroutine M - Do not alter COMMON block variables

must not appear in any statement in in a function.
in the subprogram except in the
symbolic name of the subroutine 8.3.3 Basic External Functions
itself. This is required by ANSI

X3.9-1966. M - Appendix B lists the functions
required by X3.9-1966. Avoid

M - Do not use a subroutine when a using any other external function,

function is needed. Use the right other than TAN. It is unfortunate

tool for the job. TAN, the tangent function, was not
included in X3.9-1966.

Although its use is permitted by S -Avoid using the external functions

the ANSI standards, it defeats the SINH, DSINH, COSH, COSH, DCOSH,

one-in/one-out principle of struc- ACOS, ASIN, DTANH, DTAN, CDABS.

tured programming, since it allows Some systems may not recognize

more than one entrance into a these routines.

21

8.3.4 Intrinsic Functions S -Avoid calls to routines that
manipulate the transfer of data to

M - Appendix C lists the intrinsic and from extended (ECS) or large
functions allowed by X3.9-1966. Do (LCS) core storage.
not use other intrinsic functions.

S - Avoid calls to routines that handle
S - Avoid using the following intrinsic terminal 1/0.

functions since some systems may
not support them: 8.3.6 Statement Functions

logical product AND(X,Y,Z) M - Do not use statement functions that
logical sum OR(X,Y,Z) include masking expressions.
exclusive or XOR(X,Y,Z)
complement COMPL(A) M - Aside from dummy arguments, the
shifting SHIFT(A,I) expression of a statement function
masking MASK(I) may only contain non-Hollerith
random number RANF(A) constants, variable references,
location of variable LOCF(Q) intrinsic function references,

references to previously defined
Shifti% algorithms are usually statement functions, and external
word-size and hardware dependent. function references.
If it is necessary to use such
routines, Include comment state- 8.3.7 Procedure Communication
ments describing their purpose.

M - Do not use more than 60 formal
8.3.5 Additional Utility Subprograms parameters in each procedure call.

The ANSI standard does not specify
S - Avoid all operating system inter- any limit. Some CDC compilers,

face routines, such as calls to however, have a limit of 60
DATE, TIME, SENSE SWITCH settings, parameters.
overlays, and recovery routines.
These routines tend to signifi- M - With the exception of a Hollerith
cantly reduce the portability of constant, the actual arguments in a
programs among different computers. subroutine call must agree in type
If they are used, clearly describe and number with the corresponding
their function in comment cards. formal parameters in the sub-

routine, e.g., a call to a sub-
S - Avoid embedding system-dependent routine using CALL SUBI(I,l.0) must

debugging aids in programs. be avoided when the subroutine
begins as subroutine SUBI(A,I).

S - Avoid using system-dependent calls The Hollerith constant is an excep-
to random number generators. tion to the rule regarding agree-

ment of type.
S - Avoid calls to system-dependent

mass storage 1/0 routines. M - Literals must never be used as

arguments in subroutine calls when
S - Avoid calls to system-dependent their corresponding formal param-

routines that check for end-of- eters can be changed in the called
file, or parity errors, routine.

S - Avoid calls to other system- M - Do not use multiple entry points
dependent I/0 routines, such as into a routine. Each subroutine
those that give information on size and function must have only one
of last buffer read in, or that entry point. Use of more than one
define tape labels. entry point defeats the one-in/one-

out structured-programming concept.

22

M - Do not use variable-length argument 9.3 READ and WRITE Statements
strings in procedure calls. Some
compilers will not deal success- M - Do not use PRINT statements. These
fully with missing arguments (vari- are not permitted by the ANSI
able length) in a subroutine CALL. standard X3.9-1966.

M - The formal parameters of a function M - Do not use PUNCH statements. These
must not be assigned new values are not permitted by ANSI standard
within the body of the function. X3.9-1966.

M - Do not assume subroutines will be M - A simple I/0 list enclosed in
called with correct arguments. parentheses is prohibited from

appearing in an I/O list (in com-
S - The actual parameters of a sub- pliance with X3.9-1978).

routine should be listed so that
input parameters are given first, M - Do not use expressions for unit

input-output parameters are given numbers, e.g., READ(2*K+l,10).

second, and output parameters are They are not permitted by the ANSI

specified last. This listing order standard X3.9-1966. The unit

should help improve the readability number must be either an integer

of the programs. variable or an integer constant.

S - Calling sequences should be used as M - Assume the users of a program will
little as possible. COMMON is a provide it with bad input data.
much more efficient method of com- Always check these data for
munication between program units. validity.

S - Calls to machine-dependent sub- M - All printed output must be annota-

routines should be avoided, ted so that it is understandable to
a user who does not understand the

S - Parameters should always be checked inner workings of the program.
for validity when read from cards,
files, or upon entering subrou- S - All input parameters should be
tines. The intent here is to checked very closely for proper

detect input errors as early during values. Parameters should be

program execution as possible. printed out with an identifying
label as soon after input as

9. Input/Output possible, to facilitate debugging.
91 FORTRAN Record Length S- Avoid operator interaction (type-

writer I/0). Some installations

M - Logical record lengths must not may not support this feature.
exceed 80 characters.

S -Avoid using alternative action
S - The record length for print files flags; for example, READ (N,ERR=

should not exceed 120 characters. 101,END=I22). These are not per
There are some circumstances, how- mitted by the ANSI standard. This
ever, such as when making line is not a mandatory requirement
printer plots, where the additional because with some FORTRAN compilers
length is necessary. (e.g., Univac 1108) they are needed

to check for an end-of-file, and to

9.2 Carriage Control perform other file operations.

M - Use separate field specification S - Check input parameters for reason-
for printer control, e.g., use ableness and validity as soon as
FORMAT (lHl,7HBUFFER-) instead of possible after they have been read
FORMAT (8HlBUFFER-).

23

in. Avoid beginning calculations machines. Avoid complicated block-
without first checking the inputs. ing or binary (non-formatted) file

outputs.
S - Incorporate a debug switch in the

program which will print out useful 9.4 FORMAT Statements
trace information. This switch
should be designed so that it can M - REAL constants must never be read
be turned on and off after the from cards with INTEGER formats and
program is compiled (i.e., at vice versa.
execution time).

M - Do not use octal or hexadecimal
S - Make use of as many operating sys- specifications in FORMAT state-

tem checks on tape labels as pos- ments, since they are not permitted
sible. By checking tape labels in by ANSI standard X3.9-1966.
the software, one can often avoid
disasterous mistakes. M - In each program module, all FORMAT

statements must be listed after all
9.3.1 Formatted executable statements. This makes

programs easier to debug and read.
M - For formatted I/0, use only write

statements of the form WRITE M - Do not use list-directed (free-
(un,fn) iolist and READ statements field input) I/O statements. For
of the form READ(un,fn) iolist. example, do not use statements such
Here un and fn identify the input/ as READ(U,*) iolist or READ
output unit and format specifica- *,iolist. These are not permitted
tion, respectively. by ANSI standard X3.9-1966.

M - I/0 device numbers must not be M - Do not perform alphanumeric conver-
negative. Negative numbers were sion of the form rRw.
permitted by X3.9-1966, but not
X3.9-1978. M - Put a comma after each field

(except groups of more than one
S - I/O device numbers (un) often slash (/)) in a FORMAT statement,

depend upon the system. They even though the compiler may accept
should, therefore, be referred to the statement without the commas.
symbolically, e.g., NREAD, NWRITE,
rather than by literals, such as 5 These commas make FORMAT statements
and 6. This practice facilitates more readable, and some compilers
moving the programs to another require their presence. For
machine and also enables the user example, do not write
to easily modify his program to
output to a private file, instead 9510 FORMAT (FIO.O,9XLI).
of the system output file, if he so
wishes. Only unsubscripted integer Instead, write
variables should be used for I/O
device numbers. 9510 FORMAT (FlO.O, 9X, LI)

9.3.2 Unformatted M - Put at least one blank space after
the comma following each field in a

M - For unformatted I/0, use only the FORMAT statement. This will make
form READ(u) iolist or WRITE(u) it easier to read and modify
iolist to comply with ANSI standard formats in the future.
X3. 9-1 966.X9M6-

When formatted records are prepared
S - Design magnetic tape outputs for for printing, the first character

general compatability with other of the record is not printed. The

24

... ..~~ ~ ~ ~ ~ u ---- W - : . ".. ._..''.....

first character determines vertical S - Repeated spec!i ications In FORMAT

spacing as follows: blank-one line, statements should not be more than
0-two lines, 1 to the first line of two deep. For example, avoid
the next page, +-no advance. These statements like 9110 FORMAT (lX,
are the only control characters 3(15, 2(IX,13,3([4, 2X)))).
allowed by ANSI X3.9-1966, and only
these can be used. S - Separate multiple card format

statements by blank comment state-
M- Do not use format-controlled ments.

records of more than 120 char-

acters. L - Following the E or D In an E or D
output field, , + or - should be

S -When performing alphanumeric con- used prior t, rhe exponent. This
versions in the form rAw, r should increases enh; fiance -ith ANSI
be no greater than 4. This is X3.9-197 . 0'.ol '3.9-1966 per-
because we can only assume that mitted a blank as a replacement for
machines will have at a minimum the a +.
ability to pack four characters per
computer wrd. L - All format ;t e-ient numbers should

begin with '4 have four digits.
S - Format statement fields after

slashes(/) should begin on a new L - Group all ' i.,t f, mnat statements
line. That is, the record together al' r-oede with a comment
terminator "/" that appears in a statement wit 1 ,'it word "INPUT".
format statement should mark the Put a cnir.. : rd, with all
end of the FORTRAN text as it asterisk, 1, i nd after this
appears on a line of the source card, to - ' ;t e'd out.
listing (except for a succeeding
comma). Thus the end of a line on L - Group all 'r:,, ',iat statements
the printer output will correspond together tTil o,,, with the word
to the end of a line on the FORTRAN "OUTPUT . A . ri k comment
source listing, e.g., use cards as Lit :bve.

FORMAT (16H NO. OF FREQS = , 13 ,I, L - Group all :i, r both
1 17H NO. OF DEPTHS - , 13) input and . . .gether and

precede with ,h :,:,t statement
not with the wor 1 IN ' i o)I1rPUT" . Add

asterisk cot:w;-.t mirds as described
FORMAT(16H NO. OF FREQS ,13,/,17H above.

1 NO. OF DEPTHS - ,13).

L -Group all error message format
S - In FORMAT statements use the spec- statements together and precede

ification form NH ----- instead of with the words "EkROR MESSAGES".
I ------ I • For example, use Add asterisk -ominent cards as
4HABCD, not 'ABCD' (or *ABCD*). described above.
Although the apostrophe notation is
a tremendous timesaver for the pro- 9.5 File Manipulation Statements
grammer since it alleviates the
need to count characters (which is M - A record must not be written after
highly error prone), it is not an end of file record in a sequen-
permitted by ANSI standard X3.9- tial file. X3.9-1966 does not pro-
1966. It is permitted by X3.9- hibit this, but X3.9-1978 does.
1978 and is generally supported in
one form or another on most com- M - A sequential file must not contain
pilers. For maximum portability, both formatted and unformatted
it should be avoided, records.

25

Mixing of the two is permitted by on another system, always explic-
X3.9-1966, but not X3.9-1978. itly inltiallL-e ,emory to zero,

even it L ,;,,sten presently being
S - The use of overlays should be used does IL t,)r you. For example,

avoided (whenever possible). They
are not permitted by X3.9-1966. C ** CLEAR ARRAYS

DO 20 1 - , 0
S - The use of segmentation should be X()

avoided (whenever possible). It is DO i- J = 1,81
not permitted by X3.9-1966. A(,,J)).0

10 CONT IN!E
S - Avoid special disc or drum-oriented 20 cCr',FV

instructions. They are not stand-
ard forms. If necessary, be sure M - Machine-1,-t,:i :.d-,t code that cannot
they are well-isolated and clearly be c1it.2', :-:, be Isolated and
identified with comments. clear . >I- -: .with comment

cards.
S - Avoid making assumptions regarding

number and kind of peripherals M - Pro 6 rams. b- :iodularized into
available. machine, cr pendent and

indepev-iJei ; t !o s.
S - Isolate and clearly mark code that

checks for end-of-files. This M - Do not usL an i)de, such as sort-
practice should help reduce coding ing, thaL lepcn-s upon the inter-
changes necessary to transfer the nal represcn titin of characters.
program to another computer. Such
statements should be avoided when- M - Do not LaCe h i decimal and octal
ever possible, because of their literals (a:i c:~pie of internal
machine dependence. representations).

9.6 BUFFER Statements M - Do not writ, coe that depends upon
BCD, or r'BC1iC ard code differences.

M - Do not use BUFFER statements.
They are not permitted by the ANSI M - Do nwt as ord, byte, character,
standard X3.9-1966. or systm implem;enittion-dependent

coding.

9.7 NAMELIST
M - Always issume the character set

M - Do not use the NAMELIST capability. will be different for different
This is not permitted by ANSI machines. Do not make programs
standard X3.9-1966. dependent ipon the internal charac-

ter representation of a particular
9.8 ENCODE and DECODE machine.

M - Do not use the ENCODE and DECODE M - Do not use programming tricks

facilities. Their use is not dependent upon machine idiosyn-
permitted by ANSI standard X3.9- crasies.
1966.

M - Write your programs so the machine
operator can use his time and

10. Miscellaneous Machine/Systemn Dependencies talents efficiently. For example,

don't require him to set sense
M - Do not assume that memory will be switches or needlessly mount and

zeroed before the program runs. dismount tapes.

M - Whenever a variable has a chance of M - Make your programs as operator-
being used without initialization, proof as possible. Don't have a

26

I-7

-.. . .

program ask the operator for 11. Summary of Fortran Statements and
information if this same informa- Recommendations
tion can be obtained from the
operating system another way. For The following is a list of FORTRAN
example, don't require him to type statements and recommendations regard-
in the date. ing their use. This list contains

statements which must not be used under
S - Avoid assembly language interfaces, any circumstance (--), which can be

Their use is not permitted by the used only when necessary (-), which can
ANSI standard. be used at will (+), and which are

highly recommended C++).
S - When writing programs, estimate the

range of values variables can take The notation used here is as follows:
and document the same. The preci-
sion of integer and floating-point V -variable
arithmetic is machine and software Sn = statement number
dependent. If future systems have iv - integer variable
fewer bits assigned to the char- ml, m2 , m3 integer constants
acteristic in floating-point repre- n = integer
sentations, for example, the cur-
rent data may generate over/under-
flows (which may go undetected).

S - Never assume the computer operator
has done everything correctly.

S - Avoid whenever possible multi-
tasking statements, e.g., state-
ments such as ATTACH and DELETE in
System/360, the FORK statement in
the XDS-940, and the ZIP statement
In the Burroughs B5500. The
structure of most multitasking pro-
grams is very complex and difficult
to debug.

27

Section No. Rating

See 5.1 Assignment Statements

See 5.2 V - arithmetic expression +

See 5.3 V = masking expression

See 5.4 Multiple Assignment

V - Vl-V 2----Vn=expression

Control Statements

See 6.1.1 GO TO Sn
See 6.1.2 GO TO (Sn1 , Sn2 --- Snn), iv
See 6.1.2 GO TO (Sn1 , Sn2 --- Sn), expression -

See 6.1.4 GO TO iv (Sl Sn2---Snm)
See 6.1.4 GO TO iv (Sny,Sn2--Snm)
See 6.1.3 ASSIGN Sn to iv
See 6.2.1 IF (arithmetic exp) Sn1., Sn2 , Sn3 +
See 6.2.1 IF (masking exp) Sn1 , Sn2 , Sn3 -

See 6.2.2 IF (arithmetic or masking exp) Sn1 , Sn2
See 6.3.1 IF (logical expression or relational exp) stat +

See 6.3.2 IF (logical express or relational exp) Sn1 , Sn2 -

See 6.4 DO Sn iv=ml, in2 , mn3 +
See 6.4 DO Sn lvm 1 , m2 +

See 6.5 CONTINUE -++
See 6.6 PAUSE
See 6.6 PAUSE n
See 6.6 PA US E #c.. .c#
See 6.7 STOP
See 6.7 STOP n
See 6.7 STOP k$.c

4See 6.8 END +

See 7.1 Type Declar *on

INTEGER name . ..namen
TYPE INTEGER nainel,....nainen
REAL name1 . ..namen
TYPE REAL namel...nainen
COM~PLEX name,, ... namen +
TYPE COMPLEX namel, .. - - name.l
DOUBLE PRECISION name . , namen +
DOUBLE name1 ,---namen
TYPE DOUBLE PRECISION name 1 , .. .namen~
TYPE DOUBLE namel,...nanen
LOGICAL namel, ..namen +
TYPE LOGICAL name 1 , -, .namen
IMPLICIT type (ac),...typen(ac) -

See 7.6 Declaration

EXTERNAL namel,...namen

28

Storage Allocation

See 7.1.1 type namel, (di)

See 7.1.1 TYPE type name (di)

See 7.2 DIMENSION nameI (dl)... namen (dn) +

di array declarator, one to three integer constants;

or if name is a dummy argument in a subprogram,
one to three integer variables or constants

See 7.3 COMMON V,...Vn
See 7.3 COMMON /blk name/V I ,Vn +

See 7.3 COMMON // V1 , V2,...Vn
where blk name symbolic name or +

1-7 digits --

// blank common

See 7.4 EQUIVALENCE (glist1,),...(glistn)

See 7.5 LEVEL n,al...a n

See 7.7 Data Vlistl/dlistl/.. Vlistn/dlistn/ +

See 7.7 Data (VlistI + dlistl),...(Vlistn + dlistn) --
Vlist I List of array elements, variable names, +

separated by commas

List of array names,

implied DO list
dlist One or more of the following forms separated

by commas:
constant +
rf* constant +

(constant list)
rf* (constant list)
constant list: list of constants separated

by commas
rf: integer constant, the constant or

constant list is repeated the number of

times indicated by rf

See 8.1 Main Programs

PROGRAM Name +

PROGRAM name (parl park)

See 8.3 Subprograms

See 8.3.2 Function name (Pl,'''Pn) ++
See 8.3.2 type FUNCTION name (pl,...Pn)where type is

COMPLEA, DOUBLE PRECISION, LOGICAL +:

where type is DOUBLE, INTEGER, REAL --

See 8.3.1 SUBROUTINE name (pl,'''Pn) ++

See 8.3.1 SUBROUTINE name (--
See 8.3.1 SUBROUTINE name (P+,+;-Pn) returns (bi,..bm)

See 8.3.1 SUBROUTINE name, RETURNS (bl,...bm) --

See 8.3.1 ENTRY name

29

Statement Functions

See 8.3.6 name (Pl,'''Pn) = expression +

Subprogram Control Statements

See 8.3.7 CALL name +
See 8.3.7 CALL name (Pl,'''Pn) +
See 8.3.7 CALL name (Pl,'''Pn) RETURNS (bl,...bm) --

See 8.3.7 CALL name, RETURNS (bl,.bm)

See 6.9 RETURN +
Sev 6.9 RETURN i
See 8.2 BLOCK DATA
See 8.2 BLOCK DATA name

Input/Output

See 9.3 PRINT anything
See 9.3 PUNCH anything
See 9.3.1 WRITE (u,fn) Vlist +
See 9.3.1 WRITE (u,fn) +

WRITE fn, Vlist
WRITE fn

See 9.3.2 WRITE (u) iolist
See 9.3.2 WRITE (u)

WRITE (w,*) iolist
WRITE *, iolist

See 9.3.1 READ (u,fn) iolist +
See 9.3.1 READ (u,fn) +

READ fn, iolist
See 9.3.2 READ (u) iolist
See 9.3.2 READ (u)
See 9.3 READ (u,*) iolist
See 9.3 READ *, iolist
See 9.6 BUFFER IN (n, p) (a, b)

See 9.6 BUFFER OUT (u, p) (a, b)
See 9.7 NAMELIST /group name/al,...an/group namen/ --

al ,...an/
READ(u, group name)
WRITE(u, group name)

See 9.8 Internal Transfer of Data

ENCODE (c, fn, v) iolist
DECODE (c, fn, v) iolist

File Manipulation

REWIND u +
BACKSPACE u +
ENDFILE u +
EOF(U)

Format Specification

Sn FORMAT (fsl,.fsn) +

fsi one o.- more field specifications separated by
commas and/or grouped by parentheses

30

Data Conversion

srEw.d Single precision floating-point with +
exponent

srEw.dEe Floating point with specified exponent --

length
srEw.dDe Floating point with specified exponent

length
srFw.d Single-precision floating-point without +

exponent
srGw.d Single-precision floating-point with or +

without exponent

srDw.d Double-precision floating-point with +
exponent

rlw Decimal integer conversion +
riw.z Integer with specified minimum digits --

rLw Logical conversion +
rAw alphanumeric conversion +
rRw alphanumeric conversion --
rOw Octal integer conversion --

rOw.z Octal with conversion with minimum number --

rZw Hexadecimal conversion --

SrVw.d Variable type conversion --

s Optional scale factor of from: nP +
r Optional repetition factor, non-zero +

unsigned integer
w Integer constant indicating field width +
d Integer constant indicating digits to +

right of decimal point
e Integer indicating digits in exponent

field
z Integer specifying minimum number of

digits
nX Intraline spacing +

See 9.4 nH Hollerith +
See 9.4 *...* Hollerith

#.. .,' Hollerith

' .. Hollerith
/ Format separator; indicates +

end of FORTRAN record
Tn Column tabulation

V Display code substitution --

= Numeric substitution --

Comma (field separator) +

Overlays

See 9.5 Call OVERLAY (fname, i, J, recall, k)

31

12. Example Program ~::O 4.

12.1 CNOISE Model Before Application of 040 CO"'INi.C ft
Guidelines

30001 CONTRINVC

TOM1 6.6450 241 'PRIJtl .016j'??u'
PROGRAMf CNOISC (lNU?.OUST. 0 I St10CoT.uIM-PUI. .)..NOSE,

C THIS OROPM600 L
1

1C0L11 CALCULATES SHIPPING 05694. GO 30

euo. AUHOS. a. COONIN (""be 30)1 WITH B. W. Scol 4001) i.e.c90 ,.
C CN'II . 1 06L @ 0A.
C 3606 CON' 1N.;

COMMON 'PARTSH ALPIIA.C.SRNT.50C RITE1 6.6660 0ft.!:0,..1

11111"510 FRAMEthII,P"101 ?tPId?1Rl 10011.VLI F00.LbSOWN10"

LOGICAL CNIOUN.IICLS.PPIN1F C IN.~

DATA RUNIII. IUNII4.RU536.SIAMI.I.4.36.45IAP C

CA LL 501CC IDAlSI 6=100:ZU66 116..QALI

WRITE fluO36.SOOO'Sltf 5100..ss C. 1666S631i. 6..6$6. su~a663hI2a~osg.6661
WE15 Rus? C

IS ORONU FA.LSE. C60 FR.
CO I 00166 II1x51 "CISCVSUN1.1*.10.''' ~6010 R" 560I4.6l I,3 CoNVLEIRK'FC

i~oIn .,.Ri 1~J 5 1C uIOP) 0 -.1l IOI6OCCSII.

SO"IC w Fns~ "Aft4 6074 PONNA160-.1S1I#P 504, L"uI R6 *. 34
IFICOIIgLI?41 NME' 0.0)I So 10 54"01006
WRICE)IW.136.7000I I TIE.N0NCC 1 ?Hil '61 I) AL MCC4 ATI,II-l,S FT., 0 ICO4UtMco OfN.1II.l,s 6.
NOR& l)UNR?4, I PN)011.PilIJ,J.INOC .ISA 60 ONN NO',IZ. 1"1alUlIICA IIO
S)7C16S.6061I FNAUCNOC.1.f.I0))PN)J)JI.OCI61 1Al' Il.'7 I*MSRSLS TO1 10 rot A 6116000 FI(LI.Il
61031.100l1 SOC.Po N"S" V at"AP t:6I00 PA4NA 16.666 AIISI N66NSNRSSION LOSS 04LfL5 F4608 A IO60R?E'6.60761 SOPC iP:G A~N) Dn04".63 2.; a'. U IOS. 0,g NALICAL*RC.
READ ') N! 00 C--jOC ' *4*411OI 2!7t "16 aAuCI AMAGE . ACE INCRt ENo N*14 .1 N. N.

I- M C SIE.CSC GO '0 64000 S5.66) I
11 NO?.IFLO' SO '0 200 6?50 FAPIAT'II.SE'4NMCS1. I36.3163. DCG0CS' HAS
,*:'1 6.50 5!4! ''LCSI 6.PSS.3SOCCON-GC 9)1.69

I'. M NIL- 636466AIICCC.62 Is.3Si1.. TOI.9.4. NM., 0)6
.4)'.! 6.6Z0*. N'LI1.DPI?,.A.. IC.LL L. t?. 56)4 1*60 NORC LIN. L0 .111. IACS~ III

6(4'I INI'), N'DN'D..R.1.INU.'L.N''LINLU)86XI6COR oN ,IC P.10 T0 PHILDtE0CCS' SH.IPS NOISE '0O'
20P@'-';%1jE 311(NSIIII..

7.44 'I 'SoC r50 "I0A I .32NE73I'-34667))
0"CI.I''' a0 131.6 IkE MNECsoC?C..AL NUSI30.lN3)I R"OI

:1)1 e6R'CF GAUj .SO, J.4'44 ').P41t'j,.TOT1J).JSR C

SEAL -'17111 h?.N6'ODPI.. 1L'LLI.MTL' 50631~60U
NTL t H NIL I C

' -L-I' BORIC C~a" S (00

A6CC RLN'I1 "ILDU'.ILDUP,l I .110424. 'LDUN)LI.L-I.NLOUNI 2000 CONTINUC

I'I.'.. 44IC6.30 620 H00?I02E I**6SNISSICN, LOSS FRLE. 16622, Is0 DATA IaAT Off$
'0'RNIa 2'*0. O? COICS '"C SAME NUNBER 0r SECTOSS 9410(I 0 "goi)0I SNIP NOISE

S;* 0.0 00i0,9009

0LP0.N~i0'Naxs00:0:R,::::a.06'C010.36E*I.. ' $MNSNSION LOSS 'It[. IUNRYI. NOS NO 0.1. 605 7.

'1 '''2,6S1.1 '214 GO 0 SINCIGO4x-R'(l-

~~64S~ 015100*mONO'l*.S0,.E 0co-Cm,, AND SHIP4 COUNT FILE. IURT., .450 NOA561
L 6A*SLN'O11I .EN:.6PIILI I' I,, Ir0n 716 *UN.8
IC L.SAf GO T0 640

GO ' 900.4 :DgU. 'IL

61.3 21 GO 'S 400 6700 0014 0I0 IS NO TITLE. CAOS FOP THIS 065.2)

LAS, PNS06 .6-N).'L)*O'.PNA.,L4, WRTE6.910,
- 'A)00 O0N~l.~.0N. 6-- PR00.. CMOM lE 0101(IN PalINI P00(8 -- ''in

.4 .- C ALL A000

-Z TO 1500 510P 71777

SPAu.j SIN..PIL IL-L .OIL.1 ,TL 211) IU6UIN OASKL. 0.TL I.&

* 66 oN' 1.4COMMON 'PART0", ALPOA.C.SIN?.SEc

.400 C'NIu C CKg 4F:1LCO O"
IC C .C:O0PO LCBA (09

:r, loI :.s' G'. 0.0011 CIO 10 24010 C
too CONTINUE

NOT REPRODUCIBLE
32

C I , 4'[(47(4(43 233 3114ECA4 CS 3441 41 11-Tllll. C 3

iI47St t043(4@3(, 2 34 Ita33?-II034II C 33 130 To 10* ",. 4 to(37.022

C as 03

C Is *- - - -

5 3I

C It 3 LI as '31373Cs 33v 11 00 ITC)[E0113 I-.o~ 1 33C21110 C*LU30I WI7412.2 CNOISE Model After Applicaon C 23 N, I* 41'1334

GUidehlies C DES141 *3 1CRIPTION

C Is ENDED~ $,O II1
C 34I SOURC 3.1 30311 .501 IN D111
C 3 3 13710F3 06 30.PU FIA4
C Is -P23 4 u43

3000040 M4024(110O7.4o
7
4PUT .7 1.39u.4101.SoJ101o'7. C 33:1 am DETAILE3D3 03 1721(

C 3: 4443401K - '"14 ,PI104K 4441772C51.1 CA0LLAT 7 0 45607LLV C 32 ti-4~ 0 s*K .1. 3143 ASSURED40 .
C ~ ~ 00A 320703I 011117m farm m0250 Due0 30 opa a*40mC

41 22 3*0 1 c34 1411.1 444304143(4 4014211 3
C o 44 C L 1I;o.ss311 111 C 2 113I23.7930

C to CII ,45- cX I.

C 32s balk 1130C(.7100131
7

611, C N431"1A1L~~1os cI ,OTU

C 3 03021I-111-34131 C v3 435 P 4 3 FILE 10.
c 4C 3

C : 43 3471 30GI603 LAST WOA347 - 4aa344 0303 C 3 333 201144170413
03 "an84 un3177(3 Fos P00 A&C IS I c 2

C s 3S 4403401 - 44 POOJI[C?. 3003* COVE 110 c N

C so3 H OICO PUT 77.343140 1044lt C4g0 ME40 10(3lCM am (60 C 43 4 fit14710"' .. . S4, lc .114.."NIIII Ls

C 03 WWI 0ift '23541 401t"5LIVE014. IF WE *3UK A PLAY7 34573. C 3 ~ 0 0 to - o0:C 4 '19 .73 *A.. D.4C(I". silC as 730400. 4. o1 a 310140C,04 403clo It 4 i 2s 0 GIVE 71 0040025 g *C 1K I"04'4*1 333 '313.04 007 34 43C 20 4.63214324323314(4(74-750742. C 2 540.1'(.. . -. ''.. "13300141. 1417474 Post02 30
C 40 2, 723 0630 30(00 23 10 34023042. 417020470 0*2, C 3 34 '* 42103 O'7~3033 1423317'I0"01700

C 42 751451 33427 03 3044303 3270450 .1440001. 0 C 5 '-0*07a 73'"31333 3131 roe 3 43ast:47Ye2arC "Nol 7426 106300 3073 .23O"L (45lom 30 01742300;10
; Mat 1I700.3 741 CC ts 1413 0417 WHOM or 16 ' PE(0.4 1 0 4 0 1~ *3ol .i

C so Ns23 tToDNcl 1404(1 ol44i3'(3IV 31-4233oIN C 91353352*s 2*21151..2235332243232444
c 4 so SP 43 71 4 21 33 OF 4*400 .[,A.1 O 43 0 C It5 3 3434 3

C 3 0Z4034 34 1 1 740 Lost 7474 001E .4 1. .4(P40.070 .14131 :r ..
C t3 1140, .II t me RUNSs:: ("44 14-111110 Les CUB C" K44'3
C 33 REREENE AS310 a3' 70-E6 FUCT 0110 10 " store37 0(43 IN 33.J(......4............
C 23 It..4(3. IEI1

C 33" a(~.1703 0014 To 130 SUCH 703,2.1 01 3 4432
C t I3 NS 343(13 IS7.51I 52VI 3.13A foe 0 '41441

C so 313 ItR1 o 24 I 7 T 33o sc 11N P 2 031 3Kjl 3.2 34(F*43 ... I 3 -3.0 06 14 47
1 34 "ERE - . 341100 0104IC0 75 3330 - .'- 7 2 7 4Co

22 333.1 .)-I3ECPA OVER A5 3-537010T
3 3 ' ' 31 4 5t*,710471.L5 ,~ 3 30 14 134431003$00 4441C 33 C .. 3 .. 474 IE3 704,i2 . 30 3 .A.3(0C ~ ~ ~ ~ U"% 53. 7A1 ;,I 4E roe 11 4 333' 4 4.3 3 3

.3 . . RI '-E.3(P~ T1,3 S O LOS IN SECT. . . (3R 1' #7w3((70
C 00(1:It(.~-1 30.33 .3 30 43. ~ . . . S 45 4 4 0 4 0 0 00

C F .00 an770 3 7470

C 32 'L 3F1. 7413 Co I

3C C8 .,ER F05 i' 4 1 .2.2, 03 IN443 r PFIL
C 4 1 334 C7 10101 1 43130 74 at ,4 4461IPID 7403, C

C I5 343 7 L0 70010 0341 074072 703(74C 4 011407. -3 1,*3142 333 1
C 320 4 L 0 ...23(7441 4011 114014O 3007 c540424 **IM 7 4.3 42 44 04 4242..343

A, 32 00302. 42*4 740(020* to00or*I'0,"13- -1'00 0-44235tC
33 ") O N D NE T O A o l[L U L N O S I *g 1" No.34 (5 3 C4L @a * ANIt31 6 - 1 '- 1 P IN0fm

TH 33ls ssE Iscooseo IN PIM vrwc

C Of120 44 43 FU 73P*,IHT0~ f AND40 O0 510 N0-0300 24 06741.

C T2 7404 WIHT30 lan&35st asa 411841 12907320 0 14(0 30(703. 430c

C 42 NOE I3 IU'm 70 I 12 0 71 WAS 300307 aet As 4 45 3040070 300245 20*2C s3 120 a2502 005 35 4107 307044
C Is c0 320 491032057 46 0140 34 43. ~ ~ ' 14310530 432372 0 0523

C a 32 CI L v 3 (" 0 4 4 5 07"A 30" 73sI 36111 6 1"l s a e0172 014
C 32 GEN R AT D 72(42NT . T 0(L 7 CU VE 350 (.R t 472.3 I70. 300 03* C 34 04 23 27 0 C l

so ~sl I so,:a ILEso C rom 'o ILE c II WI1 TENOTD'I -16 RE RO U ILE
c PL F, Cfe L I P11*0 1141 F;:R33

MOM 00 1001411

9 I 81 bias U0 Tostle*;? SO C 351181 IN000 SUN ,T VOLUIS FR00T9513 1L3FIL
I C

C 313611 3155 .10. 01 to To0Be C RA11.
C cc C
C C313.Mov.950UMI 00 TO s0a0 IRA CONT.IU
C C
C 38 STOP P0005*5I 5001*3.3. t 0 CAL.CULATE7 A 10517057 FO1 INTEGRAL
C C

c C It 10 8 INS 015III. 310 111 317TNST hl9L

C,004, 0 1

C so *son? PROGRAM CrC 00 LO010 s 1cy810

C C
40 C05735U1 C I80* 0110 59 5.7 191 ~ 511 151U000

C C
C as WRITE 0213.1 OR PRINTER "Is8 ON N03SE 1FILE 111131053913, ?07,.u.3

1173935.** Path?13 OUT380 TH SETO 903337 0E5 191 016.ICTOR *1003.0, No. OF SHIPS.
133?18011101 1*03 T33.0 I"o' "W:s= IAt;cI N0. of I 350

C 1110 9101 MUBS1 OF 0C70I0 AND TITLE5 1005 7L FILE 2139131I3 173P15.II .5133P13J.0J.
C C

01*03373.) OI,101133Z C Be CHC TOl 70 IF THE 75 1 1 305 73.IM T 1313.3
9 C
C as 15111 91050 1 IM o 3f .FILE(.3 C0 7FFED 0 TO 4

o C

C

C %oS (StIml " 01 So3. PRINT51I1 OUT 73. INFO8 -IF7 155*O assem

C DoC
0137633903517053C 8 1573..3 IFAtmot ottu.(Rg

C is 000 CSECTOR ANGLE10S50 3.Cl
C ED IL 08IIJ.-II I J507OIC c*7 as8 SI9lI IF MAY01 VAUE 5031 133. C

4 **IN? OUT1 I TLE. CARD1.SOI NUMBER3L OF SISSIOCO M RIR . GL
C SO0 10573111

C 50 U73J

C C

1053*I.10 III is57 C NTAIE ITfI1FRTI 1

C I NC.C

C C
C 33 1151'373.1. 01 0 C701. FIL 1311 1 19PSAK03157 80D Ma0s? 2. M'SH

C i~ .30 C0 5 35901 7 003NC 13r. 13.0 CURV5E3. C 10(12.

cd O IW C It r57*18 . 5107 ami1E. 0X 1 7531O 17100 03

C 0a5 lo on.0CIIN
C L,. 405111AA P0*05 "sei" $98 03.

313037. 0. 0.03 IF 70'el OF C~o ON IL3 JW UPPNGS'M I 01159 35 AND 3153U9 0 A3es SN It

C 3150-2. 5~511 3 12. -01371S I100 HE5 *'01 108325293 SL5.008.53
C C

5111935,00 C 33 c ToIC si0 (IF 31 C-S 0 1301 5*0 1 5 SIOIICI 5032533A5

C o CON73poJ(C
C~~~~ to CHEC T0OS 'M1 CItUI 751 3 305121 f3 o13537LL 00511 -i ircis-nesi

.103010500O 4 3 1 0 0 11r T C*("t1111141 7074

C It 35OPO FIELD .90 1011. OUT C3I0014 C0095207
C 3 CCC 1001 155530 171 05 7.011 35C C00 353 O15001 0 I 1*053 106987 GA . 07411111 105U0N301 .30

C II 11.1
ISO*

CC

as OIWU-117t &N IO1L0161060110 IUMLIFSO6
0173 IfIPA L. BOM, 0 O PI

C 33733037.100 71 3. 2(.335081fi?53..l 1100NOT: 7 REPRODUCIBLE 3. 3*.11

31 .07 31.1 0 0 1 C 33 11.. U
5
0j15055131 7 1*31*9 712550*34S 0

so IFIS-0 fiC6T Kl K4JM. INKAt OF LAST "LUC OF L EUC R:LomIsAA::..ous..01000SA::::::::::A~

C ISI 0 *0T.10 FIND TWO INDEX CORRSONDSING ~ PT SNT

go C5- 404-4,.J.a"ooo* TICNOO 1CSS
I OMl!b 99ATIOATo*,KCT "I "as f3305 O0IN&. la. I6ASAIP 00101 OlIN .5*,I'

C to EwAL.ATE CONOIgUTION To IT0O 00SUISl.t 0700* IU elm~l SOOC L ToE LU.a ;f.0 ng4t.

CAxe~j 4TCI fh ICRUAl IS, ''' -6- THE R SIR.O"IO' LOS FILEIS1 IDEA?!) lED AT

TL 14,LE.,TE,,ICSSA.,S,*I)S -Q9 .RSA4. 1;-, 1

COO CAL PAAO:U")RAAREISEIT)E)SA.L.T a 23A 00111 10 A RECEIVES ATOF11 50r. A fRoA.AAC' Of.

c1 C::aAU 4 ISA SAIJTICAL RILES.-*

c Ke-11- I FOOAT, IN$, 4710T1 ToOOS, OSDT 0 A UNIFORM rIELD.

C
ION SAIPPIAC SOUSCI EP0.O. i.ii T OUT TO. 9o.

C s I CC To SEE INDICES RUN CORRECTLY. U I004IJTCA ..IO LSSVAUE

C 3 170. ICA 91T1r11 A.EI A *6 500 AANET .IO

IF(*l .GT. X2, Go ToO * 10 4 3 1. . T. l PACE 100SC.L

00 N. EAC.ATO OATISGIOATO JTOOAL 500ROAG 81)1 O 321 FOSRAT&?~, I (:Tom NUmsta. . 4.IA) . TO. F6.1,

C~~~~~ Al% USAGEo Am0 I1A0(5150ABTOTAL "E. So. 2, NAIPS IA. 13.

'L IA0 SU '11.1 SAN ISAPAIA,

clse CONTINUE GGSIOPT ISA. SS 00 .SwS 011I.10

C I 00~960 RY INTe. IT ,.FDA)''

C 05: CCITSE01OTk TOTAL INTENSIT CSECTORTE TOIS TS,
FAN5SN 01IORT A55.IRECO AORAIN.

C $I UP 10 TAI 1 0',l0, -LI. IAUCIIOU TEIT IC SOfTpm r I ONE I IN A I

C o 0 - f F : 'Ii S 0 S4 1 3 11 S1 SETA~ O HE - SE T R I F F . I

IIISIOT GO.SSA'0 TO I?$* I' 3)0 3.3.0 01 .0.E1&. 'P~ic SdsMs
SASSTILFo rOSAT LA.0)1 I 00 31.

C to COAVIST IMTEHSITO TO DO Ias 30*.y I OU. 3,2-II

C 3Dk. 3500 TAE 300IDIRiCTIOMAL 0025,1 , 25. ie.
001.1.0 SLOSIASlAT 3 lA DIITI.INES:O' al-. 0.

00 TO 1555 0 to" A. I,, I. O

C
30. .3 I.O

17AR CSTIU I~0 1TaA. ,0 I

Sam -AS. 91' O R- A A I* 3 I0.

C
9'4C OOY 1.

C -'C EAI I SS- ES

C I POT501 OUT INFO POO SECTOR MANO SIN.tF RjisATI Sy SOLI55011010000050550500000A0000505
C lin

PoA"T W00ITC(. 05.T.I'OOSA 510 LO1S 111l.1 'C IDTA T ...
IIIpezor SAT(IPSA .035 1.AEA01DOIPSSh.IATISNOT S.II T iE 500 OISE 0" ECTOAS010 0 TIF IP @.OISE

C SLO..
O T1 I

C .5 A0 IN IATOSITv Of 00IS MAN"S 5ECTOR SI 0 TO NT Of C
C $a TO9ENlTIRE JIM SECTOR 0030 IORNAT IAe. 59- fAEA-oI-.SION LCSS rl~f IIL. NAS NO 0ATA FOS

TIOTITjI *TOTIITIJI . SlOT
, u

C 00 ENDOF0 LOOP O0N RANGE 01m1 ree irA sOCT01 Il O 5.1. SoS.rL, S~p, ASN

case0 CONTINUE
50004 ; OR -s RU.'0r 5. IL 0 O 5R

C 0 CC TO SEE II TTL JSTEASITV 100 SECTOR IS GaEATs TOS6101001,. IO 51- . SCAo "&S SO D I " AI PROGRAM---
C ID -l. 1 IT Io 1 . (0 IS TOM -4000."T

C E ND
IFITOTI0TIj, G. .. :,OI 0040 T :o$p SURSUIS ASU141ITE.lTS.IT
TOTD64j, j.T4.
GO TO Ess* C IS URP:OS -,HlS SUSSoUTINE EVALUATE$ TOE INTIOOL 00'

00 1OTIU$C : L01DO()lIIISIISRC-TLI'~ STI oea SINGSLE

0555 CONTIPI.TII.T1C1 C v5 T OF*0 RAN1GE RSR IDMINSI
11660 COTIU P00C COSISE" 'DTELP ftSAISOSO LOSS EMW

C 0 WRITE OUT OIINNASo INFO Oro TOE ENTIRE SECTOR. IF SEOTOESTED c go ASSURED TO RaEo LIOO03SLO St
C --C

C ~ ~ ~ ~ ~ ~ ~ ~ ~ IIPI~IAIEIAN.55 .ODIITTNIICS- - ---- -- -
C go WRITE SECTOR ANGLES AND TOTAL SICT00 Dl VALUE DR NOISE [SLE c It SILO INPUT -Iab0S INTERnAL IN10 I~ SO ARIS
C C 0T ANTSAL IS EVALUATED

SSTEINIS.N)O OII(J).PMI0f).T0TDRiJI 0 A INPUT -IN IT IRS ARE INS) OF INTERVAL
C C 00 LI INPUT :TRASMISSION LOSS) 15 elIIT *I
C ISADD IN CQOITAIIUTIO, 01 TAIS SECTOR TO TOTAL OISSIOCTIRAE C IA 0 I NPUT -II MAL MRES ,ill OF IN"TISOL
C US it N TESSTV 0.0 1 C Is TLO INPOUT -TIAANDRISION LOSIAI all AT oil

C I5SO INPUT -AP50d LEL11 IIII.1 OUTPT 0010 -ALUE lOVOINTEL IINTNST

C E0CD 0F LOOP ON 01(0550s (j,
c 06 'RIt CORPS. ,PSATSR,,ALPMAC.SUC

C EI A 1OSRoTL
C It PRINT Out SUA NFO 0104 SEOU : 100 : * TL2.LI -
C C

ASI'E 4IT541J.OIJ.~SJ.TTi)J.OTIO4)J.TU0INT)jI. C of COEC TO A0 FLAT tL CURVE SEGMENT

C IF 0011 T. .01, go To too
C 05 IOtAl OPN0IOICTIONAL IhTENSIOT IS LEs THAN1 -450. $1OT IT TO a *-7 .I-cITRS

C) 00 -G'lINT .01MY . ALPOO.A IUSSSIIR-LIO)C
C X s oT S C 1 -141-6 '.1 XCoal))

OF, I T. GO01 T0 9O040

UC - 3600

C SIlo CONINUE
C a5R 01 0 10 TO DR

C .0 EVALUATE ImTESOAL,100 SPECIAL CASE WHEN0 013 1.0)01li

C69 C !;RMC" '

C to W41 ONAI 00 IALUE AND ORMIDIRECTIORAL ITENOIOT ON PRINTOUT IORTO

c .0~p RE0O TOfRAR NA SET SO CARD INPUT
C

Go TO I.

C
T

810 100001-1104 §-N. LI, NOT REPRODUCIBIE

35

13. Conclusion Ledgard, H. F., L. J. Chmura (1978).

FORTRAN with Style: Programming

This document has addressed th Z Proverbs, Rochelle Park, New Jersey,
of programmin6 style. Its ap, -.on Hayden Book Co., 164 p.
will certisily require more work for
the programmer in the short term, but McCracken, D. D. (1972a). A Guide to
In the long term, the rewards to the FORTRAN IV Programming, New York, John
programmer, his organization, and other Wiley and Sons.
organizations and individuals using the
programs could be substantial. The McCracken, D. D., G. M. Weinberg
programmer should gain in the long (1972b). How to Write a Readable FOR-
term, because his programs will be TRAN Program, Datamation, October
easier tor him to understand, and will p. 73-76.
be more likely t, be used by othets.
The organization will gain because the Roberts, R. V. (1969). The Publication
costs it incu.rs [or maintenance and of Scientific FORTRAN Programs, Corn-

software conversion will be lower. puter Physics Communication, v. 1,
Other individuals and organizations p. 1-9.
will profit because less effort will be
required to understand, use, extend, Yourdon, E. (1975). Techniques of
and adapt the programs. Program Structure and Design, Prentice-

Hall, Englewood Cliffs, New Jersey,
14. References 1975, See Chapter 4, "Structure Pro-

gramming", p. 93-135.
Berkowitz, R. L. (1970). A Comparison
of Some FORTRAN Languages, Naval
Research Laboratory, Washington, D.C.,
October, NRL Memorandum Report 2191,
NRL Computer Bulletin 21, NRL Problem
56R06-41, Project No. A-37-533-00/6521/
WF08-051-702, 34 p.

Control Data Corporation (1976).
FORTRAN Extended Version 4 Reference

Manual, Revised Edition, Cyber 70
Series. Revision K. Sunnyvale,
Calif., Pub. No. 60305601.

Fleiss, J. E., G. W. Phillips, A.
Edwards, L. Rieder (1974). Programming
for Transferabill y, International Com-
purer Systems, Inc. (Unpublished).

Jacobs, G. (1976). Computer Programming
Standards, Ocean Data Systems, Inc.,
Rockville, Maryland (Unpublished
internal memo).

Jensen, R. W., C. C. Tonies (1979).
Software Engineering, Prentice-Hall,
Englewood Cliffs, New Jersey, see Chap-
ter 4, "Structured Programming", p.
221-328.

36

C _-, _,.. - "-

Appendix A. Fortran Keywords

The following is a list of FORTRAN
keywords and other character strings

that should be avoided when naming
quantities such as variables, programs,
subroutines and arrays:

ACCESS FALSE PARAMETER
AND FILE PAUSE
ARRAYS FMT PDUMP
ASSIGN FORM PLOT

FORMAT PRECISION
BACKSPACE FORMATTED PRINT
BLANK FUNCTION PROGRAM

BLOCK PUNCH
BUFFER GE PUT

GET
CALL GOTO READ
CHARACTER GT READMS
CLOSE READEC
CLOSEM IF REAL
CLOSMS IMPLICIT REC
COMMON INQUIRE RECL
COMPLEX INTEGER RECOVR
CONTINUE INTRINSICS REMARK

RETURN
DATA LABEL RETURNS
DATE LOGICAL REWIND

DECODE LT
DIMENSION SAVE
DO STATUS

DOUBLE MAXREC STOP *
DUMP SUBROUTINE

NAME SYMBOL
ELSE NAMED
ENCODE NAMELIST TAPE
END NE THEN
ENDFILE NEXTREC TIME
ENTRY NOT TRACE

EOF NUMBER TRUE
EQ TYPE
EQUIVALENCE OPEN
ERR OPENED UNFORMATTED
ERRSET OPENM UNIT
EXIST OPENMS
EXIT OR WEOR
EXTERNAL OVERLAY WRITE

WRITEC
WRITMS

37

Appendix B. Basic External Functions

(From ANSI Standard X3.9-19bb)

Number Type of:
of Symbolic

Basic Exterudl Function Definition Arguments Name Argument Function

Exponential ea i EXP Real Real
I DEXP Double Double
I CEXP Complex Complex

Natural Logarithm 1 ALOG Real Real
lgeIa) 1 DLOG Double Double

1 CLOG Complex Complex

Common Logarithm lOglO(a) I ALOGIO Real Real
DLOG1O Double Double

Trigonometric Sine sin(a) I SIN Real Real
1 DSIN Double Double
1 CSIN Complex Complex

Trigonometric Cosine cos(a) 1 COS Real Real
I DCOS Double Double
1 CCOS Complex Complex

Hyperbolic Tangent tanh(a) 1 TANH Real Real

Square Root (a)
1/2

1 SQRT Real Real
DSQRT Double Double

1 CS RT Complex Complex

Arctangent arctan(a) 1 ATAN Real Real
I DATAN Double Double

arctan(al/a 2) 2 ATAN2 Real Real
2 DATXN2 Double Double

Remaindering al(mod a2) 2 DMOD Double Double

1Modulus I CABS Complex Real

*The function DM0D (al, a2) is defined as al- [al/a2] a2, where [x] is the integer whose magnitude does not

exceed the magnitude of x and whose sign is the same as the sign of x.

I

38

l''4

i i - - ' ,i iil i ... " - -

Appendix C. Basic Intrinsic Functions

(From ANSI Standard X3.9-1966)

Number Type of:
of Symbolic

Intrinsic Function Definition Arguments Name Argument Function

Absolute Value lal 1 ABS Real Real
LABS Integer Integer
DABS Double Double

Truncation Sign of a times largest integer < lal 1 AINT Real Real
INT Real Integer
IDINT Double Integer

Remaindering* al(mod a2) 2 AMuD Real Real
MOD Integer Integer

Choosing Largest Min (al, a2 , ...) >2 AMAXO Integer Real
Value AMAX1 Real Real

MAXO Integer Integer
MAXI Real Integer
DMAX1 Double Double

Choosing Smallest Min (al, a2,...) >2 AMINO Integer Real
Value AMINI Real Real

MINO Inteer Inteer
MINI Doub e Doub e

Float Conversion from integer to real 1 FLOAT Integer Real

Fix Conversion from real to integer 1 IFIX Real Integer

Transfer of Sign Sign of 82 times 1a11 2 SIGN Real Real
ISIGN Integer Integer
DSIGN Double Double

Positive a Min (al, a2) 2 DIM Real Real
Difference IDIM Integer Integer

Obtain Most
Significant Part
of Double
Precision Argument 1 SNGL Double Real

Obtain Real Part
of Complex
Argument I REAL Complex Real

Obtain Imaginary Part

of Complex
Argument 1 AIMAG Complex Real

Expres:Sinile
Precision Argument

in Double
Precision Form I DBLE Real Double

Express Two Real
Arguments in
Complex Form a1 + A2 -1 2 CMPLX Real Complex

Obtain Conjugate of
a Complex
Argument I CONJG Complex Corplex

*The funcLlon MOD or AI4OD(al 82) is defined as a : I /821 a2 where lxi is the integer whose magnitude
does not exceed tti. mg nitude Of x and whose sign is the saie as x.

39

Appendix D. Fortran Structures for Emulating
Structured Programming Constructs

It is generally rccognized that FORTRAN cantly change the whole design of
(X3.9-1966) is not a good language for FORTRAN and, in the author's opinion,
structured programming (Yourdon, 1975; block structure unlikely to be stand-
Jensen, 1979). Its major deficiencies ar'ized in FORTRAN in the near future.
are: (1) lack of block structures, as This appendix describes the logical
are available in languagcs such as control structure diagrams, the
Pascal and Algol; (2) lack of a nested equivalent structured programming
IF-THEN-ELSE statement; ind (3) lack of pseudocode, and the FORTRAN code for
DO-WHILE and PERFORM-UNTIL statements. implementing the following structured

programming constructs: IF-THEN-ELSE,
Although the absence of these state- IF-ORIF-ELSE, CASE (two forms), POSIT
ments increases the difficulty of (two forms), DO-WHILE, PERFORM-UNTIL,
writing structkred programs in ESCAPE and CYCLE. The motivation for
FORTRAN, it shoildji not be assumed that these constructs is described in
one cannot write structured programs in considerable detail in Chapter 4 of
FORTRAN. One merely has to write Jensen and Tonies excellent book on
control stractures corresponding to software engineering (Jensen, 1979).
those advocated by structured It should be pointed out that some of
programming enthusiasts. Interestingly the above forms are not necessarily
enough, however, to do so in FORTRAN advocated by all software engineers.
requires the use of the CO TO In particular, the IF-ORIF-ELSE, POSIT,
statement, which at one time some ESCAPE and CYCLE constructs were not
structured programming enthusiasts were described in Yourdon's (1975) book.
considering making illegal. Now it is Nevertheless, Jensen and Tonies present
generally agreed that the GO TO good arguments for their inclusion and4 statement itself is not bad, but rather thus they are mentioned here. It
its uncontrolled use. One cannot be should also be pointed out that we have
too upset with the original FORTRAN taken the liberty of adding another
designers, because the language was construct, the PERFORM-UNTIL (Form. 2).
around long before anyone even thought This construct is equivalent to the
of structured programming. Some of the traditional FORTRAN DO loop, which is
deficiencies of FORTRAN have been so useful for indexing arrays and
recognized and have been corrected in performing other counting operations.

the more recent version of FORTRAN It was included here because the author
(X3.9-1978). For example, the revised felt it was unreasonable to request
language now includes the equivalent of that programmers implement their
an IF-THEN-ELSE statement. It still looping operations with the FORTRAN
does not, however, include a DO-WHILE equivalent code PERFORM-UNTIL (form 1),
or PERFORM-UNTIL statement, nor does it which uses the GO TO and IF statemens,
include the block structure concepts of when the standard FORTRAN DO loop could
languages such as ALGOL and PASCAL. in many cases do the same task more
Inclusion of the latter would signifi- concisely.

40

L -..

1. SEQUENCE 2. IF-THEN-ELSE

1.1 Logical Control Structure 2.1 Logical Control Structure

Code B J

Code C Figure D-2IIF-THEN-ELSE
Structure

Figure D-1 2.2 Pseudocode

Sequence Structure
IF (condition) THEN

CODE A
ELSE

1.2 Pseudocode CODE B
ENDIF

CODE A
CODE B 2.3 FORTRAN Implementation
CODE C

IF (condition) GO TO a
1.3 FORTRAN Implementation CODE B

GO TO c

CODE A a CONTINUE
CODE B CODE A
CODE C c CONTINUE

I4

3.0 IF-or-IF-ELSE

3.1 Logical Control Structure

CodFgue Doniio 3

Code 8 TFConditionL3E

Structur

Code2

I'~~ __ _ __ _ _

______________Condition- - 4

3.2 Pseudocode 4.2 Pseudocode

IF (condition 1) CASE OF (index)
CODE A CASE (i)

ORIF (condition 2) CODE A

CODE B CASE (2)
ORIF (condition 3) CODE B

CODE C CASE (3)
ORIF (condition 4) CODE C

CODE D CASE (N)

ELSE CODE N

CODE E CASE ELSE

ENDIF CASE E
END CASE

3.3 FORTRAN Implementation 4.3 FORTRAN Implementation

IF (.NOT. Condition 1) GO TO a
CODE A
GO TO e IF (index .LT. 1 .OR. index

a CONTINUE .GT. n) GO TO e
IF (.NOT. Condition 2) GO TO b GO TO (a, b, c, ... n), index

CODE B a CONTINUE
GO TO e CODE A

b CONTINUE GO TO g
IF (.NOT. Condition 3) GO TO c b CONTINFE

CODE C CODE B

GO TO e GO TO g
d CONTINUE c CONTINUE

IF (.NOT. Condition 4) GO TO d CODE C

CODE D GO TO g
CODE E . •

e CONTINUE

4. CASE Statement - (Form 1) n CONTINUE
CODE N

4.1 Logical Control Structure GO TO g
e CONTINUE

CODE E
g CONTINUE

elpse

q Figure D-4

CASE Structure (Form 1)

43

5. CASE Statement (Form 2) 6. POSIT - (Form 1)

5.1 Logical Control Structure 6.1 Logical Control Structure

Code A

CASE Structure (Form 2)

5.2 Pseudocode

T

CASE OF (index)

CASE (l,n)

CODE A
CASE (2)

CODE B F

CASE (3)

CODE C

CASE ELSE
CODE E

END CASE

5.3 FORTRAN Implementation

IF (index .NE.I .AND. index
.NE. n) GO TO b Condition 3

CODE A else
GO TO f

b CONTINUE F CodeZ
IF (index .NE. 2) GO TO c
CODE BI

GO TO f eD
c CONTINUE

IF (index .NE. 3) GO TO d
CODE Cb

GO TO f
d CONTINUE Figure D-6

CODE E
f CONTINUE POSIT Structure (Form 1)

'44

6.2 Pseudocode

POSIT
CODE

A
QUIT POSIT IF (Condition I)

CODE B
QUIT POSIT IF (Condition 2)

CODE C

POSIT ELSE
CODE Z

END POSIT

6.3 FORTRAN Implementation

CODE A
IF (Condition 1) GO TO a

CODE B
IF (Condition 2) GO TO a

CODE C
IF (Condition 3) GO TO a
CODE D

GO TO b
a CONTINUE

CODE Z
b CONTINUE

Ii' '45

7. POSIT - (Form 2)

7.1 Logical Control Structure

Code A

Code A

T0

< odto
Code

X2

F0

tb

Coode C

S Code D od

d

Figure D-7

POSIT Structure (Form 2)

546

7.2 Pseudocode 8. DO-WHILE

POSIT 8.1 Logical Control Structure
CODE A

IF (Condition 1)
CODE X1

QUIT POSIT
ENDIFCODE B

a
IF (Condition 2)

CODE X2
QUIT POSIT A
ENDIF

CODE C

IF (Condition 3)

CODE X3
QUIT POSIT
ENDIF

CODE D
POSIT ELSE

CODE Z
END POSIT

7.3 FORTRAN Implementation Figure D-8
CODE A DO-WHILE Structure

IF (.NOT. Condition 1) GO TO a
CODE XI
GO TO z 8.2 Pse udocode

a CONTINUE
CODE B WHILE (condition)

IF (.NOT. Condition 2) GO TO b CODE A
CODE X2 END WHILE
GO TO z

b CONTINUE 8.3 FORTRAN Implementation
CODE C

IF (.NOT. Condition 3)) GO TO c a CONTINUE
CODE X3 IF (.NOT. condition) GO TO b
GO TO z CODE A

c CONTINUE GO TO a
CODE D b CONTINUE
GO TO d

z CONTINUE An alternative, but less popular,
Code Z implementation which has the advantage

d CONTINUE of a positive test on the predicate is:

GO TO a
c CONTINUE

CODE A
a CONTINUE

IF (condition) GO TO c

47

9. PERFORM-UNTIL (Form 1) 10. PERFORM-UNTIL (Form 2 - O0 LOOP
Equivalent)

9.1 Logical Control Structure 10.1 Logical Control Structure

I
ai=rnm3

Aa

T Figure D-g ~im

SPERFORM-UNTIL
Structure

PERFORM-UNTIL Structure
r(Form 2-Do-LOOP equivalent)

9.2 Pseudocode102Pecode
10.2gur Psedood

UNTIL (condition)
CODE A i-ml

END UNTIL UNTIL (i .GT. m2)
CODE A

9.3 FORTRAN Implementation -I+m3
I END-UNTIL

a CONTINUE
CODE A .10.3 FORTRAN Implementation

IF (.NOT. condition) GO TO a
DO a i-ml, m2 , m3

An alternative implementation which has CODE A
the advantage of a positive test on the a CONTINUE
predicate is: 11. ESCAPE

GO TO b
a CONTINUE The ESCAPE structure is an uncondi-

IF (condition) GO TO d tional branch to the "outside" of its

b CONTINUE associated structure. If the exit is

CODE A from an iterative loop, the branch

GO TO a would be to the outside of the loop.

d CONTINUE
This provides a mechanism for an easy
exit from the interior of a set of
nested iterative loops.

48

11.1 Logical Control Structure 12. CYCLE

Example of an escape in a The CYCLE structure is an unconditional
The code B's branch to the condition controlling the

DO-WHILE structure, Tnext iteration, i.e. to the "inside" of

Executed at the time of the escape the iteration loop. This provides a
mechanism for easily by-passing code in
the loop to advance to the next
iteration.

12.1 Logical Control Structure

F I IeExample of a cycle in a DO-WHILE

Co ~ Cohon T n a

T Cycle Condllor 2

Figure D-11

ESCAPE-Structure A

Condlition

11.2 Pseudocode (Example)

S S: WHILE (condition) F Figure D-12

CODE A CYCLE Structure
IF (escape-condition)
CODE B
ESCAPE WHILE S 12.2 Pseudocode

ENDIF
CODE D C: WHILE (condition)

END WHILE CODE A
IF (cycle condition) CYCLE C

11.3 FORTRAN Implementation CODE B
END WHILE

a CONTINUE

IF (.NOT. condition) GO TO b 12.3 FORTRAN Implementation
CODE A

IF (.NOT. escape-condition) GO TO d a CONTINUE
CODE B IF (.NOT. condition) GO TO b
GO TO b CODE A

d CONTINUE IF (cycle-condition) GO TO a
CODE D CODE B
GO TO a GO TO a

b CONTINUE b CONTINUE

49

13. Example of a DO-WHILE Construct
Incorporating ESCAPE and CYCLE

13.1 Logical Control Structure

a

Code 0

F Cycle while

Condiion 3Code C

Condiion 2Code B

Escape while

Figure D-13

DO-WHILE Construction

Incorporating ESCAPE and CYCLE

____ ____ ___ ____ _ -- - so

2 F.,edocode

S: WHILE (while condition)
CODE A

IF (condition 2)
CODE B
vSCAPE WHILE S

SND IF
IF (condition 3')

CODE C
CYCLE S

ENDIF
CODE b

LEID WHILE S

3.3 FORTRAN Implementation

CON'rI NUE
1i (.NOT. while condition) GO TO d

CODE A
IF (.NOT. condition 2) GO TO e

CODE B
0TO d

-ONTINUE
IF (.NOT. condition 3) GO TO f

CODE C
CO TO a

f CONIINUE
CODE D

GO TO a

d CONTINUE

DISTRIBUTION LIST

COMMANDER 1 CHIEF OF NAVAL OPERATIONS
SECOND FlE'ET DEPARTMENT OF THE NAVY
FPO NEW I RK, NY 09501 WASHINGTON, DC 20350

ATTN: OP-02 1
COMMANDER 1 OP-03 1
SIXTH FLEET OP-05 I
FPO NEW YORK, NY 09501 OP-095 1

OP-096 1
COMMANDER OP-951 1
ANTISUBMARINE WAR FORCE OP-952 1
U. S. SIXTH FLEET OP-951F 1
FPO NEW YORK, NY 09501 OP-952D 1

COMMANDER 1 HEADQUARTERS
OCEANOGRAPHIC SYSTEM ATLANTIC NAVAL MATERIAL COMMAND
bOX 100 WASHINGTON, DC 20360
NORFOLK, VA 23511 ATTN: MAT-0724 2
ATTN: N3

CODE N434 PROJECT MANAGER
CODE N36 ANTISUBMARINE WARFARE SYSTEM PROJ
CODE 012 DEPARTMENT OF THE NAVY

WASHINGTON, DC 20360
COMMANDING OFFICER 1 ATTN: PM-4 2
NAVAL OCEAN RESEARCH & DEVELOPMENT
ACTIVITY CHIEF OF NAVAL RESEARCH
NSTL STATION, MS 39529 800 NORTH QUINCY STREET
ATTN: CODE 110 1 ARLINGTON, VA 22217

CODE 125 1 ATTN: CODE 100 1
CODE 115 1 CODE 102B 1
CODE 300 1 CODE 220 1
CODE 320 1 CODE 230 1
CODE 321 1 CODE 460 1
CODE 322 (M. Clancy) 10 CODE 480 1
CODE 323 10 -
CODE 340 1 COMMANDER
CODE 360 1 NAVAL ELECTRONIC SYSTEMS COMMAND
CODE 500 1 NAVAL ELECTRONIC SYS COMMAND HDQRS
CODE 520 FILE 1 WASHINGTON, DC 20360

ATTN: PME-124 1
COMMANDER 1 PME-124TA 1
NAVAL OCEANOGRAPHIC OFFICE PME-124/30 1
NSTL STATION, MS 39529 PME-124/40 I
ATTN: CODE 7300 1 PME-124/60 1

CODE 9000 1 ELEX-320 1

ASSISTANT SECRETARY OF THE NAVY COMMANDER
(RESEARCH ENG. AND SYSTEM) NAVAL SEA SYSTEMS COMMAND
DEPARTMENT OF TIE NAVY NAVAL SEA SYS COMMAND HDQRS
WASHINGTON, DC 20350 WASHINGTON, DC 20362
ATTN: G. A. CANN 1 ATTN: NSEA-06HI 1

52

D9PUTY UNDER SEC OF DEFENSE FOR 1 DAUBIN SYSTEM, CORP.

RESEARCH AND ENGINEERING 104 CRANDON BoULEVARD

DEPARTMENT OF DEFENSE SUITE 315
WASHINGTON, DC 20361 KEY BISCAYNE, 'L 33149

ATTN: DR. S.C. DAURIN
C OMM.kN DER I

NAVAL OCEANOGRAPHY COMMAND NAVAL OCEAN RESEARCH & DEVEL. ACT.

NSTL STATION, MS 39529 LIAISON OFFICE

800 NORTH QUINCY STREET

COMMANDER IN CHIEF ARLINGTON, VA 22217

U.S. ATLANTIC FLEET ATTN: CODE 13'1

NORFOLK, VA 23511

ArTN: CODE 358 1 COMMANDING OFFICER

NAVAL INTELL-ICENCE SUPPORT CENTER
PIANNIN ' SYSTEMS, INC. 4301 SUITIAND ROAD

7900 WT. rPARK DRIVE WASHINGTON, !Y- 20390

SUITE 500
MCLEAN, VA 22101 DEFENSE SYSTEFS, INC.

ATTN: R. KLINKN-ER 1 6110 EXECUTIVE dLVD. SUITE 320
DR. R.S. CAVANAUGH 1 ROCKVILLE, MD 20352

B.A. BRUNSON 1 ATTN: G. JACOBS 5
J. LOCKLIN I

SCTENCE APPLICATIONS, INC.

8400 WESTPARK DRIVE THIRD WAVE SY,;T!::-, INC.
MCLEAN, VA 22101 P.O. BOX 7206

ATTN: DR. J.S. HANNA 1 ST. PETERSBURC, FL 33734

ATTN: J.J. CORNYrN 4

TRACOR, INC.
1601 RESERCH BLVD. MR. BRUCE MENDENHALL 1

ROCKVILLE, MD 20850 SAI

ATTN: J.T. GOTTWALD 1 2999 MONTEREY-SALINAS HIGHWAY

MONTEREY, CA 93940
TRW SYSTEMS GROUP

7600 COLSHIRE DRIVE DR. GORDON WILLIAMS
MCLEAN, VA 22101 SAI

ATTN: I.B. GEREBEN 1 1200 PROSPECT STREET -

LAJOLLA, CA 92038
UNIVERSITY OF TEXAS

APPLIED RESEARCH LABORATORIES MR. GEORGE INNIS

P.O. BOX 8029 SAI

AUSTIN, TX 78712 1200 PROSPECT STREET

ATTN: G.E. ELLIS 1 LAJOLLA, CA 92038

L.D. HAMPTON 1
K.E. HAWKER 1 MR. KEN POLLAK

S.K. MITCHELL 1 DATA INTEGRATION DEPT.
S.G. PAYNE I FNOC

J. SHOOTER 1 NPGS ANNEX
MONTEREY, CA 93940

ANALYSIS AND TECHNOLOGY, INC.
TECHNOLOGY PARK P.O. BOX 220
NORTH STONINGTON, CT 06359

ATTN: S. ELAN

53

ms. BONNIE HUNTER
DATA INTEGRATION DEPT.
FNOC
NPGS ANNEX
MONTEREY, cA 93940

LCDR DUDLEY LEATH
DATA INTEGRATION DEPT.
Ft4OC
NPGS ANNEX
MONTEREY, CA 93940

54

I i

