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1. INTRODUCTION

The recent development of various kinds of tunable solid-state

lasersl - 3* has revitalized interest in electronic-vibrational (vibronic)

transitions of impurity ions in solids; in particular, laser action on

phonon-terminated transitions, predicted by McCumber,4 has been real-
ized. A thorough understanding of the mechanism of these phonon-

terminated lasers can and should lead to the development of a useful and

versatile class of lasers that operate at shorter and at longer ware-

lengths than do presently existing systems.

The mechanism for vibrationally induced electric-dipole transitions

for transition-metal ions at a site with inversion symmetry in a solid
was discussed by Van Vleck 5 as early as 1937; however, serious investi-

gations into the order of magnitude of vibronic electric-dipole transi-

tions did not begin until the 1950's. During this latter period, a

large number of papers were written invoking vibronics in the analysis

of transition-metal ions with an unfilled d shell. Of these papers, the
work of Liehr and Ballhausen 6 '7 purported to be the most complete,

although from our standpoint a further discussion of details would have
been helpful. An early paper by Koide and Pryce 8 has been, by far, the

most useful to us in our efforts.

Simultaneously with intense research efforts on the role of vibron-

ics in the behavior of transition-metal ions, some work was also begun
on the rare-earth series. In two papers, 9 -1 0 Satten discussed the
effects of vibronics on clectric-dipole transitions and the Zeeman
splittings of rare-earth ions in solids and solutions. Also, Pollock
and Satten I I and Satten et a112 extended the analysis to actinide ions
as well as rare-earth ions. Much of the latter work relied very heavily
on group-theoretical methods in the development, in order to extract the
symmetry dependence very concisely. Much of this analysis was applied
to cases where the ions under investigation occupied sites of low symme-
try or cubic sites in solids where charge compensation is required (for
example, triply ioni.-ed rare-earth ions in CaF2).

The discovery 13 of the elpasolite hexachlorides, Cs2NaRCl 6 with R
any of the triply ionized rare-earth ions, changed the experimental
situation. It was found that Cs2NaRCI6 of good optical quality could be
grown with R any rare earth, or with R = Y and a small amount of rare
earth added. The site occupied by R3+ in Cs2NaRCI6 has Oh symmetry, and
the resulting spectra are rich in vibronics. 4 Because of the sharpness
of the rare-earth spectra, a large number of different vibrational modes
can be identified, and by fitting the frequencies of these modes a

*Because of their large number, literature references are listed at

the end of the text rather than on each page.
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number of force constants in the vibrational Hamiltonian can be deter-
mined. 15  The determination of these force constants allows a quantita-
tive calculation of the intensity of the vibrationally induced electric-
dipole transitions. Such a calculation has been performed by Hasan and
Richardson, 16 whose theoretical predictions were found to be in rough
agreement with experiment. These calculations are important for possi-
ble technical applications 17 of this material or the less hygroscopic,
isomorphic compounds Cs2NaRF 6 and Rb2NaRF6. Unfortunately, very few of
the vibronic spectra of the latter, more practical compounds have been
reported. Nevertheless, an analysis of vibronics of Er3+ in Cs2NaRCI 6

should be very useful.

In this report, we investigate the electric-dipole transitions of
Er3+ in Cs1NaErCl6 caused by the odd vibrations of the (RCI6 )-3 complex.
Most of the results will be presented in a form that allows simple
generalization to the complete unit cell (in the k = 0 limit), although
this generalization will necessarily involve the use of a computer.
Thus, the analysis of the normal modes of the complete unit cell such as
given by Lentz 18 can be readily used in any future calculations. In
section 2, we discuss the modes of vibration of the (RC16 )-

3 ion. In
section 3, the static crystal field is discussed using the point-charge,
point-multipole potential fiodel. Also in section 3, the self-induced
crystal field of Faulkner and Richardson1 9 is presented in a slightly
different form generalized from dipoles to multipoles.2 0 The vibration-
al electronic interaction is the subject of section 4, alonq with an
explicit calculation of the electric-dipole transitions for Er accom-
panying the v6 vibration of (ErC6)- 

3

2. VIBRATIONAL MODES OF (RC16 )
3

The ion cores that make up the crystal and determine the crystal
field felt by an electron on a rare-earth ion are located at sites in
the crystal which are local minima of the effective ion-core potential;
i.e., each ion is in its own potential well. It is well known that
these ions can execute small vibrations within their wells, and that for
small amplitudes of vibration each ion behaves like a harmonic oscilla-
tor. The interionic forces will in general couple these oscillators, so
that the crystal as a whole has extended wave-like normal modes which,
for an infinite crystal, can be characterized by a wave number, k. When
these modes are quantized, their quanta make up the elementary excita-
tions of the background crystal--the so-called phonons.

The normal modes of a typical crystal fall into two categories:

(1) Acoustic modes: these are characterized by all the atoms of a
unit cell moving at once in nearly the same direction by nearly the same
amount. Every crystal has three such modes.

6



(2) Optical modes: these modes involve some countermotion of atoms
in the unit cell; if there are N atoms in the unit cell, there are N - 3

optical modes.

In general, acoustic modes correspond at low values of k to crystal

strain waves, and involve macroscopic motion of the crystal bulk; their

frequencies w(k) cover a rather broad band in k-space: from k =0 to k

on the order of a reciprocal lattice vector, w(k) may vary by as much as
100 meV. By contrast, the optical modes are always microscopic motions
which do not give rise to bulk movement of the crystal matrix; their
frequencies tend to be narrow band (-5 meV) due to the rather weak
coupling of adjacent unit cells that execute this kind of motion. 2 1

Because the form of the crystal field is intimately related to the unit
cell configuration, the motions associated with these two kinds of
normal modes will have radically different effects on the electronic
states of a rare-earth ion.

In dealing with a crystal with a complicated unit cell like elpaso-
lite, it pays to examine the crystal vibrations from a molecular stand-
point. This entails the following simplified picture of the ion motion:

(1) Acoustic modes correspond to simple translation of every ion in
the cell, and have zero frequency.

(2) Optical modes do not couple one unit cell to another.

Clearly this picture is simply one of a single unit cell hanging in
space, and being treated like an isolated molecule. We expect that this
picture will be fairly good for those normal modes which are self-
contained, i.e., those for which the boundary atoms of the cell are
motionless. Actually, it turns out to be good for all the optica
modes, with three glaring exceptions: an isolated unit cell has three
rotational modes with zero frequency which go into nonzero frequency
optical modes that will clearly couple the unit cells together in a
nontrivial way.

In figure 1 we show the full unit cell of elpasolite. In general, a

full normal-mode analysis of the optical modes of this crystal reveals
that one need only specify the motion of the atom in the primitive unit
cell, and that translation operators will give the motion of the remain-
ing atoms. These essential atoms (from a vibrational standpoint) are
shown in figure 2, taken from a paper by Lentz.1 8 The basic vibrating
structure consists of a pair of octahedra joined at a vertex, flanked by
two cesium atoms. It is clear that if a rare earth is placed at the
center of one of these octahedra, the normal modes which couple most
strongly to it are those which correspond to the vibrations of the free
octahedral complex.

7
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The normal modes of a free octahedron have been known for some
time. 8  In figure 2 we show an octahedron; labeling the atomic dis-

placement coordinates (xN, YN' ZN), N = 1, . . 7, we see that there
are 21 degrees of fre,!dom, and hence 21 normal modes. A group-theoreti:
analysis reveals that these 21 modes, which form a representation of the

Oh group, can be grouped by symmetry into the following irreducible

representations of Oh:
+

F (a1 g

F + (e

3 1g

P + (t4 g

4 1u
3r 4(t u

r5 (t2u

r + (t

5 2q

Of these representations, the tig and one of the tlu modes correspond to

the zero-frequency rotation and translation modes, respectively.

Now, there exist sets of so-called "symmetry coordinates," i.e.,

linear combinations of the (xN, YN' ZN), which reduce the classical
vibrational Vamiltonian to block form: by this we mean that the symme-
try coordinates transform as irreducible representations of Oh * If a
given irreducible representation appears once in the regular representa-
tion generated by the ion coordinates (xN, YN' ZN), then the correspond-
ing symmetry coordinate is a normal mode. In general, however, the
regular representation may contain a given irreducible representation

several times; in this case, there will be several symmetry coordinates
associated with the ion coordinates, none of which is a normal mode. In
this case, the symmetry coordinates do not fully diagonalize the Hamil-
tonian, and the true normal coordinates are linear combinations of
symmetry coordinates of a given irreducible representation.

The problem of a free vibratinq octahedral complex illustrates

everything we have discussed thus far. Fiqure 3 shows the lahelina

system that we will use here. Fiqure 4 shows the Piqht "symmetry vibra-

tions" of an octahedron with a rare-earth ion at its center, correspond-

inq to the appropriate symmetry coordinates; if the actual ion

coordinates (the six chlorine ions plus the rare earth) are labeled (XN,

YN' ZN), then in terms of these coordinatLes the symmetrv coordinates are

as follows:

9



(A) Translation: r- (t ) 3

T 1 = 2X 7 + 
2 (x I + X2 + X3  X4 + X5 + x 6)

T2 = n2 Y 7 + C2 yI + Y2 + Y3 + Y4 + Y5 + Y6) 2
6 1.

T3 = n
2 z 7 + 2 z I + z2 + z3 + z4 + z5 + z6 )  , 00

where

6 + E2
- /2 ,

E M 0 /M ' 0 CHLOWI

Fiqure 3. Labeling for
M0 is the rare-earth mass, and RCI 6 octahedron.

M is the ligand (i.e., chlorine) mass.

Note that the Ti are simply the center-of-mass coordinates of the octa-
hedral complex.

+

(B) Rotation: r (t
4 Ig

P1  2. (z 2 -4 + Y5  Y3 '

p 2  2 (z6 - + x 3  x 5 )

- rx - + y3 2 4 -2 + Yl Y6 )

+

(C) "Breather:" F1 (a

A -- (x1 - x6 + Y2 -Y4 + Z3 -z.

+

(D) Dnublet: r (e3 1g

= - [2(xI - X6  - - - (z3 - z5)]
01 2,175

2 = - z3  - (x- x6 - y -4)]2V 3

lo
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(F) 4(t
4 i

7 (i 4 5)"1 Y 7 +' Y-x1  + :< - 3 : + Y5 IS

2 = XY7 + + z/ 4 - Y "Y -/ + Y6

13 = Z7  + + Z5  - t : '4 + z 6

a = 2
2 ,  - + 2 ,

= ¢2 +7 2,
2- / 2 + 2

4 (tlu

al = AX7  - 0x 1  + :6)

e2 = AY7 - Y2 + Y4)

03 = Az7 - o'3 + Z51

where

2

2 + K
2

(G) r+(t )
52g

-= z1 -z + x3 -x5)
--;- ( 1 - + x 2 -x

(H) F5(t2u

5 21
K2 = (y1  y- 3 y

K 2= (Z2 + 1 6
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If we write tho classical Hamiltonian in terms of these eight symmetry

coordinates (with their appropriate conjugate momenta), it is completely

diagonal except for a term

1 ++ ( 1 2 1 \ ~H (+, ) V I22/
-2. - 22)

This term is not diagonal because a and both transform like r4(tlu)
The normal modes depend on the values of V. , which in turn relate to

the specific forces between the octahedron's constituents.

If we now want to consider the effect these vibrations have on the
crystal field experienced by the octahedron's center, we clearly need to
know the detailed motion of each ion when a given normal mode is excit-
ed. In quantum mechanical lanquage, there are phonons associated with
each normal mode; the motion of an electron will cause emission and
absorption of these phonons, and these phonons in turn act back on the
electron. The interaction potential will be derived in section 4; for
now, we note that it will involve the ion coordinates themselves, not
the normal modes. In order to evaluate the various transition probabil-
ities, we must therefore express the ion coordinates in terms of the
normal modes; i.e., we must invert relations (A) to (H). Once this is

done, we must subtract off the rare-earth coordinate, since the electron
is "riding with" the rare earth. When this is done, the following
results obtain: if Ax i = xi - x7 ' Ayi = Yi Y7 and Az i  zi  z 7 ,

then

AxI  = -A 1I9 1 + a- 1

Ay, = -B2- Ce2 + 72_1 (K 2 + P3 "3

Azl = -B 3 - C6 3 + 2 k-<3- P 2 + V2)

Ax2 -C 1 + - (1 -+ I+ )

AY2 = -A 2 + L - (01 +02)

2 = -B{3 - Ce3 + - (3 + P1 - V1)

13



Ax 3 = I - Co1 * -K 1 + P 2 
+ v2l

Ay 3  =- - C .) +-2- -2 - - l

Az3 = -A6 3 - ,-A-, 3

Ax 4 = -B 1 - CO, + K 1I V3

AY4 = -A6 2 + -C- I- A + , + 02)

AZ4 = -BE 3 - CO 3 + 2-C K 3 - P1 + v)

Ax 5 = -B 1 - CO 1 + --I - P2 - '02)

Y5 =- -B 2 - C2 +S (-K 2 + p1 + vi

, ] r

Az 5 = -A0 3 + - -- - - 2 ;

Lx 6 = -A61 +  A ,/" c;
61

AY6 = -B 2 - C62 + 2C K2 P 3 -v'3)

Az 6 = -B 3 - C63 + -2-L ( K3 +  P2 - v2)

and

A =- (62 + 2) + ) C2 + 2) + 1J/

B = (2 2 /E-T---+21 - [2C 2(E2 + 2)1/2] - l

C cc 1 (V2 + 2J] (=21+ 2)]-112

14



Note that the translation mode does not contribute to the relative coor-
dinate. This can be traced to the assumption that all the unit cell
atoms move by exactly the same amount in this mode; for k = 0 this is
true, but for nonzero k the acoustic mode, which corresponds to the
coordinate C, will indeed couple to the electron's motion, giving rise
to the so-called "deformation potential."

3. CRYSTAL-FIELD INTERACTION

In the phenomenological theory of the crystal field interacting with
an electron on a rare-earth ion, the conventional Hamiltonian

2 2

H B* 1 C (i) (1)Lnm n rm
nm 1

is frequently used. The Bnm are obtained by fitting the experimentally
measured energy ]Avels using a suitable set of free-ion wave functions

to evaluate the matrix elements of equation (1). The number of Bnm in
equation (1) is restricted by the symmetry of the site occupied by the

rare-earth ion. For the material Cs 2NaRCI 6, the site symmetry of the
rare-earth ion is 0h,2 3 so that the only independent parameters are B40

and B60; the Bn4 are related by

B44 = 5B40//7-0

(2)
B6 4 = - 72 B60

The spectrum of Er3+ in Cs2NaErCl6 has been analyzed by several
workers1 5 ' l 6 ' 2'' 2 5 and the resulting Bnm are given in table 1. As can
be seen, there is considerable disparity in the reported values of B4 0
and B6 0. This disparity is due in part to the different identifications
made of experimental levels, and in part to use of different free-ion
wave functions in calculations.

TABLE 1. REPORTED B4 0  The oldest, and perhaps tne most reliable,
AND B (cm- 1 ) FOR crystal-tield theory is the point-charge model
Er IN Cs 2NaErCI6  developed by bethe 2  in his paper on the spectra

ot transition metal ions in a solid. In such aB40 B60 Ref. +model, the constituent ions at Ri trom the rare-

earth ion nucleus have charges eqj, and the
1384 32 24+
1368 32 25 rare-earth electron at r interacts wtili these
1425 153 26 ions through the Coulomb potential, given by
1602 151 27

15
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qj
HO F-e 2 (3)
HCEF I e

j JRj - rj

A multipolar expansion of equation (3) can be readily obtained to qive

HOEF - -e 2  qncnmJ /Rf+ , (4)

3 nm

and if we sum over all the electrons, we may write

HC 0 A0 ' rnC( i )  (5)
nm i

where

m -e 2  qjCnm(Rj )/R +  " (6)
J

These Anm are frequently referred to as the multipolar components of the
crystal field. The AO have been evaluated t r a large number of

nm
solids; 2 7 the results in reference 27 are given in such a way that the

qj in equation (6) can be replaced by effective charges on the ligands.

Such a procedure can be used to partially account for covalent complexes
in the solid.

Hutchings and Ray 2 8 recognized that in solids where the ligands
occupy sites of sufficiently low symmetry, the point charges of an ionic

solid could induce electric dipoles and electric quadrupoles in these
ions. These workers did not take into account the fact that these
dipoles and quadrupoles also contributed to the electric fields at the
sites of low symmetry. The consistent solution for dipoles has been
given, 2 9 and recently the full self-consistent solution through quadru-
poles has also been done.* In addition, the corresponding self-

consistent solution for arbitrary multipolar moments has recently been
published. 20

For a multipolar moment -(j) at R., the AOm of equation (6) can be
generalized 

to
20

Q ( j ) c n +k , m+ a (j )

Ak _e ()k (2k+2v )1/2 <n(m)k(a)In+k(m+ )> (7)
n ja 2k _Rn+k+1nm J

where

(2k+2n 2n +2k)2k ) = 2k)+(!2n F!

*M. Faucher and 0. Malta (private communication).
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and the quantity in angular brackets is a Clebsch-Gorlan coefficient.
It should be noted that if k = 0 in equation (7), the result is the same
as that of equation (6) if Q0 0 (j) = eqj; the two expressions are consis-
tent. Thus, if the Qkq(i) have been determined, their contribution to
the crystal field is given by equation (7).

A further interaction recently considered is the self-induced inter-
action.2 0  This interaction is caused by an electron on the rare earth
inducing a multipole moment in a ligand, which then interacts back on
the electron. The resultant Anm are given by

self-induced =e 2  a (j) (Z +  n)! 2n(n! )2
Anm L, i !n! L 2- (

The results of equations (8) and (7) have been used to evaluate the
various contributions to Anm for LaC 3 ,

30 and it is shown that each of
these interactions contributes significantly. Although we are here
interested in the material Cs2NaErC1 6, we give the results for LaC1 3

from Brockhouse2 0 in table 2 to illustrate the significance of the
contribution to the Anm given by equation (8).

TABLE 2. ELECTROSTATIC CONTRIBUTIONS TO Anm FOR LaC 3

Dipole and quadrupole calculations performed using

I  =1.5 A
3  and a2  = 3.44 A

5

A Point Point Self- Self-
nm chargea dipole a dipole quadrupole

A2 0  -2460 3273 -120 -64

A40  -794 -22 135 107
A6 0 b -185 -80 73 77

ReA 6 4  -85 17 -118 -40

ImA6 4  -63 -39 -99 -34

aFrom J. B. Gruber, R. P. Leavitt, and C. A. Morrison, J. Chem. Phys. 74

(991), 2705 (ref 30).
In LaC13 a rotation of the coordinates about the c axis can be per-

formed to make the A6 4 component real. This rotation must be performed

after the various contributions to Anm are accounted for.
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The results given in equations (6), (7), and (8) represent a number
of interactions of electrons with a rare-earth ion in a solid from the
point-charqe or point-multipole viewpoint. A number of other possiible
interactions have been ignored, such as exchange, covalency, configura-
tion interaction, etc.3 1 In our discussion of the interactions with the
lattice vibrations, we shall restrict ourselves to the interactions
given in equations (6), (7), and (8). For an excellent evaluation of
the different interactions as of 1971, the reader should consult
Newman's article.

3 1

4. THE VIBRATIONAL INTERACTION POTENTIAL

The interaction potential we shall consider here is that derived by

considering small displacements from the equilibrium configuration of
the nucleus and ligands. The particular potential we shall consider in
detail is the point charge and its extension to the point-multipole
potential. We shall further assume that the various charge distribu-
tions are not distorted by their small excursions from equilibrium,
i.e., the so-called "rigid-ion" model. An alternative interaction, the
superposition model, 3 1 has recently been considered by Kennedy 32 in his
analysis of the effect of an external strain on spectra of rare-earth
ions in CaF 2.

Frequently the interaction of an electron on a rare-earth ion with
its surroundings is derived from the expansion

33

V V+ V_+ .(.9)

0 aQk (9)
k

where the Qk are the normal modes of the lattice. The DV/3Qk in equa-

tion (9) represent the interaction of the electron with the normal mode
Qk" In general, equation (9) is difficult to use in detailed numerical
computation but is excellent for theoretical purposes when one is inter-
ested only in the analytical consequences of the effect of vibrations.

3 3

Since we are interested in numerical values of the strength of the

electron-lattice interaction, we shall use a somewhat different expan-
sion, which we present in the following.

Consider a rare-earth ion at the origin, an electron at r, and a
ligand at that is displaced by .. The ligand is assumed to have a
set of multipole moments Qkq" The eiectric potential at the electron is
given by

Y i (_1)kQJkq(j) RCk(1 (10)

18



wiere R = . - r + s Using the two-center expansion 3 4 Ut
1 ] /

we obtain

-k - (-)a 2a+2k)i/2 <a(a)k(q a+k(a+q)> sR I a( 2a]( t

Cact(s )Ca+k,q+aik 2)

Ra+k+1H2

+ + +4

where R = R - r. A repeat ot the two-center expansion ot

Ca+k,q+cJR 2 )/R+2

gives

k+a+i = 2n+2k+2a )/2 <n(n)k+a(q+a)ln+k+a(m+q+a)>

R2  nm 2n (12)
Cn+k+a, m+q+ cx i j

x n .m r )  R + a+

3

We are interested only in terms linear in the displacement (a = 1 in
equation (11)), so that combining equations (12) and (11) into equation

(10) gives

. (-I) k (2k+2)1/2 <1(a)k(q)lk+1(q+a) > (2+2k+2)1/2

kq
a,n,m

<n(m)k+1(q+a)ln+k+1(m+q+a)> rnCnm(r) (13)

Sk q ( )sjCI(sj )Cn+k+1 ,m+q+(Rj )

R n+k+2

The result given in equation (13) is the potential for the ligand at+

Ri ; the vibrational interaction, V1, in the Hamiltonian is given by
-eo, which we write

V'= A* (r) , (14)nm nm
nm

by analogy to the interaction of the electrons on a rare-earth ion in
the absence of lattice vibrations. The prime on v in equation (14)
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indicates that only linear displacements are consilered. If we had
considered the term a = 0 in equation (11), we would have had the inter-
action of the electron in the absence of lattice displacement, that is,
the crystal-field interaction given by equation (7). Summing equation

(13) over all the liqands and comparing with equation (14) gives

Anm =e 1:,a ()k(2k+2)l/ 2 (2n+2k+2)1/2 <1(a)k(q)jk+1(q+a)nm k,qa 2 2n / < ekqI+(~)

x <n(m)k+1(q+a)jn+k+l(m+q+a)> (15)
s.C* (S. )Onc (R

kq Rn+k+2j 3

The result given in equation (15) can be cast into a more useful form by
using explicit expressions for the Clebsch-Gordan coefficients to
obtain

3 5

k+2)1/2 <1(c)k(q)1k+1(q+a)> (2n++2)1/2 <n(m)k+1(q+a)n+k+1(m+q+a)>

= (n+k++m+q+a)!(n+k+1-m-q-a)! 1/2 (16)

= (n-m)! (n+m) !(l-t)! (1+a)! (k-q) !(k+q)!

Then, from equation (15), we have
Anm = e  (_)k (n+k+1+m+q+a)l (n+k+l-m-q a ! ] /

nm e X (- (n-m)! (n+m)! (I-x), (i+a)(k-q)! (k+q)!(
kqa(17)

x a Q* (3) sn+k+1,m+q+a(i
)

kq R

which is the form of the interaction that we find the most convenient to

use. For a particular normal mode, the ;. have been specified in sec-

tion 2, and the kq (j) will also be considered known. Thus the sum over
j given in equation (17) can be performed for any vibrational mode of

interest, and the resulting A for that particular mode can be deter-
nm.

mined. Thus, the result given in equation (17) is particularly adapt-

able for calculations using a computer. The Qiq(J) can be found from an

appropriate lattice sum and some self-consistent method. The dipole

terms (Q 1q) have been obtained for a number of solids, 2 5
'

3 6
'

3 7
* and in

particular for the material Cs 2 NaRCI6
2 5 

for R any of the rare-earth

ions. The in equation (17) are obtained from the x-ray data, so that
with these data the sum given in equation (17) can be coded for computa-

tion to cover as many unit cells as is necessary for convergence. In
computing the sums, the quantities sjC 1 ( sjl), Qkq(J), and . need only

be specified for a unit cell, and lattice displacements can ten be used

*M. Faucher and 0. Malta (private communication).
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to cover the complete solid (in the K = 0 limit). It is also possible
to approximately take into account some of the phonon dispersion by
replacing s C1 1(s.) by sACla(s.J cos and evaluating the sum on j
in equation t17 for particular values of -K. However, in the following
we shall specialize equation (17) to the particular (RC16)-3 complex6 coplexand
obtain specific algebraic expressions for A for each of the modes.nm

5. THE ELECTRON-VIBRATION INTERACTION FOR (RCI6 )
3

As shown in section 2, the vibrational modes of the (RC16 )3 complex
decompose into the following representations of the 0h group (neglecting
the translation and rotation modes)

r + (a ) + 2r4(t ) + L5(t ) + +3(e ) + t
g 4 lu 5 2u 3 g 5 2g

Here, we are only interested in the vibrationally induced electric-

dipole transitions, which are of odd parity (). Since the total
interaction Hamiltonian must be of even parity, we then require only the
odd-parity vibronic modes. That is, we shall discuss only the two
modes r 4 (t lu) and r 5(t2u). The latter will be discussed first.

5.1 Anm for r5(t 2u ) Mode

The appropriate vibration for the single r' mode is given in
figure 4(H). The displacements corresponding to the coordinate K3 are

sjCle(sj) = -z1 0 ,O for j = l and 6,

(18)
sjC1 sj; = Z1I, o for j 2 and 4

where zI is the displacement of the ligand labeled 1 in figure 2; these
displacements follow from the mode equations given in section 2.

The position and multipole moments can all be related to the
ligand at 1 by rotations about the z axis. That is,

Qt,q(2)Cn+k+1,m+q(R2) = eimir/2Qt,q(1 )Cn+k+1,m+q(Rl)

with a similar expression for the relation of 6 to 1, which we denote
symbolically as

(6) = e (1)

and

(4) = e imi/2 1) (19)
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Using equations (18) and (19) in the sum over a and j in equation (17),

we obtain

i sjC,(sj)Qkq(J)Cn+k+lm+q( j)
ej (20)

= -4 ~ ~ ( )Cn+k+1~ ~ ( 1 6 m 4p+2
-4z1 Q q(1)k(R

with p = 0, jI, ±2 . . .

In obtaining the result given in equation (20), we have used
the fact that all l jI have the same value (the x-ray determined dis-
tance from the rare-earth ion to the Cl-). Using the results of equa-
tion (20) in equation (17) for the monopole term (for k 0, p00 (j) =
eqc I ) we obtain the following nonvanishing A :' nm

A 32(0) = K312 C42 (1)

A 52(0) = K 532 C62()
52 5 62(21)

A 72(0) = K 760 C 82(1)

A 76(0) = K72 C86 (1)

with

Kn = -4e2 qcl1Z/Rn 2

(Kn will be used for the multiplication factors; in general, its value

in each particular case will be given.) Also, we have taken equation
(17) as

A = - (k) ,(17a)

nm A nm '

where k represents the multipole moment on the ligand.

For the dipole terms (Qlq(j)) the site occupied by the chlorine

ion (site 1 ) has only the components with q = *0; using this and the

result given in equation (20) in equation (17) gives

A 32 (1) = K3 /24 [I14 Q*1 C53 (1) - V3 Q11 c51 (1)]

A52 (1) = K5 /480 [/3 Q 1 C7 3 (1) - Q11 c7 1 (1)] (
52 1 73 1 71(22)

A76() = K 120 [3 Q*1 C (1) -V1 Q C91)

72 7(11 93 Q 11 91 )
A76I K7  1 1 C93(") Q11 C91I
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with

2 n+3
K +4e z /Rn 1

and z I is the same as in equation (21).

5.2 A for r4(t ) Modesnm 4 u

The appropriate normal modes for r-(t ) vibration interaction
4 lu

are given by linear combinations of the two vibrations labeled C and 3,
shown in figure 4 (E) and (F). Thus, it is appropriate here to discuss
the fields associated with the two corresponding F 4(t ) symmetry coor-4 u
dinates. Later we will discuss the selection of the appropriate combi-
nations of these two symmetric functions that form true normal modes of
vibration. Also, since the Knm for the other two components of these
two modes are trivially related, we shall give only the coefficients for
the vibrations depicted in figure 4 (E) and (F).

From the figures, the displacements, sj, of the ligands corre-
sponding to &3 are

sjC 1Csj) = z 1 6, 0  for j = 1, 2, 6, and 4 ; (23)

and

sjc 1asj = z 2
6 0 , for j = 3 and 5 (24)

For the 83 mode, we wilV replace zI and z2 by z and z. The sum on a
and j in equation (17) becomes

)i sjC Ia sj)Cn+1,m+a(ij) (25)
OLJ

= 4ziCn+m(R1)6m,4p + 2Z2Cn+1,m(R3)6n,2k+16m,0

where p = 0, ±i, ±2 . . . and k = 0, 1,_2 . . . Using equation (25) in
equation (23) results in the following A (0) for the two modes:nm

A 10(0) = 2K 1 [2C 2 0 (1) + z2 C2 0 (3)]

A30 (0) = 2K3[2C4 0 (1) + z2C4 0 (3)]

A5 0 (0) = 3K 512C 6 0 (1) + z2C 6 0 (3)] ,
(26)

A5 4 (0) = 2V5 K5[C 6 4(1)]

A70 (0) = 4K712C80() + z2C8 0 (3)]

A74 (0) = 4,(3 K7[C8 4 (1) ,
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where

z 2 = z 12/zI

2 n+2n qcl

The effective Am (1) for the r4(t u) modes can be obtained in a

similar manner as the Anm(O) for this mode. Because of the symmetry of

the Cl- site in Cs2NaRCI6 (C4v), the dipoles Q1 %(j) located at sites 1,

2, 4, and 6 are nonvanishinq for a = +I only, while the dipoles at 3 and

5 have ct= 0 only. From equation (17)--see also equation (17a)--we have

_-e r (n+2+m+q)!(n+2-m-q)! 11/2

nm() = m (n+m)! (1-q) (l+q) !

(27)

× I2Qq(j)sjC10(sj)Cn+ 2 ,m+q(Rj)
j

From figure 4 (E) and (F), and the fact that the Cl- at 1, 2, 4, and 6

are simply related by rotations, it follows that

Q*()sC rsCRJ=() (28)
iqjsj10(sj)Cn+2,m+q(Rj) = 4zlQlq(1)Cn+2,m+q(1)6m,4pj

where the prime on the sum means j = 3 and 5 are missing. For j = 5, we

have the relation , n (

Q• (5 = n+1,

Qlq"5Cn+2,m+q5= Q=q 3Cn+2,-m-q 3 )

and

Qq (3) = Q 10(3)6q,O

from the symmetry of the CI- site. Thus,

[ Q*q(j)sjC1o(sj)Cn+ 2 'm+q(Rj) = 2z2Qq(3)Cn+2,0( 3 )6 m06qO6n,2k+1

j=3,5 (29)

where k = 0, 1, 2 . .

Finally, using equations (28) and (29) in equation (27), we

obtain
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A~ (1 K1 t2 V6 y1()C 3(I) + 1(1 )C* (1 )' + 3z M (3)!10 1 1 3 1 3 o 30

A 0 (1) K K3 4 /1MK 1 C5  (1) + Q1 ( )C* (1)] + 10Z y1  5

A (1) K K12 M (71) + Q (1)C(1) + 21z 2 Q 0 (3)C 7 (3),

A )(=I K5 12 137 1-1 1 ()C - )C73{ )'1 (30)

A7 0 (1) = 724 MC 1) +Q (1)C(1)] + 36z 2 1 0 (3)C9 0 (3)1

4V273 i(C)C (1) - 3V5 Q(1)C9 }

where

2 n+3
K =-e 4z /R

Also, because of the symmetry of the C1- site,

Q ()= 10(3)
V/2

The results given for the Anm in equations (26) and (30) are
only for the symmetry coordinates shown in figure 4 (E) and (F). For
the true normal modes, we should replace z1 and z2 in the above
by z and z2, where

z7 = z, cos ' + zj sin 'P

z2 = Z 2 cos ' + z sin (31)

for the normal modes of vibration for the two r-(t ) modes. Two values4 l
of 'P in equation (31) are determined from the force constants in the
vibration Hamiltonian. It can be shown that the effective A (k) for
the two normal modes of the r4(t lu) are

A" (k) = A (k) cos 'P + A' (k) sin
nm nm nm

and

A" (k) = -A (k) sin 'P + A' (k) cos 'P , (32)
nm nm nm

where the A (k) are given by equations (26) or (30) and the A' (k) are
nm nm

given by the same equations but with z, replaced by zI, etc.
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5.3 Computation of A m(0) for f 5(t) Mode

AS was stated earlier, the importance of the vibroucii inter-

action is to mix q and 1stat-s with the f itites to allow normilly
forbidden electric-dipole matrix )lements f those ions in sites with

inversion symmetry. The only vibr,)nics that cin contribute to the
electric-dipole transition .ire those with odd parity: T . The refer-
ence displacement relative to the rare-earth ion, z 1 in equations (21),
(22), (26), and (30) is simply proportional to the amplitude of the
normal mode, say Qk If we consider transitions where a phonon is
created, then

< l o> = (t2kMk]/2 , (33)

where wk is the frequency of the vibronic and Mk is the reduced mass for

that mode. For the i5 (t2u ) mode (referred to as v6 elsewhere1 5 ), the
reduced mass for the (ErC) 3 skeleton is simply the mass of the chlo-
rine, and equation (33) aives

<1i1k 0> = 0.073 A , (34)

where we have takeni the energy of the F5(t2u) mode as 87 cm- 1 , as given
by Hasan and Richardson. 16  The Cnm(j) that occur in the expressions for
the Anm (k) can be obtained from Karayianis and Morrison,2 7 and the
values of R can be obtained from the x-ray data. Table 3 gives the
results of the calculation using the point-charge contribution, equation
(21), for the Anm, arising from the r5(t 2u) mode of vibration. It is
interesting to compare the results given in table 3 to the odd-fold
crystal-field components of LiYF4, which does not have an inversion
center. For LiYF 4, A3 2 = 657 - 667i, A5 2 = -2671 - 59i, A7 2 = 7 + 14i,
and A76 = 254 + 45i (all Anm in units of cm-,/An, as in table 3). The
magnitude of the Anm for LiYF4 relative to the effective fields due to
the vibronic interaction in Cs2NaErCI6 indicates, at least for the
mode f5(t 2u), that we should expect the latter to have a much smaller
line strength. Using the results of table 3, we calculated the intensi-
ties of the r-(t 0 ) mode for the monopole interaction of Er3+ in

5 2u 3+ -1
Cs 2 NaErCI 6 for all the Er levels below 27,000 cm The results of
this calculation given in table 4 (p 28) are only for the transition
from the F8 ground state to the various upper levels. Thus, the calcu-
lations should be compared to experimental data taken at low tempera-
ture. In general, for all the multiplets, the intensities of the
vibronics are approximately equal to the magnetic intensities. For
the 4115/2 + 4113/2 transition, our calculations agree qualitatively
with the calculations of Hasan and Richardson.1 6 That is, the vibronic
inteosity is smaller than the magnetic-dipole intensity and the
r8 + r 6 magnetic-dipole intensity is predicted to be the largest (see
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44.
fig. 1, Hasan and Richar]son 6 ). The calculation for the I 15/2 F 9/2

tranisitions indicates that all the v6 vibronics have approximately the
same intensity as the corresponding maqnetic-dipole transitions, ani
this corresponds to what is observed experimentally (fig. 3, Hasan and
Richardson'6). A detai led comparison of calculated and experimental
results will have to wait until the dipole contribution and perhaps trie
self-induced interactions, equation (8), are included in the effective
odd-fold field components.

TABLE 3. P)INT-THARvE ,i)NrHIe4IT )N TJ Oiji n A -/

EFFEcrIv E RYSTA L 'IELDS F')R MO(DE :)F i2 S)NaEr )1 a, L

Component Va iTP x-rhe Liti svere taKen from rw§ 13 (Morss

--- - - I ! ri. hem. ( :;970), 177:) w.ith t.;2,
pOsition 'f toe Cl

, relative to the ,
A 32.0A32 **3 . 5= .

nFron r,!5 2', (Morrison C
t i_, 7. Chen. PhLus.

A 5 -23.755 73 (.)30), 2590). In the appenLix to ref

25, the *l-o'e fields are Jiven for 2s.Ns: " , .
A -7 .3.6372 The I )rnoLs nec,_ss r3 to :,icu',ite the

;.i~'-, ' ''or any R3 in CS,.aF'_UR
A76 2 .896 ore a:so jiv n there.

6. CONCLUSION

The results of the simple calculation of the intensity of the V6
vibronics of Er in Cs2NaErCl 6 is rather encouraging in that the quali-
tative agreement with experiment appears good. Certainly the calcula-
tions indicate that a further refinement in the theory of the vibration-
al interaction and the inclusion of an intensity calculation for the two
tlu vibrational modes is called for. The calculations here only con-
sidered the vibrations of the (ErCI 6 )3 complex and therefore are only
approximate; further refinements should also be carried out with the use
of the results given by Lentz 1 8 for all of the modes of the unit cell.
Such a calculation could easily be carried out using the results of
equation (17) for the vibrational-electronic interaction. A con-
siderable amount of experimental data exist for comparison with the
calculation for many R3+ in Cs2NaRCI 6. The resulting theory can then be
applied to the possibility of constructing a tunable laser using the
isomorphic material Rb2NaRF6 , which is more stable. The theory is also
applicable to the development of high-frequency phonon generation (using
the lattice modes of Lentzl 8 ). Further, the theory is applicable to the
generation of submillimeter electromagnetic waves by other means such as
polaritons and tuning by an external magnetic field. By a slight exten-
sion of the theory, the possibility of building a tunable green laser
using Ce3+ in Rb2NaYF6 can be investigated.
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TABLE 4. 'r;AN.i'r[lON( FsOM j'8 15/2 '') HI(;HER LEVEL.-; OF Er IN :s 2 NaEr i 6

AlI vlbron cs ire far no phonon r,)vi ;rtates
. . . ... ... ...------------- -- -- - . ... .. ... ..... .......... .. ............ .

ta te I R Enr ;y Enerqy) n r y' .711 e I

LSJ (,'a l, (obs.) (ohs. I

'115, 0 04I F8
4Tr W) 1 t-4) 6 4-)2 4.5 7( -6) . 1

'1 3 2 6
F
0  

6 5 65' 7 64)1 2.90(-6) 1 .14 -9)
r 6568 6532 6-17 5.08(-7) 7.95 -10.7
F 8  6732 6660 - 2.35(-81 6.31-9)

7 6735 6683 6627 4.31 (-12) 4.201(-9)

1 F 1'3223 [1976] 1,)16,) 3.085(-1 1) 4.98o- 0)

r 10235 1o036 - 8.152(-10) 1.111(-9)
8

F 7  10325 10163) kF ) - 9.649(-101) 2.340(-1. 1
F8 1032H 13199 (F 7  - 1 .957(-9) 9.231-10)

41 , F8 123 3o - 2.318(-)) 1 .4921-3)

F. 12460 - 2.215(-9) 5.0)82-10)

4 12511 - 4.951 (-9) 1.244 -9)*8

F 8 152(04 15158 15200 3.269(-9) 5.654(-9)2 1 8
15309 15255 - 7.434-9 3.254 -92

15388 15347 15326 1.734(-9) 1 .265(-9)

2 2 18341 18276 - 1.990(-1, 7.61 -1,

2 F 19144 '902' 1896A (F 6 ) 2.326,k-9) 1 .468t-9)

191 66 ','3058 19011 (F8) 1 .896(-9) 1 .'53 -9

F7 14227 :13143] 1 )188 (F 1 .62D2-9) 5.852-3H
7

1Q(52 9)111 1'1248 48 ).774(-11) 4.5372-9
4, 7 2 ')436 2)3338 3.613(-1 2) 8.56(-Ih204,)4 24437 7.620(-Il) 1.26(-92

F 7  205fl 2,)46) 20387 8.727(-I ) 6.32(-10)
F'5/2 '8  22115 [22038. - 1.982(-10) 5.41(-10)

r 22174 22067 (F6 )  - 2.886(-11) 6.55(-11)
4 F F 22550 22454 - 2.373(-10) 2.1 1-10)
S3./2 8

F 8  24503 24437 - 3.729(-12) 5.357t-10)

6 24610 24470 - 5.984(-14) 2.783(-10)

F 8  2465o (245291 - 6.855(-11) 4.366(-10)

"11/2 r8  26305 26110 - 1.179(-9) 1.942(-9)

r 7  26380 261'33 - 1 .490(-9) 2.390(-9)

F 8  26538 26367 - 1.3601-9) 6.631(-9)

F 6  26584 26425 - 1.540(-101 5.708(-9)

a Calculated using the B M, from Morrison, Leavitt, an,' Wortoan, 7. Chen.

Phys. 73 (1980), 2580 (ref 25); the centroids have not been adjusted for best

fit.
bExperimental, Hasan and Richarlson, Molec. Phys. 45 (1982), 1299 (re- 26);

onl'y IR labeZs that differ from a are listed. The levels in brackets were not

observed but were inferred by calculation done in ref 10.
CExperimental, Jezowska-Trzebiatowska et al, Chem. Phys. 50 (1980), 209

(ref 15); rR are labeled when they disagree with a.

The numbers in parenthesis in the last two columns are powers of ten.
IR--irreducible representation of the cubic group.

S67d6--magnetic-dipole strength.
-- electric-dipole strength for v6 line.
V6
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