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ABSTRACT

The contents of this report provide some general guidelines and
insights into the design of an adaptive signal detection system based on

quantized data. In particular, we focus on the adaptation of the param-

eters in the quantizer in a way such that the detector's probability of
making errors in the presence of noise of unknown statistics will be

minimized with respect to those parameters. The unknown noise is assumed

P TR PR

throughout this report to be an independent, additive noise with a

symmetric (about zero) probability density function. Within this assump-

tion an adaptive scheme is developed, and its performance and convergence

are verified via simulation.
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1. INTRODUCTION

The detection of signals in the presence of independent noise can very
well be accomplished if the noise characteristics were fully known; in
particular, if the noise probability density function is available, an
optimal detector can be formulated. However, it is often the case that
the noise physical mechanism is unknown or too complex to be expressed
in any simple way; moreover, the noise characteristics may not be
stationary in time or space and may otherwise be impossible to represent
by any fixed models.

Under these circumstances, a different approach to optimal detection
is necessary which borrows the idea from adaptation. The adaptation
process learns what the noise actually is at that moment and '"adjusts"
the detector's structure in a way to result in near-optimal detection
performance.

The contents of this thesis provide some general guidelines and
insights into the design of an adaptive detector based on quantized data.
In particular, we focus on the adaptation of the parameters in the
quantizer in a way such that the detector's probability of making errors
will be minimized with respect to those parameters. The unknown noise is
assumed throughout this thesis to be an independent, additive noise with

a symmetric (about zero) probability density function.
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2. SOME BASICS OF BINARY DETECTION WITH QUANTIZATION

2.1 Structure of an Optimal Detector Based om a Partitioned Sample Space

In binary state data communication, we transmit a positive-valued or
negative-valued signal depending on whether the state is '"1" or "0Q".
After the signal has been transmitted through an additive-noise channel,
the receiver determines from the observation whether it contains the
positive-valued or the negative-valued signal. This problem can also be

viewed as a binary hypothesis testing problem in which the hypothesis H

0
is tested versus the alternative hypothesis Hl; i.e.,
I%: Yi=-s+Ni i=12,3,...,n
versus (2.1)
H1 : Yi = g+ Ni i=12,3,...,n

where the positive and negative signals are of the same strength s and
{Ni} is a sequence of additive noise samples which are independent and
identically distributed (i.i.d.) random variables with common probability
density function fN(-).

It is well known that the following detection scheme gives the best
receiver ﬁtructure (in terms of the minimum probability of error) in

deciding Ho vs. Hl:

Hy
p(xlH) <
Decide Hl if R—X-]H_O) S T (2.2)
HO or H1 =

where p(XlHi);i = 0,1 is the probability density or mass function of Y

= (Y1Y2Y3...Yn)) given that Hi is the true hypothesis and T is the

T e




threshold to which the probability ratio is compared. The ratio
p(lel)/p(XIHO) is often called the likelihood ratio and is a function of
the observation vector y. If we assume the two hypotheses Ho and H1 are
equally likely to occur, that is, they have equal a priori probability
(Pr{Hi} =%:;4i =0,1), and that the penalties on incorrect decision under
either hypothesis are the same (no penalty on correct decision) then the
best T is 1.

Since the logarithmic function is monotonically increasing with its

argument, we can write (2.2) in a different but equivalent way,

H, <
p(ylH))
decide Hl if log H@ > logr (2.3)
HO or Hl =

where the function log(p(lel)/p(x|H0)) is often called the log-likelihood
ratio function of the observation Y.

In the problem to be considered here, we take a fixed finite number
(n) of observations to determine whether HO of Hl has occurred and
partition the observation space (the real line in this case) into a
finite number (m) of intervals. Then the detector structure of Eq. (2.2)
gives an optimal m-level quantizer-detector with m preset partition
intervals.

Let ng be the number of samples from observations {yi}:=1 that fall
in the i-th interval, and let pg and pi be the probabilities that the value of
the observation belongs to the i-th interval under hypotheses HO and Hl,

m

respectively. Hence Z n, = o, the total number of observations, and
mog ® o i=1
z p; = land Z p; = 1.

i=1 i=1

- »
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With the partitioning of the observation space, the probability ~

. . . - . - o
distributions of n = (n1n2n3...nm) given hypotheses HO and H1 are

miltinomial, i.e.,

n : n
n! 0™ O "2 0 ! O, m
p(EIHO) T mmotnat.oa (PP (py) (p 3) "'(pm)
172773 m (2.4)
. ]
n! 1M l "1 3 l.m B
p(E‘Hl> T on.'n,'n,'...n_! (@ l) (p2 (p 3) -(p m)
—_ 1°2°73 m .
Now Eq. (2.2) can be written as y
. 8 < .
; Hy .1 “1 1 2, 13 /1 Un
decide / H { — -— — —_ > 1 (2.5)
1 L 0 / 0 0
\Pl P P3 pm
H. or H =
0 1
\
" Note that T has been taken as 1 for the remainder of this thesis. Again

since the logarithmic function is nondecreasing, (2.5) has the following

equivalent form,

| oo L . S 3

'
e 0 ke S

P,
decide if £ n, log|—= 0 (2.6) :
=1 b T\GD :
! = R
We arbitrarily incorporate the decision on H1 when the test statistic i
. -
1 N
m pi .‘1
z nilog<—0> equals zero; this will not affect the error-probability -3
i=1 P 8
i :

performance of the detector with equally likely H, and H

0 1
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2.2 The Optimal Quantizer-Detector
An m-level quantizer Q(+) is characterized by the two sets of
numbers, g = (qlq2q3...qm) (the quantization levels) and
L= (== to < t1 < ... < tm._1 < tm = @) (the breakpoints) which partition

the real line (i.e., the observation space) into m intervals. The function

of the quantizer is to set Q(y) = q, if the observation y is such that

k

t, Sy <t as shown in Fig. 1.

k k+1

Since [Ni}:=l are 1.i.d. random variables and Yi =+ 5 + Ni

i=1,2,3,...,n,

p(zlH) o p(y; |H,)

This equation (2.3) can be written as

decide if 0 . (2.8)

Here again we have incorporated with the decision on Hl when equality holds
in the comparison. If the log-likelihood ratio function of the observation
in (2.8) is quantized, we obtain a quantized version of the detector;

i.e.,

decid f T o1 ( p(yi|H1)>\n 0 (2.9)
e e 1 (o] N
H =1 \ E\PGTHY ) /s
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This can be reformed into the following by the property of the quantizer

Q(*),

m
decide if £ n g, 0 (2.10)

Now we obtain the structural form of the general quantizer detector of this
problem.
Since (2.6) gives the best detector with predetermined partitions

of the observation space, it can be easily recognized that if we set the

q in (2.10) to be log(pilpg), k=1,2,3,...,m, the resulting m-level
quantizer, QO(-), with the same prechosen breakpoints, is optimal in
detection performance.

n The following result shows the equivalence of the test in (2.10)
with q = qg & 1og(pi/pg) and the test in (2.3) with 7 = 1 as m, the
number of quantization levels goes infinite.

!: Property: Given the following conditions on a binary hypothesis testing
problem,

(1) under either HO or Hl; {Yi]2=l are i.i.d. random variables;
. (2) the cumulative distribution functions of Yi under both Ho and Hl,

(FY(ylHO) or FY(ylul), respectively) are continuously differentiable

and strictly increasing,

then

14 g 1 Pi) 1 (P(X\H1)> (2.11)
im og| —= ] = log -—]-— .
m—® k=1nk (pg Py HO)




. where Y = (Y.Y

1°2 3"'

that fall in the k-th interval.

1 1
Proof: m /P n p, (1)
|| Z n log| —k\. = I log k
: "k 0 . 0.
a k=1 \ Py - i=1 P (1)

[

where pfz(i)

Since p;(i) > 0 and the logarithmic function is continuous

1 1. 1
m Py n Pk(l)

lim & nklog< ) = ¥ log ( lim ) >

¢ m = = kel P/ vl |m==p)(h) ]
By L'HOpital's rule
1.
H i P () p(y; |H))
J Hence - 1. 3
Do B » ROy L [HD
og im = log
¥ i=1 i:n-'ﬁ pk(i)j =1 o \POyTHY
and
1

lin T o logf X z R ’3214511>

im og = og
- m"°°k‘nk <pg> k Gy 4

n o p(y;lHy)
= log ,H p(y,[H,)
/P(X‘H )
=1
og\p(z‘H >

.

Y), p, is the probability that Y is in the k-th

interval given Hi, i = 0,1 and 0 is the number of samples from {Yi};;]

probability that vy belongs to the k~th interval under Hj'

PR . L N
. N e LIV .
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2.3 The Locally Optimum Quantizer-Detector

In the detection of weak signals, the maximum power slope at s = 0
is an appropriate criterion. It can be shown that the locally optimal
test statistic Tzo(x) for the binary hypothesis testing problem of (2.1)
can be obtained by differentiating the log-likelihood function in (2.3)

with respect to s and setting s = O,

n
Ty = T 28,,(5.) (2.16)

i=1
where gzo(y) = —f&(y)/fN(y). The generalized Neyman~Pearson lemma asserts
that test with TZO(.) as a test statistic mazimizes the power slope at
s = 0 over all tests. The corresponding locally optimal quantized test
statistics with a given set of breakpoints t is (see Kassam [2])

n

T @) = ii

2 Quq () (2.17)
Q

1
where on(y) is the optimal quantized version of gzo(y) in the minimum-mean-
squared-error sense (under Ho) with breakpoints t, and it can be shown to be

£ (6 )£ (E D)
N N-k-1° A fo
F(h D Fy(5) =Y < G

Q) = (2.18)

[}

where FN(') is the noise cumulative distribution function. As before, (2.17)

can be reformed to give

m
fo
T (y) = £2n4g (2.19)
Q° ml Kk
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8
;] u Similar results can be obtained by differentiating the optimal
23 quantized test statistic of (2.10) with respect to s and setting s = O,
;_’-f 0y
- d [ § . 1oof RN : P A Y 2.20)
"~ —\ og{ =, ! = 2 \ 2.20
!’ a5 oy K <p12/js=o r’k\F () -Fy (g
Hence
Tom
d_ 1
- Z 1og<
- ds - nk Js-O
' is also the locally optlmal quantized test statistic with the same
o breakpoints t. Again the generalized Neyman-Pearson lemma asserts that
—

a quantizer detector with

1
m P

d [ "k

ds | ey K \pl(: 5=0

as its test statistic maximizes the power slope at s = 0 over all quantizer

e

. detectors of the form in (2.10).
It is known [2] that the optimal breakpoints t in the weak-signal

case can be obtained by solving the following two sets of equations,

» Qe
i e o

£ (Ck)-fN(tk )
Lo N -1
q, = k=1,2,3,...,m (2.21)
- ko Py -Fy(g)
;' . and
.i B qzo + qu
) _5__5__511 = gzo(tk) k=1,2,3,...,m-1 (2.22)
where gzo(tk) = -fﬁ (tk)/fN(tk)-
y I
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2.4 Some Properties on the Asymptotically and Locally Optimal

Quantizer-Detector

Finally we want to show that, as the signal strength s - O and the sample
size n = = simultaneously, the set of breakpoints t which minimizes an
upper bound to the probability of error in detection using the locally optimal
quantization levels of (2.18) approaches the set of locally optimal break-
points given by (2.21) and (2.22). But first we need two properties which
give an upper bound to the probability of error and the symmetrical
property of the optimal breakpoints minimizing the probability of error in
detection of the problem depicted by (2.1) with equal a priori probabilities
for HO and H, and symmetric noise density functiom.

1
Since Pr{HO} = Pr{Hl} = %, the probability of error in detection using

(2.6) is
_1 1
p,=3Z | plold+ss p lalul, (2.23)
n €N n€N
- 1 - 2
where
n n n n
n' i1, i,072, i3 i, m
Pr{glﬁi} " n.'o'n.'...n ! (Pl) (pZ) (P3) ...(pm)
1°72°73 m
m pl
1 k
N] = {n= (nl,nz,n3,...,nm) s.t. Z nklog<7.-> 2 0}
k=1 Py
and 1
N, = {n= (n,,n,,n n) s.t g 1o EE < 0}
25 2 1202y c e cofy) 8ok = M08 TG
k=1 Prc

Notice that p;'s are functions of the breakpoints; thus, within smoothness
conditions, the partial derivative of Pe with respect to the breakpoints

yields a necessary condition on the optimal breakpoints [1],




!-

12
oP n n,
—2 a5 £ | pelafa}| =L - = £ (e o)
d¢, c y1 0| 070 N
i n € Ny Py Pin
n,. n,+l
+% =  prlnfn} [—-} - —-IL] £y (£;ms) = 0 (2.24)

In general it is necessary to use a gradient search technique to
solve for the optimal breakpoints with (2.24), since it is not likely that
a closed form solution to this equation can be found.

The following property gives the symmetric property on t; thus half
of the breakpoints can be determined from their symmetric counterparts.
Property: Given the following conditions

(1) The observations (YI’Y "Yn) are i.i.d. random variables.

2,Y3,..

2) Pr[HO} = Pr{Hl} = %; i.e., H1 and HO are equally likely to occur.

(3) The cumulative distribution functions of the observation y under
Ho and Hl’ FY(y|H0) and FY(ylﬂl) are continuous and symmetrical in the
sense that FY(-ylﬂo) =1- FY(Ylﬂl)-
4 t= (tl,tz,t3,...,tm_l) are symmetric breakpoints in the sense

that € _, = -t,  §=1,2,3,...,0-L.

. th bPe
(5) The j  componment of t is optimal so that with (2.24) TR = 0,
dP it
Then the(m-j)thcomponent of t is also optimal; that is 3t = 0.
m-jj £

Proof: Given that FY(y,Hi); i =0,1 and t are symmetrical, the following
four statements are true,

(a) fY(thHO) = f (¢t .|n

Y m-j 1)

i A v A o A A & s N _a s _a A & & A m . A A .p oaT o A & - A A w2 A e A A ca A me o m A e e 2 Tl L& e ke s a om
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l . (b) Pj = pm-j+l
i (c) £ prinld.ln, = £ prlnlH,}n_ .
n€ Ny 073 € N, 1° "'m-j+1
(@) < Pr[E|H Jn, = £ prinla.ln .
a € N, 0 e 17 m-j+1
" where 1
. o p
N, = {ns.t. Z log X > 0}
17 5= o1k 20
k
m p]'
— N, = {ns.t. Z n log £\ 0}
i 37 e 0k 20
k
m p1
= kK
_ NZ“{ESt anlogko\;,<0}
=1 pk /

Hence, given £ is optimal, Pr{HO} = P:{Hl} = 1 and the above statements,

(2.24) can be written as

°}?e nm-j+1 nm—j
E = é . Pr{_qul} [ 1 + =7 ] fN\tm_J.-s)
=5 Pr-j+1  Pm-j

-‘ r nm--j+l e i '|
ty Z Pr{ngO} 2 1 -1 N m-j
- € N3 L P J

2 m-:+1  Pmoj
nm-j+l nm-j
. + -
L prinlug} [ ; ]fN(tm_j+s)
250 LPpej+1  Pr-j
dP
T
m-
dP 3P

Hence g-t—e- = 0 implies bte = 0, thus tm-j = (-tj) is also optimal.
b m-j
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From this property we can see that the optimal quantizer is odd symmetric,

0

P P

0 . Pk PR\ 0

q_ = log (7 = log (o > = -q, (2.25)
Py / Py

The next result gives the upper bound to the probability of error in

detection of (2.6).

1
o P
Property: Given the test statistic T = I nklog -% , with
k=1 P
k

E{TIHO} < 0 and E{Tlul} 2 0, and Pr{ng} = prin;} = %

the probability of error of the test (2.6) is upper bounded by

1 1.
( m Pk w 410 J’ m Pk w490
P <% inf(| Z:_—o P + % inf I P, . (2.26)
e ' -1 " k Tem \ O kg
w Lk 1\pk W L.& l\pk H

where n is the sample size and w is real valued.
Proof: 1If E{TIHO] < 0 and E[TIHl] 2 0, then by applying the Chernoff Bound
to P,

e

P <} inf[GT(wIHO)] + % inf[GT(lel)] , (2.27)
w w

-

X Pr{ngo} + Z %Pr{ﬂlﬁl}
n €

z
a € Ny N,

N, = {g s.t. T2 0} and N, = [3 s.t. T < 0} , and

2
GT(wIHj) is the moment generating function of the random variable T given
hypothesis Hj; j = 0,1 which is given as
m p w .0
G(wly=| ¢ [ X\ j=0,1 (2.28)
T j 0 k
k=1 1 |

Substituting (2.28) into (2.27) gives (2.26).
Q.E.D.

[ PP U U S
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0
By the property on symmetry of t and the fact that a, = -qg , we

can consider only the positive half of the entire partition and rewrite

(2.26) as
|| f_l— m Pl -© \—- n:
p s1/2inf )| g & ) (—18 P
€ 4y} ‘ ;k=1 P
k
L - -
! w N ' :
<I‘; P N Pk\\ 0 ¥ n L
+ 1nf T —y P (2.29)
- =1 PO/ k /i {
where m* = m/2. The minimizing values of w can be found for the first and
- second terms in (2.29) by differentiating them with respect to » and
setting them to be zero separately, thus for k = l,2,3,...,m*
T P1 © p1 pl - Pl
1 k
) Py Pk Py Py
. p1 ® p1 1 -0 p1
1 k k \ 0/ k
’ () () w3 () -
Py Py Py Py

(2.30) and (2.31) give w = % and w = ~% as the minimizing values for

«wa

the first and second terms in (2.29), respectively; thus

rm* //pi 5 ,pi\% OL-n
: th = i'6> P 0 ) Pl
. k=1 \pk Py JJ
¢ *
m n
10%"
S{g Z(Pkpk)%i (2.32)
k=1 |
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The quantity on the right is Hellinger's integral for the partitioned data
sequence, The design of quantizers in terms of this latter quantity has
been considered by Poor and Thomas in [6].

To study the performance of a fixed sample size detector for weak
signal or equivalently for large sample size n, it is usual to assume that
the signal strength s is of the order of 1/4/n since n is a parameter under
control. So let s = K/J/n, where K is any positive constant, so that both
s * 0 and n #» =™ at the same time. However, with s = K/v/n, the bound in
(2.32) approaches 1®, an indeterminate form as n - », Applying the
L'Hopital Rule twice to the bound in (2.32) we can obtain an "asymptotic"

upper bound to Pe as s 2 0 and n @ ®, which is

o PRI
2 ’ - 5 - t L
P < exp -K T e y-f I Nk’ N k-1 !¢
el 20 K=l L\N k-1 N(tk)/, SN CRE Ry Ej (2.33)
n ® J

A detailed derivation of (2.33) is in the Appendix.
We now try to obtain a set of breakpoints which will give the smallest
possible upper bound to Pe in the case of weak signal and large sample size

by taking the derivative of the bound in (2.33) with respect to t It

K

turns out that tk has to satisfy the equation

2
d i, TN (fN(tk)-fN(tk-l))
de, ! \fu("k-l)‘fN("k)l,i"' Fy(t)-F(t )

-

G ERICHOWY

Nt ae)”
\ )

=0
FaCtee) "F(e)

This becomes
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\ ) ) o]
K ey 4+ 2\£ (e )-£ () /E(E) ka(tk)-fN(tk_l) g (e f
N S P (60 Fy (5 1) e (o 2 .
r N KN k-1 )
z(fN(tkﬂ)'fN(tk)\} {fN(tk+1)-fN(tk>>2 , - ~
P () +TF e o oF (g (N 7-(E.(5 ) ) =0 :
| A S TR RN y (FN(tk+l)-FN(tk)> k .

- (2.34)
From (2.34) and with

£y (t ) -Ey (5
RN CREE N O

k=1,2,3,...,m-1 (2.35)

the breakpoints t can be determined by the following set of equations

q +q £!(t)
o 0 S i k=1,2,3,...,m-1 (2.36)
2 £.(8)

Surprisingly, this is the same set of equations, (2.21) and (2.22),

T

necessary for t to be locally optimal. Hence we can conclude that, with

respect to the breakpoints t, the upper bound to the probability of error

in detection of an optimal quantized test given in the above theorem,

Alrarata 0l

minjimizes simultaneously, as s = 0 and n - @, with the inverse of the

)
..

test's power slope at s = 0 which is, as noted earlier, an appropriate _—

criterion for detection of small signal instead of the test's power. f B

This result is a special case of that obtained by Poor and Thomas in [6].
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3. THE PROBABILITY OF ERROR OF THE 4-LEVEL QUANTIZER-DETECTOR

3.1 Structure of the 4-Level Quantizer Detector

From earlier discussion, we conclude that an optimal m-level quantizer

detector for arbitrary signal strength s is given by

1 <
(-HO m pk

decide if Z nklog<—0 > 0 (3.1)
i_ﬂl k=1 P’ 2

where pi =[FN(t:k - (-l)is) - FN(tk_1 - (-l)is)] for i = 0,1, and £

k=1,2,3,...,m-1 have to satisfy the set of equations

P . 0
e -1
e, " ENI prin/ipl | 5 - 5 | E(gts)
2= P Pxa1
" nk-l] (3.2)
L —_— m——— - =
+ % é Nl Pr{n/Hl} 1 ) lfN(tk s) =0
2= P Pr-1l
where Ni = {E = (nl,nz,n3,...,nm) s.t., Z o, logK\—% ) = 0}
k=1 Py
m p1
and N, = {n = n,,n_,n n)s.t. Z log £\ < 0}
2 T W2 T BpaRysfgseeesfp) Sebe & Ty 0
k=1 Py

But (3.2), as mentioned before, generally does not have a closed form
solution to e and it can only be solved by some root-searching technique.

However, from the property on symmetry of t, we can easily see that, for m

= = E - 1 !
even, tg 0 and tj tm—j' So there are only (2 1) different tk s

left tozdetermine as the others can be set according to the property.

andiitiiid Co ooisain SRR el o -
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Only when m = 4 are the root searchingz techniques one-dimensional,
and we will confine ourselves only to this case for the rest of this
thesis, although it is conceptually as simple to use some higher-dimensional

searching techniques to locate all the (? - 1) £t 's in (3.2) for m 2 6

k
(Note: m is taken to be even).

Once t is set from some searching methods, its corresponding optimal
quantization levels Gy and, consequently, the optimal quantized test

statistic, are determined. With symmetric noise density function fN(-),

the odd symmetric property of qk implies that (3.1) can be rewritten as

H <
0 m/2
decide if k§1 (nm-k+1-nk)qm-k+l 0 3.3)
Hl 2

with m = 4, (3.3) becomes
' H . <
0 2
decide if kﬁl(nS-k-nk)qS-k 0 (3.4)

2
iy

We can see that normalizing the test statistics in (3.4) with 3
has no effect on the quantizer detector performance, hence
<
B
decide l if (na-nl)qr + (n3-n2) 0 (3.5)
Hl 2
where q = q4/q3. Also with m = 4, t, = =ty and £, = 0, (3.2) can be

1

written as




- -y

. 1 _ = - - g
with N1 = {n = (nl,nz,n3,n4) s.t. (n4 nl)qr + (n3 nz) 2 0} .

and N2 = (E = (nl,nz,n3,n4) s.t. (na-nl)qr + (n3-n2) < 0}

i i_ . i_ -
Py = Fy(-ty + 8), P, = Fy(¥ s) - Fy(-ty £ 5), py = Fylty +8) - Fu(x s),

P, = 1l - FN(t3 + s) with + for i 1 g

(3.6) is a function of c3 only and many one-dimensional root-seeking
methods can give a solution to t3.
For the reason given in the following chapter, we prefer and will "

use instead of (3.6), the probability of error itself in solving t3, i.e.,

P (ty) = % né oL prin|dy)} + % erin|,] . (3.7

z
1 2 €N,
Again using any one-dimensional '"peak" seeking methods on (3.7), t3 can

be located as well.

3.2 TFormation of the on(t3) and P:(t3) Curves

Pe(t3) can be plotted versus t3 in two different ways. PZO is the
curve plotted with q.> which determines Ni and N2 in (3.7), held fixed; ~'

this implies the same Ni and N2 are used in calculating Pe(t3) for all t3.

so
Minimizing Pe with respect to t3 corresponds to the minimization of the
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probability of error by moving t3 arcund until the minimum probability of
error is attained with quantization level ratio q. fixed all through the
process. Obviously, the ty SO obtained is optimal only for the class of
quantizer detectors using that particular level ratio.

Several on(t3) curves are shown in Fig. 2 for different values of
9. (with Gaussian and Cauchy noise). It can be seen that for any t3
there is a corresponding q, which gives the minimum value to the probability .
of error at that particular t3. Since q = 1og(pi/pg) gives an optimal
quantizer with breakpoints t, therefore the optimal q, corresponds to
each t3 is ;g
1-FN(t3-s) /{O FN(t3-s) - FN(-s)
l-FN(t3+s)/ B Fy(Eg¥s) - Fy(®)

q. = log (3.8)

P:(t3) is then the curve which picks off the minimum of all the 5
probabilities of error over all possible qr at each t3; it is shown in 22
Fig. 3 and in Fig. 2 along with the P:O(tB) curves. Obviously P:(t3) is
the greatest lower bound to all possible on(t3) at each t3 and consequently
the curve P:(t3) always stays on or below all on(t3) curves. On the
other hand, P:(tB) can also be obtained analytically, at each t3, by
evaluating (3.7) with 1. from (3.8) for every tqs hence the sets Ni and N2
are different for every different ty- The ty so obtained by minimizing
PZ(t3) will yield a truly optimal quantizer detector. However, as the

number of possible elements n in Ni and N2 gets large for large sample

size n, the necessary search for n = (nl,nz,ns,nA) in N1

1 and N2 for

every t, will become time-consuming.
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3.3 Some Characteristics of the on(t3 and PZ(t3) Curves

After the formulation of P:o(t3) and PZ(t3) have been considered,
we now turn to discuss their characteristics from the observations of
their curves in Fig. 2. First we notice that for some tq there is a
range of q, values that give rise to the same probability of error; that

is, for some t, in which the probability of error is insensitive to certain

3
range of a, values. This can be better illustrated by plotting the
probability of error versus the level ratio q. given t3. As shown in

Fig. 4~-Fig. 7, each of these curves is actually a series of steps and

the width of each step corresponds to the range of q, which gives equiv-
alent probability of error at that t3. From these figures (Fig. 4-Fig. 7)

it is clear that for every t the probability of error depends only on

32
the ranges of q, (i.e., it is a function of the ranges of q, only) and not
on the actual 9. values. This is because for a given t3, Peso(ts) depends
on q_ through the sets Ni and N2 and with the sample size n finite, there
may be a range of values of q, which gives rise to the same sets of Ni
and NZ' Although the value [(na-nl)qr + (n3-n2)] itself changes for
every different 9. the two sets of n = (nl,nz,nB,nA) that give N} and N2
such that [(na-nl)qr + (n3-n2)] : 0, respectively may be invariant under
different q.- We expect the sets Ni and N2 to be more distinguishable
for different 9 and the staircase-like curves in Fig. 4- Fig. 7 to
smooth out as n gets large.

Next we notice that for large enough q. and fixed n, the probability

of error is independent of q, for every t3. This can be seen from Fig. 2

or better from Fig. 4=-Fig. 7 where the last step extends all the way from

L0
[

10 ziven any t3, this is due to the fact that the sample size is
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finite causing Ni and N2 to be invariant under large qr. Again it

will occur at larger 9. when n gets larger.

The insensitivity of on(t3) to 9. becomes significant for small t3.

As shown in the staircase-like curves for small t the probability of

3>
error is roughly constant for all q, values greater than one. Thus the
P:(tB) curve almost coincides perfectly with all the PZO(tB) curves for
small t3 values (see Fig. 2) and hence the minimum points of the P:(t3)
and on(t3) curves are found located close to each other. These
characteristics of the curves have a very important implication on
adaptation discussed later.

Since the probability of error given t3 depends only on the range

of q. for finite n, there must be a range of q. values that gives the

same minimum probability of error. Let us denote this range as an

optimal range of q. values; it is quite obvious that the value A

1 1 R

P, Py i

log -0 log —5 | must fall in the optimal range. For example, from i
P, Pq

Fig. 2, the optimal breakpoint t3 is shown to be about 0.4 for Cauchy noise _

1 1 b

P, Py =

when s = 0.75, the q_ = log| —5 |[log| —§ ] with ty = 0.4 is about 2.65 4

P, Pq :;

which is within the optimal range as seen in Fig. 4. As mentioned
earlier, the staircase-like curves smooth out as n gets large and

eventually (n — ®) the optimal range for q. will collapse to a single 1

/ pa ]
point of value log | 1og(
Paf p3 / .

laca

das
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Before leaving this section, two main characteristics of PZo(t3)
are worth pointing out again; i.e., given the signal strength s, the
probability of error is insensitive to 9. for any t3 below a certain value;
and the probability of error depends only on ty for any q. above a
critical value which was mentioned earlier. This critical q, is related
to the sample size n., If the sample size n is finite, for quantizers

with 4 levels, it is easily seen from the definitions of N; and N2’

1
N = {(nl,nz,n3,n4) s.t. (n,-ny)q_+ (ny-n,) = 0}
N2 = {(nl,nz,n3,n4) s.t. (né-nl)qr + (n3-n2) < 0}
that any q, greater than or equal to n will definitely give the same sets
of Ni and Nz; hence on(tB) is identical for all 9, 2 n. Note that

Figs. 2-7 are created with sample size n = 10.

3.4 Some Considerations on the Design of the Adaptive Quantizer Detector

From previous discussion, we point out that the minimum points of

the P:(t3) and on(ts) curves are situated closely to each other; hence

if we are willing to suffer a little more probability of error near the
minima, we may just as well consider on(t3) instead of PZ(t3) since P:(t3)
will (as noted above) take much more processing time than on(t3).

Now it becomes necessary to decide which P:°(t3) curve
{(correspondingly, which qr) to work on. However, there is a rule of thumb
in picking a. condensed from the previous descriptions on the general
characteristics of the curves, which gives a guaranteed performance for

the adaptive quantizer detector.
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If q, is chosen such that it is strictly less than n and greater
than 1, we are guaranteed that the performance of the adaptive quantizer
detector is better than the worst possible performance with that
particular noise. This is because, for small t3, on(t3) is roughly the
same for almost every 4> and for large t3, on(t3) is increasing with

q. but upper bounded by that value of on(t3) with q. 2 n. So, using any

> amanestne s

on(t3) with 1 < q, < n will have performance always better than the ‘
lower bound performance.

It appears from the curves that the smaller the q, used, the better the

adaptive quantizer detector's performance will be; however, we note from '
Fig. 2 that q,. = 2 gives the largest minimum probability of error over all )

q_ for the Gaussian noise case though the performance during the adaptive
r

.

process is almost the best we can get. Since the noise is unknown to

the detector, we really do not have any good guess on the initial t3 to

start our iterative process for adaptation. If we start with "small"

'[ initial t3, then it does not really matter which qr we use since i
performance of the adaptive process is insensitive to q. in the
range of small t3. But if our initial choice on ty turns out to be

"large'", we have a tradeoff between better performance with smaller q,

and faster convergence to the final optimal operating point with

it e mitnina

larger 9. which is due to its relatively steeper slope.
One might arrive at the conclusion that, if we can start with !

arbitrarily small t3, we can then forget about choosing q, and still

Sh ol ot oo

have both fast convergence and an almost uniform performance over all 9+

: But we simply cannot start with arbitrarily small t3 because, as will be

et Al
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seen in the simulation, small t_ gives a very bad estimation on the

3
probability of error, especially when n is small; besides, the
smallest initial t3 that can be used is also dictated by the particular
iterative scheme being used.

Finally we observe from Fig. 8 that the slope of the on(t3) curve
may be steeper for smaller s, Hence, the absolute amount of errors
saved from adapting the quantizer detector to its optimal operating
point may be larger for smaller s; however, the percentage of improvement
in the probability of detection is less as compared with larger s in
adaptation. Thus it depends on the particular design objective whether
or not the adaptation process to the optimal quantization parameters is
worth doing for large or small signal strength.

So far only Gaussian and Cauchy distributions are considered; but

since they represent two extremes, we may consider all these trends to

be typical.
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4. THE ADAPTIVE DETECTION SYSTEM

4.1 Two Methods of Adaptation

There are several possible ways to adapt the quantizer to the
unknown noise. For example we may use a training sequence of signals
which is known to the detector before transmission; and the method is to
adjust the parameters in the quantizer (i.e., breakpoints and levels)
until a maximum number of samples from the sequence are correctly ''detected."
This method requires a certain idling period for training before any
actual transmission and detection of real data. This may not be acceptable
in some cases. Furthermore if the background noise is time-varying,
though it may be changing very slowly, the training process may be
necessary quite often,

One of the other ways is to use the method of unsupervised decisiomn
directed adaptation, in which the detec;or runs with real data while the
adaptation of the quantizer is taking place. This way the detector can
operate on a full time basis and can keep up with any change in the noise
up to a certain time lag due to the transient response of the particular
adaptation scheme being used in the system. In this method, every
decision made on the real data is assumed correct and is used as a

training sequence for the optimal quantizer parameter values.

The potential disaster of this method is the possibility of system
runaway if enough decisions made were actually incorrect and the modifica-
tion on the quantizer values based on these incorrect decisions drives the
quantizer away from its optimal state. This results in more errors in
decisions. This happens most likely in the case when the initial

probability of error of the detector is large.

|
1
]
~
‘
.
.
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4.2 Structure of the Adaptive Quantizer-Detector System

l' The structure of the whole detection system in our simulation is
shown in Fig. 9. The detection scheme follows the structure in (3.5)

where ng is the number of samples, from an observation size of 10

u samples, that fall in the i-th interval which is characterized by the
value of the breakpoint €y (note: i runs from 1 to 4 for a 4-level
quantizer detector). Then with level ratio 9 the quantity

- (na-nl)qr + (n3-n2) is compared to a threshold (which is zero in our case)
to make a decision on which hypothesis (HO or Hl) those 10 samples are

- from, depending on whether the quantity is below or above the threshold.

As mentioned in a previous chapter, additional complexity goes into
the system when Po(t ) is used instead of Pso(t ). Pso(t ) is the
e 3 e '3 e 3
probability of error as a function of ty for a fixed q, and hence the

sets Ni and N2 are fixed at all times; while P:(t3) requires new sets of

P P
. Ni and N2 which correspond to the new q, = 1og<—g> log<—%> with
P, Py

every newly iterated ty- Unless it is necessary to go to the true

optimal point of the detector by using P: (t3), we will consider the

o
L Pe(t3) case only.

In iterative procedures, there are two ways to locate the optimal

t3 which gives minimum PZO. One is to find the zero of the derivative

function of P:o(ta) with respect to t3‘ The other is to locate the

minimum of the function on(t3). In the 4-level quantizer-detector,
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SO
the P°0(t,) and Y i
e e 3 an °t3 are given as
SO
Pt,) =% £ priplu} +5 = erlnlu]
e 3 -1
n € N1 n€N
- 2
and
3P°°(t.,) n, n
e ~3° _ 3.2
st =% ENI Pr{n|H }[ o 5 fN(t3+s)
1 P3 Py |
n3 nzq
ML P‘{nlﬂl}[—f 1| ey
P3 Py
where
n! T I D U S DUE
prin|u; ATy T PV @) () >}
1
N1 = {3 = (nl,nz,ns,nA) s.t. (na-nl)qr + (n3-n2) z 0}
N2 = {E = (nl,nz,n3,n4) s.t. (nb’-nl)qr + (n3-n2) < 0}
SO
bPe (t3)

We can see from these equations that finding the zero of

ot,
involves an additional estimation of the noise density function fN(');
it was found that it may not be well approximated by any simple means.

SO(t3)

bt3

Besides, the computation required to obtain

time consuming. So, in working with PZO(tB) directly and using some
"peak seeking'' methods to locate its minimum point, all we need is to
have a good approximation of the i i=1,2,3,4; j = 0,1, which are

easily estimated.
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The adaptation scheme used in our simulation as shown in Fig. 9 is
decision directed. Every decision made from a block of 10 samples is
assumed correct and, based on this decision (Ho or Hl)’ the 10 samples are
then modified so that their noise and signal content are revealed.

Explicitly, the modification is as follows:

Hy N, =Y

[}
<
+
[/}

if decision is i=1,2,3,..., n= 10

o
2
]
<
[}
7]

Hence, if all the decisions ever made were correct, all the noise data
Ni s0 obtained will distribute according to the true noise present in the
environment. With these noise data, we can approximate the pg and pi
i=1,2,3,4, necessary for the computation of PZO which is going to be

minimized with respect to t The approximation is done in the usual

3
way; that is,

number of 1oise data from memory s.t. the value (noise data-s)
- is in the i-th interval (4.4)
Py total number of noise data stored in memory ’

number of noise data from memory s.t. the value (noise datat+s)
1 _is in the i-th interval “.5)
total number of noise data store in memory :

Notice that the location of the i-th interval is determined by the
current iterated breakpoint t3, so pg, pi and hence on change accordingly
with ty in each iteration. The only way we can update the values of pg
and pi is to check through the entire storage of the noise dat= and
perform the above approximation for pg and pi in each iteration. 1In
fact, this is the most troublesome thing to do in the whole algorithm

in the simulation.
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(£)
3

value of the breakpoint in the £-th iteration, the (£+1)-st breakpoint

(2)
3

so . . . . . .
Once Pe (t ) is found in the £-th iteration using t , the iterated

value can be obtained by the following iterative process,

P_(t

~s0, (£)
) e 3
ty <7£ {

so )
+C£)-Pe (t3

ZCL

L) “Cy)

3

4.6)

This is the well-known Kiefer-Wolfowitz method in stochastic

approximation. With this, the tgl)

approaches, as £ (the number of
. . . es s . 0 . . . .
iterations) goes to infinity, the limit ty which gives minimum value to

, so . s
the function Pe (t3). However, it is necessary for the two sequences dl

(the stepping sequence) and CZ satisfy the following conditions for

convergence,
(1) lim ad =0
z-—o@ L
(2) lim C, = 0
{ =~
-]
(3) z d, ==
_ 4
£=1 2
@ a
%) = (%><a
2=1 £

In our simulation, d} and C, are chosen as 1/4 and 1/(4z%),

respectively and it can be shown that this choice of dk and Cz does

satisfy (1)-(4). With this, Equation (4.6) becomes

"oso, (&) 1 ,% _so, W) 1 .y
Po(ey )+ 4Ty - 2T
3/4 ’

£

LD t3(z) -

3 .7

P

ADINRS. 4 .
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As we have mentioned in a previous chapter, the smallest initial t3

that can be used is governed by the largest element of the Cz sequence,
which is the first element (C1 = %) in the case where Cz = % z'% (note:
this sequence is monotone decreasing). The reason is simply because if

the initial t3 was smaller than z];-, (t:gl)- -})would be negative and on will

be undefined. For a different choice of C, sequence and hence a different

)4

type of convergence behavior, the initial ty can be made as small as

desired.

Computer simulations of the system in Fig. 9 are done with Gaussian and

Cauchy noises, their density functions are fN(x) - e /2 and
2m
fN(x) S , respectively. The iterative scheme of (4.7) is
m(l+x )

used to iterate the optimal ty with signal-to-noise ratio S/N = 0.75 and

various initial breakpoint values.

Figures 10 and 11 show how the iterative process has brought c3 toward
its optimal values (in cases where tgl) = 0,25 and 2.0 with q. fixed at 2.0
for Gaussian noise). However, the algorithm is far from converging even
after 2500 iterations. Also, we see from Figs. 12 and 13 that the prob-
ability of making errors of the system approximates the theoretical values
after a large number of iterations for Gaussian noise given in Fig. 2.
Similar curves for Cauchy noise are given in Figs. 14-17. Notice that the
curves in Figs. 12, 13, 16, and 17 are generated according to the following
definition

total incorrect decisions made by
system up to the £-th stage

total decisions made by system
up to the £-th stage

Probability of error at l-th stage =
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This way of generating the probability of error of the detection
system at each stage can only show that the system's probability of error
does approach its minimal value but in no way indicates the system's
"current potential’ of making errors. This ''current potential' of making
errors by the system is actually the P:O evaluated at the current iterated
breakpoint téz).

4.3 The Modified Iterative Procedure

In order to speed up the convergence by a considerable amount, the
above iterative scheme (4.6) is modified in the following way. If the
so, (&) . .
L) Pe (t3 Cl)) is different from that
of the previous quantity, G} will take on the next value (following the

sign of the quantity (P:°(t§z)+c

one used by’d}_l) in the stepping sequence; otherwise, the same value
used by d}_l is used.

It is necessary that C, be constant valued and the stepping sequence

4
-]
be monotone decreasing (in addition to lim &k =0 and I &k = @) for
L == £=1

the modified iterative procedure be convergent. In our simulation with

the modified scheme, C, = 0.125 and the stepping sequence is again 1/4

£
(harmonic sequence is monotone decreasing). Now, the smallest initial t3
that can be used is 0.125 in this modified version of the adaptive system.

We use Table. 1l to help illustrate this modification.

Table 1. Illustration for modified iterative procedure.

L 1 2 3 4 5 6 7 8

(2)

S0 (L)_
3 +C) - Pe (t3 C) + + F = .+ =+

Sign of P5°(t

d} used 1 1 1

N
N
Wi
N
v |-
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Intuitively, this scheme gives faster convergence because we put
large modification on tq when the direction of the search for the optimum
does not change from that of the previous search and reduce the size of
modification only when the search direction changes which indicates an
overshoot of the iterated t3 about its optimum and then that we need a
finer search.

Figures 18-23 show t3 converges to its optimal value in a much
faster rate as compared with those in Figs. 10, 11, 14, and 15 for the

same S/N (= 0.75), with q, = 2.0 and initial t, = 0.13, 1.7 and 2.2 for

3

Gaussian and Cauchy noises.

.l R - -
l LI W - b o 2 s VU R VY VA S S s S S ey " = A A s A& . A m s . a. & _= _.a -

b
g
|
3
1
P
:
i

R




- D A S A LADAON A A MM o i MR S . SRR M TR T J PR N |
1
” "¢1°0 = ¥3 TeriuT puUE QT=U A
X ‘0°2 = b ‘GL'0 = ¥NS YITM asyou Ayone) aoJ (@duoanbos Buiddays patyTpout yiim) Mu paIeanll - Q1 sand1d 1
. - “
n (spuesnoyl ul) SUOTILIIIT JO IaqunN 4
ﬁ S'¢ 8’2 - S' i 0| S'0 2°0 ,
. 1
P & 1+ ! ¢ 1 1 ¥ 1 ¢+ & &} 1 11 1 ¢ 1 111 1°9 1
R
B 1
- p—
A
1
f Rt
2'e
- |
b 4
- 4
1
b
4 -
ﬁ £'0
F‘\l‘t‘\u\u\‘l\f\l‘\l!l /
“llll“\l\‘
v¥'e




K 0 - b 1 - g L N ]
LT = €3 [er3yuy pue gr=u
o ‘0'¢ = uc ‘GL°0 = ¥UNS Y31 asTou Lyone) 103 (oouanbas Juiddsls Po1ITpow Yl TIM) Mu pojeasl] g1 2and1g
[T
(Sspuesnoyl ul) SUOTIEBAIIT JO adqUNN
S'¢ 02 S’ 6| S'e 0°0
L 11 1 ________________Q.Q
B (7°0)
it -~ anjea
wnuyido
b
S'0
-
=
g1
hae
S
-
. 13
8°¢c 3




-z°z = €3 Teravur pue gr=u <0°Z = b
‘GL*0 = UNS YITm 3astou Ayone) 1oy (@dusanbas Suiddels parIypom Yy M) mu paleasly -z =an3ig

60

(spuesnoyl uy) SuUOTILIDIF JO IAdqunN

S'¢ s A S° 1 0} S'9 00
1.1 1 1 1 1 1 | I . | | N . 11 1 1 g°0
.
H (v°0)
aniea
— ] — . wnuyjdo

S

a2

S'¢

PP

L.




P p—

61

€170 = ©

3 TeTITUT pue Qy=u

‘0°¢ =

X

b

‘G/°Q0 = UNS YITM 2sTou ueTssne) 103 (sdousnbas Suiddeas psryipouw YItm) mu peieaaal

(spuesnoyj ul) SUOTIEIASIT Jo IIQUNN

S°1

S'e

v'o

9'Q

8°0

‘17 @an3tg

(S6°0)
aniea

unuwTt 3do




— T AERAtY £ . LA A e add ISR A A b tarat] SRl AGPPERS i e
. . m < . -— Hmv
° L*T = ~3 TEIITUT pue QJ=u ‘0°C =
‘G/"Q = ¥NS Y3lTM asTou ueIssned 103 (ddudnbas BFuiddolrs pagyIT.ow YITH) mu pojeaaly gz 2andid
(spuesnoyl UT) SUOTILABIT JO IBqUNN
S'e2 8’2 S| 8’1 S'e 8°0
L1111 | | L1 .t 1 1.1 1 11 1 .1 0 |
> rAl
/ ool
/
- 91
- — 8°1
ayens 9] VT JOU €T YOTYM GG°(0 = ST 2NIRA ma umwTido 930N ‘ mu
g b I B . N - .
Aaaa s e e T alitinl el




.

AARER=2

B

¥ e

63

‘GL°0

T = mu 1eTITUT pue gi=u ‘0°'7 =

x

b

= ¥NS YI1M 9sTou ueyssne) 10J (2duanbss Burddais payyipow y3jm) mu pMeaaly ‘gz ain3dyg
(spuesnoyl uUJ) SuoTIeIa]T Jo AIqUNN
s'2 @2 S| el S g9
1.1 1.1 L1 1.1 Pt 1 1 11 1 2 1 1.1 v
-
AN 9°l
8|
/ 82
=
-2’2
ATeDS Y UT Jou ST YITYM ¢6°(0 ~ ST "MTBA mu umwyjdo 930N
| | (| N I




5. CONCLUSION

The simulation in the previous chapter shows that the adaptive
detection system does not run away but eventually operates in its optimal
state, under the conditions that the signal-to-noise ratio S/N = 0.75
and sample size n = 10, with Gaussian and Cauchy noises. It is expected
that the system will work just as well with smaller signal-to-noise ratio
level and is left to those who are interested to try with some other
signal-to-noise ratio levels.

Comments on the size of the memory required to store the noise data
is necessary. In the simulation, we store all the noise data available,
which amounts to (sample size times the number of decisions made) 25000
storage locations in the final stage. However, the actual amount of noise
data needing to be stored can be determined from the simulated curves in
the previous chapter. The general guidelines in deciding the storage
size are the size of the memory available in the system, the time allowed
in processing the data during each iteration and the accuracy of the estima-
tions of the Pg and Pi necessary to achieve the desired detector performance.

Finally, we note that other simulations were conducted in which the
levels of the quantizer were adapted. The results of this analysis indicate
that, although the levels do adapt to the noise, the performance gained in

doing this is negligible when the initial t, is '"small", that is, the

3
performance of the adaptive quantizer-detector using P:(t3) in
the iteration process is the same as that using any on(t3) curves with

1< qr < n. This coincides exactly to the observations discussed in

Sections 3.3 and 3.4.
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APPENDIX

DERIVATION OF THE UPPER BOUND TO Pe IN (2.33)

From (2.32), the upper bound to Pe is

Pe = [k—l <P;Pg> } (A1)

With s = K/vn, P;

K \ g K_\ "_n .
+—)\-F + -" when i = 1 and
% o) N \tk-l s )
"+" when i = 0, the bound in (Al) can be written as

—

FEERS RIS
[FN \tk * %y Fy <"'k-1 * % > r}n “

(A2) approaches 1¢, as n - «, which is an indeterminate form. To

apply L'Hospital Rule we first reform (A2) into

r' - , _'%

|
i

exp

(a3)
Now the fraction inside the outermost bracket in (A3) is of the

% indeterminate form as n ~ <.
-1
Apply the L'Hospital Rule on this fraction yields % , which
n
goes to -g also as n - ®, with

m' %

A= I 2 (pﬁpi)
k=1

and
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. ' . A B . - B
Using the L'Hospital Rule on . yields — 372 2 A

Since as n ~®, B~ 0, A~ 1 and | :—;% (—35 n-3/2>f approaches
. 4

2

14

r A ‘ 7 “. !
' Vo g (e V) \Eyi S >' £y Skl
N\ k-1’

2 ™ /
K-z £roit 0= , >
k_lﬂLK N \ k. F () - F ()

we obtain the upper bound to Pe in equation (2.33).
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