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ABSTRACT
U
- The contents of this report provide some general guidelines and

*insights into the design of an adaptive signal detection system based on

quantized data. In particular, we focus on the adaptation of the param-

eters in the quantizer in a way such that the detector's probability of

making errors in the presence of noise of unknown statistics will be

minimized with respect to those parameters. The unknown noise is assumed

throughout this report to be an independent, additive noise with a

symmetric (about zero) probability density function. Within this assump-

tion an adaptive scheme is developed, and its performance and convergence

are verified via simulation.
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1. INTRODUCTION

The detection of signals in the presence of independent noise can very

well be accomplished if the noise characteristics were fully known; in

3 particular, if the noise probability density function is available, an

optimal detector can be forimulated. However, it is often the case that

the noise physical mechanism is unknown or too complex to be expressed

- in any simple way; moreover, the noise characteristics may not be

stationary in time or space and may otherwise be impossible to represent

by any fixed models.

Under these circumstances, a different approach to optimal detection

* is necessary which borrows the idea from adaptation. The adaptation

* process learns what the noise actually is at that moment and "adjusts"

the detector's structure in a way to result in near-optimal-detection

* performance.

The contents of this thesis provide some general guidelines and

insights into the design of an adaptive detector based on quantized data.

* In particular, we focus on the adaptation of the parameters in the

quantizer in a way such that the detector's probability of making errors

will be minimized with respect to those parameters. The unknown noise is

assumed throughout this thesis to be an independent, additive noise with

a syummetric (about zero) probability density function.
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2. SOME BASICS OF BINARY DETECTION WITH QUANTIZATION

2.1 Structure of an Optimal Detector Based on a Partitioned Sample Space

In binary state data coimmunication, we transmit a positive-valued or

negative-valued signal depending on whether the state is "1" or "0".

.* After the signal has been transmitted through an additive-noise channel,

the receiver determines from the observation whether it contains the

positive-valued or the negative-valued signal. This problem can also be

viewed as a binary hypothesis testing problem in which the hypothesis H0

is tested versus the alternative hypothesis HI; i.e.,

H0  Y. = -s+ Ni i =1,2,3,...,n

versus (2.1)
H YI  = s+ N i =1,2,3,...,n

1 1

where the positive and negative signals are of the same strength s and

[Ni is a sequence of additive noise samples which are independent and

identically distributed (i.i.d.) random variables with common probability

density function f

It is well known that the following detection scheme gives the best

4 receiver structure (in terms of the minimum probability of error) in

deciding H0 vs. H1 :

0  1QH 1
'. . 0  p(y JH )  <

Decide{ H 1  if p iIH) > (2.2)

H or H
0 1

where p(YH i);i = 0,1 is the probability density or mass function of Y

4 (Y Y2 Y 3- .Yn given that H. is the true hypothesis and T is the
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1 0threshold to which the probability ratio is compared. The ratio

p(XIHl)/p(ylH O) is often called the likelihood ratio and is a function of

the observation vector y. If we assume the two hypotheses H0 and H1 are

equally likely to occur, that is, they have equal a priori probability

(Pr[Hi ] = ; i - 0,1), and that the penalties on incorrect decision under

either hypothesis are the same (no penalty on correct decision) then the

best T is 1.

Since the logarithmic function is monotonically increasing with its

argument, we can write (2.2) in a different but equivalent way,

decide H if log 1(YH0) > log T (2.3)

H0 or H I01

where the function log(p(ylH 1)/p(y-H0)) is often called the log-likelihood

ratio function of the observation y.

In the problem to be considered here, we take a fixed finite numberI
(n) of observations to determine whether H0 of H1 has occurred and

partition the observation space (the real line in this case) into a

finite number (m) of intervals. Then the detector structure of Eq. (2.2):4

gives an optimal m-level quantizer-detector with m preset partition

intervals.

n
Let n. be the number of samples from observations (Y that fall

0 ibeth poaiiie ta= evleo

in the i-th interval, and let p0 and pi be the probabilities that the value of

the observation belongs to the i-th interval under hypotheses H and H1 ,
m

* respectively. Hence Z n. = n, the total number of observations, and
m 0 m 1 i=l

Z P. 1 and Z p. - 1.
3.i=l
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With the partitioning of the observation space, the probability

distributions of n = (n1n2n3 . .nm) given hypotheses H0 and H are

multinomial, i.e.,

U n' 0 n 0 2 0 3 0 nmp(njH 0) n nl.n 2.n 3,..., n '(Pl) (P2) (P3) .. (Pm)

(2.4)

n' i 1  i n 2  1n 3  1 mp(njH (P) (p2) (pP ... (p)
1 n 1 in2 '3*...n (.

Now Eq. (2.2) can be written as

H1 n <
'kiP 2 lP

decide Hif ! 31 (2.5)

H0 or H 0
0 1

Note that T has been taken as 1 for the remainder of this thesis. Again

since the logarithmic function is nondecreasing, (2.5) has the following

equivalent form,

H0

We arbitrarily incorporate the decision on H when the test statistic

1

Z nilog(P) equals zero; this will not affect the error-probability
il Pi/

performance of the detector with equally likely H0 and H1 .

I
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r 2.2 The Optimal Quantizer-Detector

An m-level quantizer Q(.) is characterized by the two sets of

numbers, _ = (q1q2q3 ... qm) (the quantization levels) and

t ( to < tI < ... < t < t =) (the breakpoints) which partition

the real line (i.e., the observation space) into m intervals. The function

of the quantizer is to set Q(y) = qk if the observation y is such that

tk Y< tk+l as shown in Fig. 1.

Since [N n are i.i.d. random variables and Y. + S + N.

i =lI Qi =1,2,3,...,n,

* p(yH) n P(YiIH)
log = Z log (2.7)

P(ylH0) i-- P(y 0)

This equation (2.3) can be written as

H H0 n P(Y.iH ) <

decide if Z log IH1 ) 0 (2.8)
!H1  i-- P(Y• >rL

Here again we have incorporated with the decision on H when equality holds

in the comparison. If the log-likelihood ratio function of the observation

in (2.8) is quantized, we obtain a quantized version of the detector;

i.e.,

[H0  n Py H1

decide if Z Q log (2.9)
H ial P(YiH0 ) 0
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This can be reformed into the following by the property of the quantizer

Q('),

fI" ' H0  <

(0{ m
- decide if Z kqk  0 (2.10)

Now we obtain the structural form of the general quantizer detector of this

problem.

Since (2.6) gives the best detector with predetermined partitions

of the observation space, it can be easily recognized that if we set the

' qk in (2.10) to be log(p1/p0)$ k 1,2,3,...,m, the resulting m-level

0
quantizer, QO(.), with the same prechosen breakpoints, is optimal in

detection performance.

fi The following result shows the equivalence of the test in (2.10)

0 A 1 0
with qk qO log(pk/Pk) and the test in (2.3) with T = 1 as m, the

number of quantization levels goes infinite.

Property: Given the following conditions on a binary hypothesis testing

problem,

n
(1) under either H or are i.i.d. random variables;

4 .(2) the cumulative distribution functions of Y. under both H0 and H1 ,

(Fy(ylH 0) or Fy(ylH 1), respectively) are continuously differentiable

and strictly increasing,

then 1

lim Z nklogo p(yH0 (2.11)
m k=l \Pk lo

m k"0)

I

4 . . m = ' " : - m "- -
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where Y (YIY2Y3 ... Y), pk is the probability that Y is in the k-th

interval given Hi, i = 0,1 and nk is the number of samples from [Yin

that fall in the k-th interval.

-jj

Proof,: m iP1 n
Enklog ( k t log k--2.-2
k=l pO (22

where pk (i) probability that yi belongs to the k-th interval under H..
i .

Since pk(i) > 0 and the logarithmic function is continuous

m Pk n (ki
lim E n]log = E log lim --- (2.13)

L: - k=l 1k i=l - p (i)

By L'Hgpital's rule

1
pk(i) p(YilHl) 5

lim - (2.14)0m p k(i) P(Yi7H )

Hence r i .p H)

E log lim Elog (2.15)
i= l " Pk(l i=

and
m p n ( Y

lim Z % log p(yiH0)Lm- k=1 1k ilo ii,0

n p(yi[Hi)" -- log P(YiI*Ho) i
i=l

p(zl Hl)
-log p(zH0

Q.E.D.

V ,
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2.3 The Locally Optimum Quantizer-Detector

In the detection of weak signals, the maximum power slope at s = 0

is an appropriate criterion. It can be shown that the locally optimal

test statistic TL (y) for the binary hypothesis testing problem of (2.1)

can be obtained by differentiating the log-likelihood function in (2.3)

with respect to s and setting s = 0,

n
T = 2 go(yi) (2.16)

0 =l L

where glo(y) =-f(y)/fN(y). The generalized Neyman-Pearson lemma asserts

that test with T o() as a test statistic mazimizes the power slope at

s = 0 over all tests. The corresponding locally optimal quantized test

• : statistics with a given set of breakpoints t is (see Kassam (21)

n
TQ0(y) = £ 2 Qyo (Yi) (2.17)

Qi=l..

where Q 0 (y) is the optimal quantized version of g o(y) in the minimum-mean-

squared-error sense (under H0) with breakpoints t, and it can be shown to be

"" fN(tk)'fN(tk-l) L to -
Q~() "k t (2.18)

0 = FN(tkl)-FN(tk) = tq ; - y < tk+

where FN(') is the noise cumulative distribution function. As before, (2.17)

can be reformed to give

m t.o

T 0 (y) - M 2 nk (2.19)
Q k=l
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Similar results can be obtained by differentiating the optimal

quantized test statistic of (2.10) with respect to s and setting s 0,

d_ m / f fN (YkfN (tk- 1)SL n-klog = F( )F() (2.20)ds!k--i Pk/Js=0  k=l N FN .)

Hence
1

ds E alog ~~
- . - k

is also the locally optimal quantized test statistic with the same

breakpoints t. Again the generalized Neyman-Pearson lemma asserts that

a quantizer detector with

41

klOg ' k)]k =l

• Kk=l -kk-Q)]

as its test statistic maximizes the power slope at s = 0 over all quantizer

detectors of the form in (2.10).

It is known [2] that the optimal breakpoints t in the weak-signal

case can be obtained by solving the following two sets of equations,

Pf

!i t o fN(tk)'N(tk-1)
q k FN(tk.I)-FN(tk) k 1,2,3,...,m (2.21)

and

to toq k + qk+l

2 g 0 (tk) k = 1,2 ,3,...,m-1 (2.22)

where gto(tk) = -f (tk)/fN(tk).

4 ;



0 D2.4 Some Properties on the Asymptotically and Locally Optimal

Quantizer-Detector

Finally we want to show that, as the signal strength s -' 0 and the sample

p size n - = simultaneously, the set of breakpoints t which minimizes an

upper bound to the probability of error in detection using the locally optimal

quantization levels of (2.18) approaches the set of locally optimal break-

Mpoints given by (2.21) and (2.22). But first we need two properties which

give an upper bound to the probability of error and the symmetrical

*r property of the optimal breakpoints minimizing the probability of error in

detection of the problem depicted by (2.1) with equal a priori probabilities

for H0 and H1  and symmetric noise density function.

Since PrH] = Pr(H I] = , the probability of error in detection using

* a(2.6) is

Pe = Z PtnIH] + 2Prntil , (2.23)
e ENI  nE N r

- 1 - 2

* where

n' inl) 1 i n2 i n3 i nm• ~Prnli ( 2 .. n ' )  (P2 (P3 .. (p)m

n 1 n2! 3 n m 1

1

N = = (nln 'n3 ''nm) s.t. Z k]

and k-k
1

N2 = = (nl,n2 ,n3 ,...,n s.t. E nklog 0 0)

k-l (Pk}

Notice that pk s are functions of the breakpoints; thus, within smoothness

conditions, the partial derivative of Pe with respect to the breakpoints

yields a necessary condition on the optimal breakpoints [I],
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t 1 PnH0} 0 0 fN (tj~s. % r 1 -r o " --i
a E NI  Pj Pj+

n E N 1  j+ l

+ Z Pr(.aH f = a (2.24)

n E N2  P +
nE 2  j j+1

In general it is necessary to use a gradient search technique to

solve for the optimal breakpoints with (2.24), since it is not likely that

a closed form solution to this equation can be found.

The following property gives the symmetric property on t; thus half

of the breakpoints can be determined from their symmetric counterparts.

Property: Given the following conditions

(1) The observations (YIY 2 ,Y3 ,...,Yn) are i.i.d. random variables.

(2) Pr(H O] = PrtH13 = ; i.e., H1 and H are equally likely to occur.

(3) The cumulative distribution functions of the observation y under

H and H Fy(YIHo) and Fy(YiHl' are continuous and symetrical in the

sense that Fy(-yH = 1 - F (y H).

(4) t = (tl,t2 ,t3,...,tml) are symmetric breakpoints in the sense

that tm - -t. j = l,2,3,...,m-l.

(5) The jth component of t is optimal so that with (2.24) e = 0.I Nt
th b P e _ -

Then the (r-J) component of t is als.) optimal; that is 2 0.

Proof: Given that F y(yjHi) i = 0,1 and t are symmetrical, the following

four statements are true,

(a) fy (t H0 ) = fy (tm-jIH 1 )

...
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0 1

(b) p 0 pm1
(c) J m-j+l = Pr~nlH1nmj+i

nEN I  nE N

(d) - PrtnIH0 n = Z PrfnfH l nmj+I

nE N 0 nE N11 2

where 1

- ~~N1  t n s.t., nko >0
k--1

mI
• N3  t n s.t. kinklog =0

m(k 
>

1

N2 = (n s.t. m nklOg -k 0)

3 k= k1 0

Hence, given t. is optimal, PrfH0) -- P (HI} = and the above statements,
J

Q (2.24) can be written as

PekS1

e . PrtnIHo] m - .lN i ( fN(t-s)
2 2 Nm-+l m-j

+ z PrtnlH o -]  -- f t.s
-- - 1 N m-j s

- 3 NI LPm-j+l -

bp n n
+ RtIH 0  I - .t1jS

2 M-j+. ~M-jJ

- e
m- j

Hece =~ mpis . 0, thus t =(-t.) is also optimal.ene m-j1

Q.E.D.

+ r,1H ( - S
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From this property we can see that the optimal quantizer is odd symmetric,

1 0
0 / P'koq log ( = log - ="q (2.25)

P-k Pk

The next Xesult gives the upper bound to the probability of error in

detection of (2.6). 1
m Pk

Property: Given the test statistic T = Z nklog , with
k=l Pk

E[TIH 0) < 0 and E[TIH I ]  0, and PrH 0] = Pr[HI ] -

the probability of error of the test (2.6) is upper bounded by

11°. n0 m p W I  n-

Pe -  inf -q Pk + inf Z k - (2.26)W ki :' Pk w k= I Pk ".

where n is the sample size and w is real valued.

Proof: If E(TIH 0 < 0 and ECTIH 1 ] > 0, then by applying the Chernoff Bound

to P
e)

Pe <-  infGT(wIH0)] + inf[GT(wIHl)] (2.27)
w w

where

p e Pr[nH 0 ] + E PrnH] . 1)
nE NI  nE N2

N (n s.t. T > 0] and N2  (n s.t. T < 0] , and

GT(wIHj ) is the moment generating function of the random variable T given

hypothesis H j = 0,1 which is given as
1

ml ( k ) w j I n

GT(wl.) [ -( Pk I j 0,1 (2.28)
k = Pk J

Substituting (2.28) into (2.27) gives (2.26).
Q .E .D.
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0 0

By the property on symmetry of t and the fact that q = -qk 0 we

can consider only the positive half of the entire partition and rewrite

(2.26) as

P r 1/2 inf )k P k - Pkl
k k k

'm P P 0 n

+ inf.)I ( J". pl + (O p, (2.29)

1) kk

where m = m/2. The minimizing values of w can be found for the first and

second terms in (2.29) by differentiating them with respect to w, and

setting them to be zero separately, thus for k 1,2,3,...,m

111 1
P1gk -- lo ) =0 (2.31)

k k k k

(2.30) and (2.31) give w = and w = - as the minimizing values for

the first and second terms in (2.29), respectively; thus

Ze(- + Pk k

k- /( Pk 0 I ' Pk 0

• kL Pk Pk -

+ k=l 0 k 0 )1 .k \

~ ~~ (PlP) (2.32)
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The quantity on the right is Hellinger's integral for the partitioned data

sequence. The design of quantizers in terms of this latter quantity has

been considered by Poor and Thomas in [6].

To study the performance of a fixed sample size detector for weak

signal or equivalently for large sample size n, it is usual to assume that

the signal strength s is of the order of l/Nn since n is a parameter under

control. So let s = K/In, where K is any positive constant, so that both

s -4 0 and n -* : at the same time. However, with s = K/In, the bound in

(2.32) approaches IQ*, an indeterminate form as n - =. Applying the

L'Hopital Rule twice to the bound in (2.32) we can obtain an "asymptotic"

upper bound to P as s -4 0 and n -4 , which is

2 f, (t )-fN(tk~~
ex

2 r'f k k-l (233
e s-0 exp<-K k f,(tk-)-fN( )+ ( )-F(t)(2.33)L F~~N ( k ) " N ( k.I

A detailed derivation of (2.33) is in the Appendix.

We now try to obtain a set of breakpoints which will give the smallest

possible upper bound to P in the case of weak signal and large sample size

by taking the derivative of the bound in (2.33) with respect to tk.  It

turns out that tk has to satisfy the equation

Vi

2

d kNlt) _______

" ( t)"FN(t " ) ()

+ + FN(tk+l) FN(tk)

C-. This becomes
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" ":2
2  fN(tk)fN(t.l)ifN(tk) fN(tk)fN(tk2l) fN(tk)

+ 2fNtk)-fN tk)' Nlf(tk)) = -

N(i) FN(tk)FN(tk-) F(FN(tk)FN)(tki)))

2
F (3 n+fN(,) (+N(tk+l)'fN(tk))Cf(k ....- L 'I f( l)Ntk)2-.

N FN (tk+)F .N( t) k) (F k -. (,)) 2  .(t3k)

(2.34)

From (2.34*) and with

f N(tk_1 ) -f N (t k)
q k F FN(k)-F N(tk- )  k =1,2,3, ...•,m-1 (2.35)

the breakpoints t can be determined by the following set of equations

qk+l + qkf(-'..

2 = - fN() k = 1,2,3,...,m-1 (2.36)

Surprisingly, this is the same set of equations, (2.21) and (2.22),

necessary for t to be locally optimal. Hence we can conclude that, with

respect to the breakpoints t, the upper bound to the probability of error

in detection of an optimal quantized test given in the above theorem,

minimizes simultaneously, as s - 0 and n- , with the inverse of the

test's power slope at s -0 which is, as noted earlier, an appropriate

criterion for detection of small signal instead of the test's power.

This result is a special case of that obtained by Poor and Thomas in [6].

I

1.
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3. THE PROBABILITY OF ERROR OF THE 4-LEVEL QUANTIZER-DETECTOR

3.1 Structure of the 4-Level Quantizer Detector

From earlier discussion, we conclude that an optimal m-level quantizer

detector for arbitrary signal strength s is given by

t
FH0  1 <

decide< if E nklog -6 0 (3.1)

LHI fil Pk

i. ii
where pk = [FN(t - (-I.) s) - F (t (-l)is)] for i 0,1, and

N N k-I.tk

k = l,2,3,...,m-l have to satisfy the set of equations

t n E 1 Pr(n/H0  0 - 0 fN(k+s)
nE 1  L k Pk-l J

+~~ ~ rk 'k (.2
n E 1Pr(R/H I[-T _ f - tl - 0 32

nE N2  Lk Pk-1J

m IkN nn n )n~2 n  s.t. nk log 0

where N1  V n ,...,n) n -)
k=I Pk

m
and N2  nl,n 2 ,n3  .n ) s~~t. k flog ko( < 03

k=l

But (3.2), as mentioned before, generally does not have a closed form

solution to tk and it can only be solved by some root-searching technique.

However, from the property on symmetry of t., we can easily see that, for m

even, t 0 and t. = t So there are only ( ) different tk's

left to determine as the others can be set according to the property.

V7
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* Only when m 4 are the root searching techniques one-dimensional,

and we will confine ourselves only to this case for the rest of this

thesis, although it is conceptually as simple to use some higher-dimensional

I searching techniques to locate all the ( - 1) tk s in (3.2) for m '- 6

(Note: m is taken to be even).

Once t is set from some searching methods, its corresponding optimal

quantization levels q, and, consequently, the optimal quantized test

statistic, are determined. With symmetric noise density function fN

the odd symmetric property of q implies that (3.1) can be rewritten as

H <
m/2

decide if Z (nmk+l-k) qmk+ 0 (3.3)
k--1

with m = 4, (3.3) becomes

H0  <
2

decide if Z (n 5 .- nkk)q 5 -k 0 (3.4)
k= i

HI

We can see that normalizing the test statistics in (3.4) with q3

has no effect on the quantizer detector performance, hence

SH <

decide if (n 4 -nl)qr + (n3-n2 ) 0 (3.5)

1 2t

where qr = q4 /q 3 " Also with m - 4, t I = -t 3 and t 2  0, (3.2) can be

written as
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dP n n
1 Pr nI f ndt 3 = nE NI 1 H 0. p0 p0 fN (t3 + s )

dt E 1  L P3  P2.

'13  n2 ]+ E Pr - - f(t3-s) 0 (3.6)

n E N 2  P3 P2

with NI = (n,n 3  . (n 4 -n)q (n 3 -n 2 )

and N2 = £n (nl,n2,n3 ,n4 ) s.t. (n4 -n1 )qr + (n3 -n2) < 0)

P N = N 3 -+ s), P2 = N(±- s) - N(-t 3 +s)' P3 -FN(t3 +- s) - N(± s),

i 0
P4 = l-FN(t 3 + s) with + for i

(3.6) is a function of t3 only and many one-dimensional root-seeking

methods can give a solution to t 3 .

For the reason given in the following chapter, we prefer and will

use instead of (3.6), the probability of error itself in solving t3, i.e.,

P (t 3) 1 1 Pr~n Ho] + E E Pr nH 1 ) (3.7)
nEN I  nE N2

Again using any one-dimensional "peak" seeking methods on (3.7), t3 can

be located as well.

3.2 Formation of the Pe (t3) and P (t ) Curves

P (t ) can be plotted versus t3 in two different ways. P so is the
e3 e

curve plotted with q which determines N1 and N2 in (3.7), held fixed;

1
this implies the same N1 and N2 are used in calculating Pe (t3) for all t3 .

Minimizing P so with respect to t3 corresponds to the minimization of the
e3

p.
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probability of error by moving t 3 around until the minimum probability of

error is attained with quantization level ratio q fixed all through the

process. Obviously, the t so obtained is optimal only for the class of
3

quantizer detectors using that particular level ratio.

Several Pso(t3) curves are shown in Fig. 2 for different values of

qr (with Gaussian and Cauchy noise). It can be seen that for any t 3

there is a corresponding q r which gives the minimum value to the probability

of error at that particular t 3 . Since qk = l kg(Pk / pO ) gives an optimal

quantizer with breakpoints t, therefore the optimal qr corresponds to

_w each t 3 is

[-F 4(t 3 -S)~ / N( t 3-) - N(s) 1(3.8)
r log <L (t3+sJ lo (Nt3*~ - F 1(s) t0
P 0°(t ) is then the curve which picks off the minimum of all thee 3

probabilities of error over all possible q at each t3 ; it is shown in

Fig. 3 and in Fig. 2 along with the Pe (t 3 ) curves. Obviously Pe(t 3 )e is

the greatest lower bound to all possible Pe (t3) at each t and consequently
pOta.so

the curve 3(t3) always stays on or below all P 3) curves. On the

other hand, P0 (t ) can also be obtained analytically, at each t3 , by
e 3 3 2

evaluating (3.7) with q from (3.8) for every t 3 ; hence the sets N and N

are different for every different t3 . The t3 so obtained by minimizing

P°(t 3 ) will yield a truly optimal quantizer detector. However, as the

number of possible elements n in N1 and N2 gets large for large sample
1 2

size n, the necessary search for n = (nl,nnn4) in N dN for

every t 3 will become time-consuming.

3A
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3.3 Some Characteristics of the Pe (t and P e(t Curves

so
After the forrmulation of P (t3 ) and Pe(t3 ) have been considered,

we now turn to discuss their characteristics from the observations of

their curves in Fig. 2. First we notice that for some t3 there is a

range of q r values that give rise to the same probability of error; that

is, for some t3 in which the probability of error is insensitive to certain

range of qr values. This can be better illustrated by plotting the

probability of error versus the level ratio q given t3 . As shown in

Fig. 4-Fig. 7, each of these curves is actually a series of steps and

the width of each step corresponds to the range of q which gives equiv-

alent probability of error at that t3 . From these figures (Fig. 4-Fig. 7)

it is clear that for every t3 , the probability of error depends only on

the ranges of q (i.e., it is a function of the ranges of q only) and not

so
on the actual q values. This is because for a given t3 , P (t 3 ) depends

r3

on q through the sets N1 and N2 and with the sample size n finite, there

1

may be a range of values of q r which gives rise to the same sets of NI

and N2. Although the value [(n 4 -nl)qr + (n 3 -n 2 )] itself changes for

every different qr ,the two sets of n = (nl,n2,n3,n4) that give N1 ande 2

such that [(n4 -nl)qr + (n3-n2)] < 0, respectively may be invariant under

different q We expect the sets N1 and N2  to be more distinguishable
r' ~ 1 2

for different qr and the staircase-like curves in Fig. 4- Fig. 7 to

smooth out as n gets large.

Next we notice that for large enough q and fixed n, the probability

of error is independent of q for every t3 . This can be seen from Fig. 2

or better from Fig. 4-Fig. 7 where the last step extends all the way from

q 10 7iven any t3 , this is due to the fact that the sample size is
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finite causing N and N to be invariant under large q .Again it
2 2

will occur at larger q r when n gets larger.

The insensitivity of P so(t ) to q becomes significant for smallt
e 3 r 3

*As shown in the staircase-like curves for small t )the probability of

error is roughly constant for all qrvalues greater than one. Thus the

P 0 (t ) curve almost coincides perfectly with all the P so(t ) curves for
e 3 e0

small t3 values (see Fig. 2) and hence the minimum points of the P 0(t)
3 e 3

and P50 (t 3) curves are found located close to each other. These

characteristics of the curves have a very important implication on

adaptation discussed later.

Since the probability of error given t3 depends only on the range

ofqrfor finite n, there must be a range of qrvalues that gives the

U same minimum probability of error. Let us denote this range as an

optimal range of q rvalues; it is quite obvious that the value

log (4) og( p3  must fall in the optimal range. For example, from

p4  p3
Fig. 2, the optimal breakpoint t 3 is shown to be about 0.4 for Cauchy noise

pog 4  po 3
when s = 0.75, the q o o ..~ with t3 =0.4 is about 2.65

(p4 / (p 3

which is within the optimal range as seen in Fig. 4. As mentioned

earlier, the staircase-like curves smooth out as n gets large and

eventually (n - )the optimal range for qrwill collapse to a single

point of value log-I - log(-0
0 

'
\p1Il P
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Before leaving this section, two main characteristics of P e (t3)

are worth pointing out again; i.e., given the signal strength s, the

probability of error is insensitive to q r for any t3 below a certain value;

and the probability of error depends only on t3 for any qr above a3

critical value which was mentioned earlier. This critical q is related

to the sample size n. If the sample size n is finite, for quantizers

with 4 levels, it is easily seen from the definitions of N and N
1 2'

N (I =(nl,n2,n3 ,n4 ) s.t. (n4 -nr)qr + (n3-n2 ) >

N2 = [(n1 ,n2,n3 ,n4 ) s.t. (n4 -nl)qr + (n3-n2) < 0)

that any qr greater than or equal to n will definitely give the same sets

of NI and N2; hence P st ) is identical for all qr > n. Note that

Figs. 2-7 are created with sample size n = 10.

3.4 Some Considerations on the Design of the Adaptive Quantizer Detector

From previous discussion, we point out that the minimum points of
0 50

the P (t3 ) and Ps (t3 ) curves are situated closely to each other; hence

if we are willing to suffer a little more probability of error near the

minima, we may just as well consider Pe (t3 ) instead of PO(t ) since Pe(t3)
so

will (as noted above) take much more processing time than Ps (t0 )
e 3

Now it becomes necessary to decide which Pso (t3 ) curve

(correspondingly, which qr) to work on. However, there is a rule of thumb

in picking q r condensed from the previous descriptions on the general

characteristics of the curves, which gives a guaranteed performance for

the adaptive quantizer detector.
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If q r is chosen such that it is strictly less than n and greater

than 1, we are guaranteed that the performance of the adaptive quantizer

detector is better than the worst possible performance with that

particular noise. This is because, for small t, P so(t )is roughly the
same~ ~ ~ ~ 3o loteeyqs

saeframs v rq and for large t 3 ) P e(t is increasing with

qbut upper bounded by that value of P so (t ) with q n. So, using any
soe 3

P s (t ) with 1 < q < n will have performance always better than the

lower bound performance.

It appears from the curves that the smaller the q rused, the better the

adaptive quantizer detector's performance will be; however, we note from

Fig. 2 that q r= 2 gives the largest minimum probability of error over all

qfor the Gaussian noise case though the performance during the adaptive

process is almost the best we can get. Since the noise is unknown to

the detector, we really do not have any good guess on the initial t 3to

start our iterative process for adaptation. If we start with "small"

initial t 3 hnit does not really matter which q rwe use since

performance of the adaptive process is insensitive to q r in the

*range of small t 3 ' But if our initial choice on t3 turns out to be

"large", we have a tradeoff between better performance with smaller qr

and faster convergence to the final optimal operating point with

larger q which is due to its relatively steeper slope.

One might arrive at the conclusion that, if we can start with

arbitrarily small t 3, we can then forget about choosing q and still

have both fast convergence and an almost uniform performance over all qr

But we simply cannot start with arbitrarily small t 3 because, as will be
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seen in the simulation, small t 3gives a very bad estimation on the

I probability of error, especially when n is small; besides, the

smallest initial t 3 that can be used is also dictated by the particular

iterative scheme being used.

so
*Finally we observe from Fig. 8 that the slope of the P e(t 3) curve

may be steeper for smaller s. Hence, the absolute amount of errors

saved from adapting the quantizer detector to its optimal operating

- point may be larger for smaller s; however, the percentage of improvement

* in the probability of detection is less as compared with larger s in

* adaptation. Thus it depends on the particular design objective whether

or not the adaptation process to the optimal quantization parameters is

worth doing for large or small signal strength.

So far only Gaussian and Cauchy distributions are considered; but

U since they represent two extremes, we may consider all these trends to

be typical.
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4. THE ADAPTIVE DETECTION SYSTEM

* 4.1 Two Methods of Adaptation

There are several possible ways to adapt the quantizer to the

unknown noise. For example we may use a training sequence of signals

which is known to the detector before transmission; and the method is to

adjust the parameters in the quantizer (i.e., breakpoints and levels)

until a maximum number of samples from the sequence are correctly "detected."

* This method requires a certain idling period for training before any

actual transmission and detection of real data. This may not be acceptable

in some cases. Furthermore if the background noise is time-varying,

though it may be changing very slowly, the training process may be

necessary quite often.

5One of the other ways is to use the method of unsupervised decision

directed adaptation, in which the detector runs with real data while the

adaptation of the quantizer is taking place. This way the detector can

3 operate on a full time basis and can keep up with any change in the noise

up to a certain time lag due to the transient response of the particular

adaptation scheme being used in the system. In this method, every

decision made on the real data is assumed correct and is used as a

training sequence for the optimal quantizer parameter values.

The potential disaster of this method is the possibility of system

runaway if enough decisions made were actually incorrect and the modifica-

tion on the quantizer values based on these incorrect decisions drives the

quantizer away from its optimal state. This results in more errors in

tI
decisions. This happens most likely in the case when the initial

probability of error of the detector is large.
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4.2 Structure of the Adaptive Quantizer-Detector System

The structure of the whole detection system in our simulation is

-* shown in Fig. 9. The detection scheme follows the structure in (3.5)

where n. is the number of samples, from an observation size of 10

samples, that fall in the i-th interval which is characterized by the

value of the breakpoint t 3 (note: i runs from 1 to 4 for a 4-level

quantizer detector). Then with level ratio qr the quantity

- (n 4 -nl)qr + (n3-n2 ) is compared to a threshold (which is zero in our case)

to make a decision on which hypothesis (H0 or H1 ) those 10 samples are

from, depending on whether the quantity is below or above the threshold.

As mentioned in a previous chapter, additional complexity goes into

the system when P (t ) is used instead of P st. P (t ) is the
e3 e 3 e 3

probability of error as a function of t3 for a fixed qr and hence the

sets N1 and N2 are fixed at all times; while Pe(t 3 ) requires new sets of

1 1

N I and N which correspond to the new q= log L og - with
N1  2  r00)

\P4 P3

every newly iterated t 3 * Unless it is necessary to go to the true

0optimal point of the detector by using PO (t3 ), we will consider thee 3

Pe (t3) case only.

In iterative procedures, there are two ways to locate the optimal

t3 which gives minimum P so. One is to find the zero of the derivative

function of P (t ) with respect to t The other is to locate the
e 3 3

minimum of the function Pe (t 3 )" In the 4-level quantizer-detector,

e 3
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so (s(t3)

the Ps°(t 3) and are given as

P e (t13) 1 Pr (n H0 +  Pr(-nH1) (4.1)
n E N1  n E N 2

m
and

p:Obt ( 3  E N 1 Prnl0 0 0 fN ( 3+ s

nEN 1  P3  P2

+ Pr 10 -- " "fN(t 3
s)  (4.2)

n 2  P3 P2

where

--nji n1'.n 2 !n n3 ' l n4 (P2)  (P3)  (P4)

______1_ 1 2i3n

N1  = (nl,n2,n3 ,n4 ) st. (n4 -nl)qr + (n3 -n 2 ) 03

N2  tn (nl,n2 ,n 3 ,n 4 ) s.t. (n4 -nl)qr + (n3 -n 2 ) < 03

e (t3)
We can see from these equations that finding the zero of t3

involves an additional estimation of the noise density function fN(.);

it was found that it may not be well approximated by any simple means.

bp s(t 3 )
Besides, the computation required to obtain ebt 3  is more involved and

time consuming. So, in working with P s(t 3 ) directly and using some

"peak seeking" methods to locate its minimum point, all we need is to

have a good approximation of the i 1 1,2,3,4; j = 0,1, which are
i

easily estimated.
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The adaptation scheme used in our simulation as shown in Fig. 9 is

decision directed. Every decision made from a block of 10 samples is

assumed correct and, based on this decision (H0 or H I), the 10 samples are

then modified so that their noise and signal content are revealed.

Explicitly, the modification is as follows:

HN0  = Y. + s

if decision is i = 1,2,3,..., n 10

i HI Ni.=Yi."s
H1 N Y2.

Hence, if all the decisions ever made were correct, all the noise data

N. so obtained will distribute according to the true noise present in the

0 1
environment. With these noise data, we can approximate the p, and p,

i = 1,2,3,4, necessary for the computation of P5o which is going to be3e
minimized with respect to t3 * The approximation is done in the usual

way; that is,

number of woise data from memory s.t. the value (noise data-s)
0 is in the i-th interval

m Pi =  total number of noise data stored in memory (4.4)

number of noise data from memory s.t. the value (noise data+s)
1 is in the i-th interval

Pi = total number of noise data store in memory (4.5)

Notice that the location of the i-th interval is determined by the
0 1 so cag codnl

current iterated breakpoint t3, so p0, pi and hence Pe change accordingly

0
with t3 in each iteration. The only way we can update the values of i

and p1 is to check through the entire storage of the noise data and

0 1perform the above approximation for p, and p, in each iteration. In

fact, this is the most troublesome thing to do in the whole algorithm

in the simulation.
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Once pe t3 is found in the 1-th iteration using t(3 the iterated

value of the breakpoint in the 1-th iteration, the (2+1)-st breakpoint

value can be obtained by the following iterative process,

(o ( )o () _ _ so.t () _

Pe ( 3  2>e t3  1t3  t 3  2C (4.6)

This is the well-known Kiefer-Wolfowitz method in stochastic

approximation. With this, the t3  approaches, as I (the number of

0
iterations) goes to infinity, the limit t3 which gives minimum value to

the function pe (t). However, it is necessary for the two sequences a'

(the stepping sequence) and C2  satisfy the following conditions for

3 convergence,

(1) lim 67 =0

(2) lim C =0

(3) Zf
1=12 (ff)l

(4) E <

In our simulation, a2 and C are chosen as 1/1 and 1/(41k),

respectively and it can be shown that this choice of a and C2 does

satisfy (l)-(4). With this, Equation (4.6) becomes

S(so 1) + so (4) 1 - -)
(2+) (1I (t +2 )-P (t

(1+-2) e 3 4 e 3 4
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Vr As we have mentioned in a previous chapter, the smallest initial t

that can be used is governed by the largest element of the C sequence,

which is the first element (C1 i in the case where C,=- (note:

this sequence is monotone decreasing). The reason is simply because if

the initial t3 was smaller than .1, (l)- I)would be negative and P owill

be undefined. For a different choice of CL sequence and hence a different

type of convergence behavior, the initial t 3 can be made as small as

desired.

Computer simulations of the system in Fig. 9 are done with Gaussian and
2

oCauchy noises, their density functions are f N(x) = e x /2 and

=/21

f N(x) 2 respectively. The iterative scheme of (4.7) is

*used to iterate the optimal t 3 with signal-to-noise ratio SIN =0.75 and

*various initial breakpoint values.

Figures 10 and 11 show how the iterative process has brought t 3 toward

its optimal values (in cases where t3 l = 0.25 and 2.0 with qfixed at 2.0

for Gaussian noise). However, the algorithm is far from converging even

after 2500 iterations. Also, we see from Figs. 12 and 13 that the prob-

ability of making errors of the system approximates the theoretical values

after a large number of iterations for Gaussian noise given in Fig. 2.

Similar curves for Cauchy noise are given in Figs. 14-17. Notice that the

curves in Figs. 12, 13, 16, and 17 are generated according to the following

definition

* .. total incorrect decisions made by
Probbilty f eror t Ith tag system up to the I-th stage
Probbilty o eror t 2-h sage total decisions made by system

up to the I-th stage
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g This way of generating the probability of error of the detection

system at each stage can only show that the system's probability of error

does approach its minimal value but in no way indicates the system's

"current potential" of making errors. This "current potential" of makingU

errors by the system is actually the Pso evaluated at the current iterated
e

breakpoint tz
)

4.3 The Modified Iterative Procedure

In order to speed up the convergence by a considerable amount, the

above iterative scheme (4.6) is modified in the following way. If the

sign of the quantity (P ° (t()+C - Pe s ( )-CL)) is different from that

of the previous quantity, a will take on the next value (following the

one used by a1 ) in the stepping sequence; otherwise, the same value

5 used by 6_ is used.

It is necessary that CI be constant valued and the stepping sequence

be monotone decreasing (in addition to lima AI = 0 and 4= 1 ) for

S the modified iterative procedure be convergent. In our simulation with

the modified scheme, C, = 0.125 and the stepping sequence is again i/

(harmonic sequence is monotone decreasing). Now, the smallest initial t

that can be used is 0.125 in this modified version of the adaptive system.

We use Table. 1 to help illustrate this modification.

Table 1. Illustration for modified iterative procedure.

1 2 3 4 5 6 7 8

Sign of Pes (t .+C)-P OJ -C) + + + -- + -+e 3 e t3

aI used 1 1 1 5
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3 Intuitively, this scheme gives faster convergence because we put

large modification on t 3 when the direction of the search for the optimum

does not change from that of the previous search and reduce the size of

p modification only when the search direction changes which indicates an

overshoot of the iterated t 3about its optimum and then that we need a

finer search.

Figures 18-23 show t 3 converges to its optimal value in a much

faster rate as compared with those in Figs. 10, 11, 14, and 15 for the

same SIN (= 0.75), with q 2.0 and initial t =0.13, 1.7 and 2.2 forr 3

Gaussian and Cauchy noises.
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5. CONCLUSION

N The simulation in the previous chapter shows that the adaptive

detection system does not run away but eventually operates in its optimal

state, under the conditions that the signal-to-noise ratio SIN = 0.75

U and sample size n = 10, with Gaussian and Cauchy noises. It is expected

that the system will work just as well with smaller signal-to-noise ratio

level and is left to those who are interested to try with some other

signal-to-noise ratio levels.

Conmments on the size of the memory required to store the noise data

is necessary. In the simulation, we store all the noise data available,

which amounts to (sample size times the number of decisions made) 25000

storage locations in the final stage. However, the actual amount of noise

data needing to be stored can be determined from the simulated curves in

the previous chapter. The general guidelines in deciding the storage

size are the size of the memory available in the system, the time allowed

in processing the data during each iteration and the accuracy of the estima-

0 1
tions of the Pand P~ necessary to achieve the desired detector performance.

Finally, we note that other simulations were conducted in which the

levels of the quantizer were adapted. The results of this analysis indicate

that, although the levels do adapt to the noise, the performance gained in

doing this is negligible when the initial t 3 is "small", that is, the

performance of the adaptive quantizer-detector usn pt 3

the iteration process is the same as that using any P: (t 3)curves with

1< q < n. This coincides exactly to the observations discussed in

Sections 3.3 and 3.4.
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APPENDIX

DERIVATION OF THE UPPER BOUND TO P IN (2.33)
N From (2.32), the upper bound to P is e

e

P [ / l2P1Pk) ] (Al)
With ~ ~ k= = k/n k " ) " n

With s K, p = FN + " F when i l and

"+" when i 0, the bound in (Al) can be written as

Z 21 F k-K FN 't _

ik=l r fn

, K K (A2)
IFN (tk+ )-FN( l +- ) ] n (A2)

(A2) approaches 1 , as n - , which is an indeterminate form. To

apply L'Hospital Rule we first reform (A2) into

r,

2[Flog t 2F - -F t- F k+ - I-F it +
N~j- N Nl L k-l ~exp,-1

n.

:::: (A3) :

Now the fraction inside the outermost bracket in (A3) is of the

0
- indeterminate form as n - .

• ~Apply the L'Hospital Rule on this fraction yields -i , which, .

n0
goes to - also as n , with0m'

A = 2 (pk 1
k-l

and

Li
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. . B fN ++ fN (k-l +

:k=l kPk I K

f Nosita Rul onA -l -B

B dn1 -2A dn- B "2

Using the L'Hospital Rule on yields -3/2 2A
n - n

Since as n -, B 0, A 1 and d k n3/2 approaches
dn/(

.- I f f t ,"2

K2 .( N tkl-1 i
k=lL f4(tk- F tk) F

we obtain the upper bound to P in equation (2.33).
e

*1

I.

ii-
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