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REGRX: A COMPUTERIZED STEPWISE REGRESSION ALGORITHM

WITH RESIDUAL ANALYSIS

I. INTRODUCTION

\Regression analysis programs are commonly used to develop

prediction systems for Air Force personnel research, e.g., a system

for accurately predicting future job performance of enlisted

individuals based on information obtained during their Air Force

careers. This information might include such predictor variables as

aptitude or ability test scores, biographical data, and physical

attributes. Requirements for the development of such prediction

systems within the technical programs of the Air Force Human

Resources Laboratory (AFHRL) are numerous. -i

Prior to implementation of the UNIVAC 1108 computer system at

AFHRL, the majority of regression analyses were accomplished by the

REGRED single correction iterative algorithm (Ward, Hall, &

Buchhorn, 1967). This algorithm had two major disadvantages: (a)

it might not converge if two or more variables were highly

intercorrelated, and (b) since it did not identify redundant

variables, an incorrect number of degrees of freedom could be used

in calculating the F-ratio discussed in Section IV. The convergence

problem was eliminated by a modified interative algorithm called

REGREF (Ward et al., 1967), which corrected on three weiqhts per

iteration simultaneously; however, the REGREF algorithm still failed

to identify redundant variables.

Dijring the conversion from the previous computer system to the

UNIVAC 1108 computer system, a computerized regression algorithm,

REGRX, specifically tailored to the requirements of analyses

performed by laboratory task scientists was developed to exploit the

capabilities of the UNIVAC 1108. REGRX was implemented to improve

the laboratory's problem-solving capabilities by allowing for
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identification of redundant predictor variables, an exact solution

at each step of the algorithm, extensive residual analysis, forcing

certain predictor variables into the final equation, and direct

generation of transformed predictor variables.

Shortly after the REGRX program had been implemented and

thoroughly tested on the UNIVAC 1108, the algorithm was incorporated

as a subroutine, REGRX, into the TRICOR utility correlation and

regression software package, which immediately resulted in improved

analytical capabilities and product quality. Since that time, the

REGRX subroutine system has undergone several modifications, and has

now been implemented on the UNIVAC 1100/81.

The purpose of this paper is to acquaint the potential user with

the current capabilities of REGRX. Technical details are discussed

to enable the user to take complete advantage of the analytical

capabilities of REGRX. This information includes a brief

introduction to the stepwise regression technique, an in-depth

4 discussion of the REGRX algorithm, a comprehensive listing of the

computational formulas and definitions of the resulting statistics,

ana a description of the algorithm's residual analysis facilities.

Specific details for running the TRICOR software package on the

U1NIVAC 1100/81 are available at AFHRL in an automated users manual

titled TRICOR: Utility Correlation and Regression System.

if. STEPWISE REGRESSION AND MODEL BUILDING

The REGRX regression procedure is a stepwise augmentation and

elimination algorithm. The stepwise technique (Dixon, 1968; Draper

& Smith, 1966; Efroymson, 1960; Pope & Webster, 1972; Goldberqer,

1961; Goldberger & Jochems, 1961) is used primarily as a research

tool to aid in the screening and selection of variables in the

development of a mathematical model of a statistical relationship

6



between a response and a set of independent variables. It is

usually desirable that a model of the response-independent variable

relationship contain as few independent variables as possible;

therefore, for those cases in which a large number of variables are

identified as having some influence on the response, it is necessary

that some form of variable selection be performed.

The stepwise algorithm is a systematic process for adding

variables to or deleting variables from a given initial linear

model. First, the response variable is regressed on the set of

independent variables comprising the initial model. At each

subsequent step, a new regression equation is derived from the

equation at the previous step either by deleting a variable for

which the partial F-statistic testing for a zero coefficient falls

below a preassigned value or ',y adding a variable for which the

partial F exceeds a preassigned value. At some point, this process

of adding and deleting variables is interrupted, and the variables

in the final regression equation are taken as the components of a

new model. Dixon (1968) provides a more complete description of how

the stepwise procedure may be incorporated into a model building

program. The REGRX stepwise algorithm is discussed in more detail

in the following paragraphs. In addition, Appendix A provides a

general summary of the correlation approach to regression, and

Appendix B provides the computational details of the REGRX algorithm.

I1. DESCRIPTION OF REGRX ALGORITHM

At each step of the algorithm, the independent variables are

dividied into two sets, L and E. L is the set of variables in the

regression equation for the current step. Set E contains all

independent variables that are not contained in L. Thus, when a

variable is added to L, it is simultaneously deleted from E and vice

versa.

7



Initially, set L does not contain any variables and set E may

contain a set of "forced" variables that have been designated by the

task scientist to appear in all calculated regression equations. If

no variables are designated as "forced," the first variable to be

added to L is the independent variable most highly correlated with

the dependent variable. If set E contains "forced" variables, the

first variable to be added to L is the "forced" variable most highly

correlated with the dependent variable; the other "forced" variables

are considered for addition to L by the stepwise procedure before

the remaining E variables. The set of "forced" variables that are

added to L are denoted by F. A given variable designated as

"forced" is not allowed to be an element of L if the squared

multiple correlation coefficient for the regression of the given

variable on the set L is greater than or equal to 1.0 - TOL where

the value of TOL can range trom 10-l to 10-8. The user should

specify a set of independent variables as "forced" if the regression

problem requires that these predictors be present in the final

regression equation.

At each subsequent step, the stepwise procedure regresses the

dependent variable and each variable in E on the variables in L, and

one of the following outcomes occurs:

1. A variable in L - F (the set of variables remaining in L

after the variables in F have been removed from consideration) is

deleted from L if the partial F-statistic testing for a zero

coefficient is less than a preassigned value and if no other

variable in L - F has a smaller partial F.

2. A variable in E is added to L if (a) no variable in L - F

satisfies the removal criterion; (b) the squared multiple

correlation coefficient for the regression of the added variable on

the set L is less than 1.0 - TOL; (c) after adding the variable to

L, the partial F-statistic testing for a zero coefficient exceeds a

8
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preassigned value; and (d) no other variable in E satisfies (b) and

has a larger partial F.

3. If neither of the preceding outcomes occurs or if the number

of steps exceeds a preassigned number, then the stepwise procedure

terminates.

IV. REGRESSION OUTPUT WITH COMPUTATIONAL

FORMULAS AND COMMENTS

The following information describes all of the printed output that

can be generated by the REGRX subroutine system except for the

residual plots described in Section V. Subsections A to F are output

produced for each step printed. Subsections G to K are optional

output. Items appearing in upper-case letters are presented exactly

as they appear in the printed output. Details on printing options

available are stated in an automated users manual titled TRICOR:

Utility Correlation and Regression System.

A. MULTIPLE RSQ: Coefficient of simple determination between the

predicted scores and the observed valIes for the dependent

variable. If a is the regression constant and b. is the

estimated regression coefficient for the jth variable, then the

kth predicted score is

p
Yk = a + : bj xjkj=l

where xjk is the k observation of variaole j and p is the

number of predictors in the prediction equation.
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B. ANA'YSIS OF VARIANCE

1. Reqression Degrees of Freedom: OF Reg p. number of

predictors in step i

n
2. Regression Sum of Squares: SSReg ( ik -~)

k=l

where n = number of observations

Yik =predicted score of k thobservation in step

m-= mean predicted score in step

3. Regression Mean Square: MS Rg= 55Re /OFRe

4. Residual Degrees of Freedom: DF nes-=p. - 1

n
5. Residual Sum of Squares: SSRes r2

kl ik

t'i
where r ik ik - Yik = residual of k ohservai-ion

in step

6. Residual Mean Square: MS Res = SS Res /DF Res

7. F-Ratio = (Regression Mean Square)/(Residual Mean Square)

C. STD CRR. ESF -R

D. R% CONST: Estimate of the mean response when all of the

predictors have a value of zero.
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rV

E. VAR; Variable (ID and name) to ente the prediction system in

step i

F. Prediction System Table

1. VARIABLE: Variable ID and name for each predictor in the

system in step i

2. REGRESSION WEIGHT (b ij): Estimates of the regression

parameters ij for variable j in step i which indicate the

change in the mean response associated with a unit change in

the corresponding predictor variable'when all other predictor

variables are held constant

3. STANDARD WEIGHT (Bij): If SDy is the standard deviation

of the dependent variaole and SDi is the standard deviation

of variable j, then

Bij  bij  SDj

SDy

4. SQ CORRELATION VARIABLE VS REST (Rj): The squared multiole

correlation coefficient for the regression of variable .j on

all of the other predictors in the prediction system in step i

5. STANDARD DEVIATION OF REGRESSION WEIGHTS (SDwj):

SDwjw MSRes

S (SDj) 2 
(n-l) (1-R2 .)

1i
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If variable j iS unco~related with the other predictors, then

MSRes

(SD) 2  (n-i)

Note that this is the smallest value that SDwj can assume.

6. INDEPENDENT CONTRIBUTION (AR?.): Amount by which R? would

decrease if variable j were removed from the prediction system

2 1 MSRes 1 MSResARij _ 3 MSRe s = - - Fij

(n-i) (SDy)2 (SDwj) 2  (n-i) (SDy)2

where Fij is the partial F-statistic for testing the null
.th

hypothesis that the j partial regression coefficient at

step i equals zero

7. SQUARED PARTIAL CORRELATION r . all other predictors)

The marqinal contribution of predictor j in the proportionate

reduction in the variance of the dependent variable when all

of the other predictors have already been included in the

prediction system

A Rr2 1iyj all other predictors I - (R2  - R2.

i ij

where R2  is the squared multiple correlation coefficient for

i

the regression of the response variable on all of the

predictors fur step i

12



G. REGRESSION SUMMARY TABLE

For each step, the summary table gives the step number, the

ID of the variable entered or removed, the coefficient of multiple

correlation and coefficient of multiple determination for the

regression of the dependent variable on all of the predictors in

the prediction system, the change in the coefficient of multiple

determination from the previous step, the residual mean square,

the square root of the residual mean square, the F-ratio, the

partial F value, and the number of predictors in the prediction

system.

The formula used for computation of the F-ratio for step i is

T Fn-Pi" ) (: R  )F i Pi-R

The partial F-ratio is directly related to the independent

contribution for the variable entered at each step. An alternate

computational formula for this statistic is

1 - l /rFij =- R?

(1-Rmax)/df2

where R? = coefficient of multiple determination at step i

R2
ai-l =coefficient of multiple determination at step i-i

R2ax the larger of Rj and R?_

dfI  difference in the numbers of predictors in the

prediction systems corresponding to steps i and i-l;

consequently, dfI will always equal I

df2 = n-p-I, with p being the number of predictors

in the prediction system for the step corresponding to

the larger of R? and R2 _

13
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This statistic is identical to the traditionally used comparison

of "full model" versus "restricted model" in the iterative REGREF

regression algorithm (Bottenberg & Ward, 1963).

H. LINEAR DEPENDENCIES

If the correlation matrix is not of full rank, i.e., some of

the predictor variables are redundant, then the least squares

normal equations will not have a unique solution. Least squares

parameter estimates can still be obtained (Rao & Mitra, 1971;

Searle, 1971); however, there will be infinitely many estimates,

all equally good. An alternative is to identify redundancies and

assign zero weights to the redundant variables, thereby

eliminating them from the prediction system.

At each step, the REGRX algorithm computes a regression for

each candidate entry variable on all of the variables in the

prediction system. If the coefficient of multiple determination

for any of these regressions is greater than I - TOL, where the

value of TOL is specified by the user and ranges from 10-  to

10- , the variable is considered redundant and will not be

allowed to enter the prediction system. When a variable is

identified as redundant in this way and at least one of the

standardized partial regression coefficients is greater than or

equal to 10- 5, the ID for the redundant variable is printed with

the corresponding regression coefficients. The "intercept"

printed is the regression constant for the prediction equation. A

variable is also considered redundant if its entry into the

prediction system would cause a linear dependency among those

variables in the auqmented system.

The value of TOL should be selected with care. Choice of an

ideal value for TOL depends greatly on the data set to be

analyzed. There may be a tendency to choose small values for TOL

to allow as many variables as possible to enter the prediction

14
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system. However, extensive testing has shown that known linear

dependencies may not be identified by REGRX if TOL is set very

low. Moreover, when the value of TOL is set at a small value, the

following three undesirable situations are more likely to occur:

(a) severe computational accuracy problems, (b) large standard

errors for the regression coefficients, and (c) results being

adversely affected by slight data recording errors. On the other

hand, choosing a value for TOL that is too large may exclude

predictor variables that are functions of other predictor

variables even when those variables would contribute greatly to

predictive efficiency. Unless specified otherwise, the value of

TOL is set to lO- 3, which has been shown to be suitable for most

applications.

1. RANGE TABLE

The Range Table gives the means, standard deviations, and

maximum and minimum values for the observed values for the

dependent variable, predicted scores, and residuals. The table

also gives the residual variance and the coefficients of

correlation and determination between the observed values for the

dependent variable and the predicted scores, and between the

residuals and the predicted scores.

The maximum and minimum range values for the observed values

for the dependent variable and the predicted scores should be

comparable. Vast differences between maximums or minimums, as

compared to the residual standard deviation, may indicate either

an error in the data or the inability to predict extreme values of

the criterion, suggesting additional terms need to be included in

the model.

3. TABLE OF LARGEST RESIDUALS

The table of largest residuals gives the case identification

number, predicted score for the dependent variable, and residual

and predictor values (includes variable name and identification

15



number for all variables in the prediction system) for the cases

associated with the X largest residuals. X is the lesser of the

following two quantities: 10, or the number of cases divided by

20. The detection of outliers or data errors is facilitated by

printing extreme residual values. The range values for the

residuals should be within plus or minus three standard deviations

of the residual mean. This is in accord with the fact that in a

normal population virtually all points lie within plus or minus

three standard deviations of the mean.

K. TABLE OF RESIDUALS

This table is printed upon request by the user and lists for

each observation, the case identification number, predicted score

for the dependent variable, ard residual value.

V. RESIDUAL PLOTS

Descriptions of the REGRX residual analysis facilities are

presented below. To complement these descriptions, the reader is

referred to Draper and Smith (1966) where an excellent discussion of

the analysis of residuals is presented.

Plot of Residuals vs Predicted Scores

A plot of residuals versus predicted scores for a typical REGRX

problem is shown in Figure 1. The residual axis appears vertically on

the page. Two scales are given: (a) the standardized residual, and

(b) the residual itself. The two rows immediately above and below the

plot represent the predicted score axis. The first and lasi entries

on this axis are the smallest and largest predicted scores. If r.
thand s are the j residual and the residual standard deviation,r

respectively, then the standardized residual is r./sr. When the
9

residuals follow a normal distribution with variance s2, the

standardized residuals follow a normal distribution with variance

unity. Thus, approximately 95% of the residuals would be expected to

fall between -2 and +2 on this axis.

16
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A cell is defined as the intersection of a row and a column of the

graph. Each cell may have several points plotted within it. The

maximum cell frequency, i.e., the largest number of points plotted

within a cell of the graph, is printed at the top of the plot. In

Figure 1, MAXIMUM CELL FREQ = 3. The number of points plotted within

a cell is indicated by a numeric character or asterisk. The numeric

character L indicates that between lOL and l0(L+l) percent of the

maximum cell frequency points were plotted in the respective cell. An

asterisk indicates that the cell contains exactly MAXIMUM CELL FREQ

points. For example, a numeric character 4 with a MAXIMUM CELL

FREQ=20 would indicate that between 40 and 50 percent of 20 points,

i.e., between 8 and 10 points, are plotted in that particular cell.

Truncation is assumed. If MAXIMUM CELL FREQ = 5, then between 40 and

50 percent of 5 points, i.e., 2 points, are plotted in a cell where

L=4. Similarly, a numeric character of 2 would indicate that exactly

one point is plotted in the cell. The printing of cell frequency

count indicators takes precedence over all other printing requirements.

A row of equal signs and a column of periods identify the residual

mean and the predicted score mean, respectively. The REGRX algorithm

performs a quadratic regression of the residuals on the predicted

scores, i.e., the independent variable appears in the first and second

degree in the model. The dashes in Figure 1 depict quadratic

regressions of the residuals on the predicted scores for the set of

points located above the initial quadratic regression and for the set

of points located below the initial quadratic regression.

This plot is useful in detecting heteroscedasticity (unequal

variances for error terms) and model inadequacies. If neither of

these abnormalities is present, the plotted points should appear as a

random scatter of points about a line parallel to the predicted score

axis and intercepting the residual axis at zero. However, a

systematic pattern of points such as a wedge (heteroscedasticity) or

curvilinear (model inadequacy) shape signals the need for corrective

18



action. If heteroscedasticity is present, the analyst should consider

the use of weighted least squares or various transformations of the

dependent variable such as4-, I/Y, and log Y. Similarly, methods of

dealing with model inadequacy are transforming the dependent variable

or including additional terms in the model such as square or

cross-product terms.

This plot is also useful in detecting outliers (points that are

more than three standard deviations from the residual mean). Since

the least squares fit is "pulled" disproportionately toward these

observations, outliers should be carefully examined to determine if

they convey important information about the analysis or if they

resulted from a procedural error such as a miscalculation, inaccurate

recording or equipment malfunction. In general, an outlier should not

be eliminated from the analysis unless the task scientist can identify

an error source causing the extreme value.

The plotted points in Figure 1 exhibit no severe abnormalities

such as thoce exhibited in Draper and Smith (1966); however, the

dashes do show a slight curvilinear trend in the data.

Residual Frequency Plot

This plot (shown in Figure 1) is printed on the same page as the

previously discussed plot. The residual axis appears vertically on

the page. The number of points Falling within each interval of the

residual axis is printed vertically in the left margin. If N is the

total number of residuals, i.e., the total number of cases, and if L

is the frequency count for an interval on the residual axis, then

1001./N percent of thL residuals fall in this particular interval.

Each equal siq, represents one-fourth percent of the total number of

points; therefore, 400L/N equal signs would be printed on the line

corresponding to that interval.

A normal frequency curve is superimposed on the frequency plot as

a series of plus signs and '3" symbols, the plus sign representing an

19



overlap between an equal sign and a "]" symbol. The purpose of this

superimposed curve is to provide a visual standard against which the

observed frequency curve can be compared. The chi-square value printed

at the top of the plot provides a quantitative test of the hypothesis

that the residuals are normally distributed. NUMBER OF CELLS is the

number of intervals (ranges from 5 to 49 depending on sample size)

used for this test. PROBLEM NORMAL is the probability of exceeding the

chi-square value when the residuals are normally distributed.

Measures of the asymnetry (skewness) and flatness (kurtosis) are

printed above the chi-square value.

The correlation coefficients between the residuals and the

predicted scores and between the residuals and the squared predicted

scores are printed below the plot. The first of these correlation

coefficients is expected to be zero and the second is an indicator of

the quadratic tendency between the residuals and the predicted scores.

Cumulative Frequency Plot

The residual axis appears vertically on the page in Figure 2 in

the same manner as for the plot of residuals versus predicted scores.

The horizontal axis at the top of tne graph is the cumulative

frequency axis with the cumulative frequencies given as fractions of

the total sample size. Thus, if N=357 is the total number of cases, d

fraction of X=.510 would indicate a cumulative frequency of

(X)(N)=(.5lO)(357)=l82. The Frequency curve is plotted using the

symbol "F" or an asterisk. A curve drawn through the Fs and asterisks

should resemble a normal cumulative frequency curve. For visual

comparison, a normal cumulative frequency curve could have been

superimposed on the graph. However, it is easier to observe a

deviation from a straight line than it is from the normal curve.

Therefore, as an alternative, the observed frequerny plot was

transformed in such a manner that it gives a straight line if the

original plot was in fact a normal cumulative frequency curve but

20
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would deviate from a straight line if the original differed from a

normal curve.

The horizontal axis at the bottom of the graph is the cumulative

frequency axis for the transformed curve. The transformed cumulative

frequency curve is superimposed on the cumulative frequency plot using

the symbol "N" or an asterisk. The asterisk represents a point at

which the original curve and its transform intersect. The horizontal

row of equal signs corresponds to the residual mean.

Plot of Residuals versus Predictor Values

A olot of the residuals versus a predictor variable is shown in

Figure 3. The values on the horizontal axis are the values of the

predictor. A horizontal row of equal signs and a vertical row of

periods identify the residual mean and predictor variable mean,

respectively. The correlation coefficients between the residuals and

the predictor variable scores and between the residuals and the

squared predictor variable scores are printed below the plot. The

residual axis appears vertically on the page in the same manner as for

the plot of residuals versus predicted scores. In addition, the

maximum cell frequency value, numeric characters, and asterisk and

dash symbols are printed as before.

This plot is useful in detecting heteroscedasticity and model

inadequacies. As before, the absence of abnormalities is indicated by

a random scatter of points about a line parallel to the predictor

score axis intercepting the residual axis at zero. A wedge-shaped

point scatter is indicative of heteroscedasticity. Possible correc-

tive actions that should be investigated by the task scientist include

the use of weighted least squares and various transformations of the

dependent variable such as Y/Xi or YXj7 . A curvilinear trend in

the point scatter is indicative of an inadequate model. Possible

corrective actions for this abnormality include the use of various

transformations on the dependent variable and adding terms to the

model such as square or interaction terms. Outliers are also easily
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identified in these plots. The plotted points in Figure 3 exhibit no

severe abnormalities.

N , 357
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Figure 3. Plot of residuals versus predictor values
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APPENDIX A: CORRELATION APPROACH TO REGRESSIONI

Reqression methodoloqy is concerned with the problem of estimating

the parameters 0I, 2 ..... , . and a in the linear model

Y= al+x 1l+...+xpp+E = al+Xe+E. For this problem, the

following assumptions are comnonly made: X is a matrix of known form

and the error component,E, is assumed to be distributed with mean

vector 0 and variance-covariance matrix a,21. Accordinq to the

Gauss-Markov Theorem, the minimum variance unbiased linear estimators

a 01.... p for the parameters a, 61, .... 1p are obtained by

the method of least squares. This method leads to a system of linear

equations, called the normal equations, which are solved for & and e.

ITy= 1I I+ 1xi
x Y= xTI& + x~x9

The superscript T denotes that the columns of X Tare the rows of X

and the rows of X are the columns of X. To decrease the effects of
roundinq error in the computation of the solution of the normal

equations, the observations X and Y. are first centered and then

rescaled to standardized form zij and yj, where

z1ij = (Xij - y/si, yj = (Yj - 7)/Sy
Xij = jth observation of variable i

X. = sample mean for variable i

si = sample standard deviation for variable i

IMatrices, vectors, and scalars will be denoted by uppercase

boldface letters, lowercase boldface letters, and upper or lowercase
regular typeface, respectively. Numerically subscripted scalars
identify elements of matrices (row identification, column
identification) or vectors (row identification) and numerically
subscripted matrices identify partitioned elements of matrices.

27



The normal equations can be rewritten in terms of the standardized

variables as

g =Rllb
where g = =Z

n
Z = (z ij)

Rll = zTz

b = L-Se
s
y

S = diag (si)

S = diag (si) means that S is a diagonal matrix with the ith

diagonal entry equal to si . The .-timates e are calculated by solving

the system Rllb =g for b and then computing 8i = Sy bi.
si

Finally a is obtained from &= Y - X101 -...- Xpp
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APPENDIX B: COMPUTATIONAL DETAILS OF REGRX ALGORITHM2

The Gaussian elimination alqorithm is used to compute the statis-

tics required to implement the stepwise program (Draper & Smith, 1966;

Efroymson, 1960). The algorithm depends on the following observation.

If Pand Qare nonsingular matrices, then the two systems R11b = g

and PR __Qh=Pg are equivalent in the sense that h is a solution

of the second system if and only if Qhis a solution of the first.

Hence, if the second system can be solved for some Pand Q, then the

solution of the first system is easily derived. In particular, if P

and Q are such that PR 1 1Q is triangular or diagonal, then the

second system can be solved immediately. In practice, g appears as a

subvector of a row and column in a larger matrix Rwhich also includes

Ril as a submatrix.

Any r x c matrix A may be written in partitioned form as

A 11 A 12  Alb1

A = A 2 1  A 2 2 .... A2b

[As, As 2  Ash ]S h

where Aik is r i x Ck, r i = r and E ck c
i~l k=lik ~~ I 111k

A typical partitioning of R is the following R= Rll g
rgT 1]

In the REGRX algorithm, as in most regression algorithms, the (i,j)

entry of R is the Pearson product moment correlation coefficient

between variables i and j based on the sample data for the regression

prohlem. The superscript T denotes that the column vector g has been

transposed into row vector form.

2 See footnote in Appendix A.
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In the Gaussian elimination algorithm, Qis the identity matrix.

The matrix P is obtained as a product of the factors p(l), p(2) ...

At Lhe first step, p(l) is calculated and R is transformed to

P (I)R . Renaming p(O) =M(1 ) and P(1)R = R('), the succeeding

steps proceed by calculating p(i),M(i) = P(i)M(i-l), and

R(i) = p(i)R(i-l).

Let i' denote the variable to be added or deleted from the

equation for step i-l. If variable i' is added, then p(") is

computed so that the i' column of R(i) is the i' column of the

identity matrix. If variable i' is deleted, then p(i) is computed

so that the i' column of M(i) is the i' column of the identity

matrix. The matrix p(i) is equal to the identity matrix except in

column i' . The i column of P(i) is chosen in the following

manner. If variable i' is being added and the i' column of R(i-l)

is denoted by (al, a2 ...,ai,  ...,av)T, then the i' column

of PO) is (al,...,ai' _l,-lai9+l...av)T. If variable i'
a i

is being deleted and the i' column of M(i-l) is denoted by

(al,a 2$ ... ai , ...av)T9 then the i' column of pOi

is - (al,...,ai'-l,-lai' +l .... ,av)T. Recalling that L denotes
a

the set of variables in the regression equation for step i and E

contains all independent variables that are not in L, it is easy to

see that if jEL (j is an element of L), then column j of R (i) is

equal to column j of the identity matrix; and if kEE, then column k

of M (i) is equal to column k of the identity matrix.

Let p denote the number of elements in L. Symmetrically reorder

the rows and columns of R(i) so that the tirst p rows and columns

of the reordered matrix will coincide with the rows and columns of

R(i) corresponding to the elements of L. Mathematically this is

accomplished by postmultiplying R (i) and M(i) by a permutation

matrix which is denoted by QL and premultiplying R(i) QL and

30



M(i)QL byQT. Thus the matrices qR(i)QL andQT M(i)QL

will have the special forms

(-l) QT R(i)Q [p D121
L QL 10 D221J

where Ip is the p x p identity matrix

O is an (m-p) x p matrix of Os

D12 is p x (m-p)

D22 is (m-p) x (m-p)

(1-2) Q L [ =

where S is p x p

U is (m-p) x p
o is a p x (m-p) matrix of Os
m-p is the (m-p) x (m-p) identity matrix

If this same reordering of rows and columns is performed on R, then

from

R(i) = M(i)R the following matrix identity must hold.

QLTR(ibL = QLTMi LTM(iL]Q [QLTRQ]or

D12] [s 1 R11  Rl?
)0 22_ [U m-PJ [ 12 R22J

T R11 R 12
where QLRQL=[:IT R2 2 j
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Any c x d matrix B is said to be partitioned conformable to the

matrix A if

B= I
[ Bbl..... BbqJ

b q
where BkQ is c k x dj, L ck=c, and dj=d.

The product C =AB may be written in partitioned form as

C = sl ...Csq

where C = AikBkj is ri x dj

k=l

Performing the matrix multiplication and equating corresponding

partitions gives

(i) S= R-I

(ii) D 2 = R-1 R12

(1-4)

(iii) U T

(i v) D2  R-R RT R-1 R22 22 12 11 12

Note that Rll is the correlation matrix of the variables in the set

L. Let g denote the column of R1 2 corresponding to variable v ,

where either vEE or v is the variable number of the response. Let b

denote the corresponding column of Dl2. The elements of g are the

correlations of variable v with the variables in the set L and 1-4(ii)

implies that b satisfies the equation Rllb = g. Therefore, the

elements of b are the standardized regression weights for the

32
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I

regression of variable v on the variables in set L. l-4(iv) implies

that the diagonal entry D vv of D 22 directly below the b column

of D1 2 is equal to 1- jT R1g = 1-gTb = l-R 2 L (v) where R2(v)

is the squared multiple correlation coefficient for the regression of

variable v on the set of variables L. The off-diagonal elements of

D22 may be converted to partial correlation coefficients after

dividing by the square root of the diagonal elements in the same row

and column. Thus the (j,k) element of D22 divided by the square

roots of the (j,j) and (k,k) elements is the partial correlation

coefficient between variables vI and v2 after removing the linear

influence of the variables in the set L, where v1 and v2 refer to

the variables occupying the j and k columns (and rows) of D22'

Further characterizations of the elements of S, D 12 and D22

are obtained through a careful study of an individual step in the

elimination procedure. Figure Bl is a representation of the

operations performed during step i+l showing the transitions R(i)

to R(i+l) and M(i) toMi+l for the case where variable j is

deleted from the regression equation. In Figure Bl, L denotes the set

of p variables in the equation at step i, so jEL. QL denotes a

permutation matrix that reorders variables so that all variables in L

anpear first; moreover, within L, variable j appears last (i.e.,

pth ). Figure B2 shows the same transitions for the case where

variable j is added. In Figure B2, L denotes the set of variables in

the equation at step i+l, so jEL. QL has the same function as

described for Figure Bl. It should be mentioned that the variable j

referred to in Figure Bl is not the same variable j referred to in

Figure B2. Also, the partition components of the matrices appearing

in Figure B1 are not the same as the corresponding partition

components in Figure B2 although the names used in both figures are

the same.
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Q, ObL -b , QL Cbd 1  A.*b

rowp ~A -b sO 0- TI .1 1 0 CI i C + ib d A 1row p 0 0 1 0bT  -d 1 T 1 

.10 0D -d1 0 d D+ i -6r- d0

column p

Figure 81. Representation of Matrices Used During Elimination
Step i+1 for Deletion of Variable j

QLTp(i+l)Q1 QR() QTMT Q1 R ('+ l)R QTM(i~)

--ib 0 1 b C A 0 0 1 0 C- bIL +b -- b 0
o~~ ~ os dT soo

rowp~ 1 .
ro1 F - 1 0 0 T

L i.d j d D 0 0 D- :1

Figure B2. Representation of Matrices Used During Elimination
Step i+1 for Addition of Variable j.

Recall that to delete variable j at step i+l the matrix P(i+l)

is chosen so that column j ofM(i+l) = P(i+l' V i) will be equal

to column j of the identity matrix. In Figure Bl, the rows and

columns of the matrices P(i+l), R(i), R(i+l),M(i), andM(i+l)

have been reordered by means of the permutation matrix QL for the
purpose of simplifying their partitioned form. In the reordered

matrices, the elements corresponding to variables in the set L occupy

the first p rows and columns and the entries for variable j occupy the
th
p row and column. Let v denote any variable not in L. Thus,

either vEE or v is the variable number of the response. The component

of d corresponding to variable v is denoted by d v Similarly the

34
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diagonal entry of D corresponding to 'jable v is denoted by D
vv

Comparing Q R(i L with (1-1), and recalling (1-4) (ii)

and (iv), it follows that d is the standardized regressionV

coefficient BLj(v) for variable j in the regression of variable v on

the set of variables L and that Dv 1-RL2(V). If v is d variabe

not in the set L, then BLj(v) denotes the standardized regression

coefficient for variable j in the regression of variable v on the set

of variables in L, and jLj(j,v) denotes the pa-tial correlation

between variables j and v after partiallinq out tne linear influence

of variables in L-j. A similar comparison for

QLTR( i+1 L
Q snows tnatL I-H2 j + L) 1-r v, 3(1

S L-J S VV j

dv/S = L-j (Jv) . + ) . Frum tnes - rl: tLonIsflps, trie

following results cdn oe derived.

() LnractLerIzatIoi Ut tt stinJaril1zeo regression coeff ilent

i1n terins ut d pdrLIdI Lor reIdtiO L eriet.

t~ )I- (v)

U ~Jj,v ) - -J dv

I - Rl (j)
L-

( ) LndraclerizatLion of the standardized regres ' .ien

in terms uf the increase in the squared multiple a,dtion coef-

ticient due Lu tne ddlition of variable j ' .,pendent contribution).

R 2 L(v) - _ VB (V) L
LJ - R? (j)

IR

L-J
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(3) Characterization of the independent contribution of a variable

in terms of the partial correlation coefficient.

R2(v) - R2. (v) = p2_ Uv)( R2 (v) _d
S

(4) Characterization of the partial F-statistic for the hypothesis

BLj(V) = 0.

R2(v- R2 j(v) P2 .(j~v)
F.- L L- (n-p-i) = (n-p-i)

1- RL(v) I- _j(i~v)

2
BLj(v) d2

-(n-p-i) (n-p-1)

l RL_j(j )

Note that this last formula also allows a characterization of the

standard error of the standardized reqression coefficient. It is

2 2 2
known that F t B L(v)/SLj(v) where tj is the t-statistic for

the hypothesis BLj(v) = 0 and SLj(V) is the standard error of BLj(V).

(5) Characterization of the standard error of the standardized

reqression coefficient.

[1 -R(v) ]
[1 - R2(j) (n-p-l) n-p-i
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I
In two final results, a characterization for the elements of the

inverse and the determinant of the correlation matrix is obtained.

Comparinq QTM(i)Q with (1-2) (usinq (1-4)(i)) and denoting the
L L

correlation matrix for the variables in the set L by Rll, it follows

that the diagonal entry, s, of R1 corresponding to variable j is
11

equal to the reciprocal of 1- R2 .(j). Comparing QT R(i+l)QL

with (1-1) and recalling (l-4)(ii), it also follows that ib is the

S

vector of standardized regression weights for the regression of

variable j on the remaining variables in the set L. Therefore, the

non-diagonal entries of the column of R-1 corresponding to variable
11

j have a simple relation to the standardized regression weights for

the regression of variable j or, the remaininq variables in the set L.

To obtain the expression for the determinant, suppose that
p(i+l), p(i+2), , p(i+p) were chosen to successively delete

variables from L until it was empty; then the expression

p(i+P) p(i+l) M(i= I would hold. This fact implies

tnL det(P('+P) ... p(i+l)) = i/det(M(i)). It is also known

that det(M(i)) = det (R-1) = l/det(Rll) and det ( p(i+l)) =

1 = l-R2 (j). A generalization of this relationship gives
s L-J

det( p(i+2)) : lR 2  2), ..., det(P(i+P-l)) =L -j-j 2

I-R2 (jp-l), det(P(i+P)) = 1, where J2, j3 .... JpL-j-jz-...-jp-
i

is tne order of deletion of variables. Simplifying this notation gives

tne following general result:

det(Ri1) = (1 -R2.1)(I-R. 2 1 )(I-R 2 ) . .(-R 2
1  lwee fo r exle R2  r

where, for example, R.321 represents the squared multiple

correlation coefficient from the regression of variable 4 on variables

1 tnrougn 3.
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The formula for the partial F for entry remains to be derived.

This is most easily accomplished by means of Figure B2. As before,

let dv denote the component of d corresponding to variable v and let

vv denote the diagonal entry of D corresponding to variable v.

ComparingQTR(i)Q and QTR(i+I)Q with (1-1) and recalling
L )L L L

(1-4)(iv), it follows that I - R2  (v) vv, s I - R2j

d2

and 1-R2(v) d2v
L s Tnerefore, the increase in the squared

inultiple correlation due to the addition of variable j is

2 2 2

RL(V) - RL.j(v) = ._. This gives the following computational
S

formula for the partial F-statistic for the entry of variable j.

d2
R2 (v) - R2  (v)v

Fj L L-j (n-p-l) = S (n-p-l)F3 1 - R2(v) (d2)
L Dvv- V

S
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