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REGRX: A COMPUTERIZED STEPWISE REGRESSION ALGORITHM
WITH RESIDUAL ANALYSIS

I. INTRODUCTION

A
Y . .
Regression analysis programs are commonly used to develop
prediction systems for Air Force personnel research, e.g., a system
for accurately predicting future job performance of enlisted
individuals based on information obtained during their Air Force
careers. This information might include such predictor variables as
aptitude or ability' test scores, biographical data, and physical
attributes. Requirements for the development of such prediction
systems within the technical programs of the Air Force Human

Resources Laboratory (AFHRL) are numerous. . . /11’7;5

Prior to implementation of the UNIVAC 1108 computer system at
AFHRL, the majority of regression analyses were accomplished by the
REGRED single correction iterative algorithm (Ward, Hall, &
Buchhorn, 1967). This algorithm had two major disadvantages: (a)
it might not converge if two or more variables were highly
intercorrelated, and (b) since it did not identify redundant
variables, an incorrect number of degrees of freedom could be used
in calculating the F-ratio discussed in Section IV. The convergence
problem was eliminated by a modified interative algorithm called
REGREF (Ward et al., 1967), which corrected on three weights per
iteration simultaneously; however, the REGREF algorithm still failed
to identify redundant variables.

Ouring the conversion from the previous computer system to the

UNIVAC 1108 computer system, a computerized regression algorithm,
REGRX, specifically tailored to the requirements of analyses
performed by laboratory task scientists was developed to exploit the
capabilities of the UNIVAC 1108. REGRX was implemented to improve
the 1laboratory's problem-solving capabilities by allowing for




identification of redundant predictor variables, an exact solution
at each step of the algorithm, extensive residual analysis, forcing
certain predictor variables into the final equation, and direct
generation of transformed predictor variables.

Shortly after the REGRX program had been implemented and
thoroughly tested on the UNIVAC 1108, the algorithm was incorporated
as a subroutine, REGRX, into the TRICOR utility correlation and
regression software package, which immediately resulted in improved
analytical capabilities and product quality. Since that time, the
REGRX subroutine system has undergone several modifications, and has
now been implemented ¢a the UNIVAC 1100/81.

The purpose of this paper is to acquaint the potential user with
the current capabilities of REGRX. Technical details are discussed
to enable the user to take complete advantage of the analytical
capabilities of REGRX. This information includes a brief
introduction to the stepwise reqression technigque, an in-depth
discussion of the REGRX algorithm, a comprehensive 1listing of the
computational formulas and definitions of the resulting statistics,
ana a description of the algorithm's residual analysis facilities.
Specific details for running the TRILOR software package on the
UNIVAC 1100/81 are available at AFHRL in an automated users manual
titled TRICOR: Utility Correlation and Regression System.

T1. STEPWISE REGRESSTON AND MODEL BUILDING

The REGRX regression procedure is a stepwise augmentation and
elimination algorithm, The stepwise technique (Dixon, 1968; Draper
& Smith, 1966; Efroymson, 1960; Pope & Webster, 1972; Goldberger,
1961; Goldberger & Jochems, 1961) is used primarily as a research
tool to aid in the screening and selection of variables in the
development of a mathematical model of a statistical relationship




between a response and a set of independent variables. [t is
usually desirable that a model of the response-independent variable
relationship contain as few independent variables as possible;
therefore, for those cases in which a large number of variables are
identified as having some influence on the response, it is necessary
that some form of variable selection be performed.

The stepwise algorithm is a systematic process for adding
variables to or deleting variables from a given initial linear
model. First, the response variable is regressed on the set of
independent variables comprising the initial model. At each
subsequent step, a new regression equation is derived from the
equation at the previous step either by deleting a variable for
which the partial F-statistic testing for a zero coefficient falls
below a preassigned value or "y adding a variable for which the
partial F exceeds a preassigned value. At some point, this process
of adding and deleting variables is interrupted, and the variables
in the final regression equation are taken as the components of a
new model. Dixon {1968) nrovides a more complete description of how
the stepwise procedure may be incorporated into a model building
program. The REGRX stepwise algarithm is discussed in more detail
in the following paragraphs, In addition, Appendix A provides a
general summary of the correlation approach to regression, and
Appendix B provides the computational details of the REGRX algorithm,

[11. DESCRIPTION OF REGRX ALGORITHM

At each step of the algorithm, the independent variables are
divided into two sets, L and E. L is the set of variables in the
regression equation for the current step. Set E contains atl
independent variables that are not contained in L. Thus, when a
variable is added to L, it is simultaneously deleted from £ and vice

versad.




Initially, set L does not contain any variables and set £ may
contain a set of "forced" variables that have been designated by the
task scientist to appear in all calculated regression equations. If
no variables are designated as "forced," the first variable to be
added to L 1is the independent variable most highly correlated with
the dependent variable. If set E contains "forced" variables, the
first variable to be added to L is the "forced" variable most highly
correlated with the dependent variable; the other "forced" variables
are considered for addition to L by the stepwise procedure before
the remaining £ variables. The set of "forced" variables that are
added to L are denoted by F. A given variable designated as
"forced" is not allowed to be an element of L if the squared
multiple correlation coefficient for the regression of the given
variable on the set L is greater than or equal to 1.0 - TOL where
the value of TOL can range rirom 107! to 1078, The user should
specify a set of independent variables as “forced" if the regression
problem requires that these predictors be present in the final
regréssion equation.

At each subsequent step, the stepwise procedure regresses the
dependent variable and each variable in £ on the variables in L, and
one of the following outcomes occurs:

1. A variable in L - F (the set of variables remaining in L
after the variables in F have been removed from consideration) is
deleted from L if the partial F-statistic testing for a zero
coefficient is less than a preassigned value and if no other
variable in L - F has a smaller partial F.

2. A variable in £ is added to L if (a) no variable in L - F
satisfies the removal criterion; (b) the squared multiple
correlation coefficient for the regression of the added variable 9n
the set L is less than 1.0 - TOL; (c) after adding the variable to
L, the partial F-statistic testing for a zero coefficient exceeds a
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preassigned value; and (d) no other variable in E satisfies (b) and
has a larger partial F.

3. If neither of the preceding outcomes occurs or if the number
of steps exceeds a preassigned number, then the stepwise procedure
terminates.

IV. REGRESSION OUTPUT WITH COMPUTATIONAL
FORMULAS AND COMMENTS

The following information describes all of the printed output that
can be generated by the REGRX subroutine system except for the
residual plots described in Section V. Subsections A to F are output
produced for each step printed. Subsections G to K are optional
output. Items appearing in upper-case letters are presented exactly
as they appear in the printed output. Details on printing options
available are stated in an automated users manual titled TRICOR:
Htility Correlation and Regression System,

A. MULTIPLE RSQ: Coefficient of simple determination between the
predicted scores and the observed values for the dependent

variable. If a 1is the regression constant and bj is the

estimated regression coefficient for the jth variab]e; then the

kth predicted score is

a+ ' bj Xjk
j=1
where Xjk is the kth observation of variaole j and p is the

number of predictors in the prediction equation.




B. ANALYSIS OF VARTANCE

1. Regression Degrees of Freedonm: DFReg =P = numher of

predictors in step i
n -~
2. Regression Sum of Squares: SSReg = 3= (¥ik - mji)?
k=1

where n = number of obServations

= predicted score of kth observation in step i

Yik
mj?i = mean predicted score in step i
3. Regression Mean Square: MSReg = SSReg/DFReq
4, Residual Degrees of Freedom: DFRes =n-p, - 1

n
5. Residual Sum of Squares: SSges = y° 2
ik

k=1

_ ~ . th
where Pi = Yik "~ Vik ® residual of k™' observaiion

in step i

6. Residual Mean Square: MS = SSRes/DF

Res Res

7. F-Ratio

H

(Regression Mean Square)/(Residual Mean Sgquare)

VMSRes

D. REG CONST: Estimate of the mean response when all of the

C. STD ERR EST

predictors have a value of zero.




E. VAR: Variable (ID and name) to entef' the prediction system in
step i [
¢

F. Prediction System Table

1. VARIABLE: Vvariable ID and name for each predictor in the
i system in step i

Laaeii il

2. REGRESSION WEIGHT (bij): Estimates of the regression

parameters Bij for variable j in sgtep i which indicate the
change in the mean response associated with a unit change in
the corresponding predictor variable;when all other predictor

variables are held constant

3. STANDARD WEIGHT (Bij): If SDy is the standard deviation
of the dependent varianlc and SDJ is the standard deviation
of variable j, then

o e

= SD;
Bij bij J
SD

y

i

Sl S

4. SQ CORRELATION VARIABLE VS REST (R%j): The squared multiple

correlation coefficient for the regression of variabie  on
all of the other predictors in the prediction system in step i

5. STANDARD DEVIATION OF REGRESSION WEIGHTS (Sij):

SO =J MSges
($D)2 (n-1) (]-R?j)

: d

1
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.

If variable j 55 uncogrelated with the other predictors, then

Soui - I MSges
wj =
Y (0% (n-1)

Note that this is the smallest value that Sij can assume,

INDEPENDENT CONTRIBUTION ( Ail%j): Amount by which R% would

decrease if variable j were removed from the prediction system

2 1 MSpes b5 _ 1 MSRes

Al%ij = Fij
(n-1)  (SDy)Z (SDyj)? (n-1)  (SDy)?

where Fij is the partial F-statistic for testing the null

th

hypothesis that the j partial regression coefficient at

step i equals zero

2
SQUARED PARTIAL CORRELATION (ryj _all other predictors)

The marginal contribution of predictor j in the proportionc‘e
reduction in the variance of the dependent variable when all
of the other predictors have already been included in the
prediction system

AR?.
ré 11 oth dictors ° =
. a other predictor
¥ P 1. (R2 - aR?))
1 1)

where R? is the squared multiple correlation coefficient for
1

the regression of the response variable on all of the
predictors fur step i

12
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G. REGRESSION SUMMARY TABLE

For each step, the summary table gives the step number, the
; ID of the variable entered or removed, the coefficient of multiple
correlation and coefficient of multiple determination for the
regression of the dependent variable on all of the predictors in
the prediction system, the change in the coefficient of multiple
determination from the previous step, the residual mean square,
the square root of the residual mean square, the F-ratio, the
; ' partial F value, and the number of predictors in the prediction

A system,
b
5 The formula used for computation of the F-ratio for step i is
n-pj-1 R%
1 1-R5
F The partial F-ratio is directly related to the independent
;\ contribution for the variable entered at each step. An alternate
'i computational formula for this statistic is y
¥ |
; (R2 - RZ . )/df
i Fij - i i-1 1
v

S

(1-RGax)/df7

where Rf = coefficient of multiple determination at step i

R%_1 = coefficient of muitiple determination at step i-1

R24x = the larger of RS and RS_

df} = difference in the numbers of predictors in the
prediction systems corresponding to steps i and i-1;
consequently, df] will always equal |

df, = n-p-1, with p being the number of predictors

in the prediction system for the step corresponding to

the larger of R% and R%_]

13




This statistic is identical to the traditionally used comparison
of "full model" versus "restricted model" in the iterative REGREF
regression algorithm (Bottenberg & Ward, 1963).

H. LINEAR DEPENDENCIES

If the correlation matrix is not of full rank, i.e., some of
the predictor variables are redundant, then the least squares
normal equations will not have a unique solution. Least squares
parameter estimates can still be obtained (Rao & Mitra, 1971;
Searle, 1971); however, there will be infinitely many estimates,
all equally good. An alternative is to identify redundancies and
assign zero weights to the redundant variables, thereby
eliminating them from the prediction system.

At each step, the REGRX algorithm computes a regression for
each candidate entry variable on all of the variables in the
prediction system. 1If the coefficient of multiple determination
for any of these regressions is greater than 1 - TQOL, where the
value of TOL is specified by the user and ranges from 10'1 to
10'8, the variable is considered redundant and will not be
allowed to enter the prediction system. - When a variable is
jdentified as redundant in this way and at least one of the
standardized partial regression coefficients 1is greater than or
equal to 10'5, the ID for the redundant variable is printed with
the corresponding regression coefficients. The "“intercept"
printed is the regression constant for the prediction equation. A
variable is also considered redundant if its entry into the
prediction system would cause a linear dependency among those
variables in the augmented system.

The value of TOL should be selected with care. (Choice of an
ideal value for TOL depends greatly on the data set to be
analyzed. There may be a tendency to choose small values for TOL
to allow as many varijables as possible to enter the prediction

14
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system. However, extensive testing has shown that known linear

dependencies may not be identified by REGRX if TOL is set very
low. Moreover, when the value of TOL is set at a small value, the
following three undesirable situations are more likely to occur:
(a) severe computational accuracy problems, (b) large standard
errors for the regression coefficients, and (c) results being
adversely affected by slight data recording errors. On the other
hand, choosing a value for TOL that is too large may exclude
predictor variables that are functions of other predictor
variables even when those variables would contribute greatly to
predictive efficiency. Unless specified otherwise, the value of
TOL is set to 1073
applications.

, which has been shown to be suitable for most

RANGE TABLE

The Range Table gives the means, standard deviations, and
maximum and minimum values for the observed values for the
dependent variable, predicted scores, and residuals. The table
also gives the residual variance and the coefficients of
correlation and determination between the observed values for the
dependent variable and the predicted scores, and between the
residuals and the predicted scores.

The maximum and minimum range values for the observed values
for the dependent variable and the predicted scores should be
comparable. Vast differences between maximums or minimums, as
compared to the residual standard deviation, may indicate either
an error in the data or the inability to predict extreme values of
the criterion, suggesting additional terms need to be included in
the model.

TABLE OF LARGEST RESIDUALS

The table of largest residuals gives the case identification
number, predicted score for the dependent variable, and residual
and predictor values (includes variable name and identification

15
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number for all variables in the prediction system) for the cases
associated with the X largest residuals. X is the lesser of the
following two quantities: 10, or the number of cases divided by
20. The detection of outliers or data errors is facilitated by
printing extreme residual values. The range values for the
residuals should be within plus or minus three standard deviations
of the residual mean., This is in accord with the fact that in a
normal population virtually all points lie within plus or minus
three standard deviations of the mean.

K. TABLE OF RESIDUALS
This table is printed upon request by the user and lists for
each observation, the case identification number, predicted score
for the dependent variable, and residual value.

V. RESIDUAL PLOTS
Descriptions of the REGRX residual analysis facilities are
presented below. To complement these descriptions, the reader is
referred to Oraper and Smith (1966) where an excellent discussion of

the analysis of residuals is presented.

Plot of Residuals vs Predicted Scores

A plot of residuals versus predicted scores for a typical REGRX
problem is shown in Figure ). The residual axis appears vertically on
the page. Two scales are given: (a) the standardized residual, and
(b) the residual itself. The two rows immediately above and below the
plot represent the predicted score axis. The first and last entries
on this axis are the smallest and largest predicted scores. If rj
and 5. are the jth residual and the residual standard deviation;
respectively, then the standardized residual is rj/Sr' whfn the
residuals follow a normal distribution with variance s;, the
standardized residuals follow a normal distribution with variance
unity. Thus, approximately 95% of the residuals would be expected to

fall between -2 and +2 on this axis.

16
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A cell is defined as the intersection of a row and a column of the
graph. FEach cell may have several points plotted within it. The
maximum cell frequency, i.e., the largest number of points plotted
within a cell of the graph, is printed at the top of the plot. In
Figure 1, MAXIMUM CELL FREQ = 3. The number of points plotted within
a cell is indicated by a numeric character or asterisk. The numeric
character L indicates that between 10L and 10(L+1) percent of the
maxtmum cell frequency points were plotted in the respective cell., An
asterisk indicates that the cell contains exactly MAXIMUM CELL FREQ
points. For example, a numeric character 4 with a MAXIMUM CELL
FREQ=20 would indicate that between 40 and 50 percent of 20 points,
i.e., between & and 10 paints, are plotted in that particular cell.
Truncation is assumed. [If MAXIMUM CELL FREQ = 5, then between 40 and
50 percent of 5 points, i.e., 2 points, are plotted in a cell where
L=4. Similarly, a numeric characier of 2 would indicate that exactly
one point is plotted in the cell. The printing of cell frequency
count indicators takes precedence over all other printing requirements.

A row of equal signs and a column of periods identify the residuai
mean and the predicted score mean, respectively. The REGRX algorithm
performs a quadratic regression of the residuals on the predicted
scores, i.e., the independent variable appears in the first and second
degree in the model. The dashes in Figure 1 depict quadratic
regressions of the residuals on the predicted scores for the set of
points located above the initial quadratic regression and for the set
of points located below the initial quadratic regression.

This plot is wuseful in detecting heteroscedasticity (unequal
variances for error terms) and model inadequacies. If neither of
these abnormalities is present, the plotted points should appear as a
random scatter of points about a line parallel to the predicted score
axis and intercepting the residual axis at zero. However, a
systematic pattern of points such as a wedge (heteroscedasticity) or
curvilinear (model inadequacy) shape signals the need for corrective
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action. I[f heteroscedasticity is present, the analyst should consider
the use of weighted least squares or various transformations of the
dependent variable such as \ﬁ?, 1/Y, and log Y. Similarly, methods of
dealing with model inadequacy are transforming the dependent variable

or including additional terms in the model such as square or

cross-product terms.

This piot is also useful in detecting outliers (points that are
more than three standard deviations from the residual mean). Since

the least squares fit 1is "pulled” disproportionately toward these
observations, outliers should be carefully examined to determine if
they convey important information about the analysis or if they
resulted from a procedural error such as a miscalculation, inaccurate
recording or equipment malfunction. 1In general, an outlier should not
be eliminated from the analysis unless the task scientist can identify

an errar source causing the extreme value.
The plotted points in Ffigure 1 exhibit no severe abnormalities
such as thoce exhibited in Oraper and Smith (1966); however, the

dashes do show a slight curvilinear trend in the data.

Residual Frequency Plot

This plot (shown in Figure 1) is printed on the same page as the
previously discussed plot. The residual axis appears vertically on
the page. The number of points Falling within each interval of the
residual axis is printed vertically in the left margin. 1If N is the
total number of residuals, i.e., the total number of cases, and if L
is the frequency count for an interval on the residual axis, then
100, /N percent of thce residuals fall in this particular interval.
Each equal sign represents one-fourth percent of the total number of

points; therefore, 40NL/N equal signs would be printed on the line
corresponding to that interval.

A normal frequency curve is superimposed on the frequency plot as
a series of plus signs and "]" symbols, the plus sign representing an
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overlap between an equal sign and a "]* symbol. The purpose of this
superimposed curve is to provide a visual standard against which the
observed frequency curve can be compared. The chi-square value printed
at *the top of the plot provides a quantitative test of the hypothesis
that the residuals are normally distributed. NUMBER OF C(ELLS is the
number of intervals (ranges from 5 to 49 depending on sample size)
used for this test. PROBLEM NORMAL is the probability of exceeding the
chi-square value when the residuals are normally distributed.
Measures of the asymmetry (skewness) and flatness (kurtosis) are
printed above the chi-square value.

The correlation coefficients between the residuals and the
predicted scores and between the residuals and the squared predicted
scores are printed below the plot. The first of these correlation
coefficients is expected to be zero and the second is an indicator of
the quadratic tendency between the residuals and the predicted scores.

Cumulative Frequency Plot

The residual axis appears vertically on the page in Figure 2 in
the same manner as for the ptot of residuals versus predicted scores.

The horizontal axis at the top of tne graph is the cumnulative
frequency axis with the cumulative frequencies given as fractions of
the total sample size. Thus, if N=357 is the total number of cases, 4
fraction of X=.510 would indicate a cumulative frequency of
(X} (N)={.510)(357)=182. The frequency curve 1is plottad using the
symbol "F" or an asterisk. A curve drawn through the Fs and asterisks
should resemble a normal cumulative frequency curve. For visual
comparison, a normal cumulative frequency curve could have been
superimposed on the graph. However, it 1is easier to observe a
deviation from a straight 1line than it 1is from the normal curve.
Therefore, as an alternative, the observed frequercy plot was
transformed in such a manner that it gives a straight line if the
original plot was in fact a norma! cumulative frequency curve but
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would deviate from a straight line if the original differed from a
normal curve.

The horizontal axis at the bottom of the graph is the cumulative
frequency axis for the transformed curve. The transformed cumulative
frequency curve is superimposed on the cumulative frequency plot using
the symbol "N" or an asterisk. The asterisk represents a point at
which the original curve and its transform intersect. The horizontal
row of equal signs corresponds to the residual mean.

Plot of Residuals versus Predictor Values

A pnlot of the residuals versus a predictor variable is shown in
Figure 3. The values on the horizontal axis are the values of the
predictor. A horizontal row of ocqual signs and a vertical row of
periods identify the residual mean and predictor variable wmean,
respectively. The correlation coefficients between the residuals and
the predictor variable scores and between the residuals and the
squared predictor variable scores are printed below the plot. The
residual axis appears vertically on the page in the same manner as for
the plot of residuals versus predicted scores. In addition, the
maximum cell frequency value, numeric characters, and asterisk and
dash symbols are printed as before.

This plot is useful 1in detecting heteroscedasticity and model
inadequacies. As before, the absence of abnormalities is indicated by
a random scatter of points about a line parallel to the predictor
score axis intercepting the residual axis at zero. A wedge-shaped
point scatter is indicative of heteroscedasticity. Possible correc-
tive actions that should be investigated by the task scientist include
the use of weighted least sguares and various transformations of the
dependent variable such as Y/Xj or Y\fig. A curvilinear trend in
the point scatter is indicative of an inadequate model. Possible
corrective actions for this abnormality include the use of various
transformations on the dependent variable and adding terms to the

model such as square or interaction terms. Outliers are also easily




jdentified in these plots. The plotted points in Figure 3 exhibit no

severe abnormalities.
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APPENDIX A: CORRELATION APPROACH TO REGRESSION'I

Regression methodology is concerned with the problem of estimating
the parameters 0], 855 -ons op, and a in the linear model
Y= a1+x]0]+...+xp0p+E = al+X@+E. For this problem, the
following assumptions are commnonly made: X is a matrix of known form
and the error component, E, is assumed to be distributed with mean
vector O and variance-covariance matrix azl. According to the
Gauss-Markov Theorem, the minimum variance unbiased linear estimators

as 5],...,50 for the parameters «, 0], ..., 8_ are obtained by

p
the method of least squares. This method leads to a system of linear

equations, called the normal equations, which are solved for a and é.

1'v = 11a+ 17xe
X'Y-x"1a+ xx0

The superscript T denotes that the columns of XT are the rows of X
and the rows of XT are the columns of X. To decrease the effects of
rounding error in the computation of the solution of the normal
equations, the observations Xij and Yj are first centered and then

rescaled to standardized form Z; and y., where

J J
o= (X, - X, ., = (Y, - ¥
2357 W4y = Rspe oy = (4 - DYy
Xij = jth observation of variable i
Xi = sample mean for variable i
s. = sample standard deviation for variable i

i

IMatrices, vectors, and scalars will be denoted hy uppercase
boldface letters, lowercase boldface letters, and upper or lowercase
reqular typeface, respectively. Numerically subscripted scalars
identify elements of matrices (row identification, column
identification) or vectors (row identification) and numerically
subscripted matrices identify partitioned elements of matrices.

27
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The normal equations can be rewritten in terms of the standardized
variables as

9 =Ryb
where @ = -:TZTV
z = (zy;)
1
Ry = 17
b =S8
Sy

S = diag (s;)

S = diag (s].) means that 8 is a diagonal matrix with the ith
diagonal entry equal to S5 - The cstimates @ are calculated by solving
the system Rjjb =g for b and then computing 6; . Sy bj.

- - . . Si
Finally a is obtained from a =Y - X387y -...- Xpfp.
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APPENDIX B: COMPUTATIONAL DETAILS OF REGRX ALGORITHM2

The Gaussian elimination algorithm is used to compute the statis-
tics required to implement the stepwise program (Oraper & Smith, 1966;
Efroymson, 1960). The algorithm depends on the following observation.
If Pand Qare nonsingular matrices, then the two systems R”b =g
and PR] ]Qh=Pg are equivalent in the sense that h is a solution
of the second system if and only if Qhis a solution of the first.
Hence, if the second system can be solved for some Pand Q, then the
solution of the first system is easily derived. In particular, if P
and Q are such that PR”Q is triangular or diagonal, then the
second system can be solved immediately. In practice, @ appears as a
subvector of a row and column in a larger matrix Rwhich also includes
R” as a submatrix.

Any r x ¢ matrix A may be written in partitioned form as
Afy A - e Ay

A=A, A22""A2b

A ASZ""ASb

sl

S [
where Ay s r. xc., ]};] ri = r and k2=':l ¢, = ¢

Ry, ¢

g 1

In the REGRX algorithm, as in most regression algorithms, the (i, j)

A typical partitioning of R is the following R =

entry of R is the Pearson product moment correlation coefficient
between variables i and j based on the sample data for the regression
problem. The superscript T denotes that the column vector g has been
transposed into row vector form.

2 See footnote in Appendix A.




In the Gaussian elimination algorithm, Qis the identity matrix.
The matrix P is obtained as a product of the factors P(]), P(Z),...
At cthe first step, P(]) is calculated and R is transformed to

p (R . Renaming p(1) =M(1) and P(NR = R(1), the succeeding

steps proceed by calculating P(1), M(1) = p(1) pli-1), and
r (). pli)gli-N)

Ltet i’ denote the variable to be added or deleted from the
equation for step i-1. [If variable i s added, then pli) g
computed so that the i’ column of R(i) is the i column of the
identity matrix. If variable i’ is deleted, then P(i) is computed
so that the i column of M(i) is the i' column of the identity
matrix. The matrix P(i) is equal to the identity matrix except in
column i' . The i column of P'{1) is chosen in the following
manner. If variable i is being added and the i’ column of R(i'])

is denoted by (a;, a,...,ay ,...,aV)T, then the i  column

2

of PLI) is -1 (@7y..052i _15-152i47s---2y)T. If variable i
a,
i .
is being deleted and the i column of MU= 45 denoted by

(a],az,...,ai',...a )T, then the i column of P(l)'

v
is == (@]y+40227" _12-123{ +]s--+53y)T. Recalling that L denotes

the se1t of variables in the regression equation for step i and E
contains all independent variables that are not in L, it is easy to
see that if jeL (j is an element of L), then column j of R“) is
equal to column j of the identity matrix; and if k€E, then column k
of M(i) is equal to column k of the identity matrix.

Let p denote the number of elements in L. Symmetrically reorder
the rows and columns of R(i) so that the tirst p rows and columns
of the reordered matrix will coincide with the rows and columns of
H(i) corresponding to the elements of L. Mathematically this is
accomplished by postmultiplying R(i) and M(i) by a p_ermutation
matrix which is denoted by QL and premultiplying R(” QL and
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M) QL byQ{. Thus the matricesQIR(i)QL andQI M (oL

will have the special forms

T o(i) [ D2

where 'p is the p x p identity matrix
0 is an (m-p) x p matrix of Os
Dy, is p x (m-p)
D,, is (m-p) x (m-p)

SO0

-2 QIm\lg - | oy

where Sis p x p
Uis (m-p) x p
0is a p x (m-p) matrix of Os

I nop is the (m-p) x (m-p) identity matrix

If this same reordering of rows and columns is performed on R, then
from

R(i) = M(i)R the following matrix identity must hold.

QLT RmQL ’QLTM“)RQ =[QLTM“)QL; [QLTRQ]"'
(-3, D] [ © Ry Ryl
0 Dy, U hnpl (R RzzJ
Ry By

where QIRQL =
T
R, R

22
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Any ¢ x d matrix B is said to be partitioned conformable to the
matrix A if

b q
where Bkj is ¢, x dJ., kgl ¢, =€, and J; dj=d.

The product C=AB may be written in partitioned form as

Cn ....C]q
C-
csl ....qu
where = bAB isr, xd
Ci. 3 Pk Pk i * 9
J
\ k=1
{
4
} Performing the matrix multiplication and equating corresponding
) partitions gives
y
. -
. _ m-l
(i1) D, = Ry Ry,
(1-4)
ot
(1i1) U-= -D]2
(ivy D, = R,-R_R;R
22 22 712711 12

Note that R” is the correlation matrix of the variables in the set
: L. Let g denote the column of R]2 corresponding to variable v,
where either v€E or v is the variable number of the response. Let b
denote the corresponding column of D]?_. The elements of g are the
correlations of variable v with the variables in the set L and 1-4(ii)
implies that b satisfies the equation R”b = @. Therefore, the
elements of b are the standardized regression weights for the
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regression of variable v on the variables in set L. 1-4(iv) implies
that the diagonal entry va of [)22 directly below the b column

of Dy is equal to 1- gf Rﬂg =1-gTb = 1-R2L(v) where RE(V)

is the squared multiple correlation coefficient for the regression of
variable v on the set of variables L. The off-diagonal elements of
552 may be converted to partial correlation coefficients after
dividing by the square root of the diagonal elements in the same row
and column. Thus the (j,k) element of 022 divided by the square
roots of the (j,j) and (k,k) elements is the partial correlation ]

coefficient between variables i and v, after removing the linear

2
influence of the variables in the set L, where vy and Vo refer to

the variables occupying the j and k columns {(and rows) ofl)zz.

Further characterizations of the elements of S, D]2, and 022
are obtained through a careful study of an individual step in the
elimination procedure. Figqure Bl is a representation of the
operations performed during step i+1 showing the transitions R(])

(i+1) (i) M(1'+]) . .
toR and M to for the case where variable j is
deleted from the regression equation. In Figure B1, L denotes the set
of p variables in the equation at step i, so jeL. ()L denotes a

permutation matrix that reorders variables so that all variables in L

S appear first; moreover, within L, variable j appears last (i.e.,
th
p-)

variable j is added. In Figure B2, L denotes the set of variables in

. Figure B2 shows the same transitions for the case where

the equation at step i+l, so jeL. ()L has the same function as

described for Figure Bl. It should be mentioned that the variable j
referred to in Fiqgure Bl is not the same variable j referred to in
Figure B2. Also, the partition components of the matrices appearing
in Figure Bl are not the same as the corresponding partition
components in Figure B2 although the names used in both figures are

the same.
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Figure 81. Representation of Matrices Used During Elimination
Step i+1 for Deletion of Variable j
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Figure B2. Representation of Matrices Used During Elimination
Step i+l for Addition of Variable j.

Recall that to delete variable j at step i+l the matrix P(]+])

is chosen so that column j ofhﬂ(i+]) = P(i+1»V{i) will be equal

to column j of the identity matrix. In Figure Bl, the rows and
columns of the matrices F£i+]), R(i), R(i+1),hﬂ(i), andhﬂ(++1)

have been reordered by means of the permutation matrix ()L for the
purpose of simplifying their partitioned form. In the reordered
matrices, the elements corresponding to variables in the set L occupy
the first p rows and columns and the entries for variable j occupy the
pth row and cnlumn. Let v denote any variable not in L. Thus,

either v€E or v is the variable number of the response. The component
of d corresponding to variahle v is denoted by dv' Similarly the




diagonal entry of D corresponding to .iable v is denoted by va

Comparing QIR(])QL with (1-1), and recalling (1-4) (i1)
and (iv), it follows that dv is the standardized regression
coefficient BLJ(V) for variable j in the regression of variable v on

the set of variables L and that O, = I-Rz(v). [f v is a variable

not in the set L, then B (v) denotes the standardized regression
coefficient for varlable J in the regression of variable v on the set
of variables in L, and{>L_J(j,v) denotes the partial correlation
between variables j and v after partialling out tne linear influence
of variables in L-j. A similar comparison for

i
TR(i+1 \ '
Q R( )Q shows tnat —L = ]-r¢ \_]),i!.' "] RN S WV, andg
-] S Vv -l
dy/s = L (J v)J__L _;y_ + o\,) . Frum these relatiansnips, tne
. following results can be derived.
{
% (1) Cnaracterization ot the standardized regression coefficient
’
R in terins 0t 4 partial curreiation cuetticient,
Z
1 - R (v)
B v = L~
Lt LY ) 4 = dy
-J 2
bR,
(¢) vunaracterization of the standardized regresc<’ oleny
i terms of tne increase 1n tne squared multiple -i1ation coef-
ticient due tu tne addition of variable j ' Lcpendent contribution).
2 2
ot ) R (v) - RL_J(V)
v) =
LJ
- RS ()
L-J
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(3) Characterization of the independent contribution of a variable
in terms of the partial correlation coefficient.

RE(v) - RE_;(v) = pE_j(j,v)(l- RL_J-(v)) %ZL

(4) Characterization of the partial F-statistic for the hypothesis
BLj(V) = Q,

R2(v)- R? . 2 (j,
‘o c(v) L—J(V) (hep-1) . DL_J(J v) (hp-1) -
1- RE(v) 1- DE_j(j,V)
2 2
B d
LJ(V) (n-p-]) = S(\)/ (n_p_])
- R2( ) vV
L v
?
- R_5(3)

Note that this last formula also allows a characterization of the

standard error of the standardized regression coefficient. It is
2 2 . L

known that Fj = tj = BLj(V)/SLj(V) where tj is the t-statistic for

the hypothesis BLj(v) = 0 and sLj(v) is the standard error of BLj(v).

(5) Characterization of the standard error of the standardized
regression coefficient.

- Rre
, 1= RE(Y) ! ) s,
L) 2 (n-p-1) ) n-p-1
V- RL-j(J)
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In two final results, a characterization for the elements of the

inverse and the determinant of the correlation matrix is obtained.

Comparing ()Ihﬂ(ikJL with (1-2) (using (1-4)(i)) and denoting the

correlation matrix for the variables in the set L by R]], it follows

that the diagonal entry, s, of R;{ corresponding to variable j is

equal to the reciprocal of 1- RZ_;(3). Comparing Q] R(I*1Q

with (1-1) and recalling (1-4)(ii), it also follows that lp is the
S

vector of standardized regression weights for the regression of
variable j on the remaining variabies in the set L. Therefore, the

non-diagonal entries of the column of R;: corresponding to variable

j have a simple reiation tc the standardized regression weights for

the regression of variable j or the remaining variables in the set L.

To obtain the expression for the determinant, suppose that

P(i+]), P(i+2),..., pli*p) were chosen to successively delete

variables from L until it was empty; then the expression

. . n
plitp)  pl*) MUY ould hold.  This fact implies

tnat det (PP L POy 2 y/dee(MUT)). 1t s also known
that det(M(1)) = det (RH) 1/det( Rq7) and det ( P(i*1)) =

1

< = l-RE_J(j). A generalization of this relationship gives
i)y = 1-R2 i i+p-1)y =

det( P(i+2)) = 1 RL_J_jZ(Jg), ..., det(Pli*p-1))

-R¢ . i -1), det(P{i*P)) = 1, wh 12, 33 eees ]

] RL-J-‘]Z-"'-JD_](JP ])9 et(P ) » wnere JZa J3 ’ Jp

is tne order of deletion of variables. Simplifying this notation gives

tne following general result:

det(Rin) = (1 -85 (VRS ,)OV-RE 550 oo 0-RE oy )

where, for example, Rﬁ 321 represents the squared multiple

correlation coefficient from the regression of variable 4 on variables
1 througn 3.
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Tne formula for the partial F for entry remains to be derived.

This is most easily accomplished by means of Figure B2. As before,
let dV denote the component of d corresponding to variable v and let

va denote the diagonal entry of D corresponding to variable v. |

Comparing QIR(i)QLand QER(H])QL with (1-1) and recalling i
(1-4)(iv), it follows that 1 - RE~j(v) = Dyys s = 1 - RE_(3),

, d? ;
and l-Rf(v) = Dyy "%? . Tnerefore, the increase in the squared . i

multiple correlation due to the addition of variable j is

2 2 de
RL(V) = R _j(v) = —%g. This gives the following computational
formula for the partial F-statistic for the entry of variable j.
2
dy
RZ(v) - RZ (v}
Fy - L L-J (n-p-1) = s (n-p-1)
1= REV) (d3)

Dvy-

AL QL FHRE SR
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