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ABSTRACT

Many problems, such as cutting stock probiems and the scheduling of tasks with a

shared resource, can be viewed as two-dimensionai bin packing problems. Using ‘
the two-dimensional packing model of Baker, Coffinan, and Rivest, a finite list L ;
of rectangles is to be packed into a rectangular bin of finite width but infinite |
height, so as to minimize the total height used. An algorithm which packs the list

in the order given without locking ahead or moving pieces aiready packed is called

an on-line algorithm. Since the problem of finding an optimal packing is NP-hard,

previous work has been directed at finding approximation algorithms. Most of the

approximation aigorithms which have been studied are om-line except that they

require the list to have been previously sorted by height or width. This paper

examines lower bounds for the worst-case performance of on-line algorithms for

both non-preordered iists and for lists preordered by increasing or decreasing height

or width.

N g e T

Introduction

Two-dimensional packing problems arise in many contexts. For exampie, curting stock prob-
lems involving rolls or sheets of material and the scheduling of tasks with a shared resource can be
viewed as two-dimensional packing probiems. In the model proposed by Baker. Coffman and
Rivest [2), a finite list L of rectangles is to be packed into a rectanguiar bin of finite width but infin-
ite height, in such a way as to minimize the maximum height used. The packed rectangies cannot
overlap, nor can they be rotated. Since the problem of finding an optimal packing is NP-hard (2],
several approximation algorithms have been studied [1,2,3,6,7,10]. Figure 1 illustrates possibie
packings of a list of five pieces, with sizes as specified. . Notice that, for a computer scheduling
application, the horizontal dimension represents core while the vertical dimension represents time.

A two-dimensional bin packing algorithm is said to be on-line if, given a list of rectangies
L= (pl,....p.), it

® packs the rectangles in the order given by L,

® packs each rectangle p; without looking ahead at any p; (j > i), and

® nevers moves a rectangle aiready packed.

*This author's work was supported by the Joint Services Electromics Program (U.S. Army, U.S. Navy and U.S.
Air Force) under Coatract DAAG-29-78-C-0016.
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Most of the algorithms which have been studied are designed to pack lists already sorted by decreas-
ing or increasing height or width. Thus, some simple preordering is done before the actual on-line
packing. For instance, the Split algorithm (7] is an on-line algorithm which requires that the list be
ordered by decreasing width. Next-Fit and First-Fit Decreasing Height [6] are on-line algorithms
which require that the list be first sorted by decreasing height. On the other hand. the Next-Fit and
First-Fit Shelf algorithms (3] are on-line and do not require that the list be preordered.

This paper examines lower bounds for the performance of on-line packing algorithms for both
non-preordered lists and for lists preordered by decreasing or increasing height or width. As a spe-
cial case. lower bounds for packing squares in order of increasing or decreasing size are also investi-
gated.

Absolute Lower Bounds

For any algorithm A, let A(L) denote the height of the packing of L produced by A and let
OPT(L) denote the height used by an optimal packing. As a measure of absolute worst-case perfor-

mance, we study the ratio OPTL) ; i.e., we consider bounds of the form A(L)saOPT(L), where o

is some constant.

A piece (rectangie) p; is said to have size (x,,y;) if p; has width x; and height y;. Pieces p; and
p; are said to be colateral at height h from the bottom of the bin in a packing if a horizontal line at
height & intersects both p; and p;. For instance, in Figure 1b pieces p,, p4, and ps are colateral at
helght 5. f L, = (p(1 ..... p,") and L; = (p}‘, ...,p,-_) are two lists, then we write L\L, to denote their

concatenarion (p,x, s Pi Py e p;.)-

When presented with lists which are not preordered appropriately, most of the algorithms
which have been studied either are undefined or have performance which can be arbitrarily bad
rejative to an optimal packing, i.e. for any a, there is a list L such that A(L)>aOPT(L). The two
exceptions are the Next-Fit and First-Fit Shelf algorithms of Baker and Schwartz [3]. Of these, the
First-Fit Sheif algorithm performs better, with a worst-case performance of at most 6.99 OPT(L).
We give here a corresponding lower bound of about 2; every on-line aigorithm packs some list so
badly that it comes arbitrarily close to doubling the height of an optimal packing. Thus, even for
unpreordered lists, there may be room for substantial improvement over the performance of the
First-Fit Sheif algorithm.

THEOREM 1: Let A be an on-line algorithm. For any 5>0. there is a list L for which

A(L) > (2-8) OPT(L).
Proof: Let 5 and ¢ be fixed, with 0<e<3/4, and suppose that the bin has width 3. We obtain a
contradiction by assuming that, for every list L, A(L)=(2-3) OPT(L). In particular, we construct a

list L=LLsl3LeLs (With each list L, consisting of a single piece p;) for which it cannot be the case
that

A(Ll ..... Lg) s (2‘5) OP'T(Ll ..... Lt)
for each k, 1sksS5. In other words,

ALY ALy Aoy _Alidabsld  _a(L) }>,
OPT(L,) " OPT(L,L,) OPT(LLsL;) OPT(L,L.LsLs) OPT(L) -

-3.

Let L, consist of a piece p, of size (1.1). The aigorithm A packs p, at some height 4,, as
indicated in Figure 2a. Let the next piece, p., have size (3.4 +¢). Clearly, p; must be placed
above py Let 4, denote the difference in height between the top of p; and the bottom of p,, If the
next piece, p;, has size (1.1+h+h,+¢), then p; is too tall to fit below p, and so A must place p, at
some height h; above the top of p,.

Assume that, for 1sk<3,
A(Ly...L) <20PT(L,...L).
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Letting y; denote the height of piece p;,, we have:
ALY _ m+n

<2 = [<y =1

OPT(L)) n
Al _ mtyithaty, <3
OPT(L\Ly) yityz -

- h1+h2 < yi+ys =l+h+e

- Ay < l+e

AlLilaly) _ m+yithatyrths+ys <
OPT(LLyL3) ya*+y3

2
- h1+h2+h3+y1 < yoty; = (h14'!)+(1+h1+h2+€)

- hy < hy+-26 < 1+2

So if piece p, has size (3,1+2¢), then y, > max{h,, k4, 43}, and p, will be piaced with its bottom at
some height h, above the top of p;. A piece ps of size (1,1+#y+Ay+h3+h,+2¢) would then have
to be placed above p,, gziving:

A(LLalslds)
Z hy+yr1+hy+yr+riytysthatyatys
= h+l+hptyrrhyt(1+h+hy+e)+hatya+ys
= yr+yatyst(h+re)+(1+2e)+(1+h+hythy+he+2e)+hy—de
= 2ys+ye+ys|+hy—de.
Noting that OPT(L) = y;+y,+ys > 1 (see Figure 2b), we have
A(L) = 2 OPT(L)+h,—de
> 2 OPT(L)-8
> (2~8) OPT(L)
thereby proving the theorem. G

The Bottom-Leftmost algorithm [2] and the Spiit aigorithm [7] both have a worst case perfor-
mance of 3 OPT(L) for lists ordered by decreasing width. The following resuit shows that every
on-lin\%algonithm which packs pieces ordered by decreasing width has a worst case bound of at least

(1+-—3—)OFI'(L).‘
THEOREM 2: For any on-line algorithm A, there is a list L ordered by decreasing width such that
AL) = (1+13§) OPT(L) > 1.81 OPT(L).

Proof: Let ¢ be fixed, 0<e<<;. Consider the list of rectangles L =L\LoLsLq where

L, cousists of 8 pieces of size (3-3e.1),

L, consists of 6 pieces of size (1+¢, -1+ V6 ),

*This is an improvement over Storer’s resuit of approxumately {.78 (11].
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L; consists of 3 pieces of size (1,2),
L, consists of 3 pieces of size (1,3).
Note that L is ordered by decreasing width.

Figures 3a,b.c,d give optimal packings of lists L), L\L;, LiLols, and LLoLile = L, respec-
tively, for a bin of width 12. Therefore,

OPT(L,) = 1,
OPT(L\Ly) = 2.
OPT(L\Lols) = V6.
OPT(L\LoLsls) = OPT(L) = 3.

It is shown that any algorithm which packs each of the lists L;, L\L;, LiLoL; in sich a way

Ay < @+ opTey),

AL < 1+ 48) oPTLy),

Aiaks) < (1+58) OPTE LaLy),

that

will necessarily lead to a packing of list LiLolsls = L for which A(L) = (1+§) OPT(L). In

other words, we assume that
ALy AWy _Aldoy) _a@w) | “_L/_-Q_
OPT(L,) " OPT(L\L,) " OPT(L\L.Ly) " OPT(L) 3
and then obtain a contradiction, thereby proving the theorem.

We must first pack L,. Since OPT(L,)=1, it is clear that the bottom of every L, piece must
be strictly \}giaw height 1, or eise we would violate our assumpdon that
A(Ly) < (1+—3—6-) OPT(L,). Thus, for sufficiently smail 3,>0, all L, pieces are colateral in the bin
at height 1-3, (see Figure 4a). Since the bin is filled to a width of 12—24e at height 1-3,, the

total remaining unfilled space is only 24¢. Noue of the remaining pieces of L will be able to fit
below height 1.

Now each piece of L, must be placed with its bottom at or above height 1 and will therefore
reach a height at least V6 in the bin. As above, in order to avoid violating
ALy < (1+-3—6-)orr(1.11.2), the L pieces are colateral at height V—3, in the bin, for any suf-
ficieadly small 3, (see Figure 4b). In particular, it is aot possibie to pack two L, pieces on top of
each other, because this would give

ALy |, 1+2A-1+VE) . VE
OPT(LL,) 2 3

Similarly, no L, piece can be placed oa top of an L; piece because we would have

Alldols) | 1+(=1+VEB+2 _ 1_,__\/_3
OPT(LLoLy) V6 3

So at height \V/6—8,, the three L; pieces are colateral with the L, pieces, filling the bin to a width of

9+6¢. Thus, it is not possible to pack ail of the L, pieces below height V6. At least one of them
must be above an L, or an L; piece, which gives

AL) 5 L+(=1+VE)+3 _ . V6

OPT(L) 3 3
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This contradicts our assumption, proving the desired resuit. Q

The First-Fit Decreasing Height algorithm (6] does somewhat better than the above aigorithms
which use decreasing width; its performance is at most 2.7 OPT(L). The following theorem gives a

corresponding lower bound of %
THEOREM 3: For any on-line algorithm A, there is a list L ordered by decreasing height such that
AQ) = £ OPTQ).
Proof: Consider a bin of width 6. For 0<e< Tzi' let the list L=L,L,L; be defined as foilows:
L, consists of 6 pieces of size (1-2¢,1),
L, consists of 6 pieces of size (2+¢,1),
L3 consists of 6 pieces of size (3+¢,1).
Observing Figure 5a, it is easy to verify that
O!’I'(L,) = 1,
CPT(L\Ly) = 3,
OFI‘(LleL,) = 0.
Assume that

{ ALY ALy _a(L) }<_5_
OPT(L,) " OPT(L.L,) ' OPT(L) 3

Then, in order to avoid vioiating this assumption, the bottom of every L, piece must be strictly
below height 1; i.e., for sufficiently smail 3>0, all L, pieces are colateral at height 1-5. Since no
L, piece will fit below height 1, and yet ail the L, pieces must pack below height 5 (since
OPT(L,L,) = 3), there is not enough height for four L, pieces to fit above each other. Also, no
three pieces of L, or L; can be colateral. Thus, there is no way to leave space for an L3 piece beiow
height 4, and an algorithm A can do no better than to pack L, as shown in Figure 5b. But this
forces ail the pieces in L; to be at or above height 4 and. since no two L pieces can be colateral,
A(L)z10= %orr(z.). a

Some algorithms perform better for squares than for rectangies. The Bortom-Leftmost aigo-
rithm {2] and the Next-Fit and First-Fit Decreasing Height algorithms [6] pack squares in order of
decreasing size with performance no worse than 2 OPT(L). This performance is not bad in light of
the following theorem.

THEOREM 4: Let A be any on-line algorithm. For agy >0, there is a list L of squares ordered by
decreasing size such that
A(L) > (1.5—-8) OPT(L).

Proof: This proof uses a list L consisting of two squares of size %*e and four squares of size %—e.
where 0<¢<%5. An optimal packing into a bin of width 1, illustrated in Figure 6a, has height %
For L ordered by decreasing size, the two %4-& squares must be packed first. In order to achieve
A(L) < (1.5-38) OPT(L), they would have to be colateral at height %-0-:—61, for sufficiently smail
8. Since this fills the bin to a width of 2 2e. there is not enough space left for a third piece at
height %4-:—81. Thus, ail four of the %-: squares must be placed with their bottoms at height at

least %-v-:. Because no four of the squares can be colateral, the best any on-line algorithm can do

— e ——— b v e . e PR . B
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is to have A(L) = 1—¢, as illustrated in Figure 6b. This gives

A(L) l—e _3_3.,53_5 g
om'(z.)zé 27

2 2

Most of the algorithms thus far proposed have used lists ordered by decreasing width or
height. An obvious alternative would be to pack pieces in order of increasing width or height. The
lower bound in this case is somewhat higher than the other lower bounds presented here for preor-
dered lists.

THEOREM S5: For any on-line aigorithm A, there is a list L ordered by both increasing width and
increasing height such that
a@) = 127 opTQ) > 1.82 OPTQ).

Proof: Let ¢ be fixed, 0<e<<. For k=231, consider the list of pieces L=LiLoLsL, Where

L, consists of 4 pieces of size (1-¢,1),
L, consists of 2 pieces of size (1.%),
Lj consists of 1 piece of size (1.k-1),
L4 cousists of 1 piece of size (1+¢,k).
An optimai packing of L into a bin of width 4 is illustrated in Figure 7a. Notice that
OPT(L) = 1,
OPT(L\L,) = 2,
OPT(L Lols) = §+1
OPT(L) = k.
We shall show that the assumption
{ AL)  _Aldy) Aol _a@) } < 1V
OPT(L,) ' OPT(L\L,) OPT(L,L.L;) OPT(L) 2
leads to a contradicton.

Since OPT(L,)=1, all L, pieces must be colateral at height 1-3, for sufficiently small 8,. So
at height | —3&,, the bin is filled to a width of 4—de, which forces all remaining pieces to have thewr
bottoms at height at least 1 (see Figure 7b). Thus, the L, pieces must be colateral at height

1-,--’2‘-—52, for sufficiently small 5,; otherwise the above assumption would be violated, because the

L, pieces would reach height 1+£+-k-, and

2 2
k k
AlLLr) 33 o lrk | 1eVT
OPT(LLy) 2 2 2

In fact the L3 piece must also be colateral with the L, pieces at height 14-17‘-—51, or eise

k
A(L\LyLs) 1+ 2 *+(k=1) o 3k 1eNVT
OPT(L.L.L3) k k+2 2

-1

But having the L, and L; pieces all colateral at height 1+-f-—62 means that there is not enough
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width left to fit the L, piece also at this height. This forces

k
A L TR mer 1w
OPT(L) p % T

So our assumption must be incorrect, which proves the desired resuit. G

Similarly, the lower bound for squares preordered by increasing size is higher than for squares
preordered by decreasing size.

THEOREM 6: For any on-line algorithm A, and any 5>0, there is a list L of squares ordered by
increasing size such that
AQ) > ($-3) OPTW).

Proof: For fixed e, 0<e<min {43. ¢}, consider the list of squares L = LL,L3, where
L consists of 7 squares of size 1—¢,
L consists of 2 squares of size 2.
L; consists of 1 square of size 4.
Figure 9a illustrates an optimal packing of L into a bin of width 8—¢, and
OPT(L,) = 1—«,
OPT(L\Ly) = 2,
OPT(L) = 4.

Once again, we prove that

{ AL _ALLY _AQL) }> 7_s

OPT(L,) OPT(L.Ly) OPTW)) 4 °
by assuming the contrary.
A(Ly) 7. . .
In order for OPT(Ly) < 7. it must be the case that all L, pieces are colateral at height

1-e—3,, for sufficiently smail 3,. Thus each L, square must have its bottom at height at least 1 —e¢.
For sufficiently smalil 34, the L, pieces must be colaterai at height 3~e¢— 34, or eise we would have
ALLY | (1-e+2+2 7 _o
OPT(L,L;) 2 4

This means that the bin is filled to width 4 at height 3—«—3, (see Figure 8b), and so the square of
size 4 must be packed above an L; square, giving

A(L) o B=e+d _Tze (T o
OPT(L) 4 4 '

Asymptotic Lower Bounds

The lower bounds cited above are ail bounds for absolute worst-case performance. If H. a,
and B are constants such that, for every list L with pieces of height at most H,
A(L)sa OPT(L)~8. then a is called an asymproric worst case bound. The absolute worst case
bound seems to be a better measure of performance when the number of rectangies to be packed is
smail, whereas the asymptotic bound is a better measure when the number of rectangles is large.

In this section we shail need the following definition. If horizontai lines are drawn across the
bin through the top and bottom of each piece, as illustrated in Figure 9, the region between two




successive horizontal lines is called a siice.

The results of Brown 4] and Liang (9} for one-dimensional bin packing.can be interpreted in
two dimensions to give the following resuit.

THEOREM 7: Any on-line aigonithm which packs rectangles in order of mausmg or decreasng
height or increasing width has an asymptotic bound of at least 1.536.

The First-Fit Decreasing Height algorithm has an asymptotic worst-case bound of 1.7 6],
which is not much worse than 1.336. If the widest rectangie packed has width at most L'm times the
bin width, where m is a positive integer greater thapn 1, then its asymprotic worst-case bound is
(m+1¥m [6]. Thus, the narrower the pieces are with respect to the width of the bin, the berter the
algorithm performs Note that for m=2, the asymptotic bound is 1.5, which is better than the lower
bound of 1.536 for m=1.

For on-line algorithms without preordering, the asymptotic worst-case bound must also be at
least 1.536. By picking a parameter appropriately, the asymptotic performance of the First-Fit Shelf
algorithm can be made arbitrarily ciose to 1.7 (3], again oot much worse than the lower bound of
1.536.

Coffman (S} showed that for om-line algorithms which pack squares in order of decreasing
size, the asymptotic worst-case bound is at least &7. The Up-Down aigorithm packs squares
ordered by decreasing size with an asymptotic worst-case bound of 1.25 [1}, not much worse than
&7. The foilowing theorem generalizes Coffman’s result based on the maximum width of the
squares. i

THEOREM 8: Consider any on-line algorithm A and a bin of width 1. Let m be a positive integer.
Let a and B be constants such that for every list L of squajru of size at most I/m ordered by

decreasing size. A(L) s aOPT(L)+B. [f m>1, then a= . U m=1, then az <.

7

m=m+1

Proof: Let m be an integer greater than 1, and let n be a positive integer divisible by m. Consider
the list L=L,L,, where L, contains n squares of size m«lf-l

L__e. Note that OPT(L,) = “-(—L—+me) and OPT(L,L;) < n(—:
m=1 m m+1 m
10.)

+me and L, contains nm squares of size

=+me). (See Figure

L, is packed first. Let h; be the total height of slices containing csactly one segment of a
square of L, and let 4, be the total height of slices with at least two segments of squares of L, (see
Figure 9). Then

A(Ll) = h""h:

=3 [n(_m1 “+me)=mhs|+h,

+1
n

1+h2(1-m)+mne.

Thus,
A(L)) s «OPT(L)+8
z T ~hy(l=m)+mne s —(—-f];—l-‘-mt)a'-ﬁ
By ae*ﬁ-—me
eI 1 __a n
n m=-1 m’=-m m—1

A slice containing k>1 segments of squares of L, can coutain at most m—& segments of
squares of L, Therefore, after packing L, and L, the total height of pieces packed in the slices
composing 4, and A is at most (m~ 1)h;~mh,. Since the total height of squares in L, and L; is




.9.

,,(__mil +m)+m(m—i7-e). and at most m+ 1 segments fit in a slice,

1 1 1 s
A(L\Lz) 2 hy+hy+ ey {n( o +me)+nm( 1 €)= (m+ 1)hy~mhs]
= i"—.q- n
m+l m+l

AL\, s aOPT(L,L,)+8
e n (==

< + +8.
m+l m+1 Qlmﬂ‘-l nme]+8
h
Z41-L(m+y
a n n
1+m(m+1)e
h
Substituting in for T
5 ae+£—m¢
m e Bl
e > 2=l m—-m m—1 n
1+m(m+1)e
2
2B oeme
m+1 n
a>—3 1
momr e (m—-m
m(m+ 1) (m’—-m+1)e
Choosing n sufficiently large,
o
m=+1 = m’ _
x> m=-m+1 (o) m=-m+1 o)
m(m+1)

Thus, for any 3>0, a list of squares ordered by decreasing size, with each piece of size at most i.

m
can be gound such that for any onm-line aigorithm A, A(L) = aOPT(L)+~f8 implies
m
o > —————3,

S SR,
m —m+1
Note that for lists of squares of size at most 1, the asymptotic bm;nd must be at least as large
9
as for lists of squares of size at most 1/2. Therefore, for m=1, a=

e — 8/7 —
22=2+1

The following resuit extends the lower bound of 1.536 for one-dimensional on-line algorithms
(4,9] to two-dimensional algorithms which pack squares ordered by increasing size.

THEOREM 9: For any on-line aigorithm, the asymptotic worst-case bound when packing squares
ordered by increasing size is at least 1.536.

Proof: 1t is sufficient to make some straightforward modifications to the proof of Brown [4] that in
the one-dimensional case, every on-line algorithm has an asymptotic bound greater than 1.536.
Intuitively, wherever the one-dimensional proof requires summing over bins, this proof sums over
slices of varying heights.

Define the sequence of integers {a,}, for n=1, by

0132

n
an*l’1+ I-_[af

(=]
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Define
d ]

t-la‘-l
o _ 1
igla‘-l

Let 38>0 and for any  positive integer (23, choose ¢ such that

. 1 5 . _ . ,
0<€<M{a,(a,-l)(r—l)'tR,a,..l}' Let r be a multiple of (a,-,~1). Consider the list of

squares L = L\L,...L,, where L, coosists of (a,—1!~ squares of size p, = ﬁ-—(:—l)e and L,,

R = (1)

1sis¢, consists of ra,..; squares of size p; = 1 -+e¢. Then, for 1sk=y,
]t
OPT(L\Ly..Ly) S et = 1y €. 2)
Qo1

Let S be the set of all siices in the packing after L,L,...L,.,; has been packed. A slice s ¢ § inter-
sects my(s) squares of size p;. For lsis¢—1, the set a; is defined to comsist of those slices in §
which are at least haif full and in which the smallest piece has size p;. Similarly, we define 8, to be
those slices in § which are less than haif full and in which the smallest piece has size p;. Let h(a,)
(h(B:)) represent the total height of slices in a; (B;). For 1sk=:—1

k .
AL Ly...Ly) = Zl(h(ai)+h(ﬂl)) (3)
and
ALy L) =2 r+ _Sr_:h(u,-). (4)
i=t
Assume that
A(L\Lj.. L)
ia OPT(LiLy.. Ly)
It follows from (3), (4), and (5) that for |sk=s¢—1,

} < R,-%. (%)

k
OPT(L\L;...L )R, =8) > 3 (A{a;)+4(B))) (6)
(=)
and
OPT(L\Ly.. L)(R,=8) > r= S h(a:). %)
(=]
Because there are ra,..; squares of size p, (25i=¢),
[t elrarero, = Sm(s)h(s) )
[- P Py
where h(s) represents the height of slice s. Summing inequalities (6) and (7) and using (2) and (3)
gives
—8) S [l - i 1
(R, 5)k§l[ PR ra,. e} ;z a;—lm'”-'[ P +¢] 9

=1 & ! ! ;
> Z S +hB] + 7 + Shia) = T =7 Sme - (A,

k= (=] (m] LY 2l 5
3
tR.a,-,

By (1) and the choice of ¢ <

, the left hand side is less than
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e bl 10
kglaﬁ-l-k"l i.zar-lr r (10)
Combining (9) and (10)
! 1 =1
S MO T =g =) > TG+ Dhter- )+ jh(Be- ) (11)
Py m2ai—l =

At this point, it is possible to apply Brown’s original proof [4] which shows that (11) leads to 2 con-
tradiction for € < m. We conclude that the assumption in (5) is incorrect, and the
asymmptotic bound is at least R, > 1.536 for t235. O

Conciusions

The lower bounds show the extent to which it might be possible to improve on the current
packing algorithms. They suggest that decreasing height and width are likely to yieid better aigo-
rithms than increasing height or width.

In order to improve performance beyond the lower bounds presented here, it would be neces-
sary either to violate the oun-line conditions or to try other orderings of the lists. Sleator (8}
describes an aigorithm which achieves an absolute worst case bound of 2.5 by first packing pieces at
least haif as wide as the bin, and then packing the remaining pieces in order of decreasing height.
Coffman, Garey, Johnson and Tarjan [6] have investigated the Split-Fit aigorithm which has an
asymptotc bound of 1.5. It groups pieces by width and then orders each group by decreasing
height, and is not on-line since it requires moving rectangles around. More recently, Baker, Brown
and Katseff [1] have proposed the Up-Down algorithm which groups pieces by width and orders
each group by decreasing height or width, but ‘s oo-line and has an asymptodc bound of 1.25. By

. the result of Brown cited ecariier, it is substantially better than any on-line algonithm which packs
{ solely by increasing or decreasing height or by increasing width.

: Note that the proofs of Theorems 3 and 4 use pieces which are ail of the same height. Thus,
these resuits also apply 1o algorithms for one-dimensional bin packing. Theorems 3 and 4 give abso-
lute lower bounds of 3/3 and 3/2 for lists ordered by increasing size and decreasing size, respectively.
Removing the epsilons from tt.v.:3 heights in the proof of Theorem 8 gives an asymptotic one-

T

dimensional lower bound of __ng_: for pieces of size at most /m ordered by decreasing size. ;
m-=-m i
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12 ¢

10

2 4 6 8 10 12 14

(a) One possible packing of list L.

T

(X"

2 4 6 8 10 12 14
(b) An optimal packing of list L.
Figure 1. Packing list L = (pl,pz,p3,p4,p5)

with width X 3 8 114 1
and height ¥yt 6 4 43 5
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(a) A packing of L by an algorithm A.
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Figure 2,

1

B e R

2

An optimal packing of L.

Packing list L of Theorem 1.
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(a) An optimal packing of Ll.

2 4 6 8 10 12
(b) An optimal packing of L1L2.
{
A
1
¢
’. —p . o 4 *
2 4 6 8 10 12
(c) An optimal packing of L1L2L3.
2 4 6 8 10 12

(d) An optimal packing of L1L2L3L4 = L.

Figure 3., Optimal packings of sublists in Theorem 2.
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(a) A packing of L

10
6
L
4
2
2 4 6 8 10 12

(b) A packing of L by an algorithm A.

Figure 4., Packing list L of Theorem 2.
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(a) An optimal packing of L.

10

(b) A packing of L by an algorithm A.

Figure 5. Packing list L of Theorem 3.
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2/3
1/3 s
£;3 2/3 1
(a) An optimal packing of L.
1
2/3
1/3 f

1/3 2/3 1

(b) A packing of L by an algorithm A.

Figure 6. Packing list L of Theorem 4.
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(a) An optimal packing of L.

(b) A packing of L by an algorithm A.

Figure 7. Packing list L of Theorem 5.
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(a) An optimal packing of L.
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(b) A packing of L by an algorithm A.

Figure 8. Packing list L of Theorem 6.
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Division of a packing into slices,

-, By maws
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2/3 + 46.
1/3 + 2¢€
41}3 2}3 L
(a) An optimal packing of Ll'
413 + 2€
1+ 3€ 7777
2/3 + €
1/3 + 2€ T
.

1/3 2/3 1

(b) An optimal packing of L1L2.

Figure 10. Optimal packings of sublists in Theorem 8,
for m = 2 and n = 4.




