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ABSTRACr

Many problems, such as cutting stock problems and the scheduling of tasks with a
shared resource, can be viewed as two-dimensional bin packing problems. Using
the two-dimensional packing model of Baker, Coffman, and Rivest, a finite list L
of rectangles is to be paked into a rectangular bin of finite width but infinite

4 height, so as to minimize the total height used. An algorithm which packs the list
in the order given without looking ahead or moving pieces already packed is called
an on-line algorithm. Since the problem of finding an optimal packing is NP-hard,
previous work has been directed at finding approximation algorithms. Most of the
approximation algorithms which have been studied are on-line except that they
require the list to have been previously sorted by height or width. This paper
examines lower bounds for the worst-case performance of on-line algorithms for
both rion-preordered iists and for lists preordered by increasing or decreasing height
or width.

Introduction
Two-dimensional packing problems arise in many contexts. For example, cutting stock prob-

lem involving rols or sheets of material and the scheduling of tasks with a shared resource can be
viewed as two-dimensiona packing problems. In the model proposed by Baker. Coffnan and
Rivest (2J, a finite list L of rectangles is to be packed into a rectangular bin of finite width but infin-
ite height, in such a way as to minimize the maximum height used. The packed rectangles cannot
overlap, nor can they be rotated. Since the problem of finding an optimal packing is NP-hard (21,
several approximation algorithms have been studied [1,2,3,6,7,101. Figure 1 illustrates possible
packings of a list of five pieces, with sizes as specified. Notice that, for a computer scheduling
application, the horizontal dimension represents core while the vertical dimension represents time.

A two-dimensional bin packing algorithm is said to be on-line if, given a List of rectangles
L - (p p,,), it

* packs the rectangles in the order given by L,
e packs each rectangle pf without looking ahead at any pj (j/> i), and

* nevers moves a rectangle already packed.

Th~s autbor's wmk *u sipponed by the Jotm Seryvs Elearmcia Prvrpm (U.S. Army, U.S. Navy and U.S.
Air Force) under Canam DAAG-29-78-C-0016.
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Most of the algorithms which have been studied are designed to pack lists already sorted by decreas-
ing or increasing height or width. Thus. some simple preordering is done before the actual on-line
packing. For instance, the Split algorithm [7] is an on-line algorithm which requires that the list be
ordered by decreasing width. Next-Fit and First-Fit Decreasing Height (6] are on-line algorithms
which require that the list be first sorted by decreasing height. On the other hand. the Next-Fit and
First-Fit Shelf algorithms [31 are on-line and do not require that the list be preordered.

This paper examines lower bounds for the performance of on-line packing algorithms for both
non-preordered lists and for lists preordered by decreasing or increasing height or width. As a spe-
cial case, lower bounds for packing squares in order of increasing or decreasing size are also invesi-
gated.

Absolute Lower Bounds
For any algorithm A, let A (L) denote the height of the packing of L produced by A and let

OPT(L) denote the height used by an optimal packing. As a measure of absolute worst-case perfor-
A(LQmance, we study the ratio - e., we consider bounds of the form A(L)%5aOPT(L), where a

OPT(L)
is some constant.

A piece (rectangle) pi is said to have size (x,,yi) if pf has width x, and height yi. Pieces pi and
pJ are said to be colateral at height h from the bottom of the bin in a packing if a horizontal line at
height h intersects both pf and p1. For instance, in Figure lb pieces Pi, p2, and p5 are colateral at
height 5. If Lt = (pf ..... pi) and Lz - (p, ..... pj,) are two lists, then we write L1L, to denote their
concatenanon (pI, .... pj',p, ..... p,"

When presented with lists which are not preordered appropriately, most of the algorithms
which have been studied either are undefined or have performance which can be arbitrarily bad
relative to an optimal packing, i.e. for any a, there is a list L such that A(L)>aOPT(L). The two
exceptions are the Next-Fit and First-Fit Shelf algorithms of Baker and Schwartz [3]. Of these, the
First-Fit Shelf algorithm performs better, with a worst-case performance of at most 6.99 OPT(L).
We give here a corresponding lower bound of about 2; every on-ine algorithm packs some list so
badly that it comes arbitrarily close to doubling the height of an optimal packing. Thus, even for
unpreordered lists, there may be room for substantial improvement over the performance of the
First-Ft Shelf algorithm.

THEOREM 1: Let A be an on-line algorithm. For any 6>0. there is a list L for which

A(L) > (2-6) OPT(L).

Proof: Let 8 and e be fixed, with O<e<6/4, and suppose that the bin has width 3. We obtain a
contradiction by assuming that, for every list L, A(L)9(2-6) OPT(L). In particular, we construct a
list L -LL 2L 3LL 5 (with each list L, consisting of a single piece pj) for which it cannot be the case
that

A(Lt.....L) : (2-8) OPT(LiL.Lt)

for each k, s;kS . In other words,

j A(LL) A(LtL,) A(LLL 3) A(LiL 2LL 4 ) A(L) >
max 1 OPT(L1) OPT(LIL,)' OPT(LL 2L;)' OT(LL,L3L4 ) ' OPT(L) I > 2-8.

Let L, consist of a piece p, of size (1. 1). The algorithm A packs p, at some height hl. as
indicated in Figure 2a. Let the next piece, p:, have size, (3.h 1I-e). Clearly, P2 must be placed
above Pr Let h, denote the difference in height between the top of p, and the bottom of p2. If the
next piece, p3. has size (1. I-h-h,-t), then p3 is too tail to fit below p. and so A must place P3 at
some height h3 above the top of p2.

Assume that, for Ik:s3.

.4(LI...L,) < 2 OPT(LI... L).



I

.3.

Lating y denote the height of piece pl, we have:
At(L 1) _ ,I1+YI < ,, /<Y 1 " I

OPT(I) -y

A(L1L2) hl+ylh 2 +y2=" <2
OF r(L1L2) Yl+Y2

__ h1 +h2 < YI+Y2 -1+hl+t

-,h/ 2 < 1+t

A(L 1 L2L3) h + yl+ h2 + y 21-+ y3
= <2

OPT(LtLzL3) Y2+Y3

hl+h 2+h3+Yl < Y2+Y3 - (hlt)+(l+hl+h,+t)

h3 < h1 -29 < 1+2&

So if piece p4 has size (3.1+2A), then y4 > max{h1,hh13}, and p4 will be placed with its bottom at
some height h4 above the top of p3. A piece p5 of size (1.1+hl+h2+h3+h4+2c) would then have
to be placed above p4, giving:

A(LtL 2L 3L4Ls)

Z h1 -yl+h 2+y2+h 3+y3+h4-,+YS4 Y
-" hl 1+h2+y2+,hg+(1 hi+h2+t)+hi+y,,+y5

- y2+y4+y5+(hl+O)+(1+2A)+(l+hl+h2+h3+h4+2f.)+h2-4

= 2Ly2+ydYsl+'h2-4t.

Noting that OPT(L) = y2 Y4+Y5 > 1 (see Figure 2b), we have

A(L) z 2 OFr(L)+h-4t

> 2 OFT(L)-8

> (2-8) OFT(L)

thereby proving the theorem. a

The Bottom-Leftmost algorithm [2] and the Split algorithm [7] both have a worst case perfor-
mance of 3 OPT(L) for lists ordered by decreasing width. The following result shows that every
on-line Agothm which packs pieces ordered by decreasing width has a worst case bound of at least
(1 + -- )OPT(L)."(1

TuOniRW 2: For any on-line algorithm A, there is a list L ordered by decreasng width su that

A(L) a (1+-) OPT(L) > 1.81 OPr(L).

Prof Lett be fixed, O<<--. Consider the list of remwgtesL-LL2L3L4 where
24 3

L1 cosisss ot 8 pieces of size 3t. 1),

Lz consts of 6 pieces of size (I+t.- 1+' V)6

•n is aa im ov ove SiMoWs rMut of aPPMUmamuy 1.I' ( 11.

_____________________________ -- l-.- . ... .. I." _ *.
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L3 conssts of 3 pieces of sie (1.2),
L4 consists of 3 pieces of size (1.3).

Note that L is ordered by decreaing width.
Figures 3a,b.c,d give optimal packinp of lists LI, LtL 2, L1L2L 3, and LtL2 L3L4 - L, r.spec.

uveiy, for a bin of width 12. Therfore,

OPT(L1) - I.

OPT(LL 2) - 2.

OPT(LL 2L3) = V6

OPT(LtL L 3L4 ) - OPT(L) - 3.

It is shown that any algorithm which packs each of the lists Lt, LtL 2, LtL 2L3 in such a way
that

A(L) < (1+ -) OPT(L),

3

A(LtLL 3) < (1+--) OPT(LL 2L 3),
3

will necessarily lead to a packing of list LtL.L 3L4 = L for which A(L) Z (1+_-) OPT(L). In

other words, we assume that

A(Lt) A(LtL 2) A(LtL2L3) A < 1V
1a OT(L1)' OPT(L1L,)' OFr(LL2 L3)' OPT(L) 3

and then obtain a contradiction, thereby proving the theorem.
We must first pack Lt. Since OPT(L)-1, it is clear that the bottom of every L1 piece must

be strictly height 1, or else we would violate our assumption that

A(L1) < (1+- 3-) OPT(Lt). Thus, for sufficiently small 81>0, all Lt pieces are colateral in the bin
at height 1-81 (see Figure 4a). Since the bin is filled to a width of 12-24e at height 1-81, the
total remaining unfilled space is only 24s. None of the remaining piec of L will be able to fit
below height 1.

Now each piece of LZ must be placed with its bottom at or above height 1 and will therefore
reach a height .f at least V6 in the bin. As above, in order to avoid violating6

A(LtL 2) < (1+ 3)OPT(LtL2), the L 2 pieces are colateral at height V6- in the bin, for any suf-
ficienty small 5. (see Figure 4b). In particular, it is not posible to pack two L2 pieces on top of
each other, because this would give

A(L,/.) z l+2(-l V) > 1+ _IL

OPT(LIL2) 2 3

Similarly, no L3 piece can be placed on top of an L2 piece because we would have
A(LtL 2L3) 1+(-16)+2 =_V_6

OPT(LtL2L3) N6 3

So at height V6-67, the three L3 pieces are colateral with the L2 pieces, filling the bin to a width of
9--6. Thus, it is not possible to pack all of the L4 pieces below height V6. At least one of them
must be above an Lz or an L3 piece, which gives

OPT(L) 3 3
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This contradicts our assumpton, proving the desired result. o

The Furst-Fit Decreasing Height algorithm (61 does somewhat better than the above algorithms
which use decreasing width; its performance is at most 2.7 OPT(L). The following theorem gives a
corresponding lower bound of T"

THEOREM 3: For any on-line algorithm A, there is a list L ordered by decreasuig height such that
5A(L) Ze Tr(L).

Proof" Consider a bin of width 6. For 0<e< -fi' let the list L-LL 2L3 be defined as follows:

Lt consists of 6 pieces of size (1-2e,1),
L2 conssts of 6 pieces of size (2 , 1),

L3 consists of 6 pieces of size (3+%. 1).
Observing Figure 5a, it is easy to verify that

OPr(L) = 1.

OPT(L1L2 ) = 3,

OPT(LL 2L3 ) - 6.

Assume that
4 A(L1 ) A(LL 2) A(L) 5
OPT IO' OPT(LILZ)' OPT(L)

Then, in order to avoid violating this assumpton, the bottom of every L I piece must be strictly
below height 1; i.e., for sufficiently small 8>0, all Li pieces are colateral at height 1-8. Since no
Lz piece will fit below height 1, and yet all the L2 pieces must pack below height 5 (since
OFT(LL 2) = 3), there is not enough height for four L2 pieces to fit above each other. Also, no
three pieces of Lz or L3 can be colateral. Thus, there is no way to leave space for an L 3 piece below
height 4, and an algorithm A can do no better than to pack L2 as shown in Figure 5b. But this
forces all the pieces in L3 to be at or above height 4 and. since no two L3 pieces can be colateral,
A (L) 10 - OPT(L). 0

3

Some algorithms perform better for squares than for rectangles. The Bottom-Leftmost aigo-
rithm (21 and the Next-Fit and First-Ft Decreasing Height algorithms [61 pack squares in order of
decreasng size with performance no worse than 2 OPT(L). This performance is not bad in light of
the following theorem.

THEOREM 4: Let A be any on-line algorithm. For any 8>0, them is a list L of square orderedby
decreasing size such that

A(L) > (1.5-8) OFT(L).
I . 1

Proof. This proof uses a list L consisting of two squares of size I-t and four squares of size 3-0,
2

where 0<<-y. An optimal packing into a bin of width 1. illustrated in Figure 6a, has height .'

For L ordered by decreasmg size, the two -+ squares must be packed first. In order to achieve

A(L) < (1.5-8) OPT(L), they would have to be colateral at height t+*-8i, for sufficiently small

81. Since this fills the bin to a width of -Is2. there is not enough space left for a third piece at
3

height I+- bt. Thus, all four of the 7 -e squares must be placed with their bottoms at height at

least 1-t. Because no four of the squares can be coiateral, the best any on-line algorithm can do

3 , . . . .. . . .. . .l l
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is to have A(L) = I-i, as illustrated in Figure 6b. This gives

A(L) 1-0 3 3 3
OPT(L) 2 2 2- T 2.

3

Most of the algorithm thus far proosed have used lists ordered by decreasng width or
height. An obvious alternative would be to pack pieces in order of increasng width or height. The
lower bound in this case is somewhat higher than the other lower bounds preented here for preor-
dered lists.

Txzousm 5: For any on-line algorithm A, there is a list L ordered by both increasing width and
increasing height such that

A (L) Z 2. OPT(L) > 1.82 OIT(L).

Proof: Let e be fixed, O<t< For k- -- , consider the list of pieces L=LLzL3L 4, where

L consists oi 4 pieces of size (-t. 1),

L2 consts of 2 pieces of size (k, k
2

L3 consists of 1 piece of size (1.k- 1),

L, consists of I piece of size (1-4-,k).
An optimal packing of L into a bin of width 4 is illusrated in Figure 7a. Nouce that

OFT(L 0 = 1,

OPT(LL 2) = 2.

OPT(LIL 2L3) = j+ 1

OFT(L) = k.

We shal show that the assumption

}' A(Lt) A(LtL 2) A(LtL 2L3 ) A(L) < l+V7

'O"T(LIf)' OPT(LiL2)' Ol(L 1 L2L3)' OPT(L)

leads to a contradiction.

Since OPT(Lt)=1, all LI pieces must be colaterai at height 1-86 for sufficiently small 81. So
at height 1-81, the bin is filled to a width of 4-4e, which forces all remaining pieces to have their
bottoms at height at least 1 (see Figure 7b). Thus, the L, pieces must be coiateral at height

1.--&2, for suficiendy small 81; otherwise the above assumption would be violated, because the

L, pieces would reach height I -+ + , and

2 k

A(L1L2 ) + 2++ 1v

OPFT(L1L2) 2 2 2

k
In fact the L 3 piece must also be colaterai with the L 2 pieces at height 1 61-&, or else

k

A(LL2) 2 . 1-v!
OFT(LILL 3) 7 k+2

2

But having the Lz and L3 pieces all colateral at height 1 - -2 means that there is not enough

- -ou-



width left to fit the L4 piece also at this height. This forces

A(L) a 3k-i-2 1+V7

OPT(L) k 2k 2

So our assumption must be incorrect, which proves the desired result. a

Similarly, the lower bound for squares preordered by increasing size is higher than for squares
preordered by decreasing size.

THEoREM 6: For any on-line algorithm A, and any 6>0, there is a list L of squares ordered by
increasing size such that

A(L) > (1-8) OPT(L).

Proof. For fixed e, O<e< min {48. -L}, consider the list of squares L = L1L2L3, where

Lj consists of 7 squares of size l-t,

L: consists of 2 squares of size 2.

L 3 consists of I square of size 4.

Figure 9a illustrates an optimal packing of L into a bin of width 8-o, and

OPT(L1) = I-e.

OPT(L L,) = 2.

OPT(L) 4.

Once again, we prove that

f A(La ) A((L)) IL > __-
rnaX O-F(L1 )' OPT(L1L 2)' OFT(L) J 4

by assuming the contrary.
A(L1)O 7

In order for O(L-) < ' it must be the case that all L, pieces are colateral at height
OPT(L1 ) 4

1-e- 8, for sufficiently small 61. Thus each L2 square must have its bottom at height at least 1-e.
For sufficiently small 81, the L2 pieces must be colateral at height 3-o-8, or else we would have

A(L1L2) _. (1-e)+2-2 > 7-.
O T(LiL2) 2 4

This means that the bin is filled to width 4 at height 3 -o- 6 (see Figure Sb), and so the square of
size 4 must be packed above an L2 square, giving

A(L) a(3-p)+4 = 7-e.. > 1 6 .

OPT(L) 4 4 4

.Asyumpodc Lower Bounds

The lower bounds cited above are all bounds for absolute worst-case performance. If H, c,
and 0 are constants such that, for every list L with pieces of height at most H,
A(L)-Sa OPT(L)-, then a is called an asympronc worst case bound. The absolute worst case
bound seems to be a better measure of performance when the number of rectangles to be packed is
small. whereas the asymptotic bound is a better measure when the number of rectangles is large.

In this section we shall need the following definition. If horizontal lines are drawn across the
bin through the top and bottom of each piece, as illustrated in Figure 9, the region between two



successive horizontal lines is called a slice.

The results of Brown [4] and Lang [9f for one-dimensional bin packing.an be interpreted in
two dimenions to give the following result.

THEOREM 7: Any on-line algorithm which packs rectangles in order of increasing or decreasing
height or increasing width has an asymptotic bound of at least 1.536.

The Frst-Fit Decreasing Height algorithm has an asymptotic worst-case bound of 1.7 [61,*
which is not much worse than 1.536. If the widest rectangle packed has width at most Jim times the
bin width, where m is a positive integer greater than 1, then its asymptotic worst-case bound is
(m -1)/m [6]. Thus, the narrower the pieces are with respect to the width of the bin, the better the
algorithm performs. Note that for m=2, the asymptotic bound is 1.5, which is better than the lower
bound of 1.536 for n= 1.

For on-line algorithms without preordering, the asymptotic worst-case bound must also be at
least 1.536. By picking a parameter appropriately, the asymptotic performance of the Fut-Fit Shelf
algorithm can be made arbitrarily ciose to 1.7 [31, again not much worse than the lower bound or
1.536.

Coffman [51 showed that for on-line algorithms which pack squares in order of decreasing
size. the asymptotic worst-case bound is at least 8/7. The Up-Down algorithm packs squares
ordered by decreasing size with an asymptotic worst-case bound of 1.25 [1], not much worse than
8/7. The following theorem generaizes Coffman's result based on the maximum width of the
squares.

THEOREM 8: Consider any on-line algorithm A and a bin of width 1. Let m be a positive integer.
Let a and 13 be constants such that for every list L of squares of size at most 11m ordered by

decreasing size. A(L) < aOfT(L)+ . If m >1, then a- . Ifm=l, then aT.

Proof- Let m be an integer greater than 1, and let n be a positive integer divisible by m. Consider

the list L =LIL2, where L1 contains n squares of size 1- +me and L2 contains nm squares of size
m+l

-- e. Noe thatOPT(L1  = .~.( L +m) and OPT(LtL,) < n(--- -me). (See Figure

10.)

L, is packed irt. Let h, be the total height of slices containing cxactly one segment of a
square of Lt, and let h, be the total height of slices with at least two segments of squares of Lt (see
Figure 9). Then

A(Lt) hl+h

1
-[nI(-4m- nk-,a.+4.

- -1 "h(1- )-- n .

Thus,

A(LI) s aOrT(L,)

n-ih(1-m)mne  - -

h, 1 a n
n M 2 - 1 M3-m rn-1

A slice containing k> I segments of squares of LI can contain at most m - k segments of
squares of L,. Therefore, after packing L and L, the total height of pieces packed in the slices
composing hI and h, is at most (m- l)hI-mh,. Since the total height of squares in L1 and L2 is
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n( I- +me) 'nm( m -- ) and at m m+ I segments fit in a slice,

A(LIL-) Z h 1 +h 2 + -fn(-+rn)+nn(-I4)-(M+ 1)hl-mhi]

A2  n

Thus.

A(LIL 2) : aOPT(LIL2) s-

n

hI,

Substituting in for -- ,
'I

cL4+- --- m4
"Vi I - (m s-1)

> -1 m3-m - n
1-sm(m+ 1)e

> n-I 1n
m,3 -m+ 1 +(M.3M+1)e
rn(m-S-1)

Choosing n sufficiently large,
M_

m+ 1 m 3
CL > M_+ 0(e) = 3~ -0(0.)

m(m-+-I)

Thus, for any 8>0, a list of squares ordered by decreasing size, with each piece of size at mo 1

can be found such that for any on-line algorithm A, A(L) s aOFT(L).-,.f implies
ci> -8.

m 3-- '- 1

Note that for lists of squares of size at mos 1, the asymptotic bound must be at least as large
as for lists of squares of size at most 1/2. Therefore, for m 1, -- Z = 8/7. -.2'-2+1I

The folowing result extends the lower bound of 1.536 for one-dimensional on-line algorithms
[4,9] to two-dimensional algorithms which pack squares ordered by increasing size.
ThEoUm 9: For any on-line algorithm, the asymptotic worst-case bound when packing squares
ordered by increasing size is at least 1.536.

Proof: It is sufficient to make some straightforward modifications to the proof of Brown [4) that in
the one-dimensional case, every on-fine algorithm has an asymptotic bound greater than 1.536.
Intuitively, wherever the one-dimensional proof requires summing over bins, this proof sums over
slices of varying heights.

Define the sequence of integers (a,,}, for n 1. by

a1 =2

a,.,= 1+ fla
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Define

R- , (1)

Let 8>0 and for any positive integer t=3, chose t such that
0< e < M a 1( 1) '- Let r be a multie of (a,-1). Consider the list of

squares L = LtL 2.. L,, where Lt conssts of (a,- suare of size Pt - -,1-( t - I)e and L,,

2it, Consts of ra,1.-.. squares of size pi - I.-.t. Then, for 1skst,

OF'I(LtL7 ... ,) :9 r r,_ 2
at+, t-k-

Lt be the set of all slices the packin g after L.... has been packed. A sice s t S inter-
secm (s) squares of ze p. For l 1it- ,the set ct is defed tocon of thoseslices in S
which are at least half ful and in which the smallest piece has size p;. Similarly, we define f to be
those slices in S which are less than half full and in which the smallest piece has size pi. Let h(a)
(h(p,)) represent the total height of slices in a; (Of). For 1sk:st-1

k

A(LtL 2 ...L,) = L (h(,) h(l,)) (3)

and

I A(Li.+...) > r-i-Eh(a,). (4)it
,.+ i-L

Assume that
W A(L1LIP.. A)" max5aTtLtZ...,)

+-~~~~I k.-' P ( t 2.L) } <R, -8 (5)

It follows from (3), (4), and (5) that for lsk:st- 1.
k

OPT(LL 2... Lt)(R,-6) > !(h(,)-ia( + )) (6)

and

OFT(LL ... L)(R,-8) > r (t).(7)

Becuse there are ra,1._1 squares of size pi (2Si~t),

r _= ,(s)h(s) (8)

where A(s) represents the height of slice s. Summing inequalities (6) and (7) and using (2) and (8)
gives

(R,-8)1[- +r,_J,,, -L- - 7, "-'a ,-,[- +#] (9)
a - af 1, i(-,

> I [h(0)--(-0 )1 + r + h(,..) - m
k-1 s-L , 1 SOS

By (1) and the choice ofe < --. the left hand side is less than
RA- I
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,-.-r_ r. (10)
k-t a, -* a

Combining (9) and (10)

JOS _2 1J.L

At this point, it is possible to apply Brown's original proof [41 which shows that (11) leads to a con-

tradiction for e < 1- . We conclude that the assumption in (5) is incorrect, and thea,(a, - 1)(t - 1)
asymptotic bound is at least R, > 1.536 for tz5. a

Conclusions

The lower bounds show the extent to which it might be possible to improve on the current
packing algorithms. They suggest that decreasing height and width are likely to yield better algo-
rithims than increasing height or width.

In order to improve performance beyond the lower bounds presented here, it would be neces-
sary either to violate the on-line conditions or to try other orderings of the lists. Sleator [81
describes an algorithm which achieves an absolute worst case bound of 2.5 by first packing pieces at
least haf as wide as the bin, and then packing the remaining pieces in order of decreasing height.
Coffman, Garey, Johnson and Tarjan [6) have investigated the Split-Ft algorithm which has an
asympotic bound of 1.5. It groups pieces by width and then orders each group by decreasing
height, and is not on-line since it requires moving rectangles around. More recently, Baker, Brown
and Katseff (1] have proposed the Up-Down algorithm which groups pieces by width and orders
each group by decreasing height or width, but 's on-line and has an asymptotic bound of 1.25. By
the result of Brown cited earlier, it is substantially better than any on-line algorithm which packs
solely by increasing or decreasing height or by increasing width.

Note that the proofs of Theorems 3 and 4 use pieces which are all of the same height. Thus,
these results also apply to algorithms for one-dimensional bin packing. Theorems 3 and 4 give abso-
lute lower bounds of 5/3 and 3/2 for lists ordered by increasing size and decreasing size, respectively.
Removing the epsilons from the heights in the proof of Theorem 8 gives an asymptotic one-

dimensional lower bound of mW for pieces of size at most 1/m ordered by decreasing size.
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12

10 P5

P4

8

6 P3

Pl

2 P2

p 4 6 18 0 12 14

(a) One possible packing of list L.

8

P4 p5
6 P2

4 1

Pl

2 P3

2 4 6 8 10 12 14

(b) An optimal packing of list L.

Figure 1. Packing list L (plp 2,p3,P4,p5)

with width xi: 3 8 11 4 1
and height yi: 6 4 4 3 5
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1+h +h +h +h+E5

1 2 3 h4 2E 5

1+2E P4

h4

h 2j

12 3

(a) A packing of L by an algorithm A.

1-+-h -I h 2 -h 3+h4 + 2E P
2 34

Il+2E P4

1 2 3

(b) An optimal packing of L.

Figure 2. Packing list L of Theorem 1.
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() An optimal packing of L 1 .2

2 4 6 8 10 12

() An optimal packing of L 1L 2 .L

2 4 6 8 10 12

() An optimal packing of L 1 2 3-L

Figure 3. Optimal packings of sublists in Theorem 2.
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2

2 4 6 8 10 12

(a) A packing of LI.

6

4

2

2 4 6 8 10 12

(b) A packing of L by an algorithm A.

Figure 4. Packing list L of Theorem 2.
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6-

2 46

(a) An optimal packing of L.

10

8

6

4

2 _

L I

2 4 6

(b) A packing of L by an algorithm A.

Figure 5. Packing list L of Theorem 3.
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2/3

1/3

1/3 2/3

(a) An optimal packing of L.

AL

2/3

1/3

I..

1/3 2/3 1

(b) A packing of L by an algorithm A.

Figure 6. Packing list L of Theorem 4.
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3--

2

, i-

1 2 3 4

(a) An optimal packing of L.

6

4

2

1 2 3 4

(b) A packing of L by an algorithm A.

Figure 7. Packing list L of Theorem 5.
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4

2

2 4 6 8

(a) An optimal packing of L.

6

4

2

2 4 6 8

(b) A packing of L by an algorithm A.

Figure 8. Packing list L of Theorem 6.
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F 
I 9

2

Figure 9. Division of a packing into slices.
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2/3 + 4E

1/3 + 2E

_ _I
i/3 2/31

(a) An optimal packing of Ll.

4/3 + 2E

1+3E 7_=_

2/3 + E

1/3 + 2E _//___

1/3 2/3 1

(b) An optimal packing of L1L2.

Figure 10. Optimal packings of sublists in Theorem 8,
for m - 2 and n = 4.


