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AUTHOR'S SUMMARY

A procedure is presented to calculate the compressible inviscid

unsteady transonic flow over an airfoil, which oscillates sinusoidally in

pitch. In order to treat precisely boundary conditions on the oscillating

airfoil surface and at infinity, the exterior of the airfoil-shaped contour

in the physical plane is mapped onto a rectangle in a computational plane.

The two-dimensional unsteady Euler equations are solved there by the

Lax-Wendroff finite difference scheme with artificial viscosity. Test

calculations were made for the unsteady flows over the Joukowski airfoil

and the NACA 0012 airfoil oscillating in pitch, in order to obtain several

individual flow patterns. The resulting unsteady pressure distributions,

shock wave locations, etc, are presented. Furthermore, the unsteady

numerical results obtained by this procedure for the NLR 7301 airfoil and

the NACA 64A010 airfoil are compared with the experimental ones by Tijdeman

and Davis, respectively.
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1 INTRODUCTION

Studies on transonic wings have become active recently for improving transport

efficiency, such as in aircraft fuel economy. This study relates to unsteady two-

dimensional transonic airfoils which forms part of the above studies. The transonic flow

field about an airfoil reacts sensitively to a slight change in boundary conditions. For

instance, a change in the angle of attack by about l° results in changes in shock wave

position and airfoil surface pressure distribution, and great changes in air force and

moment. It is therefore necessary to clarify such unsteady air force phenomena for

conm ercialising a transonic airfoil section. Examples of means for this purpose are wind

tunnel experiments and numerical experiments. Examples of wind tunnel experiments

currently carried out are mainly on unsteady boundaries, such as an airfoil oscillating

sinusoidally in pitch, an airfoil with a flap oscillating in pitch, and an airfoil with

time-varying thickness. There are experimental measurements which have been reported by

Tijdeman Davis , and others.

In numerical experiments too, a number of methods of calculation for this flow by

differential analog have been proposed. Numerical experiments have been restricted to

inviscid flow and the transonic small-disturbance equation or the full potential equation

or the Euler equations have been taken as governing flow equations. Ballhaus and
3Goorjian proposed a method of calculation using an alternating direction implicit

scheme under a low frequency approxinlation, and Yu , Secbass a id taillhalls 4 pr.,posed an1

improvement on it . Thest methods can he used o1V where the u1is tt,,d' d is tUlrb:11'c is sma 1 .

It is impossible to obtain an accurate solution in the neighbourhood of the leading edge

by transferring the condition of tangential flow on the upper and lower surfaces to the

mean chord line because of the singularity generated at the nose of the chord line. This

trend is particularly acute in the case of a blunt-nosed airfoil. Nevertheless, because

of the simplicity in handling the equations and boundary conditions, these procedures are

inexpensive and are much quicker than other procedures. It is therefore possible to use

them for calculations in a large number of cases with the use of a mean angle of attack,

main stream Mach numbers, and airfoil shape, etc, as parameters, and to find the trend of

variation in the flow state corresponding to a variation in each parameter. In Japan too,

Isogai, -t al developed a simple program for a small-disturbance potential equation with-

out the low-frequency approximation. With a view to reducing inaccuracies resulting from

the use of this equation, Isogai 6 ,7 solved the full potential equation using a semi-

implicit time-dependent difference method in a cartesian coordinate system and satisfied

the tangential flow condition on the fixed curved surface (henceforth cal'ed the 'mean

airfoil surface') which coincides with the mean position of the oscillating airfoil
8

instead of the mean chord. Chipman and Jameson carried out a time-dependent coordinate

transformation for a sharp-nosed airfoil, such as a circular-arc airfoil, so as to be

able to give the tangential flow condition at the true airfoil position, and solved a

full-potential equation in conservation form. However, the range of application of these

potential equations is limited to flows which contain only weak shock waves because of

their isentropic property. For capturing a discontinuity irrespective of strength, it

is necessary to solve the Euler equations. The use of these equations involves a high

cost of computation and therefore not many results have been published. However, it is
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possible to ascertain the effectiveness of numerical calculation by the above-referred-to

two simpler equations by comparison of results with those obtained from the Euler

equations. Beam and Warming9 used an implicit difference scheme for solving the Euler

equations, but good accuracy could not be expected for a blunt-nosed airfoil because the
10-1.4

boundary conditions were given at a mean chord position. Magnus and Yoshihara gave

this condition at a mean position on an oscillating airfoil surface, and Lerat and

Sides 15 ,16 gave the same ccndition on a true airfoil surface by a time-dependent

coordinate transformation and sought the solution with the use of an explicit difference

scheme. For a perfect prediction of air forces, the hypothesis of inviscidity should be

removed, in order to enable the handling of such viscous phenomena as interaction between

an unsteady shock wave and boundary layer, etc. For this purpose, Magnus and Yoshihara
13

used a method of approximating the displacement effect of a boundary layer, but the

possibility of calculations based on the Navier-Stokes equations, which incorporates a
17viscous flow model, is possible. The calculation tried out by Chyu and Davis for by-

passing the current high cost of computation has too coarse a grid spacing. Satisfactory

calculations are likely to be made when the cost comes down.

This study proposes a method of calculation for a flow about an airfoil which

oscillates sinusoidally in pitch, using the unsteady Euler equations. This method is a
18,19variation of the method of calculation for steady flow proposed earlier by the author,

by improving the mapping function for grid construction, in order to improve calculation

efficiency, and by extending it to enable the handling of unsteady boundary conditions.

It will be assumed that the amplitude of pitching is small, and that the boundary condi-

tions are given at the mean airfoil surface position. Magnus and Yoshihara 12 carried out

calculations in a finite plane exterior to the mean airfoil surface and superposed several

types of Cartesian grids varying in spacing on a physical plane with a curvilinear grid

near the airfoil surface. The difference scheme used was an explicit two-step finite

difference scheme of the Lax-Wendroff type. In this paper, the following approaches,
20

which differ from the above, are tried out

First, the infinite plane exterior to the mean airfoil surface is mapped on to a

rectangle to form a computational plane, in order to facilitate the handling of airfoil

surface boundary conditions and infinity conditions. On the computational plane, only

one uniform grid is spanned. In the vicinity of a shock wave, a fine and uniform grid

is superposed when required. Numerical solution of the unsteady Euler equations at a

mesh point will be obtained from an application of the time-split Lax-Wendroff scheme,

with an artificial viscosity term.

A program will then be made using this method of calculation, and an examination

will be made of the possibility of obtaining several types of unsteady flow patterns by

using a Joukowski airfoil and the NACA 0012 airfoil. Then, numerical solutions for the

NLR 7301 airfoil and the NACA 64A010 airfoil also will be obtained. They will be

compared with the results obtained by Tijdeman and Davis.
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2 SETTING UP THE PROBLEM

The Euler equations of unsteady two-dimensional flow are used as iundamental

differential equations and can be represented in the following conservative form on a

physical plane x-y. This equation has previously been non-dimensionalised
18 in reference

by main stream density and velocity, and chord length.

+1 +' + u  
= 0V

v i x V + 1)
et u(e + p) \v(e + p)

p (- ) e - '(u + )/2 ;

a relation c = ,(--/7 holds; where t = time, x, y rectangular cartesian coordinates,

o = density, u velocity component in x-direction, v = velocity component in y-direction,

e = total energy per unit volume, p = pressure, c = speed ,f sound, y = specific heat

ratio of perfect gas (presumed to be 1.4).

The vector representation of equation (1) is

Wt + Fx(W) + Gy(W) = 0 (2)

where W -

The problem of determining an inviscid flow around an unsteady airfoil can be

replaced numerically by the problem of solving equation (2) subject to the following

three boundary conditions.

(1) Tangential flow condition - the flow velocity vector is tangent to the unsteady

airfoil surface.

(2) Condition of the trailing edge - the Kutta-Joukowski condition (the pressures on

the upper and lower surfaces at the trailing edge are identical) in the absence of a

shock wave at the trailing edge and the Rankine-Hugoniot relation holds in the presence

of a shock wave at the trailing edge.

(3) infinity conditions - at upstream infinity, conditions are free stream conditions,

that is W - W (hereinafter the subscript -" will be used for indicating the free

stream), where p_ = 1, u = cos a0, v_ = sin nO, p_ = 1/(M) where a0  is the mean

angle of attack.



At downstream infinity and the main -ream subsonic, shock wave can be divided into

downwash and the rest, then p =p, U a , (aU/3z) = 0, (3p/3z) = 0 (z direction

of the main stream; U = velocity spectrum) hold for the former and the flow in the rest

is the main stream. Wlere the main stream is supersonic, the downstream solution depends

upon the upstream values, thus no conditions are necessary.

In this study, the problem of unsteadiness will be confined to the flow about an

airfoil oscillating sinusoidally in pitch with small amplitude, and the conditions of

tangential flow will be applied at the mean position of the oscillating airfoil. The

method of calculation using a computer for solving this problem will be discussed in the

next section.

I SOLUTION OF FUNDAMENTAL DIFFERENTIAL EQUATIONS

Coordinate system and mesh for calculation

In order to facilitate the insertion of the condition of tangential flow at the

airfoil surface and the condition at infinity, the mean airfoil surface and its exterior

on a physical plane (x,y) will be mapped on to a rectangle and its interior on a computa-

tional plane (4,n). This mapping is carried out with the following three coordinate

transformations, which are illustrated in Fig I. The description of mappings (1) and (2)

is brief because they have been described in detail in Ref 13 (pp 3,4).

(1) A point on an airfoil surface at the greatest distance from the trailing edge of a

mean airfoil surface is called the leading edge, which is selected as the origin. A

straight line connecting this with the trailing edge is the x-axis (a closed trailing

edge alone is considered). A mean airfoil surface having a trailing edge angle c and

its exterior on its physical plane (z = x - iy) is conformally mapped on to a unit circle

and its exterior on o (= re W).

(2) This unit circle and its exterior are conformally mapped on to the lower half of

w (= x' + iy') plane.

(3) By using the following function, this lower half plane is mapped on to a rectangle

and its interior on the computational plane 4 = C + in

X'= g(4 2 )/( 2 _ 4) ( 2)

y = n/( - n) (0 n I)

In the above equation, g is a polynomial, and its coefficient should be fixed

accurately by a method described later, to obtain a highly efficient calculation of flow

pattern which can be visualised in each case before starting the calculation of flow

patterns.

In Fig I, the wavy line and broken line show the curve to which the three straight

lines & - +b, n = c correspond on each coordinate plane.

With this series of mappings, the mean airfoil surface is made to correspond to the

section (n 0, -a E g a), upstream infinity to the upper side of the rectangle, and
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downstream infinity to both lateral sides of the rectangle. Thus, all boundary condi Lions

can be given on the four sides of the rectangle. The domain for computation is this

rectangle and its interior.

The Euler equations (2) on the physical plane are transformed into the following on

the computational plane.

W t  + F. W) T.x + G.(W) . + F., (W)' + G (W)'y 0 (3)
t xy x

Differential coefficients 'x i, "x and can be determined for each mapping

function, using a chain rule (Ref 18, p.4 ). For solving equation (3) by a finite

difference method, first place a uniform Cartesian grid system having widths and

on the computational plane to make lattice lines coincide with the four sides of the

rectangle, and represent the lattice points by symbols (i,j) The grid image on the

corresponding physical plane is also orthogonal. As will be shown later in examples, the

j group of lattice lines are higher in density as they approach the airfoil surface,

whereas the density distribution among the i group of lattice lines is designed to be

adjustable by means of the function g in the mapping in equation (3). Taking into

consideration the pattern of a predicted flow, g is fixed to make the grid image density

on the physical plane higher in an area where flow variation is great (in the vicinity of

shock wave, leading edge and trailing edge). However, arbitrary points -' and - on

the %-axis downstream of the trailing edge must correspond to the same point. The

function g is made a function of . Because of this, the lattice distributions on

the upper and lower surfaces of an airfoil are similar in shape. However, where the

flow patterns on the upper and lower surfaces differ considerably, for instance, in the

presence of a shock wave only on the upper surface, the grid in its vicinity must be made

fine, but there is no need to do this on the lower surface. For maintaining computational

efficiency in such a case, a grid (width ',) was formed on first fixing g to match the

flow pattern on the lower surface, and a finer grid (width .,:/4) was superposed on that

part of the grid system corresponding to the vicinity of the shock wave on the upper

surface. An automatic superposition of that section with the 1/4-width grid was possible

by the inclusion of a routine for designating (i1,i2). With the selection of a suitable

g , and the superposition of the 1/4-width grid, an improvement in computational

efficiency and an accurate numerical grasping of flow pattern variation were made

possible.

Because the boundary conditions of an oscillating airfoil are applied at the mean

position of the airfoil surface a time-dependent grid system is not required.

The definition of g: The correspondence between z = x - iy and w = x' + iy' is

obtainable from mappings (1) and (2), therefore we will try to obtain a curve (inclusive

of a mean airfoil surface) corresponding to the x'-axis. Choose a suitable number of

points (x,,y,), where q = I, 2, 3, ..., L , on that curve and arrange the desired

lattice-point subscript i for each of these, while taking into consideration the

predicted flow pattcrn. Then, find x corresponding to (x ,y,) and approximate L sets
,( - , wb l and (F, = (i -ofdaa2 4)x,/., , which can be calculated from x an
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with a number of least squares polynomials difering in degree. Draw a grid image lor

each degree on the physical plane, select one which is likely to be suitable for flow

calculation, and define g as follows.

M 
:_

g(_2) _ 5:7 - 4.)x'i: = Ztm '2m

3.2 Finite difference 
method at an interior point18

The solution by finite differences for W at the point (i,i), aitcr N time steps

is represented by WN .. For mesh points in the rectangle, the I Iocwi : g t iz:,--s p i:

difference approximations are applied to equation (3) 'Fig II).

N+l N N+1 +
W . = L W . W1. = V VL.L

The differential operator L. in the above equations is a two-step Lax-Wendroff operator

o' second order accuracy.

L.W. _a W.. - ( + G - G,j .J Fi- ) " ' . i t - "Yi (

Wl~~j (Wi~ + Wlj ") - t- Filj)x+, + (G G.,.:

- i+ij ij - 2" )(Fi+l 1 ,j , i+u>1 ,j v.

L can be defined similarly. The von Neumann condition for L.L L L. can be given 1 8

by the following equation

At min + + c T

m u x + v ! + c ' u- + v"
X y x I

For obtaining a value for the magnitude of time-step for use in actual calculations,

multiply AT by a suitable scalar CAt (less than 1), so that the stability criterion

is satisfied. The artificial viscosity operator V. can be defined as follows:

V'. W U - 1I(W -W. U) " U . (W.

V #.j  - Wi . + +l ,j  i+ W,j ij i j i- ,'] i'j - -l j

U u& +V&x y

V is defined similarly. The quantities 1 and \ are suitably chosen to ensure

the numerical stability of the solution with artificial viscosity terms.



3.3 Method of handling boundary conditions

As was said in section 3.1, the whole of the airfoil surface, trailing edge, and

infinities correspond to the four sides of the rectangle on the computational plane.

Thus a method for obtaining numerical solutions which satisfy the boundary conditions

discussed in section 2 will be described.

(I) Two sections (a < 2 and -a -2) on the base ( = 0): They correspond

to the same curve, which is not a boundary, on the physical plane in Fig I (the wavy-lint.

sections in Fig II). Thus the method relating to the internal point discussed in

section 3.2 will be applied with the relation W(T) = W(-t) assumed to hold.

(2) Section 11 a on the base ( = 0): This corresponds to mean airfoil sulface.

The condition of sinusoidal oscillation of the solid airfoil surface must be satisfied.

In other words, the velocity component of a flow normal to the airfoil surface must equal

the component of velocity of the surface in the same direction. W on the .2irfoil

surface in this calculation is obtainable from the following representation (

indicates the base).

W+ OLW. , W +  
= OV-L-L V+

In the above equation, L can be defined as LW i'i = h(L W i 2, L Wi, 3) where h is

an extrapolation function relating to the distance between corresponding points on the

physical plane of grid points j = f, 2, 3. First, the intermediate quantity W will

be obtained from the following equation:

LLNW 11 N+2 =V W+

i, I ,1 =

The velocity components in W are replaced by the tangential component, $ tan and
14the normal component n at that time. This quantity W can be updated to W bynor

an oscillation operator 0 which is used in many operations to be discussed later.

We will now consider (Fig Il) a coordinate system X - Y (X direction of the

airfoil) which is fixed to the moving airfoil, in addition to coordinate system x - y

on the physical plane. When the airfoil is in its mean attitude, they coincide with each

other. Let us assume that an airfoil is oscillating sinusoidally in pitch about a

central axis of coordinates (xcye) = (XcYc ), with

Ct) = 0 + 6(t) , 6(t) = Aa sin 2kt

where a(t) = angle of attack, aO = mean angle of attack, 6(t) = angle of pitching,

Aa = amplitude of pitching, k = frequency parameter.

The frequency parameter k is defined by

7-



where k' airfoil chord length, ' = angular frequency, and t speVd ,I main Stream.

The po_'tion of point m kcoordinates kX r,Ym) corresponding to a grid fix,d to
Mm

:iiovi ng airfoil in the x-v system at the time t is ohtainable from t he equadiov's

( t) = X + (X - X ) cos :'(L) + (Y - Y sill t
m c" m1 c in

v = Y - (X - X I sin + (Y - Y ) cos -kt)"m c m c m c

The velocity componeut in the outward normal direction it PL It m on the air: oil

is obtainable from the velocity components (X ,y) in the Cartesian svstem by means o:
the equation

v = x sinv" - -') + v cos(," - :.)
nor m in m m

where m is the angle between the tangent to the airfoil surface and the airfoil chordm
measured positive in the clockwise direction. The velocitv component v, in a direc-

n or

ticn normal to the airfoil surface at the time t , which has been obtainled earlier, is

adjusted to agree with the velocity component v of a plane isentropic wave which
nor

propagates in the normal direction on the outside of the airfoil. This adjustment causes

variation in density and pressure, but it does not change the tangential component of

velocitv tan  The adjusted density, pressure and flow velocity (v ,v ) are used

for updating W t

31 Two points ( -, = a, G-. 0) on the base: These points correspond to the same point,

the trailing edge, on the physical plane. Although the conditions differ acco-ding to

the presence or absence of a shock wave at the trailing edge, as was said earli-r, a

discontinuous surface is handled as a continuous surface with a steep slope in the finite

difference method. Thus, for convenience, in the presence of a mesh point at the trail-

ing edge, numerical solutions for the upper and lower surfaces are obtained and these are

then averaged. In the absence of such a mesh point, use the method relating to the

internal point discussed in the previous section at two mesh points (r1 9T' = 0)

nearest to the base of the rectangle and average their numerical solutions.

(4) , <, = I) on the top side: This corresponds to upstream at infinity,

thus it always gives main stream W

0) (' l -2, 0 - n < I) on two lateral sides: This corresponds to ,.ownstream at

infinity. Where the main stream is supersonic, the numerical solution at a neighbouring

grid point within the rectangle is used at the boundary point. In other words, extrapola-

tion with zero-order precision is carried out. On the other hand, if the main stream is

subsonic, the condition at infinity discussed in section (3) should be imposed. However

it is difficult to use that condition in the present calculation, so the following

numerical approximation is made. Whether or not a grid point (IE,j) at 9= t2 is

downstream of a shock wave is determined (Fig IV) by whether the value of entropy SIB



of the nvighbouring meshi point upstream o: Bh~ is greater than the citr .;)y

oncominrg flow. It S SB i t i s presumed thiat tile p~oi ilt i S down'Jst r, :. .

N N

Ibj S1 _

N
V t:,~~ ~ sin br c en-n ~t b

-. Oll IN?. OF Nl'MERICAL cALC?,I.A: 10"

i'rogram 'MSH fr _,rmin.- i n-sh wiitO thI 1 1 In Ic.s :is., USSL-2 i: ,

chapter, program ' FLOW' for f a flo w about in a: rfc 1 )v t:., : i:-::or :r, .

method, and program 'RESULIT' processing results based on: W , withn c'rapns, etc, were

preparec. 1Ihese programs wer,< wr it tvfl iP. theO odk! for a FACOM2 _075 :cmptr wit-

array processor urnit.

The calculation of the cas, cf an airfoil I-, main stream of given Mannumb r

oscillating in pitch with ar-gl, of attack rt + s sin 2k t about: tnc u cra a I s

)X, was carried out in' tht. following., Se~neoste.

I Preparation of the mesh: The function- 4 was determin,,d wi-h pro.4ram ILji>;

procedure discussed in section 3. 1. I t was dec ided whetli, r to superpos~,t~l.

grid and if so the posit ion at which the supurposition was to ::e made was ctn'

(2) Calculation of a steady' flow which becomes a starting solution in tn< a.

of unsteady flow: An unsteady flow about an airfoil placed at an angle of attaj1

a malln stream of Mach number M was found by the following procedure. Seek a

cally steady solution by applying the program FLOW on a suitable Starting valj,,7

amplitude "-, = . Described in detail in Ref 18.)

(3) Calculation of a quasi-steady flow: Although nct alwavs necessary, it is a %sar .'

to have, before starting the calculation for an unsteady flow (k ;' 0), a clu

the corresponding quasi-steady flow (k =0, oscillation is infinitely slow) for

That is, asymptotically, stead. solutions 1; are calculated for both maximum angleo

attack (aO + .,-) and minimum angle of attack - of the oscillation, as in j'

above. Convergence is obtainable more rapidly from using a starting solution obtainec cv

the method discussed in (2). It is necessary at this time point to examine whether a

mesh prepared in (1) is suitable for calculations in k2) and (3). If unsuitable, repeat

the preparation in accordance with (1). If the mesh has been found suitable for calcula-

tions in (2) and (3), the calculations of the unsteady flow having an angle of attack

a(t) continually varying between the above two limits can probably be made

satisfactorily.

(4) Processing the results of the quasi-steady flow calculation: Derive the following

fromi the results of calculations in (2) and (3), using RESULT.
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(a) Prepare isobaric charts with sonic linies obr thrc stcad)' :lows ,i.gics c2

attack A0 + a, A 0, '0 - a) and diagrams IC 2p-|/'(,) I of variation in airfoil

surface pressure coefficient C with chord length. Integrate C to obtain theP P
coefficient of drag CD the coefficient lift CL , and the moment coefficient C

(b) A diagram of variation in quasi-steady pressure coefficient .*.C P (or .'.CP P

with chord length, where

AC E -ca0 )- - C 0 +(p p 0Cp kc .)

or, in the case of a svmmetrical airfoil, where 0

AC - C + :-I))/tlp pp 0

(5) Calculations for unsteady flow: With the flow for the mean angle of attack obtained

in (2) above, taken as starting solution at t = 0 , an unsteady flow about an airfoil

oscillating sinusoidally in pitch will be obtained with the use of FLOW. Continue calcu-

lations until periodic solutions are obtained (about four periods are necessary for

coinciding isobaric charts for all periods). During that time, solutions W obtained

for equidistant phase angles (every 100 here) were stored in a disc pack to be used later

for processirg the following results.

(6) Processing of results pertaining to unsteady flow: RESULT was used for deriving

the following from the results W stored in (5) above.

(a) Isobaric charts with sonic lines at a series of specified phases, and diagrams

of variation in airfoil surface pressure coefficient with chord length.

(b) Unsteady pressure distribution diagram (depiction of first harmonic variation

of C ). That is, to obtain Cp. at a lattice point on an airfoil surface in every
p 0

equidistant phase angle (10 ) from the solution W for the final period stored in (5),

and then approximate the data (37 in number) for the period under consideration by a

spline interpolation and a fast Fourier transform to get the equation

C P(t) B 0.+ !a Re (C pi) sin 2kt + I Cdcos 2kt

B + 'aL Cp I sin(2kt +

In the above equation, Re(C ) is the real part of unsteady pressure distribution
p

which is of the same phase as the movement of airfoil, and Im(C ) is the imaginary part
p

of the unsteady pressure distribution which is in a quadrature with the motion. Further,

JAC p is the magnitude of the first harmonic and 0 is phase relative to the airfoil

motion. Variation of these four quantities with chord length is shown in a figure.

(c) Air force coefficient and Fourier analysis of the position of the shock wave.

The position of the shock wave (X of minimum C ) was calculattd from C obtained during
P p

the calculation in (b) above. Tangential force coefficient (C x), normal force



coefficient (Cy), pitching moment coefficient CM  J(Xc ,Y ) centre and positive nuse.i

were calculated for each phase angle (10°) by integration. Then, each of these was

represented by f and the data (37 in number) thus obtained for one period were

approximated by the following equation, obtained by spline interpolation and fast 1%

transform. Numerical values of B0, A and n were ootained
0'n I

N'

f(r) = B0 + :.jL JA sin(2nkt +

n=1

If the magnitude of the second and subsequent harmonics, A , where n 2, ..n

is smaller than that of the first harmonic A,, f changes sinusoidally with respct

time. In other words, it can be said that a linear relation exists between the displ.t,:-

ment of an airfoil and its f . Where this is not so, these coefficients serve as an

indicator of the degree of deviation from the sinusoidal form.

5 EXAMPLES OF NUMERICAL CALCULATION

Let us illustrate the numerical capturing of various types of unsteady shock wave

phenomena at various main stream Mach numbers, by the calculation sequence given in steps

I to 5. Experimental conditions differ slightly fr m the conditions of calculation used

here because of the effects of interference by wind tunnel walls and viscosity, but cases

6 and 7 illustrate the reproduction by calculation of an analogous flow pattern which

enables a comparison with the experiments of Tijdeman to be made. In case 8, the

present method of calculation are compared with the results of Davis' experiments, and

of other methods of calculation.

The types of airfoil, the values of parameters (main stream Mach number, mean angle

of attack, amplitude of pitching, reduced frequency, position of central axis of oscilla-

tion, number of mesh points, coefficient of time-step and coefficient of artificial

viscosity), the presence or absence of superposition with &/4-wide mesh, and numbers

of mesh images used in the calculation in each are shown collectively in Table I. The

numbers of the figures showing the results of the principal calculations in all cases arc

given in Table 2. The symbols ( ) indicate the numbers of the figures showing comparable

results obtained by experiments or other methods of calculation. All figures pertain to

a period a number of cycles 2kt/2r from t = 0 have occurred. The characteristics and

results of the calculations will now be examined case by case.

5.1 Tests on capturing numerical values pertaining to various types of unsteady
flow fields

(Case I) Numerical values pertaining to unsteady phenomena involving the generation,
growth and annihilation of a weak shock wave

At the free stream Mach number of 0.73, a steady flow produced by the symmetrical

airfoil NACA 0012 does not contain a shock wave when the angle of attack is 00, as is

shown in Fig 1-2f, but it does when the angle of attack is 20. Under the conditions of

a mean angle of attack 00 and amplitude of pitching 20, calculations at k - 0.1 were

made. The development of the flow was followed numerically, through the generation of a
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shock wave, its growth and decay on the upper surface, followed by the same events onl the

lower surface in every period. Periodic solutions were obtained, as is seen in Figs 1-2

and 1-3 but they do have a phase lag. It should therefore be possible to superpose a

diagram of a flow field with a random cycle diagram of another flow field differing by

0.5 cycle from the first. This has been proved (Fig 1-2). As will be seen from a diagram

kFig 1-4) of quasi-steady pressure distribution and diagrams (Figs 1-5 and 1-6) of

unsteady pressure distribution, the absolute value of unsteady pressure distribution

-oefficient is greater on the forward part of the airfoil. This is the part on which

generation, growth and decay of shock waves take place.

kCase 2) Numerical capturing of unsteady phenomena in displacement of a strong
shock wave

Under the condition of a free stream Mach number of 0.72, a strong and persistent

shock wave is produced on the upper surface of a Joukowski airfoil at an angle of attack

of 0 , 2 or 4 Unsteady calculations with k = 0.1 and 0.25 were made under conditions

of a mean angle of attack 20 and an amplitude of oscillation of 20. With either value of

k , the maximum amplitude of displacement (Fig 2-5b&c) of C in a period was smaller
P

than an absolute difference (Fig 2-5a) in C between two steady flows having angles of
p

attack equal to 00 minimum and 40 maximum. It will be seen from Figs 2-3 and 2-4 that the

supersonic region continues to enlarge even after passing the time (planes C in these

figures) of a maximum angle 40 of attack, and continues to shrink after passing the time

(planes G in the figures) of minimum 00 angle of attack, indicating a phase lag. in

the unsteady pressure distribution, Fig 2-7 shows a pressure peak originating from the

displacing shock wave. With an increase in frequency parameter k , the pressure peak

deviates gradually from the real part to the imaginary part. In other words, with an

increase in frequency, periodic shock wave motion increases the time lag. It will be seen

from Fig 2-8, which illustrates unsteady pressure distribution with absolute values and

phase angle, the width and height of a pressure peak, which is coupled to shock wave,

decreases with an increase in frequency. This was caused by a reduction in amplitude of

displacement with an increase in frequency.

Coefficients up to the third harmonic of tangential force (C x), normal force tCy

pitching moment (C M ) (about centre of half chord and positive nose-up), and the position

of shock wave (SX) (position of lowest pressure on the upper surface), which were given

by Fourier analysis in section (6c) of the previous section, are shown in Table 3. At

either value of k , the ratio of the second harmonic to the first harmonic in the

coefficient of normal force or coefficient of tangential force is smaller than 0.06. It

is therefore indicated that the loci of these coefficients are close to sine curves

incorporating different types of time lag, despite the presence of an oscillating shock

wave. However for the coefficient of tangential force and the position of shock wave,

the ratios are greater than 0.1. In other words, it is clear that these two coefficients

deviate from sinusoidal loci and behave nonlinearly. With an increase in the value of k

from 0.1 to 0.25, considerable reduction in absolute values of the first harmonics and

increases in their phase angles, except that of Cy , were observed.
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Table 3

Fourier coefficients for coefficient of chord force (CX), coefficient of normal foi': (C

coefficient of pitching moment (C M ) (about centre of half-chord, positive nose-up)

and the position of shock wave (S )

(a) k =0.1

Mean Amplitudes Phase angles

f
B A A, A
0 13 ~ 1 2 3

C 0.0047 0.0064 0.0034 0.0004 -32.97 48.77 116.79

C 1.0685 0.2176 0.0052 0.0012 -18.34 !7.68 -!56.84
Y

C M  0.0813 0.0292 0.0016 0.0004 -22.02 0.44 40.71

S 0.6058 0.0340 0.0040 0.0002 -36.31 21.94 173.13

(b) k = 0.25

Mean Amplitudes Phase angles

f
B A A, 3A
0 A 3 1 3

C 0.0024 0.0040 0.0026 0.0004 -66.79 29.33 94.10

Cy 1.0505 0.1586 0.0014 0.0006 -15.96 -34.68 -145.20

CM  0.0858 0.0270 0.0002 0.0000 -27.61 33.16 59.90

S 0.5968 0.0240 0.0032 0.0006 -70.79 -60.27 -149.50

(Case 3) Capturing of an unsteady flow containing strong diagonal shock wave always
present at the trailing edge on the upper surface (downstream is subsonic),
and shock wave periodically displacing downstream of the trailing edge
on the lower surface

At a main stream Mach number of 0.92, a steady shock wave is present at the trailing

edge on the upper surface of a Joukowski airfoil where the angle of attack is -30, 00 or
30, as shown in Figs 3-2 and 3-4a. On the lower surface, the position of another shock

wave moves a large distance upstream from the trailing edge with an increase in angle of

attack. Where the mean angle of attack is 00, the amplitude of pitching is 30 and the

frequency is 0.1, the unsteady shock wave (Fig 3-3) on the low~r surface moves periodically

within a range surrounded by two steady shock waves (Fig 3-2) produced at an angle of

attack t30. It will be seen from Fig 3-4 that the variation of C within the periodP

relevant to k = 0.1 is smaller than that of C of a quasi-steady flow. As will be
p

seen from Figs 3-5, 3-6 and 3-7, the pressure coefficient for unsteady flow is a flat

curve close to 0 on the upper surface because of an almost fixed shock wave, but the

absolute values vary widely on the rear half-chord because of the large movement of the

shock wave.



kt:ase 4) Capturing numerical values of 'fish tail' shock wave system and the process
of its degradation

The appearance of the so-called 'fish tail' shock wave system is well known when the;

tree stream Mach number is close to I. That is, weak oblique shock waves (flow changing

:rom supersonic to supersonic) attach to the trailing edge on the upper and lower surfaces

an merge with a normal shock wave downstream oi the trailing edge. In this triangular

rc,-ion formed by these three shock waves, there is no great variation in Mach number. At

:ree stream Mach number of 0.93, a shock wave system having a similar structure was

2,tiined with a Joukowski airfoil when the angle of attack was -3 . However, when the

12g, of attack was 0 , a fairly small subsonic region appeared behind a steady shock wave

the vicinity of the trailing edge on the lower surface. When the angle of attack was

this subsonic region was much bigger. (Fig 4-1, a slip flow was present at a position

.hore a sonic line of a normal shock wave changed rapidly downstream of the trailing edge).

All ::sadv solution was then sought under conditions of mean angle of attack 0° , amplitude

pitciting 30 and frequency parameter 0,1. During the process of obtaining the periodic

s,,lution shown in Fig 4-2, a 'fish tail' shock wave system was maintained at time points

I:, R and A (angles of attack, -30 - -1.5 * 0 0), a supersonic region spread out in the

vicinity of the trailing edge on the lower surface with an advance in time points to B,

c and 1) ki.5 ° 
- 30 - 1.5°), it contracted with an advance to D, E and F k1.5

° 
- 00

-l. 0), and disappeared at time point G (-3 ). As compared with the previous case

(Fig 3-3), the shock wave on the upper surface (Fig 4-2) leaned considerably towards the

direction of the chord line. The diagrams (Figs 4-3, 4-4, 4-5 and 4-6) of steady and

un, teady pressure distribution on the airfoil surface differed considerably from the

plevious case in the patterns of flow in the vicinity of and downstream of the trailing

edge, but were the same in trend. However, the peak in an absolute value of unsteady

pressure coefficient caused by the shock wave on the lower surface was smaller.

(Case 5) Capturing numerical values of an unsteady flow about an airfoil where the
main stream Mach number is greater than I

When the free stream Mach number exceeds I an isolated shock wave forms upstream

of a circular leading edge, which is almost normal to the air flow in the vicinity of the

chord line, thus it becomes subsonic downstream of it. However, it is well known that

this is accelerated again to supersonic speed on the airfoil surface, and a weak oblique

shock wave (its flow changing from supersonic to supersonic) forms at the trailing edge.

Here again, in respect of a Joukowski airfoil, similar steady flow patterns were obtained

under conditions of a free stream Mach number of 1.4 and angles of attack of -5° , 00 and

S (Figs 5-1 and 5-3a). The supersonic region in the vicinity of the leading edge was

0the greatest where the angle of attack was -5 . In other words, an isolated shock wave

was the smallest. According to the results (Figs 5-2 and 5-3b) of calculating an unsteady

flow under conditions of a mean angle of attack 00, amplitude of pitching 50 and frequency

parameter of 0.1, it was something which could be visualised from a steady flow pattern

at a mean angle of attack 00. The quasi-steady pressure distribution (Fig 5-4) and

unsteady pressure distributions (Figs 5-5 and 5-6) were lower in absolute values than in

any of the above cases, and they formed flat curves and the phase lag was small.
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5.2 Comparisons of tho results of the present method with experiments and other methods
of calculation

(Case 6) A flow field having an extensive supersonic, tield, terminated by a
relatively strong shock wave

This flow field, which was of the same type as that used in case 2, was used in the

calculations for the NLR 7301 airfoil* in order to facilitate comparison with tile experi-

ments .M = 0.7) of Tijdeman . lijdeman carried out experiments with steady flows in

relation to amplitudes . = 2.7 , 3.0 ° and 3.5 of pitching, and obtained the pressure

distributions shown in Figs t-4a and b-5a. He then carried out experiments with unsteady

flow about an airfoil sulbjected to oscillation in pitch, i(t) = 30 + 0.5 ° sill 0.84t ,

around a central axis X 0.4, Y = -1/60). The method of calculation we used was for
c c

inviscid flow, but the experimental results will have the influence of viscosity and the

effect of the wind tunnel. Accordingly, steady flow calculations were made for M = 0.7

and varying angles of attack, the angle of attack 1.5 °  (Figs 6-4b, 6-5b and 6-2),

was chosen as having pressure distribution closest to the results of experiments carried

out at a =3.0 . The value 1.50 was used as a mean angle of attack in the calculations

of the unsteady flow (Fig 6-3'). The amplitude of displacement of C during one period
P

of this unsteady flow was smaller than that in the quasi-steady flow, as will be seen from

Fig 6-4. Quasi-steady pressure distribution and the unstable pressure distribution, have

a high pressure peak (Figs 6-5, 6-b, 6-7 and 6-8) caused by shock wave, as in case 2.

This is common to the calculated results and the experiments. However this peak cannot be

predicted from the solution based on thin airfoil theory**, also shown in these figures.

The results of calculations made by the present method are in good qualitative agreement

with experimental results, except for a slight deviation in the position of the shock

wave and diff, rences in absolute values of stead' and unsteady pressure coefficients.

(Case 7) Unsteady phenomena of an airfoil under design conditions of being
shock wave-free

The supercritical shock-free airfoil NLR 7301 for M, = 0.721 and CL = 0.50

has been designed using hodograph theory. In the experiments made by Tijdeman, in which

the effects of viscosity and tunnel walls were included, values M. = 0.744 and

a = 0.85 were found to give a C curve approximating the C curve under design con-

ditions. In the experiment, an increase in angle of attack by 0.5 produced a shock wave

on the upper surface, and a decrease by 0.50 produced no shock wave but two peaks in the

C curve. As will be seen from the above, a slight change in angle of attack produced aP

great change in steady pressure distribution on the upper surface but only a small change

* This airfoil had been designed by the hodograph method2 1 of Boerstoel for obtaining a

flow free of shock waves. Being relatively thick (maximum thickness 16.5%) and blunt-
nosed, this is considered to be representative of modern supercritical airfoil designs.
Because of its shape, the hypothesis of small disturbance is liable to be violated and
a small disturbance equation cannot be useu. The full potential equation or the Euler
equations should be used. The Cartesian grid system proposed by Carlson and used by
lsogai 7 is unsuitable for this type of airfoil with a blunt nose.

** It has been shown by experiments that an equation approximating a thin airfoil can be
used satisfactorily for making predictions relating to subsonic and supersonic flows,
but it is known i that the equation does not closely agree with experimental results in
the case of supercritical flow.



on the lower surface (Fig 7-4a). In these calculations, values of M 0.721 and

1 -0. 19 were found to give an approximation to the C curve under the design condi-
p

Lions. This resultant angle of attack a = -0.19 ° was used as the standard from which

s teady pressure distributions were obtained when the angle of attack was increased or

decreased by 0.50 (Fig 7-4b). As is seen from the isobaric contours shown in Fig 7-2,

a small change in the angle of attack results in a large change in the flow field from

the design conditions. The quasi-steady pressure distribution (Fig 7-5), has a broad

bulge on the upper surface in both experimental results and the results of the present

calculation. The curve from thin airfoil theory differs qualitatively from these,

indicating that thin airfoil theory is unsuitable for prediction.

Unsteady phenomena resulting from the choice of A.i = 0.50 and k = 0.181 and

the design conditions are as follows. The unsteady pressure distribution (Fig 7-3) on

the lower surface became a relatively smooth curve and there was good agreement between

the experimental results and the results of the present calculation. On the upper surface,

the shape was similar but there was a quantitative difference. Referring to Fig 7-7,

curves for absolute values of the unsteady pressure distribution coefficient obtained in

the experiment and the present calculation have a peak resulting from periodic formation

(Fig 7-3) of a weak shock wave and the phase curves are smooth for about 40 -507 of the

chord length and then they turn upwards sharply owing to the presence of the shock wave.

As in the case of quasi-steady flow, the results of thin airfoil theory differed con-

siderably from those of the experiment and the present calculation. As is seen from the

above, the results of using our method based on the inviscid theory differ quantitatively

from those of experiment, but qualitatively they capture principal characteristics of an

unsteady flow about an oscillation about the shock-free design condition.

.c'i'r'tzc: The wind tunnel used by Tijdeman in his experiment was capable of producing

a relatively low Reynolds number of only 2.2 - 106 . This signifies that the transition

from laminar flow to turbulent flow in that wind tunnel takes place downstream of that in

free flight (Re = 30 - 50 - 10 . Tijdeman also carried out an experiment with a transi-

tion zone fixed at 30% chord, which is similar to that in free flight. Under the condi-

tion of a strong shock wave in case 6, there was no effect of a transition zone because

spontaneous transition occurred at about the same position, but it will be seen from

Figs 7-8 and 7-9 that a flow was very sensitive to the transition zone under the design

condition in that case. It will also be seen from the figures that the results of the

present calculations, which did not include the effects of viscosity or turbulent flow,

were closer to the results of experiments with a transition zone than to those of experi-

ments in spontaneous transition without a transition zone. It is difficult to say that

the flow field in this experiment, undesirable phenomena of the formation of an oblique

compression wave from the transition zone, and its transformation into a compression wave

on being reflected by a sonic line were observed. All the same, a flow under the design

conditions reacts very sensitively to a slight change in condition.



(Case 8) Unste.idy transonic wave accompanied by a weak shock wave

Davis, ,': z, carried out experiments with the symmetric-il airioil NACA tOIAL, wi-!,

a fine and rounded leading edge, with free stream Mach number 0.8. Numerical solutions

for it were sought by Magnus " , using the Euler equations, on assuming inviscid flow,

and by Isogai 5 who used a full potential equation and a transonic small disturbance IS:),

equation. Similarly, we sought three steady flows under the conditions of the same free

stream Mach number and angle of attack of 0 ° • 1 . Also we obtained unsteady flows at t)ie

mean angle of attack 00 and in amplitude of pitching 1° , for comparison. Isobaric contours

and C curves for steady and unsteady flows obtained by the present method of calculationP
are shown in Figs 8-2, 8-i and 8-4. The airfoil being symmetrical and having a mean angle

of attack ot 00, the flow field at a certain cycle in Fig 8-3 is the same as the inversion

of a flow field at a cycvle differing by 0.5 in absolute value. The steady flow shown in

Fig 8-2 (Fig 8--) has no supersonic region (shock wave absent) on the lower qurface when

the angle of attack is 10, but the unsteady flow shown in Fig 8-2 (Fig 8-4) has supersonic

regions (a shock wave present) on both upper and lower surfaces at all cycles. Compari-

sons of the results of the experiment, the present calculation, and other calculations

are shown in Figs 8-1 to 8-8. In the steady pressure distribution (Fig 8-5) at angle of

attack 0 ° , the shock wave according to the present calculation is located upstream of the

others, but its width is the smallest, followed by a fall. The present method of calcula-

tion captured the shock wave sharply. The peak resulting from the periodic displacement

of the shock wave in the unsteady pressure distribution were obtained in decreasing order

of size (Figs 8-7 and 8-8) from Magnus' method using the Euler equations, the present

method using the same equations, Isogai's method using a full potential equation, and

Isogai's method using a small disturbance potential equation. Considering the characteris-

tics o these equations, this order seems appropriate. Obtaining different results

(Fig -6) from using the same Fulhr equations resulted from differences in grid system and

the finite difference method. Among the methods used, those which were particularly clse

to unsteady experimental values were the present method and Isogai's method using the fuli

potential equation. The results from both methods approached the experimental values,

thus they both seem to be satisfactory for prediction in this case. This case, in which

the airfoil thickness is small and the leading edge is sharp, is also particularly

suitable for Isogai's method using the small disturbance potential equation in which the

airfoil slope is handled on a flat plate or the method of Isogai using a full potential

equation employing a Cartesian grid system which is considered to be weak when used for

thick and rounded leading edges.

.',nzrk': Because of the use of a maximum number of grid points of 121 , 3l in the

program, no satisfactory solution could be expected in this case. Accordingly, a

A.'/4-wide grid prepared for use only in the vicinity of vertically asyrmetrical shock

wave was used vertically svmetrically in the vicinity of the leading edge.



J Reuired computing time

The computing times required for the calculation of numerical \alue in se, ,ions .

and 5.2, using a FACOM 230-75 computer itCp (ordinary computer) + APF (array prucessr)l,

in accordance with the routine described in section 4 are as ollows:

IJ) the tormatiun of a single grid and the about 2; seconds with CPU
computation of associated differential
CoetfiCients

t2) ,t3) -omputation of one steady flow about 2090 seconds with APU

k.) the processing of results pertaining to a about 9 seconds with ('PU
quasi-steady flow

S) computation of an unsteady flow cycle about 25- J suconds with API'

ib) processing of results pertaining to an about 20 seconds with t .
unsteady flow

Most of the computing times were used in performing routines 2) and (3), using

program FLOW. In the computation of steady flows under (2) and (3), th tine requirement

v,.ried greatly according to the division of time chosen for the selection of initial

values and for maintaining the complcXitV and stability of flow patterns. 1i', p rod'casing

of results pertaining to an unsteady flow in k5) is similar, but it depends onl requeCv1C

parameter and is independent of the selection of initial values. The average tot al time

required in the case of computing for quasi-steadv flow and four cycles !wste.2dv "

waas about 5 hours.

. Deviation from Rankine-Hugoniot relation

The following Rankine-Hugoniot relation holds theoretically in a steady normal

shock wave in an inviscid flow

- = , , ,1

In the above equation, the subscripts I and 2 indicate positions ir,,.ediatelv before and

after the shock wave. The suitability of a particular numerical solution as a solution

f0r an inviscid flow can be judged by the degree of its closeness to the Rankine-tIugoniot

relation.

With a view to finding the suitability of the present method of calculation, the

quasi-steady and steady flows (13 in number) which could be considered to contain normal

shock waves were selected from among those obtained in the examples of numerical calcula-

tions referred to earlier. Pressure rise at a shock wave was obtained from Mach number

and pressure obtained at the actual mesh points. These values are plotted together with
.23

results of other methods of calculation in a diagram (Fig 9) devised by Lomax, ,' ,, .

As expected, the solutions by time-dependent methods based on the Euler equations, includ-

ing the solution by the present method of calculation were found to better satisfy the

Rankine-Hugoniot relation than solution by a relaxation method based on a potential

equation.

minim
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However, because oI t he presence oi a boundary layer in the experimunt , thu s r:'

t he shock wa'e ne asured '11 an airfoi I is gene rally lower thin what can be prc di, t,

Irom the above re 1 at ion . because of this, a numerical sol ution using a potent i;l ueWUL

wh i ch is Lower in degrey of approximation than Euler equations for an inviscid tlow i LT

0tten be closer to an eTerimental result. For obtaining a solution justifiably clostr

to an experimental value, it is necessary to solve Navier-Stokes' equation for viscous

t low.

6 CONCLUSION

This work pro-1ses ailethod for the calculation of an inviscid compressible flo.

a',t a: ' -u,<csat airfoil osci llating sinusoidally in pitch. With a vicw t .

accrat e v an airfoil even with a rounded and thick (eadir edge such as the XL .,

airfoi I), which appears difficult to solve by previously-published methods for :alculatiec

unsteadv flcws. A coordinate transformation was devised and a computational plane :crrnd.

The Euler equations which have no approximation were used to model an inviscid flow, and

the finite difterence method of Lax-Wendroff with artificial viscositv was used for its

solution. Then, the effectiveness of the present method was examined by carrying out

numerical calculations, Using four airfoils (Joukowski, NACA 0012, NLR 7301 and

NACA t4A0 lo airfoils) within a wide range (0.7 - 1.4) of Mach number. Consequently, we

succeeded in numerically capturing various types of unsteady shock wave phenomena

(processes oi generation, growth and disappearance of a weak shock wave, processes of

propagation of a strong shock wave, a 'fish tail' shock wave system and its process cf

decaying, the process of propagation of a shock wave separated from the leading edge, and

others), During this time, we proved, as was expected, that the discontinuities across

captured shock waves satisfy better the Rankine-Hugoniot relations than do those

calculated using the fuel potential equation. The present method of calculation seems

fully workable for predicting inviscid and unsteady aerodynamic phenomena but is

unsuitable for unsteady flow with a strong viscous interference. If a more powerful

computer than is now available became available in the near future then it should be

possible to get numerical solutions for unsteady flows with strong viscous interference

yv modelling the viscous flow.

The author is grateful to Technical Officer Isogai for participating in the

discussion and for supplying the data.
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