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AUTHOR'S SUMMARY

A procedure is presented to calculate the compressible inviscid
unsteady transonic flow over an airfoil, which oscillates sinusoidally in
pitch. In order to treat precisely boundary conditions on the oscillating
airfoil surface and at infinity, the exterior of the airfoil-shaped contour
in the physical plane is mapped onto a rectangle in a computational plane.
The two-dimensional unsteady Euler equations are solved there by the
Lax-Wendroff finite difference scheme with artificial viscosity. Test
calculations were made for the unsteady flows over the Joukowski airfoil
and the NACA 0012 airfoil oscillating in pitch, in order to obtain several
individual flow patterns. The resulting unsteady pressure distributions,
shock wave locations, etc, are presented. Furthermcre, the unsteady
numerical results obtained by this procedure for the NLR 7301 airfoil and

the NACA 64A010 airfoil are compared with the experimental ones by Tijdeman
and Davis, respectively.
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! INTRODUCTION

Studies on transonic wings have become active recently for improving transport
efficiency, such as in aircraft fuel economy. This study relates to unsteady two-
dimensional transonic airfoils which forms part of the above studies., The transonic flow
field about an airfoil reacts sensitively to a slight change in boundary conditions. For
instance, a change in the angle of attack by about 1° results in changes in shock wave
position and airfoil surface pressure distribution, and great changes in air force and
moment, It 1is therefore necessary to clarify such unsteady aivr force phenomena for
commercialising a transonic airfoil section. Examples of means for this purpose are wind
tunnel experiments and numerical experiments. Examples of wind tunnel experiments
currently carried out are mainly on unsteady boundaries, such as an airfoil oscillating
sinusoidally in pitch, an airfoil with a flap oscillating in pitch, and an airfoil with
time-varying thickness. There are experimental measurements which have been reported by

.. 1 .2
Tijdeman . Davis™, and others.

In numerical experiments too, a number of methods of calculation for this flow by
differential analog have been proposed. Numerical experiments have been restricted to
inviscid flow and the transonic small-disturbance equation or the full potential equation
or the Euler equations have been taken as governing flow equations. Ballhaus and
Goorjian3 proposed a method of calculation using an alternating direction implicit
scheme under a low frequency approximation, and Yu, Seebass and Ballhaus® proposed an
improvement on it. These methods can he used only where the unsteady disturbance is small,
It is impossible to obtain an accurate solution in the neighbourhood of the leading edge
by transferring the condition of tangential flow on the upper and lower surfaces to the
mean chord line because of the singularity generated at the nosec of the chord line. This
trend is particularly acute in the case of a blunt-nosed airfoil. Nevertheiess, because
of the simplicity in handling the equations and boundary conditions, these procedures are
inexpensive and are much quicker than other procedures. It is therefore possible to use
them for calculations in a large number of cases with the use of a mean angle of attack,
main stream Mach numbers, and airfoil shape, etc, as parameters, and to find the trend of
variation in the flow state corresponding to a variation in each parameter. In Japan too,
Isogai, ot aZS developed a simple program for a small-disturbance potential equation with-
out the low-frequency approximation., With a view to reducing inaccuracies resulting from

the use of this equation, Isogai6’7

solved the full potential equation using a semi-
implicit time-dependent difference method in a cartesian coordinate system and satisfied
the tangential flow condition on the fixed curved surface (henceforth called the 'mean
airfoil surface') which coincides with the mean position of the oscillating airfoil
instead of the mean chord. Chipman and Jameson8 carried out a time-dependent coordinate
transformation for a sharp-nosed airfoil, such as a circular—-arc airfoil, so as to be
able to give the tangential flow condition at the true airfoil position, and solved a
full-potential equation in conservation form. However, the range of application of these
potential equations is limited to flows which contain only weak shock waves because of
their isentropic property. For capturing a discontinuity irrespective of strength, it
18 necessary to solve the Euler equations. The use of these equations involves a high

cost of computation and therefore not many results have been published. However, it is
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possible to ascertain the effectiveness of numerical calculation by the above-referred-to
two simpler equations by comparison of results with those obtained from the Euler
equations., Beam and Warming9 used an implicit difference scheme for solving the Euler
equations, but good accuracy could not be expected for a blunt-nosed airfoil because the
boundary conditions were given at a mean chord position, Magnus and Yoshihara gave
this condition at a mean position on an oscillating airfoil surface, and Lerat and

Sidesls’16

coordinate transformation and sought the solution with the use of an explicit difference

gave the same ccndition on a true airfoil surface by a time-dependent

scheme. For a perfect prediction of air forces, the hypothesis of inviscidity should be
removed, in order to enable the handling of such viscous phenomena as interaction between
an unsteady shock wave and boundary layer, etc. For this purpose, Magnus and Yoshihara
used a method of approximating the displacement effect of a boundary layer, but the
possibility of calculations based on the Navier-Stokes equations, which incorporates a
viscous flow model, is possible. The calculation tried out by Chyu and Davis]7 for by=-
passing the current high cost of computation has too coarse a grid spacing. Satisfactory

calculations are likely to be made when the cost comes down.

This study proposes a method of calculation for a flow about an airfoil which
oscillates sinusoidally in pitch, using the unsteady Euler equations. This method is a

18,19 by the author,

variation of the method of calculation for steady flow proposed earlier
by improving the mapping function for grid construction, in order to improve calculation

efficiency, and by extending it to enable the handling of unsteady boundary conditions.

It will be assumed that the amplitude of pitching 1s small, and that the boundary condi- l
tions are given at the mean airfoil surface position., Magnus and Yoshiharal‘ carried out

calculations in a finite plane exterior to the mean airfoil surface and superposed several

types of Cartesian grids varying in spacing on a physical plane with a curvilinear grid

near the airfoil surface. The difference scheme used was an explicit two-~step finite

difference scheme of the Lax-Wendroff type. In this paper, the following approaches,

which differ from the above, are tried outzo.

First, the infinite plane exterior to the mean airfoil surface is mapped on to a
rectangle to form a computational plane, in order to facilitate the handling of airfoil
surface boundary conditions and infinity conditions. On the computational plane, only
one uniform grid is spanned. In the vicinity of a shock wave, a fine and uniform grid
is superposed when required. Numerical solution of the unsteady Euler equations at a
mesh point will be obtained from an application of the time-split Lax-Wendroff scheme,

with an artificial viscosity term.

A program will then be made using this method of calculation, and an examination

will be made of the possibility of obtaining several types of unsteady flow patterns by
using a Joukowski airfoil and the NACA 0012 airfoil. Then, numerical solutions for the
NLR 7301 airfoil and the NACA 64A010 airfoil also will be obtained. They will be

compared with the results obtained by Tijdeman and Davis,




2 SETTING UP THE PROBLEM

The Euler equations of unsteady two-dimensional flow are used as 1undamental
differential equations and can be represented in the following conservative form on a
physical plane x~-y. This equation has previously been non-dimensionalised in reference

by main stream density and velocity, and chord length.

N U KRG
2
pu fu +p Juv
+ + , = 0 ,

Y ., uv v o+ p

e u(e + p) x vie + p)
2 2

p = (v - l){e-:(u +V)/2} 5 n

a relation ¢ = v(yp)/¢ holds; where ¢t = time, x, v rectangular cartesian coordinates,

¢ = density, u = velocity component in x-direction, v = velocity component in y-direction,
e = total energy per unit volume, p = pressure, c = speed ~f sound, y = specific heat

)
! ratio of perfect gas (presumed to be 1.4).

The vector representation of equation (1) is

wt + FX(W) + Gy(W) = 0 (2)

The problem of determining an inviscid flow around an unsteady airfoil can be
replaced numerically by the problem of solving equation (2) subject to the following

three boundary conditions.

(@))] Tangential flow condition - the flow velocity vector is tangent to the unsteady

airfoil surface.

(2) Condition of the trailing edge - the Kutta-Joukowski condition (the pressures on
the upper and lower surfaces at the trailing edge are identical) in the absence of a
shock wave at the trailing edge and the Rankine-Hugoniot relation holds in the presence
of a shock wave at the trailing edge.

&) Infinity conditions - at upstream infinity, conditions are free stream conditions,

that is W = W_ (hereinafter the subscript « will be used for indicating the free

. 2 .
stream), where o =1, u_ = cos ays Vv, = sinag, p, = 1/(yM2) where a, is the mean

angle of attack.




At downstream infinity and the main :ream subsonic, shock wave can be divided into

S -+ -+ . .

downwash and the rest, then p =p_, U=z , (3U/3z) =0, (3p/3z, ) = 0 (z, = direction
of the main stream; U= velocity spectrum) hoid for the former and the flow in the rest
Is the main stream. Where the main stream is supersonic, the downstream solution depends

upon the upstream values, thus no conditions are necessary.

In this study, the problem of unsteadiness will be confined to the flow about an
airtoil oscillating sinusoidally in pitch with small amplitude, and the conditions of
tangential flow will be applied at the mean position of the oscillating airfoil. The
method of calculation using a computer for solving this problem will be discussed in the

next section.

3 SOLUTION OF FUNDAMENTAL DIFFERENTIAL EQUATIONS

N

Vol Coordinate system and mesh for calculation

In order to facilitate the insertion of the condition of tangential flow at the
airfoil surface and the condition at infinity, the mean airfoil surface and its exterior
on a physical plane (x,y) will be mapped on to a rectangle and its interior on a computa-
tional plane (£,n)., This mapping is carried out with the following three coordinate
transformations, which are illustrated in Fig I, The description of mappings (1) and (2)

is brief because they have been described in detail in Ref 13 (pp 3,4).

@) A point on an airfoil surface at the greatest distance from the trailing edge of a
mean airfoil surface is called the leading edge, which is selected as the origin. A
straight line connecting this with the trailing edge is the x-axis (a closed trailing
edge alone is considered). A mean airfoil surface having a traiiing edge angle ¢ and
its exterior on its physical Plane (z = x = 1y) is conformally mapped on to a unit circle
iw
)

and its exterior on o (= re

(2) This unit circle and its exterior are conformally mapped on to the lower half of

w (= x'" + iy') plane.

%)) By using the following function, this lower half plane is mapped on to a rectangle

and its interior on the computational plane [ = & + in .,

cash /s - o) (el < 2)

»®
"

n/(l - n) (O<sn<s 1),

In the above equation, g 1is a polynomial, and its coefficient should be fixed
accurately by a method described later, to obtain a highly efficient calculation of flow
pattern which can be visualised in each case before starting the calculation of flow

patterns,

In Fig I, the wavy line and broken line show the curve to which the three straight

lines ¢ = tb, n = ¢ correspond on each coordinate plane.

With this series of mappings, the mean airfoil surface is made to correspond to the

section (n = 0, -a ¢« § s a), upstream infinity to the upper side of the rectangle, and

S caa——




downstream infinity to both lateral sides of the rectangle. Thus, all boundary conditions
can be given on the four sides of the rectangle. The domain tor computation is this

rectangle and its interior,

The Euler equations (2} on the physical plane are transformed into the following on

the computational plane,

Ne # F NS+ 6 A+ FLGD

+ 6 (W = 0 . (3)
t " v

X

Differential coetficients 7 , ¢ , g and " can be determined for each mapping
b3 y ;

function, using a chain rule (Ref 18, p.4). For soiving equation (3) by a finite

difference method, first place a uniform Cartesian grid system having widths A and .-

on the computational plane to make lattice lines coincide with the four sides of the

rectangle, and represent the lattice points by syvmbols (i,])) The grid image on the .

corresponding physical plane is also orthogonal., As will be shown later in examples, the

j group of lattice lines are higher in density as theyv approach the airfoil surface,

whereas the density distribution among the 1 group of lattice lines is designed to be

adjustable by means of the function g 1in the mapping in equation (3). Taking into

consideration the pattern of a predicted flow, g 1is fixed to make the grid image density

on the phvysical plane higher in an area where flow variation is great (in the vicinity of

shock wave, leading edge and trailing edge). However, arbitrary points il and -, on

the ;-axis downstream of the trailing edge must correspond to the same point. The l
5

function g 1is made a function of 57 . Because of this, the lattice distributions on
the upper and lower surfaces of an airfoil are similar in shape. However, where the

flow patterns on the upper and lower surfaces differ considerably, for instance, in the
presence of a shock wave only on the upper surface, the grid in its vicinity must be made
fine, but there is no need to de this on the lower surface., For maintaining computational

efficiency in such a case, a grid (width 2%) was formed on first fixing g to match the
flow pattern on the lower surface, and a finer grid (width Ai/4) was superposed on that
part of the grid svstem corresponding to the vicinity of the shock wave on the upper
surface. An automatic superposition of that section with the 1/4-width grid was possible
by the inclusion of a4 routine for designating (il,iz). With the selection of a suitable
g , and the superposition of the 1/4-width grid, an improvement in computational
efficiency and an accurate numerical grasping of flow pattern variation were made

possible.

Beczuse the boundary conditions of an oscillating airfoil are applied at the mean
position of the airfoil surface a time-dependent grid system is not required.

The definition of g: The correspondence between z = x ~ iy and w = x' + iy' s

obtainable from mappings (1) and (2), therefore we will try to obtain a curve (inclusive

of a mean airfoil surface) corresponding to the x'-axis, Choose a suitable number of

points (xQ,yl), where ¢ =1, 2, 3, ..., L , on that curve and arrange the desired

lattice~point subscript il for each of these, while taking into consideration the

predicted flow pattern. Then, find xé corresponding to (xg,yc) and approximate L sets

hed
of data [C;, (Ei - &)x&/{ ] , which can be calculated from x; and ii = (ii ~ ag ,

4




with a number of least squares polynomials differing in degree. Draw a grid image tor

vach degree on the physical plane, select one which is likely to be suitable tor flow

calculation, and define g as tollows,

- . . . . .18
3.2 Finite difference method at an interior point

The solution by finite differences for W at the point (i,i), arter N time steps
. N . . . . . .
ts represented by wi . . For mesh points in the rectangle, the follewing time-split
’
Jifference approximations are applied to equation (3) (Fig IT).

. o <
WL L, W s vt
i,j A i,j R O

The differential operator L, 1in the above equations is a two-step Lax-Wendroff operater

S

of second order accuracy.

s § s . , . ~ o
L.W T W - = {(F . - F ) ¢ ) )
1,] 1,] L 1+3,) i-4,] hl,] i+l,] 1735] yi,js
W= bW, PRt Q1.4 s(1-‘ - F, )¢ +(G., .-G, . L.
i+d,] i+i, i,] 208 ) i+1,] 1,] \1+§,j 1+1,] 1,1 \“_E,j‘

o )

. .. o . 1
L can be defined similarly. The von Neumann condition for L_L L L. van be given

by the following equation

For obtaining a value for the magnitude of time-step for use in actual calculations,

multiply AT by a suitable scalar CAt (less than 1), so that the stability criterion

is satisfied. The artificial viscosity operator V., can be defined as follows:

g g y& L ow
. . Do, . .- W, ) = Ul L =, W, L - W, .
i+l,] Ul’Jl(w1+lrJ 1,3) Ul;J i-1,] (vlyJ l-l;J) ’

-
b
n
=
+
>
=
|

vV, is defined similarly. The quantities XC and 1 are suitably chosen to ensure
the numerical stability of the solution with artificial viscosity terms.

[ e -

o S—




3.3 Method of handling boundary conditions

As was said in section 3,1, the whole of the airfoil surface, trailing edge, and
infinities correspond to the four sides of the rectangle on the computational plane.
Thus a method for obtaining numerical solutions which satisfy the boundary conditions

discussed in section 2 will be described.

(1) Two sections (a ~ & <2 and =-a ~ £ > ~2) on the base (~ = 0): They correspond
to the same curve, which is not a boundary, on the physical plane in Fig I (the wavy-line
sections in Fig II). Thus the method relating to the internal point discussed in

section 3.2 will be applied with the relation W(§) = W(-¢) assumed to hold.

(2) Section £ <« a on the base (=~ = 0): This corresponds to mean airfoil suirface.
The condition of sinuscidal oscillation of the solid airfoil surface must be satisfied.
In other words, the velocity component of a flow normal to the airfoil surface must equal
the component of velocity of the surface in the same direction. W on the .airfoil
surface in this calculation is obtainable from the following representation (] = !

indicates the base).

V+ ~ A ~
Wb s ot e, W o vl LW
i,! nE1, 1,1 578 n1,l
In the above equation, i can be defined as i W. = h(i W. ., f W. ,) where h is
n N1, ! ni,2 n 1,3

an extrapolation function relating to the distance between corresponding points on the
physical plane of grid points j = {, 2, 3. First, the intermediate quantity Wowill

be obtained from the following equation:

AN+1 SN+2 ~ N+l
R S TR AT L

AR Velel Wi

~

The velocity components in W are replaced by the tangential component, and

v
i . [, tan
the normal component Vo or A&t that time. This quantity W can be updated to W by

an oscillation operator 0 which is used in many operations to be discussed later.

We will now consider (Fig II1) a coordinate system X ~ Y (X = direction of the
airfoil) which is fixed to the moving airfoil, in addition to coordinate system x - y ,
on the physical plane. When the airfoil is in its mean attitude, they coincide with each
other. Let us assume that an airfoil is oscillating sinusoidally in pitch about a
central axis of coordinates (xC,yC) = (Xc’Yc)’ with

a(t) = a. + R(t) , B(t) = Aa sin 2kt

0

where a(t) = angle of attack, oy = mean angle of attack, B8(t) = angle of pitching,

Aa = amplitude of pitching, k = frequency parameter.

The frequency parameter k is defined by




where o = airfeil chord length, .' = angular frequency, and U = speed o maln stream,

The po.ltion of puint m (coordinates (Xm,Ym\\ corresponding to a grid fixed to o

meving airfoil in the x-v svstem at the time t  is obtainable from the equations

X (t) = X + (X = X)) cos s(t) + (Y =Y ) osin ot
m ¢ m < m v

V() = Y = (X = X)) osin () + (Y =Y ) cos q(t) .
“m N o ¢ n ¢
The velocity component in the outward normal direction at poiat @ on the airicil

1s obtainable from the velocity components (hm,ym) in the Cartesian svstem by means o:

the equation

v = - x_ sin{vr - )Y + v cos{~ =)
n “m m

where “ is the angle between the tangent to the airfoil surface and the airfoil chord

co. . . . . . . - . .
measured positive In the clockwise direction. The velocity component Vior n 3 direc-—

tion normal to the airfoil surface at the time t , which has been obtained earlier, is
adjusted to agree with the velocity component v of a plane isentropic wave which

nor
propagates in the normal direction on the outside of the airfoil. This adjustment causes

variation in density and pressure, but it does not change the tangential component of

“ ~ - . - . A
velacity v . The adjusted density, pressure and flow velocity (v ,\ ) are used
- tan - N tan® nor
tor updating W .
3 Two points (L = -a, = = 0) on the base: These points correspond to the same point,

the trailing edge, on the physical plane. Although the conditions differ according to
the presence or absence of a shock wave at the trailing edge, as was sald earli.r, a
Jdiscontinuous surface 1s handled as a continuous surface with a steep slope in the finite
difference method. Thus, for convenience, in the presence of a mesh point at the trail-
ing edge, numerical solutions for the upper and lower surfaces are obtained and these are
then averaged. In the abserce of such a mesh point, use the method relating to the
internal point discussed in the previous section at two mesh points (& = tiT, =
nearest to the base of the rectangle and average their numerical solutions.

(%)

thus it always gives main stream W_ .

(fi: €2, n = l) on the top side: This corresponds to upstream at infinity,

(3) (};l 2, 0~ n < l) on two lateral sides: This corresponds to wownstream at
infinity, Where the main stream is supersonic, the numerical solution at a neighbouring
grid point within the rectangle is used at the boundary point. In other words, extrapola-~
tion with zero~order precision is carried out. On the other hand, if the main stream is
subsonic, the condition at infinity discussed in section (3) should be imposed. However
it is difficult to use that condition in the present calculation, so the following

numerical approximation is made. Whether or not a grid point (IE,j) at & = :2 s

downstream of a shock wave is determined (Fig IV) by whether the value of entropy SIB

e e\t et siin i e i s b T AR




of the neighbouring mesh point upstream of (1B, j) s greater than the cntropy % Gl
oncoming flow, 1t SlB ©S it s presumed that the point is downstredm of o :n - s,
Ir s, . =~ s then W PN strianyle=-marked seoticns in o Fioo0n
IB,) ' Tty ' i
s . y N 5 N B S
i S . >0 hen o . = . = . 91 . ~ oL, o R
) 1B, ] o lIr.,) e It ,) 1E,:" I, I, !
v~ T sin threren-line sections 1 i,
Ik, ] 18,3} & wre ¥
- ROUTINE OF NIMERICAL CALCULATION

Trogram "MESH' for torming a mesh with the seluticns discussed 15 the provioas

R

chapter, program 'FLOW' Tor rinding a flow about an airfei!l by the tinite differcin
method, and program "RESULT' processing resules based on W, with graphs, etc, were

prepared. These prugrams were written in the code for a FACOM 230-T73 computer with an

array processor unit.

The calculation of the case of an airfoil main strvam of given Mach number M

b

oscillating in pitch with argle of attack .avp)
(X ,Y ) was carried out in the follewing sequence of steps,

e i
(n Preparation of the mesh: The tfunction 3 was determined with program MESh

procedure discussed in section 3.1, It was declded whether to superpose the 00 .-wis

grid and if so the position at which the superposition was to be made

(2) Calculation of a steady flow which becomes a starting solution in the calculation

of unsteady flow: An unsteady flow about an airfoil placed at an angle of attacx . in

.

a main stream of Mach number M was found by the following procedure. Seck asvmpioti-

cally steady solution by applving the program FLOW on a suitable starting value i
amplitude .. = 0 . <«Described in detail in Ref 18,)
(3) Calculation of a quasi-steady flow: Although nct alwavs necessary, it 1s advisabic

to have, before starting the calculation for an unsteady flow (k # (0, a calculazion o

the corresponding quasi-steady flow (k = 0, oscillation is infinitely slow) for reference.

That is, asymptotically steadv solutions W are calculated for both maximum angle of
attack (10 + 1) and minimum angle of attacx Cag T St of the ascillation, as in 100
above. Convergence is obtainable more rapidly from using a starting solution obtained by
the method discussed in (2). It is necessary at this time point to examine whether a
mesh prepared in (1) is suitable for calculations in (2) and (3). If unsuitable, repea:
the preparation in accordance with (1). If the mesh has been found suitable for calcula-
tions in (2) and (3), the calculations of the unsteady flow having an angle of attack
a(t) continually varying between the above two limits can probably be made

satisfactorily.

(4) Processing the results of the quasi-steady flow calculation: Derive the following

from the results of calculations in (2) and (3), using RESULT.

+ 1 osin 2kt about the Ceniral axis




La) Prepare isobaric charts with sonic lines tor three steady rlows tangles of
attack 35 Y 2, g, ag T 4a) and diagrams le T 2p- l/(wMJ) |  of variation in airfoil
surface pressure coefficient CP with chord length. Integrate Cp to obtain the
coefficient of drag CD , the coefficient of lirt CL , and the moment cuefficient CM .

(b) A diagram of variation In quasi-steady pressure coefficient LCP (or le )
with chord length, where

ACp = (Cp(;lo - i) - Lp(JO + ..;))/\..f.x) .

or, In the case of a symmetrical airfoil, where i = 0

.‘,Cp = (Cp(;xo) - Cp( ‘0 + J)>/A .

(5) Calculations for unsteady flow: With the flow for the mean angle oI attack obtained
in (2) above, taken as starting solution at t = 0 , an unsteady flow about an airfoil
oscillating sinusoidally in pitch will be obtained with the use of FLOW., (ontinue calcu-
lations until periodic solutions are obtained (about four periods are necessary for
coinciding isobaric charts for all periods). During that time, solutions W obtained

for equidistant phase angles (every 10° here) were stored in a disc pack to be used later

for processirg the following results.

(6) Processing of results pertaining to unsteady flow: RESULT was used for deriving

the following from the results W stored in (3) above.

(a) Isobaric charts with sonic lines at a series of specified phases, and diagrams

of variation in airfoil surface pressure coefficient with chord length.

(b) Unsteady pressure distribution diagram (depiction of first harmonic variation
of Cp ). That is, to obtain Cpi at a lattice point on an airfoil surface in every
equidistant phase angle (10°) from the solution W for the final period stored in (5),
and then approximate the data (37 in number) for the period under consideration by a
spline Interpolation and a fast Fourier transform to get the equation

!

) sin 2kt + Im(Cp ) cos 2kt

cC_(t) ~ B +Aa3Re(C
Pi i !

P; 04

= Boi + Aa‘Acpi] sin(2kt + o) .
In the above equation, Re(Cp) is the real part of unsteady pressure distribution
which is of the same phase as the movement of airfoil, and Im(Cp) is the imaginary part
of the unsteady pressure distribution which is in a quadrature with the motion. Further,
|aC_| is the magnitude of the first harmonic and ¢ is phase relative to the airfoil

motion, Variation of these four quantities with chord length is shown in a figure.

(c) Air force coefficient and Fourier analysis of the position of the shock wave.
The position of the shock wave (X of minimum Cp) was calculated from Cp obtained during

the calculation in (b) above. Tangential force coefficient (CX), normai force




coefficient (CY)' pitching moment coefficient C l(XC,YC) centre and positlve nvse—~ujp

M
were valculated for each phase angle (10%) by integration. Then, each of these was
represented by f and the data (37 in number) thus obtained for one period were
approximated by the following equation, obtained by spline interpolation and fast Fouric:

transform. Numerical values of BO, An and P, were obtained

\"
f(t)y = B  + :.JZ{A sin(2nkt + : )} .
0 n n
n=1
1f the magnitude of the second and subsequent harmonics, An , where n = 2, 3, ...,
is smaller than that of the first harmonic A f changes sinusoidally with respect t.

} ?
time. In other words, it can be said that a linear relation exists between the displace-

ment of an airfoil and its f , Where this is not so, these coefficients serve as an

indicator of the degree of deviation from the sinusoidal form.

5 EXAMPLES OF NUMERICAL CALCULATION

Let us illustrate the numerical capturing of various types of unsteady shock wave
phenomena at various main stream Mach numbers, by the calculation sequence given in steps
I to 5., Experimental conditions differ slightly fr m the conditions of calculation used
here because of the effects of interference by wind tunnel walls and viscosity, but cases
6 and 7 illustrate the reproduction by calculation of an analogous flow pattern which l
enables a comparison with the experiments of Ti)deman to be made. In case 8, the
present method of calculation are compared with the results of Davis' experiments, and

of other methods of calculation.

The types of airfoil, the values of parameters (main stream Mach number, mean angle
of attack, amplitude of pitching, reduced frequency, position of central axis of oscilla-
tion, number of mesh points, coefficient of time~step and coefficient of artificial
viscosity), the presence or absence of superposition with A&/4-wide mesh, and numbers
of mesh images used in the calculation in each are shown collectively in Table 1. The
numbers of the figures showing the results of the principal calculations in all cases arc
given in Table 2, The symbols ( ) indicate the numbers of the figures showing comparable
results obtained by experiments or other methods of calculation, All figures pertain to
a period a number of cycles 2kt/2m from t = 0 have occurred. The characteristics and
results of the calculations will now be examined case by case.

5.1 Tests on capturing numerical values pertaining to various types of unsteady
flow fields

(Case 1) Numerical values pertaining to unsteady phenomena involving the generaticn,
growth and annihilation of a weak shock wave
At the free stream Mach number of 0.73, a steady flow produced by the symmetrical
airfoil NACA 0012 does not contain a shock wave when the angle of attack is Oo, as is
shown in Fig 1-2f, but it does when the angle of attack is 2°. Under the conditions of
a mean angle of attack 0° and amplitude of pitching 20, calculations at k = 0.1 were

made. The development of the flow was followed numerically, through the generation of a
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shock wave, its growth and decay on the upper surtace, followed by the same events on the

lower surface in every period. Periodic solutions were obtained, as is seen in Figs 1-2
and 1-3 but they do have a phase lag. It should therefore be possible to superpose a
diagram of a flow field with a random cyvle diagram of another flow field differing by
0.5 cvele from the first. This has been proved (Fig 1-2). As will be seen from a diagram
(Fig 1-4) of quasi-steady pressure distribution and diagrams (Figs 1-5 and 1-6) of
unsteady pressure distribution, the absolute value of unsteady pressure distribution
«oefficient is greater on the forward part of the airfoil. This is the part on which
generation, growth and decay of shock waves take place,
(Case ) Numerical capturing of unsteady phenomena in displacement of a strong
shock wave

Under the condition of a free stream Mach number of 0.72, a strong and persistent
shock wave 1s produced on the upper surface of a Joukowski airfoil at an angle of attack
of 00, 2% or 4°, Unsteady calculations with k = 0.1 and 0.25 were made under conditions
of a mean angle of attack 2° and an amplitude of oscillation of 2°, With either value of
k , the maximum amplitude of displacement (Fig 2-5b&c) of CP in a period was smaller
than an absolute difference (Fig 2-5a) in Cp between two steady flows having angles of
attack equal to 0° minimum and 4° maximum. It will be seen from Figs 2-3 and 2-4 that the
supersonic region continues to enlarge even after passing the time (planes C in these
figures) of a maximum angle 4° of attack, and continues to shrink after passing the time
(planes G 1in the figures) of minimum a® angle of attack, indicating a phase lag. In
the unsteady pressure distribution, Fig 2-7 shows a pressure peak originating from the
displacing shock wave. With an increase in frequency parameter k , the pressure peak
deviates gradually from the real part to the imaginary part. In other words, with an
increase in frequency, periodic shock wave motion increases the time lag. It will be seen
from Fig 2-8, which illustrates unsteady pressure distribution with absolute values and
phase angle, the width and height of a pressure peak, which is coupled to shock wave,
decreases with an increase in frequency. This was caused by a reduction in amplitude of

displacement with an increase in frequency.

Coefficients up to the third harmonic of tangential force (CX), normal force tCY),
pitching moment (CM) (about centre of half chord and positive nose-up), and the position
of shock wave (SX) (position of lowest pressure on the upper surface), which were given
by Fourier analysis in section (6c) of the previous section, are shown in Table 3. At
either value of k , the ratio of the second harmonic to the first harmonic in the
coefficient of normal force or coefficient of tangential force is smaller than 0.06., It
is therefore indicated that the loci of these coefficients are close to sine curves
incorporating different types of time lag, despite the presence of an oscillating shock
wave, However for the coefficient of tangential force and the position of shock wave,
the ratios are greater than 0,1, In other words, it is clear that these two coefficients
deviate from sinusoidal loci and behave nonlinearly. With an increase in the value of k

from 0.1 to 0.25, considerable reduction in absolute values of the first harmonics and

increases in their phase angles, except that of CY , were observed,




Table 3

Fourier coefficients for coefficient of chord force (C\)’ coefficient of normal fo1r-e (CY),

coefficient of pitching moment (Cﬁ) (about centre of half-chord, positive nose-up)

and the position of shock wave (SX)

(a) k = 0.1
Mean Amplitudes Phase angles
£
%o A Ay A3 " 2 3

C( 0.0047 0.0064 0.0034 0.0004 -32.97 48.77 116.79
CY 1,0685 0.2176 0.0052 0.0012 -18.34 17.68 -156.84
CN 0.0813 0.0292 0.0016 0.0004 -22,02 0.44 40.71
SX 0.6058 0.0340 0.0040 0.0002 -36.3! 21,94 175.13

(b) k =0.25

Mean Amplitudes Phase angles
£
BO Al Al A3 Cl cz iy

CX 0.0024 0.0040 0.0026 0.0004 -66.79 29.33 94,10

CY 1,0505 0.1586 0.0014 0.0006 -15.96 -34.68 ~145,20 ]
CM 0.0858 0.0270 0.0002 0.0000 -27.61 33.16 59.90

SX 0.5968 0.0240 0.0032 0.0006 -70.79 -60.27 -149.50

(Case 3) Capturing of an unsteady flow containing strong diagonal shock wave always

present at the trailing edge on the upper surface (downstream is subsonic),
and shock wave periodically displacing downstream of the trailing edge
on the lower surface

At a main stream Mach number of 0.92, a steady shock wave 1s present at the trailing
edge on the upper surface of a Joukowski airfoil where the angle of attack is ~3O, 0° or
30, as shown in Figs 3-2 and 3-4a. On the lower surface, the position of another shock
wave moves a large distance upstream from the trailing edge with an increase in angle of
attack. Where the mean angle of attack is 00, the amplitude of pitching is 3° and the
frequency is 0.1, the unsteady shock wave (Fig 3-3) on the low.r surface moves periodically
within a range surrounded by two steady shock waves (Fig 3-2) produced at an angle of
attack +3°, It will be seen from Fig 3-4 that the variation of Cp within the period
relevant to k = 0.1 1is smaller than that of Cp of a quasi-steady flow., As will be
seen from Figs 3-5, 3-6 and 3-7, the pressure coefficient for unsteady flow is a flat
curve close to 0 on the upper surface because of an almost fixed shock wave, but the

absolute values vary widely on the rear half-chord because of the large movement of the

shock wave.
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(Wase 3) Capturing numerical values of 'fish tail' shock wave system and the process
of its degradation
The appearance of the so-called 'fish tail’ shock wave system is well known when the;

ree stream Mach number is close to 1, That is, weak oblique shock waves (flow changing
rrom supersonic to supersonic) attach to the trailing edge on the upper and lower surfaces
and merge with a normal shock wave downstream ol the trailing edge. In this triangular
vegion formed by these three shock waves, there is no great variation in Mach number. At
4 !tree stream Mach number of 0.93, a shock wave system having a similar structure was
cbhtained with a Joukowski airfoil when the angle of attack was -3°, However, when the
angle of attack was Oo, a fairly small subsonic region appeared behind a steady shock wave

the vicinity of the trailing edge on the lower surface. When the angle of attack was
7, this subsonic region was much bigger. (Fig 4-1, a slip flow was present at a position
where a sonic line of a normal shock wave changed rapidly downstream of the trailing edge).
At unsteady solution was then sought under conditions of mean angle of attack 0V, amplitude
of pitehing 3° and frequency parameter 0.1, During the process of obtaining the periodic
solution shown in Fig 4-2, a 'fish tail' shock wave system was maintained at time points

o o . . .
~ 07), a supersonic region spread out in the

¢, H and A (angles of attack, -3% - -5
vicinity of the trailing edge on the lower surface with an advance in time points to B,
Cand D o(1.35% -+ 3% - l.SO), it contracted with an advance to D, E and F \1.50 ~ 0% -
-1.5%y, and disappeared at time point G (-3%). as compared with the previous case
(Fig 3-3), the shock wave on the upper surface (Fig 4-2) leaned considerably towards the
direction of the chord line. The diagrams (Figs 4-3, 4-4, 4-5 and 4-6) of steady and
un: teady pressure distribution on the airfoil surface differed considerably from the
previous case in the patterns of flow in the vicinity of and downstream of the trailing
edge, but were the same in trend, However, the peak in an absolute value of unsteady
pressure coefficient caused by the shock wave on the lower surface was smaller.
(Case 5) Caprturing numerical values of an unsteady flow about an airfoil where the
main stream Mach number is greater than I

When the free stream Mach number exceeds | an isolated shock wave forms upstream
of a circular leading edge, which is almost normal to the air flow in the vicinity of the
chord line, thus 1t becomes subsonic downstream of it. However, it is well known that
this is accelerated again to supersonic speed on the airfoil surface, and a weak oblique
shock wave (its flow changing from supersonic to supersonic) forms at the trailing edge.
Here again, in respect of a Joukowski airfoil, similar steady flow patterns were obtained
under conditions of a free stream Mach number of 1.4 and angles of attack of -So, 0° and
59 (Figs 5-1 and 5-3a). The supersonic region in the vicinity of the leading edge was
the greatest where the angle of attack was -5°.  In other words, an isolated shock wave
was the smallest. According to the results (Figs 5-2 and 5-3b) of calculating an unsteady
flow under conditions of a mean angle of attack 00, amplitude of pitching 57 and frequency
parameter of 0.1, it was something which could be visualised from a steady flow pattern
at a mean angle of attack 0°. The quasi-steady pressure distribution (Fig 5-4) and
unsteady pressure distributions (Figs 5-5 and 5-6) were lower in absolute values than in

any of the above cases, and they formed flat curves and the phase lag was small,
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5.2 Comparisons of the results of the present method with experiments and other methods
of calculation

(Case 6) A flow field having an extensive supersonic tield, terminated by a
relatively strong shock wave
This tlow field, which was of the same tvpe as that used in case 2, was used in the
calculations for the NLR 7301 airfoil* in order to facilitate comparison with the experi-

L ! T . . . . .
ments (M = 0,7) of Tijdeman . Tijdeman carried out experiments with steady flows in
(&)

—

. . o O . . .
relation to amplitudes .« = 2,5, 3.0 and 3.57 of pitching, and obtained the pressure
distributions shown in Figs b~43 and b6-5a. He then carried out experiments with unsteady

© 4 0.57 sin 0,384t ,

flow about an airfeil subjected to oscillation in pitch, a1(t) =3
around a central axis (XC = 0.4, Yc = ~1/60)., The method of calculation we used was for

inviscid flow, but the experimental results will have the influence of viscosity and the

effect of the wind tunnel. Accordingly, steady flow calculations were made for M = 0.7

and varying angles of attack, the angle of attack o« = 1.s° (Figs 6-4b, 6-5b and 6-.),

was chosen as having pressure distribution closest to the results of experiments carried

out at « = 3.0 . The value 1.5° was used as a mean angle of attack 1in the calculations

of the unsteady flow (Fig 6~3). The amplitude of displacement of Cp during one period ;
of this unsteady flow was smaller than that in the quasi~-steady flow, as will be seen from
Fig 6-4. Quasi-steady pressure distribution and the unstable pressure distribution, have
a high pressure peak (Figs 6-5, b~b, 0-7 and 6-8) caused by shock wave, as in case 2,

This is common to the calculated results and the experiments. However this peak cannot be
predicted from the solution based on thin airfoil theory**, also shown in these figures. l

The results of calculations made by the present method are in good qualitative agreement

with experimental results, except for a slight deviation in the position of the shock
wave and diff: rences in absclute values of steadv and unsteady pressure coefficients.

(Case 7) Unsteady phenomena of an airfoil under design conditions of being
shock wave—free

The supercritical shock-free airfoil NLR 730! for M = 0.721 and CL = 0,595
has been designed using hodograph theory. In the experiments made by Tijdeman, in which
the effects of viscosity and tunnel walls were included, values M = 0.744 and
a = 0,85 were found to give a C_  curve approximating the C curve under design con-
ditions. In the experiment, an igcrease in angle of attack by 0.5" produced a shock wave
on the upper surface, and a decrease by 0.5° produced no shock wave but two peaks in the
Cp curve, As will be seen from the above, a slight change in angle of attack produced a

great change in steady pressure distribution on the upper surface but only a small change

2
* This airfoil had been designed by the hodograph method"l of Boerstoel for obtaining a

flow free of shock waves. Being relatively thick (maximum thickness 16.5%) and blunt-
nosed, this is considered to be representative of modern supercritical airfoil designs.
Because of its shape, the hypothesis of small disturbance is liable to be violated and
a small disturbance equation cannot be used. The full potential equation or the Euler
equations should be used. The Cartesian grid system proposed by Carlson and used by
Isogai’ is unsuitable for this type of airfoil with a blunt nose.

*% [t has been shown by experiments that an equation approximating a thin airfoil can be
used satisfactorily for making predictions relating to subsonic and supersonic flows,
but it is known! that the equation does not closely agree with experimental results in
the case of supercritical flow,




on the lower surface (Fig 7-4a). In these calculations, values of M = 0.72] and

v = =0.19° yere found to give an approximation to the Cp curve under the design condi-
tions., This resultant angle of attack u« = -0.19° was used as the standard from which
steady pressure distributions were obtained when the angle of attack was increased or
decreased by 0.5° (Fig 7-4b). As is seen from the isobaric contours shown in Fig 7-2,

a small change in the angle of attack results in a large change in the flow field from
the design conditions., The quasi-steady pressure distribution (Fig 7-5), has a broad
bulge on the upper surface in both experimental results and the results of the present
caleulaticn., The curve from thin airtoil theory differs qualitatively from these,

tudicating that thin airfoil theory is unsuitable for prediction,

Unsteady phenomena resulting from the choice of 3y = 0,5 and k = 0.18! and
the design conditions are as follows. The unsteady pressure distribution (Fig 7-3) on
the lower surface became a relatively smooth curve and there was good agreement between
the experimental results and the results of the present calculation. On the upper surface,
the shape was similar but there was a quantitative difference. Referring to Fig 7-7,
curves for absolute values of the unsteady pressure distribution coefficient obtained in
the experiment and the present calculation have a peak resulting from periodic formation
(Fig 7-3) of a weak shock wave and the phase curves are smooth for about 40 ~50% of the
chord length and then they turn upwards sharply owing to the presence of the shock wave.
As in the case of quasi-steady flow, the results of thin airfoil theory differed con-
siderably from those of the experiment and the present calculation. As is seen from the
above, the results of using our method based on the inviscid theory differ quantitatively
from those of experiment, but qualitatively they capture principal characteristics of an

uasteady flow about an oscillation about the shock-free design condition,

Femar<: The wind tunnel used by Tijdeman in his experiment was capable ol producing
a relatively low Reynolds number of only 2,2 -~ lOb. This signifies that the transition
from laminar flow tc turbulent flow in that wind tunnel takes place downstream of that in
free flight (Re = 30 ~ 50 ~ lOb). Tijdeman also carried out an experiment with a transi-
tion zone fixed at 307 chord, which is similar to that in free flight. Under the condi-
tion of a strong shock wave in case 6, there was no effect of a transition zoue because
spontaneous transition occurred at about the same position, but it will be seen from
Figs 7-8 and 7-9 that a flow was very sensitive to the transition zone under the design
condition in that case. It will also be seen from the figures that the results of the
present calculations, which did not include the effects of viscosity or turbulent flow,
were closer to the results of experiments with a transition zone than to those of experi-
ments in spontaneous transition without a transition zone. It is difficult to sayv that
the flow field in this experiment, undesirable phenomena of the formation of an oblique
compression wave from the transition zone, and its transformation into a compression wave
on being reflected by a sonic line were observed. All the same, a fiow under the design

conditions reacts very sensitively to a slight change in condition,




(Case 8) Unsteady transonic wave accompanied by a weax shock wave

]

Davis, 7 .7 carried out experiments with the symmetrical airtoil NACA 63A010, with
a fine and rounded leading edge, with free stream Mach number 0.8. Numerical solutions
for it were sought by Mngnus:’::, using the Euler equations, on assuming inviscid flow,
and by Isogai5 who used a full potential equation and a transonic small disturbance (T8
equation. Similarly, we sought three steady {lows under the conditions of the same free
stream Mach number and angle of attack of 0% - 1Y, Also we obtained unsteady flows at the
mean angle of attack 0% and in amplitude of pitching lo, for comparison. lsobaric contours
and CP curves tor steady and unsteady flows obtained by the present method of calculation
are shown ia Figs 8=, 8-3 and 8-4. The airfoil being syvmmetrical and having a mean anple
of attack ot UO. the flow tield at a certain cyele 1n Fig 8-3 is the same as the inversion
of a flow field at a cvele differing by 0.5 in absolute value. The steady {low shewn In
Fig 8-2 (Fig 8-4) has no supersonic regpion (shock wave absent) on the lower surface when
the angle of attack is IU, but the unsteady flow shown in Fig 8~ (Fig 8-4) hus supersonic
regions {(a shock wave present) on both upper and lower surfaces at all cveles. Compari-
sons of the results ot the experiment, the present calculation, and other calculations
are shown in Figs 85 to 8-8, 1In the steady pressure distribution (Fig 8-5) at angle of
attack 00, the shock wave according to the preseat calculation is located upstream of the
others, but its width is the smallest, tollowed by a fall, The present method of calcula-
tion captured the shock wave sharply, The peak resulting from the periodic displacement
of the shock wave in the unsteady pressure distribution were obtained In decreasing order
of size (Figs 8-7 and 8-8) from Magnus' method using the Euler equations, the present
nethod using the same equations, lsogai's method using a full potential equation, and
Isogai's method using a small disturbance potential equation. C(onsidering the characteris-
tics 07 these equations, this order seems appropriate, OUbtaining different results
(Fig -6) from using the same Fuler cquations resulted from differences in grid svstem and
the finite difference method. Among the methods used, those which were particularly close
to unsteady experimental values were the present method and Isogai's method using the tuli
potential equation. The results from both methods approached the experimental values,
thus they both seem to be satisfactory for prediction in this case. This case, in which
the airfoil thickness is small and the leading edge 1s sharp, 1s also particularly
suitable for Isogai's method using the small disturbance potential equation in which the
airfoil slope is handled on a tlat plate or the method of Isogai using a full potential
equation employing a Cartesian grid svstem which is considered to be weak when used for

thick and rounded leading cdges.

ks Because of the use of a maximum number of grid points of 121 ~ 31 in the

program, no satisfactory solution could be expected in this case. Accordingly, a
Ar/b-wide grid prepared for usc only in the vicinity of vertically .usymmetrical shock

wave was used vertically symmetrically in the vicinity of the leading edge.




.3 Required computing time

The computing times required for the caleulation of numerical values in sections 5.1
and 5.2, using a FACOM 230~75 computer |CPU (ordinary computer) + APU (array processor)i,
in accordance with the routine described in section 4 dre as follows:

b the tormaticen of a single grid and the about 5 seconds with CPU

computation of associated differential
coelficients

(D,13) computation of one steady flow about 20~90 seconds with APU

() the processing of results pertaining to a about 9 seconds with CPU
quasi-steady flow

I n o~

R computation of an unsteady flow cycle about 25 J seconds with APU

(b) processing of results pertaining to an about 20 seconds with CP'U,
unsteady flow

Most of the computing times were used in performing routines (2) and (3), using
program FLOW. In the computation of steady flows under (2) and (3), the time requirement
varied greatly according to the division of time chosen for the selection of initial
values and for maintaining the complexity and stability of flow patterns. Th processing
of results pertaining to an unsteady flow in (5) is similar, but It depends on fregquency
parameter and is independent of the selection of initial values, The average total time
required in the case of computing for quasi-steady flow and four cveles ol unsteady ticew
was about 5 hours,

3.4 Deviation from Rankine-Hugoniot relation

The following Rankine-Hugoniot relation holds theoretically in a steady normal

shock wave 1in an inviscid flow

Py 2y N
ET = 1+ T (M‘ - l> .

In the above equation, the subscripts 1 and 2 indicate positions immediately before and

after the shock wave., The suitability of a particular numerical solution as a solution
for an inviscid flow can be judged by the degree of its closeness to the Rankine-Hugoniot

relation.

With a view to finding the suitability of the present method of calculation, the
quasi-steady and steady flows (13 in number) which could be considered to contain normal
shock waves were selected from among those obtained in the examples of numerical calcula-
tions referred to earlier. Pressure rise at a shock wave was obtained from Mach number
and pressure obtained at the actual mesh points. These values are plotted together with
results of other methods of calculation in a diagram (Fig 9) devised by Lomax, . af:3.

As expected, the solutions by time-dependent methods based on the Euler equations, includ-

ing the solution by the present method of calculation were found to better satisfy the

Rankine-Hugoniot relation than solution by a relaxation method based on a potential

equation.




However, because of the presence ol a boundary layer in the experiment, the strengin

ot the shock wave mwasured on an airtoil Is generally lower than what can be predictec

trom the above relation, Because of this, a numerical selution using a potential equatice

which 1s lower {u degree of approximation than Euler equations for an inviscid flow can
often be closer to an experimental result, For obtaining a solution justifiably closer

to an experimental value, it is necessary to solve Navier-Stokes' equation tor viscous

flow,
& CONCLUSION

This work preposes a method for the calculation of an inviscid compressible low
about 1 wivaal airfoll oscillating sinusoldally in pitch. With a view ro

accurately an airfoil even with a rounded and thick leadirzg edge (such as the NLK 7301

atrterly, which appears difficult to solve by previously-published methods for -alculating

unsteady tlows. A coordinate transformation was devised and a computational plane formed,
The Euler equations which have no approximation were used to model an inviscid flew, and
the finite difference method of Lax-Wendroff with artificial viscosity was used for its
selution. Then, the effectiveness of the present method was examined by carrving out
numerical caleulations, using four airfoils (Joukowski, NACA 0012, NLR 730! and

NACA 03ACIC alrtoils) within a wide range (0.7 ~ 1.4) of Mach number, Consequently, we
succeeded 1n numericallvy capturing various types of unsteady shock wave phenomena
(processes of generation, growth and disappearance of a weak shock wave, processes of
propagation of a strong shock wave, a 'fish tail' shock wave svstem and its process of
decaying, the process of propagation of a shock wave separated from the leading edge, and
others)., During this time, we proved, as was expected, that the discontinuities across
captured shock waves satisfy better the Rankine-Hugoniot relations than do those
calculated using the fuel potential equation. The present method of calculation seems
fully workable for predicting inviscid and unsteady aerodynamic phenomena but is
unsuitable for unsteady flow with a strong viscous interference. If a more powerful
computer than is now available became available in the near future then it should be
possible to get numerical solutions for unsteady flows with strong viscous interference

by modelling the viscous flow.

The author is grateful to Technical Officer Isogai for participating in the

discussion and for supplying the data.
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