
7 AD-A123 977
TRANSFORM DECODING 0 PRtLU - UMN CUUt!tVU LUMt

l I

RL ONO OVR T 28VOGICAL DESIGN AND IMP -U) MITRE CORP REDFORD MA

UNd ASSIFIED ESD-TR-82-403 VO Fl 628R2- C-0001 F/0 9/ 4 L

L.;. _JZ-

I-.
130If"

MICC 0 RL OL LQ N Ti - HARI

ESD-TR-82-403, Vol. II MTR-8278, Vol. II

t • *

TRANSFORM DECODING OF REID-SOLIOMON CODES VOLME II:

LOGICAL DESIGN AND IMPLEIMENTATIO\

.: 'IB\

B. L. JOHNSON
A. L. B'QUIILLARI)

S. J. MEEHAN

NOVEMBER 1982

Prcpared Ior

SOLID STATE SCIENCES DIVISION
ROME AIR DEVELOPMENT (ENTFR

UNITED STATES AIR FORCE

DTIO
, JAN 3 1 1983

B

Pro ect No. 7170
-..d

Prcpared by
[dliu ii ,lilitd TI]E NIITR E CORPORATION

_Bedford, Massachusetts

Contract No. F19628-82-C-0001

1l1'l h ci 1ilti I l ,d It\ I I
1

II % I

LI 1'l1cl Id'l1 t1W l, hII 1l l, Ix riI li 1 llc cih\ Ii,

i, II.I
,

J i l it It I i ll tp i I I tI I lii,,+h It . cc'\c,. i. itc liii1 lhit tc . .ci P't ii ci iI cII

'I I I I I I I I I vdi t ' Iii I IcI I il I I , lI

Tb is technical report has been il ind 111(IS a1pI-ro, 1- [opblication.

JERRY SILVERMAN HAROLD ROTH, Direcror
Project Engineer Solid State Sciences Division

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("oen DatiFtlt.,od)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2 GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

ESqD-TR-82-403, Vol. 11 , ,, . i

4. TITLE (end Subtitle) S TYPE OF REPORT & PERIOD COVERED

TRANSFORM DECODING OF REED-SOLOMON CODES
VOLUME II: LOGICAL DESIGN AND IMPLEMENTATION

6 PERFORMING O1G. REPORT NUMBER

MTR-8278, Vol. 11
7. AUTHOR(s) 8 CONTRACT OR GRANT NUMBER(s)

B. L. JOHNSON, A. L. BEQUILLARD, S. J. MEEHAN

F19628-82-C-000 1

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT. TASKThle MEIRE Corporation AREA & WORK UNIT NUMBERS

Burlington Road Project No. 7170hBedford, MA 01730

11 CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

Solid State Sciences Division November 1982
Rome Air Development Center 13 NUMBER OF PAGES
Hanscom AFB, M.A 01731 149
14 MONITORING AGENCY NAME It ADDRESS(If different from. Controllin, Ofic e) 15. SECURITY CLASS. (.1 this reportf,

UNCLASS I FI ED

IS-. DECLASSIFICATION DOWNGRADING
SCHEDULE

16, DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from" Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identify by block nunber)

ERROR LOCATION

LOGIC DESIGN

REED-SOLOMON CODES
SCHOTTKY TTL LOGIC

TRANSFORM ENCODING AND DECODING
20 ABSTRACT (Continue on reverse side If necessary and identify by block number)

This report describes the logic design and hardware implementation of an
encoder and decoder for a large number of Reed-Solomon symbol error-correction
codes. The logic implements a transform encoding and decoding algorithm that
was previously described in Volume I of MTR-8278. The hardware required to
implement the critical steps in the encoding and decoding algorithm is
described in depth. An analysis of the decoder's operational characteristics

and hardware complexity is presented. A proof-of-concept breadboard configured

with small-scale Schottky TTL components is also described.

DD I 1473 EDITION OF , NOV 65 15 OBSOLETE
UNCLASS FT EDa

SECuRITY CLASSIFICATION OF THIS PAGE (When Dl Entered)

ITNCLASS I Fl El)

SECURITY CLASSIFICATION OF THIS PAGE(W n Date Entered)

rI

UNCLASS I FT ED
SEC IRITY CLASSIFICATIOW OF T-1 PAGE'When [ate Fntfred)

ACKNOWLEDGMENTS

This document has been prepared under Project 7170, Contract

F19628-82-C-0001. The contract is sponsored by the Solid State

Sciences Division, Rome Air Development Center, Hanscom Air Force

Base, Massachusetts.

ii.

Avit) I

Dist

II

TABLE OF CONTENTS

SecLion

L.IST OF ILLUSTRATIONS 6

LIST OF TABLES 8

INTRODUCTION 11

1.1 Purpose 11

1.2 Background 11

1.3 Scope 13

II TRANSFORM ENCODING AND DECODING: AN OVERVIEW 15

2.1 Finite Field Transforms Over GF(2m): 16

A Review

2.2 Codeword Generation by Discrete 18

Transformation

2.3 Reed-Solomon Transform Decoding 20

2.3.1 Correction of Errors and 22
Erasures

2.4 Transform Encoding and Decoding: 23

Hardware Structures

III A (255,k) REED-SOLOMON TRANSFORM ENCODER AND 26

DECODER

3.1 General Description 26

3.1.1 Coding Capabilities 28

3.2 (255,k) Transform Encoder and Decoder 30

Architecture

3

TABLE OF CONTENTS (Continued)

Section Page

3.2.1 Transform Section 32

3.2.1.1 Polynomial Residue 38
Calculator

3.2.1.2 Polynomial Residue 49
EV hla tor

3.2.1.3 Arithmetic Controller 55

3.2.2 The Errata-Location Section 59

3.2.2.1 Calcalation of the 64
Present Discrepancy,

d (N) ,

3.2.2.2 Calculation of the Present 69
Feedback Connection
Polynomial, A(N)(x)

3.2.2.3 Calculation of the Previous 76
Feedback Connection
Polynomial, (N)(x)

3.2.2.4 Symbol Errata Correction 77

3.3 Operational Characteristics 78

3.4 Hardware Complexity 81

IV A (51,k) REED-SOLOMON TRANSFORM ENCODER AND 89

DECODER TTL BREADBOARD

4.1 Transform Section 89

4.1.1 Polynomial Residue Calculator 92

4.1.2 Polynomial Residue Evaluator 95

4.1.3 Arithmetic Controller 97

4

TABLE OF CONTENTS (Concluded)

Section

4.2 Errata-Location Section 97

4.3 Operational Characteristics 100

4.4 Hardware Complexity 103

APPENDIX A: MULTIPLICATION IN GF(2): 107

ALGORITHMS AND STRUCTURES

A.1 Multiplication In GF(2) 107

A.2 GF(2m) Multiplier Structures 110

A.3 Reed-Solomon Encoder and 117

Decoder Multiplier Structures

APPENDIX B: AN EXAMPLE: A (31,15) REED-SOLOMON 134

CODE CONSTRUCTED OVER GF(2 5)

REFERENCES 146

5

LIST OF ILLUSTRATIONS

Figure Page

1 Transform Encoding and Decoding 25

2 Transform Section Architecture 37

3 Polynomial Divider Circuit for 43

M 95 (x) =x8 + x7 +~ x +x3 + + x+l

4 Programmable Binary Feedback Shift 47
Register

5 Polynomial Residue Evaluator 53

6 Arithmetic Controller 54

7 Decoding Algorithm 60

8 Errata Location Section 63

9 Present Discrepancy Calculator 65

10 (255,k) Decoder's Present Discrepancy Calculator 67

11 Present Feedback Connection Polynomial Calculator 71

12 (255,k) Decoder's Present Feedback 73
Connection Polynomial Calculator

13 Timing Requirements for (255,k) 79
Encoder and Decoder

14 Errata Locator Timing, Definition of a 82
Machine Cycle

15 Divider Circuit Macrocell 83

16 Errata Location Section Architecture 85

6

LI ST OF ILLUSTRATIONS (Concluded)

r re P~a

17 8-Bit Symbol Correction Slice 87

18 (51,k) TTL. Breadboard 90

19 A Single Bit "lice of the (51,k) Trans- 96
former's Polynomial Divider Circuit

20 (51,k) Transformer's Polynomial Residue 98
Evaluator

21 GF(2')m) Programmable Multiplier's 99
Pairwise-Product Array

22 Schematic: 8-Bit SyNmbol Correction Slice 101

23 Semi-Automated Testbed 104

A-1 Sequential GF(2 m) Multiplier 113

A-2 (F(2 m) Arrav Multiplier 116

A-3 Programmable GF(2 m) Array Multiplier 120

A-4 Programmable GF(2 m) Array Multiplier 122

Field Reduction Circuit

A-5 Programmable %2 Multiplier 125

A-6 Field Element Division Circuit 127

A-7 Sequential ;F(2 m) Multiplication Using a 131
Programmable Serial Multiplier

A-8 Programmable (F(2 m) Serial Multiplier 133

B-L Flowchart of Transform Decoding Algorithm 140

7

LIST OF TABLES

Table Page

I Reed-Solomon (255,k) Encoder and Decoder 29
Capabilities

II Half-Rate Codes Accommodated by the (255,k) 31
Reed-Solomon Transform Decoder

III Transform Capabilities of (255,k) Decoder's 3
Transform Section

TV-1 Minimal Irreducible Polynomials over GF(2)

IV-2 Minimal Irreducible Polynomials over GF(27

and GF(26)

IV-3 Minimal Irreducible Polynomials over GF(25) 41and GF(26)

and GF(2)I

Programmability of Binary Feedback Shift 48

Register: Figure 4

VI Transforms over GF(2m) 50

VII Decoding Algorithm Variables (Notation) 61

VIII (255,k) Encoder and Decoder Hardware 88
Complexity

IX (51,k) Breadboard Coding Capabilities 91

X Transform Capabilities of the (51,k) 93
Breadboard

XI Programmability of the (51,k) Transformer's 94
Divider Circuits

8

LIST OF TABLES (Concluded)

Table Page

A-I Primitive Polynomials Used to Design 119

the Programmable GF(2m) Multiplier

Structures

A-il Field Elerient Division in GF(2) 129

B-I Minimal Polynomials of GF(2 5) Over GF(2) and 137

Remainder Polynomials Corresponding to

A(x)/mi(x) and r(x)/mi(x)

B-II Results of the First n-k=16 Iterations 141

9

SECTION I

INTRODUCTION

1.1 Purpose

This report examines the hardware implementation of an efficient

decoding algorithm for the Reed-Solomon class of symbol-error-correct-

ing codes. The algorithm, described in Volume I of this report,

offers major simplifications relative to the more conventional BCH

(Bose-Chaudhuri-Hocquenghm) decoding algorithms [1]. The simplifica-

tions result both from the reduced complexity of the algorithm and

from the opportunity to apply fast computational techniques for its

implementation.

1.2 Background

Error-correcting codes are useful to correct message errors

which are caused by interference, additive random noise, and other

channel disturbances. Error-correction techniques are implemented in

a two-step process. At the message source, redundant symbols are

added to the original message according to a predetermined strategy

(encoding). The encoded message is transmitted and errors may be in-

troduced. At the message destination, the original message is recov-

ered from the noisy received signal (decoding), aided by prior know-

ledge of the code. Message transmission using error-correcting codes

represents an effective means of obtaining low error probability in

the decoded message.

Previous work included both the analysis of error-correcting

codes and the examination of their effective implementation. Error-

correcting codes, used with spread-spectrum modulation techniques,

were shown to be beneficial in the design of jam-resistant communica-

11

t ion sys~tems. It his al~so bevii suggested that error-corruct ing

codes, when incorporated within the internal busing structure of a

system (or device), can impact favorably on that system's (device's)

reliabilitv [2).

Our examination of error-correcting codes has led us to conc en-

trate on the Reed-Solomon class of generalized BCH symbol error-

correcting codes. The distance properties of this class of algebraic

block codes assure correction of both random isolated errors and

random burst errors. While the encoding process for Reed-Solomon

codes is relatively simple, the decoding process is complex and

generally requires a dedicated processor.

We have experimented with direct decoding of short block length

Reed-Solomon codes by implementing a code-table search algorithm

under microprocessor control 131. Further analysis of Reed-SolomonI codes has led to the development of a transform-based decoder that
offers major simplifications relative to the more conventional

BCH decoders [4].

The decoding algorithm imposes a high degree of circuit complex-

ity on its associated hardware implementation. Analogies with conven-

tional linear digital signal processing functions aid in partitioning

the decoding hardware into sections that perform finite-field oper-

ations (e.g., field-element multiplication, division, and inversion).

These sections can be used to develop functional LST hardware which

performs a variety of finite-field data processing functions. If

the unique properties of finite structures are exploited (e.g.,

elimination of round-off errors, multiplication by adding "logarithms"t),

the development of these hardware capabilities may lead to the use of

finite-field computational methods for other linear signal processing

applications.

12

1.3 Scope

This is the second volume of a report concerned with transform

decoding of Reed-Solomon codes. The first volume discussed the de-

coding algorithm. This volume concentrates on the logic design and

hardware implementation of the transform decoding algorithm. It be-

gins by outlining the concepts of transform coding and decoding of

Reed-Solomon codes. Section II is primarily an overview of the ma-

terial presented in Volume I, included here for completeness. W.hile

reading this report one should also refer to Volume I of this TR [4],

which contains the appropriate frame of reference for the present

volume.

In Section III, an architectural design of a Reed-Solomon encoder

and decoder is presented. The processor is reconfigurable to accom-

modate a large number of different code parameters for both maximum

and sub-maximum length codes over (;F(2 m), the symbol fields ranging

from four to eight bits. The maximum-length codeword that can be

processed by this design is a 255-symbol word, with each symbol re-

presented by eight bits. (This unit will be called the (255,k) en-

coder and decoder.) Included within Section III is a detailed de-

scription of the coding capabilities, functional partitioning, pro-

jected hardware complexity and expected operational characteristics

of the (255,k) transform encoder and decoder.

in Section IV, a description of the logic implementation of a

reconfigurable Reed-Solomon TTL breadboard is presented. This

encoder and decoder breadboard is designed to be electronically

reconfigurable to accommodate a subset of the codes processed by

the (255,k) encoder and decoder described in Section III. Although

the breadboard is not large enough to decode all of the codes pro-

cessed by the (255,k) decoder, it operates over most of the required

fields and it effectively demonstrates the reconfigurability of the

decoder's architecture. The encoder and decoder breadboard is capable

13

of processing a maximum-length codeword of 51 symbols, each symbol

being represented by eight bits. (The breadboard will be called the

(51,k) encoder and decoder.) Included within section IV is a detailed

discussion of the breadboard's coding capabilities, functional and

physical partitioning, hardware complexity and operational character-

istics.

Appendix A presents a detailed discussion of binary-extension

field multiplier structures that are used in the Reed-Solomon error-

correcting encoder and decoder. The transform encoding and decoding

of a (31,15) Reed-Solomon code, constructed over GF(2 5), is presented

by means of an example in appendix B to aid the reader in tracing

the flow of the decoding algorithm.

14

11

SECTION II

TRANSFORM ENCODING AND DECODING: AN OVERVIEW

Reed-Solomon codes are symbol error-correcting linear block

codes. A particular (n,k) Reed-Solomon code, constructed over the

binary-extension field GF(2m), has a block length of n symbols,

where k symbols (k<n) represent the information. Each of the n

symbols within the codeword can be represented as a binary m-tuple.

Reed-Solomon codes are maximum-distance separable linear block

codes. These are (n,k) codes for which the minimum distance, d

between any pair of codewords is the maximum value,

di = n - k + (2-1)

These codes can correct any combination of t errors and s erasures

provided the inequality

2t + s < n -k (2-2)

is satisfied.

In order to discuss the structural properties of Reed-Solomon

codes and their implementation, it is convenient to regard the code-

words as polynomials. A codeword from an (n,k) code, constructed

over GF(2m), is an n-tuple with each symbol represented by m bits.

Each codeword can be represented by a polynomial of degree n-l, having

coefficients that are members of the finite field of 2m elements.

15

Such a polynomial is determined uniquely by its n coefficients or

equivalently by its values at any n distinct points of thg field.

A codeword of block length n may be specified either by a set of n

values or by the polynomial coefficients interpolated from these

values.

2.1 Finite Field Transforms Over GF(2m): A Review

Let a0, al, ... , an I be elements of a finite field GF(2
m) of

multiplicative order 2m-1 . Let b be an element of GF(2m), and let
th

b be an n root of unity. Assuming that n divides or is equal

to 2m -1, the linear transformation

A. = n-i a.b ;j= 0, i ., n-i (2-3)

ai=0

is a mapping from GF(2) onto itself. For any integer r,

n-i I n, r E 0 mod n

E b' (2-4)
i=O O, otherwise

Equation (2-4) can be used to verify that the mapping that is inverse

to equation (2-3) is the linear transformation

n-i
a. = n Y Aj i ; i=0,1, ..., n-1 (2-5)

j=0

-i

where n n = 1. Equations (2-3) and (2-5) define a discrete linear

transform pair over GF(2 m), where the operations of addition and
multiplication are defined in the same field. Addition of two field

elements from GF(2m) is defined as the bit-by-bit modulo-2 addition

16

of the m-tuple representation of the field elements. Multiplication

is defined in terms of the primitive field element a. GF(2m) has
m

multiplicative order 2 -I and it contains an element a of the same

order. The non-zero elements of the field can be written as
0 1 2 2 m-2a , a , a, .. , . Multiplication of two field elements is

defined as the addition (modulo 2m-1) of the indices of the corre-

sponding field elements

r s (r+s) (2-6)a a =cx(26

The sequence a0 al, ... , a n-l of elements from the field GF(2m)

can be expressed as an (n-1)th degree polynomial, a(z), where

n-I n- i
a(z) = a0 + aIz + ... + an-l = n a.z (2-7)

i=0

The forward transform of a sequence a0, al, a2 , ... , an_1 can be

obtained by the polynomial evaluation of a(z) at the n distinct

0 1 n-lpowers of the transform's kernel; bO
, b I

,..., b such that

n-i

A. nE aib' = a(bJ) ; j=0, 1, ... , n-l (2-8)

i=01

Similarly, the inverse transform is obtained by interpolation

of the polynomial a(z) from its n known values.

n-1
a. = E A. b - ji = A(b - j) ; i=0, 1, ... , n-1 (2-9)

j=O1

17

I

n-I
where A(z) = A0 + A z + ... + An z .

2.2 Codeword Generation by Discrete Transformation

The encoding of Reed-Solomon codes can be defined in terms of

finite-field transforms. Let a0, al, ... , ak_ represent a sequence

of k message symbols, with each symbol represented by m bits. A

length-n message sequence can be formed by adjoining n-k consecutive

zero-valued symbols to the original length-k message sequence. We

regard the polynomial a(z) as the message polynomial

n-i
a(z) = a0 + alz + ... + an iz (2-10)

The first k coefficients are the k message symbols, and the remaining

n-k coefficients are zero.

A codeword for a Reed-Solomon (n,k) code, constructed over GF(2m),

can be generated by calculating the n-point discrete transform of the

sequence represented by a(z), [4,51. There is symmetry associated

with the transform so that either a forward or an inverse transform

may be used to encode. The only requirement is that tie reverse of

the encoding transform be calculated for decoding. For compatibility

with Volume I, this review will use a forward transform for encoding.

A codeword, consisting of n symbols, is constructed by calculating

the forward transform of the length-n message sequence, as in equation

(2-8). The forward transform, or polynomial evaluation, can be

expressed as the continued product

A a 0 + bJ(a1 + ... + b i (an-2 + ban I)...) (2-11)

18

L -------

Equivalently, the forward transform can be interpreted as the

remainder of the polynomial division a(z)/(z-bi)

a(z) = q(z)(z-b j) + Aj (2-12)

The second interpretation may be represented as a set of polynomial

congruences such that

A. = a(b j) - a(z) mod (z-bj) ; j=0, 1, ... , n-i (2-13)

An equivalent method for obtaining A. is to divide a(z) by a

set of small degree polynomials containing distinct factors of the

form (z-b J), and then to evaluate the lesser-degree residue poly-

nomials at the appropriate values bj . If the set of divisor poly-

nomials is defined to be the set of minimal polynomials of the non-

zero field elements, then their coefficients are restricted to the

prime field GF(2). In this case, division can be performed using

only scalar multiplication by the elements of the prime field. For

codes over GF(2 m), the minimal polynomials have coefficients that

are either one or zero requiring only operations in CF(2) for poly-

nomial division. In Volume 1, this technique of computing a finite-

field transform was shown to be a "fast" algorithm; it tends to

minimize the number of multiplications in CF(2m), the number approach-

ing nlog 2n.

2.3 Reed-Solomon Transform Decoding

Finite-field transforms can be applied to decode Reed-Solomon

codewords. If the source message is represented by the polynomial

expressed in equation (2-10), then the transmitted codeword is repre-

sented by the polynomial A(z) = A0 + A
z + +Anl z nl where the

0 .1 -
coefficients A. are determined as a(b3) in accordance with equation

(2-8). If the inverse finite-field transform, equation (2-5), is

applied to the transmitted codeword, the message polynomial a(z) is

obtained and the original k message symbols are recovered.

Assume that an error sequence represented by the polynomial

E(z) = E0 + E z + ... + E has been added to the encoded mes-

sage A(z) during transmission. In order for the received word to be

correctable, E(z) can not have more than (n-k)/2 non-zero coefficients;

their values and locations are unknown. The received sequence is

represented by the polynomial sum R(z) = E(z) + A(z). The inverse

transform of the received sequence is the polynomial sum

r(z) = e(z) + a(z), where e(z) is the inverse transform of the error

polynomial E(z), and a(z) is the original length-n message polynomial.

The decoding problem is to determine e(z) from the transform r(z) of

the observed sequence R(z).

To decode, the polynomial r(z) is calculated from the known

values of the received sequence R(z) by taking its inverse transform,

n-i

r. = 2 R.b -1 i=0, 1, ... , n-l (2-14)
j=0 J

which is equivalent to evaluating the received polynomial R(z) at
0 -1ln1

the n values, b , b-1 b(n-)

The symbols ai, i > k-l, are equal to zero by definition. A

20

sequence can be separated from equation (2-14), valid for

i=k, k+l, ... , n-i:

n-i
si r, E R.b-J i=k, k+l, ..., n-i (2-15)

j=O '

This sequence, {si}, is the error syndrome associated with the

channel error pattern, E(z).

The error syndrome can be used to determine the locations of

the errors in the channel error pattern E(z), using the iterative

algorithm developed by Berlekamp and Massey [6,71. This algorithm

calculates the coefficients of the error-locator polynomial,

t
C(z) = (z - X) = at + tiz + ... + z (2-16)

i= 1

whose distinct roots Xi are the error locations. In equation (2-16) t

is the number of non-zero coefficients of E(z), or equivalently the

number of errors that occur,2d. We assume t < (n-k)/2 so that

the error bound of the code is not exceeded. The error-locator

polynomial is the characteristic polynomial of the shortest linear

feedback shift register (LFSR) that satisfies uniquely a linear

recursion relationship between the n-k syndrome values and the co-

efficients of the error-locator polynomial.

s at + sj+i 0t-l+ + s IJ-t-l a1 + = 0 (2-17)

where k < J < n-l-t.

21

kbi

The Berlekamp-Massey algorithm uses as its inputs the error syndrome

values and provides an iterative method for synthesizing the shortest

LFSR that has the characteristic polynomial G(z). Once the LFSR has

been synthesized by this algorithm, it is necessary only to continue

its operation, with zero input, for an additional k shifts in order

to extrapolate the k unknown values of the error transform e(z).

These values are subtracted from the corresponding value of r(z) in

order to produce the corrected message, a(z).

2.3.1 Correction of Errors and Erasures

The previously described decoding algorithm has been concerned

only with correcting errors. A Reed-Solomon code can correct twice

as many erasures as errors: it can correct any pattcrn of t errors

and s erasures provided the inequality of equation (2-2) is satisfied.

A useful Reed-Solomon decoder should be capable of correcting both

errors and erasures.

A method of correction for errors and erasures is to initialize

the error-locator algorithm (Berlekamp-Massey) with the connection

polynomial computed from the known erasure locations, and then continue

the algorithm normally to synthesize an errata-locator polynomial

which is the product of the error-locator polynomial and the erasure-

locator polynomial [4]. Once the errata-locator polynomial is syn-

thesized, there is no further distinction between errors and erasures,

and the inverse transform of the errata pattern may be extrapolated

by free-running the synthesized LFSR as before. These values are

then subtracted from the corresponding values of r(z) in order to

decode the correct message.

The erasure-locator polynomial, X(z), is defined as

s

X(z)
= T(z-a + 1 z+... + z (2-18)

i=l1

22

wheri s erasures have occurred, not exceeding the minimum-distance

bound of equation (2-2). The roots, Xi. designate the known erasure

locations forming a set that is disjoint from the error locations,

X.. The modified Berlekamp-Massey algorithm iteratively calculates1

the errata-locator polynomial, a(z), which is the product of the

error-locator and erasure-locator polynomials:

Z'(z) = o(z) X(z) (2-19)

The errata-locator polynomial is then used to generate the transform

of the channel errata pattern which is subtracted from the transform

of the received data to obtain the decoded message.

2.4 Transform Encoding and Decoding: Hardware Structures

The preceding view concerning the transform encoding and dernding

of Reed-Solomon codes was meant to be general in nature. The -equired

computational steps and procedures do not imply uniqueness of iardware

implementation. For example, transform codeword generation requires

that n-k consecutive zeros be padded to the original k information

symbols in order to form the length-n message sequence. In section

2.2, the zero-padding was defined so that the k information symbols,

and the remaining n-k coefficients were zero. This zero-padding

placement is not unique; the cyclic properties of the code result in

many possible zero-padding placements. Each results in a slightly

different design and physical implementation for the transform encoder

and decoder, without modifying the general algorithm.

There is also symmetry associated with transform encoding and

decoding. A forward transform may be defined for enoding; an inverse

transform would then be required for decoding. Alternately, an

inverse transform may be defined for encoding and a forward transform

for decoding,. Either approach is correct: their hardware implementa-

tions differ.
23

Regardless of the particular variations, all transform-based

encouers and decoders will have conon characteristics. A represent-

ative block diagram of a communication system that uses transform

error-correction encoding and decoding techniques is shown in Figure 1.

The first step in encoding requires that the k information svmbols

be padded to n svmbols with n-k zeros. The second step in encoding

is the calculation of the n-point discrete forward (or inverse) linear

transformat ion. These n svmbols are then transmitted and corrupted

by noise in the channel. .,' the receiver, the noisy s\mbols are

observed and the symbols that are erasures are identified. The

received svmbols and the lokat ions of the known erasure, are sent to

the decoder. The decoder first calculates the required n-point dis-

crete inverse (or forward) linear transformation. The known erasure

locations are used to initialize the errata-location section with

the erasure-locator polynomial. The n-k syndrome values are separa-

ted from the transform of the received symbols and are used as input

to the errata locator. This section calculates the errata-locator

polynomial as in equation (2-19). The errata-location section then

calculates the transform of the errata that occur during transmissicn.

This data is subtracted from the transform of the received data, re-

covering the k original information symbols. The total number of

errors and erasures is assumed to be within the bound of tile code

given in equation (2-2).

24

-4j
0I0

00

z r
uj

cc (

z c
4D

0 CJ

ww

z.

~~25

SECTION III

A (255,k) REED-SOLOMON TRANSFORM ENCODER AND DECODER

A design at the detailed logic level of a transform encoder and

decoder for use with the Reed-Solomon class of symbol error-correcting

codes is described in this section. It is a computational Iv li ici (-.]lt

implimentat ion at thc trainsform decoding algorithm described in

Volume I of this report (and summarized in section II of this volume).

The encoder and decoder can implement a 255-symbol block-length code,

as well as many shorter codes. It is designated as the (255,k) en-

coder and decoder.

3.1 General Description

A n : or rac-c-r .nc t code r ind decoder should operate w ith a

number of ditferen t code parameters in order to be applicable to various

channel characteristics and system designs. The error controller's

hardv'are implementatior must be capable of implementing different

block lengths and different symbol alphabets. To encode and decode

an (n,k) code constructed over GF(2m), the hardware must implement

an n-point Finite-field transform where each symbol in the transform

is represented by m bits. The ability to calculate transforms of

different lengths over different finite fields requires that the halrd-

ware be able to implement algebraic operations that are defined in

the different fields. The essential algebraic operations that must

be implemented are field-element addition, multiplication, and inver-

sion. Field-element multiplication is defined uniquely for each

binary-extension field, and the hardware that implements multiplica-

tion in one field must be reconfigured to multiply correctly in

another. (See appendix A of this report for a more detailed descrip-

tion of GF(2m) multiplier structures.) In general the implementation

26

of a versatile encoder and decoder requires hardware reconfigurability

to operate successfully in different binary-extension fields.

Our implementation of the transform decoding algorithm was de-

signed to minimize the total number of binary-extension-field multi-

plications required for both encoding and decoding (4]. The (255,k)

encoder and decoder was designed to operate with serial input code sym-

bols so that many of the required finite-field multiplications can be

calculated sequentially in time using the same hardware. The resulting

architecture tends to minimize the total number of GF(2 m) multipliers

that have to be implemented, minimizimg the amount of hardware recon-

figurabilitv and the resulting hardware complexity required to accom-

modate the codes from the different binary-extension fields.

The natural partitioning of the transfor-m decoding algorithm sep-

arates the decoder's structure into a transform section, an errata-

location section, and a control section. The encoding algorithm par-

titions the encoder into a transform section and a control section.

We developed the logical design of a general transformer that imple-

ments a computationally efficient number-theoretic transform algorithm

[10]. The transform section was designed to calculate both a forward

and an inverse discrete transform over the fields of interest. The

same structure can be used for both encoding and decoding, resulting

in a considerable saving in hardware design and fabrication, thus

rendering it suitable for a VLSI chip-set implementation.

The control section provides data management to the transform

and errata-location sections. This control can be implemented using

standard TTL logic or dedicated LSI or VLSI circuitry. Control also

could be provided by use of a software-programmable microprocessor.

This report is not concerned further with the detailed design of the

control section. The architectural design of the transform and

errata-location sections, which carry out the major computational steps

in the encoding and decoding algorithms, are emphasized in this section.

27

The hardware complexity associated with both the transform

section and the errata-location section is such that each section

could be implemented using a single VLSI monolithic device t11l.

This level of complexity is fundamental to the concept of a versatil-,

encoder and decoder. Since the same transformer can be used for com-

puting either a forward or an inverse discrete transform, a complete

encoder and decoder can be implemented using only two devices. A

transform "chip" and an errata-location "chip" would be required for

decoding, while only the transform "chip" would be required for

encoding. The hardware necessary to perform encoding is inherently

contained within the hardware required for decoding.

3.1.1 Coding Capabilities

The (255,k) Reed-Solomon encoder and decoder was designed to

provide a selection of useful codes while containing the complexity

of the projected hardware. The range of Reed-Solomon codes that

can be processed by the (255,k) encoder and decoder design is shown

in Table I. These codes represent a large number of both maximum

and submaximum length codes over CF(2 m) where the symbol represen-

tation, im, ranges from four to eight bits.

The errata-location section's architecture is bit-slice and

expandable to accommodate any code rate; each symbol used for

redundancy requires a corresponding hardware slice within the de-

coder. However, it is desirable that the errata-locator be imple-

mentable as a single integrated circuit, and this requirement re-

stricts the errata-locator's implementation to a size (total number

of transistors) that can process a maximum of 128 symbols used for

redundancy. Since Reed-Solomon codes are maximum distance separable

codes, this restricts the largest value of d min to 129 and equiva-

lently restricts the largest number of syndrome symbols to 128. The

(255,k) decoder is consequently designed to operate with a maximum of

28

C -1 0 J A e r J C4

w004

5-:' Ln r,% r ~ -4 (N) (N

0.

Q

a) () on00-) 4

1- U
.0 0 4-4

co Er

E- z4-

0

0

xx

xx

-4 r) -4 U-

N.) C14 S

29

of 128 syndrome symbo ls, regardless of code blMock size. For a Reed-

Soloi:m, (n,k) co de, the number of syndrome symbols is (n-k). Accordin ly,

the (255,k) decoder can correct all combinations of t errors, and s

erasures, provided the ineqality

2t + s n-k < 128 (3-1)

is satisfied.

The Reed-Solomon (255,k) encoder and decoder design can accom-

modate 588 distinct codes defined by different allowed choices of the

parameters n and k. This number is derived from the maximum number

of syndrome symbols and the variety of code classes that can be pro-

cessed. For example, the (255,k) class of codes, constructed over

GF(2 8), represents a family of codes whose block length is fixed at

255 symbols but whose number of information symbols, k, is a variable.

The design trade-offs which restrict the maximum number of allowable

syndrome symbols to 128 define a total of 128 distinct codes in this

class (i.e., k can range from 127 to 255). For the other families of

(n,k) codes shown in Table I, k can range from 1 to n. Some of these

codes are trivial but most are not. Table II indicates the sUvotecn

approximately half-rate codes that can be accommodated by the (255,k)

encoder and decoder's design.

3.2 (255,k) Transform Encoder and Decoder Architecture

The (255,k) encoder and decoder is partitioned into a transform

section and an errata-location section. The transform section imple-

ments either a forward or an inverse n-point discrete transform and it

is used for either encoding or decoding. The errata-location section

implc ments a modified version of the Berlekamp-Massey minimal-length

L.FSR synthesis algorithm. This algorithn, used for decoding, corrects

erasures as well as errors. Both the transform section and the errata-

30

Table II

Half-Rate Codes Accommodated by the (255,k)

Reed-Solomon Transform Decoder

CODE BITS PER SYMBOL

(n,k) m

(255, 127) 8

(127, 63) 7

(85, 42) 8

(63, 31) 6

(51, 25) 8

(31, 15) 5

(21, 10) 6

(17, 8) 8

(15, 7) 8, 4

(9, 4) 6

(7, 3) 6

(5, 2) 8, 4

(3, 1) 8, 4, 6

31

location section are reconfigurable to operate over the binary-exten-

sion fields, GF(2m), with m ranging from four to eight bits.

3.2.1 Transform Section

The range of transforms that can be calculated by the transform

section of the (255,k) encoder and decoder is shown in the Table III.

This table indicates the number of symbols in the transform, n, the

number of bits per symbol, m, (specifying the field of operation (1-(2 m))
K

and the kernel of the transform, a . For an n-point transform over
th K

GF(2m), the kernel is an n root of unity, that is, u is an element

of GF(2 m) of multiplicative order n, so that n is the least integer for
Kn

which a =1.

To calculate an n-point forward transform over GF(2) the trans-

form section must implement

n-1 Kij
A. a OL j=0, 1,.. n-i (3-2)

i=0

where,

A., a. c GF(2m) 0 < i, j < n-l

and Ka GF(2 m), with multiplicative order n.

32

Table III

Transform Capabilities of (255,k) Decoder's Transform Section

Transform Size Bits Per Symbol Kernel of Transform

n m aK

255 8 Oa

127 7 OL1

85 8 a3

63 6 at

51 8a5

31 5 a 1

21 6 (

17 8 a 1

15 8 a17

15 4 a 1

9 6 a7

7 6 aL

5 8 aL5

5 4 a3

3 8 a5

3 6 21

3 4 a5

33

As mentioned in section II, a forward transform can be interpreted

as polynomial evaluation, which can be represented as

A = a(aKj) ; j=O, 1, ... , n-i (3-3)J

where a(x) is an (n-l)th degree polynomial over GF(2m).

To calculate an inverse n-point finite-field transform, over

GF(2m), the transform section must implement:

n-i
a . n- A - K i j

= A i=O, ... , n-i (3-4)
j=0 3

or equivalently,

a. = A(- K i) ; i=O, 1, ... , n-I (3-5)

where A(z) is an (n-l)th degree polynomial defined over GF(2 m).

To calculate either a forward or an inverse finite-field trans-

form the transform section implements a polynomial evaluation algor-

ithm. To calculate a forward n-point transform, over GF(2m), the

transform section evaluates an (n-l)th degree polynomial at the n

distinct powers of the elanent a K. To calculate an n-point inverse

34

6-m

finite-field transform over the same field, the transform section

still evaluates an (n-l)th degree polynomial at the n distinct powers
Kof the element a , but the order of evaluation is reversed since

-Kz K(n-Z)
(X C,

The transform section implements a computationally efficient

algorithm for polynomial evaluation. For an n-point transform, the

n points to be transformed are defined as the coefficients of an

(n-l)th degree polynomial over GF(2 m). This data polynomial is divided

by a set of polynomials of smaller degree whose roots are conjugate
K

sets of the n distinct powers of a . Each remainder polynomial, or

residue polynomial, is then evaluated at each of the conjugate roots

of its corresponding divisor polynomial in order to obtain the trans-

formed points. The set of divisor polynomials is the same for either a

forward or an inverse transform; the order of evaluation determines

which transform is being calculated.

An n-point transform iair is defined on GF(2 m) if n divides

2 M-1. If n equals 2 M-1, then the transform is maximum-length, the

set of divisor polynomials is the set of all minimal polynomials

associated with GF(2m), and the n points of evaluation are the 2 -1

non-zero field elements. If F is greater than one, where Kn = 2m-1

then the transform is submaximum-length and the set of divisor poly-

nomials is defined as the set of minimal polynomials that have the n
K

distinct powers of a as roots. The points at which the residue poly-
K

nomials are evaluated are the n powers of a

35

In order to evaluate an -th degree remainder polynomial at the

point %, the following equation is implemented.

r(cJ) = r 0 + rl(c)) + r 2 (0)) 2 + .. + r (C9)9 (3-6)

This is equivalent to a continued product expansion

r(J) = (...(r c + r l) J + ... + r 1 + r 0 (3-7)

This expansion can be effectively implemented using an extension

field multiplier and accumulator as a polynomial evaluator. The

symbol errata-locator requires one transformed symbol at a time, and

the transform section is required to supply sequentially-calculated

transform points. A single polynomial-evaluator circuit may be

multiplexed to calculate the desired n transform symbols.

The operation of the transform section can be partitioned into

two functions. The transformer first divides the (n-l)th dtgree

data polynomial simultaneously by all minimal polynomials of the

elements of GF(2m). Then, each point in the transform is sequentially

calculated by evaluating the appropriate residue polynomial at the

corresponding element in the field. The order of evaluation determines

whether the transform is forward or inverse. A block diagram of the

transform section is shown in Figure 2. In this figure, the transform

section is partitioned into a polynomial residue calculator, a

multiplexer, a polynomial residue evaluator, and an arithmetic

controller.

36

-- w
-3-:

r ~r7

0 0Kt .

Z 0D

- 0 - 0>
L) o:

-- - - - - -.37

3.2. 1. Polynomial Residue Calculator. As a first step in calculating

an n-point transform over GF(2 m) the polynomial residue calculator

simultaneously divides the polynomial representing the data to be

transformed by all minimal polynomials of the elements of (;F' (

Polynomial division is implemented with LFSRs whose feedback-connection

polynomials are defined to be the divisor polynomials. The fast

polynomial evaluation algorithm defines the divisor polynomials to he

the minimal irreducible polynomials from the finite field of operation.

This means that the divisor polynomials for the residue calculator-; are

irreducible over (;F(2) and the coefficients of the corresponding LFSR'.

feedback connection polynomials are restricted to either one or zero.

Therefore, there are no extension-field multiplications iequired to

implement the division portion of the fast polynomial eveluation algorith:-.

Division can be implemented using only scalar multiplication (by either

zero or one) and GF(2) (modulo-two) addition.

The polynomial residue calculator is capable of dividing by all

the minimal polynomials in GF(2m), where m=4,5,6,7, and 8. A complete

list of these polvromials is presented in Tables IV-l through

IV-3. There are a total of 66 polynomials for the five different

binary-extension fields. In order to provide all of the transform

capabilities indicated in Table III, the polynomial residue calculator

must be capable of dividing by all 66 minimal polynomials: however,

only simultaneous division by the polynomials from the field of

operation is required for calculating a particular transform. The

binary-extension field GF(2 8) has the largest number of minimal poIy-

nomials; there are 35 divider circuits to be implemented for transfor-

mation in this field. The key to minimizing the residue calculator's

hardware is to design these 35 circuits to be reconfigurable in order

to provide for division by the remaining 31 minimal polynomials needed

for transformation in the four other finite fields.

To facilitate the descriptijn of the residue calculator's

38

Table IV- I

Minimal Irreducible Polynomials over
GF(2)

m.(z) = m +tMz + m24 + mz5 + mz 6 + z + mz8
1 0 1 + 2 . 4 5 6 7 8

Polynomials m° m m 2 m 3 m 4 m5 m6 m 7 m 8

m 0 (z) 1 1 0 0 0 0 0 0 0

mI (z) 1 0 1 1 1 0 0 0 1

m 3 (z) 1 1 1 0 1 1 1 0 1

m5 (z) 1 1 0 0 1 1 1 1 1

m 7 (z) 1 0 0 1 0 1 1 0 1

mi9 (z) 1 0 1 1 1 1 0 1 1

ml (z) 1 1 1 0 0 1 1 1 1

T.1 3 (z) 1 1 0 1 0 1 0 0 1
m1 5 (z) 1 1 1 0 1 0 1 1 1

m 17 (z) I 1 0 0 1 0 0 0 0

m 19 (z) 1 0 1 0 0 1 1 0 1

m2 1 (z) 1 1 0 1 0 0 0 1m2 1z 1 0 0 0 1 1 0

2 5 (z) 1 1 0 1 1 0 0 0 1
m2 7 (z) 1 1 1 1 1 1 0 0 1
29 (z) 1 0 1 1 0 0 0 1 1
93 1 (z) 1 0 1 1 0 1 0 0 i

m3 7 (z) 1 1 1 1 1 0 1 0 1

m 3 9 (Z) 1 0 0 1 1 1 1 1 1

m4 3 (z) I 1 0 0 0 0 1 1 1
m 4 5 (z) 1 0 0 1 1 0 0 1
m4 7 (z) 1 0 0 1 0 1 0 1 1
m 5 1 (z) 1 1 1 1 1 0 0 0 0
m5 3 (z) 1 1 1 0 0 0 0 1 1

m51 (Z) 1 0 0 0 1 1 0 1 155(z)
m5 9 (z) 1 0 1 1 0 0 1 0 1
m 61 (z) 1 1 1 0 1

m6 3 (z) 1 0 1 1 0 1 1 1
38 5 (z) 1 1 1 0 0 0 0 0 0

m8 7 (Z) 1 0 0 0 1 0 1

m9 1 (Z) 1 0 1 0 1 1 1
m9 5 (z) 1 0 0 1 1

m1](z) 1 1 0 1 1 1 1 0 1

m1--9(z) 1 0 0 1 1 0 0 0 0
m127(z) 1 0 0 0 1 1 1 0 1

39

Table IV - 2

Minimal Irreducible Polynomials over
GF(2)

mi = m + + + + + +m6z + m7z

Polynomial m0 mI m2 m m4 m5 m6 m7

m 0 (z) 1 1 0 0 0 0 0 (
*0
mi (z) 1 0 0 1 0 0 0 1
P.3 (z) 1 1 1 1 0 0 0 1
'3
n5 (z) 1 0 1 1 1 0 0 1
m 7 (z) 1 1 1 0 i 1 1 1

M 9 (z) 1 1 1 1 1 0 1
M (z) 1 0 1 0 1 0 3 i

m3 (z) 1 1 0 0 0 0 0 1
M (z) i 1 1 1 0 1 1 1
in1 9 (z) 1 1 0 1 0 0 1 1
mI2 1 (Z) 1 0 1 0 0 1 1 1
m 2 3 (z) 1 0 0 0 0 0 1 1
m27 Z) 1 1 0 0 1 0 1 1
29 (Z) 1 1 0 1 0 1 0 1
31 (z) 1 0 0 0 1 1 1 1

m4 3 (z) I I 1 0 0 1 0 1
m4 (z) 1 0 0 1 1 1 0 1m57 (Z) I a I I I I I I
55 (z) 1 0 0 0 1 0 0 1

Minimal Irreducible Polynomials over GF(26)

mi(Z) = m0 + M
I + m~z + m3z + m4z + m5z + m6z

Polynomial m 0 mI1 m 2 m 3 m 4 m 5 m 6

m 0 1 1 0 0 0 0 0

mI 0 1 0 0 0 0
m I 1 1 0 1 0
m5 1 i 0 0 1

m 5 0 0 1 0 0
m9 7 0 1 0 0 0

mi9 1 0 1 1 0 i 1
m 0 1 1 0 1
n1 3 1 0 1 0 1 1
m 1 0 0 0
i 2 1 1 1 0 0 1 1 1

2 3 1 1 0 1 0 0 0

7 1 0 0 O 0 1 1

n3 1
40

Table IV - 3

Minimal Irreducible Polynomials over GF(2 5

mi ()=m0 + 1+m2z 2 +m3 z 4 +m5 5

Polynomial m 0 m I m2 m 3 in4 in5

mn 1 1 0 0 0 0
in1 1 0 1 0 0 1
m 1 1 0 1 1 1 1
3n

m1 1 1 1 0 1

in17 1 1 0 1 1 1
in15 1 0 0 1 0 1

Minimal Irreducible Polynomials over GF(24

i. (Z) 0 + 1+m2z 2+m3z 3 +m4 4

Polynomial in0 in1 m 2 in3 in4

in0 1 1 0 0 0
m 1 1 1 0 0 1
in3 1 1 1 1 1

m51 1 1 0 0
m71 0 0 1 1

41

architecture, it is advantageous to examine the structure used to

implement polynomial division. Figure 3 shows the structure of an

LFSR that is used to perform polynomial division. (A detailed

description of the operation of this ciruuit can be found in Chapter

7 of reference [1] .)The circuit shown is designed to divide by

the polynomial M 95 x 8+ x 7+ X4 + x 3+ x 2+ x + 1, which is a mini-
8

mal polynomial from GF(2). The positions of the feedback taps are

determined by the coefficients of the divisor polynomial. In order

to perform division, the registers are all cleared to zero, and the

data representing the polynomial to be divided is fed sequentiaflv

into the shift register. After the last symbol is entered, the

remainder polynomial, or residue polynomial, is stored in the registers
7

of the divider circuit. This residue, R(x) = R0+ R 1 x+ ... + R7 x

is required for completion of the fast polynomial evaluation algorithm.

The structure shown in Figure 3 is designed to operate with

symbols from GF(2 8): the data lines are eight wide, the delay stages
are eight registers deep, and the Exclusive-OR circuits operate with

eight-bit words. Since the divisor polynomial contains only either

zero or one as coefficients, the circuit shown in Figure 3 can be

interpreted as eight identical binary feedback shift registers (BFSRs),

each circuit- capable of accommodating a single bit of each eight-bit

input symbol. Each of the eight BFSRs contains delay stages that

are only one bit deep, and the modulo-two adders are two-input binary

Exclusive-OR gates, forming eight identical "slices", each physically

separate from its seven companions.

8
All 35 minimal polynomials from GF(2) can be implemented using

circuits that are similar to the structure shown in Figure 3. In

order to implement the polynomial division in GF(2 8), a total of eight

identical slices of hardware is required for each polynomial. Each

slice contains 35 different BFSRs with each shift register having a

maximum length of eight stages.

42

I-

0

x
+

s00+

-4

J)i

I_
43I

There are two fundamental problems associated with designing the

35 divider circuits required for operation in GF(28) to be reconfig-

urable to operate in the other finite fields. First of all, the

different fields of operation have symbol sizes that range from four to

eight bits, and the divider circuits must be capable of operating with

these different symbol sizes. Secondly, the circtits must be recon-

figurable to provide for division by different divisor polynomials.

The 1usitions of the feedback taps as well as the lengths of the reg-

isters are subject to reconfigurability. Both problems are made more

difficult because of the desire to design the div 4 der circuits to be

as versatile as possible, but we would also like to keep the total

amount of hardware at a reasonable level without incurring a large

overhead for reconfigurability.

The necessity to operate with different symbol sizes is a con-

sideration that recurs throughout the design of both the transform

section and errata-location section. Our approach is to define a

standard symbol size of eight bits and design all hardware to accom-

modate this symbol size and to be programmable for smaller fields.

Since the hardware must accommodate symbols from GF(2), no addition-

al hardware 4s required when defining an eight-bit standard symbol,

but some overhead is incurred for reconfigurability.

Any symbol from the field GF(2m) can be represented as an m bit

sequence

k GF(2m) k k k

where (3-8)

k
GF(2) ; i=O. 1, ... , m-l.

44

Any symbol from GF(2 m), where m < 8, can be represented as a binary

eight-tuple where some of the bits are set to zero. We have defined

our standard symbol as an eight-bit word such that ak is represented

as

ak C GF(2
m)

k k k k
% O Xis I m-1 0, ... , 0 (3-9)

m 8-M

The notation of equation (3-9) will be frequently referred to as our

"standard" symbol in this report.

When the residue calculator is operating with symbols from
GF(2 m),

where m<8, our definition of standard symbol size results in zeros

being fed into the 8-m slices corresponding to the bit-positions

greater than m-l. The operation of the BFSRs associated with these

zeros has no effect on the m slices required for the desired division.

The problem of designing the 35 divider circuits to be reconfig-

urable to provide division by all necessary minimal polynomials reduces

to the problem of designing 35 BFSRs to be reconfigurable for the

required division. The design can then be repeated eight times to

obtain the parallel structure for the eight-bit polynomial residue

calculator.

A goal associated with the design of a reconfigurable-divider

circuit is to minimize the amount of hardware required for program-

mability. The design must be reconfigurable to accommodate different

divisor polynomials of varying length. Minimizing the amount of hard-

ware required for reconfigurability is roughly equivalent to minimizing

the number of programmable feedback taps. Each programmable feed-

45

back tap allows the connection of a shift register's output to the

particular stage where the tap is located. The hardware associated

with a programmable tap must be repeated on all eight slices, and

accompanying discrete logic or memory must be dedicated to control

the operation of each programmable tap.

Two techniques can be combined to minimize the amount of hardware

required for programming the BFSRs. Both techniques exploit the fact

that the maximum degree of a minimal polynomial from GF(2 m) is m.

The divider circuits are designed originally to implement simultaneous

division by the 35 minimal polynomials in GF(2 8). A subset of these

circuits is rtquired to be reconfigurable in order to implement division

by the 19 minimal polynomials in GF(2 7). A second subset of the

original circuit is required to be reconfigurable for operation in
GF(2 6). A third and fourth subset are required for operation in GF(2 5)

o

and GF(24). Each of the four subsets requires BFSRs that are shorter

in length then the eight stages required for operation in GF(28).

The first minimization design technique is to group minimal

polynomials from different fields that have identical or similar

coefficients. Programmable taps are only required where discrepancies

between tap weights occur. The second minimization technique is to

design the output tap of each shift register to be programmable so

that division by polynomials of different degrees can be implemented

in the same circuit.

An illustrative example helps to clarify these concepts. V i kuC

4-a shows the logic level design of a BFSR that represents a single

slice of a divider circuit suitable for use in the polynomial residue

calculator. The circuit consists of an eight-stage feedback shift

register whose output tap can be selected from one of five locations.

The output multiplexer selects the position of the output tap that

defines the feedback connection polynomial (divisor polynomial). The

reconfigurability of this circuit for division in the different fields

is shown in Table V. 46

I ±o

o 0 0 p

0

z C-)

0.

a a 00

474

TABLE V

Programmability of Binary Feedback Shift Register: Figure 4

Field of

Figure Operation Divisor Polynomial

82 3 x4 7 8

4-b GF(28) M 9 5(x)
= 1 + x + x +X +x +X + x

4-c GF(2 7 M3 (x) = I + x + x 2 +

4-d GF(2 6) M0 (x) = 1 + x

25) 2 3 5
4-e GF(2 5 M7 (x) = 1 + x + x + x + x

2 3 x4

4-f GF(24 M (x) = I + x + x + x + X

Each of the original 35 divider circuits can be designed in a

manner similar to that shown in Figure 4. Unfortunately, there is

no readily apparent systematic method for assigning subsets and feed-

back taps. However, the design methodology results in hardware-

efficient structures. The (51,k) breadboard to be described in section

IV was designed to accommodate a large subset of the codes that can

be processed by the (255,k) encoder and decoder. The breadboard's

polynomial residue calculator was designed using the minimization

techniques described in this section, and only three programmable

taps were required, one on each of three separate divider circuits.

The fundamental structure of the polynomial residue calculator

consists of eight identical slices of hardware. Each slice consists

of 35 BFSRs, each being reconfigurable to provide for division by a

set of different-length divisor polynomials. The maximum-length

48

divisor polynomial that can be implemented has degree eight; conse-

quently, the maximum length of any feedback shift register is eight.

The polynomial to be divided is fed sequentially into all 35 divider

circuits. Division is completed after the last coefficient of the data

polynomial has been entered. At this time, the calculated residue

polynomials are stored within the delay stages of the divider circuits.

These residue polynomials are transferred into a temporary holding

memory, and the divider circuits are available for processing the

next block of data. The residue polynomials are then available in

temporary memory for further processing for completion of the fast

polynomial evaluation algorithm. In this manner, the polynomial residue

calculator can be thought of as pipelined, capable of simultaneously

operating on two contiguous blocks of n symbols, thus accepting a con-

tinuous input stream.

3.2.1.2 Polynomial Residue Evaluator. The polynomial residue evaluator

implements the second portion of the polynomial-evaluation algorithm.

For operation in GF(2m) (regardless of code block size), the polynomial

residue calculator provides the residue evaluator with the remainder

polynomials that result from the division of the input data sequence

by all the minimal polynomials in GF(2 m). The residue evaluator

sequentially calculates each point in the n-point transformation by

selecting a predetermined residue polynomial and evaluating that

residue at a root of its corresponding divisor polynomial. By defini-

Ktion, the point of evaluation is a power of aK . If the transform is

of maximum length, n=2 M-1, then the residue associated with each

minimal polynomial in the field will be used at least once. If the

transform is submaximum, nl2m-l, then the residues associated with

a subset of the minimal polynomials from GF(2m) will be used. Table

VI indicates the subsets of minimal polynomials associated with each
of the transforms listed in Table III.

The only difference between the computation of a forward and an

inverse n-point transform over GF(2 m) is the order in which the trans-

49

Table VI

Transforms over GF(2n)

Field of Transform Length Required Minimal Polynomial

Calculation N Divisors

CF(2 8 25 in W(), III (Z), ni. Wz,

in 1 (z), in 1 3 (z)9 m (z),
5n1 7z) 9zr,1 (

in2 (z), in 2 (Z), mn (z-)I
i 2 (z)W, in11 (Z), 11131 (Z),
in3 (z), 3 (z), m (zW,

2n3 Wz, In82 5 Wz, 111 (7 W
in9 (Z), mn9 W, mn 1 (7),

3n1 9 43) in175z

in1 (z), Mn2 Wz, in 2 (z),
473 () 4 (i 5 1 53)

m 6 3 Wz, In 8 7 (Z) m in7 1 W,

51 910 W, In95 (z), III5 Wz,

in 7 Wz, in (Z),
51 127 5 ()

15 in0 Wz, in1 Wz, M95 Wz,

in1 5 (Z) m 2 1 (z): t 7 W

S ~ 3 4n z i 5 51)

3 i 063) i 8 7 111

CF(2)127 i 0 (z) 'n, z, n5(

M.5 (7) m n 7 (Z), inm (
in5 Wzi

1 zi 1 z,

17 1 9 (z), in 1 (z), in 2 (z)

15 m 0 ~(z):m7 W m51 W

in 2 m , in 25' (Z)i 3 1 z)

in9 (z1)3

50

Table VI (Concluded)

Transforms over GF(2
m

Field of Transform Length Required Minimal Polynomial

Calculation N Divisors

GF(2) 63 m 0 (z), m I (z), m 3 (z),

m5 (z) , m 7 (z), m 9 (z),
m (z), m 1 3 (z), I1 5 (z),in2 1 (z),i 3 (z), 5n (z),

m 1W, M 23 W, mM27 W,

m31 (z)

21 i 0 (z), m 3 (z), M 9 (z)

15(z), i 2 1 (z), m2 7 (z)

9m (z), m 7 (z), m 2 1 (z)

7 m0 (z), m9 (z), m2 7 (z)

3 m0 (z), m 2 1 (z)

5
GF(25) 31 m0 (z), m I (z), m3 (z),

m5 (z), m 7 (z), inl 1 (z),

m 1 5 (z)

GF(2 4) 15 m0 (z), m I (z), m3 W,
m 5 (z), m 7 (z)

5 m0 (z), m 3 (z)

3 m0 (z), m5 (z)

91

forme_ ,vmbc-ls are calculated. This is a bookkeeping matter irrefl nt

to the architecture and operation of the residue calculator. The

order of evaluation is determined by the arithmetic controller. For

each transform point, the controller (see section 3.2.1.3) provides

The residue evaluator with all the information needed to implement

the polynomial evaluation algorithm.

A block diagram of the polynomial residue evaluator is shown in

Figure 5. For each point in the transform, the polynomial residue

evaluator performs two major operations. First, the input multiplexer

selects a residue polynomial from the residue calculator. Secondly,

the residue evaluator calculates each point in the transform by

evaluating the selected residue using a multiplier and accumulator

defined for GF(2 m). The central components of the polynomial residue

evaluator are the GF(2 m) multiplier and accumulator. The remainder

of this section will concentrate on a description of their design and

operat ion.

The residue evaluator implements polynomial evaluation using the

continued product expansion of equation (3-7). The expansicmn is well-

suited for sequential implementation using the GF(2 m) multiplier

and accumulator shown in Figure 5. In order to compute all the trans-

forms shown in Table IllI, the residue evaluator must be capable of

operation in all five binary extension fields. Using our standard

symbol notation, equation (3-9), the accumulator is easily imple-

mented using eight two-input Exclusive-OR gates. (The padding of

zeros for fields with m<8 automatically produces the correct results.)

The multiplier structure chosen for use in the residue evaluator is

an asynchronous array GF(2 m) multiplier (described in appendix A of

this report). This multiplier is the processing bottleneck within

the transform section, and the array-type structure offers the fastest

multiplication rates. However, a penalty is paid for this speed

because the hardware implementation of the array-type structure

requires the maximum number (if gates of all GF(2 m) multiplier struc-

ture alternatives, but note that the GF(2m) multiplier required for

.r

a z
E

LaCL

zO

O

I c
X0

a 0
00

53

the residue evaluator section is used to perform the only extension-

field multiplications in the transform architecture. Also, it will

be shown that exactly the same GF(2
m) multiplier structure is used

to implement a critical portion of the errata-location section. The

careful analysis and design of this multiplier results in a functional

module whose usefulness overshadows the disadvantages associated with

its complexity.

The operation of the polynomial residue evaluator can be de-

scribed with an example. To calculate a point in the transform, the

arithmetic controller supplies the polynomial residue calculator with

(1) the necessary information to obtain the predetermined residue

polynomial, (2) the degree of that particular residue polynomial, >,
Ki ap

and (3) the power of the kernel,o = C~ , at which the residue is to

be evaluated. The residue eva'uator is required to implement the

expression

R(, p) = R0 + RI P + ... + R _-Il)p (3-10)

The coefficients of the residue polynomial are stored in a temporary

memory within the residue calculator. The information provided by

the arithmetic controller selects the appropriate memory locations,

and serially feeds these coefficients, most significant coefficient

first, into the multiplier and accumulator circuitry. The input

latch (see Figure 5) is initially cleared to zero, and therefore the

output of the programmable GF(2m) multiplier is also zero. The point

of evaluation, ap , is latched into the evaluation latch. The most

significant coefficient of the residue polynomial is fed unchanged

through the accumulator and latched in the input latch. After pro-

cessing delay, the output of the asynchronous multiplier is (RQIP).

54

This output is fed back into one input of the accumulator. Simul-

taneously, the next most significant coefficient is retrieved from

the temporary memory and fed to the accumulator. The next output

of the accumulator, (R Z- p+ R z2), is held in the input latch and

asynchronously multiplied with acP. This process conti'nues (k-1)

times until the input latch contains

(R -1 OL -2)p+ R1 CY+R 0 = R (OtP) (3-11)

which is the evaluated polynomial. This data, or transformed symbol,

is latched into the residue evaluator's output latch where it can be

shifted out of the transform section for further processing. The

entire process is repeated n times in order to compute an n-po-intI transform. After each symbol is calculated, the input latch (Figure

5) must be cleared to zero.

3.2.1.3 Arithmetic Controller. The arithmetic controller provides

all timing and control signals required to operate the transform sec-

tion. As mentioned previously, the calculations implemented by both

the polynomial residue calculator and polynomial residue evaluator are

independent of whether a forward or an inverse transformation is per-

formed. The arithmetic controller determines the order of the evalu-

ation and therefore dictates the type of transform to be computed.

The arithmetic controller requires specific input data to pro-

vide management for the transformer. The controller needs to know

whether the transformer is to be used for encoding (forward transform)

or decoding (inverse transform). Also, the controller needs to know

which code is being processed and the fle-id in which the code is

defined. From this information, the arithmetic controller generates

the order of computation for the transform and its kernel.

55

The arithmetic controller provides minimal control to the poly-

noitial residue calculator. For operation in a particular field, the

controller reconfigures the LFSRs to divide by all the minimal poly-

nomials within that field. The controller selects the shift register's

output tap (via the output multiplexer) for each divider circuit and

tihe controller ilsc) prorams the necessary feedback taps. The cor-

trols for the polvnomical residue calculator cre static- once the code

and field of operation are defined, the circuits are programmed and

they remain unchanced for the duration of the transform calculation.

Primarily, the arithmetic controller manages the polynomial

residue evaluator. Once the field of operation is defined, the

controller reconfigures the GF(2m) multiplier to operate in that

field. The multiplier remains in this configuration for the duriion

of the transform calculation. However, for each point in the trans-

form, the controller must supply the residue calculator with the data

required to select the predetermined residue polynomial. The con-

troller must also provide the degree of that residue as well as the

point of evaluation. These sets of control signals are dynamic;

they change for the calculation of each transform point.

The arithmetic controller could be implemented with any of a

number of hardware structures, including microprocessor controlled

hardware. However, high throughput in the transformer warrants a

high-speed controller. The controller architecture that is described

in the following paragraphs was implemented in the (51,k) encoder

and decoder breadboard.

The major function that must be implemented by the controller

is the dynamic generation of the data required to calculate each

individual transformed symbol. The static control required for each

code can be easily generated with discrete combinational logic. A

block diagram of an arithmetic controller is shown in Figure 6. The

56

W 54

4 24

- - -------
Z0

I-W

LU

cr -. C

57

intputs for the controller are an encode/decode signal, the field of

operation GF(2m), and the chosen code parameters (n,k). For each

transformed symbol, the arithmetic controller generates three pieces

of information: the address used by the residue evaluator's input

multiplexer to select the predetermined residue polynomial, the degree

of that residue polynomial, and the field element at which the poly-

nomia" is to be evaluated. The controller consists of preprogrammed

memory and a progrrammable memory address generator. The memory is

partitioned into two separate storage areas that have a common address.

One memory section contains the field elements associated with each

field and the other contains the information required to select and

evaluate the residue polynomials. Within a given field, a particular

element is a root of only one minimal polynomial. Therefore, for

polynomial evaluation there exists a one-to-one relationship between

any field element and its associated residue polynomial. Ilhen a field

element is selected in one memory section, the data associated with

its residue polynomial is selected in the other memory.

There are 2 -I nonzero field elements in the field CF(2).

These elements can be designated as xo, (, 2 C, Our

eight-bit standard symbol representation (equation (3-9)) of each

element, i from V(2 m) is stored in memory location 2 m+i. The

field element eaO from GF(2 m) is an important evaluation point. It
2~m

is stored in memory location 2 and it is also stored in the memory

location 2 + 2m or 2 - 1. The residue-polynomial information

corresponding to each field element is similarly stored in the second

memory.

The programmable memory address generator consists of an initial-

ization circuit, a transform kernel generator, and a programmable up-

down counter. For a forward n-point transform over GF(2m), the field

elements required for evaluation in the fast polynomial algorithm
nI K 2K (n-l)K

are X , 'I, ... ,). The memory address corresponding

58

to these field elements is generated by initializing the up-down

m
counter to the memory location 2 , and then incrementing the counter

by K for each point in the transform. For an inverse n-point trans-

form over GF(2 m), the field elements required for evaluation are
(a 0 (n-l)K a(n-2)K 2K Ka , .. , a , K). The memory address corresponding

to these elements are generated by initializing the up-down counter

to memory location 2 m+ l-1 and then decrementing the counter by K for

each point in the transform.

3.2.2 The Errata-Location Section

The errata-location section implements a modified version of the

Berlekamp-Massey minimal length shift register synthesis algorithm

to correct symbol errors and symbol erasures. First, this section

uses the known erasure locations to calculate the erasure-locator

polynomial. Then, the same hardware uses the error syndrome values

to iteratively calculate the errata-locator polynomial. Finally,

the errata-locator polynomial is used to generate the transform of

the errata pattern which is subtracted from the transform of the

received codeword in order to recover the original message.

The modified Berlekamp-Massey decoding algorithm was presented

in Volume I and was reviewed in section II of this volume. In order

to describe the hardware required to implement the errata-location

section we define the decoding algorithm as a step-by-step procedure

and then describe the implementation of each computation. This

detailed decoding procedure is shown in Figure 7 and uses the notation

defined in Table VII. The procedure of Figure 7 uses a forward trans-

form for decoding (an inverse transform is defined for encoding), and

the error syndrome symbols are defined as the first n-k symbols in

the transform of the received sequence. (During encoding, the k

information symbols are the k highest coefficients in the (n-l)th

degree message polynomial.)

59

* A I a 4.-

A -- A
I A A I A - -

- '7---
-A ~

-4

C-,
C-

C-

C.,
I-

4 A Li..
- - A

Ill a - .- 1
- .0 -
- A

- II I
I 0 C- A

-- .- a all
~ a. A
C A 4 0 A Q'- -'
I II CA 2
4 1+ A

A I~ -V
C 44

- - OA V A

I I I I .. V V -
- .- 1~1

+4 -

* . A -~ I -
- - C A A - -

* - I *2 *
C- A -~

C , 'I LI .4 -
- . -~ - a

0 II g 1< 'I
0 A -.

+4 A -. -~

A A A A

- - -t -

60

Table VII

Decoding Algorithm Variables

(Notation)

Volume I Volume II, Figure 7
Notation Notation Description

z x = z Change in Variable

dr d (N) Discrepancy

dm b(N) Previous Discrepancy

a (r4)(Z) A (N)(W Present Connection

Polynomial

U () (N)() Previous Connection
Polynomial

(N)
L L +N) Length of Present

Connection Polynomial

ix
x Known Erasure Locations

i

.. ,NirId i... ,. e 61. .

The decoding algorithm shown in Figure 7 is required to operate

for n iterations. During the first v iterations, the known erasure

locations are used to construct sequentially the erasure-locator

polynomial. When the algorithm first branches to step (6), the poly-

nomials A Nx)W and B N x)W are both the erasure-locator poly-

nomial. At the conclusion of the (n-k)th iteration, the polynomial

A (n-k-i) W is the errata-locator polynomial. This polynomial is

held constant for the remainder of the algorithm and the generated

set (Po M1 ... , Ikk- I~ is the recovered information.

A block diagram of the errata-location section is shown in

Figure 8. The decision and control circuitry implied by the decoding

algorithm are nct shown in this figure but are implicit in the

circuit operation. Both the algorithm presented in Figure 7 and

the structure shown in Figure 8 are independent of the field of

operation; the arithmetic operations specified in the algorithm and

implemented in the block diagram are implicitly field-dependent.

Three major computational steps implement the decoding algorithm

as shown in Figure 7:

" The first computation corresponds to step (6) and is the

calculation of the present discrepancy, d()

" The second calculation corresponds to steps (3) and (8)

and is the calculation of the present feedback connection

polynomial, A ()W.

" The remaining calculation updates the previous feedback

connection polynomial B ()W to one of three values;

xB (-)(x), A (N1 x), or A(IN)(xW.

The present discrepancy is always calculated prior to calculating the

present feedback connection polynomial which in turn is calculated

62

CLC

00
12 Im

ww

+- x

U) w
(nU

Sr W
0 u0

C) azww

LL.

U)U,

4>m
En w

W 5

6a 3

before updating the previous feedback connection polynomial. The

hardware that implements these calculations is described in the

remainder of this section.

3.2.2.1 Calculation of d (N) . During each of the first n-k iterations

of the decoding' algorithm, the present discrepancy d (N) must be

georated. For the first , iterations, the known erasure locations,
(N)

Y , are substituted for d The erasure locations serve as inputsP
to the present discrepancy latch (sc, Figure 8). Once all erasure

locations have been used as inputs, the present discrepancy is cal-

culated as

i S N % N-i (3-12)
(X L (N-N-+)

which corresponds to the convolution of the L (N -) + c + 1 most

recent syndrome values (SN, SN_ 1 ..., S NL(N-1) and the coeffi-

cients of the present feedback-connection polynomial A (N-1)(x). The

portion of the structure shown in Figure 8 that is used to implement

this correlation is repeated in Figure 9. In this figure, the

L(N - 1) + \ + I most recent syndrome values are held in the syndrome

register, while the coefficients of A(N-1)(x) are held in the present

feedback-polyr.on.ial register. Each of the syndrome values

is multiplied with a corresponding coefficient of the feedback

connection polynomial and the L N -1) + v + 1 product terms are

summed to produce d .
N) Each of the pairwise products between the

syndrome register and the connection polynomial register is a multi-

plication in GF(2m), and L (N-l) + v + 1 field-dependent multipliers

are required for this direct implenentation. The structure shown in

Figure 9 illustrates the computational steps required to calculate

d (N); the hardware is complex and may be simplified.

64

V)V

zXc

(Ij

z w
>- z Q

U) CL

(3

0

U A (n)

00

Z cn

cr 65

The (255,k) encoder and decoder's present discrepancy calculator

is shown in Figure 10. This structure implements sequential finite-

field multiplication so that only one GF(2 m) multiplier structure is

required. In Figure 10, each syndrome value and polynomial coefficient

is represented using our standard eight-bit symbol notation, (equation

3-9). The calculation of the present discrepancy, equation (3-12),

can be expanded as

L(N-)+ (7 (N-I)) 7-k

d ;+ Y :sNE !i x mod p~x
(N L = k = O - i , 7 -k . a(-

7 L(N-) 7-k
+0 N-i ,7-k E , x mod p(x)N-=O- i= '=O i

SN O + (3-13b)

where p(x) is the primitive polynomial that generates GF(2m), s
N-i ,k

is the k-th bit in the eight-bit representation of SN. and, (N-l). (N-1
is the ;-th bit in the eight-bit representation of k

This equation is implemented directly in Figure 10 and this structure

can be described in terms of its operation. During the first n-k

iterations of the decoding algorithm, the syndrome values are used

to calculate d(N) and switch 1 in Figure 10 is in position "I".
During the N-th iteration (N < n-k), SN is fed sequentially into the

present discrepancy calculator. Simultaneously, each syndrome value

already present in the syndrome register is shifted one stage to the

right. Each syndrome value, Sj, is stored so that S is the first
.1 j,7

bit shifted out. There are eight shifts required to shift each

syndrome value and these shifts correspond to the summation over k in

equation (3-13b). During each shift, a single bit of each syndrome

value is multiplied modulo-2 with every bit from the corresponding

(N-1)pairwise product-polynomial coefficient A. I , Q=O, 1, ... , 7, and

the eight partial products, Pi*, Pl "'" P i,7 from each of the

66

I

**~'i- ~ a

F -~ 4 , 4

-

I a

.7

-; ~-cTh~ ,+
.1 ~ I
* .73 ~0 -

-. U

- a.

U

I H
; t- 0 J-J

* -~

cJ

I
~ -

U~l

j ~- -~ CN~

0
0
-4

I * w

0 -- ~ - I 00

*

V
i L

67

L (N-I) + v stages are fed into the accumulator. For k=O, the summa-

tion

(1-). 7 (N-i) (3-14a)

1= \ 0 /

7 IL (N-I)+ (N-1)
= Z SN-i,)7 ,

2=O i=0 (3-14b)

is formed in the serial multiplier's accumulator. Equation (3-14b)

represents a polynomial whose .th coefficient is given by

L(N-i) + (N-I)

P= SN-i,7 i, (3-15)

The eight coefficients P., P9 "... ' P7 are fed into the

GF(2m) serial multiplier where multiplication with x and polynomial

reduction modulo p(x) occur. ThIs product is stored in the multi-
m

plier's output latch. (A description of the GF<') serial multiplier

is given in appendix A of this volume). During the k=l shift, the

summa t ion

L(N-I)+7

Y SN-i, 6 E AQ x (3-16)

i=O Q =O

L (N -i) + V 7 (N -) x)

+ Z SN_i, 7 A i, x x mod p(x)

i=l

68

is formed in the serial multiplier's accumulator. This term is fed

to the GF(2) serial multiplier, and the output is stored in the multi-
m

plier latch. This process continues and after seven shifts the GF(2)

serial multiplier latch contains the term

L(N-1)+v

E E SNi,7_k A x x mod p(x) (3-17)k=0 i=I Z=0 '

During the k=7 shift, the contents of the multiplier latch, equation

(3-17), are accumulated with

L (N-l S7 A(N-) \
S SN-i, 0 Ai, x)(

and the sum is fed to the discrepancy accumulator, where SN is added

and the present discrepancy is formed. The architecture shown in

Figure 10 requires only binary, GF(2), logic for each of the LN +V

convolver stages. All field-dependent operations are implemented
m

in the single GF(2) serial multiplier.

3.2.2.2 Calculation of the Present Feedback Connection Polynomial,

A (N)(x). During each of the first n-k iterations of the

decoding algorithm, the present feedback connection polynomial

A(N)(x) must be updated. This polynomial can be revised to one of

two values,

A(N)(x) = A(N-)(x) (3-19a)

or
A(N)(x) = A(N-l) - d (N b(N-1)x6(N-1x) (3-19b)

69

The portion of Figure 8 that updates A(N)(x) is repeated in Figure 11.

This structure consists of the present connection polynomial register,

the previous connection polynomial register, the present and past

discrepancy latches, a field-element inversion circuit and a field-

element multiplier.

The operation of the structure shown in Figure 11 can be de-

scribed for both possible update conditions shown in equations (3-19).

The first equation is trivial to implement. Prior to the N-th

iteration, the polynomial A (N-)(x) is stored in the present feedback

polynomial register. If the conditions of the decoding algorithm are

such that (N)(x) is revised in accordance with equation (3-19a) then

the contents of the present feedback polynomial register are not

changed. The implementation of equation (3-19b) is more complex and

it is best described by a three step procedure. First, the stored

previous discrepancy b (N-1) is inverted and multiplied with the pre-
sent discrepancy d(N). The inversion and multiplication are GF(2m)

operations and they are implemented using the field-element inversion

and GF(2 m) multiplier shown in Figure 11. Next, the product

d (N)b- (N-)is multiplied with x (N-l)(x). The polynomial P (N-) (x)

is stored in the previous feedback polynomial register and x(N-)(x)

is formed by shifting each coefficient of 6(N-I)(x) one stage to the

right. The product

d(N)b- (N-I) x(N-1) (x) (3-20)

is formed by multiplying the term d (N) b- (N-1) with each coefficient

of the shifted version of (N-1)(x) using the corresponding GF(2)

multiplier. Finally equation (3-19b) requires that the polynomial

Yormed in equation (3-20) be subtracted from the polynomial A (x).

70

C

'4

--

0

'4

LUU

w >

Id I-I- In

0'

71C

Since the coefficients of both polynomials are from
GF(2m),

the arithmetic operation of subtraction is equivalent to modulo-

two addition. Therefore, the desired results can be obtained as

a coefficient-by-coefficient modulo-two addition of the two poly-

nomials. The resulting polynomial A(N)(x) is then stored in the

present feedback connection polynomial register.

The diagram of Figure 11 illustrates the computational steps

required to update the present feedback connection polynomial. How-

ever, this structure requires L (N-) + v + 2 GF(2m) multipliers,

making its hardware implementation complex. The expanded diagram

shown in Figure 12 is functionally equivalent to the structure shown

in Figure 11, but the structure of Figure 12 which uses sequential

operation on symbol bits has been designed so that only two GF(2m)

multipliers are used.

(N)b- (N-1)
The flrst field-dependent structure calculates d(b

This structure uses an inversion-by-squared product algorithm to

calculate the multiplicative inverse of b (N-l" and then the same
strctrecalulte d(N) -(N-1)

structure calculates dNb . The heart of this circuit is a

programmable GF(2 m) array m.ltiplier that is identical to the array

multiplier designed for the transform section. This multiplier is

combined with latches and field-element squaring circuitry to calcu-

late b (N-). The same array multiplier is then used to calculate

the product d (N)b- (N-) . The field-element inversion algorithm and

the details associated with the programmable array multiplier and the

field-element squaring circuit are contained in appendix A of this

vo l ume.

The second field-dependent portion of Figure 12 is designed to

simultaneously implement the product shown in equation (3-20) and the

72

J

124

0
44

+U

lww

So0

C-71

'~73

coefficient-by-coefficient summation

A(N) = A(N-I) + (N)(N-)(3-21)
i i i-i

~(N) (N (-1
where (= d N)b-(N-) This equation can be expanded as

.(N) (,N-1) + (N-1) (N k xJ mo p(x)

j=0 k=O
(3-22)

(N-i)where is the j-th bit in our eight-bit representation
i-lj(N-)

(equation 3-9) of the (i-l)th coefficient from a' (x) and p(x)

is the primitive polynomial that generates the field. The structure

shown in Figure 12 implements equ, .ion (3-22) directly with the

summation over j implemented sequentially in time. For each j the

term

7

6(N) x mod p(x) = 6 (N) x +k mod p(x) (3-2)

k=O

is multiplied with every coefficient of B (x). The i-th stage

of the oresent feedback connection polynomial register contains our

eight-bit representation of A(N-l). For each j, a bit from the eight

bit representation of (N-I) is shifted one stage to the right within1i-I

the previous feedback connection nolvnomial register. (These coeffi-
(N-l))

cients are stored so that the first bit shifted out is p -1,0.

Simultaneously, with each shift the j-th bit from si-I (N-) is multiplied

modulo-two with the value shown in eauation (3-23) and the product

is accumulated with A NI This modulo-two multiplication and

accumulation is implemented by using the bits 6(N-I as clockingi-l,i

' ates for the single-bit accumulators that are the building blocks of

74

the present feedback connection polynomial (see Figure 12). After

eight total shifts, the present feedback connection Polynomial has

been updated in accordance with equation (3-19b) and stored in the

Present feedback connection polynomial register. Also after eight

shifts, the previous connection polynomial register contains x6 (N-1)(x).

An example illustrates the operation of this structure (refer
(N) mto Figure 12). For j=O, 6 is held in the GF(2) serial multiplier

latch. The contents of this latch are fed to every stage of the

present feedback polynomial register. The contents of the i-th stage

(N-1)of the present feedback polynomial register is A. N . During the

j=0 shift, the bit ,(N-1) is shifted from the (i-l)th stage to themi-l,0

i-th stage of the previous feedback connection polynomial register.
Simultaneously this bit, (N-l)

Siula ti gates the clock for the i-th stage

of the present feedback polynomial register. The summation

A(N-I) + 6(N) (N-1) (3-24)
1 i-l,0

(N-I)
is calculated and stored in place of A. . During the j=l shift,1

the contents of the CV(2m) serial multiplier latch are fed to the

multiplier. The product 6 (N) x mod p(x) is formed and stored in

the multiplier latch. The bit B (N-1) is shifted in the previous
i-l,l

feedback connection polynomial register and gated with the clock for

the i-th stage of the present feedback connection polynomial register.

The summation

A (N-) + 6 (N) (N-l) + (6 (N) x mod p(x)) (N-1) (3-25)i i-l,0 i-l'l

is formed and stored in the i-th stage of the present feedback register.

This process continues for eight total shifts and A (N)(x) is calculated

in accordance with equation (3-19b).

75

3.2.2.3 Calculation of the Previous Feedback Connection Polynomial,
B(N) (x). During each of the first n-k iterations of the

decodng ago omal (N)W
decoding algorithm, the previous feedback connection polynomial 8()x)

must be updated. The polynomial can be revised to one of three values

as indicated in equation (3-26).

(N) (N-l)
(x) = x 8 (x) (3-26a)

(N)(W = A (N-1)(W (3-26b)

(N)(x = A (N)(W (3-26c)

T!,e conditions for determining the revised value of 8 (N) (X) depend
(N)

upon the calculation of the present discrepancy, d (
, and the

revision of the present feedback connection polynomial, A(N)(x). The

procedure for revising (N (x) is carried out only after the other two

calculations have been concluded. The hardware required for computing

B (N)(x) consists of the two feedback connection polynomial registers

and the temporary polynomial register (see Figure 8). The revision
(N)(N

of S (x) is closely related to the calculation of A W(x). During

each iteration of the decoding algorithm, A(N-1)(x) is copied into

(N) (N)the temporary polynomial register, and d and A(x) are then

calculated. Temporary memory is required because the contents of the

pr(sent connection polynomial register, A(N-1)(x), may be altered

during the calculation of A(N)(x). After A(N)(x) has been calculated,

the previous connection polynomial register contains xB(N-1(x). If

the conditions of the decoding algorithm are such that r((x) is

updated in accordance with equation (3-26a) then the revision is

complete. If the conditions of the algorithm are such that equation

(3-26b) is val id, then the contents of the temporary memory are tran;-

ferred into the previous feedback connection polynomial register and

8 (N)(x) is equal to A (N-1)(x). Finally, if equation (3-26c) is to ht
(N)implemented, AN (x) is transferred through the temporary memory into

the previous feedback connection polynomial register.

76

3.2.2.4 Symbol Errata Correction. The lecoding algorithm shown in

Figure 7 requires n-k iterations to compute the errata-locator poly-

nomial. If the total number of errors and erasures is within the

bound of the code (equation 3-1), then the synthesized errata-locator

polynomial is unique. The synthesized errata-location section will

sequentially generate the transform of the errata pattern which is

then subtracted from the transform of the received sequence to obtain

the original message.

Errata correction and information recovery occur during the last

k iterations of the decoding algorithm. Step (10) through (13) in

the algorithm (see Figure 7) need to be implemented. The algorithm

branches to step (10) after n-k iterations. At this time, the present

feedback connection polynomial, A (n-k)(XW, is the synthesized

errata-locator polynomial. For N > n-k, step (11) of the decoding

algorithm is

L(N-1) +

S A (1 N-1) S (-7
Ni N-i (-7

Equation (3-27) defines the calculation required to generate the next

symbol in the transform of the errata pattern. In step (12), this

symbol is subtracted (added modulo-two) from the N-th symbol in the

transform of the received sequence; the original information symbol

is recovered. During the last k iterations of the decoding algorithm,

the present feedback connection polynomial, A (N) (x), remains unchanged.

The hardware that implements information recovery in the decoding

algorithm is contained within the present discrepancy calculator as

seen in Figure 10. The single switch controls the operation of the

hardware. During the first -i-k iterations of the algorithm, switch

1 is in position "l", and the syndrome values are fed into the syndrome

77

rvgister. During the last k iterations of the algorithm, switch 1

is in position "2" and the input into the syndrome register is S in
N

accordance with equation (3-27).

During the N-th iteration, (N>n-k), SN is calculated in the serial

GF(2m) multiplier's accumulator (see Figure 10). This calculation

requires cisht shifts and is implemented identically as the calculation

of d I)(see section 3.2.2.1). Also during the N-th iteration, the

N-th symbol in'.the transform of the received pattern, RN, is entered

into the present discrepancy calculator. On the eighth shift of the

N-th iteration, SN (as calculated in equation (3-27)) is added modulo-

two to RN in the d(N) accumulator. This accumulator implements

RN+S Q (3-28)

and an original information symbol is recovered. This process is

repeated for k cycles; the entire original message is recovered.

3.3 Operational Characteristics

The Reed-Solomon (255,k) encoder and decoder is designed to

operate continuously in a serial input data mode. The processing

time required for both encoding and decoding can be described in terms

of the operation of the transform section and the errata-location

section. To facilitate this description it is advantageous to define

a machine cycle as the maximum time required for the encoder and

decoder to complete one cycle of the iterative decoding algorithm

(see Figure 7). Figure 13 shows the tim .ig requirements associated

with the operation of the transform and errata-location sections.

The sequential calculation of an n-point transform requires 2n

machine cycles. During each of the first n machine cycles, a symbol

78

II

-J 4

0 w

,-- 4-I

' o 0

(4 0

* . I -

- Il
4 i--

0 4 1.

-2 a

79 -

-
4 40 =

from tae sequence to be transformed is fed into the transform section's

polynomial residue calculator. At the conclusion of n machine cyc]es,

all n symbols of the sequence will have been used as inputs and the

transform algorithm's polynomial division will be complete. At this

time, the polynomial residues that have been calculated are transferred

into a temporary memory so that they are available for further pro-

cessing. The second n cycles define the evaluation period. During

each of these machine cycles, a residue polynomial is selected from

the residue calculator's temporary memory and evaluated to produce a

single transform value. The evaluation process is calculated within

the transform section's residue evaluator, and the i-th transformed

symbol becomes available at the conclusion of the i-th machine cycle

of the evaluation period. The transform section is a pipeline in

which two adjacent blocks of n symbols are in process at all times.

-he errata-location and symbol correction sections also operate

with sequential symbols. During decoding, the errata-locator uses the

first , transformed symbols to calculate the erasure-locator polynomial.

Then t!,e errata-locator uses the next n-k-v symbols to synthesize the

errata-locator polynomial. The symbol correction circuitry uses the

synthesized polynomial to correct the remaining k transformed symbols.

Polynomial synthesis and symbol correction require n machine cycles.

The sequential symbols required as input to the errata-locator are

available at the completion of each machine cycle in the transform

section's evaluation period. The n machine cycles associated with

the operation of the errata-location section are offset one machine

cycle from the n cycles that constitute the transform' 3 evaluation

period. The total time required to decode an (n,k) code requires

2 n + I mach int cycles. In a cointinjous data mode, the transform

section does not wait until it processes one block of data before it

starts on the next one so, after an initial delay of n + I machine cvc It,

a block (of decoded svmhols becomes available every n machine cycles.

8n

A single machine cycle is defined as the total number of clocking

cycles required to implement the computational steps in a single

iteration of the decoding algorithm. Figure 14 shows the relationship

between a clock cvle and a machine cycle. Tie timing required to

calculat2 the intermediate steps in the decoding algorithm is also

shown in this figure. Finite-field multiplication is implemented

within a single clock cycle. Using the programmable array multiplier

structure described in appendix A, we can easily obtain multiplication

rates of less than 100 nanoseconds using standard Schottky TTL logic.

A VLSI implementation of the array multiplier can probably achieve 50

nanosecond multiplication times, corresponding to a clocking rate of

20 MHz. Twenty clock cycles are required to represent one machine

cycle. The (255,k) Reed-Solomon decoder can completely decode an

(n,k) crde in (2n + 1) microseconds. With continuous operation a

completely decoded block from an (n,k) code would be availab c every

n microseconds. For example, the (255,k) Reed-Solomon decoder can

decode a codeword from a (31,15) code in 63 microseconds using a

projected 20 MHz clock. In a continuous mode, a decoded codeword

would be available every 31 microseconds.

3.4 Hardware Complexity

The transform section and the errata-location section each could

be fabricated as a single VLSI device. Much of the circuitry required

for the transformer and errata-locator is highly repetitive, and both

sections share functional circuits that can be lesigned once and then

repeated.

Most of the circuitry required for the transformer is devoted

to the implementation of the polynomial residue calculator. This

structure, consisting of 35 divider circuits, can be designed using

a macrocell with one bit of shift register, one bit of temporary

memory, and eight elementary logic gates (see Figure 15). The inacro-

cell represents a single programmable stage from a BFSR, and the tem-

81

2

S

I

+ C-,

- i

34 0 C.)

* - K' 34~
4 2 0

4 0
v4

4- 2 4-3

N -J 3- 4
'-.4

a ~' 2 o
S 4 0.)

A-.1
'~0 tct E
5 3-3

T I-1 ~ 0
333 3-3

C.)

3D 3-3 - 44 33, -
a 4-I
4 4

In " C

- a
* ~ 33

* 33,

4 4 -0*
N v 3-4

- a)

~a.

11)1. 1
~3.3

82

Lii
I- 0 0

ww

0 0

Lii Q

I-.

uQ

83.

porary memory required to operate the transformer in a pipeline fashion.

Approximately 2.4k of these macrocells are required to implement the

residue calculator. An additional 1k elementary logic gates are

required to select the outputs of the divider circuits and to provide

programmability for the different teedback connection polynomials. Due

to the large number of shift register stages required to implement

this section, the gate complexity will be heavily dependent on device

technology. However, the design should be obtainable using current

NMOS or other mature technologies.

The transformer's polynomial residue evaluator can be implemented

with fewer than 1k logic gates. The accumulator portion of this

section requires fewer than 100 gates, and the reconfigurable multi-

plier has been designed to be implemented with no more than 900 gates.

All of the preceding complexity estimates are based upon a direct

implementation with two-input NAND or NOR gates.

The transform section's arithmetic controller could be fabricated

on the same integrated circuit as the residue calculator and the res-

idue evaluator. Alternatively, the controller also could be imple-

mented easily on a separate MSI chip containing a modest amount of

programmable read-only memory [101. A custom or semi-custom LSI

implementation of the entire transformer would require several inte-

grated circults.

The architecture associated with the implementation of the de-

coding algorithm is shown in Figure 16. The hardware resembles an

adaptive transversal filter. Reconfigurability for different code

parameters is accomplished by separating the binary-extension field

operations from other binary operations. As a result, most of the

errata-location section is configured as a binary transversal filter

(or convolver), and the remaining portion is reconfigurable to accom-

modate the necessary field-dependent operations.

84

01

0 x
0

cc x

Vc

uz

u
4

85

Most of the circuitry used for the errata-location section is

dedicated to implementing the binary stages of the transversal filter.

This circuitry is highly repetitive and benefits from the modularity

and common busing structi res inherent in VLSI architectures. The

binary filter consists of 128 identical slices of hardware, favoring

macrocell design. Each of the 128 slices consists of 32 bits of shift

register and approximately 75 additional logic gates. Figure 17 is

a logic diagram of a single slice of the 128 stage filter. Within

each slice, a cell call be identified that consists of four bits of

shift register and approximately eight logic gates. This cellular

desiFn can be repeated to implement the binary transversal filter.

The entire 128-sta e filter consists of approximately 4k bits of shift

register and l0k bits of additional logic gates.

The field-dependent portion of the errata-locator consists of

field-element inversion circuitry, a present discrepancy calculator,

two reconfigurable GF(2m) serial multipliers, and necessary control

logic. The most complex component of these structures is the field-

element inversion circuitry. The heart of this structure is a pro-
mgrammable t;F(2) array multiplier that is identical to the structure

required in the transformer's polynomial residue evaluator. Tile entirc

field-dependent portion, excluding control, consists of less than 2k

logic gates. Again, control logic could be implemented in the same

integrated circuit, or a separate device could be designed.

Both the transformer and the errata-locator have hardware com-

plexities that suggest f.-brication as single VLSI devices. Table VIII

summarizes the approximate hardware complexity and features associated

with the transformer and errata-locator. Each of the sections could

easily he implemented as a set of LSI devices where many of the devices

would he identical.

86

0 W-

- 0c

00

b-0

-- J
og

a IC

00

o 10
-J- C-I
U80

Table VIII

(255,k) Encoder and Decoder Hardware Complexity

Function Architecture Complexity

Transformer Programmable Over 4.5k bits of

GF(2m) m = 4,5,6,7,8 shift register

Repetitive Structure 13k gates

Accommodate 588 codes

Errata Locator Programmable over 4.5k bits of

GF(2m) m= 4,5,6,7,8 shift register

Correct 2L + s < 128 15K gates

128 identical slices
of hardware

88

SECTION IV

A (51,k) REED-SOLOMON TRANSFORM ENCODER AND DECODER TTL BREADBOARD

A TTL breadboard that encodes and decodes a large number of Reed-

Solomon symbol error-correction codes was desigied and fabricated.

This breadboard implements the transform encoding and decoding algor-

ithms described in section III of this volume. The code of longest

block length that can be processed by the breadboard is a 51-symbol

code with each symbol represented by eight bits. The (51,k) Reed-

Solomon transform encoder and decoder breadboard is shown in Figure 18.

The major difference between the TTL implementation and the

design proposed for future VLSI implementation is size. The bread-

board contains only eight polynomial divider circuits which process

eight-bit symbols and it cannot calculate all of the n-point transforms

that can be processed by the (255,k) encoder and decoder. The bread-

board's transform section does not contain the additional temporary

memory that allows pipeline operation. The breadboard's errata-loca--

tion section is not Ls large as the (255,k) decoder's errata-locator;

consequently the breadboard cannot correct as many combinations of

errors and erasures as can be processed by the (255,k) decoder. The

codes that can be processed by the TTL breadboard are shown in Table

IX. Although the breadboard cannot encode or decode all of the codes

processed by the (255,k) encoder and decoder, it can accommodate a

large subset of them. It therefore serves as a proof-of-concept veri-

fication of the (255,k) encoder and decoder.

4.1 Transform Section

The (51,k) encoder and decoder's transform section is contained

on the five wire-wrap logic boards shown in the lower right corner

of Figure 18. This transformer implements the fast polynomial evalu-

ation algorithm described in section 3.2.1. The breadboard's trans-

89

FPO"---

LAJ

Bur "rr

i- A

LIHILM

U) L(E-4 C - 'E- E
0 0 -40 cJ

u- vi

1- e

'4

.rj 0

a)0 Lf) 0

44

E-

co

OQ

E-

44

£191

former consists of a polynomial residue calculator, a polynomial res-

idue evaluator, and an arithmetic controller.

The residue eval'iator and arithmetic controller were designed

identically to those structures described earlier in section 3.2.1.2

and section 3.2.1.3. The breadboard's residue calculator is a scaled

version of the (255,k) encoder and decoder's polynomial residue cal-

CUlator. The polynomials that can be used for division and the tran3-

forms that can be processed by the breadboard are shown in Table X.

This table lists the lengths of the transforms, the fields in which

the transforms are defined, the kernels of the transforms, and the

minimal polynomials required for the fast polynomial evaluation algor-

ithm.

4.1.1 Polynomial Residue Calculator

The breadboard's polynomial residue calculator consists of eight
divider circuits. Each circuit consists of eight identical BFSRs

that can be reconfigured for division using thc divisor poi vnomil Is shown

in Table X. The residue calculator is designed to operate with o~ur

eight-bit symbol representation (equation 3-9); for operation in GF(2m),

where m < 8: - m binary shift registers are unused. The eight divider

circuits were designed using the hardware reduction techniques de-

;cribed in section 3.2.1.1. The resulting implementation contains

only three programmable feedback taps. The division capabilities of

the divider circuits are shown in Table XT.

To compensate for the lack of memory required for pipeline oper-

ation. each of the breadboard's eight divider circuits operates in

two modes. During the transform's division cycle all divider circuits

are configured to divide by the minimal polynomials associated with

the desired transform. After division is complete, each shift regis-

ter is reconfigured so that its feedback taps are deactivated and

each shift register's output is fed back to its input. Each divider

42j

Table X

Transform Capabilities of the (51,k) Breadboard

Transform Size Bits Per Kernel of Required Minimal Polynomial

N Symbol Transform Divisors

51 8 a5 m0 (z), m5 (z), m 15 (z),
in2 5 (z), m45~ (z), in5 5 (z),

(z), in9 5 (z)

17 8 a 15 nm0 (z), m 1 5 (z), m 4 5 (z),

15 8 a 17 m0 (z), mi1 7 (z), m 5 1 (z),
1 8 5 (z), m119 (z)

5 8 a5 1 m 0 (z), m 5 1 (z)

• 85

3 8 5 m0 (z), m8 5 (z)
3

21 6 c m0 (z), m 3 (z), m9 (z),
m15 (z), M 2 1 (z), m 2 7 (z)

9 69 m0 (z), m7 (z), m 2 1 (z)

7 6 7 m0 (z), m9 (z), m2 7 (z)

31 5 a m 0 (z), m I (z), m 3 (z),
m 5 (z), m 7 (z), ml (z),
m 1 5 (z)

15 4 a m0 (z), mi (z), m3 (z),

m5 (z), m7 (z)

5 4 m 0 (z), m3 (z)

3 4m 0 (z), m5 (z)

93

Table XT

Programmaility of the (51, k)

Fransformer's Divider Circuit

Divider Field of
Circuit Divisor Polynomial Operation

185 (z) = + 7 + z -G1(2)

M5(z) = 1 + z2 + z4 + z5 + z6 C-F(2 (')

M1 (z) = 1 + z2 + 5 CF(2 5)

M5 (z) = + z + z2 (m8 5 (z)) GF(24), (F(2 8)

2 "19 5 (z) = + z + z2 + z3 + z4 + z7 + z8 G;F(2q)

MO (z) = I + z CF(26)
M7 (z) = I + z + z2 + z3 + z5 (F(25)

"3 (z) = 1 + z + z2 + z3 + z4 (M5 1 (z)) GF(24) ((:(2 8)

3 M5 (z) = I + z + z4 + z5 + z6 + z7 + z8 CF(28)
M27(z) = l + z + z3 GF(2 6

M0 (z) = I + z F("5)

mI (z) = I + z + z4 (Z) CF(2 4) (CF(281)

4 '1 5 (z) = 1 + z + z2 + z4 + z6 + z7 + z8 CF(28)

'43 (z) = I + z + z? + z4 + 6 ((26)

5 (z) I + z + z2 z + z5
540 (z) I + z CF(2 4)

M4 5(z) = + z 4 + z5 + 28 CF(2 8)
'19 (z) = I + z2 + z3 CF(2 6)
M3 (z) = I + z2 + z 3 + 4 + z5 CF(2 5)

6 M25(z) 1 + z + z3 + z4 + z8 C,(2 8)

121(z) = I + z + z 2GF(26
Mll(Z) = I + z + z3 + 4 + z5 CF()

5)

M0 (Z) = 1 + CF(2 8)
M7 (z) = 1 + z3 + z 5 CF(26)
M1 5 (z) = 1 + z

3 + z5 cv-(25")

'17 (z) = I + 93 + z4 (Mll 9 (z)) CF(2 4), ((,F(28)

8M 55 (z) = 1 + 4 + z5 z7 + z8 CF(2'

94

AD-A123 977 TRANSFORM DECODING 0F REEU-bULUMUN UUhb RuLUML L

LO I ONONEA NV 2MR 78VLCAL DESIGN AND IMP .U) M IRE CORP REDFORD MAB L JOHNSON E T AL. -NV 828 MTR-82 78 -VOL-2

UNCLASSIFIED ESO-TR-82-403-VOL-2 F19628 -82 _ 000 F/G 9/4 NLmh~hhIhI/EE
mEIhIhIhhE~hEI
EIIIIIIhIhIEII
lEEllElllEI-

1 1 III12. 2
I- 11111

1L8

MlCRC(c)FP R[.'LUTION TEST CHART

.. " 111N.. N I i II~lI

circuit becomes a recirculating shift register that contains the

calculated residue polynomial. This residue can be read out of the

recirculating memory to calculate a transform point; the residue is

simultaneously restored for further processing. The ability to store

the residue polynomials in the calculation hardware demonstrates the

breadboard's hardware efficiency. However, the divider circuits can-

not process new information while they are being used as recirculating

memories. The duty cycle of the breadboard's transform section is one-

half the duty cycle of the (255,k) transformer, and throughput is re-

duced proportionally.

The polynomial residue calculator is implemented with four of

the five wire-wrap logic boards located in the lower right corner of

the breadboard's card cage (Figure 18). The four boards are identical

and each contains two identical slices of hardware. Each slice imple-

ments the eight reconfigurable BFSRs shown in Table XI. A logic-level

diagram of a single slice of the residue calculator is shown in Figure

19. In this figure, the four-to-one multiplexer associated with each

shift register selects the register' s output tap which defines the

shift register's divisor polynomial. The AND-gate located at the

output of this multiplexer controls the BFSR's mode of operation. An

activated AND-gate indicates polynomial division; a deactivated AND-

gate indicates recirculating data in the BFSR. The final eight-to-

one multiplexer is used to select the residue polynomials that are

required to complete the polynomial evaluation algorithm.

4.1.2 Polynomial Residue Evaluator

The breadboard's polynomial residue evaluator is implemented

using the fifth wire-wrap logic board shown in the lower right corner

of Figure 18. The evaluator consists of an eight-bit modulo-two

accumulator and a programmable GF(2 m) array multiplier. A detailed

block diagram of the evaluator is shown in Figure 20. The evaluator

implements a continued product expansion for polynomial residue

95

~JTT

TI TC,

96*,

evaluation (equation 3-11). Design and operation of polynomial res-

idue evaluators are identical in the breadboard and the (255,k) trans-

former.

The critical component of the breadboard's polynomial residue

evaluator is the programmable GF(2 m) array multiplier. (A description

of this multiplier is given in appendix A of this volume). This

multiplier consists of a pairwise product array, an accumulator array,

and programmable field-reduction circuitry (Figure 20). The pairwise

product array operates with two 8-bit inputs and forms 64 pairwise

modulo-2 products. This array is implemented as 64 2-input AND gates

(see Figure 21). The accumulator array operates on the 64 pairwise

products and forms 15 partial sums (see appendix A). The accumulator

is implemented as 15 Exclusive-oifK troes using 2-input Exclusive-OR

gates. The programmable field reduction circuitry operates on the

15 partial sums and calculates the 8-bit representation of the desired

product. This circuit is implemented as eight Exclusive-OR trees,

whose inputs are programmed in acordance with the field reduction

equations presented io appendli A.

4.1.3 Arithmetic Controller

The breadboard's aritnmetic controller is located behind the

front panel controls shown in Figure 18. The controller consists of

a programmable up-down counter, a transform kernel-generating circuit

and preprogrammed memory as shown in Figure 6. The arithmetic con-

troller is implemented in discrete combinational logic and memory.

4.2 Errata-Location Section

The breadboard's errata-location section is implemented using

the six wire-wrap logic boards shown in the lower left corner of

Figure 18. The breadboard's errata-locator contains 16 symbol error-

correction slices while the (255,k) decoder's errata locator contains

97

4 o

p C

'-4

980

2 00

99 0 *

128 symbol error-correction slices. The breadboard can correct all

combinations of t errors and s erasures provided the inequality

2t + s < n-k < 16 (4-1)

is satisfied.

The breadboard's symbol error-correction slices are implemented

on four identical wire-wrap logic boards. Each of these boards con-

tains four identical error-correction slices, each slice is equivalent

to the 8-bit sl.:ce shown in Figure 17. The logic-level diagram for

one of the breadboard's symbol-error correction slices is shown in

Figure 22.

The field-dependent portion of the errata-location section is

confined to the other two wire-wrap boards shown in the lower left

corner of Figure 18. One board implements field element-division

and contains a programmable CF(2m) array multiplier that is identical

to the multiplier implemented in the polynomial residue evaluator.

The errata-locator's sixth wire-wrap board contains the programmable

GF(2m) serial multipliers that are required to implement the decoding

algorithm.

The timing and control circuitry required to implement the errata-

location algorithm is located behind the front panel shown in Figure

18. Also located behind this front panel are interface and self-

testing circuits. The timing, control, interface and self-testing

circuits are implemented in discrete combinational logic and memory.

4.3 Operational Characteristics

The operation of the breadboard is similar to the operation of

the (255,k) encoder and decoder (section 3.3). The breadboard is

100

Ilj

0 5 -,

S xc -
C * 2 ~

~ a

0 -~-

o I

~1

U

- - - - I C

U
-~ 0 5-

0 5-a

- - - - - - I U

0
-o

-, C

00 I I

-~

U

-C
U

c-I

5-

101

designed using readily available Schottky TTL logic. The majority

of the logic functions are implemented using small-scale integrated

(SSI) circuit technology, with a small section of control circuitry

implemented in medium scale integrated (MSI) logic and memory.

The errata-location section implements the decoding algorithm

using the same definition of machine cycle as was presented in Sec-

tion 3.3. There are 20 clock cycles required to implement a single

machine cycle. The time required to implement GF(2 m) multiplication

is the critical factor that is used to define a clock cycle. A pro-

grammable GF(2 m) array multiplier, designed in Schottky TTL logic,

can multiply two field elements in 60 nanoseconds. A clock cycle for

the breadboard is defined to be 100 nanoseconds and a breadboard

machine cycle is defined to be 2 microseconds.

The transform section can compute an n-point transform in 4n

microseconds. The first 2n microseconds are required to implement

the polynomial division associated with the fast polynomial evaluation

algorithm. The second 2 n microseconds are required to evaluate the

residue'polynomials. A single point in the transform is calculated

during every machine cycle associated with the second 2n microseconds.

The errata-location section requires sequt-ntial data from the

tiansfoner. The first transformed point is available for processing

after n + I machine cycles. The n machine cycles used to synthesize

the errata-location polynomial and recover the k information symbols

are offset one machine cycle from the n machine cycles that the trans-

former requires for evaluation. The total time required to decode an

(n,k) code is 2n + 1 machine cycles, or (4n + 2) microseconds.

The breadboard can operate in either a single-cycle or continuous

mode. In the single-cycle mode the breadboard operates on a single

block of data and requires 4n microseconds to encode and 4n + 2 micro-

seconds to decode. In a continuous mode, the breadboard accepts a

102

new block of data at 4n microsecond intervals. After an initial delay,

the offset pulse becomes transparent and a block of decoded data is

available every 4n microseconds.

The (51,k) Reed-Solomon transform encoder and decoder TTL bread-

board has been interfaced with a semi-automated testing facility. The

basis of this testing facility is a dedicated Hewlett-Packard 2115

minicomputer. As peripherals, the minicomputer has a CRT terminal,

a floppy disk, a highi-speed word generator, and a high-speed input/-

output interface system. This semi-automated testing facility is

shown in Figure 13. This facility was used to debug and exercise the

(51,k) encoder and decoder breadboard.

4.4 Hardware Complexity

The breadboard's transform section occupies the five wire-wrap

cards shown in the lower right section of the breadboard's card cage

(Figure 18). This section consists of five 8" x 8" wire-wrap logic

boards. Two different board designs implement the transform section.

Four transformer boards implement the polynomial divider circuits,

as indicated in Table XI. These boards are identical, each board

containing two slices of each divider circuit. The fifth board in

the transform section implements the continued product expansion for

polynomial evaluation. This board contains a programmable CF(2

array multiplier and accumulator structure.

Each of the transform's polynomial division boards contains 128

bits of shift register, and approximately 750 logic gates. The poly-

nomial residue evaluator board contains approximately 900 logic gates.

The breadboard's transformer has a total of 512 bits of shift register

and 4k logic gates. Each wire-wrap board carries approximately 50 ICS

so that approximately 250 ICs are used in the construction of the

transformer. The logic for controlling the transformer is contained

in the timing, control and interface section.

103

23. Se~mi -Automa ted Toest b-I

1 (M

The errata-locator occupies the six wire-wrap cards shown in

the lower left section of the card cage (Figure 18). This section

consists of six 8" x 8" wire-wrap logic boards and approximately 300

ICs. All control for the errata-locator is provided by the timing,

control, and interface section.

Three different logic board designs implement the errata-location

section. The field-independent portion of the errata locator's archi-

tecture consists of slices of hardware that are shown in Figure 22.

Four of these slices are designed to fit on one wire wrap logic board.

Sixteen slices are required to implement the errata-locator. Four

of the six logic boards are designed and built identically. The fifth

hoard contains all the field-dependent logic associated with calcu-

lating the present discrepancy. This board also contains the field-

dependent logic required to sequentially revise the present feedback

connection polynomial. The sixth board contains the field-element

division circuitry. The critical structure located on the sixth

board is a programmable GF(2 m) array multiplier designed identically

with the multiplier used in the transformer's polynomial residue

evaluator.

Each of the symbol-correction-slice boards contain 128 bits of

shift register and 400 logic gates. The field dependent serial multi-

plier board contains approximately 1k logic gates, and the field

element division board contains approximately 1.5k logic gates. The

errata-location section contains a total of 512 hits of shift register

and approximately 4k logic gates.

The timing, control, and interface section is located behind

the front panel. This special-purpose circuitry is not repetitive.

The construction of this section requires approximately 140 SS1 and

MST circuits. This section provides all of the timing and control

signals needed to operate the transform section. Included in these

signals is the information that determines which residue is selected,

1 05

the field element at which the selected residue polynoCmial is to be

evaluated, the order of evaluation, and all necessary cloclking signals

required to operate both the divisor circuits and the residue-evalUat"r

circuit.

The timing, control and interface also Supplies the breadboard' ;

errata-i ocat ion section withi its timing and (ontrol signalIs. In

addition to providing the signals required to calculate each-f step in

the decoding algorithm, the timing and control sect ion ana 1VzeS :IcL-)

step in the modified Berlekamp-Meissev algorithm and dictates the

necessarv branching. Thle t iming and control sect ion pvrlorms t he

bookkeeping and dec ision making as sociatedi with t1Ii A ilio i thm.

1062

APPENDIX A

MU'LTIPLICATION IN GF(2m): ALGORITHMS AND STRUCTURES

Decoding algorithms for algebraic error-correction codes require

arithmetic operations that are defined on the finite algebraic fields

in which the codes are defined. The essential operations are finite-

field multiplication, addition, and inversion. The effective hard-

ware implementation of an error-correction decoder requires the

design of circuitry that implements these operations.

Important algebraic error-correction codes are those that are

defined over the binary extension fields GF(2m). These codes have

symbols represented as binary vectors. Their encoding and decoding

algorithms can be interpreted as special purpose digital signal pro-

cessing algorithms. When the fields of operation are binary extension

fields, finite-field addition is defined as bit-by-bit modulo-two

addition and it can be implemented uising Exclusive-OR circuitry.

Binary extension field multiplication has many structural interpreta-

tions, each leading to a different hardware implementation, and the

"best" implementation depends upon the particular application.

This appendix describes algorithms and structures that can be

used to implement binary extension field multiplication. First,

binary extension field multiplication is described. Then, an over-

view of different GF(2 m) multiplier structures is presented. Finally,

the multipliers that are used in the Reed-Solomon error-correction

encoder and decoder are described in detail.

A.1 MULTIPLICATION IN GF(2
m)

A binary extension field, or Galois field, GF(2m) is a finite

algebraic field that contains 2 m - 1 nonzero field elements. The

107

field is generated by an m-th degree irreduc. 'o nolvnomial p(x),

ihaving a root , which lies in the extension field. The specific

polynomial p(x) chosen for each of the fields over which the decoder

operates is a primitive polynomial, meaning that the root , is a

primitive field element, which in turn means that each of the nonzero

,id elements can be represented as a power of it (i.e., t , t, ,
m

-). Each nonzero field element can also be represented as

a binary m-tuple which can be considered a vector relative to the

normal basis '., . r,-I. This multiplication of two nonzero

field elements can be implemented using either representation. The

addition of two field elements is conveniently implemented as vector

addi t ion.

Binary extension field addition can be interpreted as the pair-

wise modulo-2 addition of the m-tuple representation of the field

elements to be added

i j m 2m-

t , , GF(2) 0 i, j < 2m-2

i i i i

A m-l' ''' "in

(A-1)

c a m -1 m - C z ®al -0 ® t 0

Multiplication of two field elements that are represented as

powers of the primitive element has a familiar logarithmic appearance.

Binary extension field multiplication using this symbolic representa-

tion has a compact form and it is well suited for implementation

using table look-up procedures.

108

i j m mCL a C GF(2 m) 0 < i, j < 2m-2

i A (i+j)mod(2m-l) (A-2)

LI a A-

Binary extension field multiplication using field elements re-

represented as m-tuples has a definition that resembles convolution

or polynomial multiplication.

a GF(2 m) 0 < i, j < 2 -2

A =('Xli A 1 a = 0 Z < 0, > m--i

ma= a= 0 Q < 0, > m-1 (A-3)

i - j I 1m-) m- Q

(-jn C = c x-n mod (p(x))

This form of multiplication can be interpreted as a two-step pro-

cedure. First, two polynomials of degree at most m-1 are multi-

plied to form a product polynomial of degree at most 2m-2. Secondly,

the product polynomial is reduced, modulo p(x), to a polynomial of

degree less than or equal to m-l and whose coefficients are the

product m-tuple. The latter definition of binary extension field

multiplication, (equation A-3), can be expanded to indicate the

intermediate operations that are required for implementation.

109

j inMiA GF(2) 0_<i, j <2m-2

~2(i-1) rn-i1 ~ 2
E E 20 a ai x mod p(x)

(0 x + (a a)x +
(ci0c1 l 0 i0 1

A-4

m-i 0 m-2 1 0 m

n-i x2(m-l) mod p(x)

There are three steps used to implement equation (A-4). First,

the pairwise product of each term within the two m-tuples to be

multiplied is formed. Next, these pairwise products are accumulated

to form the partial products that represent the coefficient of the

product polynomial. Finally, the product polynomial is reduced modulo

p(x).

A.2 GF(2 m) MULTIPLIER STRUCTURES

Binary extension field multiplier structures can be partitioned

into two classes. One class is based upon table look-up procedures

and its hardware implementations are memory intensive. The other

class of multiplier structures is based upon the algebraic properties

110

of the binary extension fields and the hardware implementations use

random logic. Both implementation strategies have their particular

advantages and disadvantages.

tMemoU Intensive Multiplier Structures

The simplest form of a GF(2 m) multiplier implements a direct

table look-up procedure. There are many possible variations on this

strategy, but in general the two field elements to be multiplied are

used to identify a particular memory location in which the precalcu-

lated product is stored. The different implementations using this

strategy depend on the ways in which the elements to be multiplied

can be combined to identify the memory location and the ways in

which the computed product element can be stored.

Memory intensive multiplier structures have common characteris-I tics. Since these multipliers are basically memory, the complexity

of the resulting hardware implementation is dependent on the selec-

ted device technology. Because of the range of available memory

technologies, these multipliers can have a wide range of operational

rates. A disadvantage of memory-intensive multipliers is that the

storage requirements increase exponentially with the degree of the

field extension. Available memory technologies can provide very fast (<100

nanosecond) multiplication times for small fields (m < 5), but

access times increase rapidly as the fields become larger.

Random-Logic Multiplier.Structures

Random-logic multiplier structures separate into two different

implementation classes. The computational steps outlined in equation

(A-4) can be performed serially in time, and the resulting hardware

implementation uses sequential logic. Alternatively, the necessary

calculations can be performed concurrently in time, and the resulting

implementation uses arrays of combinational logic. These two

approaches have a unique relationship. Sequential multipliers per-

form their computational steps in series, often using the same hard-

ware to compute different steps. Therefore, sequential multipliers

tend to have simple structures, (i.e., LFSRs), but their multiplica-

tion times are relatively slow. The combinational logic array multi-

pliers perform many operations simultaneously, using different sections

of hardware to compute different steps. The array-type multipliers

tend to have complex hardware but their multiplication times are very

fast. In general, there is an inverse relationship between a multi-

plier structure's hardware complexity and its multiplication time.

A GF(2m) sequential multiplier is shown in Figure A-1. This

circuit directly implements the computational steps of equation (A-3).

The sequential multiplier is a simple structure, requiring 4m bits
of shift-register circuitry and a maximum of 12m logic gates (a logic

gate is taken to mean either a two input NAND or NOR gate). A com-

plete multiplication cycle, assuming serial output, takes 2m-1 clock

cycles.

A simple description will illustrate this circuit's operation.

Initially, the irreducible polynomial associated with the field of

operation, p(x) = p0 + plx + ... + p m x", is loaded into the P register.

The product register, C, is cleared to zero. The m-tuple representa-
i.

tion of the field element a is stored in the multiplier register, A,

while the m-tuple r,,presentation of the field element aj is stored

in the multiplicand register, B. The multiplier register effectively
i

holds a as the coefficients of an (m-l)th degree polynomial. The

first clock pulse latches m (L + x + + a M) into

the product register. On the -lext clock cycle this product is

shifted toward the right. This is equivalent to multiplying the

112

(n 9.

C-, 0

00

(nJ

E E
C.

1131

product with x. Prior to this shift, the contents of the C 1 reg-j j j i rn-i m -

ister was x 1. C3 This corresponds to c 1 i 1 x . Thern-i. rn-i rn-i rn-i

shift creates a m-1 a ml x r, and the feedback connection polynomial,

p(x), performs division or polynomial modulo reduction on this over-

flow term. At the conclusion of the second clock cycle, the product

register contains

j i i, + M
1 r-i

jx Ml1 (+ r n - x)x mod p(x) +

(A-5)
i i m-Im_2 (aO + Lix + -'+ 't m x)x mod

This process continues for m-i clock cycles. At the completion of

tie (m-I)th clocking cycle, the contents of the product register is:

i a1 mr-I)

-- I O + cxix + "+ i)x mod p(x)

j i i m-i
+ 1(+ ai x + + a mnix))x mod p(x) (A-6)

"- 1 + xi + + x x)-1).)x mod p(x)
10 1 rn-i

+ a1 (c0 + r x + "' +cx rn-ix)

" cj (Ii + ti x %i m-l)

S 0 01 r- l x

114

Th's expression can be reduced to:

(Jmxm + mj2 x m-2 + + (XX + + arIX ro) d p(x)

(m-l) i 0 1.
2 (m- 1-n

mod p(x)

At the conclusion of the (m-l)th clocking cycle, the switch SI is

grounded and the product is shifted out of the product register on

the following ii clock cycles. There are 2m-1 clock cycles required

for complete multiplication.

The structure of a GF(2m) array multipler is shown in Figure A-2.

it implements the computational steps outlined in equation (A-4). The

array multiplier consists of three functionally separate hardware

sections. The first section calculates the m2 Dairtise products

oetween the m-tuples associated with the field elements to be multi-

plied. A second section operates on these products and accumulates

the 2m-1 terms that are the coefficients of the product polynomial

indicated in equation (A-4). The third section operates on the

2m-i accumulated product terms and implements modulo p(x) reduction,

resulting in the final product.

The array multiplier can multiply two field elements quickly.

Fast multiplication rates are obtained because the added circuitry

is included to perform the requisite operations in parallel and be-

cause the modulo p(x) computation is implemented asynchronously as

an end-around-carry operation. The end-around-carry reduction is

implemented by simply feeding back the overflow bits from the

product equation in a predetermined manner.

115

0

0 U
- 0

ca

0 "

4- oI

<
7

E- o

E ..

IL

116

The hardware complexity of the array multiplier shown in Figure

A-2 can be measured in terms of logic gates. The pairwise product

array requires m 2 gates to calculate the m 2 partial products. The

accumulator array is configured as 2m-1 Exclusive-OR trees. The max-

imum number of logic gates required to implement this section in m(m-1)

gates. The field reduction circuitry can be implemented as m Exclusive-
2

OR trees, with the maximum number of logic gates equal to m . The

total number of gates required to implement the GF(2m) array multi-

plier is on the order of 4m2 gates.

The total time required to multiply two field elements is depen-

dent upon the propagation delay, T, through a logic gate. The time
2

required to calculate the m pairwise products is 2T. The delay

through either the accumulator array or the field reduction circuitry

is 3T [log 2 (m)], where [xl is the smallest integer larger than x. The

maximum time required to multiply two field elements in GF(2m) is
2
T + 6 T [Log2(m)]. Assuming a 3 nanosecond propagation delay, two

field elements from GF(2 8) can be multiplied in 60 nanoseconds.

A.3 REED-SOLOMON ENCODER AND DECODER MULTTPLIER STRUCTURES

The design for the Reed-Solomon (255,k) transform encoder and

decoder has five separate requirements for binary extension field

multiplication. Each application requires multiplication in GF(2m)

where m = 4,5,6,7, or 8. The design of a multiplier that can be

pi)grammed to operate in more than one extension field is difficult

because the multiplier structure that is designed to operate in GF(2m)

is not directly expandable for operation in GF(2 m+l). The requirement

to operate in five different fields eliminates the memory intensive

multipliers as candidate multiplier structures since need for recon-

figurability produces multiplication rates that are too slow.

117

Three field-dependent multiplier structures are used in the en-

coder and decoder; two of the designs are repeated twice. The design

,f each multiplier is based on the multiplication algorithm shown in

ec;u.iti01 (A-3). The primitive polynomials that generate each field

are ,h1own in Table A-1. The remainder of this appendix will describe

the design and operation of the three field-dependent multipliers

used in the encoder and decoder.

M (2T)_ Prozrammabl e Array Mul tiplier

The most complicated multiplier structure used in the encoder

and decoder is a prograniable CF(2 m) array multiplier similar to til'

one oreviouslv described. (A block diagram of the programmable arriy

multiplier is shown in Figure A-3). The programmable array multiplier

consist,; of a pairwise product array, an accumulation array and field

reduction circuitry. The field reduction circuitry is reconf~gurable

to provide modular polynomial reduction using any of the primitive

polynomials Shown in Table A-I.

The programmable array multiplier is designed to operate with

our standard 8-bit symbols so that any symbol from GF(2), with m .

has zeros padded in the most significant bit positions. T~ie program-

mable array multiplier's pairwise product array operates with two

8-bit symbols and calculates 64 pairwise products. The padded zeros

in the standard 8-bit symbols produce the correct zero products for

operation in fields with m < 8. The pairwise product array contains

no additional hardware than would be required for normal operation in

GF(2 8

The accumulator array operates on the 64 pairwise products from

the product array to calculate 15 partial sums. These terms are the

coefficients of the product polynomial shown in equation (A-4). The

15 coefficients are formed using 15 Exclusive-OR trees. When multi-

plication is required in fields w.here II < 8, the padded zeros that

118

Table A-I

Primitive Polvnomials Used to Design the

Programmable GF(2 m Multiplier Structures

Extension Field Primitive Polynomial

GF(2 4 P 4 (x) = x 4+ X +1

GF(2 5 P 5 (x) = x 5 + x 2 +1

CF(2 6 P 6(x) =x 6+ x+l

GF(2 7 P (x) = x 7 + x 3 +1

GF(2 8 P (x) =x8+x4+x3+x2+1

119

71 17 4I

L7S

1-U0I 0

esi> 0 0

-P. Q

Cl 0 0 10 00

produce the correct zero-valued pairwise products result in the cor-

rect summations within the accumulator array. Operation in the five

different finite fields is obtained without an increase in the hard-

ware that is required for operation in GF(28

The field reduction circuitry is the only field-dependent section

of the programmable array multiplier. This structure uses the 15

partial sums that have been calculated in the accumulator and imple-

ments polynomial reduction modulo p(x). The result is a standard

8-bit symbol that is the correct product. The field-reduction cir-

cuit implements asynchronois end-around-carry to compute modular

polynomial reduction. The reduction is different for each field of

operation because a different primitive polyno-'ial p(x) is used.

Programmability is provided by designing different feedback paths to

be selected for the different fields. A block diagram of the pro-

grammable field reduction circuit is shown in Figure A-4. Here

IP' P' . .. , F' I are the eight bits in our standard symbol
0' 1' 7

representation of the product, and 'POl PI ... I P 4 are the co-

efficientc of the product polynomial formed in the accumulator array.

The signals {F4 , F5 , F6 , F7, F8 } represent control flags that indi-

cate the field of operation. For multiplication in GF(2), the

signal F is a logic "I"; all other F.'s, where i#m, are set to

logic "0". These flags reconfigure the polynomial-reduction cir-

cuitry to the correct feedback paths. The logic functions imple-

mented by the field reduction circuit are shown in Figure A-4.

The Field-reduction array consists of 8 Exclusive-OR trees.

Each tree has inputs that are gated with the field-select control sig-

nals F . For operation in GF(2m), each tree accumulates only them

terms in the logic equations shown in Figure A-4 that are associated

with the field-select signal F
m

121

P14 -*.1 P7 /

COEFFICIENTS P PROGRAMMABLE

FROM
PRODUCT

PARTIAL * FIELD P

ACCUMULATOR _RUIi /

PO PO,

F5 FIELD SELECT
-- F4

K ' = p + 4F4 + (P+p 8)F 5 + (P 6) F6 + (P 7 +P l)F 7 + (P8 + t'12 + + 1o o F5 6) 1 7 8 1 1 1

p ' = p + (P +p 5)F ' + P f6F 5 + (P +P 7)F 6 + (P 8+P 1')) FI. + (P g+ Pl -tP111

P =P) + (P+P6)F4 + (Ps5P 7+P8)1,5 + (P7+P8)F6 + P9F7 + (,p+11 1+ K

P3 + P1 4 + (P+ P8) 5 + (P+P9)F + + (P + PI +p

P4 = 4F4 + P 7 F5 + (19 +P1)F6 + (P8+P 1 1 +P 1 2)F 7 + (P 8+Pq +P10 +p14)y8

P 5 = P 5 (F4"F 5) + P10 F6 + (P9+P 1
2)F 7 + (P9+1 10+P 11)F8

P 6 = P 6 (F 7 +F 8) + P10 F7
+ () 10 +P 11+P 12)F 8

: 7F = (P 7+P 1 +P 12 +P 13)8

Figure A-4. Programmable GF(2) Array Multiplier Field Reduction
Circuit

122

The GF(2m) programmable array mulLiplier is the critical compo-

nent within the transformer's polynomial residue evaluator. The

array multiplier was selected for this application because of its fast

multiplication rates. The multiplier is also attractive because of

its repetitive architecture and the low complexity if hardware re-

quired for reconfigurability.

The programmable array multiplier is also used in the implementa-

tion of the Berlekamp-Massey shift register synthesis algorithm. The

array multiplier was chosen for this application because of its short

processing time. The array multiplier calculates the product of the

present discrepancy and the inverse of the past discrepancy

(d (N) b- (N-)). This product is calculated once during each iteration

of the algorithm and the time required to form this product limits

the operational speed of the eatire errata-location section.

GF(2m) 2 Structure

The second field-dependent multiplier structure used in the

implementation of the encoder and decoder is a special-purpose, field-

element squaring circuitry. This structure calculates the squared

product of any field element in GF(2m), where m = 4,5,6,7, or 8. The

2
a multiplier uses our standard symbol representation and implements

i i 2i mod(2 -1)

7 7 (A-8)

a E 0 k__0(k xk)x mod p(x)
j=0 k

i

where a is an element from GF(2m) and p(x) is the associated primi-

tive polynomial shown in Table A-I. In equation (A-8). the cross-

123

M A N [lIl l

i i
products a 0 k' such that k#j, are zero modulo-2. The productsii k' i
Aj atk9 such that k=j, are a.. Only the even ordered coefticients o-

the product polynomial are formed

i i i i 2 1 4 1 6 i 8
1 • CL =x 0 + A 1 x + a2 x + a 3 x + 14

110 i 12 i 14)

i x 1+ :6 x + a7 x mod p(x) (A-i)

The programmable field reduction circuitry that implements

equation (A-9) is similar to the circuitry used in the programmable

array multiplier. However, the field reduction associated with the
2 multiplier is simpler because there are no odd ordered coefficien':5

in the product polynomial. The i-th bit in the field element to be

squared is the 2i-th bit in the product polynomial making the square

product formation implicit. The logic equations that implement thi.
2

a multiplier are shown in Figure A-5. In this figure, the input

variables fP0 PI ... , P7) represent the eight bits in our standard

symbol representation of the field element and the variables

{P' PIT, ... , P7' , represent the squared element. Again, the

variables {F F 5 F F I are signals that represent the desired

field of operation.

Field Element Inversion Circuit

The CF(2 m) programmable array multiplier and the CF(2 M) multi-

plier can be combined to implement a division-by-inversion algorithm.

Once during each iteration of the Berlekamp-Massey algorithm, the

product d (N) b - (N- 1) is formed, where both d (N) and b- (N- I) are elem,,nts

from GF(2 m). The term b - (N- i) is the multiplicative inverse of the

124

. " i da - -- ll II Il i ,A

P7 GF (2') P 7

PO MULTIPLIER PO

ee • F8 FIELD
SELECT

F5

F4

Po o + P4 F 45 3+ P36 + (P4+P6+P7)F8

P1 P2F4 + P3F5 + P3F 6 + (P4+P 6)F7 + P78

P21 = P1 + P3F4 + (P3+P4)F5 + P4 F6
+ P 3F 7 + (P4+P6)F8

P3 = PF + (P3+P 4)F5
+ P4F6

+ PF + (P4+P6)F8

4 2Y4 + P5 F6 + (P4+P6)F7 + (P4+P5+P6)F8

P 5' = P5F6 + P6F7 + P5F8

P61 = P 3 (F7+F8) + P5F7 + (P5+P6)F8

7 6F8

Figure A-5. Programmable a2 Multiplier

125

i'

N-i
field element b The structure that is used to implement this

product is shown in Figure A-6. The field element b (N-) is repr.-
i (N)

sented by a and the field element d is represented by i . The
desre podut s J -i i-i

desired product is t- or : The structure in Figure A-6 tIir-t
-ii

calculates a from the element a and then multiplies :xj times -3

to complete the division process. This structure calculates the in-
m

verse of any field element from GF(2), m = 4,5,6,7, or 8. The struc-
i m

ture shown Figure A-6 calculates the inverse of A in CF(2) by imple-

menting

-i i(2m- 2)

i a~-i =

=(,i (2m-1-1))
2

(a 2i1 4i (m-2)i 2 (A- 10)

The operation of the field-element inversion circuit can be de-

scribed with the aid of an example. On the first clock cycle, switche>;

S and S4 are closed and all other switches are open. The previous
4 (N-I) 2

discrepancy = (=) is fed through the a multiplier and the

result is latched into the X information register. The element

1
a is simultaneously fed into the Y formation register. The GF(2m)

array multiplier asynchronously calculates the product of the Y in-

formation register (a i) and the X information register (a 2i). Fhe

result is latched into the P register. At the conclusion of the
3i

first clock cycle, the P information register contains a . During

the second clock cycle switches S2 and S6 are closed and all other
switches are open. The contents of the P register are fed directly

into the Y register, while the contents of the X register

126

.. - I I. . . . --

2 GF (2m)
Ct MULTIPLIER

X REGISTERj

S4

GF (2 ')

cci S 5 V EITRARRAY
MULTIPLIER

S6 P REGISTER

Figure A-6. Field Element Division Circuit

127

m
are fed back into the GF(2) 2 multiplier, and the squared prodict

is stored in the X register. The contents of the X and Y registrs arc,
7i

then multiplied, and tile product, a , is stored in the P register.

This operation of the structure is repeated until m-2 clock cyclkes

have been completed. At this time, the contents of the 1) register

is . On the next clock cycle, switches S and S ;ire closed
3 5

and all other switches are open. The contents of the P register are

fed to the CF(2m) A2 multipliers. The results are latched into the

X register, while tle present dscrepancy ,dJ (d(N)), is fcd into the

Y register. The contents of the X and Y registers are then multiplied,

and the product, x,- is stored in the P register.

The operation of the field element inversion circuit requires

m-1 clock cycles. The information shown in Table A-IT indicates the

status of each switch and the contents of each information register

as a function of clock cycles. Table A-TI represents the operation

of the CF(2 m) division circuit when m=8. Operation for m • 8 is

accomplished by using fewer cycles to square the contents of the X

register.

GF(2 m) Serial Multiplier

The final field-dependent multiplier structure used in the en-

coder and decoder is one that is used for sequential multiplication.

This multiplier is used in the calculation of the present discrepoincv,

d(N). The same multiplier design is used in the present feedback

polynomial calculator.

The description of the GF(2in) serial multiplier is facilitated

by reexamining the definition of CF(2m) multiplication as defined in

equation (A-3). This definition of multiplication vas shown to, be

equivalent to the multiplication of two (m-l)th degree polynomials

followed by the polvnomial reduction of the resulting 2(m-l)th degree

128

-- " ' :" " "" " 'Y-'= " - '- . .. fl • I. . .hQ- I " - l l..

Rim

toJ E/ 1-4 r- 4 _q ~ CD
0

-4

I/ V C) C C) C C C -
-4-

4- -I Q) C C

0--4 u

Q) Cn -C C C C '4 l
f-- -4 -n

Q))

W
-4 -4

Xr .,H r-.00 - C)(

ww C5 0.,4C - -4 C)

OC.) 0

-4-4

129

product polynomial. The GF(2 m) programmable array multiplier imple-

ments this multiplication with all products calculated simultaneously.

The serial multiplier operates sequentially to implement equation (A-1)

in the form

i m-1

0C E a(aJ)xZ mod p(x) (A-I!'

This equation i' implemented using the structure shown in Figure A-7,

which uses m clock cycles to complete the calculation. Prior to thl.

first clock cycle, all latches have been cleared to zero, switch S1

has been closed and switch S2 opened. The first clock cycle corres-

ponds to =O in equation (A-11). During this cycleaJ is fed through

switches, and latched in the information register X. The contents

of X are multiplied by a0 and latched in register P. During the

second machine cycle, k=i, switch S1 is opened and switch S2 is

closed. The contents of the X register (a) are fed to the serial

multiplier, and the output of the multiplier ((a x mod p(x)) is

latched into the X register. The contents of the X register are then
i

multiplied with a1 and accumulated with the contents of the P

register. After two full clock cycles the content of the P register

is QjU + C 1 x mod p(x). The operation continues for m complete
0(1 i

clock cycles, after which the P register contains the product ci

The critical component of the multiplier structure shown in

Figure A-7 is the CF(2 m) serial multiplier. This multiplier takes

any field element aJ and forms the field element aJx mod p(x) which

j +1 mis equivalent to o + . A diagram of the programmable GF(2) serial

multiplier is shown in Figure A-8. In this figure, the variables

{Po, P1 ... , 7 } represent our standard symbol representation of the

130

4i

I-I

0 (

CL

)

-1'

C,,T

*H r

--- 400

131

7 fP PROGRAMMABLE 7

e G GF (2 m)
0 CtX mod p(X)= C11 '

SERIAL

PI 0- P1MULTIPLIER ,PO I N PO

F7 FIELD SELECT

F4

= P 3 F 4 + P4F 5 + P5F6 + P 6 F7 + P 7 F 8

PC = P o0 + P 3 F4 +
P 5 F6

P2' = PI + P4P5 + P7F8

3 = P2 + P6F7 + P 7F8

P4 = P3 F4 + P F8

P 5 ' = P4 (F4+F5

P6f = P5 (F 7 +F 8)
P 7 =P 6 F8

Figure A-8. Programmable GF(2) Serial Multiplier

132

input to the serial multiplier, and the symbols {P'o' P'1 ... P'7

represent the output of the multiplier. As before, the symbols F
-m

are flags that are used to indicate the field of operation. For a

given input aj , the serial multiplier calculates

j+l = (+ x + + a7x)x mod p(x) (A-12)

where ai and aj+ l are elements from GF(2m). Equation (A-12) can be

interpreted as shifting the 8-bit representation of the field element

cc and performing modulo p(x) field reduction. The field reduction

is implemented in an end-around carry technique that is identical to

that used in both the programmable array multiplier and the a 2 multi-

plier. However, the modular reduction is trivial in the serial multi-

plier because the product polynomial that is to be reduced is only

of degree m. Since p(x) is also of degree m, only one coefficient

has to be fed back for each field of operation. The simplicity of

this circuit is indicated by the logic equations shown in Figure A-8.

The (;F(2) serial multiplier operates with sequential data.

Many partial products can be "summed" in a binary fashion, and the

GF(2m) serial multiplier can be used to implement associative multi-

plication

i 0 1 +C
2 N (-3

C(a +a + a + - + a (A-13)

This type of multiplication is implemented by'forming the binary sums

(modulo-two) of the terms within the parenthesis and then using the

serial multiplier to complete the multiplication. In this manner,

N+l GF(2m) multipliers can be replced by one GF(2 m) serial multiplier,

in the formation of convolution products.

133

APPENDIX B

A\N EXMP.E: A (31 l15) REED-SOLONON

(ODE CONSTRUCTED OVER F(

In this append ix, the decoding algor ithm is illustrated, IY mwiou

of an examplt- of docoding vwith the (31 ,15) Reed-Solomon code.

message sequence of length k =1,) v(,r (;1-(2) 5 sgvn Ecdm

is per formed liv forming a sequence of w nthS i th zeros in t V,

first 16 pos it ion,, and tle informa tion symbols in thermai n

pos it ions , and then a pp iN'ing t he inverse transftormat ion to vi eld J

length-31 codeword, also over ;F (2 5) . Field elements are represut 01 ,

h>' powers of a primitive element at.

The representat ion of (;F(2 5 as binary polynomials moduile Lli

irreducible polvnomial x " ± 4- 1 is:

~00000) u 010ax111 01111

A=00001 M~ 0101 aV 11011 111101

A= 00010 rL 11olo 917 = 10011 '5= I1!0u1

=00100 =10001 x =0001110)

C
3 =01000 1 = 00111 1 9 = 011):7 01011

4 = 10000 12 1= 01110 CX2 0 = 01100 =8 1011o

J,5 = 00101 93=11100 A21 I- 11000 9 10

01010llo CX1 = 1110i CL2 = 10101 A 3C0 10010

Addition is defined as component-by-component addition modutlo 2,

and mlItiplication by addition of exponents modulo 31.

Let the message b!- the arbitrarily chosen sequence {MI

i 0, 1, .. ,14, where:

134

M, =a t M =a
0b

a12 M =C 1 5

9

M^ = O2 8 M CE24
10M =-a29 M =ci2

3 =
i29 Ml = c l

M4 = a 1 7 M 12=
12

M = a 3 M 3
= iL

Mr = a 3 .) M =ca2

- a14
M 7 = a

1 0

The padded message sequence {A } is then1

A0 = 0
AO

A =0

A = 0
15

A =M =alb C

A =M =a 1 2

17 1

A 0 14 = 2

To compute {a.}, the inverse transform of the {A.}, consider
11

A(x) = A + A1 x + . + A30 x3 0 , the corresponding 30th degree poly-

nomial. Then

i
*a, A~a) i = 0, 1, ... , 30

To evaluate A(cMt-i), evaluate ti(a
- i) where t_ i(x) is the residue

polynomial which corresponds to division of A(x) by m i(x), the mini-

135

-i
mum polynomial of a . That is

-i -i

a A(i -) t i(), i = 0, 1, .. , 30 .

The seven minimum polynomials of the elements of GF(2) over

GF(2), and the corresponding ti(x) are listed in Table B-I.

To illustrate this procedure,

a = (a- = (E')15

= t (aL6) = t (a16) (since m (x) mI (x))16 1. 161

= X22 + a2 4 (a 1 6) + ~2S 16) 2 + , '(1) 3 + 2 4

Saz2 + a 9 + a 2 9 + 2 8

= all

The rest of the inverse transform is determined similarly, producin.

a = a22 a 1 a 21 a'2
r21

a = 12 = ,tli a = U27
1 1 2

a = a 2 6 a = a 22 a = a 3
13 23

a == a = 9
3 = 14 24

a4 = U1 R a15 a a 25 = U19

a = 0, 2 2 a = a 26 a = a45 16 26

Sa6 = 2 1 a17 = a27 = a24

Sa=0 = a a7 1828

a. = F a 9 a28 a 29 0

a 23 a "a 17 a = 6

9 20 30

a 0 = a 30
10 136

I t3

4+ '
++

- +3
N+

+ +

'5 Z5

+ +

NN -'

r~1 -~.. '5

4J -4 + -
'-5 4 +..cE

0 0 -

ca a)-4 "-

>a x '- x

4- + +

x- _
N x x

+ + + x . C
+ + +

'5 '5 ' Nea)

4~ 4 + .-

o137 L

This is the transmitted message.

Suppose the following t - 5 errors and r = 6 erasures are intro-

duced, such that

Errors Erasure Locations (known)

a : s _ 14 a : 6

16

a : a ___a18 a7 : cx7

a3: 20~---a a : a 81 a8 a

a2J9 0, 2 alo a O

a 0 a :(a l

29' 10

a1 1 1

k j k
where a.: aj - k means that a. is changed from aj to a. The

1 1

erasures are consecutive to simulate a burst. The received sequence,

!{ri, is

r a22 r 11 = C28
0 r 12 2114 22 27 2
r,= O (error) r = L22 r = a27

r = t26 r = a18 (error) r = e I I (error)2 14 23

r 3 x13 r r 1l l = a9r315 r2

r a 18 r =a26 r = 019
416 25

r = a 2 2 r r= a = a4

517 r26

r = a21 r = a22 (error) r = a24
618 27

r =0 r c 2 r 2 8
1 1

r = a16 (erasures) r = L17 r = c9 (error)
8 20 29

r = CL2
3 r = aG

9 30
r 10= 30

* = et
1 2 8

138

where r6 , r7, ... , r11 are received correctly in this case but with

enough uncertainty to warrant labeling them erasures. Altering them

changes neither the algorithm nor the decoded message.

Decoding now begins. Since the bound 2t + \) < n-k is satisfied,

the message is recovered completely. A flowchart of the algorithm

is shown in Figure B-i. There

v - 6 = number of erasures

i = 0, 1, ... , 31

Z4 = 0, I , 5 = erasure locations with

10 = 1, i1 = 10, ... and i5 = 16.

The algorithm first generates the erasure polynomial A (x)

A(5)(x). The dummy variable, v', counts the number of erasures by

decreasing from 5 to 0, after which time the generation of the errata-

locator polynomial begins and a different path is followed in the

flowchart.

Table B-II displays the result of all iterations up to N = n-k-i

- 15 after which the errata locator polynomial, A(1 5)(x), is synthe-

sized. Each line represents one iteration and is filled out from

left to right.

The first step in decoding is to compute RN, the Nth term of

{Ri}, the forward transform of the received sequence {ri}.

Here,

Ri =r(x i) ui(ai), i0, 1, 30

139

C,

C
-4

rz

0

CL)
C
CL)

H

C

'a

CL)

Cd
3
C

'-4

-4

Q)
I~4

-4

140

,4

-e - - - - - - -

-J - -t -' - -' - -

- - - - - - - - - -C

[.-1

.4 -,U

0) I

S- . -

- 2

2 I-

where r(x) = r 0 + r x + -.- + r 3 0 X3 0 is the 30th degree polynomial

which corresponds to {ri , and u i(x) is the remainder polynomial

which results from division of r(x) by mi(x). (The remainders, ui(x),

are also listed in Table B-I). The forward transform, {Ri}, of the

received sequence is

R = a28 R = C24 R 1 L7 R = aI0
0 8 16 24+

R = a23 RC =
1 0 9 1L

1 = R 1 7 R 2 5 2 9

R2 a05 R = a R18 U R 26

R = C 2 5 R = a1 3 R 1 c10 R 2 X2 6

3 11 19 27

R4 = (12 9 R1 = x4 R = a I R 28 u]0
412 20 28

=26 6 R a 8 28R5 = 3 R 21 = R29
=.=~ =ceI R =cx I 0

R6 = 1 R4 0 R22 30

R7 = a 2 9 R 1= a 4 R = c 7

7 15 23

5
Since GF(25) is of characteristic 2, addition and subtraction

are both given by mod 2 addition of the 5-tuples. The first few

computations are:

M d (0) (-i)n °) x) = (l(x) -x B (x)

= - [x]x (i)= 1-a 6 x = 1 + U6 x

A(i)(x) (x) - [d(l)] x (0)

= (I + q6 x) - [2L] x (1 + U6 x)

142

= 1 + (a6 + a7) x + a1 3 x 2

= 1 + L24 x + a1 3 x 2

(5) 4 [Cx1 X x)
A)x) = A W W

=1+ (02 1 + a 11) x + (a2 + e 1) x2 + (a10 + 1 3) x3

+ (aU14 + a2 1) x4 + (Ce9 + (25) x5 + ot2 0 x6

= 1 + 5 x + a 1 9 x 2 + a 8 x 3 + a 5 x4 + a 1 8 x 5 + a 2 0 x 6 .

When N = 6, v' 0, and the algorithm branches with the computation

L(5)+
d(6) L +6 + (5)

d 6 F1 A i s 6-i
1=l

= 0' + a05 . a26 + a 1 9 .a 2 9 + C8 .(25 + t5 . 5

+ a18 . a 2 3 + a2 0 . a 2 8

= L + a10 + a 1 7 + a 2 + a 1 0 + a10 + a 2 7

= a 2 6 .

Since d (6) 1 0, the "NO" path is followed and

143

(6) = (5) (x 2 6] (5)(x
-(6-

1 + (1 5 + a26) x + (, 1 9 + a1 0) X2 + (1 8 +)"

-4- (a5 + a 3) x 4 + (alb + cU) x 5

= 1 ± c3 x + a2 6 a2 + c 4 x3 - a8 x 4 + al x5

+ a4 x6 + 15 x7.

Now L = 6 0, so the "NO" path is followed. This process

continues until errata locator polynomial A (15(x) is computed. The

iteration at N = 15 is:

A (15) (x) A (14) (x) [B-(-14)(

A (14) 1 al x (1 4) W

= + (a + 0) x + (a16 + al) x2 + (a23 + a 2 6) X3

+ (a6 + a24) x 4 + (a2 + al1) x
5 + (a9 + az6)

x 6 + (0 + a9) x7 + (a6 + a28) x 8 + (a5 + a24)

x 9 + (,30 + a5) XI 0 + (a 2 2 + a16) x1l

= 1 + a 5 x + a25 x 2 + a21 x3 + a? X4 + ai8 x 5 +

a8 + X6 + a9 x7 + a13 x b + aO x9 + a2b x1 0

+ a12 x'l

144

At this point N is incremented by 1 to N = 16 > n-k = 16, so

that the algorithm branches to generate the error sequence

(E0, E1 ... , E14) = (S16' S17 ... , S 30), and then the decoded

message {M.} {Mi = R6+i + E 16+i. To illustrate:

k = N + k - n = 16 + 15 - 31 = 0

S16 1 A (15)16 i Sl6-i

= 0,5 .C14 + a2 5 . 0 + U21 U6 + a7 . 4 + alb . a13 + a8

O14 + a9 . ai0 + a 13 a24 + a0 . a2 9 + a26 . ai + aIz

. 026

= a1 9 + a2/ + all + U0 + a22 + a19 + a6 + a2 9 + a27 + a 7

= a2

so N =MO R16 - S16 = a7 a2 which is M,, the first symbol of the

transmitted message.

The algorithm continues until M. , i=0, 1, ..., 14 are computed.1

They are:
A aA

^ Z % -4 C,7= M
M, = ,2 % = al

M2 = C128 M 10=,2

M4 = a17Ml2 l1
M 5 = C 3 M! 3 C1

M 6 _- a30 M1, 4 0120

'R7 alU 145

REFERENCES

1. Peterson, W., Weldon, J., Error Correcting Codes, 2nd Ed., MIT
Press, Cambridge, MA, 1977.

2. Haggarty, R.D., Palo, E. A., Carhoun, D. 0. and Meehan, S. J.,
High Speed Signal Processing for Error Correction Coding,'.' pre-
sented at IEEE International Symposium on Circuits and Systems,

Tokyo, Japan, 1979.

3. Hamalainen, J. R. and Skoog, E. N., "Error Correcting Coding with
NMOS Microprocessors: A 6800-based (7,3) Reed-Solomon Decoder,"
ESD-TR-79-125, Vol. II, AD A073088, September 1978.

4. Carhoun, D. 0., Johnson, B. L. and Meehan, S. J., "Transform
Decoding of Reed-Solomon Codes, Volume I: Algorithm and Signal
Processing Structure," ESD-TR-82-403, Vol. I, November 1982. (In
Process)

5. Blahut, R. E., "Transform Techniques for Error Control Codes,"

IBM J. Res. Development, Vol. 23, No. 3, May 1979.

6. Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, New
York, 1968.

7. Massey, J. L., "Shift-Register Synthesis and BCH Decoding," IEEE
Transaction on Information Theory, Vol. IT, No. 1, pp. 122-127,

January 1969.

8. Carhoun, D. 0., Johnson, B. L., and Meehan, S. J., "An Architect-
ural Design for a Fast Number Theoretic Transfor-,ter," presented
at the IEEE Custom Integrated Circuits Conference, Rochester,
NY, May 1981.

9. Carhoun, D. 0., Johnson, B. L. and Meehan, S. J., "VLSI Architect-
ural Design for a Reed-Solomon Transform Decoder," presented at
the IEEE International Symposium on Circuits and Systems, Chicago,
IL, April 1981.

10. Mead, C. A. and Conway, L. A., Introduction to VLSI Systems,
Addison-Wesley, 1979.

146

V

S

