" AD-A123 977

UNCLASSIFIED

TRANSFORM DECODING DF REEU-SULUMUN LCUUES VULUME 11
LOGICAL DESIGN AND IMP..(U) MITRE CORP BEDFORD MA -

B L JOHNSON ET AL. NOV B2 MTR-8278-VOL-2
E£SD-TR-82-403-VOL-2 F19628-82-C-0001 F/G 9/4 NL

ve

ANEEREENEENEEE
[




"“I 1.0 i bz
="z
|||||L Tl

— =
12 s e

MICROCQPY RESOLUTION TE=T o HaRT




OTIC FILE copy

ESD-TR-82-403, Vol

MTR-8273, Vol |

TRANSFORM DECODING OF REED-SOLOMON CODES VOLUME [
LOGICAL DESIGN AND IMPLEMENTATION

disteibution unfinnied

B\
B. L. JOHNSON
A.L.BEQUILLARD
S.J.MEEHAN

NOVEMBER 1982

Prepared tor

SOLIDSTATE SCIENCES DIVISION
ROME AIR DEVELOPMENT CENTER

UNITED STATES AIR FORCE

Hanscom Air Force Base, Massachusetts

Approsed tar publicielease,

DTIC

ELECTE
JAN3 1 1983

B

Project No. 7170
Prepared by
THE MITRE CORPORATION
Bedford, Massachusetts
Contract No. F19628-82-C-0001

an r.,k - o~ e

-

e




RO A
!
SMWhen US Government drasanes, speailica
1oons, o other data aoc used Tor any putpose
other thanca detmmels rchaed covcrmment pro

cirement operaton the soncrnment thereby

cuts no orespansibiliy nor any ohlation
Swhatsocver and the facr that the sovernment
s bove totiadated, baoshed or o aas wan
supplicd the sad diawanes, spedilications o ’

! ather data s not 1o he |\'_-,'.||‘|u] I ”lll‘“k.l{l!”l

or otherwese, as moany manner hicensiny dhe
holder or any other purison ot corpotations, o

comeving any nighis or perssion tomanutag

| '
Cture, uses o sell any patented mvenuion that
; mas vy wan beaelared therernn
Donat cetunn this copy Retanon desoron
| REVIEW AND APPROVAL
This technical report has been reviewed and is approved for publication.
\ 2
S lenmon, Gl 17
JERRY SILVERMAN HAROLD ROTH, Director '
Project Engineer Solid State Sciences Division
L]

AR g




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When DanJEnlnad)‘

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NO.[ 3 RECIPIENT'S CATALOG NUMBER
ESD-TR~82-403, Vol. II LRI
4. TITLE (and Subtitle) $ TYPE OF REPORT & PERIOD COVERED

TRANSFORM DECODING OF REED-SOLOMON CODES
VOLUME I1: LOGICAL DESIGN AND IMPLEMENTATION

6 PERFORMING OG. REPORT NUMBER

MTR~8278, Vol. 11

7. AUTHOR(s) 8 CONTRACT OR GRANT NUMBER(s)
B. L. JOHNSON, A. L. BEQUILLARD, S. .J. MEEHAN
F19628-82-C-0001

9 PERFORMING OCRGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
. . AREA & WORK UNIT NUMBERS

The MITRE Corporation

Burlington Road Project No. 7170

Bedford, MA 01730

1Y, CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRT DATE

Solid State Sciences Division November 1982

Rome Air Development Center 3. NUMBER OF PAGES

Hanscom AFB, MA (01731 149

14 MONITORING AGENCY NAME & ADORESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report:

UNCLASSIFIED

SCHEDULE

S— e
15a. DECL ASSIFICATION ODOWNGRADING |

16. DISTRIBUTION STATEMENT (of this Report}

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Repart)

18. SUPPLEMENTARY NOTES {

19. KEY WORDS (Continue on reverse side if necessary and identlfy by block number)
ERROR LOCATION

LOGIC DESICN

REED-SOLOMON CODES

SCHOTTKY TTL LOGIC

TRANSFORM ENCODING AND DECODING

20 ABSTRACT (Continue on reverse side if necessary and identify by block number)

This report describes the logic design and hardware implementation of an
encoder and decoder for a large number of Reed-~Solomon svmbol error-correction
codes, The logic implements a transform encoding and decoding algorithm that
was previously described in Volume I of MTR-8278. The hardware required to
implement the critical steps in the encoding and decoding algorithm is
described in depth. An analysis of the decoder's operational characteristics
and hardware complexity is presented. A proof-of-concept breadboard configured
with small-scale Schottky TTL components is also described.

DD '52:%3 1473 EDITION OF 1 NOV 6515 OBSOLETE

UNCLASSTFTED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

L T e e




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSTFIED

SECURITY CLASSIFICATION OF Tu't PAGE/When Date Enterad)




v e

e

N L e AP W e

Pt &

o

ACKNOWLEDGMENTS

This document has been prepared under Project 7170, Contract

F19628~82~C~-0001. The contract is sponsored by the Solid State

Sciences Division, Rome Air Development Center, Hanscom Air Force

Base, Massachusetts.

-

! Aceesstar Tov
RIS SRR )

5
R RRT
Ll !

Diatreril oty oy
Avatisiility Tcasd

Avats andjor
Dist = Fpeatal

|
1




Section

TABLE OF CONTENTS

1.IST OF ILLUSTRATIONS

LIST OF TABLES

1 INTRODUCTION

1.1

1.2

1.3
11 TRANSFORM

2.1

2.2

2.3

2.4
111 A (255,k)
DECODER

3.1

3.2

Purpose

Background

Scope

ENCODING AND DECODING: AN OVERVIEW

Finite Field Transforms Over GF(Zm):
A Review

Codeword Generation by Discrete
Transformation

Reed~Solomon Transform Decoding

2.3.1 Correction of Errors and
Erasures

Transform Encoding and Decoding:
Hardware Structures

REED~SOLOMON TRANSFORM ENCODER AND

General Description

3.1.1 Coding Capabilities

(255,k) Transform Encoder and Decoder
Architecture

11

11
11

13

15

16

18

20

22

26

26

28

30




= o b dtect et n S L\ . bt = At 4 o e——

TABLE OF CONTENTS (Continued)

Section

3.2.1

3.

(3%

t~

2.

o

2

Transform Section

.1.1 Polynomial Residue
Calculator

.1.2 Polvnomial Residue
Evaluator

.1.3 Arithmetic Controller

The Errata-Location Section

2.1 cCalcalation of the
Present Discrepancy,
d(N)
2.2 Calculation of the Present
Feedback Connection
Polynomial, A (M)

.2.3 Calculation of the Previous
Feedback Connection
Polynomial, R(N)(X)

.2.4 Symbol Errata Correction

3.3 Operational Characteristics

3.4 Hardware Complexity

IV A (51,k) REED-SOLOMON TRANSFORM ENCODER AND
DECODER TTL BREADBOARD

4.1 Transform Section

4.1.1

Polvnomial Residue Calculator

4.1.2 Polynomial Residue Fvaluator

4.1.3 Arithmetic Controller

Page
32

38

49

55

59

69

76

77
78
81

89

89
92

95

97




TABLE OF CONTENTS (Concluded)

Section
4.2 Errata-Location Section
4.3 Operational Characteristics
4.4 Hardware Complexity

APPENDIX A: MULTIPLICATION IN CF(Zm):
ALGORITHMS AND STRUCTURES

A.1 Multiplication In GF(2™)
A2 GF(Zm) Multiplier Structures

A.3 Reed-Solomon Encoder and
Decoder Multiplier Structures

APPENDIX B: AN EXAMPLE: A (31,15) REED-SOLOMON
CODE CONSTRUCTED OVER GF(25)

REFERENCES

Page
97
100
103

107

107
110

117

134

146




Figure

[£%]

10
11

12
13
14

15

16

LIST OF ILLUSTRATIONS

Transform Encoding and Decoding
Transform Section Architecture

Polynomial Divider Circuit for

M95(X) = x8 + x7 + x4 + x3 + x2 + x + 1

Programmable Binary Feedback Shift
Register

Polynomial Residue Evaluator

Arithmetic Controller

Decoding Algorithm

Errata Location Section

Present Discrepancy Calculator

(255,k) Decoder's Present Discrepancy Calculator
Present Feedback Connection Polynomial Calculator

(255,k) Decoder's Present Feedback
Connection Polynomial Calculator

Timing Requirements for (255,k)
Encoder and Decoder

Errata Locator Timing, Definition of a
Machine Cycle

Divider Circuit Macrocell

Errata Location Section Architecture

43

47

53

54

60

63

65

67

71

73

79

82

83

85




Figure
17
18

19

t\‘ 5
A-H

A7

LIST OF ILLUSTRATIONS (Concluded)

8-Bit Symbol Correction Slice
(51,k) TTL Breadboard

A Single Bit “lice of the (51,k) Trans-
former's Polvnomial Divider Circuit

(51,k) Transformer's Polvnomial Residue
Evaluator

| C
CF(27) Programmable Multiplier's
Pairwise-Product Arrayv

Schematic: 8-Bit Symbol Correction Slice
Semi-Automated Testbed

Sequential GF(Qm) Multiplier

NP | R

GF(27) Array Multiplier

Programmable GF(Zm) Array Multiplier

Programmable GF(2™) Array Multiplier
Field Reduction Circuit

2
Programmable o~ Multiplier
Field Element Division Circuit

Sequential cr 2™ Multiplication Using a
Programmable Serial Multiplier

Programmable GF(2™) Serial Multiplier

Flowchart of Transform Decoding Algorithm

Page
87

90

96

98

99

101

113

116

120

122

125
127

131

133

140




Table

11

111

-1

Iv-2

VII

VIII

IX

X1

LIST OF TABLES

Reed~Solomon (255,k) Encoder and Decoder
Capabilities

Half~Rate Codes Accommodated by the (255,k)
Reed~Solomon Transform Decoder

Transform Capabilities of (255,k) Decoder's
Transform Section

Minimal Irreducible Polynomials over GF(28)

Minimal Irreducible Polynomials over GF(27)
and GF(29)

Minimal Irzeducible Polynomials over GF(ZS)
and GF(27)

Programmability of Binary Feedback Shift
Register: Figure 4

Transforms over GF(Zm)
Decoding Algorithm Variables (Notation)

(255,k) Encoder and Decoder Hardware
Complexity

(51,k) Breadboard Coding Capabilities

Transform Capabilities of the (51,k)
Breadboard

Programmability of the (51,k) Transformer's
Divider Circuits

41

48

50
61

88

91

93

94




Table

LIST OF TABLES (Concluded)

Primitive Polvnomials Used to Design
the Programmable GF(2™) Multiplier
Structures

Field Element Division in GF(28)
Minimal Polynomials of GF(2°) Over G¥(2) and
Remainder Polvnomials Corresponding to

A(x)/mi(x) and r(x)/mi(x)

Results of the First n~k=16 Iterations

Page
119

129

137

141




SECTION 1

INTRODUCTION

1.1 Purpose

This report examines the hardware implementation of an efficient
decoding algorithm for the Reed-Solomon class of symbol-error-correct-
ing codes. The algorithm, described in Volume I of this report,
offers major simplifications relative to the more conventional BCH
(Bose-Chaudhuri-~Hocquenghem) decoding algorithms (1]. The simplifica-
tions result both from the reduced complexity of the algorithm and
from the opportunity to apply fast computational technicues for its

implementation.

1.2 Bacxground

Error~correcting codes are useful to correct message errors
which are caused by interference, additive random noise, and other
channel disturbances. Error-correction techniques are implemented in
a two-step process. At the message source, redundant symbols are
added to the original message according to a predetermined strategy
(encoding). The encoded message is transmitted and errors may be in-
troduced. At the message destination, the original message is recov-
ered from the noisy received signal (decoding), aided by prior know-
ledge of the code. Message transmission using error-correcting codes
represents an effective means of obtaining low error probability in

the decoded message.

Previous work included both the analysis of error-correcting
codes and the examination of their effective implementation. Error-
correcting codes, used with spread-spectrum modulation techniques,

were shown to be beneficial in the design of jam-resistant communica-
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tion svstems. Lt has also been suggested that error-correcting
codes, when incorporated within the internal busing structure of a
svstem (or device), can impact favorably on that system's (device's)

reliability [2].

Our examination of error-correcting codes has led us to concen-
trate on the Reed-Solomon class of generalized BCH symbol error-
correcting codes. The distance properties of this class of algebraic
block codes assure correction of both random isolated errors and
random burst errors. While the encoding process for Reed-Solomon
codes is relatively simple, the decoding process is complex and

generally requires a dedicated processor.

We have experimented with direct decoding of short block length
Reed-Solomon codes by implementing a code~table search algorithm
under microprocessor control [3]. Further analysis of Reed-Solomon
codes has led to the development of a transform-based decoder that
offers major simplifications relative to the more conventional

BCH decoders [4].

The decoding algorithm imposes a high degree of circuit complex-
ity on its associated hardware implementation. Analogies with conven-
tional linear digital signal processing functions aid in partitioning
the decoding hardware into sections that perform finite-field oper-
ations (e.g., field-element multiplication, division, and inversion).
These sections can be used to develop functional LSI hardware which
performs a variety of finite-field data processing functions. 1If
the unique properties of finite structures are exploited (e.g.,
elimination of round-off errors, multiplication by adding "logarithms'),
the development of these hardware capabilities may lead to the use of
finite-field computational methods for other linear signal processing

applications.
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1.3 Scope

This is the second volume of a report concerned with transform
decoding of Reed-Solomon codes. The first volume discussed the de-
coding algorithm. This volume concentrates on the logic design and
hardware implementation of the transform decoding algorithm. It be-
gins by outlining the concepts of transform coding and decoding of
Reed-Solomon codes. Section I1 is primarily an overview of the ma-
terial presented in Volume I, included here for completeness. While
reading this report one should also refer to Volume I of this TR [4],

which contains the appropriate frame of reference for the present

volume.

In Section IIIl, an architectural design of a Reed-Solomon encoder
and decoder is presented. The processor is reconfigurable to accom-
modate a large number of different code parameters for bcth maximum
and sub-maximum length codes over GF(Zm). the symbol fields ranging
from four to eight bits. The maximum-length codeword that can be
processed by this design is a 255-symbol word, with each symbol re-
presented by eight bits. (This unit will be called the (255,k) en-
coder and decoder.) Included within Section III is a detailed de-
scription of the coding capabilities, functional partitioning, pro-
jected hardware complexity and expected operational characteristics

of the (255,k) transform encoder and decoder.

In Section IV, a description of the logic implementation of a
reconfigurable Reed-Solomon TTL breadboard is presented. This
encoder and decoder breadboard is designed to be electronically
reconfigurable to accommodate a subset of the codes processed by
the (255,k) encoder and decoder described in Section III. Although
the breadboard is not large enough to decode all of the codes pro-
cessed by the (255,k) decoder, it operates over most of the required
fields and it effectively demonstrates the reconfigurability of the

decoder's architecture. The encoder and decoder breadboard is capable

13




of processing a maximum-length codeword of 51 symbols, each symbol

being represented by eight bits. (The breadboard will be called the
(51,k) encoder and decoder.) Included within section IV is a detailed
discussion of the breadboard's coding capabilities, functional and
physical partitioning, hardware complexity and operational character-

istics.

Appendix A presents a detailed discussion of binary-extension
field multiplier structures that are used in the Reed-Solomon error-
correcting encoder and decoder. The transform encoding and decoding
of a (31,15) Reed-Solomon code, constructed over GF(ZS), is presented
by means of an example in appendix B to aid the reader in tracing

the flow of the decoding algorithm,
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SECTION II

TRANSFORM ENCODING AND DECODING: AN OVERVIEW

Reed-Solomon codes are symbol error-correcting linear block
codes. A particular (n,k) Reed-Solomon code, constructed over the
binary-extension field GF(Zm), has a block length of n symbols,
where k symbols (k<n) represent the information. Each of the n

symbols within the codeword can be represented as a binary m-tuple,

Reed~Solomon codes are maximum~distance separable linear hlock
codes. These are (n,k) codes for which the minimum distance, dmin’
between any pair of codewords is the maximum value,

d ., =n-~k+1 (2-1)
min

These codes can correct any combination of t errors and s erasures

provided the inequality

2t +s<n-k (2-2)

is satisfied.

In order to discuss the structural properties of Reed-Solomon
codes and their implementation, it is convenient to regard the code~
words as polynomials. A codeword from an (n,k) code, constructed
over CF(Zm), is an n-tuple with each symbol represented by m bits.
Each codeword can be represented by a polynomial of degree n-1, having

coefficients that are members of the finite field of 2" elements.

15




Such a polynomial is determined uniquely by its n coefficients or

equivalently by its values at any n distinct points of the field.
A codeword of block length n may be specified either by a set of n
values or by the polynomial coefficients interpolated from these

values.

2.1 Finite Field Transforms Over GF(Zm): A Review

s LR be elements of a finite field GF(Zm) of

multiplicative order 2™"-1. Let b be an element of GF(Zm), and let

Let a

th . .
b be an n root of unity. Assuming that n divides or is equal

to 2m-1, the linear transformation
Ar= ¥ a5 3-0,1, ., (2-3)

: . . m :
is a mapping from GF(2 ) onto itself. For any integer r,

n-1 ir n, r 0 mod n
3 b = (2~4)
i=0 0, otherwise

Equation (2~4) can be used to verify that the mapping that is inverse

to equation (2-3) is the linear transformation

-1 n-1 -ii
a, = n S oAbt ;5 oi=0,1, ..., n-1 (2-5)
i 5=0 3

where n—ln = 1, Equations (2-3) and (2-5) define a discrete linear
transform pair over GF(Zm), where the operations of addition and

multiplication are defined in the same field. Addition of two field
elements from GF(Zm) is defined as the bit~by-bit modulo~2 addition

16




of the m-tuple representation of the field elements. Multiplication
is defined in terms of the primitive field element a. GF(Zm) has
multiplicative order 2"-1 and it contains an element a of the same
order. The non-zero elements of the field can be written as

ao, al, az, caey azm_z. Multiplication of two field elements is
defined as the addition (modulo 2m—l) of the indices of the corre-~

sponding field elements

W - oS = OL(r+s) (2-6)

The sequence a, a - | of elements from the field GF(Zm)

1’ n-1
can be expressed as an (n-1)th degree polynomial, a(z), where

_ n-1 _ i -
a(z) = ay + az + ...+ a 12 2: az (2-7)

The forward transform of a sequence ags A1y Ags ceey Ap can be
obtained by the polynomial evaluation of a(z) at the n distinct

powers of the transform'’s kernel; bO, bl, cens bn_l, such that

n-1 s .
Ay = .Z:O aile = a(bJ) 3 j=0, 1, «.s, n-1 (2-8)
1:

Similarly, the inverse transform is obtained by interpolation

of the polynomial a(z) from its n known values,

-1 .. .
a, = 5 oa vdto s dyiieo, 1, .., 0ol -9
i fr

17




n~1
y o = -+ + ... R
where A(z) AO Alz + A 1z

2.2 Codeword Generation by Discrete Transformation

The encoding of Reed-Solomon codes can be defined in terms of
finite-field transforms, Let Agy 85 v ak—l represent a sequence
of k message symbols, with each symbol represented by m bits. A
length-n message sequence can be formed by adjoining n-k consecutive
zero-valued symbols to the original length-k message sequence. We

regard the polynomial a(z) as the message polynomial

a(z) = a,+a,z+ ... + an_lzn_1 (2-10)

The first k coefficients are the k message symbols, and the remaining

n-k coefficients are zero.

A codeword for a Reed-Solomon (n,k) code, constructed over CF(Zm),

can be generated by calculating the n-point discrete transform of the
sequence represented by a(z), [4,5]. There is symmetry associated
with the transform so that either a forward or an inverse transform
may be used to encode. The only requirement is that the reverse of
the encoding transform be calculated for decoding. For compatibility
with Volume I, this review will use a forward transform for encoding.

A codeword, consisting of n symbols, 1s constructed by calculating

the forward transform of the length-n message sequence, as in equation

(2-8). The forward transform, or polynomial evaluation, can be

expressed as the continued product

- i 3 3 -
A ag+bi(a; + ... +b (8 _,+bla _))...) (2-11)

18




Equivalently, the forward transform can be interpreted as the

remainder of the polynomial division a(z)/ (z-b7)

a(z) = q(z)(z—bj) + Aj (2-12)

The second interpretation may be represented as a set of polynomial

congruences such that

A1 = a(bJ) = a(z) mod (z—bJ) ; j=0, 1, ..., n-1 (2-13)

An equivalent method for obtaining A, is to divide a(z) by a
set of small degree polynomials containiné distinct factors of the
form (z—bj), and then to evaluate the lesser-degree residue poly-
nomials at the appropriate values bj. If the set of divisor poly-~
nomials is defined to be the set of minimal polynomials of the non-
zero field elements, then their coefficients are restricted to the
prime tield GF(2). 1In this case, division can be performed using
only scalar multiplication by the elements of the prime field. For
codes over CF(Zm), the minimal polynomials have coefficients that
are either one or zero requiring only operations in GF(2) for poly-
nomial division. In Volume I, this technique of computing a finite-
field transform was shown to be a "fast' algorithm; it tends to
minimize the number of multiplications in GF(Zm), the number approach-

ing nlogzn.
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2.3 Reed-Solomon Transform Decoding

Finite-field transforms can be applied to decode Reed-Solomon
codewords. If the source message is represented by the polynomial
expressed in equation (2-10), then the transmitted codeword is repre-
sented by the polynomial A(z) = AO + 512 + ... + An__lzn-l where the
coefficients Aj are determined as a(bJ) in accordance with equation
(2-8). If the inverse finite-field transform, equation (2-5), is
applied to the transmitted codeword, the message polynomial a(z) is
obtained and the original k message symbols are recovered.

Assume that an error sequence represented by the polynomial
n

E(z) = EO + Elz + ... + En-lz -1 has been added to the encoded mes-
sage A(z) during transmission. In order for the received word to be
correctable, E(z) can not have more than (n-k)/2 non-zero coefficients;
their values and locations are unknown. The received sequence is
represented by the polynomial sum R(z) = E(z) + A(z). The inverse
transform of the received sequence is the polynomial sum

r(z) = e(z) + a(z), where e(2) is the inverse transform of the error
polynomial E(z), and a(z) is the original length-n message polynomial.
The decoding problem is to determine e(z) from the transform r(z) of

the observed sequence R(z).

To decode, the polynomial r(z) is calculated from the known

values of the received sequence R(z) by taking its inverse transform,

n-1 -
r,= 3 Rb 1=0, 1, ..., n-1 (2-14)
1 J=0 ]

which is equivalent to evaluating the received polynomial R(z) at

the n values, bo, b—l, ey b_(n-l).

The symbols ags i > k-1, are equal to zero by definition. A

20




sequence can be separated from equation (2-14), valid for

i=k, k+1, ..., n-1:

n-1 ..
s, = r, = R,b 3 i=k, k+1, ..., n-1  (2-15)
j=o

This sequence, {si}, is the error syndrome associated with the

channel error pattern, E(z).

The error syndrome can be used to determine the locations of
the errors in the channel error pattern E(z), using the iterative
algorithm developed by Berlekamp and Massey |6,7). This algorithm

calculates the coefficients of the error-locator polynomial,
t
0(z) = ’ | (z-X)) =0 +0 2+ ...+z (2-16)

whose distinct roots Xi are the error locations. In equation (2-16) t
is the number ¢f non-zero coefficients of E(z), or equivalently the
number of errors that occurr:d. We assume t < (n-k)/2 so that

the error bound of the code is not exceeded. The error-~locator
polynomial is the characteristic polynomial of the shortest linear
feedback shift register (LFSR) that satisfies uniquely a linear
recursion relationship between the n-k syndrome values and the co~

efficients of the error-locator polynomial.

o +

ep et Si+e-1 1 + Sigt = 0  (2-17)

where k < j < n-1-t.
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The Berlekamp-Massey algorithm uses as its inputs the error syndrome
values and provides an iterative method for synthesizing the shortest
LFSR that has the characteristic polynomial o(z). Once the LFSR has
been synthesized by this algorithm, it is necessary only to continue
its operation, with zero input, for an additional k shifts in order
to extrapolate the k unknown values of the error transform e(z).
These values are subtracted from the corresponding value of r(z) in

order to produce the corrected message, a(z).

2.3.1 Correction of Errors and Frasures

The previously described decoding algorithm has been concerned
only with correcting errors. A Reed-Solomon code can correct twice
as many erasures as errors: it can correct any pattcrn of t errors
and s erasures provided the inequality of equation (2-2) is satisfied.
A useful Reed-Solomon decoder should be capable of correcting both

errors and erasures.

A method of correction for errors and erasures is to initialize
the error-locator algorithm (Berlekamp-Massey) with the connection
polynomial computed from the known erasure locations, and then continue
the algorithm normally to synthesize an errata-locator polynomial
which is the product of the error-locator polynomial and the erasure-
locator polynomial [4]. Once the errata-locator polynomial is syn-
thesized, there is no further distinction between errors and erasures,
and the inverse transform of the errata pattern may be extrapolated
by free-running the synthesized LFSR as before. These values are
then subtracted from the corresponding values of r(z) in order to

decode the correct message.

The erasure-locator polynomial, 2(z), is defined as

S
A(z) = ﬂ (zX) = A+ _z+ ... 42z (2-18)




where s erasures have occurred, not exceeding the minimum-distance
bound of equation (2-2). The roots, ii’ designate the known erasure
locations forming a set that is disjoint from the error locations,
X.. The modified Berlekamp-Massey algorithm iteratively calculates
t;e errata-locator polynomial, T(z), which is the product of the

error-locator and erasure-locator polynomials:

S(z) = o(z) 2 (2) (2-19)

The errata-locator polvnomial is then used to generate the transform
of the channel errata pattern which is subtracted from the transform

of the received data to obtain the decoded message.

2.4 Transform Encoding and Decoding: Hardware Structures

The preceding view concerning the transform encoding and dernding
of Reed-Solomon codes was meant to be general in nature. The -equired
computational steps and procedures do not implyv uniqueness »f hardwure
implementation. For example, transform codeword generation requires
that n-k consecutive zeros be padded to the original k information
symbols in order to form the length-n message sequence. In section
2.2, the zero-padding was defined so that the k information svmbols,
and the remaining n-k coefficients were zero. This zero-padding
placement is not unique; the cyclic properties of the code result in
many possible zero-padding placements. Each results in a slightly
different design and physical implementation for the transform encoder

and decoder, without modifying the general algorithm.

There is also symmetry associated with transform encoding and
decoding. A forward transform may be defined for encoding; an inverse
transform would then be required for decoding. Alternately, an
inverse transform may be defined for encoding and a forward transform

for decoding. Either approach is correct: their hardware implementa-

tions differ.
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Regardless of the particular variations, all transform-based
encoders and decoders will have common characteristics. A represent-
ative block diagram of a communication system that uses transform
error-correction encoding and decoding techniques is shown in Figure 1.
The first step in encoding requires that the k information svmbols
be padded to n svmbols with n-k zeros. The second step in encoding
is the calculation of the n-point discrete forward (or inverse) linear
transtormation. These n symbols are then transmitted and corrupted
by noise in the channel., .~ the receiver, the noisv svmbols are
observed and the svmbols that are erasures are identified. The
received svmbols and the locations of the known erasure< are sent to
the decoder. The decoder first calculates the required n-point dis-
crete inverse (or forward) linear transformation. The known erasure
locations are used to initialize the errata-location section with
the erasure-locator polvnomial. The n-k syndrome values are separa-
ted from the transform of the received svmbols and are used as inputs
to the errata locator. This section calculates the errata-locator
polvnomial as in equation (2-19). The errata-location section then
calculates the transform of the errata that occur during transmission.
This data is subtracted from the transform of the received data, re-
covering the k original information symbols. The total number of
errors and erasures is assumed to be within the bound of the code

given in equation (2-2).
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SECTION TIT

A (255,k) REED-SOLOMON TRANSFORM ENCODER AND DECODER

A design at the detailed logic level of a transform encoder and
decoder for use with the Reed~Solomon class of symbol error-correcting
codes is described in this section. It is a computationally ¢tticient
implementation of the transtorm decoding algorithm described in
Volume I of this report (and summarized in section Il of this volume).
The encoder and decoder can implement a 255-symbol block-length code,
as well as many shorter codes. It is designated as the (255,k) en-

coder and decoder.

3.1 General Description

A usctul error-correcting encoder and decoder should operate with a
number of diftferent code parameters in order to be applicable to various
channel characteristics and svstem designs. The error controller's
hardvare implementatior must be capable of implementing different
block lengths and different symbol alphabets. To encode and decode
an (n,k) code constructed over GF(Zm), the hardware must implement
an n-point finite-field transform where each symbol in the transform
is represented by m bits. The ability to calculate transforms of
different lengths over different finite fields requires that the hard-
ware be able to implement algebraic operations that are defined in
the different fields. The essential algebraic operations that must
be implemented are field-element addition, multiplication, and inver-
sion. Field-element multiplication is defined uniquely for each
binary-extension field, and the hardware that implements multiplica-
tion in one field must be reconfigured to multiply correctly in
another. (See appendix A of this report for a more detailed descrip-

tion of GF(2™) multiplier structures.,) In general the implementation
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of a versatile encoder and decoder requires hardware reconfigurability

to operate successfully in different binary-extension fields.

Our implementation of the transform decoding algorithm was de-
signed to minimize the total number of binary-extension-field multi-
plications required for both encoding and decoding (4]. The (255,k)

encoder and decoder was designed to operate with serial input code sym-

bols so that many of the required finite-field multiplications can be
calculated sequentially in time using the same hardware. The resulting
architecture tends to minimize the total number of GF(Zm) multipliers
that have to be implemented, minimizing the amount of hardware recon-
figurability and the resulting hardware complexity required to accom-

modate the codes from the different binary-extension fields.

The natural partitioning of the transform decoding algorithm sep-
arates the decoder's structure into a transform section, an errata-
location section, and a control section. The encoding algorithm par-
titions the encoder into a transform section and a control section.

We developed the logical design of a general transformer that imple-
ments a computationally efficient number-theoretic transform algorithm
[10]. The transform section was designed to calculate both a forward
and an inverse discrete transform over the fields of interest. The
same structure can be used for both encoding and decoding, resulting
in a considerable saving in hardware design and fabrication, thus

rendering it suitable for a VLSI chip-set implementation.

The control section provides data management to the transform
and errata-location sections. This control can be implemented using
standard TTL logic or dedicated LSI or VLSI circuitry. Control also
could be provided by use of a software-programmable microprocessor.
This report is not concerned further with the detailed design of the

control section. The architectural design of the transform and

errata-location sections, which carry out the major computational steps

in the encoding and decoding algorithms, are emphasized in this section.
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The hardware complexity associated with both the transform

section and the errata-location section is such that each section
could be implemented using a single VLSI monolithic device [11].

This level of complexity is fundamental to the concept of a versatile
encoder and decoder. Since the same transformer can be used for com-
puting either a forward or an inverse discrete transform, a complete
encoder and decoder can be implemented using only two devices. A
transform "chip” and an errata-location "chip" would be required for
decoding, while only the transform "chip" would be required for
encoding. The hardware necessary to perform encoding is inherently

contained within the hardware required for decoding.

3.1.1 Coding Capabilities

The (255,k) Reed-Solomon encoder and decoder was designed to
nrovide a selection of useful codes while containing the complexity l
of the projected hardware. The range of Reed-Solomon codes that
can be processed bv the (255,k) encoder and decoder design is shown
in Table I. These codes represent a large number of both maximum
and submaximum length codes over GF(Zm) where the symbol represen-

tation, m, ranges from four to eight bits,

The errata-location section's architecture is bit-slice and
expandable to accommodate any code rate; each symbol used for
redundancy requires a corresponding hardware slice within the de-
coder. However, it is desirable that the errata-locator be imple-
mentable as a single integrated circuit, and this requirement re-
stricts the errata-locator's implementation to a size (total number
of transistors) that can process a maximum of 128 symbols used for
redundancy. Since Reed-Solomon codes are maximum distance separable
codes, this restricts the largest value of dmin to 129 and equiva-
lently restricts the largest number of syndrome symbols to 128. The

(255,k) decoder is consequently designed to operate with a maximum of
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of 128 svndrome symbols, regardless of code block size. For a Reed-

Solomon (n,k) code, the number of syndrome symbols is (n-k). Accordingly,

the (255,k) decoder can correct all combinations of t errors, and s

erasures, provided the ineqality

2t + s« n-k < 128 (3-1)

is satisfied.

The Reed-Solomon (255,k) encoder and decoder design can accom-
modate 588 distinct codes defined by different allowed choices of the
parameters n and k. This number is derived from the maximum number
of svndrome symbols and the variety of code classes that can be pro-
cessed. For example, the (255,k) class of codes, constructed over
GF(28), represents a family of codes whose block length is fixed at
255 svmbols but whose number of information symbols, k, is a variable.
The design trade-offs which restrict the maximum number of allowable
syndrome symbols to 128 define a total of 128 distinct codes in this
class (i.e., k can range from 127 to 255). For the other families of
(n,k) codes shown in Table I, k can range from 1 to n. Some of these
codes are trivial but most are not. Table II indicates the seventeen
approximately half-rate codes that can be accommodated by the (255,k)

encoder and decoder's design.

3.2 (255,k) Transform Encoder and Decoder Architecture

The (255,k) encoder and decoder is partitioned into a transform
section and an errata-location section. The transform section imple-
ments either a forward or an inverse n-point discrete transform and it
is used for either encoding or decoding. The errata-location section
implements a modif ied version of the Berlekamp-Massey minimal-length

I.LFSR synthesis algorithm, This algorithm, used for decoding, corrects

erasures as well as errors. Both the transform section and the errata-
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Table I1

Half-Rate Codes Accommodated by the (255,k)

Reed-Solomon Transform Decoder

CODE BITS PER SYMBOL
(n,k) m

(255, 127) 8

(127, 63) 7

(85, 42) 8

(63, 31) 6

(51, 25) 8

(31, 15) 5

(21, 10) 6

(17, 8) 8

(15, 7) 8, 4

(9, 4) 6

(7, 3) 6

(5, 2) 8, 4

(3, 1) 8, 4, 6

31




location section are reconfigurable to operate over the binary-exten-

sion fields, GF(2m), with m ranging from four to eight bits.

3.2.1 Transform Section

The range of transforms that can be calculated by the transform
section of the (255,k) encoder and decoder is shown in the Table III.
This table indicates the number of symbols in the transform, n, the
number of bits per symbol, m, (specifving the field of operation GF(Bm)),
and the kernel of the transform, aK. For an n-point transform over
GF(Zm), the kernel is an nth root of unity, that is, aK is an element
of GF(2™ of multiplicative order n, so that n is the least integer for

K
which « n =1,

. m
To calculate an n-point forward transform over GF(2 ) the trans-

form section must implement

where,

Aj’ a; ¢ GF(Zm) ; 0 <i, j <n-1

and aK £ CF(Zm), with multiplicative order n.
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Table III

Transform Capabilities of (255,k) Decoder's Transform Section

Transform Size Bits Per Symbol Kernel of Transform
n m o
255 8 al
127 7 al
85 8 a3
63 6 al
51 8 as
31 5 al
21 6 a3
17 8 o
15 8 ot
15 4 o
9 6 a7
7 6 ag
5 8 0LSl
5 4 o
3 8 a85
3 6 a21
3 4 o
33




As mentioned in section II, a forward transform can be interpreted

as polynomial evaluation, which can be represented as

Aj = a(aKj) H j=0, 1, ..., n~1

where a(x) is an (n-1)th degree polynomial over GF(Zm).

(3-3)

To calculate an inverse n-point finite-field transform, over

GF(Zm), the transform section must implement:

n-1 .,
a, = }2 A, a_KiJ ;  i=0, 1, ..., n-1
i — 3
j=0
or equivalently,
a = AT =0, 1, ..., n-1

where A(z) is an {n-1)th degree polynomial defined over GF(Zm).

(3-4)

(3-5)

To calculate either a forward or an inverse finite-~field trans-

form the transform section implements a polynomial evaluation algor-

ithm. To calculate a forward n-point transform, over GF(Zm), the

transform section evaluates an (n-l1)th degree polynomial at the n

distinct powers of the element aK. To calculate an n-point inverse
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finite-field transform over the same field, the transform section
still evaluates an (n-1)th degree polynomial at the n distinct powers

of the element aK, but the order of evaluation is reversed since
a-Kl - OLl((n--!l,)

The transform section implements a computationally efficient
algorithm for polynomial evaluation. For an n-point transform, the
n points to be transformed are defined as the coefficients of an
(n-1)th degree polynomial over GF(Zm). This data polynomial is divided
by a set of polynomials of smaller degree whose roots are conjugate
sets of the n distinct powers of aK. Each remainder polynomial, or
residue polynomial, is then evaluated at each of the conjugate roots
of its corresponding divisor polynomial in order to obtain the trans-
formed points. The set of divisor polynomials is the same for either a
forward or an inverse transform; the order of evaluation determines

which transform is being calculated.

An n-point transform pair is defined on GF(Zm) if n divides
2™-1. 1Ifn equals Zm-l, then the transform is maximum-length, the
set of divisor polynomials is the set of all minimal polynomials
associated with GF(Zm), and the n points of evaluation are the 2"

non-zero field elements. If ¥ is greater than one where Kn = Zm—L

then the transform is submaximum~length and the set of divisor poly-

nomials is defined as the set of minimal polynomials that have the n

distinct powers of aK as roots. The points at which the residue poly-

'

. K
nomials are evaluated are the n powers of o .




[n order to evaluate an i~th degree remainder polynomial at the

. i - . . ,
point «”, the following equation is implemented.

. - :
r(d) =g+ 1)+, 4+ ) (3-6)
This is equivalent to a continued product expansion

3y = (ooe(r,dd Ie.. ]
r(a?) = (roo(rpan trp glet * +rda” +rg (3-7)

This expansion can be effectively implemented using an extension
field multiplier and accumulator as a polynomial evaluator. The
symbol errata-locator requires one transformed symbol at a time, and
the transform section is required to supply sequentjally-calculated
transform points. A single polynomial-evaluator circuit may be

multiplexed to calculate the desired n transform symbols.

The operation of the transform section can be partitioned inteo
two functions. The transformer first divides the (n-1)th degree
data polynomial simultaneously by all minimal polynomials of the
elements of GF(Zm). Then, each point in the transform is sequentially
calculated by evaluating the appropriate residue polynomial at the
corresponding element in the field. The order of evaluation determines
whether the transform is forward or inverse. A block diagram of the
transform section is shown in Figure 2. In this figure, the transform
section is partitioned into a polynomial residue calculator, a
multiplexer, a polynomial residue evaluator, and an arithmetic

controller.
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3.2.1.1 Polynomial Residue Calculator. As a first step in calculating

an n-point transform over GF(2m) the polvnomial residue calculator
simultaneously divides the polynomial representing the data to be
transformed by all minimal polynomials of the elements of Gr(2™) .
Polynomial division is implemented with LFSRs whose feedback-connection
polynomials are defined to be the divisor polynomials. The fast
polynomial evaluation algorithm defines the divisor polvnomials to he
the minimal irreducible polvnomials from the finite field of operation.
This means that the Jdivisor polvnomials for the residue calculators are
irreducible over GF(2) and the coefficients of the corresponding LFSR's
feedback connection polvnomials are restricted to either one or zero.
Therefore, there are no extension-field multiplications required to
implement the division portion of the fast polynomial evsluation algorithm.
Division can be implemented using only scalar multiplication (bv either
zero or one) and GF(2) (modulo-two) addition.

The polynomial residue calculator is capable cof dividing by all
the minimal polynomials in GF(Zm), where m=4,5,6,7, and 8. A complete
list of these polvromials is presented in Tables IV~1 through
IV-3. There are a total of 66 polynomials for the five different
binary-extension fields. In order to provide all of the transform
capabilities indicated in Table iII,the polynomial residue calculator
must be capable of dividing by all 66 minimal polynomials: however,
only simultaneous division by the polynomials from the field of
operation is required for calculating a particular transform. The
binary-extension field GF(ZB) has the largest number of minimal polv-
nomials; there are 35 divider circuits to be implemented for transfor-
mation in this field. The key to minimizing the residue calculator's
hardware is to design these 35 circuits to be reconfigurable in order
to provide for division by the remaining 31 minimal polynomials needed

for transformation in the four other finite fields.

To facilitate the description of the residue calculator's
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Table IV - 2

Minimal Irreducible Polynomials over GF(27)

_ H 2 3 4 5 6 7
mi(z) = my + mlz + myz + m3z + m,z + msz + m6z + m7z

Polynomial m m m, m m m m m

0 i 4 3 4 5 6 7
! ny  (2) 1 ] 0 0 0 0 o 0
; my (z) 1 0 0 1 0 0 0 1
my (z) i 1 1 1 0 0 0 1
me (z) 1 0 1 1 1 0 0 1
m7 (z) 1 i i 0 1 1 1 !
Mg (2z) 1 1 1 1 1 1 0 1
my (z) 1 0 1 0 1 0 13 1
ml3 (z) 1 1 0 0 0 0 0 1
™5 (z) 1 1 1 1 0 1 1 1
ml9 (z) 1 1 0 1 0 0 1 1
m5) (2) 1 0 1 0 0 1 1 1
m53 (z) 1 ¢} 0 0 0 0 1 1
M5 (2) 1 1 0 0 1 0 1 1
m29 (z) 1 1 0 1 0 1 0 1
m31 (z) 1 0 0 0 1 i 1 1 1
m,3 (z) 1 1 1 0 (o] 1 0 1
m[‘7 (z) 1 0 0 1 1 1 0 i
Mg« (z) [{ 0 1 1 1 1 1 1
m63 (z) 1 0 0 0 1 0 0 1

Minimal Irreducible Polynomials over GF(26)

. 1 3 4 5
mi(z)=m0+mz + m +m,z  +m2z +m.z + mz

1 2 3 4 5 6
Polynomial M m m, m3 m, me Mg
m 1 1 0 0 0 0 0
m(l) 1 1 0 0 0 0 I\
m 1 1 1 0 1 0 1
mg 1 1 1 0 0 1 1

: m 1 0 0 1 0 0 1

" m’ 1 0 1 1 0 0 0
n 1 0 1 1 0 1 1
mik ) 1 0 1 1 0 1
ni3 1 0 ) 0 1 ] 1
mid i 1 1 0 0 0 0
ml 1 1 0 0 1 1 1
m%? 1 1 0 1 0 0 0
may 1 0 0 0 0 1 1

40




Table IV - 3

Minimal Irreducible Polynomials over GF(ZS)

_ 1 2 3 4 5
mi(z) =mg + mz + m,z + m,2 + m,z + mg2

Polynomial m m m m m m

0 1 2 3 4 5
M 1 1 0 0 0 0
m; 1 0 1 0 0 1
my 1 0 1 1 1 1
mg 1 1 1 0 1 1
m 1 1 1 1 0 1
m 1 1 0 1 1 1
m < 1 0 0 1 0 1

Minimal Irreducible Polynomials over CF(ZA)

_ 1 2 3
mi(z) = my + m,z + mzz + m3z + mAZ

Polynomial my m m2 m3 m,
my 1 1 0 0 0
m 1 1 0 0 1
mq 1 1 1 1 1
me 1 1 1 0 0
my 1 0 0] 1 1
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architecture, it is advantageous to examine the structure used to
implement polynomial division. Figure 3 shows the structure of an
LFSR that is used to perform polynomial division. (A detailed
description of the operation of this circuit can be found in Chapter
7 of reference [1] .} The circuit shown is designed to divide by
the polynomial M95 = X g x +x + x3 + x + x + 1, which is a mini-
mal polynomial from GF(2 ). The positions of the feedback taps are
determined by the coefficients of the divisor polynomial. In order
to perform division, the registers are all cleared to zero, and the
data representing the polynomial to be divided is fed sequentially
into the shift register. After the last symbol is entered, the
remainder polynomial, or residue polynomial, is stored in the registers
of the divider circuit. This residue, R(x) = RO + Rlx + ...+ R7x7,
is required for completion of the fast polynomial evaluation algorithm.
The structure shown in Figure 3 is designed to operate with
symbols from GF(28): the data lines are eight wide, the delay stages
are eight registers deep, and the Exclusive-OR circuits operate with
eight-bit words. Since the divisor polynomial contains only either
zero or one as coefficients, the circuit shown in Figure 3 can be
interpreted as eight identical binary feedback shift registers (BFSRs),
each circuit.capable of accommodating a single bit of each eight-bit
input symbol. Each of the eight BFSRs contains delav stages that
are only one bit deep, and the modulo-two adders are two-input binary
Exclusive~OR gates, forming eight identical "slices", each physically

separate from its seven companions.

All 35 minimal polynomials from GF(28) can be implemented using
circuits that are similar to the structure shown in Figure 3. 1In
order to implement the polynomial division in GF(28), a total of eight
identical slices of hardware is required for each polynomial. Each
slice contains 35 different BFSRs with each shift register having a

maximum length of eight stages.
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There are two fundamental problems associated with designing the
35 divider circuits required for operation in GF(28) to be reconfig-

urable to operate in the other finite fields. First of all, the

different fields of operation have symbol sizes that range from four Lo
eight bits, and the divider circuits must be capable of operating with
these different symbol sizes. Secondly, the circuiits must be recon-
figurable to provide for division by different divisor polynomials.

The positions of the feedback taps as well as the lengths of the reg~
isters are subject to reconfigurability. Both problems are made more
difficult because of the desire to design the divider circuits to be

as versatile as possible, but we would also like to keep the total
amount of hardware at a reasonable level without incurring a large

overhead for reconfigurability.

The necessity to operate with different symbol sizes is a con-
sideration that recurs throughout the design of both the transform
section and errata-location section. Qur approach is to define a
standard symbol size of eight bits and design all hardware to accom-
modate this symbol size and to be programmable for smaller fields.
Since the hardware must accommodate symbols from GF(28), no addition-
al hardware ‘s required when defining an eight-bit standard symbol,

but some overhead is incurred for reconfigurability.

Any symbol from the field GF(Zm) can be represented as an m bit
sequence
qk v GF(2™) « {wg, wt, teey, mkm-l}
where (3-8)
wt v GF(2) i=0, 1, ..., m-1.
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Any symbol from GF(2m), where m < 8, can be represented as a binary
eight-tuple where some of the bits are set to zero. We have defined
our standard symbol as an eight-bit word such that ak is represented

as

«& & or(2™
P K
a = {ao, Ars wees a4 0, s, 0} (3-9)
N———
m 8-m

Tle notation of equation (3~9) will be frequently referred to as our

"standard" symbol in this report.

When the residue calculator is operating with symbols from GF(Zm),
where m<8, our definition of standard symbol size results in zeros
being fed into the 8-m slices corresponding to the bit-positions
greater than m-l1. The operation of the BFSRs associated with these

zeros has no effect on the m slices required for the desired division.

The problem of designing the 35 divider circuits to be reconfig-
urable to provide division by all necessary minimal polynomials reduces
to the problem of designing 35 BFSRs to be reconfigurable for the
required division. The design can then be repeated eight times to
obtain the parallel structure for the eight-bit polynomial residue

calculator.

A goal associated with the design of a reconfigurable-~divider
circuit is to minimize the amount of hardware required for program-
mability. The design must be reconfigurable to accommodate different
divisor polynomials of varying length. Minimizing the amount of hard-
ware required for reconfigurability is roughly equivalent to minimizing

the number of programmable feedback taps. Each programmable feed-
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back tap allows the connection of a shift register's output to the
particular stage where the tap is located. The hardware associated
with a programmable tap must be repeated on all eight slices, and
accompanying discrete logic or memory must be dedicated to control

the operation of each programmable tap.

Two techniques can be combined to minimize the amount of hardware
required for programming the BFSRs. Both techniques exploit the fact
that the maximum degree of a minimal polynomial from GF(2m) is m.

The divider circuits are designed originally to implement simultaneous
division by the 35 minimal polynomials in GF(ZB). A subset of these
circuits is required to be reconfigurable in order to implement division
by the 19 minimal polynomials in GF(27). A second subset of the
original circuit is required to be reconfigurable for operation in
GF(26). A third and fourth subset are required for operation in GF(ZS)
and GF(ZQ). Each of the four subsets requires BFSRs that are shorter

in length then the eight stages required for operation in GF(28).

The first minimization design technique is to group minimal
polvnomials from different fields that have identical or similar
coefficients. Programmable taps are only required where discrepancies
between tap weights occur. The second minimization technique is to
design the output tap of each shift register to be programmable so
that division by polynomials of different degrees can be implemented

in the same circuit.

An illustrative example helps to clarify these concepts., Figure
4-a shows the logic level design of a BFSR that represents a single
slice of a divider circuit suitable for use in the polynomial residue
calculator. The circuit consists of an eight-stage feedback shift
register whose output tap can be selected from one of five locations.
The output multiplexer selects the position of the output tap that
defines the feedback connection polynomial (divisor polynomial). The
reconfigurability of this circuit for division in the different fields

is shown in Table V., 46
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TABLE V

Programmability of Binary Feedback Shift Register: Figure 4

Field of
Figure Operation Divisor Polynomial
4-b GF(28) M95(X) =1+ x + xz + x3 + x4 + x7 + x8
4-c GF(27) M3 (x) = 1+ x + x2 + x3 + x7
4 6F (2% My () = 1+ x
b4-e GF(ZS) M7 (x) =1+ x + x2 + x3 + x5
4ot cr(2") My (0 = L4 x+x 4 +x

S U I

Each of the original 35 divider circuits can be designed in a
manner similar to that shown in Figure 4. Unfortunately, there is
no readily apparent systematic method for assigning subsets and feed-
back taps. However, the design methodology results in hardware-
efficient structures. The (51,k) breadboard to be described in section
IV was designed to accommodate a large subset of the codes that can
be processed by the (255,k) encoder and decoder. The breadboard's
polynomial residue calculator was designed using the minimization
techniques described in this section, and only three programmable

taps were required, one on each of three separate divider circuits.

The fundamental structure of the polynomial residue calculator
consists of eight identical slices of hardware. Each slice consists
of 35 BFSRs, each being reconfigurable to provide for division by a

set of different-length divisor polynomials. The maximum-length
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divisor polynomial that can be implemented has degree eight; conse-
quently, the maximum length of any feedback shift register is eight.

The polynomial to be divided is fed sequentially into all 35 divider
circuits. Division is completed after the last coefficient of the data
polynomial has been entered. At this time, the calculated residue
polynomials are stored within the delay stages of the divider circuits.
These residue polynomials are transferred into a temporary holding
memory, and the divider circuits are available for processing the

next block of data. The residue polynomials are then available in
temporary memory for further processing for completion of the fast
polynomial evaluation algorithm. In this manner, the polynomial residue
calculator can be thought of as pipelined, capable of simultaneously
operating on two contiguous blocks of n symbols, thus accepting a con-

tinuous input stream.

3.2.1.2 Polynomial Residue Evaluator. The polynomial residue evaluator

implements the second portion of the polynomial-evaluation algorithm.
For operation in GF(2") (regardless of code block size), the polynomial
residue calculator provides the residue evaluator with the remainder
polynomials that result from the division of the input data sequence
by all the minimal polynomials in GF(Zm). The residue evaluator
sequentially calculates each point in the n-point transformation by
selecting a predetermined residue polynomial and evaluating that
residue at a root of its corresponding divisor polynomial. By defini~
tion, the point of evaluation is a power of aK. If the transform is
of maximum length, n=2m—l, then the residue associated with each
minimal polynomial in the field will be used at least once. If the
transform is submaximum, anm—l, then the residues associated with

a subset of the minimal polynomials from GF(Zm) will be used. Table
VI indicates the subsets of minimal polynomials associated with each

of the transforms listed in Table III.

The only difference between the computation of a forward and an

inverse n-point transform over GF(Zm) is the order in which the trans-
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Table VI

Transforms over GF(Zm)

i Field Of Transform Length Required Minimal Polynomial |
Calculation N Divisors 1
-]
8 T B '
GF(2°) 255 m. (z), m,  (2), m, (z), |
0 1 3 .
mg  (2), my;  (2), my (2), :
( my (z), L (z), LS (z), |
! m (z), Mg (2), m55 (2), ?
, 2
mys  (2), mys (2), mys (2), ‘
Mg (2), ma) (z), m§7 (z), ;
| Myg (2) myy (2), mo (2), 1 :
| ! m, (z)’ me (2), My (z), ) !
; , Meo (z). mag (2), My (z), | *
! ! m (z), m (z), m (z), [
' : 63 85 87 (z)
! | m9) E;; "9s (j_; " e
| ! 119 %> Mgy VD 9
| 85 m, (2, my (), g (@), |
; ms (z), my (z), m,, (2), | }
j myg (@), mo (2), myy (2), !
,‘] m63 (2)1 m87 (2)9 mlll (Z)i l
! il
i | S — ]
? ' 51 m (z), m (z), m (2), |
' ‘“gs (), ‘“25 (2, “’f]sf; (2), |
mee  (2), My (z), i
17 my  (2), mps (@), m (2) [
f l
| 15 m (z), m 5 (2), Mgy (z), !
: mgs  (2)s myg (2) |
i
; 5 mg (z), Mey (z) 5
| 3 ™y (z), Mg (z)
GF(27) 127 mg (2), m (z), m, (z),
' m (z), my, (z), m (2),
5 7 9
m (z), m 3 (2), mys  (2),
™ (z), m21’ (2) Moy (z),
mys (z), m29' (2) myy  (2),
™3 (z), m47’ (z) L (2)
me3 (z), ’




Table VI (Concluded)

Transforms over GF(2m)

Field of Transform Length Required Minimal Polynomial
Calculation N Divisors
cF(2%) 63 m. (z), m (z), m, (z),
0 1 3
mg (2), m, (z), my (z),
mll (Z), m13 (Z)a mlS (Z)!
y, m.o (2), m.2 (2),
™21 EZ)' 23 > M7
myy (2
21 m. (2), m, (2), m, (z),
0 ’ 3 9
m (z), my, (z), m,5 (z)
9 my (2), my (2), my; (2)
7 m (z), mg (2), Mg (2)
3 m, (2), m,, (2)
GF(2”) 31 ng (2), m (2), m, (2),
mg (z), my (z), miy (z),
myg (2)
GF(2%) 15 my (z), m (z), mg (z),
m. (z), m, (z)
5 7
5 my (z), m, (2)
3 m, (2), mg (2)
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forme«. ,ymbols are calculated. This is a bookkeeping matter irrelc.ant
to the architecture and operation of the residue calculator. The

order of evaluation is determined by the arithmetic controller. For
each transform point, the controller (see section 3.2.1.3) provides

the residue evaluator with all the information needed to implement

the polynomial evaluation algorithm.

A block diagram of the polynomial residue evaluator is shown in
Figure 5. For each point in the transform, the polynomial residue
evaluator performs two major operations. First, the input multiplexer
selects a residue polynomial from the residue calculator. Secondly,
the residue evaluator calculates each point in the transform by
evaluating the selected residue using a multiplier and accumulator
defined for GF(2™). The central components of the polynomial residue
evaluator are the GF(Zm) multiplier and accumulator. The remainder
of this section will concentrate on a description of their design and

operation.

The residue evaluator implements polynomial evaluation using the
continued product expansion of equation (3-7). The expansion is well-
suited for sequential implementation using the GF(Zm) multiplier
and accumulator shown in Figure 5. 1In order to compute all the trans-
forms shown in Table IT1, the residue evaluator must be capable of
operation in all five binary extension fields. Using our standard
symbol notation, equation (3-9), the accumulator is easily imple-
mented using eight two-input Exclusive-OR gates. (The padding of
zeros for fields with m<8 automatically produces the correct results.)
The multiplier structure chosen for use in the residue evaluator is
an asynchronous array GF(2m) multiplier (described in appendix A of
this report). This multiplier is the processing bottleneck within
the transform section, and the array-tvpe structure offers the fastest
multiplication rates. However, a penalty is paid for this speed
because the hardware implementation of the array-type structure
requires the maximum number of gates of all CF(Zm) multiplier struc-
ture alternatives, but note that the GF(Zm) multiplier required for

52
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the residue evaluator section is used to perform the only extension-
field multiplications in the transform architecture. Also, it will

be shown that exactly the same GF(Zm) multiplier structure is used

to implement a critical portion of the errata-location section. The
careful analysis and design of this multiplier results in a functional
module whose usefulness overshadows the disadvantages associated with

its complexity.

The operation of the polynomial residue evaluator can be de-
scrived with an example. To calculate a peint in the transform, the
arithmetic controller supplies the polynomial residue calculator with
(1) the necessary information to obtain the predetermined residue
polynomial, (2) the degree of that particular residue polynomial, 5,

K
and (3) the power of the kernel o b= ap, at which the residue is to

re

be evaluated. The residue evaluator is required to implement the

expression

Py _ P (2-1)p _
R(a") RO + Rlu + ... + RQ—lu (3-10)

The coefficients of the residue polynomial are stored in a temporary
memory within the residue calculator. The information provided by
the arithmetic controller selects the appropriate memory locations,
and serially feeds these coefficients, most significant coefficient
first, into the multiplier and accumulator circuitry. The input
latch (see Figure 5) is initially cleared to zero, and therefore the
output of the programmable GF(Zm) multiplier is also zero. The point
of evaluation, ap, is latched into the evaluation latch. The most
significant coefficient of the residue polynomial is fed unchanged

through the accumulator and latched in the input latch. After pro-

cessing delay, the output of the asynchronous multiplier is (RQ_lap).




This output is fed back into one input of the accumulator. Simul-
taneously, the next most significant coefficient is retrieved from
the temporary memory and fed to the accumulator. The next output

of the accumulator, (Ri—lap

+ RQ—Z)’ is held in the input latch and
asynchronously multiplied with o . This process continues (2-1)

times until the input latch contains

(+«++(R. .aP + R, DaP + -+ lep+RO= R(?) (3-11)

which is the evaluated polynomial. This data, or transformed svmbol,
is latched into the residue evaluator's output latch where it can be
shifted out of the transform section for further processing. The
entire process is repeated n times in order to compute an n-polnt
transform. After each symbol is calculated, the input latch (Figure

5) must be cleared to zero.

3.2.1.3 Arithmetic Controller. The arithmetic controller provides

all timing and control signals required to operate the transform sec-
tion. As mentioned previously, the calculations implemented by both
the polynomial residue calculator and polynomial residue evaluator are
independent of whether a forward or an inverse transformation is per-
formed. The arithmetic controller determines the order of the evalu-

ation and therefore dictates the type of transform to be computed.

The arithmetic controller requires specific input data to pro-
vide management for the transformer. The controller needs to know
whether the transformer is to be used for encoding (forward transform)
or decoding (inverse transform). Also, the controller needs to know
which code is being processed and the fieid in which the code is
defined. From this information, the arithmetic controller generates

the order of computation for the transform and its kernel.
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The arithmetic controller provides minimal control to the poly-
nonial residue calculator. For operation in a particular field, the

controller reconfigures the LFSRs to divide by all the minimal poly-

nomials within that field. The controller selects the shift register's

output tap (via the output multiplexer) for each divider circuit and
the controller alse programs the necessary feedback taps. The con-~
trols for the polvnomial residue calculator are static; once the code
and field of vperation are defined, the circuits are programmed and

thev remain unchanved for the duration of the transform calculation.

Primarilyv, the arithmetic controller manages the polvnomial
residue evaluator. Once the field of operation is defined, the
controller reconfigures the CF(Zm) multiplier to operate in that
field. The multiplier remains in this configuration for the duration
of the transform calculation. However, for each point in the trans-
form, the controller must supply the residue calculator with the data
required to select the predetermined residue polynomial. The con-
troller must also provide the degree of that residue as well as the
point of evaluation. These sets of control signals are dynamic;

they change for the calculation of each transform point.

The arithmetic controller could be implemented with any of a
number of hardware structures, including microprocessor controlled
hardware. However, high throughput in the transformer warrants a
high-speed controller. The controller architecture that is described
in the following paragraphs was implemented in the (51,k) encoder

and decoder breadboard.

The major function that must be implemented by the controller
is the dynamic generation of the data required to calculate each
individual transformed symbol. The static control required for each
code can be easily generated with discrete combinational logic. A

block diagram of an arithmetic controller is shown in Figure 6. The
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inputs for the controller are an encode/decode signal, the field of
operation GF(2m), and the chosen code parameters (n,k). For each
transformed svmbol, the arithmetic controller generates three pieces
of information: the address used by the residue evaluator's input
multiplexer to select the predetermined residue polynomial, the depree
of that residue polvnomial, and the field element at which the poly-
nomia® is to be evaluated. The controller consists of preprogrammed
memory and a programmable memory address generator. The memorv is
partitioned into two separate storage areas that have a common address.
One memory section contains the field elements associated with each
field and the other contains the information required to select and
evaluate the residue polynomials. Within a given field, a particular
element is a root of only one minimal polynomial. Therefore, for
polvnomial evaluation there exists a one-to-one relationship between
any field element and its associated residue polynomial. VWhen a field
element is selected in one memory sectiun, the data associated with

its residue polvnomial is selected in the other memory.

There are 2"-1 nonzero field elements in the field GF(Zm).
These elements can be designated as w9, ul, nz, ey a?m'r. Our
eight~bit standard svmbol representation (equation (3-9)) of each
element, ‘i, f rom GF(Zm) is stored in memory location 2™+i.  The
field element mo from GF(2™ is an important evaluation point. 1t
is stored in memory location 2™ and it is also stored in the memory

. m m Sm+1 o . . . .
location 2 + 27 -1 2 1. The residue-polynomial information
corresponding to each field element is similarly stored in the second

memory.

The programmable memory address generator consists of an initial-

ization circuit, a transform kernel generator, and a programmable up-
m .

down counter. For a forward n-point transform over GF(2 ), the field

elements required for evaluation in the fast polynomial algorithm

K 2K (n-1)K
, N X

0 .
are (u , 1 ). The memory address corresponding

y eeegy ¢
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to these field elements is generated by initializing the up-down
counter to the memory location 2™, and then incrementing the counter
by K for each point in the transform. Tor an inverse n-point trans-
form over GF(Zm), the field elements required for evaluation are

(ao a(n-l)K, a(n_Z)k, RN a2k, aK). The memory address corresponding

’

to these elements are generated by initializing the up~down counter
. mt1 .

to memory location 2 -1 and then decrementing the counter by K for

each point in the transform.

3.2.2 The Errata-Location Section

The errata-location section implements a modified version of the

Berlekamp-Massey minimal length shift register synthesis algorithm

to correct symbol errors and symbol erasures. First, this section
uses the known erasure locations to calculate the erasure-locator
polynomial. Then, the same hardware uses the error syndrome values
to iteratively calculate the errata-locator polynomial. Finally,

the errata~locator polynomial is used to generate the transform of
the errata pattern which is subtracted from the transform of the

received codeword in order to recover the original message.

The modified Berlekamp-Massey decoding algorithm was presented
in Volume 1 and was reviewed in section IT of this volume. 1In order
to describe the hardware required to implement the errata-location
section we define the decoding algorithm as a step-by-step procedure
and ther. describe the implementation of each computation. This
detailed decoding procedure is shown in Figure 7 and uses the notation
defined in Table VII. The procedure of Figure 7 uses a forward trans-
form for decoding (an inverse transform is defined for encoding), and
the error syndrome symbols are defined as the first n-k symbols in
the transform of the received sequence., (During encoding, the k
information symbols are the k highest coefficients in the (n-1)th

degree message polynomial.)
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{ Table VII
H
i Decoding Algorithm Variables
l
. (Notation)
1 Volume 1 Volume II, Figure 7
} Notation Notation Description
| 4 X = z—l Change in Variable
r N
d d( ) Discrepancy
" b(N) Previous Discrepancy
+1
o(r )(z) A(N)(x) Present Connection
Polynomial
c(m)(z) B(N)(x) Previous Counection
Polynomial
L L(N)+v Length of Present
Connection Polynomial
- i
Xi c Known Erasure Locations
Al




A

T ————

The decoding algorithm shown in Figure 7 is required to ocperate
for n iterations. During the first v iterations, the known erasure
locations are used to construct sequentially the erasure-locator
polynomial. When the algorithm first branches to step (6), the poly-
nomials A{v—l)(x) and B(v_l)(x) are both the erasure~locator poly-
nomial. At the conclusion of the (n-k)th iteration, the polynomial
A(n-k_l)(x) is the errata-locator polynomial. This polynomial is
held constant for the remainder of the algorithm and the generated

12 e ﬁk-l} is the recovered information.

set {ﬁo, M
A block diagram of the errata-location section is shown in
Figure 8. The decision and control circuitry implied by the decoding

algorithm are not shown in this figure but are implicit in the
circuit operation. Both the algorithm presented in Figure 7 and
the structure shown in Figure 8 are independent of the field of

operation; the arithmetic operations specified in the algorithm and I

implemented in the block diagram are implicitly field-dependent.

Three major computational steps implement the decoding algorithm
as shown in Figure 7:

o The first computation corresponds to step (6) and is the

; . N
calculation of the present discremancy, d( ).

e The second calculation corresponds to steps (3) and (8)
and is the calculation of the present feedback connection

polynomial, A(N)(x). H

e The remaining calculation updates the previous feedback

connection polynomial B(N)(x) to one of three values; |
NGy, A DGy, o 1™ 0.

The present discrepancy is always calculated prior to calculating the ]

present feedback connection polynomial which in turn is calculated
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before updating the previous feedback connection polynomial. The

hardware that implements these calculations is described in the

remainder of this section.

(N)

3.2.2.1 Calculation of d . During each of the first n-k iterations

)

- . . . N
of the decodiny algorithm, the present discrepancy d( must be

geiterated.  For the first v iterations, the known erasure locations,

(N)-

YD. are substituted for d The erasure locations serve as inputs

to the present discrepancy latch (sce Figure 8)., Once all erasure
locations have been used as inputs, the presont discrepancy is cal-

culated as

L(N-l)

: SO
Mo v Y (D (3-12)
A i=1 -

N-1
which corresponds to the convolution of the L(?\I ) + v + 1 most

recent syndrome values {S_, S y eees S (N-1) } and the coeffi-
N N-1 N-L -V N-1)
cients of the present feedback-connection polynomial A (x). The

portion of the structure shown in Figure 8 that is used to implement
this correlation is repeated in Figure 9. 1In this figure, the

N-1 .
L( ) + v + 1 most recent syndrome values are held in the syndrome

register, while the coefficients of A(N_l)(x) are held in the present

feedback-polyronial register. Each of the syndrome values

is multiplied with a corresponding coefficient of the feedback
connection polynomial and the L(N_l) + v + 1 product terms are
summed to produce d(N). Each of the pairwise products between the

syndrome register and the connection polynomial register is a multi-

plication in GF(Zm), and L(N—]) + v + 1 field-dependent multipliers

are required for this direct implerentation. The structure shown in

Figure 9 illustrates the computational steps required to calculate
(N)
d .

the hardware is complex and may be simplified.
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The (255,k) encoder and decoder's present discrepancy calculator

is shown in Figure 10. This structure implements sequential finite-
field multiplication so that only one CF(Zm) multiplier structure is
required. In Figure 10, each syndrome value and polynomial coefficient
is represented using our standard eight-bit symbol notation, (equation
3-9). The calculation of the present discrepancy, cquation (3-12),

can be expanded as

() L e g 7D\ S
) . - . . * )
a ) a (3-13a)
7 1‘(:\_J)+\) 7 (N-1) . -
- < -~ . A 3 - )
= SN + Z 5N—i,7—k Z_: b X X mod p(x)
k=0 i=0 2=0

(3~13b)

where p(x) is the primitive polynomial that generates GF(Zm), S

N-i,k
is the k-th bit in the eight-bit representation of SN—i and
N- ; S . . . N-1)
Aéan) is the {-th bit in the eight-bit representation of Lé\ 1 .
P

This equation is implemented directly in Figure 10 and this structure
can be described in terms of its operation. During the first n-k

iterations of the decoding algorithm, the syndrome values are used

to calculate d(N) and switeh 1 in Figure 10 is in position "1".

During the N-th iteration (N < n-k), S is fed sequentially into the

N
present discrepancy calculator. Simultaneously, each syndrome value
already present in the syndrome register is shifted one stage to the
right. Each syndrome value, Sj’ is stored so that Sj is the first

57
bit shifted out. There are eight shifts required to shift each

syndrome value and these shifts correspond to the summation over k in
equation (3-13b). During each shift, a single bit of each syndrome
value is multiplied modulo-2 with every bit from the corresponding
pairwise product-polynomial coefficient AE?;l), =0, 1, ..., 7, and

the eight partial products, Pi 10+ Pl 79 from each of the
b ,

Pi0°
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N-1 ' .
L( ) + y stages are fed into the accumulator. For k=0, the summa-

tion

N-1
LD 7. (N-1) (3-14a)
Eoose s\

i=1
LDy , (N-1)\
i, , :
2 SN-1,7 “i,0 ) ¥

=0 (3-14b)

is formed in the serial multiplier's accumulator, Equation (3-14b)

represents a polynomial whose ith coefficient is given by

L(N_l)+v (N-1)

P, = EE% Sx-i,7 M1t (3-15)

The eight coefficients PO’ PI’ e s P7 are fed into the
GF(2™) serial multiplier where multiplication with x and polynomial
reduction modulo p(x) occur. This product is stored in the multi-
plier's output latch. (A description of the GF{;m) serial multiplier

is given in appendix A of this volume). During the k=1 shift, the

summat ion
LDy & -1\
Sy . A, X (3-16)
i=0 N-i,6 '=0 it
(-1 ( AR CE I
+ Sy_: 2: A, X x mod p(x)
=1 LT & bt
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is formed in the serial multiplier's accumulator. This term is fed

to the GF(Zm) serial multiplier, and the output is stored in the multi-
m
plier latch. This process continues and after seven shifts the GF(2 )

serial multiplier latch contains the term

L(N—1)+v

6
2

Ay
k=0 i=1 (=0 *°

7 (N-1)
SN—i,7—k ( xc'> x7_k mod p(x) (3-17)

During the k=7 shift, the contents of the multiplier latch, equation

(3-17), are accumulated with

L(N_l)+v

N-1 ,
SN-1,0 2 Moo X (3-18)

=1 =0

and the sum is fed to the discrepancy accumulator, where S, is added

N
and the present discrepancy is formed. The architecture shown in
Figure 10 requires only binary, GF(2), logic for each of the L(N—l)+v

convolver stages. All field-dependent operations are implemented

in the single GF(Zm) serial multiplier,.

3.2.2.2 Calculation of the Present Feedback Connection Polynomial,
(N)
A

(x). During each of the first n-k iterations of the
decoding algorithm, the present feedback connection polynomial
A(N)(x) must be updated. This polynomial can be revised to one of

two values,

AN (xy = A1) (4 (3-19a)
or

AN oy = AL Gy o gy B-1) o (N=1) oy (3_19p)
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The portion of Figure 8 that updates A(N)(x) is repeated in Figure 11.
This structure consists of the present connection polynomial register,
the previous connection polynomial register, the present and past
discrepancy latches, a field-element inversion circuit and a field-

element multiplier.

The operation of the structure shown in Figure 11 can be de-
scribed for both possible update conditions shown in equations (3-19).
The first equation is trivial to implement. Prior to the N-th
iteration, the polynomial A(N-l)(x) is stored in the present feedback
polynomial register. 1If the conditions of the decoding algorithm are
such that l(N)(x) is revised in accordance with equatiorn (3-19a) then
the contents of the present feedback polynomial register are not
changed. The implementation of equation (3-19b) is more complex and
it is best described by a three step procedure. First, the stored

previous discrepancy b(N_l)

)

is inverted and multiplied with the pre-
sent discrepancy d The inversion and multiplication are CF(Zm)
operations and they are implemented using the field-element inversion
and CF(Zm) multiplier shown in Figure 11. Next, the product
N). -(N-1 - N=-1

d( )b ( )is multinlied with XB(N 1)(x). The polynomial R( )(x)
-1)

(x)

is formed by shifting each coefficient of B(N—l)(x) one stage to the

is stored in the previous feedback polynomial register and xB(N

right. The product

M- (N-1) g (N=1) (3-20)

(N)b—(N—l)

is formed by multiplying the term d with each coefficient

of the shifted version of B(N-l)(x) using the corresponding GF(Zm)
multiplier. Finally equation (3-19b) requires that the polynomial

(N—l)(x).

formed in equation (3-20) be subtracted from the polynomial A
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Since the coefficients of both polynomials are from GF(Zm),

the arithmetic operation of subtraction is equivalent to modulo-
two addition. Therefore, the desired results can be obtained as
a coefficient-by-coefficient modulo-two addition of the two poly-
nomials. The resulting polynomial A(N)(x) is then stored in the

present feedback connection polynomial register.

The diagram of Figure 11 illustrates the computational steps
required to update the present feedback connection polynomial. How-

(N-1) + v+ 2 GF(Zm) multipliers,

ever, this structure requires L
making its hardware implementation complex. The expanded diagran
shown in Figure 12 is functionally equivalent to the structure shown
in Figure 11, but the structure of Figure 12 which uses sequential

operation on symbol hits has been designed so that only two GF(Zm)

multipliers dre used.

The first field-dependent structure calculates d(N)b-(N—l).

This structure uses an inversion-by-squared product algorithm to

calculate the multiplicative inverse of b(N_ll and then the same

(N)b—(N_l). The heart of this circuit is a

structure calculates d
programmable GF (2™ array multiplier that is identical to the array
multiplier designed for the transform sect:on. This multiplier is

combined with latches and field-element squaring circuitry to calcu-

late b—(N_l). The same arrav multiplier is then used to calculate

the product d(N)b-(N—l).

The field-element inversion algorithm and
the details associated with the programmable array multiplier and the
field-element squaring circuit are contained in appendix A of this

volume.

The second field-dependent portion of Figure 12 is designed to

simultaneously implement the product shown in equation (3-20) and the
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coefficient~by-coefficient summation

AN (D) g () g (N1) (3-21)
i i i-1
where 6(N) = d(N)b_(N_l). This equation can be expanded as

7 7
™ (1) (N-1) N k) 5
S A jé% Bi1, 3 (éé% S % ) % met p o)

where B{N—l?
i~1,j

(equation 3-9) of the (i-1)th coefficient from B

is the j~th bit in our eight-bit representation
MN-1) (%) and p(x)

is the primitive polynomial that generates the field. The structure
shown in Figure 12 implements equa.ion (3-22) directly with the
summation over j implemented sequentially in time. For each j the

term

. 7 .
6(N)xJ mod p(x) = E: GﬁN) xJ+k mod p(x) (3-23%)
k=0

(N-1)

is multiplied with every coefficient of B (x). The i-th stage

of the present feedback connection polynomial register contains our

eight-bit representation of A?N_l). For each j, a bit from the eight

bit representation of BETII)
the previous feedback connection nolvnomial register. (These coeffi-

cients are stored so that the first bit shifted out is B(N_l) )

i{-1,0"
Simultaneously, with each shift the j-th bit from Bile) is multiplied

is shifted one stage to the right within

modulo-two with the value shown in equation (3-23) and the product
(N-1)
i .
accumulation is implemented bv using the bits R

This modulo-two multiplication and

(N-1) .
i-1,3 as clocking

is accumulated with A

~ates for the single-bit accumulators that are the building blocks of
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the present feedback connection polynomial (see Figure 12). After

eight total shifts, the present feedback connection polynomial has
] been updated in accordance with equation (3-19b) and stored in the
i present feedback connection polynomial register. Also after eight

: (N_l) (X) .

shifts, the previous connection polynomial register contains xg

(M)

to Figure 12). For j=0, § is held in the GF(Zm) serial multiplier
latch. The contents of this latch are fed to evervy stage of the

present feedback polynomial register. The contents of the i-th stage

| .
f An example illustrates the operation of this structure (refer '
1
i
1
|
|
i

of the present feedback polynomial register is AiN—l). During the
# j=0 shift, the bit Bifllé is shifted from the (i-1)th stage to the
1 b
! i~th stage of the previous feedback connection polynomial register.
| Simultaneously this bit, Bif;lg, gates the clock for the i-th stage l
of the present feedback polynomial register. The summation
(N-1) (M) ,(N-1)
e
| Ry TS B0 (3-26)
i
3 . (N-1) s
is calculated and stored in place of Ai . During the j=1 shift,
the contents of the CF(Zm) serial multiplier latch are fed to the

(N)

x mod p(x) is formed and stored in
(N-1)
i-1,1
feedback connection polvnomial register and gated with the clock for

|

[ multiplier. The product ¢
the multiplier latch. The bit B is shifted in the previous

the i-th stage of the present feedback connection polynomial register.

The summation

(N-1)
i-1,1

A(N-l) (N)

(N) ,(N-1)
i 8

+ 8 i-1,0 + (6" 'x mod p(x))B (3-25)

is formed and stored in the i-th stage of the present feedback register.

81))

This process continues for eicht total shifts and A (x) is calculated

in accordance with equation (3-19b).
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3.2.2.3 Calculation of the Previous Feedback Connection Polynomial,

: B(N)(x). During each of the first n-k iterations of the
(N)(x)

! decoding algorithm, the previous feedback connection polynomial B

must be updated. The polynomial can be revised to one of three values

as indicated in equation (3-26).

|
|
i s ™ 0 = x sV (3-26a)
, s ) = a1V (3-26b)
" sy = 1Mo (3-260)

i
f The conditions for determining the revised value of B(N)(x) depend

6]

upon the calculation of the present discrepancy, d , and the

(N)(x). The

nrocedure for revising H(N)(x) is carried out only after the other twc

revision of the present feedback connection polynomial, A

calculations have been concluded. The hardware required for computing
B(N)(x) consists of the two feedback connection polynomial registers

and the temporary polynomial register (see Figure 8). The revision

of B(N)(x) is closely related to the calculation of A(N)(x). During

each iteration of the decoding algorithm, A(N—l)(x) is copied into

the temporary polynomial register, and d(N) and A(N)(x) are then

calculated. Temporary memory is required because the contents of the

present connection polynomial register, A(N—l)(x), may be altered

(N)(x). After A(N)(x) has been calculated,
(N—l)(x). If
(N)

the conditions of the decoding algorithm are such that B8 (x) is

during the calculation of A

the previous connection polynomial register contains xR

updated in accordance with equation (3-26a) then the revision is
complete. If the conditions of the algorithm are such that equation
(3-26b) is valid, then the contents of the temporary memory are trans-
ferred into the previous feedback connection polynomial register and

B(N)(x) is equal to A(N_l)(x). Finally, if equation (3-26¢) is to bc

. implemented, A(N)(x) i{s trausferred through the temporary memory into
the previous feedback connection polynomial register.
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3.2.2.4 Symbol Errata Correction. The lecoding algorithm shown in

Figure 7 requires n-k iterations to compute the errata-locator poly-
nomial. If the total number of errors and erasures is within the
bound of the code (equation 3-~1), then the synthesized errata-locator
polynomial is unique. The synthesized errata-location section will
sequentially generate the transform of the errata pattern which is
then subtracted from the transform of the received sequence to obtain

the original message.

Errata correction and information recovery occur during the last
k iterations of the decoding algorithm. Step (10) through (13) in
the algorithm (see Figure 7) need to be implemented. The algorithm
branches to step (10) after n-k iterations. At this time, the present

feedback connection polynomial, A(n_k_l)(x), is the synthesized
errata-locator polynomial. For N > n-k, step (11) of the decoding

algorithm is
L(N_l)+v
sg= L AND s

i=1

i (3-27)

Equation (3-27) defines the calculation required to generate the next
symbol in the transform of the errata pattern. In step (12), this
symbol is subtracted (added modulo-two) from the N~th symbol in the
transform of the received sequence; the original information symbol
is recovered. During the last k iterations of the decoding algorithm,

L (0

the present feedback connection polynomial, (x), remains unchanged.

The hardware that implements information recovery in the decoding
algorithm is contained within the present discrepancy calculator as
seen in Figure 10. The single switch controls the operation of the
hardware. During the first -k iterations of the algorithm, switch

1 is in position "1", and the syndrome values are fed into the syndrome
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register. During the last k iterations of the algorithm, switch 1
is in position "2" and the input into the syndrome register is SN in

accordance with equation (3-27).

During the N-th iteration, (N>n-k), SN is calculated in the serial

GF(Zm) multiplier's accumulator (see Figure 10). This calculation

requires cight shifts and is implemented identically as the calculation

of de)(see section 3.2.2.1). Also during the N-th iteration, the
N-th symbol in\the transform of the received pattern, RN, is entered
into the present discrepancy calculator. On the eighth shift of the

N-th iteration, S (as calculated in equation (3-27)) is added modulo-
(N)

two to RN in the d accumulator. This accumulator implements

= M -2
Ry tsSy= M (3-28)

and an original information symbol is recovered. This process is

repeated for k cycles; the entire original message is recovered.

3.3 Operational Characteristics

The Reed-Solomon (255,k) encoder and decoder is designed to

operate continuously in a serial input data mode. The processing

time required for both encoding and decoding can be described in terms

of the operation of the transform section and the errata-location
section. To facilitate this description it is advantageous to define
a machine cycle as the maximum time required for the encoder and
decoder to complete one cycle of the iterative decoding algorithm
(see Figure 7). VFigure 13 shows the tim .ag requirements associated

with the operation of the transform and errata-location sections.

The sequential calculation of an n-point transform requires 2n

machine cycles. During each of the first n machine cycles, a symbol
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from tihe sequence to be transformed is fed into the transform section's
polynomial residue calculator. At the conclusion of n machine cy:les,
all n symbols of the sequence will have been used as 1inputs and the
transform algorithm's polynomial division will be complete. At this
time, the polynomial residues that have been calculated are transferred
into a temporary memory so that they are available for further pro-
cessing. The second n cycles define the evaluation period. During
each of these machine cycles, a residue polynomial is selected from

the residue calculator's temporary memory and evaluated to produce a
single transform value. The evaluation process is calculated within
the transform section's residue evaluator, and the i~th transformed
svmbol becomes available at the conclusion of the i-th machine cvcle

of the evaluation period. The transform section is a pipeline in

which two adjacent blocks of n svmbols are in process at all times.

"he errata—location and symbol correction sections also operate )
with sequential svmbols. During decoding, the errata-locator uses the
first + transformed symbols to calculate the erasure-locator polvnomial.
Then tlie errata-locator uses the next n~k-v symbols to synthesize the
errata-locator polynomial. The symbol correction circuitry uses the
synthesized polynomial to correct the remaining k transformed symbols.
Polynomial synthesis and symbol correction require n machine cycles.

The sequential symbols required as input to the errata-locator are
available at the completion of each machine cycle in the transform
section's evaluation period. The n machine cycles associated with

the operation of the errata-location section are offset one machine

cycle from the n cvcles that constitute the transform's evaluation

period. The total time required to decode an (n,k) code requires

2n + 1 machine cveles.  In a continuous data mode, the transform

section does not wait until it processes one block of data before it
starts on the next one so, after an initial delav of n + 1 machine cveles,

a block of decoded symbols becomes available everv n machine cvyveles.
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A single machine cycle is defined as the total number of clocking
rycles required to implement the computational steps in a single
iteration of the decoding algorithm. Figure 14 shows the relationship 1
between a clock cvele and a machine cvele. The timing required to
calculate the intermediate steps in the decoding algorithm is also
shown in this figure. Finite-field multiplication is implementea
within a single clock cycle. Using the programmable array multiplier
structure described in appendix A, we can easily obtain multiplication
rates of less than 100 nanoseconds using standard Schottky TTL legic.
A VLSI implementation of the array multiplier can probablv achieve 50
nanosecond multiplication times, corresponding to a clocking rate of
20 MHz. Twenty clock cvcles are required to represent one machine

cvele. The (Z55,k) Reed~Solomon decoder can completely decode an

(n,k) crde in (2n + 1) microseconds. With continuous operation a }
completely decoded block from an (n,k) code would be available everv

n microseconds. For example, the (255,k) Read-Solomon decoder can

decode a codeword from a (31,15) code in 63 microseconds using a

projected 20 MHz clock. In a continuous mode, a decoded codeword

would be available everv 31 microseconds.

3.4 Hardware Complexity

The transform section and the errata-location section each could
be fabricated as a single VLSI device. Much of the citrcuitry required
for the transformer and errata-locator is highly repetitive, and both
sections share functional circuits that can be lesigned once and then

repeated.

Most of the circuitry required for the transformer is devoted
to the implementation of the polynomial residue calculator. This
structure, consisting of 35 divider circuits, can be designed using
a macrocell with one bit of shift register, one bit of temporary
memory, and eight elementary logic gates (see Figure 15). The macro-

cell represents a single programmable stage from a BFSR, and the tem-
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porary memory required to operate the transformer in a pipeline fashion.
Approximately 2.4k of these macrocells are required to implement the
residue calculator. An additional lk elementary logic gates are
required to select the outputs of the divider circuits and to provide
programmability for the different teedback connection polynomials. Due
to the large number of shift register stages required to implement

this section, the gate complexity will be heavily dependent on device
technology. However, the design should be obtainable using current

NMOS or other mature technologies.

The transformer's polynomial residue evaluator can be implemented
with fewer than 1k logic gates. The accumulator portion of this
section requires fewer than 100 gates, and the reconfigurable multi-
plier has been designed to be implemented with no more than 900 gates.
All of the preceding complexity estimates are based upon a direct

implementation with two-input NAND or NOR gates.

The transform section's arithmetic controller could be fabricated
on the same integrated circuit as the residue calculator and the res-
idue evaluator. Alternatively, the controller also could be imple-~
mented easily on a separate MSI chip containing a modest amount of
programmable read-only memory [l0]. A custom or semi-custom LSI
implementation of the entire transformer would require several inte-

grated circuits,

The architecture associlated with the implementation of the de-
coding algorithm is shown in Figure 16. The hardware resembles an
adaptive transve;sal filter. Reconfigurability for different code
parameters is accomplished by separating the binary-extension field
operations from other binary operations. As a result, most of the
errata-location section is configured as a binary transversal filter
(or convolver), and the remaining portion is reconfigurable to accom-

modate the necessary field-dependent operations.
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Must of the circuitry used for the errata-location section is
dedicated to implementing the binary stages of the transversal filter.
This circuitry is highly repetitive and benefits from the modularity
and common busirg structires inherent in VLSI architectures. The
binary filter consists of 128 identical slices of hardware, favoring
macrocell design. Each of the 128 slices consists of 32 bits of shift
register and approximately 75 additional logic gates. Figure 17 is
a logic diagram of a single slice of the 128 stage filter. Within
each slice, a cell can be identified that consists of four bits of

shift register and approximately eight logic gates. This cellular

design can be repeated to implement the binary transversal filter.
The entire 128-stape filter consists of approximately 4k bits of shift

register and 10k bits of additional logic gates.

The field-dependent portion of the errata-locator consists of
field-element inversion circuitry, a present discrepancy calculator,
two reconfigurable GF(Zm) serial multipliers, and necessary control
logic. The most complex component of these structures is the field-
element inversion circuitry. The heart of this structure is a pro-
grammable GF(Zm) array multiplier that is identical to the structure
required in the transformer's polynomial residue evaluator. The entirc
field-dependent portion, excluding control, consists of less than 2k
logic gates. Again, control logic could be implemented in the same

integrated circuit, or a separate device could be designed.

Both the transformer and the errata-locator have hardware com-
plexities that suggest fzbrication as single VLSI devices. Table VTII
summarizes the approximate hardware complexity and features associated
with the transformer and errata-locator. Each of the sections could

easily be implemented as a set of LST devices where many of the devices

would be identical.
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Table VIII

(255,k) Encoder and Decoder Hardware Complexity

Function

Architecture

Complexity

Transformer

Errata Locator

Programmable Over

6F(2™) m = 4,5,6,7,8
Repetitive Structure

Accommodate 588 codes

Programmable over
GF(2™ m= 4,5,6,7,8

Correct 2t + s < 128

128 identical slices
of hardware

4.5k bits of

shift register

13k gates

4.5k bits of

shift register

15K gates
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SECTION IV

A (51,k) REEU-SOLOMON TRANSFORM ENCODER AND DECODER TTL BREADBOARD

A TTL breadboard that encodes and decodes a large number of Reed-
Solomon symbol error-correction codes was desigued and fabricated.

This breadboard implements the transform encoding and decoding algor-

ithms described in section III of this volume. The code of longest
block length that can be processed by the breadboard is a 5l-svmbol
code with each symbol represented by eight bits. The (51,k) Reed-

Solomon transform encoder and decoder breadboard is shown in Figure 18.

The major difference between the TTL implementation and the
design proposed for future VLSI implementation is size. The bread-
board contains only eight polynomial divider circuits which process
eight-bit symbols and it cannot calculate all of the n-point transforms
that can be processed by the (255,k) encoder and decoder. The bread-
board's transform section does not contain the additional temporary
memory that allows pipeline operation. The breadboard's errata-loca-
tion section is not &s large as the (255,k) decoder's errata-locator;
consequently the breadboard cannot correct as many combinations of
errors and erasures as can be processed by the (255,k) decoder. The
codes that can be processed by the TTL breadboard are shown in Table
IX. Although the breadboard cannot encode or decode all of the codes
processed by the (255,k) encoder and decoder, it can accommodate a
large subset of them. It therefore serves as a proof-of-concept veri-

fication of the (255,k) encoder and decoder.

4.1 Transform Section

The (51,k) encoder and decoder's transform section is contained
on the five wire-wrap logic boards shown in the lower right corner
of Figure 18. This transformer implements the fast polynomial evalu-
ation algorithm described in scction 3.2.1. The breadboard's trans-
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former consists of a polynomial residue calculator, a polynomial res-

idue evaluator, and an arithmetic controller.

The residue evaluator and arithmetic controller were designed
identically to those structures described earlier in section 3.2.1.2
and section 3,2,1,3. The breadboard's residue calculator is a scaled
version of the (255,k) encoder and decoder's polynomial residue cal-
culator. The polynomials that can be used for division and the trans-
forms that can be processed by the breadboard are shown in Table X.
This table lists the lengths of the transforms, the fields in which
the transforms are defined, the kernels of the transforms, and the
minimal polynomials required for the fast polynomial evaluation algor-

ithm.

4.1.1 Polynomial Residue Calculator

The breadboard's pclynomial residue calculator consists of eight
divider circuits. Each circuit consists of eight identical BFSRs
that can be reconfigured for division using the divisor polvnomials shown
in Table X. The residue calculator is designed to operate with our
eight-bit symbol representation (equation 3-9); for operation in cF(2™ .,

where m < 8: - m binary shift registers are unused. The eight divider

-circuits were designed using the hardware reduction techniques de-

scribed in section 3.2.1.1. The resulting implementation contains
only three programmable feedback taps. ‘The divisiou capabilities of

the divider ¢ircuits are shown in Table XT.

To compensate for the lack of memory required for pipeline oper-
ation. each of the breadboard's eight divider circuits operates in
two modes. During the transform's division cycle all divider circuits
are configured to divide by the minimal polynomials associated with
the desired transform. After division is complete, each shift regis-
ter is reconfigured so that its feedback taps are deactivated and

edach shift register's output is fed back to its input. Each divider
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Table X

Transform Capabilities of the (51,k) Breadboard

Transform Size Bits Per Kernel of Required Minimal Polynomial
N Symbol Transform Divisors
__
51 8 a’ my (2), mg (z), mc (2),
m (z), m (z), m (z),
25 (2) m45 (2) 55
Mgs *“7r 795
17 8 als ™ (2), mg (z), m,s (z),
15 8 ot my (), myy (2 ns; (@), |
mgs (2), myjq(2
5 8 a51 ™y (z), Mgy (z)
3 8 u85 ™ (z), mgs (z)
3
21 6 o my (z), m, éz;, my Ez;,
myg (2), myy (2), my; (2
9 6 o’ my (), my (2), my (2)
7 6 o’ g (2), mgy (2), my; (2)
31 5 o° mg (z), m (z), m, (z),
mg (z), m, (z), m}, (2),
m (z)
15
15 4 o0 my (2), m Ezg, ny (2),
me (2), m z
5 4 (13 mo (z)y m3 (Z)
3 4 o« ™, (2), mg (2)




Table XT

Programmahility of the (51,k)

Iransformer’'s Divider Circuit

Divider Field of
Circuit Divisor Polynomial Operation
1 Mgs(z) = 1 + 7 + 27 cr 2%
Mig(z) = 1 + z2 + 2% + 25 + 20 CF(Z?)
My (2) =1 + 22 + 25 CF(Z/) 4
Mg (2) = 1+ 2z + 22 (mgg(2)) GF(2%), (GF(2%))
2 Mos(z) = 1+ 2z + 22 + 23 + 24 + 27 + 28 | cr2®
Moy (2) = 1 + 2 ar(2%)
M7 (2) = L+ 2z + 22 + 23 4 20 GF(Z?) o
My (2) = 1+ z+ 22 + 23 + 2% (Mgy(2)) GF(2%), (cF(2%)
3 Mg (z) = 1+ z + z2h + 25 + 20 4+ 27 4 28 GF(2%)
Ma7(z) = 1 + z + 23 CF (2D
My (z) = 1 + 2 GF(Z>)
Mp(2) =1+ 2+ 2% (M5(2)) GF(2%), (7F (28
4 Mig(z) =1 +z+ 22+ 28 + 20+ 27 4+ 28 | ar2®
My (2) = | + 2z + zf + 2% + 26 CF(2:>
Mg (2) = 14z 427 + 2% + 2° GF (2
Mo (z) = 1+ 2z CF(2™)
5 Mys(z) = 1 + 23 + 2% + 25 + 28 ar 2%y
Mg (2) = 1 + 22 + 23 ar (26
My (2) =1+ 22 4+ 23+ 24+ 22 GF(2Y)
6 Mas(z) = 1 + z + 23 4 2% + 58 CF(Qg)
Mpp(2) =1 + z + 22 (‘-F(Zg\
Mi1(z) = 1 + 2z + 23 + z4 4+ 20 GF(272)
7 Mg (2) = 1 + 2 (:1-‘(2?
My (2) = 1+ 20 + 22 ar (26
Mig(z) =1+ 23+ 22 GE(2) R
My (z) = 1+ 23+ 20 (M{1q(2)) ar (24, (cF28Y)
8 Mog(z) = 1 + 2% + 25 + 27 + 28 aF (2%
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circuit becomes a recirculating shift register that contains the
calculated residue polynomial. This residue can be read out of the
recirculating memory to calculate a transform point; the residue is
simultaneously restored for further processing. The ability to store
the residue polynomials in the calculation hardware demonstrates the
breadboard's hardware efficiency. However, the divider circuits can-
not process new information while they are being used as recirculating
memories., The duty cycle of the breadboard's transform section is one-
half the duty cycle of the (2535,k) transformer, and throughput is re-

duced proportionally.

The polynomial residue calculator is implemented with four of
the five wire-wrap logic boards located in the lower right corner of
the breadboard's card cage (Figure 18). The four boards are identical
and each contains two identical slices of hardware. Each slice imple-
ments the eight reconfigurable BFSRs shown in Table XI. A logic-level
diagram of a single slice of the residue calculator is shown in Figure
19. 1In this figure, the four-to-one multiplexer associated with each
shift register selects the register's output tap which defines the
shift register's divisor polynomial. The AND-gate located at the
output of this multiplexer controls the BFSR's mode of operation. An
activated AND-gate indicates polynomial division; a deactivated AND-
gate indicates recirculating data in the BFSR. The final eight-to-
one multiplexer is used to select the residue polynomials that are

required to complete the polynomial evaluation algorithm.

4,1.2 Polynomial Residue Evaluator

The breadboard's polynomial residue evaluator is implemented
using the fifth wire-wrap logic board shown in the lower right corner
of Figure 18. The evaluator consists of an eight-bit modulo-two
accumulator and a programmable GF(Zm) array multiplier. A detailed
block diagram of the evaluator is shown in Figure 20. The evaluator

implements a continued product expansion for polynomial residue
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evaluation (equation 3-11). Design and operation of polynomial res~
idue evaluators are identical in the breadboard and the (255,k) trans-

former.

The critical component of the breadboard's polynomial residue
evaluator is the programmable cF (2™ array multiplier. (A description
of this multiplier is given in appendix A of this volume). This
multiplier consists of a pairwise product array, an accumulator array,
and programmable field-reduction circuitr,; (Figure 20). The pairwise
product array operates with two 8~bit inputs and forms 64 pairwise
modulo-~2 products. This array is implemented as 64 2-input AND pates
(see Figure 21). The accumulator array operates on the 64 pairwise
products and forms 15 partial sums (see appendix A). The accumulator
is implemented as 15 Exclusive-0Of trees using 2-input Exclusive-OR
gates. The programmable field reduction circuitry operates on the
15 partial sums and calculates the 8-bit representation of the desired
product. This circuit is implemented as eight Exclusive-OR trees,
whose inputs are programmad in accordance with the field reduction

equations presented in appendix A.

4,1.3 Arithmetic Controller

The breadboard's aritnmetic controller is located behind the
front panel controls shown in Figure 18. The controller consists of
a programmable up-down counter, a transform kernel-generating circuit
and preprogrammed memory as shown in Figure 6. The arithmetic con~

troller is implemented in discrete combinational logic and memory.

4,2 Errata-Location Section

The breadboard's errata-location section is implemented using
the six wire~wrap logic boards shown in the lower left corner of
Figure 18. The breadboard's errata-locator contains 16 symbol error-

correction slices while the (255,k) decoder's errata locator contains
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128 symbol error-correction slices. The breadboard can correct all

combinations of t errors and s erasures provided the inequality

2t + s < n-k < 16 (4-1)

is satisfied.

The breadboard's symbol error-correction slices are implemented
on four identical wire-wrap logic boards. Each of these beoards con-
tains four identical error-correction slices, each slice is equivalent
to the 8-bit slice shown in Figure 17. The logic-level diagram for
one of the breadbvard's svmbol-error correction slices is shown in

Figure 22,

The field-dependent portion of the errata-location section is
confined to the other two wire-wrap boards shown in the lower left
corner of Figure 18. One board implements field element-division
and contains a programmable GF(Zm) array multiplier that is identical
to the multiplier implemented in the polynomial residue evaluator.
The errata-locator's sixth wire-wrap board contains the programmable
GF(Zm) serial multipliers that are required to implement the decoding

algorithm.

The timing and control circuitry required to implement the errata-
location algorithm is located behind the front panel shown in Figure
18. Also located behind this front panel are interface and self-
testing circuits. The timing, control, interface and self-testing

circuits are implemented in discrete combinational logic and mewory.

4.3 Operational Characteristics

The operation of the breadboard is similar to the operation of

the (255,k) encoder and decoder (section 3.3). The breadboard is
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designed using readily available Schottky TTL logic. The majority
of the logic functions are implemented using small-scale integrated
(SSI) circuit technology, with a small section of control circuitry

implemented in medium scale integrated (MSI) logic and memory.

The errata-location section implements the decoding algorithm
using the same definition of machine cycle as was presented in Sec-
tion 3.3. There are 20 clock cycles required to implement a single
machine cycle. The time required to implement GF(Zm) multiplication
is the critical factor that is used to define a clock cycle. A pro-
grammable GF(Zm) array multiplier, designed in Schottky TTL logic,
can multiply two field elements in 60 nanoseconds. A clock cycle for
the breadboard is defined to be 100 nanoseconds and a breadboard

machine cycle is defined to be 2 microseconds.

The transform section can compute an n~point transform in 4n
micvroseconds. The first 2n microseconds are required to implement
the polynomial division associated with the fast polynomial evaluation
algorithm. The second 2n microseconds are required to evaluate the
residue’ polynomials. A single point in the transform is calculated

during every machine cycle associated with the second 2n microseconds.

The errata-location section requires sequential duta from the
tvansformer. The first transformed point is available for processing
after n + 1 machine cycles. The n machine cycles used to synthesize
the errata-location polynomial and recover the k information symbols
are offset one machine cycle from the n machine cycles that the trans-
former requires for evaluation. The total time required to decode an

(n,k) code is 2n + 1 machine cveles, or (4n + 2) microseconds.

The breadboard can operate in either a single-cycle or continuous
mode. In the single-~cycle mode the breadboard operates on a single
block of data and requires 4n microseconds to encode and 4n + 2 micro-

seconds to decode. In a continuous mode, the breadboard accepts a
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new block of data at 4n microsecond intervals. After an initial delay,
the offset pulse becomes transparent and a block of decoded data is

available every 4n microseconds.

The (51,k) Reed-Solomon transform encoder and decoder TTL bread-
board has been interfaced with a semi-automated testing facilitv. The
basis of this testing facility is a dedicated Hewlett-Packard 2115
minicomputer. As peripberals, the minicomputer has a CRT terminal,

a floppy disk, a high-speed word generator, and a high-speed input/-
output interface system. This semi-automated testing facility is
shown in Figure 23. This facility was used to debug and exercise the

(51,k) encoder and decoder breadboard.

4.4 Hardware Complexity

The breadboard's transform section occupies the five wire-wrap
cards shown in the lower right section of the breadboard's card cage
(Figure 18). This section consists of five 8" x 8" wire-wrap logic
boards. Two different board designs implement the transform section.
Four transformer boards implement the polynomial divider c¢ircuits,
as indicated in Table XI. These boards are identical, each board
containing two slices of each divider circuit. The fifth board ir
the transform section implements the continued product expansion for
polynomial evaluation. This board contains a programmable GF(Zm)

array multiplier and accumulator structure.

Each of the transform's polynomial division boards contains 128
bits of shift register, and approximately 750 logic gates. The polyv=-
nomial residue evaluator board contains approximately 900 logic gates.
The breadboard's transformer has a total of 512 bits of shift register
and 4k logic gates. Each wire-wrap board carries approximately 50 ICs
so that approximately 250 ICs are used in the construction of the
transformer. The logic for controlling the transformer is contained

in the timing, control and interface section.
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Figure 273,

Semi-Automated Testbed
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The errata-locator occupies the six wire-wrap cards shown in
the lower left section of the card cage (Figure 18). This section
consists of six 8" x 8" wire-wrap logic boards and approximately 300
ICs. All control for the errata-locator is provided by the timing,

control, and interface section.

Three different logic board designs implement the errata-location
section. The field-independent portion of the errata locator's archi-
tecture consists of slices of hardware that are shown in Figure 22.
Four of these slices are designed to fit on one wire wrap logic board.
Sixteen slices are required to implement the errata-locator. Four
of the six logic boards are designed and built identically. The fifth
board contains all the field-dependent logic associated with calcu~
lating the present discrepancy. This board also contains the field-
dependent logic required to sequentially revise the present feedback
connection polynomial. The sixth board contains the field-element
division circuitry. The critical structure located on the sixth
board is a programmable GF(2m) array nultiplier designed identically
with the multiplier used in the transformer's polynomial residue

evaluator.

Each of the symbol-correction-slice boards contain 128 bits of
shift register and 400 logic gates. The field dependent serial multi-
plier board contains approximately 1k logic gates, and the field
element division board contains approximately 1.5k logic gates. The
errata-location section contains a total of 512 bits of shift register

and approximately 4k logic gates.

The timing, control, and interface section 1s located behind
the front panel. This special-purpose circuitry is not repetitive.
The construction of this section requires approximately 140 SSI and
MSTI circuits. This section provides all of the timing and control
signals needed to operate the transform section. Included in these

signals is the information that determines which residue is selected,
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the field element at which the selected residue polynomial is to be
evaluated, the order of evaluation, and all necessarv clocking signals
required to operate both the divisor circuits and the residue-evaluator
circuit.

The timing, control and interface also supplies the breadboard's
errata-location section with its timing and control signals. In
addition to providing the signals required te calculate each step in

the decoding algorithm, the timing and control section analvzes cach

step in the modified Berlekamp-Mussey algorithm and dictates the
necessary branching. The timing and control section pertforms the

bovkkeeping and decision making associated with the algorithm.
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APPENDIX A

MULTIPLICATION IN GF(Zm): ALGORITHMS AND STRUCTURES

Decoding algorithms for algebraic error-correction codes require
arithmetic operations that are defined on the finite algebraic fields
in which the codes are defined. The essential operations are finite-
field multiplication, addition, and inversion. The effective hard-
ware implementation of an error-correction decoder requires the

design of circuitry that implements these operations.

Important algebraic error-correction codes are those that are
defined over the binary extension fields GF(Zm). These codes have l
svmbols represented as binary vectors. Their encoding and decoding
algorithms can be interpreted as special purpose digital signal pro-
cessing algorithms. When the fields of operation are binary extension
fields, finite-field addition is defined as bit-by-bit modulo-two
addition and it can be implemented using Exclusive-OR circuitry.
Binary extension field multiplication has many structural interpreta-
tions, each leading to a different hardware implementation, and the

"best" implementation depends upon the particular application.

This appendix describes algorithms and structures that can be
used to implement binary extension field multiplication. First,
binary extension field multiplication is described. Then, an over-
view of different GF(Zm) multiplier structures is presented. Finally,
the multipliers that are used in the Reed-Solomon error-correction

encoder and decoder are described in detail.

A.1 MULTIPLICATION IN GF(2™)

A binary extension field, or Galois field, GF(Zm) is a finite

algebraic field that contains 2" . 1 nonzero field elements. The
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field is generated by an m~th degree irreduc. 'e nolvnomial p(x),
having a root « which lies in the extension field. The specific

polynomial p(x) chosen for each of the fields over which the decoder

operates is a primitive polynomial, meaning that the root  is a

prirmitive field element, which in turn means that each of the nonzero

N

s}
.eld elements can be represented as a power of it (i.e., 17 1+ +,

m
I ‘2).

v aay

Each nonzero field element can also be represented as
a binary m~tuple which can be considered a vector relative to the
normal basis ‘4%, «',..., +"~'}. This multiplication of two nonzero
tfield elements can be implemented using either representation. The

addition of two field elements is conveniently implemented as vector

addition.

Binary extension field addition can be interpreted as the pair- l
wise modulo-2 addition of the m—tuple representation of the field

elements to be added

a5, s oF(2™ 01, j< 22
i i i ai
X = i m-l' ey \ll, 0
(A-1)
Io_ ] jo.3
NTO= me1’ "0 11, un

R 3 i ] i 3
ah + o 2 am_l@am_l, cee a1®a1, ao@ao

Multiplication of two field elements that are represented as
powers of the primitive element has a familiar logarithmic appearance.
Binary extension field multiplication using this symbolic representa-
tion has a compact form and it is well suited for implementation

using table look~up procedures.
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a, o) ¢ GF2™ 0<i, j< 22

. : s m .
AL u(1+J)mod(2 -1) (A-2)

Binary extension field multiplication using field elements re-
represented as m-tuples has a definition that resembles convolution

or polynomial multiplication.

o) e oere™ 0<i, j<2™2
i _ i i 1 1 . l

a = (u o1’ » s qo) o, = 0 ¢ <0, ¢ m--1

Jo_ ] jo3 j . . T _

a (a me1’ » a7, ao) ay 0 ¢ <0, > m-1 (A-3)

. 2(m-1) m~-1
at . ool 8 : : a%_n ai : xi' mod (p(x))
1=0 n=0 " ‘

This form of multiplication can be interpreted as a two-step pro-
cedure. First, two polynomials of degree at most m-1 are multi-
plied to form a product polvnomial of degree at most 2m-2. Secondly,
the product polynomial is reduced, modulo p(x), to a polynomial of
degree less than or equal to m-1 and whose coefficients are the
product m-tuple. The latter definition of binary extension field
multiplication, (equation A-3), can be expanded to indicate the

intermediate operations that are required for implementation.
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] i 2(m-1
+ (@ s m—l)x m ); mod p(x)

There are three steps used to implement equation (A-4). First,
the pairwise product of each term within the two m-tuples to be
multiplied is formed. Next, these pairwise products are accumulated
to form the partial products that represent the coefficient of the
product polynomial. Finally, the product polynomial is reduced modulo
p(x).

A2 CF(Zm) MULTIPLIER STRUCTURES

Binary extension field multiplier structures can be partitioned
intc two classes., One class is based upon table look-up procedures
and its hardware implementations are memory intensive. The other

class of multiplier structures is based upon the algebraic properties
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of the binary extension fields and the hardware implementations use
random logic. Both implementation strategies have their particular

advantages and disadvantages.

Memory Intensive Multiplier Structures

The simplest form of a GF(Zm) multiplier implements a direct
table look~up procedure. There are many possible variations on this

strategy, but in general the two field elements to be multiplied are

used to identify a particular memory location in which the precalcu-
lated product is stored. The different implementatiors using this
strategy depend on the ways in which the elements to be multiplied
can be combined to identify the memory location and the wavs in

which the computed product element can be stored.

Memory intensive multiplier structures have common characteris-
tics. Since these multipliers are basically memory, the complexity
of the resulting hardware implementation is dependent on the selec-
ted device technology. Because of the range of available memorv
technologies, these multipliers can have a wide range of operational
rates. A disadvantage of memory-intensive multipliers is that the
storage requirements increase exponentially with the degree of the
field extension. Available memory technologies can provide very fast (<100
nanosecond) multiplication times for small fields (m < 5), but

access times increase rapidly as the fields become larger.

Random-Logic Multiplier Structures

Random-logic multiplier structures separate into two different
implementation classes. The computational steps outlined in equation
(A-4) can be performed serially in time, and the resulting hardware
implementation uses sequential logic. Alternatively, the necessary
calculations can be performed concurrently in time, and the resulting

implementation uses arrays of combinational logic. These two
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approaches have a unique relationship. Sequential multipliers per-
form their computational steps in series, often using the same hard-
ware to compute different steps. Therefore, sequential multipliers
tend to have simple structures, (i.e., LFSRs), but their multiplica-
tion times are relatively slow. The combinational logic array multi-
pliers perform many operations simultaneously, using different sections
of hardware to compute different steps. The array-type multipliers

tend to have complex hardware but their multiplication times are very

fast. 1In general, there is an inverse relationship between a multi-

plier structure’s hardware complexity and its multiplication time,

A CF(Zm) sequential multiplier is shown in Figure A-1. This
circuit directly implements the computational steps of equation (A-3).
The sequential multiplier is a simple structure, requiring 4m bits
of shift-register circuitry and a maximum of 12m logic gates (a logic
gate is taken to mean either a two input NAND or NOR gate). A com-

plete multiplication cycle, assuming serial output, takes 2m-1 clock
cycles.

A simple description will illustrate this circuit's operation.

Initially, the irreducible polynomial associated with the field of

operation, p(x) = p, + p,x + ... +p x", is loaded into the P register.
0 1 m

The product register, C, is cleared to zero. The m-tuple representa-

tion of the field element ai is stored in the multiplier register, A,

while the m-tuple representation of the field element ad is stored

in the multiplicand register, B. The multiplier register effectively

i
holds o as the coefficients of an (m-1)th degree polynomial. The
, i i i i m-1, .
~ + ...
first clock pulse latches a m—l(QO +a,7x ta g% ) into

the product register. On the 1ext clock cycle this product is

shifted toward the right. This is equivalent to multiplying the
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product with x. Prior to this shift, the contents of the Cm-l reg-

ister was ol ad .. This corresponds to ol ol x™Y the
m-1, m—lj m-1 m-1

shift creates aJm_l a m_lxm, and the feedback connection polynomial,

p(x), performs division or polynomial modulo reduction on this over-
flow term. At the conclusion of the second clock cycle, the product

register contains

i i i m-1
a m—l(QO +oax + e + oo Yx mod p(x) +

1 m-1%
(A-9)
a 7(&8 + ax + - + alm_lxm_j)x mod p(x)

This process continues for m-1 clock c¢ycles. At the completion of

tie (m-1)th clocking cycle, the contents of the product register is:

(- ((&Jm (as + a;x + " 4+ xm_l)x mod p(x)

-1 m-1

+ ) (al fax+ s +a xm_l))x mod p(x) (A-6)

o
[
=]
i
=

i i i
+ a,x + e+ a

0 1 1% )+ )x mod p(x)

+ OL']] (n

+ ué(qé X+ o 4 X )

1




This expression can be reduced to:

T e f\‘(J))(aa +alv 4 s 4ol ™Y ned pix)

1 m-1

At the conclusion of the (m-1)th clocking cycle, the switch Sl is

grounded and the product is shifted out of the product register on

the following i clock cycles. There are 2m~1 clock cycles required

for complete multiplication.

The structure of a GF(Zm) array multipler is shown in Figure A-2. l
It implements the computational steps outlined in equation (A-4). The
array multiplier consists of three functionally separate hardware
sections. The first section calculates the m pairwise products
vetween the m-tuples associated with the field elements to be multi-
plied. A second section operates on these products and accumulates
the 2m-1 terms that are the coefficients of the product polynomial
indicated in equation (A-4). The third section operates on the
2m-1 accumulated product terms and implements modulo p(x) reduction,

resulting in the final product.

The array multiplier can multiply two field elements quickly.
Fast multiplication rates are obtained because the added circuitry
is included to perform the requisite operations in parallel and be-
cause the modulo p(x) computation is implemented asynchronously as
an end-around-carry operation. The end-around-carry reduction is
inplemented by simply feeding back the overflow bits from the

product equation in a predetermined manner.
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The hardware complexity of the array multiplier shown in Figure
A-2 can be measured in terms of logic gates. The pairwise product
array requires m2 gates to calculate the m2 partial products. The
accumulator array is configured as 2m-1 Exclusive-OR trees. The max-
imum number of logic gates required to implement this section in m(m-1)
gates. The field reduction circuitry can be implemented as m Exclusive-
OR trees, with the maximum number of logic gates equal to mz. The
total number of gates required to implement the GF(2™ array multi-

plier is on the order of Amz gates.

The total time required to multiply two field elements is depen-
dent upon the propagation delay, T, through a logic gate. The time
required to calculate the m2 pairwise products is 2t. The delay
through either the accumulator array or the field reduction circuitry
is BIflogz(m)], where fx] is the smallest integer larger than x. The
maximum time required to multiply two field elements in GF(2™ is
2t + 67 [Logz(m)]. Assuming a 3 nanosecond propagation delay, two

field elements from GF(28) can be multiplied in 60 nanoseconds.

A.3 REED-SOLOMON ENCODER AND DECODER MULTIPLIER STRUCTURES

The design for the Reed-Solomon (255,k) transform encoder and
decoder has five separate requirements for binary extension field
multiplication. Each application requires multiplication in cF(2™
where m = 4,5,6,7, or 8. The design of a multiplier that can be
prrgrammed to operate in more than one extension field is difficult
because the multiplier structure that is designed to operate in GF(Zm)

+
" l), The requirement

is not directly expandable for operation in GF(2
to operate in five different fields eliminates the memory intensive
multipliers as candidate multiplier structures since need for recon-

figurability produces multiplication rates that are too slow.
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Three ticld-dependent multiplier structures are used in the en-
coder and decoder; two of the designs are repeated twice. The design
of each multiplier is based on the multiplication algorithm shown in
cquation (A-3). The primitive polynomials that generate each ticld
are shown in Table A-1. The remainder of this appendix will describe
the design and operation of the three field-dependent multipliers

used in the encoder and decoder.

The mest complivated multiplier structure used in the encoder
and decoder is a programwable GF(Zm) array multiplier similar to the
one previously described. (A block diagram of the programmable arrav
multiplier is shown in Figure A-3). The programmable array multiplier
consists of a pairwise product array, an accumulation arrav and field
reduction circuitry, The field reduction circuitry is reconfigurable
to provide modular polynomial reduction using any of the primitive

polvonomials shown in Table A-T.

The programmable arrav multiplier is designed to operate with
our standard 8-bit svmbols so that anv symbol from CF(2m), with m « 8,
has zeros padded in the most significant bit positions. Tune program-
mable array multiplier's pairwise product arrav operates with two
8-bit svmbols and calculates 64 pairwise products. The padded zevos
in the standard 8-bit symbols produce the correct zero products for
operation in fields with m < 8. The pairwise product arrav contains
no additional hardware than would be required for normal operation in
ar2%y.

The accumulator arrav operates on the 64 pairwise products from
the product array to calculate 15 partial sums. These terms are the
coefficients of the product polynomial shown in equation (A-4). The
15 coefficients are formed using 15 Exclusive-OR trees. When multi-

plication is required in fields where m < 8, the padded zeros that
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Table A-1
Primitive Polynomials Used to Design the

Programmable GF(2™) Multiplier Structures

Extension Field Primitive Polynomial
cr(2*) PGO = x" + x4 1
GF(ZS) PS(X) = xS + x2 + 1
GF(26) P6(x) = x6 + x +1
GF(27) P7(x) = x7 + x3 + 1
GF(ZS) PS(X) = x8 + x4 + x3 + x2 + 1
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produce the correct zero-valued pairwise products result in the cor-

rect summations within the accumulator array. Operation in the five

different finite fields is obtained without an increase in the hard-

} . . , 8
ware that is required for operation in GF(27).

The field reduction circuitry is the onlv field-dependent section
of the programmable array multiplier. This structure uses the 15
partial sums that have been calculated in the accumulator and imple-
ments polvnomial reduction modulo p(x). The result is a standard
8-bit symbol that is the correct product. The field-reduction cir-
cuit implements asynchronous end-around-carry to compute modular
polvnomial reduction. The reduction is different for each field of
operation because a different primitive polyno~ial p(x) is used.
Programmability is provided by designing different feedback paths to l
be selected for the different fields. A block diagram of the pro-

grammable field reduction circuit is shown in Figure A-4. Here
0’ P'l, e
representation of the product, and JPO‘ Pl, cees PIA} are the co-

P! P'7} are the eight bits in our standard symbol
efficients of the product polynomial formed in the accumulator arrav.
The signals {FA’ FS’ F6, F7, Fg} represent control flagsmthat indi-
cate the field of operation. For multiplication in GF(27), the
signal F is a logic "1"; all other Fi's, where i#m, are set to

logic "0". These flags reconfigure the polynomial-reduction cir-
cuitry to the correct feedback paths. The logic functions imple-

mented by the field reduction circuit are shown in Figure A-4.

The field-reduction array consists of 8 Exclusive-OR trees.
Each tree has inputs that are gated with the field-select control sig-
nals Fm. For operation in GF(Zm), each tree accumulates only the
terms in the logic equations shown in Figure A-4 that are associated

with the field-select signal Fm. {
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PS' = PS(FA-FS) + P Fe * (PP )Fo + (Potb ) +P DFg
Pg' = Pg(F rFg) + B F, o+ (P4l ) +P)))Fy
P, = (P+P 4P 4P DT

Figure A-4., Programmable GF(2™) Array Multiplier Field Reduction
Circuit
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The GF(Zm) programmable array muliiplier is the critical compo-
nent within the transformer's polynomial residue evaluator. The
array multiplier was selected for this application because of its fast
multiplication rates. The multiplier is also attractive because of
its repetitive architecture and the low complexity »f hardware re-

quired for reconfigurability.

The programmable array multiplier is also used in the implementa-
tion of the Berlekamp-Massey shift register synthesis algorithm. The
array multiplier was chosen for this application because of its short
processing time. The array multiplier calculates the product of the
present discrepancy and the inverse of the past discrepancy
(d(x)b_(N_l)). This product is calculated once during each iteration
of the algorithm and the time required to form this product limits

the operational speed of the entire errata-location section.

2
GF(Zm) a~ Structure

The second field-dependent multiplier structure used in the
implementation of the encoder and decoder is a special-purpose, field-
element squaring circuitry. This structure calculates the squared

product of any field element in GF(2m), where m = 4,5,6,7, or 8. The

2 . . ;
a multiplier uses our standard symbol representation and implements

i i 21i mod (2™-1)
o - QO = Q
-8
21 i, N i k3 (4-8)
at = a;( Do x )x” mod p(x)
: j k
=0 3 k=0

where o' is an element from GF(Zm) and p(x) is the associated primi-

tive polynomial shown in Table A-1. In equation' (A-8). the cross-
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i i
products u, 4y
j ay s such that k=j, are u;. Only the even ordered coefticients of

such that k#j, are zero modulo-2. The products

Q

the product polvnomial are formed

i i i i 4 i 6 i 8
t a = (ao + a, x  + Ay X + I3 X + 2, X
+ a; xlO + ug x12 + a; xla) mod p(x) (A=)

The programmable field reduction circuitry that implements
equation (A-9) is similar to the circuitry used in the programmable
array multiplier. However, the field reduction associated with the
uz multiplier is simpler because there are no odd ordered coefficien’s l
in the product polynomial. The i-th bit in the field element to be
squared is the 2i~th bit in the product polynomial making the square
product formation implicit. The logic equations that implement the
az multiplier are shown in Figure A-5. 1In this figure, the input
variables {PO, Pl’ ceey P7} represent the eight bits in our standard
symbol representation of the field element and the variables

{PO', Pl', ey P7'}, represent the squared element. Again, the

F F8} are signals that represent the desired

variables {FA’ FS' F 7

6‘
field of operation.

Field Element Inversion Circuit

P PN 2 .
The GF(Zm) programmable array multiplier and the GF(2) v multi-
plier can be combined to implement a division-by-inversion algorithm.

Once during each iteration of the Berlekamp-Massey algorithm, the

(N) -(N-1) (N) and b~ (D)

is formed, where both d are elements

~-(N-1)

product d

from GF(Zm). The term b is the multiplicative inverse of the
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FIELD
SELECT
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Fq

P'=P +PF, +PF_+PF, + (P+P
o o 4

2747 T45 7T T36 +P)Fg

6

P' = PF, + PoF. + PoFo + (P4 )F, + P Fy

P)' =P + P.F, + (PP )F. + P F + PoF_ + (P 4P )Fg
Py = PJF, + (PP )F, + P Fo + PF_ + (P 4P )Fg

P, = PéFA + PF + (P +P)F, + (P 4P +P)Fy

P.' = P.F o + PF + P.Fy

Pe' = Py(F#Fg) + P.F. + (P 4P )F,

P,' = P.Fg

2
Figure A-5. Programmable a Multiplier
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field element bNhl. The structure that is used to implement this
product is shown in Figure A-6. The field element b(Ngl) is repro-
sented by o' and the field element d(N) is represented by . The

T _i
R or al7h,

desired product is « The structure in Figure A-6 tfirst

calculates a—i from the element ai and then multiplies uj times (—j
to complete the division process. This structure calculates the in-
verse of any field element from GF(Zm), m = 4,5,6,7, or 8. The struc-
ture shown Figure A-6 calculates the inverse of Gi in 6F(2™) by imple-

menting

. ., oM
ot a1(2 -2)

1™y 2

= (o )

S S <SP RO G R 3 (A<19)

The operation of the field-element inversion circuit can be de-
scribed with the aid of an example. On the first clock cycle, switches
S, and 84 are closed and all other switches are open. The previous

1 I3
discrepancy al(=b(N-l)

) 1is fed through the az multiplier and the
result is latched into the X information register. The element

ui is simultaneously fed into the Y formation register. The GF(Zm)
array multiplier asynchronously calculates the product of the Y in-
formation register (ai) and the X information register (a21). The
result is latched into the P register. At the conclusion of the
first clock cycle, the P information register contains u31. During
the second clock cycle switches S2 and S6 are closed and all other
switches are open. The contents of the P register are fed directly

into the Y register, while the contents of the X register
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are fed back into the GF(Qm) HZ multiplier, and the squared product
is stored in the X register. The contents of the X and Y registers arc
then multiplied, and the product, a7i, is stored in the P register.
This operation or the structure is repeated until m-2 clock cveles
have been completed. At this time, the contents of the P register

.
is 1_1/2. On the next clock cycle, switches 83 and S5 are closed
and all other switches are open. The contents of the P register are
fed to the ar(2™ @2 multipliers. The results are latched into the

(N)

X register, while the present discrepancy qJ (=d ), is fed into the

Y register. The contents of the X and Y registers are then multiplied,
and the product, lj‘i‘ is stored in the P register.

The operation of the field element inversion circuit requires
m-1 clock cveles. The information shown ir Table A-II indicates the
status of each switch and the contents of each information register
as a function of clock cveles. Table A-IT represents the operation
of the GF(2™ division circuit when m=8. Operation for m - 8 is
accomplished by using fewer cveles to square the contents of the X

register.

GF(Zm) Serial Multiplier

The final field-dependent multiplier structure used in the en-
coder and decoder is one that is used for sequential multiplication.

This multiplier is used in the calculation of the present discrepancvy,

()

d . The same multiplier design is used in the present feedback

polynomial calculator.

The description of the CF(2™) serial multiplier is facilitatced
by reexamining the definition of GF(Zm) multiplication as defined in
equation (A-3). This definition of multiplication was shown to be
equivalent to the multiplication of two (m-1)th degree polvnomials

followed by the polynomial reduction of the resulting 2(m-1)th degrec
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product polvnomial. The GF(Zm) programmable array multiplier imple-
ments this multiplication with all produc*ts calculated simultaneouslv.
The serial multiplier operates sequentially to implement equation (A-3)

in the form

i 3 m-1 i
a o oas = aﬂ(aj)xﬁ mod p(x) (A-11D) '
=0 * |

This equation ic implemented using the structure shown in Figure A-7,
which uses m clock cycles to complete the calculation. Prior te the

first clock cycle, all latches have been cleared to zero, switch S1

has been closed and switch S2 opened. The first clock cycle corres-

ponds to =0 in equation (A-11). During this cycle a

Y is fed through

switches, and latched in the information register X. The contents

of X are multiplied by mé and latched in register P. During the l
second machine cycle, (=1, switch S1 is opened and switch SZ is
closed. The contents of the X register (uJ) are fed to the serial

multiplier, and the output of the multiplier (aJx mod p(x)) is

latched into the X register. The contents of the X register are then

multiplied with @) and accumulated with the contents of the P

1
register. After two full clock cycles the content of the P register
is aJaa + ajuix mod p(x). The operation continues for m complete

. . . i j
clock cycles, after which the P register contains the product « o

The critical component of the multiplier structure shown in

, m
Figure A-7 is the GF(2") serial multiplier. This multiplier takes

any field element o) and forms the field element g3x mod p(x) which
. j+1 s
1s equivalent to aJ A diagram of the programmable GF(2™) serial
multiplier is shown in Figure A-8. 1In this figure, the variables

{PO, Pl’ N P7} represent our standard symbol representation of the
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' =
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'
97 = PPy

Figure A-8. Programmable GF(Zm) Serial Multiplier
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input to the serial multiplier, and the symbols {P'O, p' P'_}

10 e 7
represent the output of the multiplier. As before, the symbols Fm

are flags that are used to indicate the field of operation. For a
given input uJ, the serial multiplier calculates

QJ+1 = (“é + qix + o0 4+ a;x7)x mod p(x) (A-12)
j j+l m .
where o and a are elements from GF(2 ). Equation (A~12) can be

interpreted as shifting the 8-bit representation of the field element
aj and performing modulo p(x) field reduction. The field reduction

is implemented in an end-around carry technique that is identical to
that used in both the programmable array multiplier and the a2 multi-
plier. However, the modular reduction is trivial in the serial multi-
plier because the product polynomial that is to be reduced is only

of degree m. Since p(x) is also of degree m, only one coefficient

has to be fed back for each field of operation, The simplicity of

this circuit is indicated by the logic equations shown in Figure A-8.

RN Y . .
The GF(2") serial multiplier operates with sequential data.
Many partial products can be "summed" in a binary fashion, and the
‘ m . . I3 . I3 s .
GF(2") serial multiplier can be used to implement associative multi-

plication

e (A-13)

This type of multiplication is implemented by'fbrming the binary sums
(modulo-two) of the terms within the parenthesis and then using the
serial multiplier to complete the multiplication. In this manner,

N+1 GF(2™) multipliers can be repliced by one GF(2") serial multiplier,

in the formation of convolution products.
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APPENDIX B

AN EXAMPLE: A (31,15) REED~SOLOMON
CODE CONSTRUCTED OVER UF(ED)

Tn this appendix, the decoding algorithm is illustrated by means

of an example of decoding with the (31,15) Reed-Solomon code.

T,
RTINS N . . .
message sequence of length k = 15, over GF(27) is given. FEncoding

is performed by forming a sequence of leneth-31 with zeros in the

first 16 positions and the information svmbols in the remaining

positions, and then applving the inverse transformation to vield a
. . 5 .
length=31 codeword, also over GF(27)., Tiecld elements are represent.ed

bv powers of a primitive element a.

, o a D , .
The representation of GF(2 as binarv polvnomials modulo the
i A )

. . . o > .
irreducible polvnomial x° + x< + 1 is:

0 = 00000 «? = 10100 ald = 11111 A= 0111
19 = 00001 = 01101 «l% = 11011 A% = 11110
«! = 00010 2? = (1010 217 = 10011 25 = 11001
a’ = 00100 7 = 10001 «18 = 00011 W28 = 1010
a3 = 01000 1= 00111 al% = 00119 o<7 = 01011
a* = 10000 al? = 01110 «2® = 01100 1€ = 10110
a® = 00101 a¥ = 11100 a?l = 11000 229 = 01001
«® = 01010 o* = 11100 0?22 = 10101 43¢ = 10010

Addition is defined as component-by~component addition modulo 2,

and multiplication by addition of exponents modulo 31.

Let the message be the arbitrarily chosen sequence {Mi}.

i=20,1, ..., l4, where:
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Moo= g M =aq
8
M o= gl2 Mq = gl5s
; M, = o28 M, a2b
M, = a?9 = al
3 11
M o= ol M = ab
4 12
Moo= ol M —
5 13
Moo= o’ M= gl
6 14

\jZ
1]
¢)
—
o

The padded message sequence {Ai} is then ,

AO =0

A, =0

1
; .
' A =0

15

A = ) = L
, b T T @
E A =M =(112
E 17 1

A = = 20
! s0 " My T 0

To compute {ai}, the inverse transform of the {Ai}, consider
A(x) = A0 FA X F e AL %30, the corresponding 30th degree poly-

nomial, Then

i : a = A b, i=0,1, «.., 30

- -1
To evaluate A(a 1), evaluate ti(a )} where t_i(x) is the residue

polynomial which corresponds to division of A(x) by m_i(x), the mini-
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mum polynomial of Q_l. That is

a; =A™ =t ™,  1=0,1, .., 30.

5
The seven minimum polvnomials of the elements of GF(27) over

GF(2), and the corresponding ti(x) are listed in Table B-T.

To illustrate this procedure,

= 2718y = A(al®
815 z\(d ) (x )

x))

= 116 = 16 1 -
tls(a ) tl (a’©) (since mle(x) m

- Q22 + CXQL‘(JIG) + ,125((‘16)2 + 421‘)((117)3 + a.’zo(_‘tlr:)h

1

= 042 + a9 + a2? + o28

< il

The rest of the inverse transform is determined similarly, producing

a, = a?? aj, = al? a, = a?t
a = ad a = 411 a, = al’
a, =ab a, = a?? a, =l
a, = alg 81“ = ol 82l+ =a?
a, =alf a, =all a, = all
a_ = as? a. = @26 a, = at
a, = a21 a, = al a,, = a2
a, =0 ag = a0 e = all
ay =alf 3y = o° 39 = 0
a, =a?? a =al’ a,, = a
a, =aqa30
10 136
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This is the transmitted message.

Suppose the following t

duced, such that

where a_:
i

o

— 0

= 5 errors and r

Erasure Locations

6 erasures are intro-

means that a, is changed from

erasures are consecutive to simulate a burst.

{r .}, i
1

]

(error)

a16>(erasures)
FE

@30

al?

r

12
r
r

r
15

r
16
r
17
r
18
r
19
r
20

13
1w

11
22

18 (error)

11

= 26

= %2 (error)

= 428

17
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a6 a
i
a7 o
8
38 a
a a9
3
aloz a
a o
11
J to o

(known)

k. The

The received sequence,

21
22
23
24
r
25
26
27
28
T
29
T
30

(error)

(error)




wherer _, r ...y, T _ are received correctly in this case but with

6 ° 7 11
enough uncertainty to warrant labeling them erasures. Altering them

changes neither the algorithm nor the decoded message.

Decoding now begins., Since the bound 2t + v < n-k is satisfied,
the message is recovered completely. A flowchart of the algorithm

is shown in Figure B-1. There,

v = 6 = number of erasures
{ri}
i=0,1 ..., 31
il
(e )y < 0, 1, ..., 5 = erasure locations with
iO = 11, i1 = 10, ... and i5 = 16,

(v-1) (x)

The algorithm first generates the erasure polynomial A
= A(S)(x). The dummy variable, v', counts the number of erasures by
decreasing from 5 to 0, after which time the generation of the errata-
locator polynomial begins and a different path is followed in the
flowchart.

Table B-II displays the result of all iterations up to N = n-k-~l

= 15 after which the errata locator polynomial, A(ls)(x), is synthe-
sized. Each line represents one iteration and is filled out from

left to right.

The first step in decoding is to compute RN, the Nth term of

{Ri}’ the forward transform of the received sequence {ri}.

Here,
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where r(x) = rytr X ke +r., x3% is the 30th degree polynomial
which corresponds to {ri}, and ui(x) is the remainder polynomial
which results from division of r(x) by mi(x). (The remainders, ui(x),
are also listed in Table B-I). The forward transform, {Ri}’ of the

received sequence is

R = 428 R = a2% R = o R = ol0
o ¢ 8 16 24

- 23 - .10 - a9 o ol
R1 01 R9 o R17 a st o

_ .5 - o1k R = 927 R = 29
R2 o RIO o 18 o 26 o
R, = a25 R, = ald R = all R, = a?b
3 ¢ 11 19 27
R, = a?9 R = a R = ol R = al0
4 12 20 28

= .26 = 46 - 8 - 28
R5 o R13 o R21 a R29 o1

= 1 =0 = 1 R = 10
R6 o RI% R22 o 30 a
R, = a?9 R, =alt R, =a

Since GF(25) is of characteristic 2, addition and subtraction

are both given by mod 2 addition of the 5-tuples. The first few

computations are:

(0)

. (0) (-1) d {-1)
A (x) = M (x) - x B (x)
b(—l)
6
=1 - [%—}x(l>=l-a6x=l+a6x
(1)
ey = 1P - [d(o) ]x 89 o
b
o7
= (1 + ab® x) - [3T-] x (1 + «® %)
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23

&
g

1]

When N = 6, v'

4(®

Since d(6) ¢ 0,

=l+(a6+a7)x+a13x2

=14 a?% x + ol3 g2

11
x) = A% (x) - [Eiw] x B (x)

1+ (a?! 4 ally x + (@? + al) x2 4+ (al® + 013) x?
(al% + azl) x4+ («® + a?5) x5 4 20 46

1+ alS x + al? x2 + o8 x3 4+ o5 x% 4+ 18 x5 4 420 46

= 0, and the algorithm branches with the computation

(5)
L +6
=s. + ¥ A®g
{1 i 6-i

al + al5 . 026 4 o19 . 429 4 48 . 425 4 o5 « 45

1]

+ al8. 423 4 420 . 28

al 4+ al0 4 17 4 o2 + o10 4 410 4 27

the '"NO" path is followed and
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26
A8y = Ay - [21—]x 63 (3

1+ (@l + a8 x 4 (al9 + ol0) x2 + (uf + ¥y x7

+ (a% + a3) x* + (al® + oY) %O

]
—
+
Q
w
X
+
Q
)
o
»
~.
+
Q
£
x
w
+
2
@
S
ys
+
Q
—
A
o

Now L(S) =0 < 6-6 _ 0, so the "NO" path is followed. This process

2 (15)

continues until errata locator polynomial A (x) isg computed. The

iteration at N = 15 is:

9
A oy = a9 - [~Ei§] x 8% ()

a

= A(lh) (x) - al x 8(14) (%)

1+ (2 +0) x+ (al® +al) x2 + (a3 + o?6) x3

+ (QB + 0.2“) x4 + (0.2 + 0.11) %5 + ((!9 + QZS)
x® + (0 + a?) x7 + (a® + a28) x8 + (al® + a?")

X9 + ((130 + CIS) XIU + (uzz + QIG) xll

=1 +a®x+a2%x2 + a2l x3 447 x4 + 428 x5 4
af + x8 + a% x7 + ol3 x¥ 4+ a0 x¥ + o2° x10

+ a12 xll
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At this point N is incremented by 1 to N = 16 > n-k = 16, so
that the algorithm branches to generate the error sequence
(EO, Eys eoes By ) =

message {ﬁi} = {

(S,,, S «e+s S,4), and then the decoded
16 17? 30

+ E .}. To illustrate:

4
%, =R
i M6+ T Ble+i

£=N+k-~-n=16+15-31 =20

S > A(ls) S
16 . i 16-1
i=1
=a5.a1“+a25.O+a21.a6+a7.a4+a15.a13+a8.
al® 4 09 .« l0 4 o13 . o2% 4 o0 o 429 4 426 , ol 4 412
. 26
= als + QZ/ + all + 0.0 + 0.22 + 019 + QG + 029 + 027 + 07
so M = ﬁ‘ = R - S = a’ - a2 which is the first symbol of the
s =~ Mo = Rig = S1e M

transmitted message.

The algorithm continues until Mi , i=0, 1, ..., 14 are computed.

They are:

ﬁo = C!l' /ﬁa = (17
ﬁl = 4l2 My = qls
ﬁz = o428 ﬁxo = 24
f, = 29 B, =a
H, = al? M, = b
ﬁs = o3 M, = ol¥
. = o30 M, = 020
B, ol 145
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