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perturbed systems cannot be treated effectively with standard techniques.

Hence, a generalized class of singularly perturbed systems is considered. A

geometric decomposition that preserves continuity about the singular point is

derived. Conditions are presented under which the solution of a singularly

perturbed system converges with the parameter. Miscellaneous structural

properties are established with applications to the quadratic regulator problem.
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CHAPTER 1

INTRODUCTION

1.1. A Brief Overview of Descriptor Variable and Singular

Perturbation Theory

Descriptor variable theory depends heavily on the theory of regular

matrix pencils which was first explored by Weierstrass in the nineteenth

century [1]. A standard modern reference to the theory is Gantmacher [2].

A regular matrix pencil is a matrix polynomial Es-A where E and A are square

matrices of the same dimensions and

det(Es-A) * 0. (1.1)

In (1.1) the determinant is formed in the obvious way by taking the deter-

minant of the corresponding matrix of scalar polynomials.

More recently, it was observed by Rosenbrock [3],[4] that the

linear system

Ek = Ax + Bu (1.2)

is strongly related to the pencil Es-A since Laplace transformation of (1.2)

yields

(Es-A)x = Bu + Ex(O). (1.3)

i and a are the Laplace transforms of x and u. If E is singular, (1.2) is

called a descriptor variable system.

In [4] Rosenbrock introduced his decomposition of (1.3) into static

and dynamic parts along with the theory of infinite decoupling zeros. The

decomposition uses the canonical form of a regular pencil to decompose the

system into two parts, one whose eigenvalues are the same as those of (1.2)



2

and one with no dynamics in the usual sense. The theory of infinite

decoupling zeros is an algebraic characterization of controllability and

observability for the static subsystem. The theory utilizes properties of

the pencil As-E. Continuing in the same direction, Verghese et al. [5]-[7]

carried the work of Rosenbrock further with some modifications.

Proceeding in a somewhat different direction, Luenberger (who

originally coined the phrase "descriptor variable") concerned himself wit

time varying, discrete-time descriptor systems. In [8] and [9], as well

having stated basic results, he gave many real-world examples as a justit-

cation of the development. [10] contains applications of the theory to

the LQ regulator problem and to large-scale systems.

A third line of work has been followed by Campbell [111 who solved

(1.2) using the Drazin inverse. The Drazin inverse is a generalized matrix

inverse, closely related to the eigenspaces of a matrix. The solution of

(1.2) can be written in terms of E, A, and B and their Drazin inverses. Such

an approach seems less traditional than that of the others insofar as it

completely avoids explicit use of the theory of matrix pencils.

The motivation for descriptor variable theory for the most part is

that, in choosing variables in a physical system in a natural way, one is not

always guaranteed that the resulting mathematical model will be in state

variable form. In many instances the most natural choice of system variables

may be a non-minimal set leading to a system model (1.2) with E singular.

Luenberger gives several examples of such systems in [8] and [9].

In other situations it may not even be possible to write a state

equation under any choice of system variables. For example, Figure 1.1 shows

a simple electrical network with one energy storage element. A convenient

9.
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F-6770

Figure 1.1. An electric circuit which is not naturally described
by a state equation.
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choice of variables might be as labeled. However, the loop equations are

xl _ -- x 2 (1.4)

0 x 1+ u

which cannot be manipulated into state space form. It will be shown in

Chapter 2 that even though the circuit contains an energy storage element, the

system order is zero. (1.4) is an almost trivial example of one sort of

problem that can arise in system modeling. However, it is clear that in more

complex situations when one's intuition may not be readily applied, a

systematic approach to such problems is essential.

We now turn to singular perturbation theory. It is difficult to

state precisely what constitutes a singular perturbation problem. Singularly

perturbed systems are identified as such if they exhibit certain characteristic

features. First, there is a dependence on a parameter of some sort, usually

real and in some sense "small." Secondly, a slight change in the parameter

results in a change in system order. This often occurs when a small real

parameter multiplies a derivative of a system variable. Many times, when

the parameter is set to give a low-order system, a descriptor variable system

results. This fact is the basis for the relationship between descriptor

variable and singularly perturbed systems.

Existing work in singular perturbation theory is extensive. Surveys

of the subject include [12]-[14].

1.2. Contributions of this Thesis

In this section we shall explore some of the limitations of

existing singular perturbation theory and general directions that will be

'aken in subsequent chapters to overcome them.



The majority of control ori, -ed results in singular perturbation

theory have been derived for the linear time-invariant system

l 1Xl + A12x2 + BU(1.5)

Wx2  A 21 x1 + A2 2x2 
+ B2u

where w is a small real parameter and A22 is nonsingular. There are, however,

important cases in which system models yield singular A2 2. A simple example

is given in Figure 1.2. The system equations are

xl _ -x 2 (1.6)

-:= xl + U.

Here A2 2 =0 and the results of [15]-[17] are not applicable. There are only

a few results available concerning singular A22 (see [20]).

* There are many instances in which systems may not be conveniently

modeled in the form (1.5) even if singularity of A2 2 is allowed. Consider

the operational amplifier circuit of Figure 1.3. Assuming an ideal amplifier,

the system equations are

Wmkl +  k 2 = -Xl-wxl ~~l -u(1.7)

Wk2 = -x2"

(1.7) seems to be the most natural (i.e. most intuitively meaningful) de-

scription of Figure 1.3. Yet it is not clear how to transform (1.7) into

the form (1.5). One might try to diagonalize the matrix of coefficients of

k and x2, but this would lead to a similarity transformation which is

singular at w=0. Thus system equivalence between (1.7) and the transformed

system would be lost at w = 0. Other attempts at standardizing the model

must all lead to a loss of the natural interpretation inherent in (1.7) of

the parameter and system variables.
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Figure 1.2. A singularly perturbed system with singular A2 2 .
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X2 FP-6772" --"

Figure 1.3. A singularly perturbed system which is not naturally
representable by the standard form (1.5).



8

Actually, a more natural interpretation of the system of Figure 1.3

would include two parameters, one for each parasitic capacitance. This

brings us to the problem of generalizing the system parameter. It is easy

to think of many examples where the most intuitively pleasing model formula-

tion requires several parameters. However, little work has been done in this

area. Most results can be applied only to systems of a highly restrictive

form [18]1,[19].

Singular perturbation theory is primarily a qualitative theory.

Its purpose is to give insight into the nature of the perturbations of system

related quantities that occur as a result of slight changes in system

components. Quantitative results are scarce. In fact, the existence of

practical numerical bounds on the variation of system related quantities

would render most convergence results obsolete since bounds contain much

more information than a simple statement of convergence. Singular perturba-

tion theory is mainly a means of obtaining insight into the variational

characteristics of a system and, in particular, of obtaining information

about a high-order model by examining one of lower order.

Given a particular physical system it is clear that one may mathe-

matically characterize it with a large number of parametrically dependent

models. One task of those who apply the theory is that of choosing the model

that supplies the most information. Since the information to be gained is

basically qualitative, it makes the most sense to choose system parameters

and variables which have direct and intuitively clear relationships with

physical quantities in the system. It is true that singularly perturbed

models of an extraordinary nature may in some cases be manipulated into

something resembling a standard form. However, it is unavoidable that such
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j manipulations at times must diminish the intuitive power of the model

resulting in a loss of information provided by the theory. It is for this

reason that a more general theory is needed.

The main contributions of this work are 1) the reformulation of

the singular perturbation problem to include system models which cannot be

naturally put into a standard form, 2) the extension of existing control-

theoretic results of standard singular perturbation theory to the more general

class of system models, and 3) the unification of descriptor variable and

singular perturbation theory for linear, time-invariant systems. It is hoped

that this thesis will be viewed as a fresh look at the singular perturbation

problem. Whenever possible, results are stated in coordinate-free or geometric

terms. This is done in order to increase conceptual clarity. In this way

the reader is freed from the burden of having to keep track of changes of

coordinates which would appear in any discussion of structural properties and

would necessarily depend on the perturbation parameter. The value of the

geometric approach has been established by Wonham [21] and others. Part of

the last chapter is devoted to alternative algebraic formulations of the

problem. This is intended to give further insight into the nature of

i singularly perturbed systems.

It should be stressed here that even in the linear time-invariant

1 case the structure of generalized singularly perturbed systems can be

extremely complex. Many pertinent questions cannot be answered easily.!

I 1.3. Chapter Survey

The thesis is divided into two main parts: ideas concerning

I descriptor variable theory (Chapters 2 and 3) and singular perturbation theory

I
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(Chapters 4-7). In Chapter 2 the decomposition theory of Rosenbrock [4]

is interpreted in geometric terms. It is shown that there is a natural

decomposition of the state space into independent subspaces that span the

whole space, including Rosenbrock's decomposition on the system. Chapter 3

carries the geometric approach further by defining controllability of descriptor

systems and studying the interplay between controllability and linear non-

dynamic feedback. The geometric structure of closed-loop systems is studied

in the tradition of Wonham.

In Chapter 4 we begin the study of generalized singularly perturbed

systems with the definition of such systems and with an extension of the

geometric decomposition described in Chapter 2 to a region of the parameter

space. Under this decomposition a singularly perturbed system consists of

two subsystems which are consistent with the partitioning of the system

eigenvalues into slow and fast modes. Chapter 5 is a study of the variation

of the trajectory or solution of a system under small pertutbations. Some

conditions are given under which a small perturbation in system parameters

results in a small change in the system trajectory. Chapter 6 is a study of

the behavior of certain basic structural properties such as stability,

controllability, and stabilizability that results from a perturbation of

the system.

The linear quadratic regulator problem is considered in Chapter 7.

Conditions are established under which the optimal control, trajectory, and

cost change only slightly as a result of a small perturbation in system

parameters. Finally, Chapter 8 contains some alternative ways of looking at

4P------------------ ------- -



descriptor variable and singularly perturbed systems. Previous results are

interpreted in new ways and basic conclusions of the thesis are stated.
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PART ONE

DESCRIPTOR VARIABLE THEORY
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CHAPTER 2

GEOMETRIC DECOMPOSITION

2.1. Problem Formulation

To facilitate the development in later chapters and to gain insight

into the structure of descriptor systems we shall be concerned in this chapter

with the decomposition of a given system into two subsystems. The decomposi-

tion has already been achieved in [41, for example, using analytic techniques.

However, the geometric structure of the decomposition has not been described

elsewhere. We shall parallel the development of the analytic decomposition

for descriptor systems with geometric interpretations given at each step.

It will be seen that the natural response of one subsystem is a

linear combination of the Dirac delta and its derivatives. Hence it will

be called the "fast" subsystem. The other subsystem will be called "slow"

since it is a state variable system with exponential natural response. It is

emphasized that the terms slow and fast refer merely to the natural responses

of the two subsystems of the original open loop system. The character of

the trajectories of the two subsystems may change drastically when feedback

or an external control is applied. The terms "dynamic" and "static" seem

to be preferred by some authors. However, since we are ultimately concerned

with singular perturbation theory, the terms slow and fast seem more

appropriate.

Let X and U be complex Euclidean spaces with dim X-n and dim U m.
2 2

X and U3 have inner products and norms related by (x,x) = 11xI and (u,u> u2

1.
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for xE X, uE U.1 '2 We shall consider only linear maps associated with X and U.

Let Hom(U,X) be the C-vector space of homomorphisms from U into X where C is

the complex plane. We choose to make the distinction between homomorphisms

and matrices in keeping with the philosophy of coordinate-free representations.

Hom(X,X) is the C-algebra of endomorphisms on X. Hom(X,X) has identity element

I. If AEHom(X,X) and S is an A-invariant subspace of X then let AISE Hom(S,S)

be the restriction of A to S. The identity map in Hom(S,S) will also be

denoted by I. If S is not A-invariant then AISEHom(S,X).

Let A. E Hom(X,X), i-0,. ..,v and choose a basis ji of X. We denote
1V

by det(A s + ... +A s+A ) the determinant of the polynomial matrix
S1 0 k

[a).s +...+as+a..] where Mat1Ak[a.. 1 o1j 1J 1i ] V( 0

independent of the particular choice of 1J.

We shall consider dynamical systems described by differential

equations of the form

A xI + - + A 0x = B 7u +.. + B u (2.1)V0 iT 0

where B iEHom(U,X), i=O,...,r and superscripts denote differentiation withii

respect to t. A.x i and B.u are to be interpreted in the obvious pointwise1 1

sense. The class of admissible controls is taken to be the set of all general-

ized functions (or distributions; see [24] and Section 5.1) with range in U that

are identically zero on (--,0). The admissible controls form a C-vector space

denoted by Dr (U).
0

iThroughout the thesis all inner products are denoted by (.,.),
and all norms by II .11.

2<.,-) is conjugate symmetric.
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The system equation (2.1) can be simplified considerably by

defining Z- X xUT, .4 (X) and -&o0(Z) analogous to & 0(U), and zE o(Z),

vEa 0 (U) according to
0

v-1 T-l)z = (x,...,x ,u,...,u (2.2)

and
v = uT (2.3)

where x is a solution of (2.1) for a given u. Then (2.1) may be rewritten

Ei = Az + Bv (2.4)

where E,AEHom(Z,Z) and BEHom(U,Z). Applying a control v to (2.4) corresponds

to applying the 7th indefinite integral of v to (2.1). Thus any problem

involving (2.1) can be reduced to one in which (2.4) is considered.

Henceforth we shall concern ourselves with (2.4) only. Of course,

the interesting case occurs when E is singular. We shall always assume that

det(Es-A) t 0.

2.2. System Decomposition

For simplicity, assume E,AEHom(X,X) and BEHom(U,X). Our goal

is to decompose the system

Ek - Ax + Bu (2.5)

k ni
into slow and fast parts. Let det(Es-A) = o ir (s-Ai) where o# 0 and i#j

i=1

implies X#x J" Define a(E,A) = {Xl,...,xk} and let A GC-o(E,A). Then

k ni
det(XE-A) T o (A-A.) #0 (2.6)

so AE-A is invertible. Define

1.

.- ...... .- "-.. . . .. - - "
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k -1 1 n27
S = (B Ker((AE-A) E-1(27

adF =Ker((AE-A) -1E) nr(2.8)

where k
r = n. = deg(det(Es-A)) < n. (2.9)

i= 1'

Clearly, r< rank E with r= n if and only if E is invertible.

Theorem 2.1 gives a canonical decomposition of X with respect to the

pair (E,A).

Theorem 2.1: 1. S@F=X with dimS-r.

2. There exists an invertible ME Hom(X,X) such that

a) S and F are both ME- and MA-invariant

b) MEIS-I, MAIF=I

c) MEIF is nilpotent
k n.

d) det(IS-MA S)= T (s-A.) ~
i=l '

3 -1 n-d 6  m. M
Proof: Let det(Is-(AE-A) E)= s Tr (s-n.) 'where d= Z i n 0i~ for

i.1 1 i=l 1

il..,,and i~j implies q. # 0 n n-d is the multiplicity of the zero eigen-

value of (XE-A)- E. Define

6 -1l
R= a Ker((AE-A) E- n.I)

' =l 1

and
-1 n-d

R2= Ker((XE-A) E)

Then R 1 ;R 2X, dim R 1.dadR and R 2are both (XE-A)- E-invariant.

3 Much of this proof was patterned after Gantinacher [2], Vol. 1,
p. 28.

4
n.i clearly depends on A. However, A is fixed so we do not write

this dependence explicitly as niC)
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Let J = (XE-A) E'R 1 and J2= (XE-A) E R Then det(Is-J 1 ) =
1 11 2

S m.-1-

= (s-n.) and J is nilpotent. Since (XE-A) A= X(XE-A) E-I,
i=1 2

(E-A)-AIR1 \JI-E-A) and )AIR 2 = XJ2 -I. Define R"EHom(X,X) according to

Mx 1 x if xE R

X XJ2 -I) -x if xE R2

Jl and XJ 2-1 are invertible since J has no zero eigenvalues and J2 is

nilpotent. Let M=M(\E-A)- I . Then R and R2 are both ME- and MA-invariant

with

R M(AE-A)-1 EIR I = J 1 Jl = I

and MAR 2 = M(XE-A)- AIR2 = (XJ-1)-1(;tJ2 -1) = I.

Also, MEIR 2 = (XJ2-I) j2

which is nilpotent and

MA Rl = -111 1l-1) - xl-Jl1.

Next observe that

det (MEs-MA)
det (Es-A) dedet M

det (Is-MA 1RI )det(ME I R2s-I)

det M

-d k n.
But det(MEIR 2 s-l)=-(_)

n  so det(Is-MAIRl) i (s-d Also
i2 1 ~m

det(Is-MAJR I) (Is- (XI-J)) 1s i( )

1 =1

Thus, if the n. are indexed properly, we have 6=k, m.--n., d= r, and
1 1 s

\-qi s"i -i Hence RI S, R 2 F. This completes the proof.

1 i1
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The construction of M in the preceding theorem is important so it

will be repeated here. Let

Jl = (XE-A) -EIS (2.10)

J2 = (XE-A) 1EIF (2.11)

and let MEHom(X,X) be defined by

JlI x if xE S
Mx = (2.12)

(J2-1)-x if xE F

Finally, let

M = M(AE-A) -  (2.13)

Lf = MEt F, Ls  MA S (2.14)

Note that

rank Lf - rank ME- r = rank E-r. (2.15)

Formulas (2.7), (2.8), and (2.10)-(2.14) constitute a family of

algorithms for decomposing the pair (E,A). The family is indexed by the

parameter X which ranges over C-a(E,A). It is fortunate that all the

algorithms give the same end result. The following two lemmas establish that

S, F, M, and consequently L and L are independent of X.
s f

Lemma 2.1: Let X.Ea(E,A), a be any positive integer, and L and Lf be gener-

ated by using a fixed parameter XGC in the algorithm (2.7)-(2.14). Then
-1 1 I B =Ker(Xl-s

1) Ker((nE-A) -1 n-k I ie( -L )
and I

2) Ker((nE-A)- ) = Ker Lf

for all nEC-(E,A).

- -- - -o . .. . .. . . . . .. I I I III I II a -
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Proof: 1) First observe that

(nE-A) E- I - (nE-A)-I (l. E-A)
1 1

so if M is given by (2.7)-(2.13) (using ", not n) we have

Ker((nE-A)-1E- 1 I) = Ker((nE-A)-I(XiE-A))
rn-X.

i

= Ker((nE-A) 1IM-IMO iE-A))

= Ker((nME-MA) -1 (.ME-MA)) 8

I

= Ker((nI-L)-1 (Xil-L

'B Ker if-l)-i Lf- M

= Ker((nl-L )-(XiI-L )
s 1 s

since i L f-I is invertible. Also

((nI-L s) (XiI-Ls)) = (nl-Ls) (XiI-Ls)

since (rnI-L) and X.I-L commute. Hence5 1 5

Ker((nE-A)- E- 1  I) Ker(X.I-L )3.ri-A. 1 5
1

2) The argument parallels that of part 1).

Ker((nE-A)- E) Ker((nME-MA)- IE) B

Ker(nl-L )-8 Ker((nLf-l )-1Lf

Ker Lf

since (rnLf-I) - 1 and Lf commute. This completes the proof.

An obvious corollary to Lemma 2.1 is that S and F do not depend on

,. The N-ihdependence of M will be shown next.

i.-.m m~
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Lemma 2.2: Let JI(M), J2 (\), M(X), and M() be given by (2.10)-(2.13) for

some choice of X. For nE C-a(E,A) define J1 (n), J2(n), M(n), and M(n) in

the obvious way. Then M() =M(X) regardless of the choice of TI.

Proof: We have

M(X)EIS - I, M(X)AIF = I.

Define
L s ( X) = M(X)AIS, Lf(X) = M(X)EIF.

Then

Jl(n) = (nM(X)E-M(X)A)-'M()EIS

= (nI-L (1)-
s

Similarly,

J2(n) = (nLf(X) - 1) -1Lf(

so

(n)s S= T- Ls M

and
M(n)FF = fLf(A)- I.

Hence -M(Rn)(nM(X)E- 
M(X)A) = I

so M(n) -M(n)(nM()E- M()A)-IM()

= M(X)

which is the desired result.

This brings us to the decomposition of the descriptor system (2.5).

Operating on both sides of (2.5) by M yields

MEx - MAx + MBu. (2.16)

Define P EHom(X,S) and Q EHom(X,F) as the skew projection operators on S

along r and on F along S respectively. Let
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B = PMB (2.17)
S

and
Bf = QMB. 

(2.18)

We may rewrite (2.16) as

SL x + B u (2.19)S S S S

L kf = x + Bfu (2.20)
ff f f

where x - Px and xf Qx.

We now have two systems acting on independent state spaces with x=x +Xf"

2.3. Trajectories and Initial Conditions

If TEHom(S,S) define e(T): [0,-)- Hom(S,S) according to

e(T)(t) = etT (2.21)

Then the solution of (2.19) is simply

x = e(Ls)Px + e(L )*Bsu (2.22)

where "*" denotes convolution. Defining solutions of (2.20) is a more

complicated task.

Let q be the index of nilpotency of Lf. In [11] Campbell

showed that for each q times differentiable u: [0,-) -U there exists a

unique differentiable xf :[0,)- -F satisfying (2.20). xf is given by

xf(t) - q iLB fui(t). (2.23)
i=O f

Note that no initial condition is specified. This is in contrast to the

family of solutions of (2.19), a particular solution being singled out by

choosing an initial condition x s S.
soI

- --- ----
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It has been suggested in [5] and [7] that by allowing solutions

of (2.20) from .0 (X), a distinct solution may be defined for each choice0

of initial condition xfo e F. The proposed solution is

-q-1i-iixEq-ii i

Xf qz16 Lx - £ L1B u (2.24)i~l f fo i=0 f f.

where Si is the jth derivative of the Dirac delta. (2.24) was obtained

by taking the Laplace transform of (2.20). Although the Laplace transform

approach is quite formal and is not very satisfying intuitively, we shall

take (2.24) to be the solution of (2.20). A more intuitively pleasing

justification will be given in Chapter 5. We shall see that, for any

singularly perturbed system with (2.20) as its limiting descriptor form, if

its solutions converge to anything then they converge to (2.24).

The parts of (2.22) and (2.24) due to initial conditions alone

serve as motivation for calling (2.19) the slow subsystem and (2.20) the

fast subsystem. Also, we shall henceforth call S the slow subspace and F

the fast subspace.
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CHAPTER 3

CONTROLLABILITY AND POLE PLACEMENT

3.1. Reachability in the Fast Subspace

In this chapter we begin by defining controllability for descriptor

systems. Although the idea of extending the usual state variable definition

of controllability to descriptor systems is a fairly obvious generalization,

it has not been proposed elsewhere.

Some authors have come close to considering controllability.

Rosenbrock in his theory of infinite decoupling zeros [4] considered

certain properties of descriptor variable systems which are related to

controllability. According to his definitions, a descriptor system has

infinite decoupling zeros if and only if the matrix [sA-E B] loses rank

at s=O. It will be shown that this condition is equivalent to uncontrol-

lability of the fast subsystem as we shall define it in Definition 3.1.

Rosenbrock's theory, however, does not address the problems of state reach-

ability and of finding controls that steer the trajectory to a specified state.

In [101 Luenberger et al. defined the concept of maintainability

which is also related to controllability as we shall define it. Maintain-

ability guarantees that a solution exists to a certain type of tracking problem

determined by the parameters of a descriptor system. It is clear after

examination of the definitions that maintainability is not equivalent to our

jforthcoming definition of controllability. For our purposes it will be con-

venient to define controllability for descriptor systems in a way more closely

analogous to the standard definition of controllability for state variable

systems.

I



24

In generalized function theory it is often impossible to talk about

the value of a function at a given point. To avoid this problem let Cq(u)

be the C-vector space of q times continuously differentiable mappings from

[0,-) into U (using the right-hand derivative at 0) and consider only

controls from Cq(u). Then xf may be identified with a differentiable ordinary

function on (0,-), namely

q-1
Xf =-iLfBu t>0 (3.1)

and it makes sense to say

q-1 i i
xf(t) = -q~iL B u t) (3.2)

i=0 f f

for any t>0.

The definition of a reachable vector for descriptor variable

systems is highly analogous to that of a reachable state for state variable

systems. Let $ : [0,o) x Cq(u) x X- X be given by

tLs  t (t-T)Ls dTq-1, uD(t,ux) = e (ex0) + f e B u(T)dT- . L B f (t) (3.3)
o0 s i0 f

iwhere u (0) is the ith right-hand derivative at 0. Then D(',u,x ) agrees on
0

(0,-) with the solution of (2.5) with control u and initial condition xo.

Definition 3.1: A vector wE X is said to be reachable from x E X with respect

to the system (2.5) at time rG (0,-) if there exists a control uE Cq(u) such

that (r,U,Xo ) w.

Clearly, when applied to the slow subsystem (2.19), Definition 3.1

is equivalent to the usual notion of controllability from state variable theory.

IWhat is S(0)?
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We now consider controllability of the fast subsystem (2.20). Let

6f = ImB + LfImB + ... + Lq-1lmB (3.4)
f f f f f f' 34

Theorem 3.1: Let weF. The following statements are equivalent with regard

to the fast subsystem (2.20):

1) wE Rf.

2) There exist TE (0,-) and Xfo EF such that w is reachable from Xfo

at time T.

3) w is reachable from Xfo at time T for every TE (0,-), Xfo E F.

Proof: It should be noted at the outset that the initial vector xfo has no

effect on the solution of (2.20) for t>0. It appears in statements 2) and

3) merely to preserve the form of the analogous theorem from state variable

theory.

First we show that 1) implies 3). Let XfE F and TE (0 ,-) be

given. Since wE-Rf, w=w +...+w with w E LImBf, i=0,...,q-l. Since
o q-1 i

iif i

L ImBf= Im(LB ), there are u. c U satisfying LfBfui = - w i , i = 0,...,q-l.

Define uGCq(U) according to

u(t) - u + (t-T)u I + u2 + + (t-T)q-1iu
U 1 2! 2 (q-l)! Uq-l

Then
q-1 i i

(ru'xf) - L B u (r)

fo i!O f fu
q-1 i

Obviously, 3) implies 2) so it remains to show that 2) implies i).
i i

This follows almost trivially since L B u (T)EL lmBf. Inspection of the
f fi f f*

definitions of D and 6f gives the desired result.
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3.2. Controllability of Descriptor Variable Systems

We now consider reachability and define controllability for
2

descriptor systems. Let 6s be the controllable subspace of the slow sub-

system (2.19).

Lemma 3.1: Let p be a nonnegative integer, rE (0,-), and

T tL tL*

.k p f t2 pe Bs sB*e Sdt. 3

0

Then
Imk P

Proof: Let xEKer2+ for some T,p. ThenTp

tL* T tL tL*
P* SxH 2  = (x,t2P e SB B*e Sx>dt

0 ss0 0*
t ?tL tL*

* (x, I t-Pe SB B*e Sxdt)
0

.?x,. xrp

=0

tL*

so tPB*e Sx = 0 for all tE [0,t]. Right-hand differentiation p+r-I times at
s

t-0 gives

B*L*i x 0, i=O,...r-l. (3.5)
ss

Hence
r- 1i r-l i

x ' Ker(B"*L )=r) Im(L B)
i=0 s i-o s s

r-i .
= ( I Im(L Bs))

i=0 s

i
=6~ 3.6)s

2See [21].

3 *denotes the adjoint operator.

4 This is an adaptatioi of a proof given on pp. 35-36 of [21].
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so Kerk C631 and
:p s

R C Ker "  - Im* = Im)*
s Tp rp

since is Hermitian.

i
To show the reverse inclusion let xE R Then (3.6) holds ands

hence (3.5) does also. Recall that there exist yi : [0,r]- C, i= 0,...,r-1

such that

e o= Y(t)I + Y (t)L + + Yr (t)Lr-I

for all tE [0,r]. Thus

tL* r-i
tPB*e Sx - t py(t)B*L*x =0

s i=O s s

and A TO xO so

xE Im p = Ker)rp.

Hence 6Z I- Kerfpr and Im* C6Z . This completes the proof.
s Tp p s

Let 6ZRs =6Zf* The next result justifies calling 61 the controllable

subspace.

Theorem 3.2: Let wEX. The following statements are equivalent with regard

to the system (2.5):

1) wE6z.

2) There exists re (0,-) and x ER aF such that w is reachable from

x at time T.

3) w is reachable from x at time T for every tE (0,-), x E 61 F.

Proof: To show 1) implies 3) let T and x be given and let w=w s+Wf,

wEs, wf E6f Choose ui , i 0,...,q-1 so that

q-1 -
I - LB u w

i.0 f fi

I4
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and define 
ufE cq(U) 

by

uf(t) = u + (t-t)u1 + 2! (t-r)I -

f 021 + ., u2 + "" + (q-l)! q-l"

Let(-t)
= f e B u f(t)dtE ?

0ss

and choose any position integer p> -- Let xo = Xso+Xfo, x soERs , X o E F.
L

Since 6 is L -invariant, w -e Sx -pR s and from Lemma 3.1 there exists

zE S with

rL
T z = w -e x - .tp s so

Define

(r-t)L*
u(t) = (T-t)2p B *e z+u (t).

S f

Then ui () u =ui, i= 0,... ,q-1 and
f

q-1
-i~oLfBfu (r) wf

Also
T (T-t)Ls T 2p (T-t)L (T-t)L*

e B u(t)dt = f (r-t) e B B *e z dt +
0s 0s s
0 0s

Az +
Tp

and hence

C(T,u,x) ws + Wf = W.

2) follows from 3) trivially. Inspection of the definition of D

gives that 2) implies 1) and the proof is complete.

For obvious reasons, if R=X the system (2.5) is said to be

completely controllable and (E,A,B) is called a controllable triple.

Implicit in the notation (E,A,B) is the assumption that det(Es-A)s 0.
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Recall that an eigenvalue Ai of L is called a controllable mode if the eigen-

space of A. is reachable, i.e.
in n.

Ker(Xt-L s) , C C. (3.7)

In [3] and [5] tests were established to check for the existence

of input decoupling zeros. Although they were not originally intended to

pertain to our concept of controllability, these tests are related to our

definitions. We shall interpret them geometrically.

Theorem 3.3: 1) An eigenvalue XEoa(E,A) is a controllable mode of the slow1

subsystem (2.19) if and only if

Im( iE-A) + ImB = X.

2) The fast subsystem (2.20) is completely controllable if and

only if

ImE + ImB = X.

Proof: 1) Let M be given by (2.13). Then

M(Im( iE-A)+ ImB) = Im( io-MA) + Im(MB)
1 1

= Im(X l-L) + Im(X Lf -1) + Im(IB)

-(Im(X l-L) + ImB ) F
1 5 s

since Xi Lf-I is invertible. From state variable theory,

Im(X I-L ) + ImB S

if and only if X. is a controllable mode. Since M is invertible the result

follows.

2) From (3.4) it follows that the fast subsystem is completely

controllable if and only if (LfBf) is a controllable pair or equivalently,

Im(XI-Lf) + ImBf F
f.f
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for all NE C. This certainly holds for '#0. Hence

M(ImE+ ImB) = Im(ME) + Im(MB)

= S e(ImLf + ImBf)

gives the desired result.

3.3. The Effects of Linear Feedback

Now that controllability has been defined, we can investigate its

bearing on problems associated with descriptor systems. As we shall see, in

some situations it is necessary to allow controls in.& (U)- cq(u). At first

it may seem strange that controllability is a useful concept in such cases

since it was defined entirely in terms of cq(u) controls. However, closer

inspection reveals that controllability is essentially a structural property

independent of the types of control driving the system.

Suppose one were to apply to the system (2.5) a feedback control law

u(t) = Kx(t) + v(t) (3.8)

where KEHom(K,U) an,.. vE0 (U). The system would then be of the form0

Ek = (A+ BK)x + Bv. (3.9)

However, it is easy to construct examples where the condition

det(Es-A-BK) * 0 (3.10)

is violated. Since we do not know how to deal with such systems theoretically,

only those K satisfying (3.10) will be considered.

Our first task is to establish relationships between the structures

of the open and closed loop systems (2.5) and (3.9). One easy result

concerns systems satisfying
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rank E = r (3.11)

where r is defined in (2.9). (2.15) shows that (3.11) is equivalent to

Lf = 0. If (3.11) holds then

dim(Ker E) = n-r = dim F. (3.12)

From (2.8), the definition of F, Ker EC F. Hence (3.11) implies F- Ker

so the fast subspace of any system satisfying (3.11) is invariant to linear

feedback.

A more difficult result says that the feedback invariance of the

controllable subspace in state variable theory can be extended to descriptor

systems. To prove this we shall need a lemma.

Lemma 3.2: Let (E,A,B) have controllable subspace R. Then the pair (('E-A) -E,

(NE-A)- B) has controllable subspace 6? (in the state variable sense) for any

\E C-c (E,A).

Proof: Choose \O(E,A) and observe that

R + (XI-L )R C R + L R
s s

for any subspace R of S. If xER+L R then there exist y, zER such that
S

x=y+L z. Let z=-z and y=y+Nz. Then z,yeR and

x = y + (I-L )z ER + (I-L )R

s s

so
R + L R = R + (XI-L )R.

s s

Assume that

k k
R + L R + + L R = R + (\I-L )R + .. + (\I-L) Rs s ss

for some k. Then

1
i
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R + L R + .. + L k+IR =R + L R +""+ Lk R
S S S S

+ L (R+L R+ ... +LkR)
s s s

=R + L R+...+LkR
s s

+ (XI-L )(R+LsR+ + L kR)

(,I-L )R+ + (AI-L R.k+R.

Setting R= ImB , it follows that

6? = ImB + (XI-L )ImB + .'. + (XI-L )n- 1 mBs

-1l

Since 6s is L -invariant it is also (AI-Ls ) -invariant so

= (XI-L )-lmB + + (XI-L ) -n1mnB
S s s s

We shall now prove that

-l -1 -11m .

R = (XLf-1) llmBf + ((ALf-l) Lf) (ALf--I)llmBf + ..

+ . + ((L f-l) ILf) n-L (XLf- I) mBf

For N = 0 this is obvious so assume that X# 0 and let R be any subspace of F.

Clearly,

Ln-lR + n-2 R+ 2 n-3R+ + (XL I) n-R n-i

f (Xtf-l)tf (XLfl) Lf f fRCR+LfR+ ... +Lf R.

Let O<k<n-l and consider the nxn matrix T
= (t ij] where

ri~ )(- 1 )J X if i>j

tij 0 if i<j

T is invertible so there exist a., i = O,...,n-i satisfying

nl0 if j #n-k-i

i=j ii i SI if j = n-k-i



33

Then

n-i i_ n-i-i n-i i Ij n+ji I

S(-L I) Lf a (i )(-l) i - j jLii f f i=O j=O i f

n-i n-1i ) j n-j-i

-Lj.

j;;O i=j i f

Lk= f

If xE R then

k n-i in-
L fx E O (L -I) L fi(aci X)

ELn- R + ( nL-)L2 R + + (XL I)n-iR
fL f f

and

R+LR+ ... +Ln-iR= Ln-iR + (XL -)Ln-2 nR+.+ (XLf-niR.
f f f f f)L R "+Af-

Setting R= ImBf and observing that Rf is (XL f-l)--invariant gives

Rf = (Lf- 1) -ImBf+ (XLf-l) LfImBf+ + 4 (XL-l) -nL n- IMBf

Note that

Lf(XLf-l) = (XLf-I)Lf
so left and right multiplication by (ALl-I) shows that f-I) and L

commute. This establishes the desired expression for 6?

Finally, note that

(XE-A)- EIS - (I-L)-is

(XE-A) -EIF = (Atf-I)-Lf

-1 -
P(AE-A) B = (AI-Ls) B

5 5

Q('E-A)- B = (L f- ) -Bf

so the pairs ((XE-A)- EIS, P(AE-A)- B) and ((\E-t)- EIF, Q(XE-A)- B) have

controllable subspaces 9s and 6 f respectively. Since (XE-A)- 1 EIS and
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(IE-A)-EjF have disjoint spectra, ((XE-A)- E, (AE-A)- B) has controllable

subspace Rs ,R = R. This completes the proof.
5 f

Theorem 3.4: The triple (E,A+BK,B) has controllable subspace R for all

KG Hom(X,U) that satisfy (3.10).

Proof: Let 6 K be the controllable subspace of (E,A+BK,B). For any subspace

R of X and any XE C-(a(E,A)i'ha(E,A+BK)) we have

(XE-A-BK)(XE-A)- (ImB+ R) = (I-BK(XE-A) - )(ImB+ R)C ImB+ R

and (XE-A) -(ImB+R) = (XE-A-BK)- (ImB+R)

since XE-A-BK is invertible. Applying Lemma 3.2 gives

R = (XE-A)-(ImB+ E(XE-A) (ImB+ E(XE-A) (... (ImB)...)))

= (.NE-A-BK)-(ImB+ E(XE-A-BK) (ImB+ E(AE-A-BK) (... (ImB) ...

and the proof is complete.

Henceforth, for notational simplicity, we shall denote the relevant

subspaces and operators of the closed loop system (3.9) by SK' FK, MK, LK,

LfK9 etc.

3.4. Slow Feedback

Besides feedback invariance of the controller subspace, there

does not appear to be much that can be said in general .',ting structural

properties of open loop descriptor systems to those of closed loop ones.

Fortunately, the pole placement problem can be dealt with by feeding back

the slow and fast trajectories separately. The induced structural changes
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can then be more easily characterized. In this section we consider feedback

in the slow subsystem. That is, we apply a control u=-Kx+v with

Ker K D F . (3.13)

Let

K -= KIS (3.14)
s

and let rs= (eI ..... er ) and 3f= (er+1 .... ,e,) be bases of S and F

respectively. If 3 =-(el .... ,en) then

Mat a(Is-L s-B K

Mat (MEs-MA-MBK) = sji(BfK Mt LfS-I]. (3.15)
f Matf

Clearly, the eigenvalues of the closed loop system (3.9) are those of the

operator L + B K . Hence we have the following extension of a well known
s s s

result from state variable theory.

Theorem 3.5: An eigenvalue X. of the descriptor variable system (2.5) can1

be shifted arbitrarily by applying slow feedback if and only if the eigenspace

of A. is contained in R

From (3.15) it follows that the dimensions of the slow and fast sub-

spaces do not change when feedback is applied. In fact, the next result says

that the fast subspace and fast subsystem are essentially unchanged by slow

feedback.

Theorem 3.6: If K satisfies (3.10) and (3.13) then

FK= F

LfK L f

and RfK =f*

Proof: Choose eC-(r(E,A) a(E,A+BK)) and observe that

I
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Mat (\I-L -B K ) 0
Mat ((,'E-A-BK)-IE) = s s sIs

a) Mat A 3s (U f- 1)-B fKs (1I-Ls-BsK) 
Mat a ( k.Lf-I)-L f

Clearly,

FK = Ker((XE-A-BK)- E)
n - r = F.

Also, (3.13) implies

(NE-A-BK)-1EIF - (NE-A)-'EIF

so 
1 1

sKIF = (XJ 2 K-I)-I (XJ 2 -1)-I = MIF

and '

LfK = MK(XE-A-BK) -EjF = M(XE-A)- EJF Lf.

Finally, RfK RKFK, FK=F, and Theorem 3.4 together imply RfK= f so the

proof is complete.

It is easy to construct examples where B fK#B Nevertheless, as

we have just seen, the open and closed loop systems have the same fast

controllable subspace.

3.5. Fast Feedback

Consider the control law u=Kx+v with

Ker K D S (3.16)

and let
Kf = KIF. (3.17)

Then
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Mat s (Is-Ls) Mat f(-BsK)

Mat (MEs-MA-MBK) M 0 j4j f ( -BfK f) (3.18)

Iir 0 Mat 3  jL (3.18)f f

Clearly, the eigenvalues of the open loop system are also eigenvalues of the

closed loop system. But det(L fs-l-BfKf) in general is not a constant poly-

nomial so fast feedback may induce additional modes in the system.

If some of the roots of det(Lfs-l-BfKf) are also eigenvalues of Ls

then it is difficult to find a relationship between the open loop and closed

loop eigenspace structures. However, this can be easily voided as we shall

now see.

Let ( denote the subspace of Hom(X,U) consisting of all T

satisfying KerTCS and let JC( consist of all T satisfying det(Lfs-I--BfTf) 0
d

and such that

a (LfI+BfTf) a (E,A) (3.19)

where Tf=TIF. Let

ii11 =  sup f1Txl I xE X, 1x i = 1}. (3.20)

Proposition 3.1: 1 is open relative to X.

Proof: The proof will be postponed until Chapter 4. See the discussion

following Lemma 4.3.

Corollary: There exists > 0 such that TEC( and 1iTI1 < E together imply that

TET .

Proof: Obviously OE so the result follows immediately from the proposition.

We next establish a threefold decomposition of the closed loop

system. LetI
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h g.
det(Lfs-l-BfKf) = oI (s-S.) (3.21)

f ff i=l 1

where "0 '0 and i#j implies S.# B.. Henceforth we assume that KET so .0 3 3- J

for all i,j. Let XE C-o(E,A+BK) and define

h 1 gi (.2

D = a Ker((XE-A-BK) E - i (3.22)
K i=l X-5i

Lemma 2.1 guarantees that Dk is independent of A.

Theorem 3.8: 1) SK= S$D .

2) S and DK are both MKE- and MK(A+BK)-invariant with

MK(A+BK)IS- Ls .

3) RsK Q s DK"

Proof: 1) Let AE C-o(E,A+BK) and define

r - in
S = Ker((AE-A-BK) E -_1 )n-A

i=l-

Then SK=S-DK. Let xeX with x=x 1 +x 2 , x1 ES, and x2EF. Then

(XE-A-BK)- Ex = (XI-Ls) x1 + (XI-L s)- 
1BsKf( XL f-I-B fKf- Lfx2

+ (XLf-I-B fKf) Lfx 2

and there exists NE Hom(F,S) such that

k - 1 n. k -1 n
r ((AE-A-BK) E) 1x = Nx + ((AL - I-BK I) ix.i=l 2 i=l f ff f A-A 2

1 -Lf 5
Since KET , -X--- is not an eigenvalue of (ALf-I-BfKf) Lf so

-il 1

(ALf-I-BfKf) Lf A-A. I is invertible. Thus, if xES we have x 2 0 and

xE S. Conversely, suppose xE S. Then

5T

5See the proof of Theorem 2.1 for a discussion of the eigenvalues
of (AE-A)-IE for any E and A with AE-A invertible.
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k -1n
S((,NE-A-BK) E - I) 'x 0

i--i i

and xES so SS.

2) We have immediately that S and DK are (,\E-A-BK) E-invariant,

J1K- and M-invariant, and hence MKE-invariant. From

(X E-A-BK)-1 (A+BK) = I,('E-A-BK) -1 E-I

MK(A+BK)-invariance of S and DK follows. From (3.16),

(XE-A-BK)- EIs = (XE-A)- EIS

so 1 - M
RIs = Ji-is =j 1  -Is

and --

y.d (A+BK)IS = R K(XE-A-BK) AIS

= M(XE-A) -AIS

Ls

3) Clearly,

Im(a.ME-MA-MBK) + ImMB = S (Im( iLf-l-BfKf ) + ImBf).1

For xE F let xI = ( L f-I) -x and x 2 = Kf x Then

(3iLf-I-BfKf)X1 + Bfx 2 = x

and
Im(iL f-I-BfKf) + ImBf = F.

Hence, from Theorem 3.3, part 1), D CR. Also D CS so
K K K

DK C 6 SK -- RsK"

Furthermore, by Theorem 3.4,

R s S C K K')SK R sK

4-s
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so

RsK D s D K'

To prove the converse let

xE sK = RK n SK = 6? (S5DK).

Then xE6R and there exist yES, zED K such that x =y+z. But y= x-zEd6+D K = R

so
xE (6rS) BDK = R aDK

and
asK C Rs DK"

This completes the proof.

Theorem 3.8 is analogous to Theorem 3.6. It states that the closed

loop system consists of three subsystems: one acting on the open loop slow

subspace S with eigenvalues X . and controllable subspace zs, one which is

completely controllable acting on DK with the induced eigenvalues i, and a

fast subsystem acting on FK. Although there is considerable structural

reshuffling, the controllable subspace of the overall system R remains

unchanged.

If rank E = r then we can go even further. We already know that in

this case the fast subspace does not change when feedback is applied. Since

SCS K and S K F= X it follows that S- S K . The next result says that not only

are the slow and fast subspaces unchanged, but the entire system is essentially

unaffected. This would seem to indicate that applying fast feedback to such

a system is pointless. Recall that rank E= r implies Lf = 0 so I+ BfKf must

be invertible for det(L fs-I-Bf K f) 0 to hold.

Theorem 3.9: If rank E = r and K satisfies (3.10) and (3.16) then LsK= Ls,

LfK' 0, BsK= B s(I-Kf(I+BfKf)- 1Bf) and BfK= (I+BfKf) -1Bf

.... . .. . " .. . .. , -- i "' ,i - -f.
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Proof: Since F= KerE, LfK=\EIF= 0. Also, if XCEC-u(E,A+BK) then

J K (XE-A-BK)- EIS = (XE-A)-EJS = (XI-Ls

and -
LsK = MK(XE-A-BK) -(A+ (ABK);s

= J- (E-A)- AIS
IK

Ls

Next we have

so-1-
Ps B = J P(XME-MA-MBK) MB

K 1K

= J A(I-L) B - (AI-Ls) B K (I+ B K )B)
1 s s s f f f f

= B (I-1B s(-Kf(I+BfKf) Bf).
Finally,

QM = (J 2K-) -IQ

so QMKB = ('J 2 KI)-1Q( ME-MA-MBK)- MB

= _(XJ 2K_1 ) - 1 (i1+ B fKf)-B f.

But J 2K = ( E-A-BK) -EIF - 0

which gives the desired result.

To conclude this chapter we consider the problem of eliminating the

impulsive portion of the fast trajectory (2.24) by applying fast feedback.

The result that we shall obtain says that it is possible to eliminate

impulsive behavior if and only if the fast subsystem (except for the part

acting on Ker Lf) is controllable. First we need a lemma.

Lemma 3.3: Let Y and Z be finite-dimensional C-vector spaces with dimY-dimZ.

Let NEHom(Y,Z) and GEHom(U,Z). There exists HEHom(Y,U) such that N+GH is

invertible if and only if IroN+ ImG--Z.

-! -~'- ~ -.- ..
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Proof: If N is invertible then the result is obvious. Let N be noninvertible

and choose bases of Y, Z, and U. The existence of an appropriate H is

equivalent to controllability of the mode 0 of the pair (MatN, MatG) which

is equivalent to

ImN + ImG = Z

so the proof is complete.

Let F/KerLf be the quotient space of F modulo KerLf,

WeHom(FF/KerLf) the canonical surjection, and Lf the induced map of Lf.

Proposition 3.2: L is nilpotent with index of nilpotency q-l.
f

Proof: L f is uniquely defined by WLf L fW. Assume

Then (3.23)

WL n+l L"W~f o + .
ff -- = L WW

Hence (3.23) holds for p=-1,2,3,..(

Next, note that if xE ImL then there exists yE F with x--L y.f f
q

Thus Lfx- Lfy- 0 and

ImL q1C KerLf Ker W
ff

soq _ q - 1 = 0

f f

and, since W is a surjection, fq- .
q.

On the other hand, there exists yC-F with Lq- y#0 so

IML q- 2  Ker L

f f

Thus

f f

q-2
and f#0. This completes the proof.

fi
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Letting Bf=WBf and xf(t) =Wxf(t), we may define the quotient system

Lfxf = xf + B fu. (3.24)

Since Lf is nilpotent, (3.24) has similar structural properties to those of

the fast subsystem (2.20). In particular, from Theorem 3.3, part 2) it

follows that (3.24) is completely controllable if and only if

ImL+ ImBf= F/Ker L We shall make use of this fact in the final theorem
f fLf.

of this chapter. Note that no S-functions are present in (2.24) if and only

if Lf =0.

Theorem 3.10: The following statements are equivalent:

i) There exists Ke Hom(X,U) satisfying (3.10) such that LfK =0.

2) There exists KEHom(X,U) satisfying (3.10) and (3.16) such that

L fK= 0.

3) ImLf + ImBf + KerLf = F.

4) The quotient system (3.24) is completely controllable.

Proof: Choosing bases of S and F, it is clear from the matrix representation

of Ex-MA-MBK that, for any K,

deg(det(Es-A-BK)) = r + deg(det(Lfs-I-BfKf)).

From (2.15), L = 0 if and only if
fKI

deg(det(Es-A-BK)) = rank E

or equivalently,

deg(det(Lfs-I-BfKf)) = rank Lf

since
rank E = r + rank Lf.

Whether or not LfK 0 is therefore determined solely by the action of K on F.

I
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The behavior of K on S is irrelevant and the equivalence of 1) and 2)

follows.

Choose a basis = (e1 ,...,e p,e p+ , . .. ,ep ,... ,ep d l+ 1 ... epd

of F so that Matl Lf is in Jordan form with d blocks of sizes p i+l-p. Let

Mat (I+BfKf)= [hij]. A straightforward but notationally messy calculation

yields that the (rankL )th coefficient of det(L s-I-B K is just det
f f f f)

where, setting po 0, 8= [9..] with

6.. = h
13 Pi'Pj-I +l "

1) is equivalent to det 0 # 0 for some K Note that

ImLf = span{elIj= Pil+1 p. .- , l; i= 1,...,d}
and tl'*'

KerLf = span{el,epl+1 ,...,epdl +1l.

Let T = spanfe ,e ,...,e p.

Then dim( Ker Lf)= dim T and 1) is equivalent to the statement that

PTImLf (I+BfKf) KerLf is invertible for some Kf where P TImLf is the skew

projection operator on T along ImLf. Let V=P TImL Then

V(I+BfKf)IKerLf = V IKerLf + (VBf)(KfIKerLf)

and from Lemma 3.2 an appropriate Kf may be found if and only if

V(KerLf + InBf) ImVIKerLf+ ImVBf = T.

Hence we have arrived at the equivalence of 3).

Complete controllability of (3.24) is equivalent to

ImLf + ImBf = F/KerLf

so the equivalence of 3) and 4) follows from elementary arguments.
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Since i) implies 2) in Theorem 3.10, we are guaranteed that if the

impulsive behavior of the fast subsystem can be eliminated by feedback then

it can be eliminated by fast feedback. Theorme 3.10 may be interpreted as

a pole piac-ment . -oncerned with shifting poles at infinity into the

finite portion of the complex plane. Theorem 3.8 says that the shifted poles

correspond to controllable modes and can thus be placed arbitrarily.

3.6. A Two-Stage Pole Placement Procedure

The following design procedure can be used for pole placement in the

overall descriptor system. First, calculate the decomposition for the given

open lcop system. If the fast subsystem modulo KerLf is completely

controllable then any impuslive behavior can be eliminated by applying fast

feedback as outlined in the corollary to Proposition 3.1 and Lemma 3.3.

Second, calculate the decomposition of the closed loop system after

fast feedback has been applied and shift the poles of the slow subsystem as

desired. The properties listed in Theorem 3.8 make calculating the decompo-

sition easier.

4|
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PART TWO

SINGULAR PERTURBATION THEORY



I
47

CHAPTER 4

DECOMPOSITION OF GENERALIZED SINGULARLY PERTURBED SYSTEMS

4.1. Preliminaries

As shown in Chapter 1, there is a need for a singular perturbation

theory which not only unifies existing theories, but also extends them to

a larger class of systems. In this Chapter, after defining the generalized

singularly perturbed system, we shall develop a geometric decomposition of

the system into slow and fast subsystems. Such a decomposition will have

use in Chapter 5 in the study of the behavior of the solutions of (4.8).

It will also be useful in studying the behavior of the solution to the LQ

regulator problem in Chapter 7. For the standard form (1.5), approximate

decompositions already exist (see, for example, [15]). We shall take a

somewhat different approach from what has been done in the past, extending the

geometric decomposition developed in Chapter 2 to systems defined on a para-

meter space. The decomposition will be exact in contrast to the approximate

decoupling result of [15]. In order to develop the theory we shall need certain

mathematical concepts. Consider the set fl of all subspaces of X. For any

R E ? let PR EHom(X,X) be the orthogonal projection operator on R. Define

p: 2 -[0,) by

p(R,T) - 1P R - P~iT. (4.1)

It is shown in [33], pp. 69-71 that p is a metric with values in (0,1] and

that p(R,T) = 1 if and only if either R-L-fT#O or R2T #0o. From a

dimensionality argument it follows that p(R,T) =1 when dim R dim T. p can

be thought of as a generalization of the angle between subspaces.
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Let .- be a topological space (see, for example, [28]) and choose

W,0 . If R : Q - '/ is continuous at w0with respect to p, it will be useful

to construct a convergent basis for R. To do this we need a pair of lemmas.

Lemma 4.1. Let y, e i :,,2-X, i =1,...,n be continuous at w with (

e n(w)) a basis of X for all w Es. If ae i: n -C, i=1,...,n are defined by

yw a(w~e (W) +... +Ce (w)e (w) then each a. is continuous at JOYj)= 1n n 3.

Proof: Define L :0 -Hom(X,X) according to

L(w)e.i(w) =e.i(w), i =1,...,n.

Then L is continuous at w0and L(w) is invertible for each w EQ. Taking

the inverse of L(w) corresponds to a continuous function on the topological

subspace of invertible endomorphisms in Hom(X,X). Hence w -L(w)- is

continuous at w0 It follows from

+111L(W0 )- 
11Iiy(w) -Y( A~)

so w L(w)- y(w) is continuous at Lu . Define .:Q -C according to

00

Then each ~.is continuous at w .It follows that
1. 0

y(w) =L(w)( ((W)e (W ) + ... + (we(

S1 (w)e 1 ()+... +0 n(w)e (W)

so a.i =oil -,...,n and the proof is complete.

Lemma 4.2. Let L : -Hom(X,X) be continuous at w with v,.vpabsi

of Ker L(w)0 There exists a neighborhood V of w0and maps e.i :V-X,

i-=1,...,p such that



49

1) e. is continuous at wo,

2) ei(Wo) =vi, i =3 . ....p.

3) (el(w),...,ep (w)) is linearly independent fwEV.

4) span {eI(w),...ep(w) iKerL(w) VwEV.

5) w-span (e1(w),....,e p(w) is continuous at wO.

Proof: Choose a basis (b,...,bn-p) of ImL(wo ) and define c. I -X,

i=l,,...,n-p according to ci(w) =L(w) bi. Then ci(w) iKerL(w) .  Further-

more, (bl ....,bn-p) is a basis of Ker L(w 0) so (C l(o),..cn-p(Wo )) is a

o (c(w 0 ,.. n-

basis of ImL(w )  =KerL(w ) Since the points in X which correspond

to linearly independent sets of vectors form an open set, there is a

neighborhood V of W throughout which (c (W),...,c (w)) is linearly
0 n-p

independent. Taking the adjoint corresponds to a continuous function on

Hom(X,X) so w--L(w) is continuous at w0 . , ci(w) -ci(w ) L(w) - L(w 0

gives that ci is continuous at wo' i=l,...,n-p.

Applying the projection theorem (see [27], p. 56) yields the

orthogonal projection i(w)c (w)+... +P i,np(u)c np(W) of v. on span

Lc (w),...,c(w) KerL(w)-where -C is given by

Clearly, each ij is continuous at w0 "

Define ei on V1 by

ei(W) vi - (vil(W)ci(w) +... +i,n-p (')Cn p (U')).

Then each e. is continuous at J . Also,
0
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v. - span L C ' ' °) C n - p ( O) i

so e i (Wo ) =v., i=1,..,p and there exists a neighborhood VcV I of Wo

throughout which (e (rx),..,ep(')) is linearly independent. Restricting

e. to V, 1) -3) hold.

Since

ei(w) Espan 'c(W, ,np)}
St -n-p

from a dimensionality argument it follows that

spantel(W) , ... ,e p(W)} = spantc i (w),...,Cn- p ( w ) }
± DKer L(w)

for all unEV. Finally, let xEX. From lemma 4.3 there exist a. : C,-C,

i =1,...,n, continuous at w, such that

X =al(W)el(W) + ... +Ce (w)e (W) + (w + •+ Y
Ipp pF+I W(w) + •. n (w) Cn- p~

for all wEV. Then

espanel(w),...,e p(w)Ix = l(w)el(w) + ... +ap (w)ep (w)

so W-espan ,e(w),...,e (W) is continuous at w0 and so is w-spaniel( ) ....

e p(w)}. This completes the proof.

Corollary: Let (v1,...,v p) be a basis of R(w0). There exist a neighborhood

V of w and maps ei : .1-X, i= l,...,p, continuous at WO, with e. (Wo) =vi,

i1,...,p and (e1(w),...,ep (w)) a basis of R(w) for each wEV.

Proof: Since R is continuous at w0 , dim R(w) -p for all w in some neighbor-

hood of w . Setting
0

L(w) = PR(W)- -I- PR

and applying 1) -4) give the desired result.
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We shall shortly be considering parametrically varying linear

operators. Unfortunately,their domains may also depend on a parameter.

Hence, in order to talk about continuous behavior locally about the

singular point, it is necessary to topologize the set

Hom(R, R). (4.2)

To do this define -Hom(X,X) according to

TX if x ER

,(T)x = J (4.3)
( 0 if xER--

Hom(X,X) has the topology induced by the operator norm (3.20). Let c(X)

be the weakest topology on X that makes " continuous. The topological

space (Z,J(X)) is pseudometrizable with pseudometric

dx(TIT 2) = (T I  (T 2 )  (4.4)

Hence, a map L :-Z is continuous at w if and only if .oL is continuous

at w in the usual norm sense. Define H(X) to be the set of all Lo

continuous at w
0

If R :,- is continuous at w we denote by HR(X) the set of all0

L EH(X) with L(w) EHom(R(L),R(w)) for each w E.. If GE 7, and R(1) -G for

all w then HG(X) is alternative notation for HR(X). Note that Hom(G,G)zCX

with

,IT~I = j(r), (4.5)

for any TEHom(G,G). Thus, considering Hom(G,G) as a topological subspace

of Z, the relative topology on Hom(G,G) is the same as the norm topology.

Therefore, L :1-Hom(G,G) is contained in HG(X) if and only if it is con-
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tinuous at w with respect to the norm topology on Hom(G,G),

Consider a locally continuous R:2 -? and LEHR(X). Let V be a

neighborhood of w and el, ....,ep basis functions as described in the

corollary of lemma 4.2. Then

iE(u) i (u) - L () e ()i 0 (u) (L (w0)) i (W 0

, ( 4oL)(ui) - (j.ioL)(Wo )IJlie (w )i: + lh (L(w ))11i e (w) - e. (w )1 (4.6)

so w-L(w)ei(w) is continuous at W0  i--i...,p. It follows from lemma 4.1

that the matrix representation of L(w), defined on V with respect to

el,...,e p, varies continuously with the parameter about the singular point.

Proceeding similarly, let

?AU Hom(U,R) (4.7)

and define v :.-Hom(U,X) by v(T)u=Tu for any uEU. v simply extends

range spaces to X. Letting j(U) be the weakest topology on ? that makes

v continuous, define H(U) to be the set of all L :1 -7, continuous at 00

with respect to U(U). If R : -1//jis continuous at Wo, let HR(U) consist

of all L EH(U) with L(W) EHom(U,R(w)) fur all w. Local continuity of

matrix representations of members of HR (U) can easily be shown.

In dealing with singularly perturbed systems we shall consider

only operator valued maps in HR(X) and HR(U) for some R, continuous at wo.

Hence, all systems that we shall consider will have locally continuous

matrix representations. Since matrix representations are inevitably used

in applications we are justified in developing a theory which guarantees

local continuity with respect to the topologies j(X) and 5(U). For

theoretical purposes, however, abstract topological concepts are preferred
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over notions of matrix convergence since the abstract approach is coordinate

free.

We need a few more results concerning HR(X) and HR(U). Let

R .-.', be continuous at j

Proposition 4.1. 1) Let LH x(X) and let R(w) be L(w) -invariant for all

.. Then w-L(w)IR(w) is continuous at ,i0

2) If X : .w-C is continuous at w and L 'ER(X) then

i- X(w)L(w) is continuous at W
0

3) If L1 ,L2 EH(X) such that, for each w EJ, L (w) and

L2(W) share the same domain, then w-L 1 (w) +L 2 (w) is continuous at WU

4) If LEHR(X) and L(wu) is invertible for each w

then u)-L(w)- is continuous at U)
0

5) If G I-( and v :2-X are continuous at w with

R() -G(x)-X for all Z . then w-PR)G v(w) and w -PG(R(w)v(w) are

continuous at j)

6) If BEX (U) then w--PR(u)G(w)B(w) and w--P G)R(u)B(w)

are continuous at xL.
0

Proof: I) Let xEX and el,.. .,ep be as in the corollary to lemma 4.2.

Since PR(w)- ' I- PR( w)) R(w)i is continuous at wo and e 1,... en may be

constructed to form a locally continuous basis for R(w)'. As in lemma

4.1 construct nl..., n such that

x M CI(W)el (w) + ... n (w)en(w).

Then

P R) Hom(X,R(w)) is the skew projection operator on R(w) along G(w).



54

and w pL(W)R(w)) is continuous at w

2) This follows immediately from

3) The result follows from

,. (L 1 (wj) +L 2 (w) = - (L 1 (w)) + 2w)

4) Construct a locally continuous natrix representation with

respect to a basis (el,. .. ,e p) on a neighborhood V of w0.The inverse of

Mat L(w) also varies continuously at w 0.Define . :V -C according to

Mat L(w)- = [ . (QUj)JI.

Choose x EX and construct al'. ..,a as in 1). Then
p

( u -1) =p -1 P~~..(L ~ IQ )x Z (w) L (u) e. = .z(i w.2GO1 = t() li j=l J

5) Choose basis functions el . for R and ep,.., for G,

and let al,* ...2a satisfy

11W l we ()+ + n (WenW)

Then

PR W) (w v u) al~~elw) +O p(w)e p(W).

6) Let u EU. Then

v(P R()~B(W))u =PR(W)G(W) B(w)u.

Letting

v(w) = B(w)u -v(B(w))u

we have that v is continuous at W 0 The desired result follows from 5) and

the proof is complete.
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4.2. Eigenvalue Behavior

We shall now construct a singularly perturbed system. We call

the parameter space and u0 the singular point. For applications, the

importance of non-Euclidean parameter spaces is not as yet clear. However,

for our purposes, the structure of a topological space will be sufficient.

We shall not cloud the relevant issues by imposing additional structure on

A generalized singularly perturbed system is a family of linear

time-invariant systems described by

E(w)k = A(w)x + B(W)u (4.8)

where E, AEH x(X), BEN (U), and w. ranges over 2. Furthermore, we require

that

det(E(w )s -A(w)) E 0 (4.9)

and that E(w ) be singular.

The singularity of E(w ) and the continuity of E and A at ' o work

together to create the "singular" behavior of singularly perturbed systems.

For example, we shall now see that, in general, systems of the form (4.8)

have eigenvalues which can be separated into two classes according to

magnitudes in a natural way.

Consider the characteristic polynomial det(E(w)s-A(w)) of (4.8).

Since forming the determinant involves only sums and products of the entries

of E(w) and A(w) we have

det(E(w)s-A(w)) =Y n(W)sn +... +Yl(w)s+Yo(W) (4.10)

where Yi :' -C is continuous at wo, i -0,...,n. Let

tI.
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r =maxLi Yi(wo) # 01. (4.11)

Lemma 4.3. Let f(w,s)=Y n(w)sn +... +Y (w) where Y. :n2-C, it0,...,n are

continuous at w satisfying Y r+(Wo) 0 -Yn (Wo )  0, Yr (W) #0, r<n, but

otherwise arbitrary. Then there exists a neighborhood V of wo and maps

.o' .. J'"' r l)'...2'n-r :V -C, continuous at wos with ai(Wo) =0,

P (w)#0 for all w, and such that

n-r r
f(w,s) = (w)( 1 (a.(w)s-l))( iT (S-%i(W)))

for every w EV.

Proof: Let g(w,s) =Y o(W)sn +... +Yn(w). A bound on the roots of a polyno-

mial over C given in [26], p. 62 implies that there exists at least one

root 6 of g(w,s) satisfying
W1

n< ) r n-r) a-r
W%1 Yr(W)  --='iOW lw~i 3.(4.12)

whenever Yr (w) #0. Since yr (w ) #0, there is a neighborhood V1 of wr r o

throughout which (4.12) holds. Define 01 on V1 according to

6w if Y(w) 0
l () = Yn ()0

0 if Yn(W) = 0

The construction of a1 guarantees that if 0 is a root of g(w,s) then

a (w) -0. From (4.12) a1 is continuous at w with a (wo) =0.

Let C(V1 ) be the set of all maps from V into C, continuous at

w . Using pointwise addition and multiplication, C(V1) is a commutative

ring with identity. Hence (see [25],p. 334) there exist Yo, .... Yn- C(Vl)

such that

- ---- --- -
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g=(s - Y s1 ¥ + "'"
1 0 n-I.

where g is considered as a polynomial over C(VI). Multiplying and equating

coefficients at wx 0 yields Yr+1 () ' '° =. n-l()o) =0 and Yr((o) 0 0.

The above arguments may be applied n-r times yielding a neighbor-

hood Vnr of Wo and maps al''' n-r' 0o'...,'r :V-C, continuous at wo

with c( o )... = nr(Wo) =0 such that

)n-r(,r r +Tn-r
r gi +. + o0i=l i.

From the construction of the a. we have that 0 is not a root of
3.

Or(W)sr +.. + P(W) so 0o(w)#O for any WEVn. r . Let V=Vn-r .

Clearly,

r n-r
f(,s) = (()s +... +(U)s-l)

From the continuity of z I and a. it follows that there exist %l.., r :V-C

continuous at w such that
0

r rr@O(w)s s + ' ' " +@(w)= = (w) iTr1(s - Xi (w))

for all w EV. This completes the proof.

We thus have that the eigenvalues of the system (4.8) are

1()  and1 where X. and a. are continuous at

ra() 'a (w i1
I n-r~w

w and ai(W ) =0. Hence there is a characteristic separation of the modes

of all systems of the form (4.8) according to magnitudes.

It is now a straightforward task to prove proposition 3.1.

Proof of Proposition 3.1. Let =K with the topology induced by the norm

(3.20) and choose w 0 E. Then from lemma 4.30

p n-r-p

f- i
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for some p-n-r where ci(w) #0 and 6i(w) =0. Clearly,

det(Lfs - I - Bf(W I F)) ; 0

is satisfied throughout a neighborhood of w 0 Also
0

i(wo 0 ka(E ,A)

implies

TiW)  (E,A)

throughout a neighborhood of w 0 Finally,0

i a(E,A)
6 i(w)

so

a(Lfll+Bf(U I F)) i7i a(E,A) =

throughout some neighborhood of W . Hence 7 is open in a and the proof is

complete.

4.3. Slow and Fast Subspaces

Since the system (4.8) is a descriptor system at w the slow

and fast !jubspaces are already defined at ujo. We shall now extend their

definitions to a neighborhood of w . From lemma 4.3 there exists a0

neighborhood V of w such that IX.(w)I < i--- I for all w EV. We now re-0 ao.(w)
define n =V so that the natural eigenvalue separation occurs at all points

of 0. Since we are concerned only with local properties of (4.8) about W

the restriction of 0 to a neighborhood of Wo causes no problems.

To facilitate the definition of slow and fast subspaces we need

the following lemma.

... . . ...... .. "--'..- ----- -- - _
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Lemma 4.4. Let E, AiEH x(X) satisfy (4.9). Then there exists X :.-C,

continuous at w such that X(w) EC-a(E(w),A(wu)) for all wE4.

Proof: Let -C be continuous at Wo with (wo) 0 c(E( W ),A(wo)). Then

there exists a neighborhood V of w such that (w () i(w), i,..o,r and

I(w)[ <I[ )[, i=l,...,n-r. Hence 7(w) o(E(w),A(W)) for all wEV.
3.

Define k(w) = .(w) for w zV and let X( ) satisfy ( 'a(E(.),

A(u;)) for W E-V. This completes the proof.

Choosing X as in lemma 4.4 we may now define the slow subspace

at w as

S (w) = Ker .-TT((w)lE (w) -A (w)lE )(w) (4.13)

and the fast subspace at X as

n-r 1i(w)

F(w) Ker . l ((X(w)E(w) -A(w)) 'LE(W) - ) (4.14)

Let
p- n

det(Is- (%(w)E(w)-A(W))- E(w)) =7 1 (s 
-7iw) iw (4.15)

with i j implying -, . As demonstrated in the proof of theorem 2.1,

1 is an eigenvalue of (%(w)E(w)-A(w))- E(w) and so may be identi-

fied, after proper indexing with i =1,...,q w for some q The re-W i.(w) admyb

maining eigenvalues of (%(W)E(W)-A(w))-E(w) are %(w)oi(W) . a

identified with 7iw, i=q +l,...,p,. Hence we may give an alternate

definition of S(w) and F(W) as the direct sum of eigenspaces. Note the

resemblance to (2.7) and (2.8).
% w n .

1W

F 1)== Ker(G(w()E(W)-A(w)) 1. ) (4.17)
i -i ni1

l1



60

Clearly, the definitions (4.16) and (4.17) are equivalent to

(4.14) and (4.15). (4.14) and (4.15) are usually to be preferred, however,

since they are given in terms of operators that vary continuously with w

at w . It follows imnediately from lemma 2.1 that S(w) and F(w) areo

independent of the particular choice of the function X for all w Ell. From

the definitions and the properties of X. and a. as outlined in lemma 4.3

it is clear that dim S(W) =r and dim F(w) =n-r for all w. Also, S(w)eF(w2 )

- X for all w. From (4.13), (4.14), and lemma 4.2 we have that S, F : -74

are continuous at wo.0

4.4. System Decomposition

We now extend the decomposition for descriptor systems to a

neighborhood of the singular point. We first extend the algorithm (2.10)-

(2.13) to all of P. Let Jl J 2 C -X be defined by

J (w) = (X(w)E (w) -A (w)) E (w) I S (w) (4.18)

J 2 (w) = (X(w)E()-A(w) )'E (W) F (w). (4.19)

Define M, M :z-.Hom(X,X) by

M(w)x I(w) - Ix if x ES(w) (4.20)

(j(W)J 2 (w) I) ix if xEF(w)

and

M (w) M(W)((w) E (w) -A (w)) . (4.21)

Finally, let Ls, Lf j 2-X be given by
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Ls(w) I -(w)l -J() (4.22)

and
Lf(w) = (k(w)J 2 (w)-I) J2 (w). 

(4.23)

Clearly, M(w) and M(uj) are invertible for each w E 2. From proposition 4.1

we have J1 . LsCHs(X) J2 LfHF(X), and M, MEHx(X).

At this point we are ready to state the main decomposition result.

Theorem 4.1. For each u) E

1) S(w) and F(w) are both M(w)E(w)- and M(w)A(w)-invariant.

2) M(w)E(w) I S(w) =I, M(w)A(w) I F(w) =1.

3) M(w)E(w) I F(w) =Lf(w), M(w)A(w)I S(w) =L (w).

n-r
4) det(Lf(wO)s-I) = i_lT(i(w)s-l).

r
5) det(IS-Ls (w)) = il (s-ki(0)

Proof: 1)- 3) follow immediately from the definitions and from

(k (w) E(w) - A (w)) A (W) (w)(X(w)E (w) - A (w)) (w) -I.

.To prove 4) note that

n-r ji_ (
_

))de t(Is - J2(w)) .i7 ( s -2 1=1 (W)a i(W) -1

Then from (4.23) we have the desired result. 5) follows similarly by

observing that

r
det(Is - Jl(w)) (S - X(w).(w)

This completes the proof.

From lemma 2.2, M is independent of X and hence so are Ls and Lf.

From 6) of proposition 4.1 we may define B. EH (U) and Bf EHF(U ) according

to
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B5  = S(w)F(w)B(w) (4.24)

and

Bf(u() = PF(W)S(w) (w). (4.25)

We have finally arrived at the decoupled system equivalent to (4.8). Letting

the solution x of (4.8) be decomposed by S(w) and F(W) into x=x5 +Xf we

define the slow subsystem

s =Ls (w)xs +B s(W)u (4.26)

and the fast subsystem

Lf (W)k f =x f + Bf (W)u. (4.27)

The initial condition x is decomposed into• 0

xso (W) = PS()F()Xo (4.28)

and

x fo.() PF(W)S(W)Xo" (4.29)

From 5) of proposition 4.1, xso and Xfo are continuous at W;.

We have thus achieved an exact decoupling of (4.8) according to

eigenvalue magnitudes. Continuity at the singular point has been preserved

everywhere possible. The decomposition at uo coincides with the descriptor

decomposition developed in Chapter 2. We shall use the decoupling results

in a variety of situations in later chapters.
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CHAPTER 5

TRAJECTORY CONVERGENCE

5.1. Solution of Descriptor Equations

In this chapter we shall consider two questions. The first

concerns one justification for calling (2.24) the solution of (2.20). Con-

sider the class of all singularly perturbed systems whose system operators

converge to those of a given descriptor system. Given one member of that

class, its solution may or may not converge as w-w0 . We would like to

find the set of all possible limiting solutions of such systems. If there

exists only one possible limit then it would make sense to call that the

solution of the descriptor equation. Since each descriptor system is the

limit of a singularly perturbed system, it would be convenient if at least

the possibility of convergence of solutions existed. Of course we have to

decide what definition of convergence of functions to use. It would be

helpful if more than one notion of convergence gate the same result.' So far

no other author has taken such an approach to the solution of (2.20).

The second problem is that of determining when the solution of a

singularly perturbed system does converge. More will be said about this

later.

We first consider generalized functions (see [24]) from [0,-)

into X and U. Let K(X) be the C-vector space of infinitely differentiable

maps from (-',-) into X having compact support. A sequence ( in K(X)

converges to ) EK(X) if and only if the supports of all the k are contained

in the same bounded interval and k- uniformly for i 1,2,3..... The

class of generalized functions is the set of all continuous linear func-

tionals on K(X). We shall consider only a subspace 0 (X) of the generalized

I I
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functions. 0 (X) consists of all x with (x,@) =0 whenever 4 his support
0

contained in (-=,0]. En other words, ' (X) consists of all x such that

x=0 on (- ,0).

If x : [0,) -X is Lebesgue measurable and integrable on any

compact interval then

(X ) <x(t t >d t (5.1)
0

defines the corresponding x EL (X). For v EX, the functional 6 v defined
0

by

(6iv,0) 1)i < V Vi (0 ) > (5.2)

is the multivariable generalization of the Dirac delta (differentiated i

times). We shall consider the two most common topologies on & (X), the

weak and strong topologies (see [24]). A sequence (xk ) in 6 (X) is said to
4 0

converge weakly to x EL (X) if (Xk")-(xP) for every p EK(X). We need

not even consider the definition of strong convergence. For our purposes

it suffices to state that strong convergence implies weak convergence and

the two limits are equal

Consider the descriptor variable system (2.5) and the class of

all singularly perturbed systems converging to it in the sense of its de-

fining operators. We could attempt to show that there is only one limit

for the solution to achieve, but we are already satisfied with ie defini-

tion of the solution of the slow subsystem (since this is merely a state

equation). In fact, only the natural response of the fast subsystem is in

question since the forced response is the solution of (2.20) in the ordinary

sense for u ECq(U). We especially need to justify our use of the unforced

IThe three topologies on K(X) and 6 (X) are all Hausdorff and satisfy the
0

first axiom of countability. Hence, we need consider only countable
sequences. Also, no sequence has more than one limit.
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part of (2.24) since it does not even sati~sfy (2.20).

Let Rk -R EZand (T k) be in Z with T k invertibl.e in Hom(Rk'Rk)

and T k -TEHom(R,R), T nilpotenc with index q. Let v k v IR. We need to

consider the solution of

T kxX (5.3)

with initial condition v k

Theorem 5.1. If e(T k 1)v k converges weakly to some limit then that limit

isq-16l T V

Proof: We have fo r eK(X)

tT -1q
(e(Tk )v ,) = Jc < e kvk t(t) >dt Z ~(lI)i<T kvk, (0)

tTj
q,,ol k q

+ -) < )( t

by integration by parts. Choose an orthonormal basis (e1,...,e)n of X and

let

tTk

q (t) = Y t)el + ... +On (t)en

~(T k q)e.i = -'ljk el+... + ' j k en'

Since

q q
k P(Tk)

4(T k q 0 and ijk - 0 as k - Since ;)q EK(X), we may define Y i. EK(X) by

ii (t) i ej*

Then
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O 00: tTk vk'
0 (t)$(t)dt 0 < e kv' j(t) > -Cij

for some Cii, i,j=l,...,n and

7<TqtTk I  n iotTk

j To Vk zq (t) >dt < i=l o<(Tkq ) ( e  Vk)' i(t)ei >d
n CO

i,~ ~ (0 =~j ~kt (t)dL -0O.

Hence,

q-1 i .q-l T
(e(Tk )vk,o) -- (l) ,.T 3v,O i - (0) > = -i- iVP)

for all EK(X) and the proof is complete.

We therefore know that the only possible limit of the solution

of the fast subsystem (4.27) (unforced) in the weak topology on 0 (X) is

in fact what we have been calling the solution all along. To reinforce

this convergence argument, consider the strong topology on L0 (X). If the

unforced solution of (4.27) converges in the strong sense then it must

converge weakly. Since the two limits must be the same, Theorem 5.1 holds

for strong convergence as well. The labeling of (2.24) as the "solution"

of the fast subsystem is inescapable. It should be stressed, however, that

(2.24) can be called the solution only in the limiting sense. Once again,

it does not satisfy the equation (2.20).

5.2. Sufficient Conditions for Convergence

Although the previous section shows that only one limiting solu-

tion of a singularly perturbed system can exist, the question of whether

or not that limit is actually achieved is still unanswered. In this sec-

tion we shall develop conditions which guarantee convergence of the solu-

tion as u.o" 0I
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For several reasons it is important to know if the system trajectory

converges with W. Since in practice a descriptor system can usually be

viewed as the limit of a particular singularly perturbed system, establish-

ing trajectory convergence serves as justification for considering a des-

criptor system as a viable model. A descriptor system which has not been

identified as the limit of a particular singularly perturbed system, or for

which trajectory convergence has not been established may have hidded

instability due to the disappearance of the fast modes in the limit.

In terms of numerical considerations, it is easier in some cases

to compute the solution of an rth order descriptor system than an nth order

state variable system. If trajectory convergence has been established, a

computational savings may be obtained by setting the parameter to w and
0

calculating the corresponding solution, sacrificing a small amount of

accuracy.

Convergence of the solution of the standard system (1.5) is

understood (see [20],[28], and [34]-[361). Necessary and sufficient condi-

tions for existence of a limiting solution can be stated in terms of the

limiting system alone. This can be done, however, only because the assump-

tion of the form (1.5) contains implicitly the assumption of one particular

way of approaching the limiting system. In our formulation many different

approaches are possible leading to a much more difficult problem. To

guarantee convergence of solutions, some statements must be made not only

about the limiting system, but also the way in which it is approached.

Convergence of the solution of the slow subsystem (4.26) in

various senses is relatively easy to establish. We shall be concerned
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mainly with characterizing convergence of the solution of the fast sub-

system (4.27) in terms of the behavior of the fast eigenvalues 1 (w.

For convenience we assume that Lf(U() is invertible when w Ow. That is,o

0 is an isolated singularity.
oq

Let f:x [0,) xC q(U) xX-X be given by

tLf(W) -  t (t-T)Lf() " i
e X fo(W) +je Bf(W)u(T>dT if WU0

0
f(W'tux 0) = q- (5.4)

i=0Lf (wo) I Bf (wo)U 3 (t) if W =wo

where u i(0) is the ith right-hand derivative of u at 0. Clearly, ff

agrees on (0,-) with the solution of the fast part of (4.8) at W with con-

trol u and initial condition x.0

From (5.4) it is clear that understanding the behavior of
-1)

e(Lf() plays an essential role in the study of f convergence. We now

l-characterize convergence of e(Lf(w)) in terms of the fast eigenvalues

Consider the smallest rectangle in C, symmetric about the real
1

axis, enclosing the eigenvalues - (See Figure 5.1.) Let' j. (w)"
Mi

a(w) =max Re 1 (5.5)

b (w) = min Re 1- (5.6)

2

c(w) -max IIm - 1 . (5.7)a kw)

Define

Here "Im" denotes imaginary part.

I-
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Im

b~w) Re

-c(w)

or 6-47 73

Figure 5.1. The eigenvalues of L f(w)-
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Y(w.) =min~ ja(w) I - b(W)I~ (58
a(W) 2+ c () 2 b(w) 2+c (w)2

As a part of any sufficient condition for convergence that we

shall derive, it will always be assumed that a(w) --- as w -w 0and hence

b(w) -0.~ Actually, it can be shown that this is in fact necessary for

most types of convergence. Thus we may restrict attention to a neighborhood

V1 of w) with Wev -V [wi implying a(w) <0. Define p. [0,11 -c by

p,,(y) Y'W) ei~T + ( + -). (5.9)

p paamerizs acircle with center at Y(W) +1 adrdu 1w
paaetie aT4 a(w) 2 a(w)

Let pj) W '~'ji

Lemma 5.1. 6 W(y)'O 90, a(w) is enclosed by p W3 and

for j1l,...,n-r and each y E[0,113 w EV (~W 0

Proof: Choose j,y, and w. We have

-a(W))-- I

a(w) 2 + c(W 2  a

From (5.9),

6(y) :5Y(w) < 0.

Let o.(w) =w +zi. Then

b (w)!- w 2 ~a(u))
w 2+ z2

and

2 z c (w)
w +z
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Equivalently,

1 2 2 1
w ) 4a(w) 2

1 2 2 1

(w -- ) +
2b(w) 4b(w)2  (5.10)

w2 + (z- 1 2 1
2c() 4c(w) 2

2 1 2 Iw + (z+ 2--y(w) c4c (U)2

Hence, a. (w) is contained in the region determined by four circles as in

Figure 5.2. The five points of intersection are a--) ±c(w)i b(w)tc(w)i 0
a(w) 2 +c(W)

2 3 b(w) 2 +c(W
2

From the geometry it is clear that w -Y (). From (5.10) it follows that

~2 2 ~.ww +Z 2, -
a(W)

so

(wY(,)_ 1 )2 z2:!Y(u,) 1+Yw) /.. 1 2 9Y(u))3Y (w) 1(w-4 ) z -( )  4 +a7--) - 16 +2a(w) +
a (w)

(3Y (w) 1 2
4 a(w)

Thus, a.(w) is enclosed by the circle with center at aw) and radius
ji4 a(w)

4 a(w) 2 a(u) 4

and the proof is complete.

Lemma 5.2. If a(w)- -, b(w)Y a (w) 0, and c(w), a ( U -0 as w-w for

every >1 then e(Lf( ") -)0 pointwise on (0,-) and uniformly on [E,= )

with respect to the pseudometric dX (see (4.4)) for all E>0.

j.-~--
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Im

Re

a (W)cbw)

Figure 5.2. The region 
containing 

c (,-j 
P-77
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Proof: Let t - >0. Then

tLf(U) M s
e =i e (sl - tf('U))-Ids

where the path of integration is parameterized by p.. Hence,
t

- P(Y) p'(y)
T,( )0I = n-rll -(adj(p X(y)l -Lf(w)))dy-

i
(

l () -( ( )

t

1 lie n i-(adj(p (y)I-Lf(w))),!dy
-r0 -p Y) (w! Lfi)

where "adj" denotes the (classical) adjoint. Since p (y) -0 as w-w0o0

uniformly in y,

t(adj(p w(y)I - L -f(w) (adj Lf 0

uniformly in y and there exists a neighborhood V of w° and N >0 such that

Siadj (p (y)I - Lf(u() K<N

for all w EV -(}, y z 0',i].
o

We have for wEV 10

(y) Y (W) i) 2 (2 =(Y2 + I 2 (Y(w) 1 2

" 4 a(w) w 2 a(w) 4 a(w)

so

~2 ~. ~ 2(~~+- - . - a(w)1 4

i
(y )2  + iw (Y) 2T h 

+ a-s
)

since Y (w)- Se Thusa(w)
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t 2aw

eP ,W (Y) e "5 E w

From

2 a (w)

it follows that for w V UVI - 1 }

which is independent of t. If n-r =l we need only show that

0!

2 - a (w)

3L (W..+ -

e f e
a (w)y(w)

3
Letting = e3  we have

2(W = .2a(w) + ( a

a (w)( a (w) )- a (w)

2 aw

a(w)% +c(W)

and

2a (w)__a ___ a(W))2)

a(w)( b(W) a(W)

b(W) 2+ c(w)2

3(n-r-1)
For n-r >I set 0=e Then

3 E a () ¢2a () n-r-I

e (,)n -r-
l  ( - )

But

~2a(W) = aI()2 a(w) 2

a-(w+ (w) (c ( )

a(w)
2 +c(W)

2
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and
2a (W) 1 a )2 au)22a(W) I b' ( ( b (u )) a ( W) )2+ (c (.),aa (W) )"

b(w) +c(w) 2

E

Finally, setting =e 3 ( n - r ) and applying similar arguments gives
2 Ea(W)

e -0 .

a(w)Y (w)n
- r

This completes the proof.

Lema 5.2 establishes convergence of the exponential provided

a(w) -- 0 and certain growth conditions on b(w) and c(w) are satisfied. For

example, if

b(w) N a(w)k (5.11)

for some N, k>0 then the condition b(W)O a ( w ) _ 0 holds for every 0>l. The

rate of growth of b(w) and c(w) must be less than any exponential of a(w).

Lemma 5.3. If a(W) -- 0 then there exists a neighborhood V of w such that

tLf(w)-
1  2 2 n-r

Jo eidt < I b  a(W)

for all W EV - [ W.
0

Proof: As in the proof of lemma 5.2,

1 nt
tLf(W) n-r 1 (y)e eNl )+ Ij I e ' Idy

e(-) 2 a(w) 0

so, by Fubini's theorem, t

tL (W) n- * ni drf( ) - I  4 n-r l - ) p ( 12

4 n-r (t 1 3 3 4 n-r 1 2
NY' ) 2 +a(w) a "> 2 N (YW) (a'w) >
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Since a(w) -,there exists a neighborhood V of W~ with
0

1 2 2 1

4 arN

Then

M le tLfWI dt< I n-r b (w) 2 + c(W) 2 n-r

0i 1 ( -(y) a (w)

and the proof is complete.

We now establish sufficient conditions for convergence of f

Theorem 5.2. Let a(w) --Q' b(w)O a -)_0, and c(w)O -~)_0 for every 0 >1

and let u EC (U) have all its derivatives bounded. If there exists a

neighborhood V of W 0and a positive integer p such that

11, a(W) i< w) 1 n- r

f b(W) 2+ c(w)-

for all W EV 0w}, then, as w-w,0

pointwise on (0,-) and uniformly on [C-,-) for every

E >0 and each x CX.
0

Proof: For w Aw, integration by parts gives

efWtUX tf wxl(W) L ~ L(W) 'Bf(W~ui (t)

tL f(W) 1 pi (t-T )Lf(w) -

+eO ~ 0 f (W) B f(W)u (0) + L f(W)PJ e. Bf~wu(~
0

F rom

2 2 bww
b(w)2 +C(W (w)
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it follows that Lf(w)P-0 so p q. Hence, from lemmas 5.2 and 5.3, the

desired result follows.
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CHAPTER 6

FURTHER STRUCTURAL PROPERTIES

6.1. Slow Subsystem

It is often advantageous to know that if a certain dynamical

system property holds for a singularly perturbed system at i , then it also
0

holds throughout some neighborhood of w . For example, in this chapter we
0

shall see thaE controllability behaves in this way. Hence, controllability

at w is sufficient to guarantee existence of the optimal solution of the LQ0

regulator problem (see Chapter 7) throughout a neighborhood of w . This
0

fact will result in a computational savings.

In this chapter we shall consider various results of tnis type.

Applications to the pole placement problem will be discussed.

In section 4.3 we restricted the parameter space Q to a neighbor-

hood of W so that the eigenvalues of the system ,. (W) and----, areo i. o.().

separated by magnitudes for all uE . Since each X. is continuous at w0,
3.

the parameter space can be further restricted so that Xi(wo) #.(w o) implies

%i(w) ,.(w) for all w E. Accordingly, the functions K. can be partitioned

into equivalence classes, X. and X. being in the same class if and only if

X.(wo) =X(W ). We can reindex the X such that Xl,...,Xn comprise one
.0 Jo i

equivalence class, X n+1 ...,2 another, etc. up to nk 
= r.

1 2
Consider the eigenspace

n.
Si(w) =Ker T 3. (w)E() -A ) 1 )

2il+() )E(w) (w)-X. (w))

n.
j-n T (L (w)-Xj(w)I) (6.1)

i-l

I
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where no =0 and X is as in lemma 4.4. From lemma 4.2 and the fact that

Si(w) has constant dimension throughout 0 it follows that Si is continuous

at w for i=l,...,k. Also,

k
S(w) = . lSi(w). (6.2)

Lemma 6.1. Let RI, ...,Rp :Q-*7Y be continuous at w0 " Then there exists

R : 0-5 such that

1) R is continuous at w0

2) R(w) CRI(w)+...+Rp(w) VwE!2.

3) R(wo0) = RI1(W 0 ) + . .. +R p (W0).

Proof: Let L :0-Hom(XP,X) be defined by

L(w)(x,...,Xp ) =PR(W)XI+ ... +PR (w) Xp

p

Then w-L(w) is continuous at w and by lemma 4.2 there exists R :Q-,

continuous at w, with R(w) DKer L(w)* for all w En and R(w ) =Ker L(w )*.

Let R(w) =R(w)z. Then R is continuous at wo,

R(w)CKer L(W)* J = R (W )+ . . . +Rp (W ).

This completes the proof.

Since X. is continuous at W0 , Re Xj(Wo) < 0 implies that Re X.(w) <0

throughout some neighborhood of w0 . Let (w) i (w0) be the stable

members of o(E(w ),A(w )). Continuity at w of Si and lemma 6.1 give the

following result.

Proposition 6.1. Let 6(w) be the eigenspace corresponding to the stable

p
eigenvalues of the system (4.8). Then w - Si (w) is continuous at w°

a Pand there exists a neighborhood V of osuch that j~iSi.(u)cA(w) for
j 3i
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every w EV.

Proposition 6.1 states that for small perturbations the slow

subsystem is at least as stable when perturbed as it is at jj. Also, the

stable subspaue is well-behaved about wo.

We next consider the controllable subspace R (w) of the slow

subsystem (4.26).

Proposition 6.2. There exists R : P. such that

1) R is continuous at w0

2) R(W)CR (w) VwEn.

3) R(wo0 =R s(wo).

Proof: Since
i i

v(L (w) B ())= (L (w)) IV(B (w)),
i * s

w-v(L s (W) B (w)) is continuous at w . Hence, from lenmma 4.2 there

exists Ri : -, continuous at w , with Ri(w) ZIm(Ls (w)B s (W)) for all

w E and Ri(w ) =Im(Ls (W0) Bs(wo)). Let R be as in lenna 6.1 with p=r.

Then 1) holds and

R(W) CR1 (w) + ... +R r ( W) c ImB s (W) + Im(L s (w)B s (w)) + ... + Im(L s (w) B (W))

for all w E so 2) holds. 3) follows similarly. This completes the proof.

Thus, the slow subsystem is at least as controllable when per-

turbed as it is at w . The slow controllable subspace is well-behaved

about w•

To conclude this section we consider stabilizability.

i
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Proposition 6.3. If X.(w o ) is a controllable mode then X.(w) is controll-3.0 3.

able throughout some neighborhood of w 0o

Proof: By hypothesis,

Im(, (wo)I -L s O )  + ImB s (W o  S S(Wo
3. 0 5

From proposition 4.1 and lemma 4.2 there exist RI, R :C2 continuous at
1'2

(o0 with

Rl (w) C Im I.(X(w) -L ( ))

and

R2 (W) CIm V (Bs (w))

for all wEC2 and such that

RI1( Wo0 ) + R2 (Wo0 ) = S (Wo)°

From lemma 6.1 and the constant dimensionality of S,

Im (w( ) l - L s ( w ) ) + Ir v(B s ( w ) ) =X

throughout a neighborhood of Q and the proof is complete.

Corollary: If the slow subsystem is stabilizable at w 0 then it is stabiliz-0

able throughout some neighborhood of w 00

6.2. Fast Subsystem

Since many different singularly perturbed systems, with various

types of fast mode behavior, share the same limiting descriptor system, no

information concerning stability of the perturbed fast subsystem can be

extracted from the fast subsystem at the singular point. Hence, we cannot

make statements analogous to those of the previous section about stabiliz-

__._



82

ability and convergence of the stable eigenspaces. However, we can

describe behavior of the controllable subspace.

Let Rf(w) be the controllable subspace of the fast subsystem

(4.27). If Lf(w) is not invertible at a certain w, then (4.27) must be

decoupled according to the descriptor system decolr-osition outlined in

Chapter 2. The resulting slow and fast subsystems (subsystems of (4.27))

then have well-defined controllable subspaces as given in Chapter 3. The

vector sum of the slow and fast controllable subspaces is then the controll-

able subspace of (4.27).

Proposition 6.4. There exists R: -'? such that

1) R is continuous at u)

2) R(W)Cf(w) VwEO.

3) R(wo0 -if (W0).

Proof: Choosing an arbitrary w EQ and proceeding according to the algorithm

(2.10) - (2.14) yields the decomposition FI9F2 =F(w) with

Lf(W) IFI 
= LI

and

Lf(w) i F2  L2

where LI is invertible and L2 is nilpotent. In fact, the system decomposi-

tion takes the form

i -ll l LI
1L 1 x I+L- B1 u

L2 2 = x2 + B2 u

where B PFF 2Bf(w) and B2 =PFF Bf(w). The part of the controllable

subspace corresponding to subsystem I is
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R Im(L 1 BI) 
+ "" + Im(Lr-nB ) = L (m BI '" + .. +L n -r - l m BI)

Im BI+.. + Llnr- m BI

by the Cayley -Hamilton theorem and the L - invariance of RI Corresponding

to subsystem 2 we have

R2 = Im B2 + ... +L2n-r-llm B2 .

Thus,

Rf(w) = al aR 2

Im Bf( ) + ... + Lf())n-r-llm- mf()...+L ) IBf(w).

The rcsult follows from lemmas 4.2 and 6.1. This completes the proof.

It is gratifying to note that we have defined controllability

for descriptor systems in such a way that controllability at W implies0

controllability throughout a neighborhood of woo

6.3. Application to Pole Placement

From propositions 6.2 and 6.4 and lemma 6.1 it follows that

statements identical to those in propositions 6.2 and 6.4 hold for R(w) =

Rs(w)eRf(w). As an application of this and the results of the previous

two sections we now show how some modes of the perturbed system can be

placed approximately by designing a feedback gain for the system at w .

Here we are generalizing results of [16].

First, since controllability at w0 implies controllability for

small perturbations, the existence of a feedback gain that achieves

arbitrary eigenvalue assignment in the perturbed system can in some cases

be established by testing the system at w for controllability. If a mode
! 0

I
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of the limiting system is controllable and if it is shifted as desired by

linear feedback then, from local continuity of slow eigenvalues, the same

feedback gain applied to the perturbed system results in eigenvalues only

slightly different from those desired. Hence, for small perturbations,

modes controllable at w can be approximately assigned as desired by consi-0

dering only the limiting descriptor system.

In fact, as outlined in section 3.5, given a certain degree of

controllability of the limiting system, a feedback gain may be constructed

such that the closed-loop system at w has slow subsystem (in the descriptor0

sense) of dimension rank E( 0o) with all modes controllable. These can be

assigned with linear feedback yielding an approximate assignment in the

perturbed system. Unfortunately, this is the best that we can do. All

information about the position of the remaining n-rank E(wo) eigenvalues of

the perturbed system is lost at x 0 In order to place the remaining eigen-0

values, the subsystem decomposition must be calculated at the perturbed

value of w and the gain calculated accordingly. Nevertheless, some computa-

tional convenience is achieved since tne feedback gains may be calculated

for the slow and fast subsystems individually. The modal separation

eliminates some of the problems associated with stiff numerical computations.
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CHAPTER 7

THE LINEAR QUADRATIC REGUlATOR

7.1. Preliminaries

In this chapter we consider the optimal control problem with

quadratic cost and singularly perturbed system constraint. A similar

problem pertaining to the standard system (1.5) was considered in [15].

We shall need to solve the regulator problem for the descriptor system

at w 0 . The LQ regulator has been considered in [10] for descriptor systems

usLng dynamic progranming, but we shall take a Hilbert space approach. The

Hilbert space methodology is more suitable for dealing with questions about

convergence of the optimal control with respect to w.

2
Let L (X) be the set of Lebesgue measurable maps x : [0,-) -X

satisfying

1 x(t) j2 dt< = . (7.1)
0

After identifying functions which are equal almost everywhere, L 2(X) is a

Hilbert space with inner product defined by

< = o <X(t),y(t) >dt (7.2)

for all x,y EL 2(X). Define L2 (U) similarly. L 2(X) xL (U) is also a Hilbert

space with inner product

<(x,u), (y'v) >- <xy >+ <uv > . (7.3)

Recall the definition (2.21) of e(T) for T EHom(X,X). For

xEL 2(X) it is known (see [22],p. 158) that if T is stable then the con-

volution e(T)*x :[0,-) -X belongs to L (X) and

I
I
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ie(Tx !I elx o dt <-. (7.4)

Throughout this chapter we shall consider only singularly

perturbed systems with Lf(W ) 
= 0, Lf(w) invertible for U#W, and L (W

stable. We further assume that Lf(w) is stable for W ±o . Hence,

x:[0,-) - X defined by

tLs (W) tLf(w)
Xso()+e Xf() if w w

IW(t) = tLs (W ) (7.5)
e 0s( )if W=w o

is in L2(X) for w in some neighborhood of W . We now restrict to a0

neighborhood of w such that 7EL(X) for all )E. Clearly, Iw is the

natural response of (4.8).

If we defined : L 2(U) -L 2(X) by

e(Ls(w))* Bs(W)u+e(Lf(w)' )*Lf(w)- Bf(W)u if W#w °

d (u) =  (7.6)

e(L s(W ))*Bs(W )u- Bf(Wo)U if w=W o .

then d,(u) is the forced response of (4.8).

7.2. Problem Formulation

Let

A(C) = t(x,u) EL 2(X) xL 2(U) I x"w (u)}. (7.7)

Since Pd is a linear map, A(w) is a subspace of L 2(X) xL 2(U). in fact, from

(7.4) it follows that oP. is continuous so A(W) is closed for all W EL2. The

solution of the regulator problem minimizes the cost functional
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'0 2 12
J(x,u) =j x(t) -+ u(t) dt (7.8)

0

over the constraint set ('',0) +A(W) for each W o2. Since J(x,u) (x,u)
2 L2

we can view the problem as a minimum norm problem in L
2 (X) xL (U). Since

A(w) is closed, we have from the projection theorem (see [23]) that a

unique pair (xW,u)) E (7 ,0)+ '(w) that minimizes J exists for each w E.

Furthermore,

(xw,uW) = (01W0 O) - PA(u)) (1' 0) (7.9)

where P\(W) is the orthogonal projection operator on A(W).

The problem that this chapter addresses is not that of finding

explicitly the solution of the regulator problem since this has already

been done via the algebraic Riccati equation. The Riccati equation will

not come into consideration to any significant extent in this chapter. The

problem that we shall consider can be dealt with much more simply from a

geometric point of view.

Our problem is that c" establishing conditions under which

X -x0 and uU -uW in the L2 sense as w-w 0 If (x,,u ) converges then for
0 0

each -E>0 there exists a neighborhood V of w0 such that if w EV then

u-u W <E (7.10)
0

'I (uU ) .1 -x < (7.11)

0

and

IJ( W + dw(u U ),u )-J(x ,u )I <E (7.12)

since a,' and J are continuous. Thus, for small perturbations about w,0

the solution uw of the regulator problem at w can be applied to the
0

!0

II II II I I m - ,•
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perturbed system with only a slight deviation from the optimal trajectory

and optimal cost. It will be shown that solving the problem atw0

explicitly for u. is simpler computationally than solving the problem at
0

w Ow 0for u W. Hence, a computational savings can be achieved at the cost

of slight suboptimality.

7.3. Reduced-order Solution at w0

As a result of the reduction in order that occurs in the system

at wo, solving the regulator problem explicitly at w 0turns out to be

simpler than solving it for some other W. To see tnis, choose an ortho-

normal basis (e,...,e r) of S(w 0), an arbitrary basis (e +l2...,e n) of

F(w 0) and an orthogonal basis (v1 ,....,v m) of U with iv il Y' i =l,...'M
0 2.

for some Y >0. If u EL2 (U) and x EL2 (X) with x -x s +xf3 x s(t) ES(Wo),

xf (t) E F(w 0), and

x s(t) oe1(n . C (t)e r(7.13)

Xf(t) 01(t)el+ . + P(t) e (7.14)
r~l +"' n-rn

u(t) = '%t)v1 +... +'ym(t)V m (7.15)

then

J (x,u) of (t) cr(t) + 2a(t) NO (t) + 0 (t)Q P(t) + Y2 'i(t) ~i(t)dt (7. 16)
0

where ae(t), 0(t), and Y~(t) are column vectors consisting of the n. (t),

(tand Y .(t) and
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N < (7. 17)
<e r er+ >... <e e >

< en er+l ... <enlen >

Q (7.18)

If (x,u) E (W,0) +A(w ) then x(t) =Xs(t) +xf(t) =xs(t) -Bf(Wo)u

so we may equivalently minimize

A 'CO

J (Xu) =J(x s -Bf(Wo)u,u) =J a(t) a(t) - 2a(t) NKT(t)
0

+Y(t) (Y 21+K QK)'(t)dt (7.19)

where K=Mat Bf(W0).

In [31), pp. 46-48 it is shown that the optimization problem

with cost (7.19) and system

(t) = Ga(t) +HY (t) (7.20)

may be reduced to thaL of minimizing

- J I Mae(t)* ( _ - ** 2 *(,1 0) 1,(t*(I-NK(y21+K QK) N )a(t) + (t) (Y I+K QK)l(t)dt (7.21)
0

subject to

&(t) =(G - H(Y 2I+K QK)' N)a(t) +HO(t) (7.22)

2 *if I -NK(Y I+K QK) K N is positive semidefinite.

Lemma 7.1. There exists Y >0 such that I-NK(Y 21+K QK) 1K N is positive

definite.

2 *
Proof: The matrix T=NK(Y I+K QK) K N is clearly Hermitian, positive

semidefinite since Q is positive definite. We need to show only that for

Ti
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some Y >0 the eigenvalues of T are less than unity. Since the eigenvalues

of a matrix are bounded above by its norm, it is sufficient to show that

i(y21 +K * K) Ii < :

for some Y.

According to a well-known result, there exists p>0 such that

ILW < p (L)

for all L ECmxm where Z is the spectral norm. Let ? be the minimum eigen-

value of K QK and.let

Y >VmaxtpINKiN - , 0).

Then

1I(y I+K*QK) I<p((y21+K*QK)-)= .._2--- < 2
y2 + L NKI

This completes the proof.

Setting G=Mat Ls(W ) and H =Mat B s(W ) and choosing Y as in

lemma 7.1 we may solve the regulator problem at w° by minimizing J subject

to (7.22) which necessitates the solution of an rth order Riccati equation.

Compared to the nth order problem for w 0 , the rth order problem is a

considerable computational simplification. The remainder of this chapter

is devoted to finding conditions under which the solution of the reduced

order problem is close to that of the full order perturbed problem.

7.4. Convergence of A(w)

In order to establish convergence of the optimal solution (x,,uW)

it is convenient to establish convergence of A(w) with respect to a certain
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metric on the closed subspaces of L 2(X) xL 2(U). Let A be the set of closed

subspaces of a Hilbert space H. In [32] and [33] a metric P on ij is

discussed giving two equivalent expressions. Let

sup sup
p(RT) =dIPR - PTi = maxt xER D[x,T], 1E, E D[xR]J} (7.23)

for any R, T E7- where

D[x,T] =inf X- yIP. (7.24)yET

Note that (M,p) is a generalization of the metric space considered in

Chapter 4.

Theorem 7.1. If J ile jldt-O as w-.w then the mapping w-A(w) is
00

continuous at w with respect to P.

Proof: Observe that

2 2sup D[(x,u),A(w )] :Z sup 2  D(W (u),u),A(w 0A
(x,u) E A(w) u EL (U)
i(x,u)Il S i l ull " 1

sup 2 inf t(-.(u) - (u),u-v)ll2"sup 2 "(u) w (u) 1

u EL (U) v EL (U) o uEL(U) 0iiu ll il i 1 I 9I "

i= l j 2.
0

Similarly,

sup D[(x,u), ()]fji- -00 11

-1(x ~ ~.) tA~f W

so from (7.4),convergence of J 1ie ildt to 0 and stability of Ls(w )
g ao th0
guarantee tha tI

I
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p (A (W) ,A(w o ) -0

as w-w 0 and the proof is complete.0

7.5. Convergence of the Optimal Solution

We now give sufficient conditions under which w- (x,u ) is

continuous at W 0.0 -l -l
Thorm .2 I :l t L f ( W)  El tLf(W)

Theorem 7.2. If He ildt-O and Jfle :12 dt-Oas w-w theno 0 0

w-(xWu ) is continuous at W

Proof: First observe that

, "%I tLf (W) "I 2l (~1

Tj- Tl iIle t ) 211fo(w) I2dt + fle(Ls(w))Xso (w) - e(L s(wo))Xso(wo)i
o 0

so stability of Ls (U ) and tne second hypothesis of the theorem imply

-. . But the first hypothesis guarantees that
W

0

p -pA(W) A(W )

from (7.23). From (7.9) we have

(x , u (x 'o  -i - T1 + iP -P ITIT
W o W 0 AM Aw0) 0

and the desired result follows.

Since the hypothesis of theorem 7.2 implies that
-l

w tL (W) 21

i e t f  12dt <- (7.25)

throughout a neighborhood of w and since10

-1 2 tRe-
tL (W) e j(W) a if Re - ) 0
f ,2 r da o(W)0 let dt 0 e (7.26)0 o I-

2Re- if Re-<0(W) a (W)
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for all W , j=l,...,n-r, it follows that it is necessary for Lf(w) to be

stable throughout a neighborhood of w in order that the sufficiency condi-

0

tion of theorem 7.2 hold.

The sufficient condition of theorem 7.2 guarantees that the

reduced order problem at w may be solved yielding only a slightly sub-

optimal control which is close to the optimal control and which generates a

trajectory close to the optimal trajectory in the L2 sense. Under most

circumstances it is reasonable to interpret the convergence criteria of

theorems 7.1 and 7.2 as conditions on the behavior of the boundary layer

in singularly perturbed systems, for if the natural response converges

uniformly to zero in [E,-) the integrals are essentially measures of the

intensity of the boundary layer effect in [O,E). The integral convergence

conditions state that the effect of the boundary layer becomes

vanishingly small as w-W
0
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CHAPTER 8

ALTERNATIVE FORMULATIONS AND CONCLUSIONS

8.1. Algebraic Interpretations

Although it was not explicitly stated in previous chapters, there

are abstract algebraic interpretations for many of the results encountered

so far in our study of singularly perturbed systems. Thcse interpretations

have not been explored in much detail yet, but they are presented here for

completeness and as a suggestion for further study.

To begin with, consider the set of all mappings X :--C, continuous

at ,0 . Such mappings have been considered extensively, starting with Chapter

4, but we have not considered properties of the set of all such maps. Denote

the set by C(w ). With little effort it can be shown that C(w ) is a commuta-
0 0

tive ring with identity using pointwise addition and multiplication. Letting

;(W ) denote the subset of C(w ) consisting of all X with (w 0)=0, it can be

shown that ;(w ) is an ideal of C(w 0). Lemma 4.3 may be interpreted as a

factorization theorem for polynomials over C(w ).

Let 2 be the set of maps x :Q-X, continuous at w . Usingx 0

pointwise addition and scalar multiplication, ax is a C(w ) -module. Let

J be the set of subspaces of X and R :Q -V? be continuous at W with dimen-0

sion p for all W EO. For example, R may be the slow or fast subspace map

S or F as defined in Chapter 4. R may be identified with a submodule of

1 in the following natural way. As outlined in lemma 4.2 choose a basisx

(xl(w),...,xp (w)) of R(W) with xi continuous at W 0 Then x. E x and

xl, .... Xp is linearly independent since
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(w)Xl (W) +... +a p (W)xp(W) - 0 (8.1)

implies a i(w) -0 for all w, i-l,...,p. Let (yl(w),...,yp(w)) be another

basis of R(w), continuous at w 0 . Then

yi(w) = 0 1 (W)xI(w) + ... + p (w)Xp (W) (8.2)

with E. C(W ) by lemma 4.1. Hence,

span[Y,,... ,y p J- spantxl,.... Xp]. (8.3)

By reversing the argument,

spantx,,..,,x J c spanlYl,... ,ypj (8.4)

so we may naturally and without ambiguity identify R with spantxl,...,xpj.

In our study of singularly perturbed systems we considered

operator valued maps A EHR(X). Members of HR(X) can be identified with

linear transformations on the submodule R by setting

(Ax)(W) = A(W)x(w). (8.5)

HR(X) admits the structure of a C(w0) -algebra. Let

(A + B) (w) = A (W) + B (W) (8.6)

(AB)(w) - A(W)B(W) (8.7)

(A) (W) - %(W)A(w) (8.8)

for A, B EHR(X).

Following the same line of reasoning it can be seen that the set

j of all maps u :0 -U that are continuous at w0 is a C(W ) -module. Also,

HR(U) is a C(Wo) -module of linear transformations from into Q .

Consider pencils (i.e. first degree polynomials) over the algebra

i
*1_____
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HR(X). Using lemmas 4.1 and 4.2 it is easily shown that all the bases of

the submodule R have the same number of elements. For G, LEHR(X) each

basis of R determines r x r matrix representations of G and L with entries

in C(W0 ). It also determines a matrix representation of the pencil 
(G,L) 1

with entries in the C(w 0) -algebra C(Wo)[s] of polynomials over C(W0 ) in

the indeterminate s. The determinant of the pencil (E,A) may be defined

by forming the determinant of Mat (E,A) in the usual way with respect to

some basis yielding

det(E,A) EC(w 0)[s]. (8.9)

A simple argument shows that det(E,A) is independent of the basis chosen.

Consider A EHR(X) and let
4R

* p
det(I,A) =f (s-'i) (8.10)

where I is the identity element of HR(X) and Y EC(w 0) is invertible.

(T is invertible if and only if T(w)# 0 for all w E 2). Define

(A) = , p(8.i)

The Ii can be considered as eigenvalues of A.

We are now in a position to interpret the central singular pertur-

bation decomposition result, theorem 4.1, algebraically. Suppose that

E, A EHX(X) with

r n-r
det (E,A) - o 1= (s-X ) )M() (a )) (8.12)

where 0o EC(W0 ) is invertible and i E;(w)" This can be done according to

1The pencil (G,H) is often written Gs -H.

. . . . . . . . . . . ...'i l . . . .I.. .. .
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lemma 4.3. Theorem 4.1 states that

(E,A) N* (K,L) (8.13)

where N is an invertible constant polynomial over Hx(X), "," denotes

polynomial multiplication, and K and L are both S- and F-invariant with

K IS =IEH s(X) (8.14)

L IF =I EHF(X) (8.15)

o(KIF) =[a ili=l',...,n-rl (8.16)

a(LIS) =X. ii,...,r}. (8.17)
L

Theorem 4.1 may be interpreted as a canonical factorization result for

regular pencils (i.e. with det(E,A) 00) over H.X(X).

8.2. Geometry of the Space of Linear Systems

Let F be the complex Euclidean space of ordered pairs of n xn

matrices (E,A). There is an obvious one-to-one correspondence between F

and differential equations Ex=Ax. Hence each point of F can be inter-

preted as a linear system of one of the following three types: 1) a state

variable system if E is nonsingular, 2) a descriptor variable system if E

is singular and det(Es-A)$O, 3) a degenerate system if det(Es-A) --.

Viewing linear systems in this way is natural since a small perturbation of

a given system in the Euclidean norm is equivalent to a small perturbation

in the system parameters.

Studying the geometry of F adds valuable insight into the nature

of descriptor variable and singularly perturbed systems. With little effort

3 ZThis implies, of course, that E is singular.

- -!
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it can be shown that descriptor and degenerate systems together form a

hypersurface in F contained in the boundary of the set of state variable

systems. The property of being state variable is a generic property of 7.

It is an unfortunate fact that for every descriptor system in .7

there exists a sequence of state variable systems converging to it with

the corresponding sequences of eigenvalues diverging to +- . That is, if

a descriptor system is perturbed in the wrong direction, the peLturbed

system will have tremendous instability, the smaller the perturbation, the

greater The instability. It is as if every descriptor system is perched

precariously on the edge of a cliff. A step in one direction will result

in only a slight change in its characteristics. A step in the other direc-

tion will have disastrous consequence. The importance of establishing

simple conditions that guarantee trajectory convergence is clear. If a

designer fails to accouit for the possibility that a descriptor system's

parameters are slightly different from what he thinks they are, his whole

design could fail miserably.

Let DC F be the set of degenerate systems. One way to view the

question of trajectory convergence is to consider the map -x D- (X)

which associates with each pair (E,A) the solution of E! = Az for initial

condition x EX. If a topology is placed on -0 (X) (e.g. see Chapter 5) then0

we need to ask questions about the weakest topology on r that makes §x continuous.

Once the nature of the resulting neighborhoods of a descriptor system is understood,

the behavior of the solutions of a singularly perturbed system

(which is nothing more than a map from Q into r, continuous at w0, or the

parameterization of a particular path in F) can be determined by checking

to see if an arbitrarily small neighborhood of the descriptor system
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contains the image of some neighborhood of x 0

So far in this section we have considered only pairs of

matricies corresponding to unforced systems with fixed initial conditions.

In order to study the behavior of a forced system with a parametrically

varying initial condition, T must be the space of 4-tuples (E,A,B,x) where

B is n xm and x is n x 1. Our previous discussion of geometry and induced

topology carries through with only minor changes.

8.3. Suggestions for Further Research

In the area of descriptor variable theory there are many avenues

which have yet to be explored. For example, although observability of descriptor

systems has been considered in [7], the descriptor variable equivalent of

observers from state variable theory have not been developed. In a stochastic

environment the Kalman filter might also have a natural extension to descriptor

systems. There are many fundamental control-theoretic concepts 'ich as the

Maximum Principle and various stochastic and adaptive control techniques that

have yet to be considered in the context of descriptor varia"le theory.

Clearly, the problem of trajectory convergence in singularly

perturbed systems has, for tne most part, not been solved except for certain

standard systems. The general case that we have considered still requires

a great deal more work. The resolution of this issue is essential. As we

have seen in the last section, the survival of the descrip'or variable

approach to system modeling depends on it.

As with descriptor systems, many system-theoretic concepts have

not as yet been extended to singularly perturbed systems. In Chapter 7 we

studied the regulator problem for Ls (w ) stable and Lf(W 0 ) 
= 0. The same5I
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problem needs to be considered with the two assumptions dropped. It is

safe to say that if a problem has not been studied in the context of

descriptor systems then it needs to be studied in the context of generalized

singularly perturbed systems. If a given system is close to a descriptor

system in the Euclidean norm then conditions are needed to insure that one

need only consider the nearby descriptor system. If a designer is guaranteed

that the application of some design technique to the descriptor system will

yield results close to those that would come from working with the given

system, then he may choose to apply that technique to the reduced order

descriptor system. Such an action often results in increased computational

efficiency. Of course, the price is always inferior system performance.

8.4. Conclusions

In this thesis three central points have become clear. First,

there are many alternative ways to view descriptor variable and singularly

perturbed systems. They range from the matrix oriented approaches which

exist in most of the literature to the geometric theory developed in Chapters

2 through 7 to the algebraic ideas discussed briefly in this chapter.

Certainly, there are other interpretations as well that no one has even

thought of yet. The more ways that exist to look at a problem, the more

likely it is that the problem will be solved in the near future.

The second point is that descriptor systems must be considered

as members of the space F. Since they are located in such precarious

positions in F, failure to consider their spatial relationships with nearly

state variable systems could result in unexpected system behavior, to put 1
Ii
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it mildly. The question of trajectory convergence has yet to be answered

satisfactorily.

Finally, there are still many importint control-theoretic con-

cepts that have not been extended to singularly perturbed systems. We

have made some progress in the pole placement and regulator problems in

Chapters 3 and 7, but many other problems still exist.

I
I
I
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